
Towards a Theory on the Role of Ontologies in
Software Engineering Problem Solving

Conclusions from a Theoretical Model of
Methodological Works

José M. Cañete� and Francisco J. Galán

Faculty of Computer Science,
University of Sevilla (Spain).

Abstract. We present and validate a theoretical model of methodolog-
ical works in Software Engineering that, without claiming for complete-
ness, allows us to investigate the role of ontologies in the problem solving
process related with the development of software. Our main conclusion
is the potential of ontologies as resources for an individual to think dur-
ing problem solving. We argument that suitable ontologies can support
solving strategies as well as motivate their invention. We also conclude
the importance of accompany an ontology with knowledge that guides
the engineer in reasoning with its concepts.

The model regards a methodological work as an heterogeneous theory
about a class of problems and about a number of conceptual elements.
Some of the elements are ontologies, which play the role of identifying and
relating aspects of the knowledge about the class of problems, making up
novel perspectives on the problems that may promote solving strategies.

For illustration purposes, we take Jackson’s “Problem Frames” as a
case study. We analyse this work through the former model, identify-
ing the ontologies, guides, and promoted strategies. Then we propose an
alternative ontology, based on that used in the KAOS approach; we refor-
mulate some parts of Jackson’s work through this ontology and propose
a strategy as well as some guides.

Keywords: Ontologies, Methodologies, Modelling, Problem Solving,
Cognitive Science.

1 Introduction

Modelling languages have been used for years in Software Engineering, and they
are currently broadly extended. Textbooks and papers are plenty of modelling-

� Corresponding author. Contact at jmcv@us.es or at José Miguel Cañete Valdeón, 
ETS de Ingenieŕıa Informática, Avda Reina Mercedes, S/N, 41012, Sevilla, Spain. 

This work has been partially funded by the research project TIC 2003-02737-
C02-01.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/333938173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


related concepts as “model-driven engineering”, “Model-Driven Architecture”,
and “Unified Modeling Language”. In a previous paper we investigated the uses
of these languages in the context of several software development methodolo-
gies, finding that the most popular use is that of description (Cañete et al.,
[1]). Frequently described subjects are the system-to-be and its environment.
However, we also discovered that the models created with some languages are
used for reasoning about some aspect of the development problem, allowing to
obtain useful conclusions that, in some cases, could even motivate some design
decision1. This fact leads to an interesting question: what is the relation between
modelling languages and human reasoning during problem solving? This paper
aims to contribute to answer this question. The followed approach is the study
of ontologies in methodological works. We base this decision on three arguments.

First, the semantic conceptualization that is the basis of any modelling lan-
guage can be regarded an ontology. Second, ontologies allow to acquire, organize,
represent, and deal with knowledge. These activities are important for anybody
that is solving a problem. Besides, in the case of solving a software development
problem, it is necessary to have general knowledge about aspects of the class
which the problem belongs to. And it is also useful to have some general knowl-
edge about heuristics and other kinds of well-founded guides that suggest how
to address the problems in the class. In conclusion, knowledge is important in
problem solving, and ontologies are good instruments for managing knowledge.
Therefore, a software engineer is likely to use several kinds of ontologies while
she reasons in the resolution of a problem. The third argument to base our ap-
proach is that methodological works can be regarded as sources for the previously
cited general knowledge (we will prove this later in this paper). In conclusion:
ontologies and methodological knowledge are software engineer’s tools in rea-
soning during problem solving. Their study seems a promising starting point for
answering the question that we have formulated at the beginning of this section.

To this aim, we propose and validate a theoretical model of methodological
works and we use it as an instrument for investigation. We obtain a number
of predictions from the theoretical model, including the claim that ontologies
may promote reasoning strategies for problem solving. The methodological work
“Problem Frames” (Jackson, [11]) is used throughout this paper for illustration
purposes.

The rest of the paper is organized as follows. Section 2 contains some back-
ground terms from Philosophy of Science that are necessary for the remaining
parts. Section 3 describes and validates the theoretical model. In Section 4 we
reason with the model and obtain a number of predictions. Section 5 summarizes
the conclusions and exposes our current works. We close in Appendix A with an
example of reasoning with ontologies.

