
 Hybrid business process modeling for the optimization of outcome data

 Luisa Parody∗, María Teresa Gómez-López, Rafael M. Gasca

 Department of Languages and Computer Systems, University of Seville, Spain

Keywords:

Hybrid model

Business process

Constraint programming

Data optimization

a b s t r a c t

Context: Declarative business processes are commonly used to describe permitted and prohibited actions in

a business process. However, most current proposals of declarative languages fail in three aspects: (1) they

tend to be oriented only towards the execution order of the activities; (2) the optimization is oriented only

towards the minimization of the execution time or the resources used in the business process; and (3) there

is an absence of capacity of execution of declarative models in commercial Business Process Management

Systems.

Objective: This contribution aims at taking into account these three aspects, by means of: (1) the formalization

of a hybrid model oriented towards obtaining the outcome data optimization by combining a data-oriented

declarative specification and a control-flow-oriented imperative specification; and (2) the automatic creation

from this hybrid model to an imperative model that is executable in a standard Business Process Management

System.

Method: An approach, based on the definition of a hybrid business process, which uses a constraint program-

ming paradigm, is presented. This approach enables the optimized outcome data to be obtained at runtime

for the various instances.

Results: A language capable of defining a hybrid model is provided, and applied to a case study. Likewise, the

automatic creation of an executable constraint satisfaction problem is addressed, whose resolution allows us

to attain the optimized outcome data. A brief computational study is also shown.

Conclusion: A hybrid business process is defined for the specification of the relationships between declarative

data and control-flow imperative components of a business process. In addition, the way in which this hybrid

model automatically creates an entirely imperative model at design time is also defined. The resulting imper-

ative model, executable in any commercial Business Process Management System, can obtain, at execution

time, the optimized outcome data of the process.

s

p

d

n

e

[

m

t

i

m

t

k

1. Introduction

A business process, henceforth referred to as BP, consists of a set

of activities that are executed in coordination within an

organizational and technical environment. These activities jointly

attain a business goal [73]. Several languages propose an imperative

representation of business processes. An imperative specification

allows business ex-perts to describe an explicit order of execution

between activities, and to transform the process into an executable

model [1]. Therefore, an imperative description defines exactly how

the activities have to be performed, and how the data-flow should be
handled (for exam-ple, that activities A, B, and C are executed
sequentially, or activities D and E are executed in parallel). However,
the knowledge about the

a

t

o

p

ystems can sometimes be described by means of the things that are

ermitted or prohibited.

Declarative descriptions enable specification of what has to be

one, instead of how it has to be done (for example, activity A can-

ot be executed before activity B ends). Although imperative mod-

ls are significantly more understandable than declarative models

14,15,54], declarative specifications can complement an imperative

odel when an imperative description cannot be performed. This is

he reason why se veral authors have proposed languages for the def-

nition of BPs as declarative models [33,43,51,60,63]. In addition, this

odeling can be used when the BP cannot always be defined prior

o execution time. Indeed, imperative models should be completely

nown and specified at design time, since they explicitly represent

ll the allowed sequences of activities. On the other hand, declara-

ive models describe which orders of activities are permitted in an

pen world assumption (everything that is not explicitly specified is

ermitted); for example, if activity A is executed, then activity B has

http://dx.doi.org/10.1016/j.infsof.2015.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.10.007&domain=pdf
mailto:lparody@us.es
mailto:maytegomez@us.es
mailto:gasca@us.es
http://dx.doi.org/10.1016/j.infsof.2015.10.007

t

b

“

t

d

m

c

i

d

b

s

g

t

s

s

l

r

p

t

u

t

s

t

t

o

m

o

T

o

c

o

i

O

m

t

d

t

t

p

w

U

(

w

p

t

d

1

p

p

j

(

T

a

i

o

f

s

c

e

i

a

n

p

v

t

p

t

c

p

p

p

t

i

t

p

w

h

o

t

t

c

i

o

p

a

1

d

t

t

i

t

b

a

P

s

o be executed afterwards, and, as long as this rule is satisfied, any

ehavior is allowed. In this way, at design time, the BP can remain

underspecified”.

Unfortunately, there remain three main aspects of these declara-

ive languages that need major improvement: (i) the capacity of the

ata-oriented description; (ii) the management of the data that opti-

izes the outcome data of each instance at runtime; and (iii) the ne-

essity to make the declarative models executable and integrate them

nto a Business Process Management System. Each of these aspects is

etailed below:

(i) Data-oriented in declarative models: There is a significant num-

er of papers that detect the necessity to include the data relation-

hips description into the BP model. Although certain imperative lan-

uages, such as BPMN 2.0 [48], have included components to describe

he data exchange during the execution of the process, new exten-

ions have been proposed because the standard has insufficient de-

criptive capacity, such as in [23,41,42]. The role of data in declarative

anguages has been oriented to describe how the values of the data at

untime can affect to the activities execution order [4,32,36]. In this

aper, the objective at runtime is to ascertain the values of the data

o optimize the product obtained from the BP.

(ii) Outcome optimization: Since the declarative models provide an

nderspecified definition of business process requirements at design

ime, the activities can be executed in different orders at runtime, but

till in accordance with these requirements. Due to this fact, declara-

ive models are typically joined to optimization problems. In general,

his optimization is oriented towards minimizing the execution time,

r reducing the resources used in the BP [26], but not to the opti-

ization of the outcome data of each instance. One of the definitions

f BP is “a series of steps designed to produce a product or service” [58].

herefore, the optimization of the process to obtain the product, or to

btain a better product, is the reason why a company becomes more

ompetitive than others. Therefore, the objective of a company can be

riented towards decreasing the cost of development time, or obtain-

ng the best product on the market in order to be more competitive.

ur proposal is focused on this latter group, specifically, in the opti-

ization of the outcome data by mean of supporting customers about

he best input data for each instance.

(iii) Executable declarative models: Declarative languages enable a

escription of the temporal order of the activities to be written, and

he necessary resources to perform them. However, although several

ools are available to execute declarative descriptions, none of them

rovides anything more than guidelines or recommendations about

hich activity should be executed at a specific point of an instance.

nfortunately, there are no Business Process Management Systems

BPMS) available for the execution of declarative models in the same

ay as there are for imperative models. For example, they do not sup-

ort users in choosing the best input data for each instance, in order

o optimize the outcome data of the process. Therefore, declarative

escription are not used in the daily work of companies.

.1. Detailing a case study: trip planner

In order to understand the weakness of the existing declarative

roposals (see Section 5), we introduce an example related to a trip

lanner. Our proposal can be applied to any example where the ob-

ective of a BP is to obtain the data corresponding to the best product

outcome data of the process) based on the customer requirements.

he difficulty is that each customer can have different requirements,

nd the same BP model needs to satisfy the necessities, being flexible

n this aspect. The example pertains to a trip planner process, based

n that presented in [49] and [50]. The process describes the activities

or the booking of flights, reservation of a hotel room, and, if neces-

ary, the renting of a car. In order to minimize the price, the customer

an choose among different dates, or can change the airport by trav-

ling to a nearby city with a rented car. For this process, the model
s introduced, thereby making it possible to execute the activities in

parallel manner. The problem now is to determine the best combi-

ation of data input for the activities in order to minimize the total

rice.

In order to create a workflow process where the activities are in-

olved, the business process shown in Fig. 1 can be modeled with

he standard Business Process Model and Notation (BPMN) [48]. The

rocess starts with (i) the travel reservation request; follows with (ii)

he searching of flights, hotel rooms, and rental car that compose the

heapest travel package that fits customer preferences; (iii) the travel

ackage is offered to the customer; and finally, (iv) the customer, de-

ending on his/her preferences, either formalizes the proposed travel

ackage or cancels it. The problem in this model lies in part (ii), where

he search for each component of the trip is performed. This search is

n accordance with the availability and the customer requirements:

he place to visit, the possible dates, the price, etc.

It is possible to combine the activities that represent the three

roviders (Hotel, Flight, and Car Rental Provider) into a single BP,

here the activities are executed in parallel. The question becomes

ow to determine that the best trip is found (the business product

btained as data output), and which BP model minimizes a value de-

ermined by a function in accordance with the outcome data (the to-

al price in this example). Unfortunately, the trip planner problem

annot be modeled using the languages found in the literature, since

t is not possible to describe: (i) the unknown input values of the data

f the activities; (ii) the objective function according to the data out-

ut of the activities; and (iii) how the input values in an activity can

ffect other activities.

