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Global stability and H theorem in lattice models with nonconservative interactions
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In kinetic theory, a system is usually described by its one-particle distribution function f (r,v,t), such that
f (r,v,t)d rdv is the fraction of particles with positions and velocities in the intervals (r,r + d r) and (v,v + dv),
respectively. Therein, global stability and the possible existence of an associated Lyapunov function or H theorem
are open problems when nonconservative interactions are present, as in granular fluids. Here, we address this
issue in the framework of a lattice model for granularlike velocity fields. For a quite general driving mechanism,
including both boundary and bulk driving, we show that the steady state reached by the system in the long-time
limit is globally stable. This is done by proving analytically that a certain H functional is nonincreasing in
the long-time limit. Moreover, for a quite general energy injection mechanism, we are able to demonstrate that
the proposed H functional is nonincreasing for all times. Also, we put forward a proof that clearly illustrates
why the “classical” Boltzmann functional HB [f ] = ∫

d r dvf (r,v,t) ln f (r,v,t) is inadequate for systems with
nonconservative interactions. This is done not only for the simplified kinetic description that holds in the lattice
models analyzed here but also for a general kinetic equation, like Boltzmann’s or Enskog’s.

DOI: 10.1103/PhysRevE.95.052121

I. INTRODUCTION

In thermodynamics and statistical mechanics, global stabil-
ity of the equilibrium state is usually proven by introducing
a Lyapunov functional [1]. This Lyapunov functional of the
probability distribution function (PDF) has the following three
properties: (i) it is bounded from below, (ii) it monotonically
decreases with time, and (iii) its time derivative equals 0
only when the PDF is the equilibrium one. Therefore, in
the long-time limit, the Lyapunov functional must tend to
a finite value and thus its time derivative vanishes. As a
consequence, any PDF, corresponding to an arbitrary initial
preparation, tends to the equilibrium PDF: the equilibrium
state is irreversibly approached and said to be globally stable.

The first example of such a Lyapunov functional is the
renowned Boltzmann H functional. In the Boltzmann descrip-
tion, the nonequilibrium behavior of a dilute gas is completely
encoded in the one-particle velocity distribution function
f (r,v,t). By introducing the Stosszahlansatz or molecular
chaos hypothesis, Boltzmann derived a closed nonlinear
integrodifferential equation for f (r,v,t) governing its time
evolution [2]. Also, for a spatially homogeneous state, he
showed that the functional HB[f ] = ∫

dvf (v,t) ln f (v,t) has
the three properties of a Lyapunov functional. This H theorem
shows that all solutions of the Boltzmann equation tend in
the long-time limit to the Maxwell velocity distribution and
irreversibility naturally stems from a molecular picture [3,4].
Interestingly, a key point for deriving the H theorem is the
reversibility of the underlying microscopic dynamics. In an
inhomogeneous situation, one has to consider the spatial
dependence of the one-particle distribution function f (r,v,t),
and the above functional must be generalized to

HB[f ] =
∫

d r dvf (r,v,t) ln f (r,v,t). (1)
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Provided that the walls of the gas container are smooth, in
the sense that there is no energy transport through them,
it can be also shown that this is a nonincreasing Lyapunov
functional [5].

Another example of a Lyapunov functional can be found
in the realm of Markovian stochastic processes. Therein,
the stochastic process X(t) is completely determined by the
conditional probability density P1|1(X,t |X0,t0) of finding the
system in state X at time t , given that it was in state X0

at time t0, and the probability density P (X,t) of finding
the system in state X at time t [6]. Both probability den-
sities satisfy the same evolution equation, called the master
equation, but with different initial conditions: one always
has that P1|1(X,t0|X0,t0) = δ(X − X0), whereas P (X,t0) =
Pini(X), with Pini(X) corresponding to the (arbitrary) initial
preparation. When the stochastic process is irreducible or
ergodic, that is, every state can be reached from any other
state by a chain of transitions with nonzero probability, there
is only one stationary solution of the master equation. In
physical systems, this steady solution must correspond to the
equilibrium-statistical-mechanics distribution Peq(X). What is
more, a Lyapunov functional can be constructed as

H[P ] =
∫

dXPeq(X) g

[
P (X,t)

Peq(X)

]
, (2)

where g(x) is any positive-definite convex function (g′′(x) �
0). It must be stressed that the proof of this H theorem for
master equations rely only on the ergodicity of the underlying
microscopic dynamics: it is not necessary to assume that
detailed balance, which is connected with the microscopic
reversibility, holds [6].

The most usual choice for g is g(x) = x ln x − x + 1, which
leads to

H[P ] =
∫

dXP (X,t) ln

[
P (X,t)

Peq(X)

]
. (3)

The physical reason behind this choice is the “extensiveness”
of H[P ]: if the system at hand comprises two independent
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subsystems A and B, so that dX ≡ dXAdXB and P (X) =
PA(XA)PB(XB), one has that H[P ] = HA[PA] + HB[PB].
It is to consider −H as a nonequilibrium entropy S that
this extensiveness is desirable: in this way, the nonincreasing
behavior of H leads to a nondecreasing time evolution of S.
Moreover, H[P ] remains invariant upon a change of variables
Y = f (X), as emphasized in Refs. [7,8].

Although the Boltzmann equation is not a master equation,
we may wonder why the expressions for HB in Eq. (1) and
H[P ] in Eq. (3) are different. Specifically, we may wonder,
Why not write

H [f ] =
∫

d r dvf (r,v,t) ln

[
f (r,v,t)

feq(v)

]
(4)

instead of HB[f ]? Up to now, we have been implicitly
considering the “classic” problem with elastic collisions
between particles, in which the system eventually reaches
thermodynamic equilibrium. Therein, the answer is trivial:
since ln feq(v) is a sum of constants of motion, H [f ] − HB[f ]
is constant and both are utterly equivalent.

Whether or not there exists an extensive H functional is
an important question in nonequilibrium statistical physics.
If the answer were positive, it would make it possible to
define a nonequilibrium entropy −H that monotonically
increases for all times, extending the Clausius inequality. In
general, the system at hand does not reach equilibrium but a
nonequilibrium steady state. Thus, the equilibrium distribution
feq in H has to be substituted with the stationary one fst.
In this context, the field of granular fluids is a benchmark
for intrinsically out-of-equilibrium, dissipative systems: the
microscopic dynamics is not time reversible because collisions
between particles are inelastic, but a nonequilibrium steady
state can be attained if some driving mechanism injects energy
into the system.