1 Note that we are not referring to languages intended to describe the reasoning pro-
cess; this aspect constitutes an interesting research area in which important con-
tributions have been made, particularly those by Potts and Bruns ([17]), and by
Ramesh and Dhar ([18]).



2 Scientific Theories, Models, Hypotheses, and
Ontologies

In this section we review some terms that we use in the rest of this paper, from
the perspective of Philosophy of Science. The central concept is that of “scien-
tific theory”. There are several philosophical approaches to what a theory is. A
broadly accepted approach is the so-called “semantic view”. It considers that a
theory can be defined by a class of structures that provide an interpretation for
it (a semantics); these structures are called theoretical models or, simply, models.
Models can be defined in a variety of languages, none of which is the basic or
unique expression of the theory. Some contributions to the semantic view are
those by Suppes ([21, 22]), Suppe ([20]), van Fraasen ([7]), and Giere ([8]).

In particular, Giere’s approach ([8]) understands a theory as comprising two
elements: (1) a family of interrelated theoretical models, and (2) various theoret-
ical hypotheses that claim the similarity among models in the family and parts
of the real world, in indicated respects and to some specified degrees of accuracy.
Giere’s theoretical models are conceptual, idealised systems (e.g. those discussed
in mechanics texts) that jointly provide the semantics of a theory. Hypotheses
are true if the models do fit the world in the indicated respects and degrees,
and they are false otherwise. Theoretical models of the same family are related
between them by similarity relations (“resemblance” –Giere, [8], p. 86); in some
cases, they may constitute different approximations to a real world situation.

Morgan and Morrison ([14]) argue that scientific models are instruments for
investigation, and they point out several functions of models as instruments. One
of these functions is to aid in theory construction. The theoretical model that
we have proposed (Section 3) is intended to investigate the relationship between
ontologies and reasoning during the resolution of problems; therefore, the model
contributes to the development of a theory about such relationship.

Giere ([9]) argues that theoretical models can be used for making predictions
about the reality that they represent. If the model is proven to fit the world in
certain respects and to some specified degrees of accuracy, then the predictions
made from the model are also true in the world. Predictions, in turn, allow to
learn with the model, another of the characteristics pointed out by Morgan and
Morrison ([14]). Section 4 describes some predictions obtained from our proposed
model of methodological works.

Ontology is a branch of Philosophy concerned with the study of what exists.
In Computer Science, ontologies are of great interest for knowledge acquisition
and representation, and recently also for Semantic Web. A popular ontology
definition is that by Gruber ([10]): an ontology provides “an explicit specifica-
tion of a conceptualization”. Mylopoulos ([15]) emphasizes the role of ontologies
in acquiring the right concepts to model a world for which one would like to
do computations or knowledge management operations. Jurisica, Mylopoulos,
and Yu ([12]) classify ontologies for knowledge representation into four broad
categories: static, dynamic, intentional, and social.



3 A Theoretical Model of Methodological Works

In this section we present and validate a theoretical model that fits a class of
methodological works. In spite of its simplicity, the model has been an adequate
instrument for investigation of the role of ontologies in problem solving, allow-
ing us to obtain a number of conclusions in the form of predictions, which are
exposed in the next section. The reality to be modelled is constituted by the
methodological works in Software Engineering. A methodological work is that
aimed to be applied by a practising engineer to any problem in a class, with the
hope of contributing to its resolution. They form a conceptual reality, and we
can find descriptions of them in research papers and textbooks.

3.1 Description of the Model

The first component of our model is a study of the class of problems that are
intended to be solved. The analysis covers different aspects of the problems,
which probably constitute novel approaches to the study of the class. Several
concepts are defined, and the study of some of the identified aspects is presented
through these concepts. Sets of interrelated concepts are grouped in ontologies.

The model also incorporates a number of guides, which are suggestions for the
practising engineer of activities to do. Some of these guides are specific for several
of the former ontologies, suggesting how to use them to achieve some purpose
which, in turn, contributes to the resolution of the problems in the class. A special
type of guides is constituted by logical schemes that, when they are instantiated
by the practising engineer on a concrete problem, result in conclusions that
contribute to the problem resolution (e.g. to conclude to make some design
decision). The ontologies with guides may have a textual or graphical syntax
associated to their concepts, although it is not strictly necessary.