.2. Our proposal

In order to solve the aforementioned limitations, the input data

ependencies are dealt with by means of a data-oriented optimiza-

ion problem. The proposal consists of two parts:

(i) Formalization of a hybrid model to represent the outcome

data optimization: The Data-Oriented OPTimization DEClara-

tive language, called DOOPT-DEC, is introduced to formalize a

model that includes the process requirements referring to the

data description in a declarative way. This description can be

included in an imperative model that represents the control-

flow requirements. More specifically, these requirements are

necessary when the input data of each activity is unknown at

design time, and need to be described in a declarative way to

be discovered for each instance at runtime. In this paper, a new

point of view of declarative languages focused on data is pre-

sented.

(ii) Creation of an imperative model from a declarative descrip-

tion: Imperative specification implies “saying how to do some-

thing”, whereas declarative specification supposes “saying

what is required and letting the system determine how to

achieve it”. The proposal in this paper is focused on building

an imperative model which obtains the best combination of

data from the activities so that the optimal outcome data is

attained, while maintaining the capacities of the declarative

description thanks to the use of Constraint Programming in a

BPMS.

The remainder of the paper is organized as follows: Section 2 in-

roduces the proposed declarative language with data aspects for use

n the hybrid model. The possible models that can be created are de-

ailed in Section 3. In addition, Section 3 also explains how this hy-

rid model can be transformed into an imperative computable model,

nd how the optimization problem can be solved using the Constraint

rogramming paradigm. Section 4 includes a brief computational and

tatistical study of our proposal. Section 5 includes certain related

24hours

Cancel Request

Customer make
Selection

Notify
Customer to
Start Again

Update
Customer
Record

(Request
Cancelled) Request

Cancelled

Request Credit
Card Information
from Customer

24 hours

Receive Customer
Flight, Hotel Room and
Car Rental Reservation

Request

Package Flights,
Hotel Rooms and

Car Rental for
Customer Review

Pay and Book

Booking
Successfully
Completed

+

Search Flights
based on
Customer
Request

Search Hotel
Rooms based
on Customer

Request

Evaluate
Flights within

Customer
Criteria

Evaluate Hotel
Rooms within

Customer
Criteria

Search Rental
Car based

on Customer
Request

Evaluate Rental
Car within
Customer
Criteria

(i) (ii) (iii) (iv)

Travel Search
Sub-Process +

Present Flights,
Hotel Rooms and

Car Rental
Alternatives to

Customer

Fig. 1. Example of trip planner [49].

...
PDI1, …, PDIn

PDI

PDO1, …, PDOm

PDO

A

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

B

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

C1, …, Cn

ID

C1, …, Cn

ID

f: v

ADI ADO

Fig. 2. Subprocess components.

D

A

i

e

a

a

D

t

p

∀

i

D

D

a

A

A

o

t

D

v

v

P

D

p

a

2

d

s

l

d

D

work and its comparison with our proposal. Finally, conclusions are

drawn and future work is proposed in Section 6.

2. Formalization of the data-oriented optimization business

process languages

In this section, the model is formalized and a language with graph-

ical notation, called DOOPT-DEC, is provided to facilitate the descrip-

tion of the data-oriented optimization declarative models. The pur-

pose of the DOOPT-DEC language is to enrich the imperative model

by adding the declarative description of the relationships between

data. Therefore, the division of the formalization is aligned to the re-

lation between the imperative part of the model (subprocess descrip-

tion) and the declarative specification (subprocess relationships), as

shown in Fig. 2. Using this hybrid description, another model exclu-

sively imperative is created by including a constraint programming

task to determine at runtime the most appropriate data input to op-

timize the outcome of the process.

In order to introduce the formalization of the data provided and

combined (see Fig. 2), the different descriptions to include are di-

vided into: (i) subprocess description, including the descriptions of

the components associated with the activities of the imperative part,

detailed in Section 2.1; and (ii) subprocess relationships, which is the

declarative description of the relationships between the components

through the data-flow (DF), addressed in Section 2.2.

2.1. Subprocess description

The subprocess description includes the components associated

with the activities, gateways, and control-flow which are known and

can be represented in an imperative way. Taking A as the finite set

of activities {A1, . . . , Ai, . . . , An} contained in a determined BP, the

following definitions are introduced.
efinition 2.1. ACTIVITIES_DATA_INPUT (ADI) and

CTIVITIES_DATA_OUTPUT (ADO) represent the sets contain-

ng, respectively, all the data input and data output involved in the

xecution of all the activities.

Within the set ADI (ADO), containing all the input (output) vari-

bles, it is possible to identify the input (output) variables of each

ctivity, defined as follows.

efinition 2.2. DATA_INPUT(Ai) and DATA_OUTPUT(Ai) describe

he set of data input and output of an activity Ai involved in the sub-

rocess, respectively, so that

Ai, DATA_INPUT(Ai) ⊆ ADI, where ADI ⊂ DF.

And,∀Ai, DATA_OUTPUT(Ai) ⊆ ADO, where ADO ⊂ DF.

Since various activities can share the same data input (or output),

t is also possible that:

ATA_INPUT(Ai) ∩ DATA_INPUT(Aj) �= ∅, for i �= j.

And, DATA_OUTPUT(Ai) ∩ DATA_OUTPUT(Aj) �= ∅, for i �= j.

The unions of all the DATA_INPUT sets and all the

ATA_OUTPUT sets of all the activities, constitute the sets ADI

nd ADO respectively, with non-repetitive elements.

DI = {DATA_INPUT(A1) ∪ . . . ∪ DATA_INPUT(An)}
DO = {DATA_OUTPUT(A1) ∪ . . . ∪ DATA_OUTPUT(An)}

Likewise, the specific variables that are inputs or outputs of the

verall subprocess can be distinguished. They represent the informa-

ion that flows from the customer to the subprocess and vice versa:

efinition 2.3. PROCESS_DATA_INPUT (PDI) is the set of input

ariables of the subprocess, which determines the information pro-

ided and defined by the customer. PDI is composed of a subset of

variables of ADI.

DI ⊆ ADI

efinition 2.4. PROCESS_DATA_OUTPUT (PDO) is the set of out-

ut variables of the subprocess. PDO is composed of a subset of vari-

bles of ADO.

.2. Subprocess relationships

There exist different relationships between the data inputs and

ata outputs defined in the subprocess description. Those relation-

hips are expressed as constraints, both at activity and at process

evel, giving rise to the subprocess relationships, with the following

efinitions:

efinition 2.5. PRE(Ai) is the set of constraints that limits the spe-

cific values of the DATA_INPUT(Ai) that must be satisfied to execute

activity A . Likewise, POST(A) is the set of constraints that limits the
i i

s

t

D

l

D

l

t

s

D

m

(

o

p

O

s

a

r

b

s

a

w

i

s

w

2

t

t

s

a

a

C

m

c

c

a

i

Fig. 3. DOOPT-DEC Graphical Components.

i

p

i

i

o

.

a

t

t

i

c

A

p

a

w

o

F

2

s

t

t

e

T

pecific values of the DATA_OUTPUT(Ai) that must be satisfied after

he execution of activity Ai.

efinition 2.6. INPUT_CONSTRAINT (OUTPUT_CONSTRAINT) re-

ates the values of variables of PDI (PDO) with variables of

ATA_INPUT (DATA_OUTPUT) of each activity. These constraints

imit the possible value that the DATA_INPUT (DATA_OUTPUT) can

ake according to the PDI (PDO) values in each instance, and the pos-

ible values between the input and output of the activities.

efinition 2.7. OBJECTIVE_FUNCTION (OBJ_FUNC), is an opti-

ization function defined in terms of the data output of the activities

ADO).

The objective of this optimization function is either to maximize

r to minimize some of the output data that represent the business

roduct, which constitutes the outcome of the process.

BJ_FUNC : f (v ⊆ ADO) → value, where f is MAXor MIN

The result of this optimization problem is a set of input values that

atisfies the optimization function, the pre and post-conditions of the

ctivities, and also satisfies the input and output constraints.

The set of input values that optimizes the output is found at

untime. The role of the constraints is to determine the possi-

le values that this input and output data can take. All the con-

traints (INPUT_CONSTRAINTS, OUTPUT_CONS− TRAINTS, PRE

nd POST) are always defined at design time by a business expert

ho is familiar with the problem, although they are solved for each

nstance at runtime. Among every possible tuples of solutions that

atisfy the constraints, the outcome of the subprocess will be the one

hich optimizes the variable defined in the optimization function.

.3. Grammar and graphical notation

The formalization presented above, used as a data-oriented op-

imization process, includes: the data of the process, the data of

he activities, the objective function, and the constraints. These con-

traints are defined by the following grammar, where Variable
nd Constant, can be defined in the Integer, Natural, Float, Dates,

nd String domains. On the other hand, Set is defined as a set of

onstant values of a specific Variable.

