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Shearing instability of a dilute granular mixture
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The shearing instability of a dilute granular mixture composed of smooth inelastic hard spheres or disks is
investigated. By using the Navier-Stokes hydrodynamic equations, it is shown that the scaled transversal velocity
mode exhibits a divergent behavior, similarly to what happens in one-component systems. The theoretical
prediction for the critical size is compared with direct Monte Carlo simulations of the Boltzmann equations
describing the system, and a good agreement is found. The total energy fluctuations in the vicinity of the
transition are shown to scale with the second moment of the distribution. The scaling distribution function is the
same as found in other equilibrium and nonequilibrium phase transitions, suggesting the existence of some kind
of universality.
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I. INTRODUCTION

The simplest statistical mechanics model for granular
gases is a system of smooth inelastic hard spheres or disks,
with constant coefficient of normal restitution [1,2]. One
characteristic feature of these systems, as compared with
their elastic limit, is their instability against small wave-vector
spatial fluctuations when they evolve freely [3–5]. In the case
of one-component granular gases, this spontaneous symmetry
breaking leads to the formation of velocity vortices and
density clusters, being often referred to as the shearing or
clustering instability of the homogeneous cooling state (HCS).
It is accurately predicted by a linear stability analysis of
the hydrodynamic Navier-Stokes equations of granular gases,
which also shows that it is driven by the transversal shear
mode [3,6,7]. Moreover, fluctuating hydrodynamics is able to
predict not only the initial setup of the spatial correlations [8,9]
but also the behavior of the system near the critical point of the
instability [10]. This includes the critical exponents governing
the behavior of both macroscopic properties and fluctuations.

In recent years, the hydrodynamic theory of granular gases
has been extended to binary mixtures. Navier-Stokes equations
for the hydrodynamic fields of the mixture, with explicit
expressions for the involved transport coefficients, have been
derived [11,12]. The hydrodynamic equations for a mixture are
much more involved than those for a one-component system
and, therefore, so is the hydrodynamic linear stability analysis
of the HCS [13]. But there is no reason to expect that the
physical mechanisms leading to the shearing instability in
simple granular gases does not hold for mixtures. If that is
the case, the behavior of the transversal component of the
velocity field as the size of the system increases is the origin
of the instability. And it happens that the evolution equation
for this hydrodynamic mode is decoupled from the equations
for the rest. This feature greatly simplifies the analysis of the
initial set up of the instability.

The aim of this paper is to investigate the behavior of the
transversal velocity mode in a binary granular mixture identi-
fying, in particular, the existence of the shearing instability and
determining the critical point predicted by the hydrodynamic
theory. Also, the behavior of some average properties of the
granular mixture in the vicinity of the instability will be studied
and compared with those of a single component granular gas.

In addition, the critical behavior of some quantities that are
peculiar of granular mixtures, as the nonequipartition of kinetic
energy will be investigated. It is worth emphasizing that both
theory and simulations presented here are restricted to the
linear regime in which deviations of the fields from their values
in the HCS are small.

The remainder of this paper is organized as follows. In
Sec. II, the relevant properties of the HCS of a granular
mixture in the context of kinetic theory are summarized. This
includes the criterion determining the partial temperatures of
both components of the mixture. Section III consists of a
short review of the linear stability analysis of the transversal
velocity field of the HCS to Navier-Stokes order [13]. The
associated eigenvalue is identified, and it is shown that it
has a qualitative change of behavior when the size of the
system is larger than a critical value, which depends on the
parameters defining the system. In Sec. IV, the dynamics of
the inelastic hard spheres or disks is reformulated by means of
a change of variable, so that the HCS is mapped onto a steady
state. It is a straightforward extension of a method previously
developed for one-component granular systems. This steady
representation is used in Sec. V to perform direct Monte
Carlo simulations (DSMC) of the system, whose results are
compared with the theoretical predictions. The behavior of the
total energy fluctuations is also analyzed using the simulation
results. It is seen that the relative dispersion of the energy
fluctuations exhibits a power-law divergent behavior near the
instability. The paper concludes with a short discussion of the
results and an analysis of the shape of the probability density
distribution for the total energy fluctuations.

