
Constructing Recursions by Similarity

Abstract
A formal specification can describe software models

which are difficult to program. Transformational methods
based on fold/unfold strategies have been proposed to
palliate this problem. The objective of applying
transformations is to filter out a new version of the
specification where recursion may be introduced by a
folding step. Among many problems, the “eureka” about
when and how to define a new predicate is difficult to find
automatically. We propose a new version of the folding
rule which decides automatically how to introduce new
predicates in a specification. Our method is based on finding
similarities between formulas represented as parsing trees
and it constitutes an assistance to the complex problem of
deriving recursive specifications from non recursive ones.

Keywords: specification transformation, program
synthesis, correctness preservation, program specification.

1 Introduction
Usually, a specification describes software models

which are difficult to program. Systematic construction of
programs from specifications is known as program
synthesis. A huge variety of synthesis mechanisms have

been developed [4], [5], [6],[7], [8], [16], [2]. In this work, we
are interested in transformational mechanisms; a sequence
of meaning-preserving transformation rules (e.g. unfolding,
folding, universal instantiation, abstraction, predicate
definition, etc.) is applied to a specification until a program
is obtained. The objective of applying transformations is
to filter out a new version of the specification where
recursion may be introduced by a folding step. However,
among many others problems, deciding about when and
how to define a new predicate (i.e. recursive predicate) is
difficult to find automatically. Fold/unfold transformations
represent an important investigation subject in the literature
[1], [5], [13], [15], [14], [18]. Basically, unfolding represents
the replacement of an atom by its definition and folding
represents the inverse operation of replacing a subformula
by an atom. In the following example, the context S defines
a (many-sorted) first-order language with types Nat (natural
numbers) constructed from the function symbols 0 and s
and Seq(Nat) (sequences of natural numbers) constructed
from the function symbols empty and conc. It defines also
the meaning of relation symbols such as = (identity
between natural numbers), nocc (number of occurrences
of an element in a sequence) and perm (permutations of a
sequence of natural numbers).

S = {Types : Nat generated by 0; s  Seq (Nat) generated by empty; conc

D= : 0 = 0 � true 0 = s (x) � false
s (x) = 0 � false s (x) = s (y) � x = y

Dnocc : nocc (e, empty, z) � z = 0
nocc (e, conc (x, Y ), s (z)) � x = e  nocc (e, Y, z)
nocc (e, conc (x, Y ), z) �  x = e  nocc (e, Y, z)

Dperm : perm (L, S) � (nocc (a, L, z)� nocc (a, S, z))}
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Dperm is not closed to the structure of a program (i.e.
there is not any explicit recursion). Following a
transformational synthesis process for Dperm (e.g.
applying universal instantiation on variables L, S and z in
Dperm, we obtain D1 and then unfolding D1 w.r.t. nocc(b;
conc(v; V ); s(k)) and nocc(b; conc(w;W); s(k))) atoms using
second axiom in Dnocc) we reach expressions such as D2:

Two questions arise at this point, (a) Is it possible to 
introduce recursive predicates in D2? and (b) How can we 
do it? It is dificult to achieve an “automatic answer” to 
these questions. Our method follows a constructive 
approach. A comparison based on the notion of similarity 
between D2 and Dperm is needed to decide about first 
question. Only if first question is answered affirmatively 
then a similarity-based folding rule is applied to D in order 
to answer second question.

Our work is explained in the following manner. Section 
2 defines the form of our specifications and a non-
constructive characterization of the folding rule is 
presented. Section 3 defines the concept of similarity. 
Basically, it represents an automatic method for deciding 
which subformulas produce recursion. In section 4, we 
describe a similarity based folding rule which preserves 
correctness, and finally, in section 5 we establish 
conclusions.

2 Preliminary Definitions
In this section, the syntax and semantics of our 

specifications and a non constructive definition of the 
folding rule are presented. The use of the folding rule is 
intended to introduce recursion in a specification.