Constraint := Atomic_Constraint BOOL_OP
Constraint

| Atomic_Constraint
| ‘¬’ Constraint
| Variable SET_FUNCTION Set
BOOL_OP := ‘∨’ | ’∧’ | ‘ → ’
SET_FUNCTION := ‘ ∈ ’ | ‘ �∈’
Atomic_Constraint := function PREDICATE

function
function := Variable FUNCTION_SYMBOL function
| Variable
| Constant
PREDICATE := ‘=’ | ‘ �= ’ | ‘ < ’ | ‘ ≤ ’ | ‘ > ’ | ‘ ≥ ’
{For the String domain only ‘=’ and ‘ �= ’

are allowed}
FUNCTION_SYMBOL := ‘+’ | ‘−’ | ‘∗’ | ‘/’
{These operators are only applicable to

Numerical variables}

A graphical notation, called DOOPT-DEC (Data-Oriented OPTi-

ization DEClarative language), is defined in order to include these

omponents into a BP model easily.

DOOPT-DEC enables an imperative description focused on the

ontrol-flow perspective, using BPMN, to be combined with a declar-

tive description of the data perspective of the subprocess. The exist-

ng BPMN components are combined with the new data components
n order to support the specification of data-oriented optimization

rocesses. More specifically, in order to define each activity, the def-

nition and notation given by the standard BPMN are followed. This

mplies that the activities participating in the optimization could be

f any of the types described by the BPMN (script, manual, service,

..), and could also include any of the markers (sub-process, loop, par-

llel,...). On the other hand, the data objects defined in the formaliza-

ion (ADI, ADO, PDI, and PDO) also follow the definition and nota-

ion given by BPMN. The DOOPT-DEC notation is incremented only

n terms of the information carried by the arrows, which now in-

lude the name of the type of input and output data (ADI/PDI, and

DO/PDO). Therefore, DOOPT-DEC introduces the new data com-

onents related to the constraints (pre- and post-conditions, input

nd output constraints, and the objective function), whose definitions

ere previously limited through the grammar. All these components

f the model are graphically represented by the symbols shown in

ig. 3.

.4. Specification applied to the trip planner

In this section, the formalization is applied to the Travel Search

ubprocess presented in Section 1.1, in order to find the cheapest

ravel package that fits customer preferences.

In the example, there are nine PDIs whose values are provided by

he customer as input data:

• departingFrom: city from where the customer departs.
• setDepartingFrom: set of possible departure cities where the

flight can be taken.
• goingTo: destination city.
• setGoingTo: the set of possible arrival cities for the flight, contain-

ing the destination city itself and/or cities from where the desti-

nation city can be reached by using a rental car.
• earlyDepartDate and lateDepartDate: the earliest and last day

when the customer prefers to depart, respectively.
• earlyReturnDate and lateReturnDate: the earliest and last day

when the customer prefers to return, respectively.
• hotelPreferences: some preferences related to the hotel (single

or double room, star-rated, etc.).

Given a data input (that is, specific values for the aforementioned

ight PDIs), each activity calculates the price of its sought product.

he activities and their ADI are detailed below.

• Flight Search Activity (AF) returns the price of flight for a tuple of

values for the data input. Fig. 4 shows the components related to

the Flight Search Activity represented with DOOPT-DEC.

DATA_INPUT (AF) = {departingFrom, goingTo, departDate,

returnDate}
DATA_OUTPUT (AF) = {priceFlight, flightInformation} where

f lightIn f ormation = {outwardArrivalDate, returnArrivalDate,

seat, ...}
Certain existing pre and post-conditions include:

Fig. 4. Flight Search Activity specified with DOOPT-DEC.

t

t

a

O

s

3

p

s

u

a

t

t

PRE (AF) = {departDate ≥ systemDate1 ∧ returnDate ≥ departDate

∧ departingFrom �= goingTo}

POST (AF) = {flightInformation �= null → priceFlight > 0}
• Hotel Search Activity (AH) is used to determine the cost of booking

a hotel room. DATA_INPUT(AH) = {location, checkInDate, check-

OutDate, preferences}

DATA_OUTPUT (AH) = {priceHotel, hotelInformation}

Certain existing pre and post-conditions include:

PRE (AH) = {checkInDate ≥ systemDate ∧ checkInDate < checkOut-

Date}

POST (AH) = {hotelInformation �= null → priceHotel > 0}
• Car Rental Search Activities (ACR1 and ACR2) are used to determine

the price of renting a car. Two cars can be rented during the trip,

one at the source (ACR1), and another at the destination (ACR2).

Nevertheless, the price for renting both cars is represented by

ACRx, where x can take the values 1 or 2, and depends on these

entries:

DATA_INPUT (ACRx) = {departingFrom, goingTo, departDate, re-

turnDate}

DATA_OUTPUT (ACRx) = {priceCarRx, carRxInformation}

Certain existing pre and post-conditions include:

PRE (ACRx) = {departDate ≥ systemDate ∧ departDate < returnDate}

POST (ACRx) = {carRxInformation �= null → priceCarRx > 0}

In this case, the outputs of the process (PDO) are the outputs of the

activities, which contain the information about the elements com-

posing the trip, as well as the total price of the trip (price).

Therefore, the customer only provides data to the subprocess: the

set of dates/cities, and some preferences related to the hotel. Then,

each search activity only uses the necessary data, as detailed in its

specification, for the searching. On the one hand, the subprocess can

have input data that is not used by some search activity: for example,

the Flight Search Activity takes the possible dates and cities given by

the customer to the subprocess, meanwhile, the Hotel Search Activity

takes the possible dates, the destination city and the preferences. On

the other hand, the subprocess can have input data that is not used in

the same way by the activities: for example, the input data related to

the departure date in the subprocess is a set of values, while is a sin-

gle value in case of the Flight Search Activity. In both cases, the con-

straints between the input data of the subprocess and the activities

are specified as INPUT_CONSTRAINTS at design time. In the same

way, the subprocess returns different data with respect to those re-

turned by the activities, and it is necessary to define, at design time,

how these data are calculated and related with the output data of the

activities. Therefore, the OUTPUT_CONSTRAINTS define these rela-

tionships between these output data of the activities and the data

returned by the subprocess to the customer.

Although in the experimentation evaluation all the constraints

have been included, only the most representative constraints have

been formulated in this section. Regarding the relationships be-

tween the data input and output that belong to the subprocess and

the activities, the most representatives INPUT_CONSTRAINTS and

OUTPUT_CONSTRAINTS are detailed below:
1 The variable systemDate corresponds to the date and time zone in which the cus-

tomer is located when requesting the search.

a

t

a

i

• INPUT_CONSTRAINTS:

− From the input data introduced by the customer, the possible

values of the departure date (IC1) and return date (IC2) of the

flights are obtained, satisfying the following constraints:

(IC1) earlyDepartDate ≤ AF.departDate ≤ lateDepartDate

(IC2) earlyReturnDate ≤ AF.returnDate ≤ lateReturnDate

− The constraints that describe the possible values of the depar-

ture airport (IC3) and arrival airport (IC4) of the flight have to

satisfy the possibilities of the input data proposed by the cus-

tomer.

(IC3) AF.departingFrom ∈ setDepartingFrom

(IC4) AF.goingTo ∈ setGoingTo

− The date of check-in into the hotel has to match with the ar-

rival date of the outward flight (IC5).

(IC5) AH .checkInDate = AF .outwardArrivalDate

− The date of check-out has to match with the return date of the

flight (IC6).

(IC6) AH .checkOutDate = AF .returnDate

− If the flight does not depart from the departure location (IC7),

then the rental of a car (CR1) is necessary.

(IC7) departingFrom �= AF .departingFrom → { ACR1.

departingFrom = departingFrom ∧ ACR1.goingTo =
AF .departingFrom ∧ ACR1.departDate = AF .departDate ∧
ACR1.returnDate = AF .returnArrivalDate}

− If the flight arrives at the destination city (IC8), then it is not

necessary to rent a car.

(IC8) goingTo = AF .goingTo → AF .goingTo = AH .location

− If the flight does not arrive at the destination city (IC9), then

the rental of a car (CR2) is necessary.

(IC9) goingTo �= AF .goingTo → { ACR2.departingFrom =
AF .goingTo ∧ ACR2.goingTo = goingTo ∧ ACR2.departDate =
AF .outwardArrivalDate ∧ ACR2.returnDate = AF .returnDate}

• OUTPUT_CONSTRAINTS:

− The total price of the trip is the sum of all the prices returned

by the activities, as presented in constraint (OC1).