II. THE HOMOGENEOUS COOLING STATE OF A DILUTE
GRANULAR MIXTURE

A fluidized binary mixture of smooth inelastic hard spheres
(d = 3) or disks (d = 2) is considered. The mass and diameter
of particles of species i (i = 1,2) are mi and σi , respectively.
The inelasticity of collisions is assumed to be described by
constant, velocity-independent coefficients of normal restitu-
tion. There are three of them: α11, α22, and α12 = α21, where
αij refers to the collision of a particle of species i and a
particle of species j . These coefficients are defined in the
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interval 0 < αij � 1, the value unity being the limit of elastic
collisions.

The macroscopic fields number densities ni(r,t), flow
velocity u(r,t), and granular temperature T (r,t) are defined
in the usual way as local velocity moments of the distribution
function of the system, although setting the Boltzmann
constant equal to unity. More precisely, they can be expressed
in terms of the one-particle distribution functions of the two
species fi(r,v,t) as

ni(r,t) =
∫

dv fi(r,v,t), (1)

ρ(r,t)u(r,t) =
∑
i=1,2

∫
dv mivfi(r,v,t), (2)

n(r,t)T (r,t) =
∑
i=1,2

∫
dv

miV
2(r,t)
d

fi(r,v,t), (3)

where ρ ≡ m1n1 + m2n2 is the total mass density, n ≡ n1 +
n2 is the total number density, and V ≡ v − u is the peculiar
velocity.

In this paper, attention will be restricted to a low density sys-
tem. Then, the time evolution of the one-particle distribution
functions is given by a pair of coupled nonlinear Boltzmann
equations [2]

(∂t + v · ∇)fi(r,v,t) =
∑
j=1,2

Jij [r,v,t |fi,fj ], (4)

i = 1,2, and Jij denoting the Boltzmann collision operator
describing the scattering of pairs of particles i,j . From Eq. (4),
balance equations for the macroscopic fields are derived by
multiplying by 1, v, and v2, respectively, and subsequent
integration over the velocity. They have the form

∂tni + ∇ · (nu + j i) = 0, (5)

∂t u + u · ∇u + ρ−1∇ · P = 0, (6)

∂tT + u · ∇T − T

n
∇ ·

∑
i

j i

+ 2

nd
(∇ · q + P : ∇u) + T ζ = 0 . (7)

In the above expressions, j i is the number of particles flux
for species i relative to the local flow, P is the pressure tensor,
q is the total heat flux, and ζ is the cooling rate giving account
of the loss of energy in collisions. These quantities are defined
as functionals of the one-particle distribution functions.

The balance Eqs. (5)–(7) admit time-dependent homoge-
neous solutions characterized by uniform densities ni,h, a
vanishing velocity field uh = 0, and an homogeneous granular
temperature Th evolving in time accordingly with

∂tTh(t) = −ζh(t)Th(t), (8)

where ζh is the cooling rate of the homogeneous state. Of
course, this equation is only meaningful if the cooling rate
is expressed in terms of nh and Th, then becoming a closed
equation for Th. This is accomplished when the distribution
functions of both species depend on time only through the
granular temperature Th(t). The distribution functions fi,h(v,t)
having this property are said to be “normal” and define the HCS
of the mixture [14], which is the state considered in this paper.

Partial temperatures of the species in the HCS, Ti,h(t), are
defined through

ni,hTi,h(t) =
∫

dv
miv

2

d
fi,h(v,t). (9)

Therefore, it is ∑
i=1,2

ni,hTi,h(t) = nhTh(t). (10)

Evolution equations for the partial temperatures are directly
derived from the Boltzmann equations, particularized for the
HCS,

∂tTi,h(t) = −ζi,h(t)Ti,h(t), (11)

with the partial cooling rates ζi,h(t) given by

ζi,h(t) = − 1

ni,hTi,h(t)d

∑
j

∫
dv miv

2Ji,j [v|fi,h,fj,h].

(12)

Consistency of Eqs. (8), (10), and (11) requires that

nhTh(t)ζh(t) =
∑
i=1,2

ni,hTi,h(t)ζi,h(t). (13)

Moreover, as a consequence of the distribution functions of
the HCS being normal, it is [14]

ζ1,h(t) = ζ2,h(t) = ζh(t). (14)

The explicit evaluation of the cooling rates requires us to
solve the coupled pair of Boltzmann equations for the distri-
bution functions of the HCS. Nevertheless, a quite accurate
approximation, at least for not very strong inelasticities, is
obtained by using Gaussian distributions for fi,h(v,t) with
the second moments corresponding to the partial temperature
Ti,h(t). In this way, it is obtained [11,14–16],