In granular fluids, the functionals H [f ] and HB[f ] are no
longer equivalent, since ln fst is not a sum of constants of
motion. Indeed, for granular gases described by the inelastic
Boltzmann equation [9,10], there are some results that hint at
HB not being a Lyapunov functional. Within the first Sonine
approximation, it has been proven that the time derivative of
HB does not have a definite sign in the linear approximation
around the steady state [11]. Moreover, Marconi et al. have
numerically shown that HB is nonmonotonic and even steadily
increases from certain initial conditions [7]. They have also
put forward some numerical evidence (further reinforced
by García de Soria et al. [8]) in favor of H being a
“good” Lyapunov functional. Notwithstanding, only spatially
homogeneous situations, in which the r dependence of f and
thus the integration over r may be dropped, are analyzed in
Refs. [7,8].

Some years ago, a simplified model for a granularlike
velocity field was introduced to study correlations in granular
gases [12]. Very recently, a variant of this model on a
one-dimensional (1D) lattice has been proposed to mimic
the velocity component along the shear direction [13], and
both its hydrodynamic limit and finite-size effects have been
analyzed [13–15]. This model has been shown to retain
a relevant part of the granular phenomenology: the shear
instability of the homogeneous cooling state, the existence

of boundary-driven steady states such as the Couette and
uniform shear flow (USF) states, the renormalization of the
cooling rate due to fluctuations close to the shear instability,
etc. Other properties thereof, when it is driven by a mechanism
resembling collisions with a randomly moving inelastic wall,
have been studied in Ref. [16]. At the N -particle level, the
dynamics of the system is governed by a master equation,
which is analogous to the Kac equation [17], which leads to a
“kinetic” equation at the one-particle level, which is analogous
to the Boltzmann equation. In the latter, the collision term,
although being simpler than that in the Boltzmann equation,
remains a nonlinear integrodifferential one [14].

It must be recalled that an analytical proof of either global
stability or the H theorem is currently unavailable at the level
of the kinetic description for granular gases. This is true even
for simple collision terms, such as those corresponding to
hard spheres or the cruder Maxwell particle model (where
the collision rate is considered to be velocity independent),
which are considered in the pioneering work in Refs. [7,8].
Therefore, it seems worthwhile to investigate this subject in
simplified models, for which analytical calculations are more
feasible.

Our main goal here is to investigate the global stability and
the possibly associated H theorem in the above class of lattice
models. Unlike the approach in Refs. [7,8], we do not restrict
ourselves to spatially homogeneous situations but consider
the whole space and velocity dependence of the one-particle
PDF f (r,v,t). Specifically, we introduce a general energy
injection mechanism, in which the system may be driven both
through the boundaries and in the bulk. We show that, under
quite general conditions, the steady state is globally stable:
independently of the initial preparation, the system always
ends up in the steady state. Interestingly, it is not necessary to
have an H theorem to prove this: it suffices to show that H

is decreasing in the long-time limit, not for all times. In this
sense, the situation is analogous to the proof of the tendency
towards the equilibrium curve in systems whose dynamics is
governed by master equations with time-dependent transition
rates [18–24].

Our proof of global stability also enables us to show the
inadequacy of Boltzmann’s HB as a candidate for a Lyapunov
functional in inelastic systems. This is done not only for the
simplified models considered in the paper, but for a general
collision term that does not conserve energy in collisions.
Therefore, this result also applies to the inelastic Boltzmann
or Enskog equations used for granular fluids. The main idea
is that the sign of dHB/dt can be reversed by a suitable
choice of the initial PDF and, thus, cannot have a definite
sign. In this respect, our result generalizes that in Ref. [11],
which was derived within the first Sonine approximation of the
inelastic Boltzmann equation, to an arbitrary collision kernel
with nonconservative interactions.

Having proved global stability by showing that H is a
nonincreasing functional for long times, a natural question
remains. Is H a Lyapunov function, that is, a nonincreasing
functional for all times? There does not seem to be a unique
proof, valid for any driving mechanism, even within our
simplified model. Nevertheless, we have been able to derive
a specific proof for a quite general driving mechanism,
which includes as limiting cases both the sheared system, in
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which the steady state is the USF state, and the uniformly
heated system, heated by means of the so-called stochastic
thermostat [25–33]. The proof is based on a suitable expansion
of the one-particle PDF in Hermite polynomials, which is a
generalization of the usual Sonine expansion of kinetic theory.

The paper is organized as follows. In Sec. II, we briefly
introduce the model, its dynamics, and the continuum limit.
Section III is devoted to the proof of the global stability
of the nonequilibrium steady states, for a general energy
injection mechanism. The inadequacy of Boltzmann’s HB

as a Lyapunov functional for inelastic systems is discussed
in Sec. IV. Later, in Sec. V, we consider some concrete
physical situations in our model, which include the sheared
and the uniformly heated systems. Therein, we show that
H [f ] is a monotonically decreasing Lyapunov functional.
Finally, Sec. VI gives the main conclusions of the paper. Some
technical details, which are omitted in the text, are given in the
Appendixes.

II. THE MODEL: DYNAMICS AND CONTINUUM LIMIT

Here, we present the general class of models that was
introduced in Ref. [13], focusing on the continuum description
obtained in the large-system-size limit [14]. Specifically, our
system is defined on a 1D lattice: at each lattice site l,
there is a particle with velocity vl . Thus, at a given time τ ,
the configuration of the system is completely determined by
v ≡ {v1, . . . ,vN }. The dynamics proceeds through inelastic
nearest-neighbor binary collisions: each pair (l,l + 1) collides
inelastically with a characteristic rate ω−1, independently
of their relative velocity (the so-called Maxwell-molecule
model [34]) and the state of the other pairs. We introduce the
operator b̂l that transforms the precollisional velocities into
the postcollisional ones,

b̂lvl = vl − 1 + α

2
(vl − vl+1), (5a)

b̂lvl+1 = vl+1 + 1 + α

2
(vl − vl+1), (5b)

where α is the normal restitution coefficient, with 0 < α � 1.
In addition to collisions, the system is heated by a stochastic

force that is modeled by a white noise, the so-called stochastic
thermostat [25–33]. Specifically, for a short time interval, the
change in the velocity due to the heating is given by

�vi(τ )|noise ≡ vi(τ + �τ ) − vi(τ )|noise

=
⎛
⎝ξi(τ ) − 1

N

N∑
j=1

ξj (τ )

⎞
⎠�τ, (6)

where ξi(t) are Gaussian white noises, verifying

〈ξi(τ )〉noise = 0, 〈ξi(τ )ξj (τ ′)〉noise = χδij δ(τ − τ ′) (7)

for i,j = 1, . . . ,N . Above, χ is the amplitude of the noise, and
〈· · · 〉noise denotes the average over the different realizations of
the noise. Note that this version of the stochastic thermostat
conserves the total momentum, a necessary condition to have
a steady state [30,33].