(OC1) totalPrice = priceFlight + priceHotel + priceCarR1 +
priceCarR2

In this example, the optimization involves the minimization of the

otal price of the trip, which is composed of the cost of buying flight

ickets, staying in a hotel room, and renting cars for the departure and

rrival cities.

BJ_FUNC : (MIN, totalPrice)

All these components of the Travel Search subprocess are repre-

ented in Fig. 5.

. Data-oriented optimization model approaches

Previous sections present how to formalize the data optimization

roblem through the use of a special hybrid model. In addition, the

aim of our proposal is also to reach a computable solution usable by

the companies. It implies the possibility to deploy the hybrid model

in a commercial BPMS, therefore it should be totally described using

an imperative model. To build this imperative model, it is necessary

to analyze the relation between the PDI, PDO, DI, DO, all the con-

traints and the optimization function.

One of the aspects to analyze in deep is how the possible val-

es for the ADO and PDO can be obtained for each possible ADI

nd PDI combination (with or without executing the activities). For

he Travel Search subprocess, the objective function is to minimize

he totalPrice, which, a priori, can only be known when the activities

re executed at runtime and the values for the priceFlight, priceHo-

el, priceCarR1, and priceCarR2 are calculated. However, it would be

lso possible to know the output values of the activities using the

nput values and the pre and post-conditions. For example, if the

Fig. 5. Example of trip planner described using DOOPT-DEC.

a, b

DI

c
DO

White-Box
Activity

<<Pre>> c = a + b
<<Post>>

Fig. 6. White-box Model Example.

p

p

a

u

i

o

s

i

a

e

p

t

p

c

a, b
DI

c
DO

Black-Box
Activity

<<Pre>>

c>0

<<Post>>

Fig. 7. Black-box Model Example.

c

t

t

riceHotel can be calculated by means of a function described in a

ost-condition (i.e. priceHotel = (checkOutDate − checkInDate) ∗ 50),

nd the same occurs with the rest of the prices. In these cases, it is

nnecessary to execute the activities to calculate the totalPrice. This

mplies the possibility of finding the best input data to optimize the

utcome including every constraints in a COP (see Section 3.1), and

olving it in a local manner. By avoiding the execution of the activ-

ties, the complexity and the way in which the problem is solved in

n imperative model is reduced and simplified. If it is not possible,

very possible ADI combination must be generated and used as in-

ut data of the activities to obtain the outputs. Therefore, regarding

he knowledge about the behavior of the activities described by the

re and post-conditions, two different imperative models could be

reated:

• White-box model: This is used when the subprocess is formed by

white-box activities, which entails that the output values of the

variables can be obtained in terms of the input values and the

pre- and post-conditions, and it is unnecessary to execute an ac-

tivity to ascertain its output, as shown in Fig. 6. In this case, the
optimization problem can be modeled and solved in a local man-

ner, since the execution of the activities is unnecessary.
• Black-box model: This is used when the problem is formed by

black-box activities, which entails that, given a set of input val-

ues, the pre and post-conditions of the activities are insufficient

to ascertain the output values, as shown in Fig. 7. In this case, it

is necessary to execute the activities to obtain the specific values

for the data output, since the model is unknown by the BP itself

until the execution. However, the creation of all the possible com-

binations of values for the data input can be modeled and solved

locally. Using these combinations of input data values in the ex-

ecution of the activities, it is possible to obtain the output data

used in the objective function that optimize the outcome of the

process.

The black-box approach is faced in [50], where an executable ar-

hitecture is presented to solve the combination and execution of ac-

ivities for the optimization of the objective function. Therefore, in

his paper, we focus on solving only the white-box approach.

R

C

d

t

t

t

e

c

t

o

i

b

C

e

p

c

a

l

d

o

a

d

t

o

s

a

m

t

p

B

t

e

m

s

t

i

t

3

i

w

W

S

a

c

S

s

f

F

g

i

w

o

2 The code of the resulting COP is available at http://www.lsi.us.es/quivir/index.php/

Main/WhiteBox. This COP must be included as a script task in a Bonita Open SolutionTM

project using the COP script connector, and the Choco solver Choco web-site.
3.1. Background in constraint satisfaction problem

A Constraint Satisfaction Problem (CSP) represents a reasoning

framework consisting of variables, domains, and constraints. For-

mally, it is defined as a tuple 〈X, D, C〉, where X = {x1, x2, . . . , xn}

is a finite set of variables, D = {d(x1), d(x2), . . . , d(xn)} is a set of do-

mains of the values of the variables, and C = {C1, C2, . . . , Cm} is a set

of constraints. Each constraint Ci is defined as a relation R on a subset

of variables V = {xi, xj, . . . , xl}, called the constraint scope. The relation

may be represented as a subset of the Cartesian product {d(xi) ×
d(xj) × . . . × d(xl)}. A constraint Ci = (Vi, Ri) simultaneously specifies

the possible values of the variables in V in order to satisfy R. Let Vk =
{xk1

, xk2
, . . . , xkl

} be a subset of X, and an l-tuple (xk1
, xk2

, . . . , xkl
)

from {d(xk1
), d(xk2

), . . . , d(xkl
)} an instantiation of the variables in Vk,

then an instantiation is a solution if and only if, it satisfies all the con-

straints C. If an objective function O, is included in a CSP, it is called a

onstraint Optimization Problem (COP), defined as a tuple 〈X, D, C, O〉.

A COP is the process of optimizing an objective function with respect

to some variables in the presence of constraints on those variables.

The objective function implies maximizing or minimizing a variable

that can represent a numerical combination of others by means of a

function. The details of how the COP is created are explained below.

In order to solve a COP, a combination of search and consistency

techniques is commonly used [10]. The consistency techniques re-

move inconsistent values from the domains of the variables during

or before the search. During the search, a propagation process is ex-

ecuted which analyzes the combination of values of variables where

the constraints are satisfiable and where the values that cannot im-

prove the best solution found until the moment are eliminated. Sev-

eral local consistency and optimization techniques have been pro-

posed as ways of improving the efficiency of search algorithms [71].

3.2. How to obtain an imperative business process model from a

white-box specification

In order to create and solve an entirely imperative model using the

efinitions in Section 2, this contribution proposes to introduce in the

model a COP with the constraints, data, and the objective function.

The focus is placed on how a COP can be automatically built. Although

the creation of the COP is performed only once at design time, the

resolution of the COP occurs for each instance at runtime, to obtain

the optimized outcome in function of the customer requirements.

The use of Constraint Programming enables the combination of

the variables to represent the model and ascertain those values of

the output data that optimize the objective function. We propose that

this COP can be set-up as a script activity (as shown in Fig. 8) within

an executable model to manage the possible values of the input data

variables of the activities.

Firstly, it is necessary to highlight that the specification of the COP

is very similar to the formalized DOOPT-DEC model, since both are

declarative models that define the problem but not how to solve it.

The advantage of using a COP is that it is not only a way to represent

the problem, but it also provides a way to find a solution through

a constraint solver (Choco Solver [7] in our case), and, at execution

time, to find the concrete values that optimize the defined function. In

order to design a model that involves all the variables and constraints

that describe the data-oriented optimization process, the following

COP structure is proposed:

• X: DF, which includes the variables corresponding to each

item of the data belonging to PDI, PDO, DATA_INPUT(A1), . . . ,

DATA_INPUT(An), DATA_OUTPUT(A1), . . . , DATA_OUTPUT(An).
• D: Domain depending on the DF variables. The values of the do-

main depend on each instance of the BP.
• C: PRE(A1) ∧ POST(A1) ∧ . . . ∧ PRE(An) ∧ POST(An) ∧
INPUT_CONSTRAINTS ∧ OUTPUT_CONSTRAINTS ∧ {Instanti-

ation of the PDI with the values of the specific instance}
• O: OBJECTIVE_FUNCTION

The automatic creation of the COP from the subprocess descrip-

ion and subprocess relationships is carried out using a model-to-text

ransformation. In our case, Epsilon [16] has been used. Among other

hings, Epsilon provides a family of languages and tools for code gen-

ration and model-to-model transformation. The automatic creation

onsists of going over each element of the DOOPT-DEC language and

ransforming it into the corresponding text in the COP. With the aim

f being independent of the technology used, DOOPT-DEC language

s proposed, and then, to allow its execution, this language should

e translated into the specific language used by any of the existing

SP solver. This translation is always straightforward and easy. Firstly,

ach element of the DOOPT-DEC language has been detailed in this

aper, and the specific elements of the COP depends on the CSP solver

hosen. Secondly, Epsilon provides a language, such as ETL [17], which

llows us to define the correspondence between the elements of both

anguages as explained before. And finally, once a specific instance is

efined in the DOOPT-DEC language, the automatic creation is carried

ut and the resulting COP is obtained.