The concepts introduced to study the class of problems can have properties
on their own, from an abstract point of view. A last component of the model is
constituted by these properties, together with the properties derivable from the
former guides.

The above components are related by a constraint: the concepts and guides
must actually contribute to the resolution of the class of problems. If this con-
strains holds and the former studies are correct, the methodological work is
considered to be valid.

3.2 Validation of the Theoretical Model

Giere ([9]) proposes a program to validate theoretical hypotheses, and, hence,
theoretical models. The program is based on making predictions from the theo-
retical model. If such predictions do not agree with experimental data, then the
model does not fit the world and the hypothesis is false. Otherwise, the hypoth-
esis is considered to be true if there are no alternative models that explain the
same predictions.

Seven predictions from our model are presented in the next section where we
also reason the soundness of each one, thus contributing to the validation of the



Table 1. Some of the problem aspects studied in “Problem Frames”

Aspect Description
A1 There exist classes of typical software problems. Some of these classes have

typical decompositions in terms of others.
A2 The physical, spatial extension of software problems.
A3 The extension of software problems from the viewpoint of the customer’s

needs.
A4 The different roles played by the physical elements of a software problem.
A5 The variability in each class of softw. problems from a physical perspective.
A6 The diversity in the domain nature and its impact in each class of software

problems.
A7 The logical correction of each class of software problems.
A8 The impact of the failure of a reliable domain in a software problem.

Table 2. Some of the concepts defined in “Problem Frames” for studying each problem
aspect. We have put together each group of related concepts in an ontology

Aspect Concepts Ontology
A1 Problem Frame, Information Display Frame, ... O1

A2 Domain, Interface, Phenomenon, Description, ... O2

A3 Requirement, Customer’s Authority, Customer’s Responsibility O3

A4 Operator, Machine, Display, Real World, Workpieces, ... O4

A5 Variant, Description Variant, Operator Variant, ... O5

A6 Flavour, Static Flavour, Dynamic Flavour, ... O6

A7, A8, ... Concern, Frame Concern (A7), Reliability Concern (A8), ... O7

whole model. We have not found an alternative theoretical model that explains
all the predictions.

Besides, our model agrees with Wieringa’s account on design-related research
(Wieringa, [26]). He reasons that, during any design process, both the problem
properties and the solution properties must be studied. According to the author,
this is also applicable to the design of methods.

3.3 Example: Modelling the “Problem Frames” Methodological
Work

The preface of “Problem Frames” (Jackson, [11]) states on page xii: “The central
idea of this book is to use problem frames in problem analysis and structure”. A
“software problem” is a general and incomplete specification of the responsibil-
ities of a software system in the context of a composite system2 in which it is
immersed. Analysis is the problem of identifying the concerns and difficulties of a
software problem. Structure is the problem of designing a correct decomposition
of a software problem into subproblems, which ideally contributes to an easier

2 A composite system includes people, hardware, software, and lexical entities.



Table 3. The fist column indicates some guides included in “Problem Frames”. The
second column specifies the ontologies that are directly involved in each guide. The
page and chapter references are relative to (Jackson, [11])

Guides Ontologies
G1 (heuristic): identify ancillary problems. This guide is based on
the knowledge that in most software problems there are ancillary
subproblems surrounding the core (p. 293).

O1

G2 (heuristic): identify and address the concerns of the frames that
have already been identified for a problem. This guide is based on the
knowledge that each problem frame has a number of typical concerns
(chapter 9).

O1 + O7

G3 (heuristic): study the software problem beyond the software sys-
tem interface. This guide is based on the knowledge that the software
problem is immersed in and interacts with a composite system (pp.
7–10).

O2

G4 (heuristic): expand your study of the composite system to the
extent that the customer’s responsibilities are covered, without tres-
passing the customer’s authority. This guide is based on the knowl-
edge that the software problem requirements must not be too small
in relation to the customer’s responsibilities, and that the customer’s
authority limits the scope of what the software system may legiti-
mately be designed to do (pp. 29–33).