We define PN (v,τ ) as the probability density of finding
the system in state v at time τ . The stochastic process v(τ )
is Markovian and the equation governing the time evolution
of PN (v,τ ) has two contributions. First, we have a master
equation contribution stemming from collisions [14,15],

∂τPN (v,τ )|coll = ω

N∑
l=1

[
PN

(
b̂−1

l v,τ
)

α
− PN (v,τ )

]
, (8)

in which the operator b̂−1
l is the inverse of b̂l ; that is, it changes

the postcollisional velocities into the precollisional ones when
the colliding pair is (l,l + 1). Second, there is a Fokker-Planck
contribution stemming from the stochastic forcing [7,8,35]:

∂τPN (v,τ )|noise = χ

2

N∑
i,j=1

(
δij − 1

N

)
∂2

∂vi∂vj

PN (v,τ ). (9)

The time evolution of PN (v,τ ) is obtained by combining
Eqs. (8) and (9), that is,

∂τPN (v,τ ) = ∂τPN (v,τ )|coll + ∂τPN (v,τ )
∣∣
noise. (10)

In this work, we focus on the evolution of quantities that
can be written in terms of the one-particle distribution function,
namely,

P1(v; l,τ ) =
∫

dvPN (v,τ )δ(vl − v). (11)

All the one-site velocity moments can be calculated from P1,

〈
vn

l (τ )
〉 ≡

∫ +∞

−∞
dv vnP1(v; l,τ ). (12)

The first two moments give the hydrodynamic fields: the
average velocity ul(τ ) and granular temperature Tl(τ ) [36],
which are defined by the relations

ul(τ ) ≡ 〈vl〉, Tl(τ ) ≡ 〈
v2

l (τ )
〉 − u2

l (τ ). (13)

Here, we do not write the evolution equations on the lattice
for either P1 or the hydrodynamic fields (u and T ), since
they are not necessary for our present purposes. The unforced
case (χ = 0) can be found in Ref. [14]. However, we would
like to stress that the evolution equation for P1 is not closed,
since the collision term involves the two-particle distribution
function P2(v,v′; l,l + 1,τ ). As usual in kinetic theory, one
can write a closed equation for P1 after introducing the
molecular chaos assumption, that is, P2(v,v′; l,l + 1,τ ) =
P1(v; l,τ )P1(v′; l + 1,τ ) + O(N−1). In other words, one as-
sumes that the correlations at different sites are of the order of
N−1 and thus negligible in the large-system-size limit.

The continuum limit of the model is introduced for a large
system size N � 1, in which we expect the average velocity ul

and temperature Tl to be smooth functions of space and time.
This is expressed mathematically by defining “hydrodynamic”
continuous space and time variables by x = l/N and t =
ωτ/N2, respectively [14]. Note that 0 � x � 1 and t � 0. In
the continuum limit, the one-particle distribution function also
becomes a smooth function of x and τ , P1(v; x,t) ≡ P1(v; l =
Nx,τ = N2t/ω).

From now on, we use the usual notation in kinetic theory,
f (x,v,t) ≡ P1(v; x,t). The physical picture is straightforward:
f (x,v,t)dxdv gives the fraction of the total number of particles
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with positions between x and x + dx and velocities between
v and v + dv. We have that

∫ +∞
−∞ dv f (x,v,t) = 1 for all x

and t , since there is no mass transport in the system. The time
evolution of f is governed by the nonlinear integrodifferential
(pseudo-Boltzmann) equation [14]

∂tf = ∂2
xf + ν

2
∂v{[v − u(x,t)]f } + ξ

2
∂2
v f, (14)

where u(x,t) is the local average velocity, ν is the macroscopic
dissipation coefficient and ξ is the macroscopic noise strength,
which are, respectively, given by

ν = (1 − α2)N2, ξ = χN2

ω
. (15)

This shows that the microscopic noise strength χ must scale
as N−2 in order to have a finite contribution in the continuum
limit. Of course, for ξ = 0, we recover the kinetic equation for
the case in which there is no stochastic forcing; see Ref. [14].
The N scaling of the macroscopic dissipation coefficient ν is
similar to that found in the dissipative version of the Kipnis-
Marchioro-Presutti model [37–41].

The average velocity u(x,t) and granular temperature
T (x,t) are the continuum limits of ul and Tl defined in Eq. (13),

u(x,t) ≡ 〈v〉(x,t), T (x,t) ≡ 〈v2〉(x,t) − u2(x,t), (16)

where the velocity moments are given by 〈vn〉(x,t) =∫
dv vnf (x,v,t). From the kinetic equation for f (x,v,t), one

can derive the evolution equations of u and T ,

∂tu = ∂xxu, (17a)

∂tT = −νT + ∂2
xT + 2(∂xu)2 + ξ. (17b)

On the one hand, Eq. (17a) is a diffusion equation for
the average velocity, which expresses the conservation of
the total momentum. On the other hand, the temperature
equation, (17b), contains a purely dissipative term −νT that
stems from the inelasticity of collisions and always contributes
to “cooling” the system, a diffusive term ∂2

xT , a viscous
heating term 2(∂xu)2, and, finally, the term corresponding to
the uniform heating ξ . Of course, either the kinetic equation for
f or the average equations for (u,T ) must be complemented
with suitable boundary conditions in each physical situation.

A. Nonequilibrium steady states and boundary conditions

We are interested in driven cases, in which there is an
input of energy that balances (on average) the energy loss in
collisions, so that the system eventually reaches a steady state.
These nonequilibrium steady states (NESSs) are described by
the corresponding stationary solutions fst(x,v) of the kinetic
equation, which verify

0 = ∂2
xfst + ν

2
∂v{[v − ust(x)]fst} + ξ

2
∂2
v fst, (18)

where ust(x) = ∫
dv vfst(x,v) is the stationary average veloc-

ity profile. To be concrete, we consider two cases: a system
that is (a) sheared and (b) uniformly heated.