ζi,h = 4π (d−1)/2

�
(

d
2

)
d

v0(Th)λh

∑
j=1,2

xjμji

(
θi + θj

θiθj

)1/2

(1 + αij )

×
[

1 − μji

1 + αij

2

(θi + θj

θj

] (
σij

σ12

)d−1

, (15)

where xi ≡ ni/n is the number concentration of species i,
σij ≡ (σi + σj )/2,

v0(T ) ≡
(

2T

μ

)1/2

, (16)

with

μ ≡ m1m2

m1 + m2
, (17)

is a thermal velocity,

λh ≡ (
nhσ

d−1
12

)1/2
(18)

is a characteristic length,

μij ≡ mi

mi + mj

, (19)

and

θi ≡ miTh

μTi,h

. (20)
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Now, the expressions of ζ1,h and ζ2,h can be introduced into
Eq. (14). The solution of the resulting equation provides
γ ≡ T1,h(t)/T2,h(t) as a function of n1,h/n2,h and the other
parameters defining the model [11,14,16,17]. The accuracy of
the results derived in this way has been checked by comparing
with molecular dynamics results [18–20], as well as with data
obtained from particle simulations of the Boltzmann equations
using the DSMC method.

III. LINEAR ANALYSIS OF THE TRANSVERSAL SHEAR
MODE OF A GRANULAR MIXTURE

In the case of a one-component granular system, it is well
known that the HCS becomes unstable when a linear size of the
system is larger than the critical value, which depends on the
parameters defining the state [3,4]. For dilute granular gases,
a linear stability analysis of the hydrodynamic Navier-Stokes
equations shows that the origin of the instability lies in the
behavior of the transversal velocity mode. For sizes of the
system larger than the critical one, the transversal velocity
decays slower than the square root of the temperature [21]. As a
consequence, nonlinear coupling of the scaled modes becomes
relevant and a clustering instability develops in the system. It is
worth stressing that the transversal component of the velocity
field is not itself linearly unstable, but it enslaves the other
hydrodynamic modes through some nonlinear coupling. In
particular, this leads to an increase of the temperature in the
regions of larger vorticity. Then, a pressure gradient shows up
and produces a density fluctuation leading to the formation of
clusters. A detailed account of the theory and the comparison
with simulation results is given in Ref. [6].

For a binary granular mixture, the complexity of the Navier-
Stokes hydrodynamic equations [11,12] makes the full linear
stability analysis of the HCS more complex. Nevertheless, in
the mixture the scaled transversal velocity mode is decoupled
from the other hydrodynamic modes, as it happens for one-
component granular gases [13]. Consequently, the analysis of
the transversal mode is quite simple. Here, the change in its
time behavior will be investigated. This change indicates the
need of considering nonlinear couplings between modes and
can be considered as the precursor of a clustering instability,
by analogy with the one-component case.

Consider the evolution equation for the velocity, derived
from the momentum conservation, Eq. (6). To Navier-Stokes
order, the pressure tensor P has been computed by using
the Chapman-Enskog method to solve the pair of coupled
Boltzmann equations of the mixture. It reads [11,22]

P = pI − η

[
(∇u) + (∇u)+ − 2

d
(∇ · u)I

]
. (21)

In this expression, p = nT is the local pressure, I is the unit
tensor of dimension d, and η is the coefficient of shear viscosity
of the mixture, which can be written as

η = pλ

v0(T )
η∗, (22)

where λ ≡ (nσd−1
12 )−1 and v0(T ) has been defined in Eq. (16).

Moreover, η∗ is a dimensionless function of the partial
temperatures and the concentrations of the species. Its explicit
form is given in the Appendix.

The Navier-Stokes equation for the velocity resulting after
substituting Eq. (21) into Eq. (6) will be now linearized around
the HCS. First, the hydrodynamic fields are written in terms
of their deviations from the HCS values,

ni(r,t) = ni,h + δni(r,t), (23)

u(r,t) = δu(r,t), (24)

T (r,t) = Th(t) + δT (r,t). (25)

Keeping only up to first order in the deviations of the fields,
the Navier-Stokes equation for the velocity becomes

ρh

∂δu
∂t

+ nh∇δT + Th∇δn

− ηh

[
∇2δu + d − 2

d
∇ (∇ · δu)

]
= 0, (26)

with ρh and ηh being the mass density and the shear viscosity
of the reference HCS, respectively.