O2 + O3

G5 (heuristic): a valid way to address the failure detection in the reli-
ability concern of a problem is to insert an information subproblem to
audit failures. This guide is based on knowledge about the reliability
concern (pp. 248–257).

O1 + Relia-
bility Concern
(O7)

development of the software. Therefore, we can summarize the class of problems
which the methodological work is intended for as: “how to analyse and structure
software problems?”.

The approach includes a vast study of numerous aspects of the cited class
of problems. Table 1 shows a possible relation of some of these aspects; other
classifications can also be valid. Several concepts defined in the method for the
study of each aspect have been collected in Table 2, where we have also proposed
a possible grouping of the concepts in different ontologies. The main concept is
“Problem Frame”, which is a synonym for a known class of software problems.
The only concepts in Table 2 that have an associated syntax are those of ontology
O2 together with the concept “Requirement” (in O3).

As we will prove in Section 4.1, some ontological concepts, in addition to
be useful for the study of the class of problems, are also intended to contribute
to the engineer’s reasoning in solving any particular problem of the class. Such
ontologies are associated with guides. In “Problem Frames” we can find guides
to be used with several ontologies, including O1, O2, O3, O4, and O7; Table 3
shows some of them. Some guides as G2 require concepts from several ontologies.



Note that the ontologies without an associated syntax may also have associated
guides (e.g. O1).

One of the guides intended to help in locating and bounding software prob-
lems is related with the customer’s authority and responsibility (pp. 31–33). We
have identified it as G4 in Table 3. The “customer” is a notional person rep-
resenting all the people who are entitled to contribute to the requirement in a
software problem (Jackson, [11], p. 363). The guide is intended to be used with
the so-called “context diagrams”, which are elaborated from the concepts of on-
tology O2. It suggests that the domains that must be considered in analysing
a software problem must be limited by the customer’s authority, while covering
the customer’s responsibility. But the ontology O2 does not make explicit the
concept of “Domain Responsibility”, so we find that, in practice, the guide is
difficult to be used with O2. We will return to this topic in Section 4.5.

“Problem Frames” includes some properties of the ontological concepts from
an abstract point of view (third component of the model). For example, those
concepts with an associated syntax (e.g. those in O2) have a set of abstract
properties that allow to combine instances of them, forming different graphical
models (diagrams). A sample property is that two instances of “Domain” cannot
be directly associated but they need an instance of “Interface”.

4 Predictions from the Theoretical Model

In this section we present seven predictions inferred from the theoretical model
previously introduced. We argument the validity of each obtained prediction,
thus contributing to the validation of the whole theoretical model (Section 3.2).

4.1 Ontologies may Promote Strategies

Research from Cognitive Psychology shows that individuals develop and use
strategies to solve problems, not necessarily in a conscious manner (Schaeken et
al., [19]; Van der Henst et al., [23]). We propose the following working definition:
a strategy is a particular reasoning approach towards the resolution of a problem
in a certain class of related problems. We are interested in those strategies that
can be applied not only to a particular problem instance in the class, but to all
of them or, at least, to a number of them.

In his famous problem-solving method from 1945, George Polya emphasizes
the importance of considering different aspects of the problem and combining
them to form novel perspectives, which may lead to a solution strategy: “Con-
sider your problem from various sides. Emphasize different parts, examine dif-
ferent details, examine the same details repeatedly but in different ways, combine
the details differently, approach them from different sides. Try to see some new
meaning in each detail, some new interpretation of the whole.[...]” (Polya, [16],
p. 34). Our theoretical model of methodological works agrees with this principle:
the concepts in the ontologies consider different aspects of the problems and they
allow to study these aspects together. Therefore, ontologies that capture aspects



Table 4. The two main strategies in “Problem Frames”. Note that S2 is a sub-strategy
for realizing S1. Page numbers refer to (Jackson, [11])

Ontology Strategy
O1 S1: Analyse a software problem by reducing it to a combination of

known class of problems. Design a structure for a software problem by
composing known classes of problems (pp. 59–61).