First, let us consider a sheared system: there is no stochastic
forcing, ξ = 0, and the driving is introduced by imposing a
velocity difference (“shear”) between the left and the right

edges of the system. At the level of the hydrodynamic
description, the corresponding boundary conditions are

u(1,t) = u(0,t) + a, u′(1,t) = u′(0,t), (19a)

T (1,t) = T (0,t), T ′(1,t) = T ′(0,t), (19b)

which are said to be of the Lees-Edwards type [42]. We have
used a prime to denote a spatial derivative. The imposed
shear allows the viscous heating term, which is proportional
to (∂xu)2, to compensate for the energy dissipation term,
−νT . The boundary conditions for the one-particle distribution
function read

f (1,v,t) = f (0,v − a,t), f ′(1,v,t) = f ′(0,v − a,t), (20)

from which Eq. (19) directly follows. Equation (20) has a
simple physical interpretation: particles that leave the system
through its right edge at velocity v are reinserted through its
left edge at velocity v − a.

The steady state for the sheared system is known as the USF
state, which has a linear velocity profile and a homogeneous
temperature:

ust(x) = a

(
x − 1

2

)
, Tst = 2a2

ν
. (21)

For our simplified model, the stationary PDF is Gaussian,

fst(x,v) = (2πTst)
−1/2 exp

[
− (v − ust(x))2

2Tst

]
. (22)

An extensive investigation of the sheared system, at the level of
the average hydrodynamic equations, can be found in Ref. [14].

Second, we address the uniformly heated system, in which
there is no shear, a = 0, but there is stochastic forcing, ξ �= 0.
In this case, we have the usual periodic boundary conditions.
In particular, for the PDF we have

f (1,v,t) = f (0,v,t), f ′(1,v,t) = f ′(0,v,t). (23)

At steady state, the system is homogeneous: there is no average
velocity and the temperature is uniform,

ust(x) = 0, Tst = ξ

ν
. (24)

The corresponding stationary PDF is also Gaussian,

(25)

With this “stochastic thermostat” forcing, the system remains
homogeneous for all times if it is initially so, as is also the case
for an inelastic gas of hard particles described by the inelastic
Boltzmann equation [25].

III. GLOBAL STABILITY

In this section, we analyze the global stability of the
nonequilibrium stationary solutions of the kinetic equa-
tion, (14), submitted to quite a general class of boundary
conditions. Following the discussion in Sec. I, we define the
H functional as

H [f ] =
∫

dx dvf (x,v,t) ln

[
f (x,v,t)

fst(x,v)

]
. (26)
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Let us consider the time evolution of H [f ]. It is directly
obtained that

dH

dt
=

∫
dx dv ∂tf ln

(
f

fst

)
=

∫
dx dvLf ln

(
f

fst

)
,

(27)

where L stands for the nonlinear evolution operator on the
right-hand side (r.h.s.) of the kinetic equation, (14); that is,
∂tf = Lf . Now we note the following property: if we define
�f = f − fst to be the deviation of the PDF from the steady
state, the linear terms in the deviation vanishes, since both
factors in the integrand of (27) are equal to 0 for f = fst. This
is a desirable property: were it not true, the sign of dH/dt

could be reversed for initial conditions close enough to the
steady state by simply reversing the initial value of �f . Thus,
the existence of an H theorem would be utterly impossible
(see also the next section).

Then we can write

dH

dt
=

∫
dx dvLf ln

(
f

fst

)
−

∫
dx dvLfst

f − fst

fst
.

(28)

Now, the idea is to split the operator L into the three
contributions on the r.h.s. of Eq. (14): first, the diffusive
one; second, the one proportional to ν, which is intrinsically
dissipative; and third, the one proportional to the noise strength
ξ—Ldiff, Linel, and Lnoise, respectively. Accordingly, we have
that the time derivative of H has three contributions,

dH

dt
= dH

dt

∣∣∣∣
diff

+ dH

dt

∣∣∣∣
inel

+ dH

dt

∣∣∣∣
noise

, (29)

obtained by inserting into Eq. (28) the relevant part of the
evolution operator L. Note that, although Lfst = 0, in general
Ldifffst �= 0, Linelfst �= 0, and Lnoisefst �= 0.

After some tedious but easy algebra, a summary of which
is given in Appendix A, the following expressions are derived.
First, for the diffusive term,

dH

dt

∣∣∣∣
diff

= −
∫

dx dv f (∂x ln f − ∂x ln fst)
2 � 0. (30)

Second, for the inelastic term, proportional to ν,

dH

dt

∣∣∣∣
inel

= −ν

2

∫
dx(u − ust)

∫
dvf ∂vln fst. (31)

Finally, the noise term, proportional to ξ , reads

dH

dt

∣∣∣∣
noise

= −ξ

2

∫
dx dv f (∂vln f − ∂vln fst)

2 � 0. (32)

These results, and the following throughout this section,
are valid for a quite general set of boundary conditions,
leading to the cancellation of all the boundary terms arising
after integrating by parts, as detailed in Appendix A. This
set includes but is not limited to the Lees-Edwards and
periodic boundary conditions corresponding to the sheared
and uniformly heated situations, respectively. For instance,
they also apply to the Couette state, in which the system is
driven by keeping its two edges at two (in general, different)
fixed temperatures TL and TR .

The inelastic term dH/dt |inel in Eq. (31) does not have a
definite sign in general. Therefore, it is the inelastic term that
prevents us from proving H to be a nonincreasing function of
time. It must be stressed that the diffusive, inelastic, and noise
contributions to dH/dt in Eqs. (30) and (31) come exclusively
from the diffusive, noise, and inelastic contributions in the
kinetic equation, respectively, only once the linear terms have
been subtracted as done in Eq. (28): see Appendix A for
details.

Despite the above discussion, global stability of the steady
state can be established without proving an H theorem. The
key point is the following: the long-time limit of dH/dt is
nonpositive and thus H has a finite limit, since it is bounded
from below. Therefore, dH/dt tends to 0 in the long-time limit
and it can be shown that this is only the case if f (x,v,∞) ≡
limt→∞ f (x,v,t) = fst(x,v).