At this point, it is convenient to introduce dimensionless
time and space coordinates, such that the time dependence of
the reference state be eliminated in Eq. (6). Then, new variables
are defined by

l ≡ r
λh

, τ ≡
∫ t

0
dt ′

v0(Th)

λh

. (27)

In the time scale τ , the evolution equation for the temperature
of the HCS becomes

∂τTh(τ ) = −ζ ∗Th(τ ), (28)

with the time-independent reduced cooling rate ζ ∗ given by

ζ ∗ ≡ λhζh

v0(Th)
. (29)

Therefore, the temperature of the HCS decays exponentially
on the τ scale.

Also, reduced hydrodynamic fields are introduced,

ϕ ≡ δn

nh

, ω ≡ δu
v0(Th)

, θ ≡ δT

Th

. (30)

Use of the definitions in Eqs. (27) and (30) into Eq. (26) yields(
∂

∂τ
− ζ ∗

2

)
ω + β

∂

∂ l
(θ + ϕ)

−βη∗
[(

∂

∂ l

)2

ω + d − 2

d

∂

∂ l

(
∂ω

∂ l

)]
= 0, (31)

with

β ≡ μ

2(x1m1 + x2m2)
. (32)

Now, the Fourier representation defined as

f̃k =
∫

d l e−ik·lf (l), (33)
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for an arbitrary function f (l), will be employed. The trans-
formed Eq. (31) is(

∂

∂τ
− ζ ∗

2

)
ω̃k + iβk(θ̃k + ϕ̃k)

+βη∗
[
k2ω̃k + d − 2

d
k(k · ω̃k)

]
= 0. (34)

Consider the transversal component ω̃k,⊥ of the velocity
field, i.e., the vector component of ω̃k perpendicular to k.
Its evolution equation is trivially obtained from Eq. (34) and
has the form

∂ω̃k,⊥
∂τ

+
(

βη∗k2 − ζ ∗

2

)
ω̃k,⊥ = 0. (35)

This is a closed equation for ω̃k,⊥, similar to that found in
one-component granular gases [21]. An equivalent equation
has been derived in Ref. [13], where the general issue of the
linear stability analysis of the Navier-Stokes equations of a
dilute granular gas is addressed. The solution of Eq. (35) reads

ω̃k,⊥(τ ) = e−s⊥τ ω̃k,⊥(0), (36)

where the decay rate s⊥ is

s⊥ ≡ βη∗k2 − ζ ∗

2
. (37)

This leads to the identification of a critical value of the
wavenumber vector given by

kc =
(

ζ ∗

2βη∗

)1/2

. (38)

A linear excitation of the scaled transversal velocity with k <

kc grows in time. Therefore, vortices of the scaled velocity field
are expected to develop in time when excitations of this kind
are present in the system. This does not mean that the actual
velocity field u is linearly unstable. In fact, it is easily seen that
the perturbation δu decays exponentially in time because of
Eq. (28). The result above indicates that the linear analysis will
eventually fail and nonlinear effects associated to coupling of
hydrodynamic modes will have to be taken into account. In
simple granular gases, this coupling leads to the development
of the clustering instability. For this reason, the formation of
vortices in the scaled velocity field is sometimes referred to as
the shearing instability of the HCS.

IV. MAPPING THE HCS ONTO A STEADY STATE

In order to verify the validity of the ideas developed above
and, in particular, to check whether the shear instability also
exists in granular mixtures and if it is accurately predicted
by the hydrodynamic Navier-Stokes equations, the DSMC
method [23–25] has been used to generate numerical solutions
of the coupled pair of Boltzmann equations. Actually, the
method is an N -particle algorithm designed to mimic the
dynamics of a low-density gas and, therefore, it also provides
equilibrium and nonequilibrium fluctuations and correlations.

One of the technical advantages of the DSMC method
is that it permits us to incorporate in the simulations the
symmetries of the particular situation of interest. This allows a
significant increase in the statistical accuracy of the measured
properties. Here, the aim is to investigate the development of

inhomogeneities in the vicinity of the critical size associated
with the shearing instability. Therefore, the simulation must
allow the formation of spontaneous fluctuations of a given
wavelength. For this reason, it is enough to consider a system
in which gradients can occur in only one direction, arbitrarily
taken as the x axis. The components of the position of the
particles perpendicular to that axis are not relevant from the
point of view of the simulation. In other words, the simulation
is restricted to systems that are homogeneous in the planes
perpendicular to the x axis. The system size in the x direction is
L, and periodic boundary conditions are used in that direction.