DEFINITION 2.1 (SYNTAX OF A FORMULA) A many sorted
(typed) first order language is assumed to write our

formulas. A formula  where  is a 
universal or existential quantifier defined  on a type

 is  different from   for , and F contains no 
quantifier, is said to be in prenex normal form. We consider

that, when possible, all quantifiers in a formula are
ordered following a lexicographic order defined on the
names of their respective types.

For example, 

is in prenex normal

form where all quantifiers have been ordered following a
lexicographic order defined on the names of their respective types.

In the following, we assume that all our formulas are in
prenex normal form, this does not represent any restriction
due to the existence of an effective procedure for
transforming any first-order formula into an equivalent one
in prenex normal form [12]. For legibility reasons, we omit

 subscripts when a type can be induced clearly in a formula
and expressions such as  can be collapsed
into equivalent expressions . For example,
the formula 

 can be collapse into

the equivalent formula 
. In addition, when possible,

universal quantifiers are omitted in the front of a formula.

DEFINITION 2.2 (SUBSTITUTION) A (ground) variable
substitution is the pair (v, t) where v is a variable and t is
a (ground) term. A substitution  is a set of variable substitutions.

 and   be two
sets of variables where  is different from  and  is
different from . Let 

 and  be two sets of
quantifiers for variables in X and Y respectively. We say
that  is a renaming
substitution which agrees w.r.t. quantifications iff (a) X

 Y =  and (b)  with .

DEFINITION 2.3 (SPECIFICATION) An if-and-only-if axiom
is a formula of the form 
(e.g. axioms for =, nocc and perm relation symbols in ).
The  symbol   is  called  the  defined  symbol.  The  atom

(     , ...;    ) is called the left-hand side of the axiom and the
(sub)formula R( ) is called the right-hand side
of the axiom. A specification for a relation symbol  is the
set D  of all axioms with the same defined symbol. In the

following, we use  to identify the  axiom in D .

Definition 2.4 (Context) A context  is a set of types
and specifications for relation symbols. Types are
constructed from function symbols appearing in .  is
atomically complete if, for every ground atom

, either  or 
.  has isoinitial model  M  iff  for every ground

literal . Therefore, the meaning of

a relation r in  is the set of all ground literals  defined
on r such that .

D1 : perm (conc (v, V ); conc (w,W))
� (nocc (b, conc (v, V ), s (k))

�

nocc (b, conc (w,W), s (k)))

D2 :  perm (conc (v, V ), conc (w,W))
� ((v = b  nocc (b, V, k))

�

(w = b  nocc (b,W, k)))

1 1

1



Some authors have studied the problem of the existence
of isoinitial models for theories in general [3] and some
effective criteria have been proposed to construct
consistent theories. Following [11], a context  admits an
isoinitial model if and only if it is atomically complete. By
hypothesis, we assume that our contexts are consistent in
this way.

Definition 2.5 (Folding Rule) A folding rule is a
transformation rule intended for replacing a subformula
by an atom. Let  be a formula and 
be an axiom for  in . We say that  is obtained from 
folding with respect to 

 where (a) There exist subformula  in 

and substitution  such that  and (b) 

 represents the textual replacement of 

in .
For  example,  the formula 

 can be folded with

respect to . Applying the substitution 

 to the right-hand side of the

axiom in  we  obtain  the  subformula 
. Finally, applying textual

replacement, we obtain perm .

3 Similarity
This section describes an automatic method to

introduce recursion by a folding step. It is based on the
notion of similarity. Basically, similarity represents a
decidable relation between two parsed formulas.