The average velocity u(x,t) satisfies a diffusive equa-
tion, (17a), and thus it irreversibly tends to the steady profile
corresponding to the given boundary conditions in the long-
time limit. Therefore, u(x,∞) ≡ limt→∞ u(x,t) = ust(x), and
taking into account Eq. (31),

lim
t→∞

dH

dt

∣∣∣∣
inel

= 0 ⇒ lim
t→∞

dH

dt
� 0. (33)

Since H [f ] is bounded from below, the only possibility is

lim
t→∞

dH

dt
= 0, (34)

and all the contributions to dH/dt in Eqs. (30)–(32) vanish
in the long-time limit. The vanishing of Eq. (30) imposes that
f (x,v,∞) = fst(x,v)φ(v), where φ(v) is an arbitrary function
of v. For ξ �= 0, Eq. (32) implies that φ(v) must be a constant,
independent of v, and normalization yields φ(v) = 1. For ξ =
0, Eq. (32) identically vanishes but it can also be shown that
φ(v) = 1 by using the kinetic equation in the limit as t → ∞.
Therefore, for arbitrary ξ , including ξ = 0, we have that

f (x,v,∞) = fst(x,v). (35)

This completes the proof. The steady distribution fst(x,v) is
globally stable: each time evolution f (x,v,t) (corresponding
to a given initial condition) tends to it in the long-time limit.

IV. INADEQUACY OF HB AS A LYAPUNOV FUNCTIONAL
FOR NONCONSERVATIVE SYSTEMS

Here we show that Boltzmann’s HB[f ] cannot be used
to build a Lyapunov functional for intrinsically dissipative
systems, in agreement with the numerical results of Marconi
et al. [7]. We prove this not only for the simplified models
considered here, but for a general kinetic equation in which
energy is not conserved in collisions, such as the inelastic
Boltzmann or Enskog equations. To keep the notation simple,
we still write ∂tf = Lf , but now L stands for the evolution
operator in the considered kinetic description, which is
nonlinear in general.

052121-5



C. A. PLATA AND A. PRADOS PHYSICAL REVIEW E 95, 052121 (2017)

First, we restrict ourselves to homogeneous situations and
thus drop the integral over x,

HB[f ] =
∫

dvf ln f, (36a)

dHB

dt
=

∫
dv ∂tf ln f =

∫
dvLf ln f. (36b)

Also, we consider a system that is initially close to the steady
state, such that we can expand everything in powers of �f =
f − fst. Then

(37)

in which Llin is the linearized evolution operator. Neglecting
O(�f )2 terms, the linear approximation arises:

dHB

dt

∣∣∣∣
lin

=
∫

dv (Llin�f ) ln fst = d

dt
〈ln fst〉

∣∣∣∣
lin

. (38)

On the one hand, the linear contribution vanishes in the
elastic case: ln fst is a sum of constants of motion, which
are unchanged by the linearized kinetic operator. Thus HB

can be a candidate for a Lyapunov functional. On the other
hand, only the mass and linear momentum are conserved for
nonconservative interactions. Thus, no longer is ln fst the sum
of conserved quantities, and

dHB

dt

∣∣∣∣
lin

�= 0. (39)

Therefore, by changing the initial sign of �f = f − fst, which
can always be done, the initial sign of dHB/dt is reversed and
HB cannot be a Lyapunov functional.

In Fig. 1, we show the evolution of HB in our kinetic
model. We consider a uniformly heated system, so that the
system remain homogeneous for all times, as described in
Sec. II A. Two initial conditions are considered, corresponding
to Gaussian distributions with zero average velocity but
nonsteady values of the temperature, specifically 1.1 Tst and
0.9 Tst. We can see how, in agreement with our discussion, not
only is one of the functionals increasing, but also it can be
obtained as the mirror image of the decreasing one through
the stationary value. Technical details about the simulation are
provided in Appendix B.

Taking into account the specific (Gaussian) shape of the
steady PDF for the uniformly heated system, as given by
Eq. (25), the time derivative of HB in Eq. (38) reduces to

dHB

dt
= − 1

2Tst

d〈v2〉
dt

. (40)

Since the plots in Fig. 1 correspond to evolutions of the system
for which u(x,t) ≡ 0 for all times, therein 〈v2〉 = T and,
consistently, the HB curve corresponding to an initial value
of the temperature that is higher (lower) than the steady one
monotonically increases (decreases).

This is consistent with the situation found in Ref. [11],
in which the uniformly heated granular gas described by the
inelastic Boltzmann equation was investigated within the first
Sonine approximation. Therein, the entropy production was
shown to have linear terms in the deviations of the temperature

FIG. 1. Evolution of the functional HB for two initial conditions
in a uniformly heated system. Both simulations start from the
stationary Gaussian shape but with a homogeneous temperature
slightly shifted from the stationary one: (i) T (t = 0) = 1.1 Tst

(circles) and (ii) T (t = 0) = 0.9 Tst (triangles). As predicted by the
linear approximation, both functionals are symmetric with respect
to the stationary value, which is schematically illustrated by plotting
their mean value (dashed line). A system with N = 330 sites has been
considered, with ν = 20 and ξ = 50. Plots correspond to averages
over 3000 trajectories.

and the excess kurtosis. Also, our result is consistent with the
numerical results in Ref. [7] for several collision models. The
above argument also proves why HB is not nonincreasing for
an elastic system immersed in a heat bath at a temperature
different from the initial temperature of the gas, as also
observed in Ref. [7]. Although ln fst is conserved in collisions,
the evolution operator includes a term coming from the
interaction with the bath that does not conserve the kinetic
energy, and again, dH/dt |lin �= 0, making it impossible for
HB to be a Lyapunov functional.

In spatially nonhomogeneous situations, the main differ-
ence is that an additional integral over x is present, in both HB

and, consequently, dHB/dt . There is no reason to expect this
integral over space to make dH/dt |lin vanish, since one still
has that

dHB

dt

∣∣∣∣
lin

= d

dt
〈ln fst〉

∣∣∣∣
lin

, (41)

and in general, ln fst is not a sum of constants of motion. In fact,
again the sign of dHB/dt |lin is reversed when �f → −�f ,
similarly to the homogeneous case. We have numerically
checked this prediction for the sheared system, with the
resulting evolution of HB being completely similar to that for
the uniformly heated case in Fig. 1 and, thus, not shown here.

V. H THEOREM FOR SOME SPECIFIC NESSs

Here we prove that the functional H [f ] is monotonically
decreasing for all times in some specific physical situations.
Our proof applies to both the sheared and the uniformly heated
systems described in Sec. II A. To be as general as possible,
we consider a system that is both heated and sheared: a �= 0
and ξ �= 0. In this situation, the boundary conditions for the
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PDF are given by Eq. (20), which lead to Eqs. (19a) and (19b)
for the averages u(x,t) and T (x,t).