As mentioned previously, the created COP is included as a script

ctivity [48] within an imperative model in order to evaluate the

eclarative data information at instantiation time. This COP provides

he best input data for the activities that optimizes the outcome data

f the subprocess. The basis of the automatic creation is to use the

ubprocess description and relationships in order to create a COP in

script activity connected to the subprocess. Then, this imperative

odel can be executed in any of the commercial BPMSs. Therefore,

he configuration of this script activity depends on the mechanisms

rovided by the modeling tool of the BPMS used, and also on the

PMS engine capabilities.

Regardless of the BPMS used, the COP can be solved using any of

he existing COP solvers which connects the script activity with an

xternal solver.

Finally, the resulting business process, for any customer require-

ents, is capable of searching for the cheapest travel plan for a given

et of dates and cities. In other words, the result after having solved

he COP in our running example is the combination of dates and cities

n which the customer should travel. This combination is the one with

he minimal price, which meets the objective function.

.3. Implementation of white-box model approach

In our case, the BPMS employed to design and execute the BPs

s Bonita Open SolutionTM [8] since it is an open-source application

ith a free distribution, and is commonly used in the private market.

e have created a connector, which is the way in which Bonita Open

olutionTM links an activity with a service or application that executes

functionality. The new connector, called COP Script, enables the in-

lusion of a COP code into an activity and permits its resolution. COP

cript has been implemented with the libraries provided by the COP

olvers, Choco Solver [7] in our case. The business modeler can there-

ore use this connector to link the COP solver with the script activity.

ig. 9 shows an example of how a business modeler can include the

enerated COP into any script activity using the COP Script connector

n Bonita Open SolutionTM.

Finally, at runtime, when an instance reaches the script activity

ith the specific valuation of data, the COP is solved and the result is

btained2.

http://www.lsi.us.es/quivir/index.php/Main/WhiteBox

Fig. 8. White box transformation.

Fig. 9. Choco Script Task Configuration in Bonita Open SolutionTM.

3

p

f

I

c

t

p

e

“

a

t

f

4

f

t

4

m

i

t

c

t

p

t

s

d

a

r

i

t

s

c

p

.4. White-box model approach applied to trip planner

A clear example of white-box approach in the trip planner exam-

le occurs when the cost of each part of the travel is included in dif-

erent travel brochures, such as the offers available at travel agencies.

n this case, since the prices are pre-established for specific date and

onditions, the sub-process knows, without executing the activities,

he data input and output relation for each part of the trip. For exam-

le, all flights from Seville to London, regardless of the date, costs 100

uros in May (AF .departDate ≥ “2014 − 05 − 01′′ ∧ AF .departDate ≤
2014 − 05 − 31′′ −→ priceFlight = 100). Since the travel brochures

re accessible and public, and cannot change for the dates published,

hen this information can be included in the COP. The COP generated

rom the model specified in Section 2.4 is shown in Table 1.

. Empirical evaluation

In this section, the experimental results corresponding to the per-

ormed evaluation are shown, the obtained results are discussed, and

he limitations of our proposal are laid out.
.1. Experimental design

Since the generated COP is created depending on the declarative

odel, it is formatted only once, and at design time. The COP creation

s performed linearly in accordance with the size of the model, that is,

he number of variables and constraints. For this reason, it is not time-

onsuming. The execution problem, and the bottleneck involved, is

he resolution of the COP at runtime, where the critical point of our

roposal lies.

Since the optimization of the output has been mapped into a COP,

he time spent during the optimization is linked to the complexity of

olving this COP. This has been analyzed in great depth over recent

ecades [6], and depends on two parameters: the width of the graph

nd the order parameter. On the one hand, the width of the graph

epresents the relation among the constraints, where the tractability

n CSPs is due to the structure of the constraint network, and where

he tree-structured CSPs have polynomial complexity (linear with re-

pect to the number of variables, and quadratic with respect to the

ardinal of the domain of the variables). On the other hand, the order

arameter, defined as the ratio of the number of forbidden tuples to

Fig. 10. Number of possible combinations for each test case.

Table 1

Constraint optimization problem for outcome data optimization.

//Variables:

earlyDepartDate: Date
lastDepartDate: Date
priceFlight: Integer
. . .

//Pre and post-conditions

AF: AF.departDate > SystemDate

AF .departDate ≥ “2014 − 05 − 01′′ ∧
AF .returnDate ≤ “2014 − 05 − 31′′ → priceFlight = 100

. . .

AH: AH.checkOutDate > AH.checkInDate

AH.checkOutDate > AH.checkInDate

. . .

// Input and Output Constraints

AF .returnDate = AH .checkOutDate

earlyDepartDate ≤ AF.departDate

AF.departDate ≤ lastDepartDate

. . .

//Optimization function:

TotalPrice = priceFlight + priceHotel + priceCarR1 + priceCarR2

//Objective

minimize(totalPrice)

c

p

P

T

o

s

e

s

“

d

v

t

i

i

t

c

4

n

f

p

p

i

the total number of possible combinations, determines the partition

of the problems space into under-constrained (several possible solu-

tions), over-constrained (no possible solutions) and just-constrained

(a set of a low number of possible solutions) problems. In the first

two cases, the problems are scalable, but in just-constrained prob-

lems, a significant increase of solving cost could occur and the scal-

ability would not be possible [29]. For these reasons, no general af-

firmation can be given concerning the efficiency in a generic way of

our proposal, since our declarative specification permits any type and

any number of numerical constraints; therefore, the evaluation time

depends on the specific problem. Depending on the number of con-

straints associated to a COP, and the number of variables, the COP

evaluation time remains variable.

For this reason, and with the aim of performing the evaluation of

our proposal, the resulting COP of the case study is executed over a

set of 150 generated test cases. Each test case establishes a different

number of values for the PDI, since the variables provided to the pro-

ess determine the complexity of the resolution and the number of

ossible combinations. Likewise, the different values for each data in

DI generate, in turn, a number of combinations for PDI variables.

his implies that each test case considerably increases the number

f combinations, as shown in the table and plot in Fig. 10. Since

ome of the variables of the PDI are sets, depending on the differ-

nt possibilities, the number of combinations increases whenever the

ets grow. For example, if the “earlyDepartDate” is “23-12-2014” and
lateDepartDate” is “13-01-2015”, then there are 22 possible days to

epart, and this implies different combinations with the rest of the

ariables, such as returnDate, departingFrom and goingTo. Since not all

he combinations are possible solutions of the problem, Fig. 10 also

ndicates the number of possible solutions for each test. For example,

t is possible that there is no available flight to go to any of the des-

ination airports for a specific combination of dates. In that case, this

ombination is not a solution to the problem and should be discarded.

.2. Experimental result

The main purpose of the experimental evaluation is the determi-

ation of the computing time (seconds), the memory used (MB), and

the quotients between the time and used memory needed to solve

the COP of the example. In order to highlight the importance of the

optimization, the measurements have been carried out over the COP.

The study has been made with a branch and bound search (called op-

timized option) and without it (called all solution option) to analyze

how the consistency techniques used in COPs can improve the evalu-

ation time.

The test cases were measured using a PC with an Intel Core i7-

2675QM CPU with a 2.2 GHz processor and 8.00 GB of RAM.

On the one hand, Fig. 11 shows the memory used to solve the COP.

It is possible to notice that, for the optimized option, the memory

used almost remains steady regardless of the number of permuta-

tions. Meanwhile, the behavior of all solution option is exponential.

On the other hand, the behavior of the execution time also fits

an exponential model for all solution options (see Fig. 12). However,

it is necessary to highlight that the evaluation time almost remains

steady for the various tests, although the number of possible combi-

nations for the PDI variables increases exponentially for the different

tests presented. It is possible thanks to the use of propagation and

consistence techniques in Constraint Programming.

4.3. Scope of applicability of our proposal

In this paper, the focus is on data-oriented optimization processes,

whose main goal is to obtain an outcome data optimization starting

rom the specification of the data and the constraints involved in the

rocess. As a consequence of the declarative model described in the

revious subsections, the scope of application of our proposal is lim-

ted by various characteristics:

• The knowledge concerning the possible values of the variables man-

aged during the business process instance. If the relation of the val-

ues of the input and output variables are unknown, then the res-

olution of the COP is insufficient to help the customer during the

business execution to achieve an objective. Since the inference of

Fig. 11. Memory used for the tests of the example.

Fig. 12. Time used for the tests of the example.