O2 S2: Ground the analysis and structure of software problems in observ-
able, physical phenomena: this will help to check whether we are really
satisfying the requirements or not (pp. 22–23).

of the problem may inspire the emerging of new strategies to address the prob-
lem. The hypothesis that considering novel aspects and combining them can lead
to new ideas is consistent with the creativity theory by the psychologist Boden
([2, 3]), who defends the association of concepts as a valid process of emerging of
new ideas. Ward et al. ([24]) refer to this process as “conceptual combination”.

According to our initial definition, a strategy may contribute only to some
respect of the overall resolution of the problem. Therefore, a number of strategies
may be necessary to constitute a complete method for a class of problems; this is
one of the reasons why the theoretical model allows several ontologies (another
reason will be explained in Section 4.5). For example, sometimes a strategy is
needed to carry out a higher-level strategy. This happens in Jackson’s Problem
Frames (see the example below).

From the preceding discussion we can conclude that it is possible to design
ontologies that motivate the invention of strategies that contribute to the res-
olution of some problem. At the moment we do not have a theory that fully
characterizes the class of ontologies that promote strategies. However, in this
section we have proven that ontologies that explore different perspectives of
problems are good candidates for promoting useful strategies.

Example: Strategies in “Problem Frames”. Table 4 show the two main
strategies proposed by the “Problem Frames” approach. The observation that
there exist classes of typical software problems (aspect A1 in Table 1) has mo-
tivated strategy S1. This strategy is quite general, and it needs at least another
one to be realized; S2 proposes a possible way of achieving S1. It has been mo-
tivated by the observation that each class of software problems has a defined
spatial structure (aspect A2).

4.2 Guides Suggest How to Carry Out Strategies Promoted by
Ontologies

The former prediction has proven that ontologies included in the theoretical
model of Section 3.1 may inspire strategies. The theoretical model also includes
guides related to the use of the ontologies. In this section we will prove that these
guides are the methodologist’s suggestions for carrying out the corresponding
strategies promoted by the ontologies.



Consider an ontology without associated guides. According to the problem-
solving approach and creativity theory exposed in the previous section, the prac-
tising engineer could still invent her own strategy while experimenting with an
ontology on a concrete problem, even in the absence of guides. However, in the
general case, it is not possible to prove the contribution of such an ontology to
the resolution of the class of problems, implying that the methodological work
could not be validated. As validation of the method is one requirement of our
model, the role of ontologies without guides is restricted to the study of some
aspect of the class of problems.

4.3 Ontologies in Methods are Reasoning Instruments

Ontologies are intended to be used by the practising engineer, together with
guides that help her to carry out the related strategies. To applying an strat-
egy means that the practising engineer must reason with the concepts in the
corresponding ontology. Guides help her in this reasoning to a certain extent,
specially those that we have called “logical schemes” in Section 3.1.

4.4 Strategies Promoted by Ontologies Apply Knowledge to the
Resolution of Problems

The ontologies of the theoretical model have two kinds of associated knowledge.
On the one hand, a portion of the study on the class of problems: the one
related to the problem aspects that the ontological concepts represent. On the
other hand, the abstract properties of the concepts. Therefore, any strategy
promoted by some ontology is based on and applies the knowledge associated to
its ontology.

4.5 A Method may Have Alternative Strategies

We have reasoned in Section 4.1 that our model allows that several strategies
coexist, each one contributing to solve some respect of the whole problem. How-
ever, the model does not impede that two strategies contribute to the resolution
of the same respect. Each one could apply a different portion of the method
knowledge, and each one could be driven by different sets of guides. If, in deal-
ing with a concrete problem, strategy A has failed in solving a subproblem or it is
not applicable to the concrete case, the practising engineer could try strategy B
for solving the same subproblem. Below we present an example of an alternative
strategy to S2.

Example: Introduction of A New Strategy in “Problem Frames”. The
different roles introduced by Jackson (aspect A4, ontology O4) denote different
responsibilities of the domains with respect to the composite system. The ful-
fillment of the responsibilities causes the appearance of an emergent behavior
(Wieringa, [25]), which may or may not be what the customer expects. The
study of responsibilities in composite systems has a long tradition in Software
Engineering (Feather, [5]). A related concept is that of Goal, which has been
proven to be a useful resource for this kind of analysis, particularly in the KAOS



Agent an active system component (or “processor”) which may have choice of behaviour
to ensure the goals it is assigned to (Feather, [5]).