DEFINITION 3.1 (PARSING TREE) Let S be a formula in
prenex normal form. We say that Parse(S) (graphical
example in figure 1) is the parsing tree for S iff it is a tree
representation of S where (a) each leaf node in Parse(S)
represents a literal in S. (b) each non-leaf node in Parse(S)
represents either a quantified set of variables 
or a logical connective ( ) in S and (c)
each node in Parse(S) has unique identification by means

of a number with format . The digit l represents
the level where a node is located in Parse(S). The digit p
decides if the node is located either at the left-hand side
(p = 1) or at the right-hand side (p = 2) of its parent (if it
exists). By default, nodes without brother nodes have p =
1. The digits  represent the identification of the
parent node. The root node is an exception, it has not any
parent therefore we consider a fixed identification for it
equal to 1. In this way, a node identification determines
univocally the position of a node in a parsing tree. We say
that a preterminal node in Parse(S) is any non-leaf node
in Parse(S) with at least one leaf node as child.

Two formulas can be compared by the structure of their
quantifiers and logical connectives. These measures are
called similarity with respect to quantification and similarity
with respect to logical connectives respectively. In the
following definitions, we consider that  and  are two
formulas in prenex normal form.

DEFINITION 3.2 (SIMILARITY FUNCTION) We say that f is
a similarity function from the node identification domain
of Parse( ) to the node identification domain of
Parse( ) iff each non-leaf  Parse( ) is mapped to
a non-leaf node  Parse( ) where
quantifier/connective in  coincides with quantifier/
connective in  and the level of  is greater than or
equal to the level of  .

DEFINITION 3.3 (SIMILARITY W.R.T. QUANTIFICATION) We
say that  is similar to  w.r.t. quantification iff for
each non-leaf node  Parse( ) containing the
quantified set of variables  there exists a
non-leaf node  Parse( ) containing
the quantified set of variables  such that
(a) m  n and (b) there exist two sequences of nodes,
from Parse( ) and  from Parse( ), with

 where  contains  and its predecessors
(from bottom to up) and  contains  and its
predecessors (from bottom to up). (  is obtained by
applying , when defined, to elements in ). If  is
similar to w.r.t. quantification then f induces a set of

possible renaming substitutions for variables in  (from

variables in ) which agrees w.r.t. quantification. If
 is the set of quantified variables in  and  is



the set of quantified variables in  then f
induces substitutions of the form  with

 and .

In figure 5,  is similar to  w.r.t. quantification:

and some examples of substitutions induced by f are:

Definition 3.4 (Similarity w.r.t. Logical Connectives)
We say that  is in-depth similar to  iff for each non-

leaf node  Parse( ) containing a logical connective
there exists a non-leaf node  Parse( )
and there exist two sequences of nodes,  from
Parse( ) and  from Parse( ), with 
where  contains  and its predecessors (from bottom

to up) and  contains  and its predecessors (from

bottom to up). We say that  is in-breadth similar to 
iff for each level  of Parse( ) with 

 as the set of all nodes in  containing logical

connectives, there exists a set of nodes in Parse( ),
possibly from several levels, say , of the form

 and  are (sub)sequences of

numbers. If the node with identification 1 (level  = 1) of
Parse( ) contains a logical connective then there exists

a node identification in Parse( ) of the form  in

Parse( ) where  and  are (sub)sequences of numbers.

We say that  is similar to S1 w.r.t. logical connectives iff

 is in-depth similar and in-breadth similar to .

For example, in figure 2 we show an example of similarity
with respect to logical connectives between the formulas

 and  (for legibility reasons, each  represents a
ground literal):

In general, if f exists then it may not be unique. For
example, the node  Parse( ) can also be mapped

to the  Parse( ) obtaining in this way another f.
In-breadth similarity (in relation to the definition 3.4,

bold numbers have been used for  in  and for

 in :

In figure 3 we show an example of non-similarity (non
in-depth similarity) with respect to logical connectives
between the formulas  and .



There is not any f such that   for the

node .
In figure 4 we show another example of non-similarity

(non in-breadth similarity) with respect to logical
connectives between the formulas  and :

DEFINITION 3.5 (SIMILARITY) Let  be similar to 
w.r.t. quantification and logical connectives by a function
f. Let L be the set of all literals in . Let N Lea  be the
set of all preterminal nodes in Parse( ). Let N Lea  be
the set of nodes  Parse( ) with  and

. Let Lea  be the set of leaf nodes in

subtrees of Parse( ) with root node .