5

d

g

m

i

5

g

the possibility of correct input values is derived from the con-

straints associated to the model, if these constraints remain un-

known, then the execution of the activities is mandatory and our

solution of a black-box framework [50] will be necessary.
• The possible constraints that can be defined, since the limitation is

centered on the capacity of their expressiveness as allowed by the

grammar and the type of variables. These constraints constitute

the formal representation of the relations between the data that

flows through the BP. The limitations of use of the proposal appear

when the constraints cannot be represented by the relations de-

scribed; by means of the presented grammar; by the data type; or

by the operators included in this proposal, such as when a relation

between two variables is described by means of a trigonometric

function. The limitation of the data domain and the operations

that can be applied is established by the solver for the COP, ex-

plained in Section 3.1. Thanks to the variety of types of variables,

the existing commercial constraint solvers are capable of solving

real problems using: Float, Integer, Sets, Boolean, Date and String

variables.
• Knowledge of the order in which the activities are executed. The un-

certainty related to the imperative model comes from the neces-

sity to specify the relationship between activities through the data

handled, since the optimization function depends on these data

and relationships. The activity order is irrelevant since the opti-

mization is centralized in the resolution of the COP. In the pre-

sented proposal, the activities are executed in parallel since their

input data related to dates and cities are single values and the
optimization problem can be centralized in the script activity.

However, if the input data of the activities related to dates and

cities is a set of possible values, then each activity can establish

the input data that optimize the output with different combina-

tions of values and the order between the activities becomes rel-

evant. In that case, the order between the activities is unknown

because it depends on the values of the data handled in each case,

and the optimization process is more complex. The complexity is

based on the need of analyzing the process for each instance and if

the model has to change because it does not support this instance,

then the modeling, development, deployment, and execution of a

new model in a BPMS is necessary. All these steps cannot be done

at runtime since it requires design modifications, which involve

highly time-consuming.

. Related work

There are many languages that enable the description of BPs in a

eclarative way. In this section, the most important declarative lan-

uages are analyzed, and various approaches, related to the transfor-

ation between imperative and declarative models, have also been

ncluded.

.1. Comparison of declarative languages

BPs are specified by using modeling languages, commonly with

raphical notations. The selection of an adequate graphical method

5

has become a major issue for both academic researchers and business

professionals, since each individual process modeling method has its

own characteristics. As a consequence, there are many research ef-

forts dedicated to improve modeling methods. In [25], a comparison

of most of these graphical process modeling methods is presented.

Many languages enable the description of a BP in an imperative

way. The main differences between them are the elements that can be

used, and the information that can be included in the model. One of

the most important assets of imperative languages is the ability to be

executed in a BP since the imperative model has to be enriched to be

executed, for example, by adding the connectors to the implemented

activities or the details of connection for the database accesses.

On the other hand, although processes are typically specified in

an imperative way, declarative process languages have been increas-

ingly used. Declarative descriptions are easier to use for some exam-

ples (such as medical guidelines and policy compliance), since they

enable the specification of what has to be done instead of the specifi-

cation of how it has to be done. However, imperative models remain

easier to understand since they explicitly enumerate the allowed ex-

ecution traces, as it is maintained in Weber et al. in [72] and Zugal

et al. in [77]. Several studies have been made to know how humans

can understand the two types of BP models.

In [52], Pesic performs an in-depth analysis into workflow flexi-

bility, where flexibility is related to the capacity to support changes

at runtime. The flexibility of our proposal is based on possibility of

modifying the optimization function and the values for the input data

at runtime without having to change the imperative model for each

case. Imperative models lack expressiveness, flexibility, and adapt-

ability, since they enumerate the allowed execution traces at design

time. When the specific control-flow or data-flow of a business pro-

cess cannot be described at design time, declarative languages are

used. They describe a process in terms of a set of constraints that

must be satisfied during the process execution. Most of the declar-

ative models describe that every activity can be freely performed un-

less it is forbidden.

5.1.1. Main characteristics of declarative languages

Certain characteristics, considered relevant in the existing declar-

ative languages, have been analyzed in order to ascertain whether

they enable data-oriented optimization problems in BPs. In order to

sort and group the various proposals found about declarative lan-

guages, we have considered the following characteristics:

• Formalism for reasoning: The proposals use different formalisms

for reasoning. Although most of them use one type of formalism,

sometimes they combine more than one, and/or are improved by

means of made-to-measure3 algorithms. The most relevant for-

malisms for reasoning used in the declarative languages include:

(i) Linear Temporal Logic (LTL), which represents desirable or unde-

sirable patterns within a history of events [51]; (ii) Event calculus,

which is a logic programming formalism to represent and reason

on the effects of events on the state of a system [28]. This formal-

ism also has the ability to reason abductively and therefore pro-

duces a sequence of transitions that must happen for a particular

instance to hold in the future [47], and; (iii) Constraint program-

ming (CP) which permits the description of the model by means

of the variables and the constraints that relate these variables (see

Section 3.1).
• Hybrid description by using Imperative and declarative combination:

Some languages have the capacity to describe aspects in the same

model, both imperatively and declaratively. When the order of the

activities can be described an imperative description is used, but
3 Algorithms developed only for a single proposal: to solve a specific problem and

develop a specific algorithm for each model, being necessary the participation of an

expert to design it in each case
when we only count on a set of business rules that describe which

activity relations are permitted, and which are prohibited, then a

declarative description is used.
• Use of the model: The engines that support the declarative propos-

als permit various actions, such as: Validation of the model for a

trace of events, Construction of automatons to generate a possible

sequence of activities, and Assistance to the customer to decide

which activity is the best to execute at runtime.
• Data perspective: Some of the languages enable the values of the

data-flow variables to be included in the rules that describe the

declarative model, to determine the activities order when it de-

pends on the data values at runtime.
• Pre and post-condition: The inclusion of a description of how the

data are modified during the BP execution, by means of pre and

post-conditions, is a very relevant capacity. This allows the mod-

eler to describe the possible data values before and after each ac-

tivity or subprocess execution. This information tends to be used

for execution validation.
• Optimization function: The possibility of including an optimization

function in the description that is taken into account in the model.

.1.2. Main declarative languages

The most important declarative languages are summarized below.

• Pocket of flexibility. This solution is based on constraint spec-

ification of the business process workflow [63]. In the frame-

work, called pocket of flexibility, it is possible to combine activities

whose relation is known with activities whose relation remains

unknown. This relation is done by means of a build activity, which

provides the set of constraints for the specification of the pocket

with a valid composition of workflow fragments. Although data

is included in the activity-level constraints [64], these constraints

no longer permit the activity functionality to be described nor the

objective function to be optimized. A report in 2013 [76] shows

that this research line, related to workflow technology, has been

abandoned by the Sadiq et al. research group.
• DeCo (Declarative Configurable Process Modeling Notation). Irina

Rychkova et al. in [59–62] present a declarative BP specification

language that enables designers to describe the actions that a

business process needs to contain. For every action of the work-

ing object, the specifications define a pre-condition and a post-

condition. The pre and post-conditions represent how the differ-

ent actions can modify the state of the objects transformed during

the process execution; they do not define the order of the actions.

Furthermore, these proposals fail to include the specification of a

business goal as the cornerstone of the modeling and its subse-

quent execution.
• Compliance Rule Graphs (CRGs). The CRGs [27,31,33] focus on find-

ing an appropriate balance between expressiveness, formal foun-

dation, and efficient analysis. For these reasons, the authors pro-

pose a language based on a graph representation where the order

of the activities and the occurrence or absence of activities can

also be included. Thanks to the specification of the compliance

rules of the BP, the set of all possible execution traces of processes

based on activities are defined [55]. Awad et al., in [2], extend the

capacities of CRGs by including data in the specification of compli-

ance rules, which the authors called data rules. However, this data

perspective fails to enable the model to be focused on the search

for the optimal business goal.
• Em-Bra2Ce. The Em-Bra2Ce Framework [20,57] presents a declar-

ative language based on the standard SBVR (Semantics of Busi-

ness Vocabulary and business Rules) [65]. The basis of the Em-

Bra2Ce Framework is the specification of the state space and the

set of business rules [20–22]. Thanks to the business rules, not

only can the sequence of activities and the rights and duties

of agents and roles be determined, but the events can also be

Table 2

Comparison of declarative languages .

Formalism Imper. and Decl. Use of model Data persp. Pre and Post Opt. Funct.

Sadiq Graph theory � Val.

DeCo First Order Logic � Val. � �
CRGs Pattern matching Val. �
Em-Bra2Ce Colored Petri Net � Val. �
Penelope Event calculus � Constr.

ConDec LTL Val.