And/Or Goal Reduction a mechanism for goal refinement: g is a reduction of G iff
achieving goal g possibly with other subgoals is among the alternative ways of achiev-
ing goal G (Dardenne et al, [4]).

Goal an objective to be achieved by the system under consideration (Letier and van Lam-
sweerde, [13]). “System” refers to the composite system consisting of the software-
to-be together with its environment (Fickas and Helm, [6]).

Goal Pattern classification based on the temporal behaviour required by the goal. It can
be achieve, cease, maintain, and avoid (Dardenne et al, [4]).

Responsibility Assignment assigning responsibility to an agent means that this agent
must restrict its behaviour so as to ensure the goal (Dardenne et al, [4]).

Fig. 1. Some concepts of the KAOS ontology (OG)

approach (Dardenne, Fickas, and Lamsweerde, [4]). This has encouraged us to
borrow the KAOS ontology from (Letier and Lamsweerde, [13]), and to use it to
study the class of problems addressed in (Jackson, [11]). Figure 1 defines some
of the concepts in the cited ontology, which we will denote as OG.

This study revealed that each problem frame has a defined structure in terms
of goals. For example, Figure 2 shows the goal structure of the “Information
Display Frame”. The figure describes two alternative ways of achieving the goal
Maintain[ReportingWorldInformation], which is the higher-level goal of the frame.
The left goal tree requires the collaboration of three agents: Machine, Real world,
and Display. The right goal tree does not require the Display, because the data
about the real world are represented as pure information (in a lexical domain).

The fact that each problem frame has a corresponding goal structure, mo-
tivated us for defining the following strategy, which contributes to achieve the
general strategy S1:

SG: in problem analysis, identify problem frames by looking for the goals
and responsibilities in the problem; in problem structure, design subprob-
lems by thinking about goals that must be satisfied by lower-level goals,
which will be ultimately realized by agents. For both purposes, use the
knowledge of the goal structure of problem frames.

In order to realize this strategy, we have proposed a number of guides related
with O1 and OG. Table 5 shows some of these guides. Figure 3 in Appendix
A shows an example of reasoning with OG in analysing and structuring the
“package router control problem” (p. 270 of Jackson, [11]). Note also that OG

allows a more easy application of guide G4 (Section 3.3.), as it makes explicit
the responsibilities assigned to each Domain (Agent).



Fig. 2. Goal structure for the “Information Display Frame”. The figure includes the
legend for the some concepts in OG

4.6 Methods Can be Regarded as Scientific Theories

If we recall the description of the theoretical model (Section 3.1), it contains
a study of the problems in a class. Such class is a reality, so the study can be
considered as a theory that claims that the obtained results fit such reality.

Other elements in the model are ontologies and guides. They may exist pre-
viously in another context, or they may be invented by the methodologist when
she developed the method. In any case, they constitute conceptual realities. The
model contains a study of the properties of these elements; as before, this study
can be regarded as a theory about a reality. It is necessary for proving the
correctness of the methodological work (Section 3.1).

In conclusion, the model can be interpreted as consisting of two theories:
one referred to the class of problems, and the other one referred to conceptual
elements (ontologies and guides).



Table 5. Some proposed guides for reasoning with O1 + OG to realize SG

Guides Ontologies
G6 (logical scheme): we have realized that some goal g, which appears
as assigned to the software system in the initial statement of some
problem p, corresponds to the higher-level goal in the goal structure
of a certain problem frame F . Therefore, it is unlikely that the soft-
ware system alone could operationalise g on its own. Therefore, let us
assume that our problem p fits frame F . Applying the goal structure
of F to p, we discover the remaining agents and their responsibilities
in terms of sub-goals. We verify our initial assumption by checking
that the assigned goals make sense in the context of p.

O1 + OG

G7 (logical scheme): We are in doubt about if a certain problem frame
F fits our problem p. Let us assume it fits. Applying the goal structure
of F , we obtain the relation of agents that should participate and their
responsibilities in terms of operationalisation of goals. If we find that
(1) either some goal demands more than its agent in p is able to do,
or (2) several goals demand too little from their associated agents
in p, wasting their capabilities, then we can conclude that the initial
assumption is probably false.