The steady solution of the hydrodynamic equations is

ust(x) = a

(
x − 1

2

)
, Tst = 2a2 + ξ

ν
. (42)

On the one hand, the average velocity has a linear profile,
similarly to the situation in the USF state. On the other hand,
the temperature remains homogeneous but its steady value has
two contributions, one coming from the shear and the other
from the stochastic thermostat. The viscous heating 2(∂xu)2

and uniform heating ξ terms cancel the cooling term −νT for
all x. The stationary solution of the kinetic equation is readily
found,

fst(x,v) = (2πTst)
−1/2 exp

[
− (v − ust(x))2

2Tst

]
, (43)

that is, the Gaussian distribution corresponding to the hydro-
dynamic fields in Eq. (42). Of course, the USF state and NESS
of the uniformly heated system in Sec. II A can be easily
recovered as particular cases of Eq. (43): for (a �= 0,ξ = 0)
and (a = 0,ξ > 0), respectively.

We turn now to the question of the existence of an H

theorem, that is, the existence of a nonequilibrium entropy
ensuring the monotonic approach of the one-particle PDF to
the steady state. Our starting point is the following expansion
of the one-particle PDF in Hermite polynomials,

f (x,v,t) = 1√
2πT (x,t)

exp

[
− [v − u(x,t)]2

2T (x,t)

]

×
[

1 +
∞∑

n=3

γn(x,t) Hn

(
v − u(x,t)√

T (x,t)

)]
, (44)

which is known as the Gram-Charlier series [43–46]. Therein,
u(x,t) and T (x,t) are the (exact) average velocity and

temperature stemming from the hydrodynamic equations for
the considered distribution. The above expansion is suggested
by the Gaussian shape of the stationary PDF in Eq. (43). Now
we define

c = v − u(x,t)√
T (x,t)

, f̃ (x,c,t) =
√

T (x,t) f (x,v,t). (45)

From the orthogonality relation of the Hermite polynomi-
als [47], it is readily obtained that

γn(x,t) = 1

n!

∫
dc Hn(c)f̃ (x,c,t). (46)

Also, we could write γn as a combination of moments of the
distribution.

Some comments on the Gram-Charlier expansion are perti-
nent. First, note that n � 3 in the sum: γ1 = γ2 = 0 because the
zeroth-order Gaussian contribution exactly gives the first two
moments u(x,t) and 〈v2〉(x,t) = u2(x,t) + T (x,t). Second,
if f (x,v,t) were symmetric with respect to v = u, that is,
〈(v − u)2n+1〉 = 0 for all n ∈ N, only even values of n would
be present in the sum and one would end up with the usual
expansion in Sonine-Laguerre polynomials of kinetic theory.
Finally, it is worth stressing that series (44) converges for
functions such that the tails of f̃ (x,c,t) approach 0 more
rapidly than e−c2/4 for c → ±∞ [46,48,49].

After a lengthy but straightforward calculation, which is
summarized in Appendix C, it is shown that

dH

dt
= A(t) + B(t), with both A(t),B(t) � 0. (47)

The expressions for A(t) and B(t) are

A(t) = −
∫

dx T

[(
u′

T
− u′

st

Tst

)2

+ ξ

2

(
1

T
− 1

Tst

)2
]

(48)

and

B(t) = − 1√
2π

∫
dx dc

e−c2/2

1 + ∑∞
n=3 γnHn(c)

{
T ′

2T
H2(c) +

∞∑
n=3

γ ′
nHn(c) −

∞∑
n=3

γnu
′

√
T

nHn−1(c) +
∞∑

n=3

γnT
′

2T
[Hn+2(c) + nHn(c)]

}2

− ξ

2
√

2π

∫
dx dc

e−c2/2

1 + ∑∞
n=3 γnHn(c)

1

T

[ ∞∑
n=3

γnnHn−1(c)

]2

. (49)

We recall that a prime denotes a spatial derivative.
Therefore, dH/dt � 0 for all times and we have shown

that the H theorem holds for the system that is both sheared
and heated. Rigorously, our proof holds for those PDFs
such that the above Hermite expansion converges. Also, note
that the proof remains valid for the approach to any NESS
whose PDF is a Gaussian with a homogeneous temperature,
independently of the corresponding boundary conditions. In
Sec. III, we have demonstrated that dH/dt only vanishes for
f (x,v,∞) = fst(x,v), but the same result can be rederived
here in a different way. By imposing that both A(t) and
B(t) vanish in the long-time limit and making use of the
hydrodynamic equations for the averages, it can be shown that
u(x,∞) = ust(x), T (x,∞) = Tst, and γn(x,∞) = 0, ∀n � 3.

A. Numerical results for the USF state

Here we consider the sheared system, and we numerically
check our theoretical predictions. Throughout this section, we
use the values of the parameters ν = 20, a = 5, and ξ = 0
(there is no stochastic forcing).

First, in Fig. 2, we show the evolution of the distribution
and the H functional from a Gaussian initial condition
with the steady velocity profile u(x,0) = ust(x) but a higher
temperature, T (t = 0) = 7 Tst. In Fig. 2(a), we depict the
velocity distribution at x = 1/4 for several times. All of them
are Gaussian, which agrees with the theoretical prediction of
the kinetic equation: when the initial average velocity profile
coincides with the steady one and only the temperature is
perturbed, an initially Gaussian PDF remains Gaussian for
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FIG. 2. Relaxation towards the USF state. The initial condition is
Gaussian, centered in ust(x) and with variance T = 7 Tst. (a) Velocity
distribution function at x = 1/4 for four times. Inset: Evolution of
the excess kurtosis. (b) Monotonic relaxation of the H functional, in
clear agreement with the proven H theorem. Data are averaged over
6000 trajectories in a system with N = 660 sites, ν = 20, and a = 5.
Solid lines correspond to the (theoretical) Gaussian distributions for
the plotted times, except the last time, for which it represents the
theoretical steady distribution.

all times. Indeed, the inset shows how the excess kurtosis
κ = 〈[v − u(x)]4〉/〈[v − u(x)]2〉2 − 3 only fluctuates around
0 at the considered position x = 1/4, consistently with the
Gaussian shape. In Fig. 2(b), it is clearly shown that the H

functional is monotonically decreasing with time.
Second, we study the relaxation to the USF state from

another initial preparation, for which the average velocity
profile u(x,0) is different from the stationary one but T (x,0) =
Tst. The numerical results are shown in Fig. 3, and for the sake
of simplicity we again use an initial Gaussian distribution.
Specifically, we use u(x,0) = ust(x) + 4.4 sin(2πx). Here, the
departure from the Gaussian shape is evident, and thus we
have not plotted the kurtosis. Consistent with our theoretical
prediction, we again get a monotonous relaxation of H towards
its null stationary value.