A simulation of the cooling mixture in the actual phase-
space variables is difficult, since the rapid cooling of the system
leads to rather small energies and large uncertainties very soon.
To deal with this, the procedure introduced in Refs. [26,27]
for one-component granular gases and extended to mixtures in
Ref. [20], will be employed. The idea is to exploit the existence
of an exact mapping of the HCS onto a steady state. Although
the method can be formulated in the time scale τ defined in
Eq. (27), this would have the technical complication that the
exact cooling rate is not known a priori. Consequently, it is
convenient to introduce a new time scale s by

ds = ζ ∗

2�
dτ = ζ ∗v0(Th)

2�λh

dt, (39)

where � is an arbitrary dimensionless frequency. Now, the
positions and velocities of the particles are represented in the l
and s scales. The particle dynamics in these variables consists
of an accelerating streaming between collisions,

∂ l
∂s

= υ, (40)

∂υ

∂s
= �υ, (41)

while the effect of the collision of two particles is the same
as in the original time scale, given its instantaneous character.
The dynamics defined by Eqs. (40) and (41) is seen to be
equivalent to a change in the original time scale,

�s = ln
t

t0
, (42)

where t0 is another arbitrary constant. The acceleration term
in the dynamics Eq. (41) is able to balance the energy lost
in collisions, thus enabling a steady state. The steady partial
temperatures in the new dynamics are given by [20]

T ∗
i,s =

(
2�

ζ i

)2

, ζ i ≡ ζi(T )

T 1/2
. (43)

From Eqs. (13) and (14), it follows that also

T ∗
s =

(
2�

ζ

)2

, (44)

ζ ≡ ζ (T )/T 1/2. The above mapping does not affect the
hydrodynamic shear instability. In the time scale s, Eq. (35)
becomes

∂ω̃k⊥
∂s

+
(

2�βη∗k2

ζ ∗ − �

)
ω̃k⊥ = 0. (45)

As expected from dimensional analysis, the arbitrary constant
� plays no role in the stability criterion.
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Because of the symmetry of our simulations as described
above, it is clear that the minimum wavevector allowed is
given by kmin = 2πλh/L. Therefore, the stability condition
kmin > kc with kc given by Eq. (38) is equivalent to L < Lc

with the critical length Lc given by

Lc = 2πλh

(
2βη∗

ζ ∗

)1/2

. (46)

It is worth mentioning the existence of a related instability for
the total momentum of the system in the scaled variables [26].
Nevertheless, it is not physically relevant and can be eliminated
by taking a vanishing initial total momentum.

V. SIMULATION RESULTS

In the simulations to be reported in the following, a binary
mixture of N = N1 + N2 inelastic hard spheres (d = 3) has
been used. In order to reduce the number of parameters
characterizing the system and to allow for a systematic study
of those being varied, the number of particles of both species,
and therefore the concentrations, have always been the same
(N1 = N2), as well as the diameters of the particles, i.e.,
σ1 = σ2. Moreover, the coefficient of normal restitution for
collisions between particles of different species has been taken
as the average of the coefficients for equal species collisions,
i.e., α12 = (α11 + α22)/2. On the other hand, the mass ratio
� ≡ m2/m1 and the two coefficients of normal restitution α11

and α22, as well as the size L of the system, have been varied
in the simulations.

The behavior of several properties of the HCS as the size L

of the system approaches the critical value has been studied.
The number of particles per unit of length in the x direction has
been kept fixed in the simulations, Nx ≡ N/Lx = 2000�−1

h ,
where �h = λh/

√
2π = (

√
2πσ 2nh)−1 is the mean free path.

It is worth stressing that the number of particles used in the
DSMC method does not affect the validity of the low-density
limit, which is inherent to the method itself [23].

The simulations were performed using the steady represen-
tation of the HCS discussed in the previous section and, unless
explicitly otherwise established, the values of the properties
reported in the following have been averaged in time once the
system had reached the steady state, as well as over a number of
different trajectories (typically 50). The value of the arbitrary
constant � was chosen in all cases as � = ζG/2, with ζG

being the value of ζ obtained in the Gaussian approximation,
i.e., those given by Eq. (15). If the Gaussian approximation
were exact, the measured steady value of the total temperature
would have been one.