ConDec-R Constraint Programming Assist. � �
Data-aware Event Calculus Val. �
Case Handling - � Constr. � �
DOOPT-DEC Constraint Programming � Constr. Assist. � � �

a

f

i

a

g

c

n

p

t

e

s

B

C

a

l

i

g

s

a

m

p

5

a

b

s

a

f

o

t

o

i

h

w

s

d

u

i

h

e

t

t

controlled, the business concepts are defined and constrained,

and the policies and regulations can be motivated. However, the

Em-Bra2Ce Framework fails to enable the BP to focus on the ob-

jective to be optimized.
• Penelope. Penelope [18] expresses temporal rules about the obli-

gations and permissions in a business interaction using Deontic

logic. Penelope enables sequencing and timing constraints to be

defined between the activities. Therefore, the only type of data

that is included in the definition is related to the execution time of

the activities, since the data managed during each instance is not

an object of the proposal. This language is supported by an algo-

rithm to generate compliant sequence-flow-based process models

that can be used in business process design [18,19].
• Declare. The Declare language (previously also presented as Con-

Dec) was designed for modeling and enacting dynamic business

processes [51,53]. Declare is a constraint-based language, since it

is focused on defining the activities involved in the process and

the execution constraints between the activities, by means of or-

der relations between these activities. Declare has been used to

validate a sequence of events [75], runtime validation [34,35],

monitoring [45], runtime verification [46], validation and moni-

toring at runtime [53], and guidance of users through recommen-

dations [66].
• ConDec-R. ConDec-R is an extension of the Declare language for

the inclusion of a description of the resources necessary during

process execution [3]. The implementation extension assists the

customer by means of recommendations to achieve an optimized

plan for one or multiple objectives [26]. In order to obtain the

plan, a Constraint Programming paradigm is used, combined with

a set of algorithms to minimize evaluation time. Although this

proposal incorporates the resource perspective, which is a type

of data, this type of information is not oriented towards activity

input and output data.
• Data-aware constraints in declare. This is another extension of the

Declare framework [44] that permits the representation of the in-

put, internal, and output data of the activities in a declarative rep-

resentation of the order of the activity. Although the data aspect

is included, the pre and post-conditions and the objective func-

tion are all excluded from this description. Montali et al. also pro-

pose a technique to automatically determine declarative process

models that incorporate both control-flow dependencies and data

conditions. However, these dependencies and data conditions are

not focused on the optimization of the outcome data, the authors

looked for a ready built declarative model to represent all the pos-

sible sequence of activities depending on the data values.
• Case handling. The Case handling paradigm [69] focuses on what

can be done to achieve a business goal depending on the possi-

ble scenarios. Case handling focuses on a single process instance,

called a case, by describing and specifying the ordering of activi-

ties depending on this case. To handle a case, the set of activities

needs to be executed, and case handling involves humans to per-

form atomic tasks but has an orchestration engine to perform the
 I
orchestration (coordination) work. The data objects can remain

undefined, defined, or unconfirmed, which affects the behavior

of the activities. Graphical languages, such as Petri nets [70] and

workflow graphs [74], are used to define this order between the

activities [68].

Although all these declarative languages include information

bout data, none includes the data input and output of the activities

or the optimization of the outcome of the business process. As shown

n Table 2, none of the declarative languages includes all the char-

cteristics presented previously in its model. Each declarative lan-

uage uses a different formalism of reasoning, since each enables a

ontrol-flow sequence to be attained based on the declarative compo-

ents specified in the model to solve the data-optimization problems

roposed in this paper. Half of the proposals enable hybrid defini-

ions with imperative and declarative components in the same mod-

ls. Most proposals use the declarative models to validate whether a

equence of activities, for a given instance, is correct based on the

P requirements. Although the objective function is considered by

onDec-R, it is focused on the optimization of time and resources,

nd not on the outcome data of the BP to be offered to customers.

Furthermore, it is necessary to highlight that these declarative

anguages are not concerning about supporting the execution of any

nstance at runtime as occurs in imperative models. Declarative lan-

uages only provide tools to guide and recommend how a specific in-

tance must be executed. All these characteristics render DOOPT-DEC

s a complete alternative for the specification of declarative require-

ents within imperative descriptions for data-oriented optimization

roblems in BP.

.2. From declarative to imperative descriptions

Since an automatic creation from a declarative specification into

n imperative specification (more specifically, into a script task) has

een carried out, it is interesting to analyze the studies that make

ome kind of transformation between models in business processes

rena. In general, papers found in the literature related to the trans-

ormation from declarative to imperative descriptions are not focused

n the assistance of the customer for the input data. Only in [24]

he decision-making support is oriented towards data input, but it

mits optimization of an objective function, and only makes the BP

nstances satisfiable for imperative models. In other works related to

ow to model the processes, such as [3], Barba et al. propose a frame-

ork of assistance to create models which take the necessary re-

ources involved in the process into account. In that contribution, the

ata that describes the resources of the execution of the process are

sed, but not the data that flows at runtime, nor does it consider the

nput data for the activities that constitute the process. On the other

and, there are various studies that apply transformations to BP mod-

ling. Victoria Torres et al. in [67] apply transformations to generate

he navigation between web pages from a BP definition, specifically

he BPEL executable description that implements the entire process.

n [13], Fabra et al. integrate a service-oriented development method

b

w

C

p

o

b

p

c

a

i

d

t

t

c

6

d

D

R

(SOD-M) and a platform for the development and execution of in-

teroperable dynamic web processes (DENEB). They present a model-

driven framework for the analysis, design, development and execu-

tion of BPs, which covers BPM solutions from the very early stages

of their development to their deployment and execution. Although a

certain number of these papers are focused on defining the interac-

tion between various participants in order to achieve business goals,

none of them deals with the type of problems presented in this work:

the creation of a data-oriented optimization imperative model from

a declarative model.

The necessity to combine declarative and imperative perspectives

in a hybrid model was analyzed in previous work, such as in [56] by

Reijers et al. That paper reports the opportunities for practitioners of

using a hybrid model instead of a completely declarative or impera-

tive model. These researches carried out an experiment with ten pro-

fessionals from industry with the aim of highlighting the strengths

and weaknesses of the two approaches independently, and the po-

tential of hybrid model that includes both perspectives. They also

proposed a research agenda for the application of hybrid techniques.

Maggi et al. in [38] subsequently presented a technique for the deter-

mination of a hybrid process model from an event log. In that paper,

the declarative language used was Declare [40], and the imperative

language was Pocket of flexibility [63]. Other work, such as [39] and

[30] used hybrid techniques for the verification of business processes

but not for the specification of the model itself. In [11], De Giacomo

et al. describe a mixture of declarative and imperative process model-

ing styles, but only focused on the activities to execute. The BPMN-D

language proposed permits to combine, in the same model, imper-

ative and declarative descriptions related to the order between the

activities. Therefore, the hybridization is not related to data values.

On the other hand, De Masellis et al. in [12] enrich the language De-

clare with data-aware constraints. In that paper, the data is used to

verify the temporal evolution of data according, but not to find the

most optimized value of the data for each instance.

All these studies use hybridization based on activities, but to the

best of our knowledge, there are no proposals that address the data

optimization problem in hybrid models as we have described in this

article, where the declarative part is oriented towards the data re-

lationship specification, and the imperative part is focused on the

control-flow perspective.

5.3. Role of data in execution time

One of the bases of our proposal is the importance of data instan-

tiation at runtime, since the values are ascertained at runtime from

a given specific set of input values. Therefore, our proposal could be

seen as a recommendation system since the most appropriate values

for the data input belonging to an activity are found automatically. In

the literature, it is possible to find several recommendation systems

which enable customers to be guided towards executing an instance

with the aim of obtaining the business goal. Conforti et al. in [9] es-

tablish a recommendation system in order to predict possible risks in

the model. The event log is analyzed in order to study the sequence

of activities executed and the specific values consumed and provided

by these activities. This analysis establishes the occurrence of possi-

ble faults (excessive duration, reputation-loss, and cost overrun), and

provides a decision support for risk reduction. However, the proposal

needs historical information extracted from the event logs in order to

provide a solution. In our case, historical information is invalid since

the output of the activities depends on the constantly changing in-

put values and company policies, and historical information is only

reflected in the post-conditions. At the same time, Maggi et al. in [37]

also establish a predictive system in order to prevent customers from

executing an instance that would fail to obtain the desired business

goal. The authors establish a system to recommend which activity

must be performed and what data input values the customer must
provide. The main discrepancy is that, in their case, the business goal

is to help in decision-making (whether to perform a surgery or not),

ut in our case, the business goal is to obtain the optimal outcome,

hich is a function depending on the data values. On the other hand,

astellanos et al. in [5] proposed automatic enrichment of business

rocesses by including time metrics obtained from predictive meth-

ds. These time metrics enable both planning and decision making to

etter meet the goals of the business process. The optimization pro-

osed by the authors is focused on setting the model parameters and

hoosing the best of these parameters. However, these parameters

re only oriented towards aspects of time. This kind of optimization

mplies a probabilistic study which includes a confidence value, a pre-

iction (acceptable or unacceptable), and a certain threshold in order

o make plans. Therefore, the main obstacle for our kind of process is

hat, in data-oriented optimization problems, the probabilistic study

annot be included.