Finally, we consider situations for which the above-
presented proof is not rigorously applicable. As stated before,

FIG. 3. The same plots as in Fig. 2, but starting from a different
initial condition. Now, the initial PDF is a Gaussian centered in
u(x,0) = ust(x) + 4.4 sin(2πx) and with variance T (t = 0) = Tst.
(a) Solid lines correspond to the theoretical PDFs for the initial time
and the steady state. (b) H decreases again monotonically towards its
steady value, consistent with our theoretical prediction.

the Gram-Charlier series does not converge when the tails of
the distribution decay to 0 more slowly than the square root
of the Gaussian. Nevertheless, when all the coefficients γn

defined in Eq. (46) exist and are finite, we still expect the
H theorem to hold. We illustrate this situation with an initial
exponential distribution; specifically, we consider

f (x,v,0) = 1√
2T (t = 0)

exp

[√
2|v − u(x,t = 0)|√

T (t = 0)

]
, (50)

with u(x,t = 0) = ust(x) + 4.4 sin(2πx) and T (t = 0) =
0.1 Tst. Consistent with our expectation, we can see in Fig. 4
that indeed the H functional also monotonically decreases.

B. Numerical results in the uniformly heated system

To conclude, we put forward the results of simulations
for the uniformly heated system. Specifically, our simulations
have been done for ν = 20, a = 0 (no shear), and ξ = 50. In
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FIG. 4. The same plots as in Fig. 2, but starting from an initial
PDF with a divergent Gram-Charlier series. Concretely, the plots
correspond to an exponential initial distribution centered in u(x,t =
0) = ust(x) + 4.4 sin(2πx) and with T (t = 0) = 0.1 Tst.

order not to overload the reader with too many examples,
we only present the more complex case in Fig. 5: the
relaxation towards the steady state from an initial exponential
distribution, as given by Eq. (50). In particular, we consider
that u(x,t = 0) = 4.4 sin(2πx) and T (t = 0) = 0.1 Tst. Note
that the perturbation from the steady values is the same as in
Fig. 4 for the sheared case. Again, we observe the monotonic
relaxation of H towards the stationary value, consistent with
our theoretical result, even for a initial distribution for which
the Gram-Charlier series does not converge.

VI. CONCLUSIONS

Within a simplified model for a granularlike velocity field,
we have analytically shown that the nonequilibrium steady
state that the system eventually reaches in the long-time limit
is globally stable. This has been done for quite a general
situation, in which energy may be injected into the system
both through the boundaries and by a heating mechanism
that acts in the bulk. The proof is valid for both spatially
homogeneous situations (such as the uniformly heated system)

FIG. 5. Numerical results for the uniformly heated system. The
plots are analogous to those in Fig. 2. (a) Time evolution of the
PDF and (b) time evolution of the H functional. The system is
initially prepared with an exponential PDF centered in u(x,t = 0) =
4.4 sin(2πx) and with T (t = 0) = 0.1 Tst. Data are averaged over
3000 trajectories in a system with N = 330 sites.

and inhomogeneous situations (such as the USF and Couette
states).

The proof of global stability is based on showing that
the H functional H = ∫

dx dv f ln(f/fst) (the Kullback-
Leibler divergence between the time-evolving one-particle
PDF f (x,v,t) and its value in the stationary state fst(x,v) [50])
is nonincreasing in the infinite-time limit. Thus, we do not need
H to be a “good” Lyapunov functional for all times in order
to prove global stability. In conclusion, global stability and
the validity of an H theorem do not seem to be unavoidably
connected.

Moreover, we have analytically shown that the Boltzmann
functional HB = ∫

dx dv f ln f cannot be, in general, a
Lyapunov functional for systems with nonconservative inter-
actions. Close to the steady state, we have proven that dHB/dt

contains nonvanishing terms that are linear in the deviations
�f = f − fst. Therefore, a reversal of the sign of �f entails a
reversal of the sign of dHB/dt . This general analytical proof of
the inadequacy of HB as a Lyapunov functional is in agreement
with previous results in some specific cases [7,11].
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We have also succeeded in demonstrating that the H

functional is nonincreasing and thus a “good” Lyapunov
functional for some specific driving mechanisms. Our proof
is not restricted to spatially homogeneous situations and
is applicable to two relevant physical cases: the approach
to (i) the USF state and (ii) the NESS corresponding to
the uniformly heated case. The proof involves a suitable
expansion of the one-particle PDF in Hermite polynomials,
which is a generalization of the well-known Sonine-Laguerre
expansion in kinetic theory. Although the proof is only
rigorous for PDFs having a convergent series expansion, we
expect it to remain valid for more general PDFs. In fact, we
have numerically validated this expectation in some specific
situations.

The analytical results presented here are thus in agreement
with the numerical evidence in Refs. [7,8] and advance
the understanding of this field in a twofold way. First,
an analytical proof, which was lacking, is provided for a
simplified model. Second, spatially inhomogeneous situations
are considered, both in the time evolution and in its steady
state.

Some limitations of our results have to be underlined,
though. First, the simplifications introduced in the model make
it impossible to address the problem of the stability of the
homogeneous cooling state in the undriven system at the level
of the kinetic equation, as discussed in Ref. [14]. Second, for
the driving mechanisms for which we can analytically prove
that H is a “good” Lyapunov functional, the steady distribution
is exactly Gaussian. Nevertheless, we think that this is not a
fundamental point and expect that the kind of expansion-based
proof presented here may be extended to other situations. A
particularly appealing case is the approach to the Couette
NESS, for which the stationary PDF is nonGaussian in the
model [14].

On a different note, our kinetic equation, (14), shows some
resemblance to evolution equations for the one-particle PDF
found in other physical contexts, such as the Vlasov equation in
plasma physics or astrophysics [51–53] or the nonlinear (in the
distribution function) Fokker-Planck equation for systems of
infinitely many coupled nonlinear oscillators exhibiting phase
transitions [54]. It is a driftlike term depending on a certain
average of the PDF that all these different problems share. For
both the Vlasov and the nonlinear Fokker-Planck equations,
the existence of a Lyapunov functional has been proved
by considering a variant of the functional H [f ] defined in
Eq. (4) [55–57]. Thus, an interesting prospect is to investigate
whether this kind of approach may be extended to our class of
models with nonconservative interactions.