O1 + OG

4.7 The Study of Problems is Central to the Design of a Method

According to the model prediction of Section 4.1, the study of the class of prob-
lems under different concepts may motivate the invention of resolution strategies,
and therefore it is central to the design of methods. The study is also necessary
to prove that the methodological work is valid; this is described in the constraint
stated in the theoretical model (Section 3.1). This reason has been also pointed
out by Wieringa ([26]).

5 Conclusions and Current Work

This paper has presented a contribution to the relation between ontologies that
constitute modelling languages and an individual’s reasoning process during
problem solving in Software Engineering. Our research method has been to
make predictions from a theoretical model of methodological works. This ap-
proach has led to a number of interesting conclusions (Section 4), including
the property that ontologies may inspire solving strategies, and hence they are
essential instruments for reasoning during problem solving. In particular, this
property establishes that it is possible to design modelling languages that help
the engineer to reason in the problem solving process of software development.
However, we do not have a complete theory that characterizes the whole class
of ontologies that motivate reasoning strategies. Our current work is to advance
in this research area.



Acknowledgments. We want to thank the anonymous reviewers for their work
in reading the first version of this paper and for their useful comments. We also
want to thank Maŕıa del Carmen Serrano Jiménez for the English grammatical
revision of this work.

References

[1] Cañete, J.M., Galán, F.J., Toro, M. (2004). Some Problems of Current Modelling
Languages that Obstruct to Obtain Models as Instruments. Proceedings of the IX
Spanish Conference on Software Engineering and Databases (JISBD’2004).

[2] Boden, M. (1990) The Creative Mind: Myths & Mechanisms. Basic Books.
[3] Boden, M. (1994). What is creativity? In M. A. Boden (Ed.), Dimensions of

creativity (pp. 75-117). The MIT Press.
[4] Dardenne, A., van Lamsweerde, A., Fickas, S. (1993). Goal-Directed Requirements

Acquisition. Science of Computer Programming, 20, 3–50.
[5] Feather, M. (1987). Language Support for the Specification and Development of

Composite Systems. ACM Transactions on Programming Languages and Systems,
9:2, 198–234.

[6] Fickas, S., Helm, R. (1992). Knowledge Representation and Reasoning in the
Design of Composite Systems. IEEE Transactions on Software Engineering, 18:6,
470–482.

[7] Fraasen, B. van (1980). The Scientific Image. Clarendon Press.
[8] Giere, R. (1988). Explaining Science.A Cognitive Approach.University of Chicago

Press.
[9] Giere, R. (1997). Understanding Scientific Reasoning. Fourth Edition. Harcourt

Brace College Publishers.
[10] Gruber, T.R. (1993). A translation approach to portable ontology specifications.

Knowledge Acquisition, 5, 199–220.
[11] Jackson, M. (2001). Problem Frames. Analyzing and structuring software devel-

opment problems. Addison-Wesley.
[12] Jurisica, I., Mylopoulos, J. Yu, E. (2004). Ontologies for Knowledge Manage-

ment: An Information Systems Perspective. Knowledge and Information Systems,
6, 380–401.

[13] Letier, E., van Lamsweerde, A. (2002). Agent-Based Tactics for Goal-Oriented
Requirements Elaboration. Proceedings of the 24th International Conference on
Software Engineering (ICSE’2002). ACM Press.

[14] Morgan, M. and Morrison, M. (1999). Models as mediating instruments. Models
as Mediators. Perspectives on Natural and Social Science, pp. 10–37. Cambridge
University Press.

[15] Mylopoulos, J. (1998) Information Modeling in the Time of the Revolution. In-
formation Systems 23 (3–4), 127–155.

[16] Polya, G. (1945) How to Solve It. A New Aspect of Mathematical Method. Prince-
ton University Press.

[17] Potts, C. and Bruns, G. (1988). Recording the Reasons for Design Decisions.
Proceedings of the 10th International Conference on Software Engineering, pp.
418–427.

[18] Ramesh, B. and Dhar, V. (1992) Supporting Systems Development by Capturing
Deliberations During Requirements Engineering. IEEE Transactions on Software
Engineering, 18(6), 498–510.