We say that  is similar to  iff there exist a

, with K as the set of literals in nodes

of , and a substitution  induced by f such that
.

For example, in figure 5, we show the similarity between
 and S2

Similarity w.r.t to quantification:

Similarity w.r.t. logical connectives (In-depth similarity):



3.1 ALGORITHMIC JUSTIFICATION FOR SIMILARITY

The constructive nature of definitions 3.3, 3.4 and 3.5
can be justified in an algorithmic way. Different searching
algorithms can be proposed for the construction of the
similarity function f. We propose a construction following
an incremental style. First, f is constructed in order to decide
only about similarity w.r.t. quantifiers. Then, we search for
a substitution induced by (this incomplete) f. Finally, we
search for a remaining part of f which decides about similarity
w.r.t. logical connectives. Our searching algorithm follows
a generate-and-test strategy. It is possible to explore the
complete search space due to the finite number of
quantifiers and logical connectives in a formula.

Initially, a sequence of non-leaf node identifications is
constructed by traversing Parse( ) in a breadth-first way.

For example, for Parse( ) in figure 5 we obtain :

From this sequence, the subset of nodes containing
quantified set of variables is selected. Then, a generate
and test strategy is su±ce to construct (an incomplete due
to the incremental construction) f which decides about
similarity w.r.t. quantifiers. The generate-part generates a
tentative f for each node in this subset. Hence, each node
containing a quantified set of variables of the form 

in Parse( ) is bounded to a node containing a quantified

set of variables of the form . The test part decides
about conditions (a) and (b) in definition 3.3. If it is not
possible to construct an f in these terms then we conclude
that there is not any similarity w.r.t. quantification and then
there is not any similarity f. For example, for Parse(S1) in
figure 5, the subset of nodes containing quantified set of

variables is equal to .

The set of all tentative substitutions  induced by
(our incomplete) f is computed in the following manner. For
each pair of quantified set of variables  and 
by f, the set of all possible substitutions is calculated by
means of a cartesian product.

Then, the set of all tentative substitutions  induced
by f is calculated by the cartesian product of these
substitutions. The calculation of  is a terminating problem
due to the finite number of variables in a formula. For
example, in our example (fig. 5):



Then, we select the sets of literals L from Parse( )

and K from Parse( ). Then  is any substitution in 
such that . A generate and test strategy is suffice
to explore the  search space. Only if K does not exist or
there is not any  such that  then we conclude
that there is not similarity w.r.t. quantification and then
there is not any similarity f.

In a similar way, we construct the remaining part of f
which is intended to decide about similarity w.r.t. logical
connectives. A generate and test strategy is suffice to
explore the search space. The generate-part generates a
tentative (remaining part of) f. A breadth-first search is
suffice to construct tentative f’s. The test-part decides about
in-depth and in-breadth similarities induced by each
tentative f. The search space for the remaining part of f is
finite due to the finite number of logical connectives in a
formula. In our example, the remaining part of f is only
determined by the selection f (32111) = 32111. Finally, for
our example (fig. 5):

Only if the remaining part of f can not be constructed
then we conclude that there is not similarity w.r.t. logical
connectives and then there is not any similarity f.

4 Similarity-based Folding Rule
In this section, a similarity-based folding rule is defined.

Basically, it is a constructive definition of the folding rule
in definition 2.5.

DEFINITION  4.1 (EVALUATION RULE) Let S

 be a formula in the language of the context

 constructed from literals . We

say that is obtained from S

evaluating the set of literals  if and only if

 is of the following form:

For example, let 

 be a formula in the
language of . Let  and  be two
literals in S.

Then



A formula S(true; false; ) constructed from

literals  and propositions true, false is

transformed into the formula Srew by application of
rewrite rules repeatedly.