Our work also opens the door to applying the ideas
developed in this paper to more complex models, closer to real
nonconservative systems, like granular gases. The pioneering
numerical work in Refs. [7,8] strongly suggests that the H

functional is a good Lyapunov functional for granular fluids.
It seems worthwhile to try to analytically prove that this is
indeed the case for the inelastic Boltzmann equation, at least
for some specific situations. If nothing else, one would like to
be able to show that the long-time solutions are globally stable
by showing that H is asymptotically nonincreasing, similarly
to what has been done here.
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APPENDIX A: DERIVATION OF THE EXPRESSION
FOR d H/dt IN A GENERAL DRIVEN STATE

Let us consider the three contributions to dH/dt in Eq. (29).
We start with the diffusive one,

dH

dt

∣∣∣∣
diff

=
∫

dx dvLdifff ln

(
f

fst

)
−

∫
dx dv

f

fst
Ldifffst,

(A1)

where Ldifff = ∂2
xf and we have used that

∫
dx dv ∂2

xfst

vanishes identically. Integrating by parts the first term on the
r.h.s. of Eq. (A1), the result is

∫
dv ∂xf ln

(
f

fst

)∣∣∣∣
1

0

−
∫

dx dv f ∂x ln f (∂x ln f − ∂x ln fst). (A2)

Also integrating by parts the second term, one obtains

−
∫

dv
f

fst
∂xfst

∣∣∣∣
1

0

+
∫

dx dv f ∂x ln fst(∂x ln f − ∂x ln fst).

(A3)

We assume that the boundary terms are equal to 0, that is,

∫
dv

[
∂xf ln

(
f

fst

)
− f

fst
∂xfst

]1

0

= 0. (A4)

This is obviously true for Lees-Edwards and periodic bound-
ary conditions [58]. Summing the two contributions to the
diffusive term above, we have

dH

dt

∣∣∣∣
diff

= −
∫

dx dv f (∂x ln f − ∂x ln fst)
2, (A5)

which is Eq. (30).
The noise term is treated along the same lines as above, but

integrating by parts in v instead of x, since Lnoisef = ξ

2 ∂2
v f .

There in, the boundary terms vanish if f and fst tend to 0 fast
enough for v → ±∞, and

dH

dt

∣∣∣∣
noise

= −ξ

2

∫
dx dv f (∂vln f − ∂vln fst)

2, (A6)

which is Eq. (32).
Now we focus on the inelastic contribution,

dH

dt

∣∣∣∣
inel

=
∫

dx dvLinelf ln

(
f

fst

)
−

∫
dx dv

f

fst
Linelfst,

(A7)
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in which Linelf = ν
2 ∂v[(v − u)f ]. Then

dH

dt

∣∣∣∣
inel

= ν

2

∫
dx dv ∂v[(v − u)f ] ln

(
f

fst

)

− ν

2

∫
dx dv ∂v[(v − ust)fst]

f − fst

fst
. (A8)

Again, integrating by parts in v (here we do not write the
boundary terms at v → ±∞), the first term on the r.h.s. of
Eq. (A8) is

−ν

2

∫
dx dv (v − u)f (∂vln f − ∂vln fst), (A9)

whereas the second term gives

ν

2

∫
dx dv (v − ust)f (∂vln f − ∂vln fst). (A10)

Summing up these two contributions, and taking into account
that both u and ust do not depend on v,

dH

dt

∣∣∣∣
inel

= ν

2

∫
dx (u − ust)

∫
dv f (∂vln f − ∂vln fst).

(A11)

Since
∫

dv f ∂vln f ≡ ∫
dv ∂vf = 0, this leads to Eq. (31).

APPENDIX B: SIMULATION STRATEGY

In the simulations, so as to generate a trajectory of the
stochastic process, we proceed as follows. (i) A pair (l,l + 1)
is chosen at random and undergoes the inelastic collision
described by Eq. (5); (ii) all the particles are submitted
to the stochastic thermostat according to (6) and (7); and
(iii) time is incremented by δτ = −(Nω)−1 ln x, with x being
a homogeneously distributed random number in (0,1) [59–62].
This cycle (random choice of a pair and noise interaction
followed by a time increment) is repeated until time exceeds
some maximum time tmax.

Regarding the measurements of f (x,v,t), we sample both
position and velocity spaces by defining Nx bins of width �x

and Nv bins of width �v. Of course, the product Nx�x = 1,
the whole lattice, whereas Nv�v gives the range of velocities

bounded by the cutoffs vmin and vmax. In our simulations, we
control that the contribution to the PDFs coming from veloc-
ities outside the considered interval [vmin,vmax] is negligible.
With such a binning, we build up a histogram and therefrom
the distribution function f (x,v,t), which is represented by an
Nx × Nv matrix for each time t . Both H and HB are computed
by numerically replacing the integral over x and v with sums
over the prescribed bins.

APPENDIX C: DERIVATION OF EQ. (47)

In order to derive Eq. (47), we have to substitute the
Gaussian stationary solution, (43), and the Gram-Charlier
series, (44), into the three contributions to dH/dt , given by
Eqs. (30)–(32). For the inelastic term, it is readily obtained
that

dH

dt

∣∣∣∣
inel

= ν

2Tst

∫
dx(u − ust)

2. (C1)

For the diffusive and noise terms, the key ideas are a change
in the integration over velocities from v to c = (v − u)/

√
T

and the use of the recursion relations and the orthogonality
property of the Hermite polynomials [47]. Working along these
guidelines, we arrive at

dH

dt

∣∣∣∣
diff

= −
∫

dx T

(
u′

T
− u′

st

Tst

)2

− u′2
st

T 2
st

∫
dx(u − ust)

2 + B1(t), (C2)

dH

dt
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noise

= −ξ

2

∫
dx T

(
1

T
− 1

Tst

)2

− ξ

2T 2
st

∫
dx(u − ust)

2 + B2(t), (C3)

where B1 and B2 are, respectively, the first and the second term
in Eq. (49). The sum of the factors multiplying

∫
dx(u − ust)2

vanishes upon taking into account the equation for the
(spatially homogeneous) stationary temperature. Therefore,
the sum of the remaining terms leads right to Eq. (47).
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