The first point addressed in the simulations was to check
that the scaled transversal velocity field was really the first
hydrodynamic mode becoming unstable as L increases. The
steady state reached by the system for different sizes was
investigated, starting from a system with L small enough as
to guarantee that the HCS was stable and increasing L from
there on. The different hydrodynamic fields were monitored
at different times, and in all cases it was found that they were
the y and z components of the scaled velocity field, with the
first hydrodynamic modes exhibiting large fluctuations. As
long as L is not large, these fluctuations eventually decay, but
when the system size was increased enough, a nondecaying

-0.2
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0.2

ϕ

-0.1

0
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-0.2

0

0.2
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0 10 20
x/lh

-0.2

0
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0 10 20
x/lh

-0.1

0

0.1

FIG. 1. (Color online) Snapshots of the dimensionless scaled
density (left) and of one of the components of the perpendicular
velocity field ωy for a system with α11 = 0.8, α22 = 0.98, m2/m1 =
4, and L = 23.7�h. The (blue) circles correspond to the whole fluid
properties, while the empty (black) square and (red) triangles are
for species 1 and 2, respectively. From top to bottom, the times are
s = 6.68 × 103, 1.33 × 104, and 1.99 × 104, in the dimensionless
scale defined by Eq. (39), with � chosen as discussed in the main
text.

scaled transversal velocity field emerged. This is illustrated in
Fig. 1, where the density and one of the components of the
transversal velocity field are shown at three different times for
a system with α11 = 0.8, α22 = 0.98, m2/m1 = 4, and L =
23.7�h. Both the total hydrodynamic fields as well as those
associated with each of the species are displayed. The velocity
field for each of the components are defined by equations
similar to Eq. (2) [28], and they have been scaled with the
square root of the temperature of the system. It is seen that the
system exhibits an spontaneous perturbation of the transversal
velocity field that does not decay in time and corresponds to
the first possible harmonic. On the other hand, the density
remains homogeneous. Note that the local average velocities
of the species is the same as that of the whole fluid. Then, it
was concluded that the scaled shear mode is the field for which
the linear approximation first breaks down.

To measure the critical size Lc, the following procedure
was used. First, the average value of the total energy in the
steady state E was measured as a function of the size of the
system. Then, it was assumed, to be checked in the simulation
results, that the behavior of the average steady energy near but
below the shearing instability obeys a law of the form

δE ≡ 〈E〉 − 〈E〉h
〈E〉h ∝

(
Lc − L

Lc

)−1

≡ δ−1
L , (47)

where 〈f 〉h denotes the constant asymptotic average value of
the property f in the HCS, far away from the shear instability,
also obtained from the simulations. The above behavior is
suggested by the results obtained for a one-component dilute
granular gas near its shear instability [29,30].
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29.6 29.8 30
L/lh

0

300

600

δE
-1

FIG. 2. (Color online) Relative deviations δE ≡
(〈E〉 − 〈E〉h)/〈E〉h of the average total energy of the system
from its asymptotic values in the HCS, as a function of the system
size L, in the vicinity of the shear instability. The parameters of the
system are α11 = 0.92, α22 = 0.98, and m2/m1 = 8. The symbols
are from the simulations and the straight lines are fits in the “critical
region.” The (blue) circles correspond to the whole fluid, while the
empty (black) squares and (red) triangles are for species 1 and 2,
respectively.

In Fig. 2, δ−1
E is plotted as a function of the system size. The

observed linear behavior is consistent with Eq. (47), and from
the parameters of the linear fits, simulation values of the critical
size Lc are directly obtained. The fits of the three lines lead to
the same value, namely Lc � 30.13�h. A similar behavior was
obtained for all the values of the restitution coefficients and the
mass ratio that were investigated. It follows that the increase
of the total average energy of the system and also that of each
of the components, as the system approaches the instability, is
characterized by Eq. (47).

The comparison between the measured critical sizes and the
theoretical prediction given by Eq. (46) is presented in Fig. 3
as a function of the mass ratio m2/m1, for three different
sets of values of the coefficients of normal restitution. The
agreement is quite good over the two decades considered.
The nonmonotonic dependence of the critical length on the
mass ratio for given coefficients of normal restitution must be
noticed. This is especially relevant for strong inelasticities.