For example, let 
 be a formula. 

 represents the simplified form of S

obtained after the application of (6), (5) and (9) rewrite
rules.

DEFINITION 4.3 (SIMILARITY-BASED FOLDING RULE) Let
S be a formula in the language of . Let  be a relation in

. Let  be an axiom in . We say that

 is obtained from S folding by similarity with respect to

1. The variables appearing only in  but not in

 do not appear in S.

2. K is the set of all literals in S.

3. S is similar to , where Lj is the set of all

literals in  and  is a (sub)set of literals

of S and  is the substitution such that

.

4. ( ( ))rew is obtained from S

evaluating (definition 4.1) literals not in  and

then applying rewrite rules (definition 4.2)
repeatedly.

For example, let 

 be a formula in the
language of . Let 

 be the axiom in 

 is

the set of all literals in S. S is similar to 

 (definition  3.5). Let  

be the set of literals in the

right-hand side of the axiom in and let
 be the set of

literals in  such that 

 Then, let

THEOREM 4.1 (CORRECTNESS OF THE EVALUATION RULE)
Let  be a formula in the language of

 constructed from literals .
Let  be the formula obtained from

 evaluating the set of literals .
Let M be an isoinitial model for . Then

Proof 4.1 Proof of .
The evaluation rule (definition 4.1) constructs 

 by means of  mutually exclusive disjunctions

representing all possible evaluation cases for 

literals in . Suppose (by absurdum) that  is model
for a ground instance of S and it is not model for the

respective ground instance of . By

hypothesis,  is atomically complete (definition 2.4) and
then there exists a proof in  for the ground instance of S
but there is not a proof in  for the ground instance of

. Hence, we conclude that
 does not consider all possible

evaluations for  literals in S.

Proof of . If M is

model of a ground instance of  then M

is model of only one instance of their disjunctions and
then, by construction, it is a model of the respective ground
instance of S.

Definition 4.2 (Rewrite Rules) In order to simplify
specifications, we consider a set of rewrite rules of the

form  in presence of negations and false and

true propositions. A formula 
 constructed from literals  and

propositions true, false is transformed into the formula
S

rew
 by application of rewrite rules repeatedly.rew

 where



THEOREM 4.2 (CORRECTNESS OF THE SIMILARITY-BASED

FOLDING RULE) Let S be a formula in the language of .
Let r be the relation in . Let  be an
axiom in . Let S

 
  be the formula obtained from S folding

by similarity with respect to  (definition 4.3).
Then

Proof 4.2 The similarity between S and  implies
the existence of a substitution  such that 
where  represents the set of all literals in  and

 represents a (sub)set
of literals in S (definition 4.3). The formula

 represents the evaluation of S with

respect to literals not in  and by theorem 4.1, this

formula is equivalent to S. This formula is composed by

 disjunctions . Applying rewrite rules on

each disjunction, we obtain a formula of the form:

5 Conclusions
The objective of applying transformations is to filter

out a new version of the specification where recursion may
be introduced by a folding step. Several (nonconstructive)

j



versions of the folding rule have been proposed mainly in
the context of clausal (and restricted) specifications (e.g.
logic programs [18] and [9]). We do not restrict the form of
the specifications. Hence, it is possible to apply folding
rule on general specifications in a flexible manner. On the
other hand, constructive versions for this rule are needed
if we are interested in the construction of automatic
synthesizers. In this way, we propose a new folding rule which
decides how to introduce recursive predicates in a specifications
automatically which contrast with prior approaches. Our method
is based on finding similarities between formulas represented
as parsing trees and it constitutes an automatic assistance to
the complex task of deriving recursive specifications from non
recursive ones. At this point, an important problem remains to
be solved. The “eureka” about when to apply folding rule is
di±cult to establish in an automatic way [8]. The use of our
proposal is intended to be integrated in a more general method
which decides when apply such transformation (e.g. [10]). We
think that our work is a little contribution towards the
construction of automatic synthesizers.
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