[19] Schaeken, W., De Vooght, G., Vandierendonck, A., d’Ydewalle, G. (2000). Deduc-
tive reasoning and strategies. Lawrence Erlbaum Associates.

[20] Suppe, F. (1977). The Structure of Scientific Theories. University of Illinois Press.
[21] Suppes, P. (1961). A Comparison of the Meanaing and Use of Models in the

Mathematical and Empirical Sciences. The Concept and Role of the Model in
Mathematics and Natural and Social Sciences, pp. 163–167. Reidel.

[22] Suppes, P. (1967). What is a Scientific Theory? Philosophy of Science Today, pp.
55–67. Basic Books.

[23] Van der Henst, J.B., Yang, Y., Johnson-Laird, P.N. (2002). Strategies in sentential
reasoning. Cognitive Science, 26, 425–468.

[24] Ward, T. B., Finke, R. A., Smith, S. M. (1995). Creativity and the mind: Discov-
ering the genius within. Plenum Press.

[25] Wieringa, R. (2003). Design Methods for Reactive Systems: Yourdon, Statemate
and the UML. Morgan Kaufmann.

[26] Wieringa, R. (2004). Requirements engineering research is the study of design. In-
ternal report. Department of Computer Science, University of Twente, the Nether-
lands.

A An Example of Reasoning with Ontologies

We show a simple example of reasoning with ontologies O1 and OG. The aim
is to analyse and structure the “package router control problem”, which also
solved in pp. 270–291 of (Jackson, [11]) with strategies S1 and S2. The following
problem statement has been extracted from page 270 of the same reference:

A package router is a large mechanical device used by postal and delivery organi-
sations to sort packages into bins according to their destinations. The packages carry
bar-coded labels. They move along a conveyor to a reading station where their package-
ids and destinations are read. They then slide by gravity down pipes fitted with sensors
at top and bottom. The pipes are connected by two-position switches that the computer
can flip (where no package is present between the incoming and outgoing pipes). At the
leaves of the tree of pipes are destination bins, corresponding to the bar-coded destina-
tions. A package cannot overtake another either in a pipe or a switch. Also, the pipes
are bent near the sensors so that the sensors are guaranteed to detect each package sep-
arately. However, packages slide at unpredictable speeds, and may get too close together
to allow a switch to be set correctly. A misrouted package may be routed to any bin, an
appropriate message being displayed. There are control buttons by which an operator
can command the controlling computer to stop and start the conveyor.

The problem is to build the controlling computer to obey the operator’s commands,
to route packages to their destination bins by setting the switches appropriately, and to
report misrouted packages.

Thinking in terms of OG, we can identify three goals from the problem state-
ment, which appear as assigned to the software system (box 1 in Figure 3).
Reasoning with the knowledge from guide G6, we conclude that the goal Report
misrouted packages may be the high-level goal of an Information Display Frame.
Hence, it is unlikely that the Machine could operationalise this goal only by
itself. Box 2 in Figure 3 shows the identified frame, which is an instance of the
Information Display Frame concept in O1. Next, according to the suggestion of



G2, we realize that the Reliability Concern is important for this problem: the
assumptions about the packages may likely fail, and this would bring undesir-
able consequences for the composite system (we cannot trust in agent Router &
packages to satisfy its goal). Following guide G5, we introduce a new Information
Display frame that audits these possible failures (box 3 in Figure 3).

Fig. 3. A simple example of reasoning with O1 and OG


	Introduction
	Scientific Theories, Models, Hypotheses, and Ontologies
	A Theoretical Model of Methodological Works
	Description of the Model
	Validation of the Theoretical Model
	Example: Modelling the ``Problem Frames" Methodological Work

	Predictions from the Theoretical Model
	Ontologies may Promote Strategies
	Guides Suggest How to Carry Out Strategies Promoted by Ontologies
	Ontologies in Methods are Reasoning Instruments
	Strategies Promoted by Ontologies Apply Knowledge to the Resolution of Problems
	A Method may Have Alternative Strategies
	Methods Can be Regarded as Scientific Theories
	The Study of Problems is Central to the Design of a Method

	Conclusions and Current Work
	An Example of Reasoning with Ontologies