Another quantity investigated in the simulations is the
temperature ratio, γ21 ≡ T2/T1. Notice that as a consequence
of Eqs. (14) and (43), it is T2,h(t)/T1,h(t) = T ∗

2,s/T ∗
1,s . For

mixtures whose components have very dissimilar masses, a
small but systematic deviation of γ21 from its HCS value, γ21,h,
was observed when the system approaches its critical size. This
deviation is larger the closer the length of the system to its
critical value. It is found that γ21 > γ21,h for m2 > m1, while
γ21 < γ21,h for m2 < m1. Finally, for equal masses of both
components, no deviation from the HCS value is observed.
In any case, it must be noticed that the deviations from the
HCS values are never larger than 1%. This behavior is shown
in Fig. 4, in which γ21 is plotted as a function of the reduced
distance to the critical point δL ≡ (Lc − L)/Lc for a system
with α11 = 0.92 and α22 = 0.98. Results for several values of

0.1 1 10
m2/m1

30

35

40

Lc/lh

α11=0.92 α22=0.98
α11=α22=0.95

0.1 1 10
m2/m1

22

24

26

28

Lc/lh

α11=0.80 α22=0.98

FIG. 3. (Color online) Dimensionless critical size Lc/�h for the
shear instability of the HCS as a function of the mass ratio m2/m1.
The symbols are from the DSMC method, while the solid lines are
the theoretical predictions given by Eq. (46). Three different sets of
values of the coefficients of normal restitution have been considered,
as indicated in the insets.

the mass ratio, � ≡ m2/m1, are displayed, as indicated in the
figure caption.

VI. FINAL COMMENTS

The results presented in this paper show that a freely
evolving dilute granular mixture exhibits an instability as-
sociated to the transversal shear modes that is similar to
the one occurring in one-component granular gases. The
existence of the instability, and the parameters characterizing
the critical point, are accurately predicted by the linearized
hydrodynamic equations to Navier-Stokes order. Although the
detailed nonlinear mechanisms leading to the formation of
density clusters beyond the shear instability have not been
investigated here, it seems evident that they are the same
as those for one-component systems [6], given the similarity
of the behavior of both, mixtures and simple systems, when
approaching the critical size [31].

Another relevant quantity to characterize the system near
the instability is the second moment of the fluctuations of the
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0.001 0.01 0.1
δL

0.99

1

1.01
γ 21

/γ
21
,h

Δ=8
Δ=4
Δ=2
Δ=1
Δ=1/2
Δ=1/4
Δ=1/8

FIG. 4. (Color online) Temperature ratio γ21 ≡ T2/T1 in the
steady state divided by its HCS value γ21,h, as a function of the
relative “distance” to the critical size, δL. The coefficients of normal
restitution are α11 = 0.92 and α22 = 0.98. Results for different mass
ratios � ≡ m2/m1 are shown, as indicated in the inset.

total energy, defined as

�2 ≡ N (〈E2〉 − 〈E〉2)

〈E〉2
. (48)

The factor N has been introduced to scale out the dependence
due to the number of particles (or size L) of the system [29].
Consider

δ�2 ≡ �2 − �2
h

�2
h

, (49)

where �h is the steady value of � far away from the instability.
In one-component gases, it was found that near but below the
shearing instability,

δ�2 ∝ δ−2
L , (50)

with δL given by Eq. (47). Our simulation results clearly
indicate that this relation also holds for mixtures. Actually,
if the numerical results for the energy dispersion are fitted to
it, and the fitting parameters are used to determine the critical
length Lc, the values are the same, within the statistical errors,
as those obtained from the critical behavior of the average
energy and discussed above.

To analyze in more detail the nature of the energy
fluctuations, its distribution function was measured in the
simulations. Again prompted by the properties of the critical
region in one-dimensional granular gases [29], the quantity

ε ≡ E − 〈E〉
〈(E − 〈E〉)2〉1/2

(51)

is considered. Far away from the instability, i.e., L � Lc,
the probability distribution of ε is Gaussian, as expected.
Nevertheless, as the instability is approached, the distribution
strongly deviates from a Gaussian, showing a clear asymmetry
around the mean value. Moreover, and quite surprisingly,
close enough to the critical length, the data for different
values of the restitution coefficients, of the mass ratio, and
of the length of the system, collapse onto the same curve, as
illustrated in Fig. 5. This indicates that all the dependence of

-2 0 2 4 6
ε

0.001

0.01

0.1

1

P

α11=0.92 α22=0,92 Δ=1 δL=0.0065
α11=0.92 α22=0.98 Δ=8 δL=0.0056
α11=0.92 α22=0.98 Δ=1/8 δL=0.0041
α11=0.95 α22=0.95 Δ=1 δL=0.0046
α11=0.95 α22=0.95 Δ=10 δL=0.0116

FIG. 5. (Color online) Probability density function of the scaled
relative energy fluctuations ε close to the critical size Lc. Results
for several values of the coefficients of normal restitution αij , the
mass ratio � ≡ m2/m1, and the scaled length δL ≡ (L − Lc)/Lc are
shown, as indicated in the inset. The symbols are from simulations,
and the solid line is the distribution function given in Eq. (52),
changing y into −ε.

the distribution on the parameters of the system occurs through
the second moment of the distribution. In addition, the shape
of the distribution is the same as that found in one-component
granular gases [29], as well as in other equilibrium and
nonequilibrium systems [32,33]. In these cases, an accurate
expression to fit the data is

P0(y) = K(ex−ex

)π/2, x = b(y − s). (52)

The values of the parameters in the above distribution follow
from the normalization, zero mean, and unit variance condi-
tions, with the result K = 2.14, b = 0.938, and s = 0.374.
Therefore, it has no fitting parameters. In Fig. 5, the solid
line is the plot of P0(−ε). A remarkable agreement with the
simulation data is obtained. A peculiarity of the present case
as compared with the other systems in which the distribution
Eq. (52) has been used, is that here the one fitting the numerical
data is the symmetric of Eq. (52) with respect to the origin.
While in granular gases, large positive fluctuations are more
frequent than their symmetric, it happens the other way around
in the molecular systems considered in Refs. [32,33]. It is
possible that this difference be due to the dissipative character
of granular systems.

It is worth mentioning that in the case of one-component
granular gases, the critical behavior of the system near the
shearing instability can be, at least qualitatively, understood
in terms of nonlinear fluctuating hydrodynamics couplings
[10]. It is expected that the analysis can be extended to binary
mixtures with the same degree of accuracy.
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APPENDIX: REDUCED VISCOSITY OF A DILUTE BINARY MIXTURE

The expression for the reduced viscosity η∗ of a binary mixture of inelastic hard particles has been obtained in Ref. [11]. It is
given here for the sake of completeness and also because there is an error in the results reported in the aforementioned reference.
The expression for the reduced viscosity reads

η∗ = x1γ
2
1 η∗

1 + x2γ
2
2 η∗

2, (A1)

with

η∗
1 = 2

γ1γ2

γ2(2τ22 − ζ ∗) − 2γ1τ12

ζ ∗ 2 − 2ζ ∗(τ11 + τ22) + 4(τ11τ22 − τ12τ21)
. (A2)

The coefficients τ11 and τ12 are given by

τ11 = 2π (d−1)/2

d(d + 2)�
(

d
2

){(
σ1

σ12

)1/2

x1(2θ1)−1/2(3 + 2d − 3α11)(1 + α11)

+ 2x2μ21(1 + α12)θ3/2
1 θ

−1/2
2

[
(d + 3)(μ12θ2 − μ21θ1)θ−2

1 (θ1 + θ2)−1/2

+ 3 + 2d − 3α12

2
μ21θ

−2
1 (θ1 + θ2)1/2 + 2d(d + 1) − 4

2(d − 1)
θ−1

1 (θ1 + θ2)−1/2

]}
, (A3)

τ12 = 4π (d−1)/2

d(d + 2)�
(

d
2

)x2
μ2

21

μ12
θ

3/2
1 θ

−1/2
2 (1 + α12)

[
(d + 3)(μ12θ2 − μ21θ1)θ−2

2 (θ1 + θ2)−1/2

+ 3 + 2d − 3α12

2
μ21θ

−2
2 (θ1 + θ2)1/2 − 2d(d + 1) − 4

2(d − 1)
θ−1

2 (θ1 + θ2)−1/2

]
. (A4)

The quantities μij , θi , and σ12 have been defined in Eqs. (19), (20), and above Eq. (16), respectively. Moreover,

σ12 ≡ σ1 + σ2

2
. (A5)

The expression for the reduced contribution viscosity η∗
2 can be obtained from Eqs. (A1)–(A5) just interchanging the

indexes 1 and 2.

[1] I. Goldhirsch, Ann. Rev. Fluid Mech. 35, 267 (2003).
[2] J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87, 1051

(1997).
[3] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993);

I. Goldhirsch, M. L. Tan, and G. Zanetti, J. Sci. Comput. 8, 1
(1993).

[4] S. McNamara and W. R. Young, Phys. Rev. E 50, R28
(1994).
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[11] V. Garzó and J. M. Montanero, J. Stat. Phys. 129, 27 (2007).
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