. Conclusions and future work

In this paper, we present a hybrid business process to specify a

ata-oriented optimization business process, which includes declar-

ative components focused on the data relationships between the ac-

tivities, and imperative components focused on the control-flow per-

spective. In addition, we also show how an entirely imperative model

can be created automatically using this hybrid model. It is carried out

by means of the creation of a script task which solves a Constraint Op-

timization Problem, that can obtain the outcome data that optimize

each instance of the process for customer requirements. Specifically,

our focus is on problems formed by white-box activities, which means

that the values of the output variables can be obtained in terms of

the input values, and the pre and post-conditions, thereby rendering

the execution of the activity unnecessary in the search for knowledge

of the output of the activity. The use of the Constraint Programming

paradigm enables the necessary input data values that optimize this

outcome data to be ascertained. The approach presented is detailed

and tested with a case study implemented in an open-source BPMS.

Further research could focus on the creation of the workflow of the

subprocess when it is not included in the description of the model.

Acknowledgment

This work has been partially funded by the Ministry of Science

and Technology of Spain (TIN2009-13714) and the European Regional

evelopment Fund (ERDF/FEDER).

eferences

[1] R.S. Aguilar-Saven, Business process modelling: review and framework, Int. J.
Prod. Econ. 90 (2) (2004) 129–149 ISSN: 0925-5273.

[2] A. Awad, M. Weidlich, M. Weske, Specification, verification and explanation of

violation for data aware compliance rules, in: Proceedings of the 7th Interna-
tional Joint Conference on Service-Oriented Computing ICSOC-ServiceWave ’09,

Springer-Verlag, Berlin, Heidelberg, 2009, pp. 500–515 ISBN: 978-3-642-10382-7.
[3] I. Barba, B. Weber, C.D. Valle, A.J. Ramírez, User recommendations for the op-

timized execution of business processes, Data Knowl. Eng. 86 (0) (2013) 61–84
ISSN: 0169-023X.

[4] D. Calvanese, G. De Giacomo, M. Montali, Foundations of data-aware process anal-

ysis: a database theory perspective, in: Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS, New York,

NY, USA, 2013, pp. 1–12 ISBN: 978-1-4503-2066-5.
[5] M. Castellanos, N. Salazar, F. Casati, U. Dayal, M.-C. Shan, Predictive business oper-

ations management, in: S. Bhalla (Ed.), Databases in Networked Information Sys-
tems, Lecture Notes in Computer Science, vol. 3433, Springer, Berlin Heidelberg,

2005, pp. 1–14 ISBN: 978-3-540-25361-7.
[6] P. Cheeseman, B. Kanefsky, W.M. Taylor, Where the really hard problems are, in:

J. Mylopoulos, R. Reiter (Eds.), Proceedings of the IJCAI, Morgan Kaufmann, 1991,

pp. 331–340 ISBN: 1-55860-160-0.
[7] Team choco solver, 2014, Choco 3.1.1. http://www.emn.fr/z-info/choco-solver/

(accessed 23.10.15).
[8] Bonita community, 2012, Bonita Open Solution. http://www.bonitasoft.org/ (ac-

cessed 23.10.15).

http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0007
http://www.emn.fr/z-info/choco-solver/
http://www.bonitasoft.org/

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[9] R. Conforti, M. de Leoni, M.L. Rosa, W.M. van der Aalst, Supporting risk-informed
decisions during business process execution, in: Proceedings of the 25th Inter-

national Conference on Advanced Information Systems Engineering (CAiSE’13),
Springer, Berlin Heidelberg/Valencia, Spain, 2013, pp. 116–132 ISBN: 978-3-642-

38708-1.
[10] R. Dechter, Constraint Processing, Elsevier Morgan Kaufmann, 2003 ISBN: 978-1-

55860-890-0.
[11] G. De Giacomo, M. Dumas, F.M. Maggi, M. Montali, Declarative process modeling

in BPMN, in: Advanced Information Systems Engineering, in: Lecture Notes in

Computer Science, vol. 9097, Springer, Berlin Heidelberg, 2015, pp. 80–100 ISBN:
978-3-319-19068-6.

[12] R. De Masellis, F.M. Maggi, M. Montali, Monitoring data-aware business con-
straints with finite state automata, in: Proceedings of the 2014 International Con-

ference on Software and System Process. ICSSP 2014. ACM, New York, NY, USA,
2014, pp. 134–143 ISBN: 978-1-4503-2754-1.

[13] J. Fabra, V.D. Castro, P. Álvarez, E. Marcos, Automatic execution of business process

models: exploiting the benefits of model-driven engineering approaches, J. Syst.
Softw. 85 (3) (2012) 607–625 ISSN: 0164-1212.

[14] D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, S. Zugal,
Declarative versus imperative process modeling languages: the issue of under-

standability, in: Enterprise, Business-Process and Information Systems Modeling,
in: Lecture Notes in Business Information Processing, vol. 29, Springer Berlin Hei-

delberg, 2009, pp. 353–366 ISBN: 978-3-642-01861-9.

[15] D. Fahland, J. Mendling, H. Reijers, B. Weber, M. Weidlich, S. Zugal, Declarative
versus imperative process modeling languages: The issue of maintainability, in:

Business Process Management Workshops, in: Lecture Notes in Business Infor-
mation Processing, vol. 43, Springer, Berlin Heidelberg, 2010, pp. 477–488 ISBN:

978-3-642-12185-2.
[16] E. Foundations, Epsilon (2014a). https://www.eclipse.org/epsilon/(accessed

24.04.14).

[17] E. Foundations, Epsilon Transformation Language (2014b). http://www.eclipse.
org/epsilon/doc/etl/(accessed 24.10.14).

[18] S. Goedertier, J. Vanthienen, Designing compliant business processes with obliga-
tions and permissions, in: Business Process Management Workshops, in: Lecture

Notes in Business Information Processing, vol. 4103, Springer, Berlin Heidelberg,
2006a, pp. 5–14 ISBN: 978-3-540-38444-1.

[19] S. Goedertier, J. Vanthienen, Business Rules for Compliant Business Process Mod-

els, in: Proceedings of the 9th International Conference on Business Information
Systems, BIS Klagenfurt, Austria, 2006b, pp. 558–572 ISBN: 3-88579-179-X.

20] S. Goedertier, J. Vanthienen, Em-bra2ce v0.1: A vocabulary and execution model
for declarative business process modeling, in: Department of Decision Sciences

and Information Management – KBI, 2007.
[21] S. Goedertier, C. Mues, J. Vanthienen, Specifying process-aware access control

rules in SBVR, in: A. Paschke, Y. Biletskiy (Eds.), Advances in Rule Interchange

and Applications, Lecture Notes in Computer Science, vol. 4824, Springer, Berlin
Heidelberg, 2007, pp. 39–52 ISBN: 978-3-540-75974-4.

22] S. Goedertier, J. Vanthienen, Declarative process modeling with business vocabu-
lary and business rules, in: Proceedings of the 2007 OTM Confederated Interna-

tional Conference on the Move to Meaningful Internet Systems – Volume Part I,
OTM’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 603–612 ISBN: 978-3-540-

76887-6.
23] M.T. Gómez-López, R.M. Gasca, Run-time auditing for business processes data us-

ing constraints, in: Business Process Management Workshops, in: Lecture Notes

in Business Information Processing, vol. 66, Springer Berlin Heidelberg, 2010,
pp. 146–157 ISBN: 978-3-642-20510-1.

[24] M.T. Gómez-López, R.M. Gasca, L. Parody, D. Borrego, Constraint-driven approach
to support input data decision-making in business process management systems,

in: Proceedings of the 25th International Conference on Information System De-
velopment. ISD 2011, Springer, 2011, pp. 15–25 ISBN: 978-1-4614-4950-8.

25] S.-M. Huang, Y.-T. Chu, S.-H. Li, D.C. Yen, Enhancing conflict detecting mechanism

for web services composition: A business process flow model transformation ap-
proach, Inf. Softw. Technol. 50 (11) (2008) 1069–1087 ISSN: 0950-5849.

26] A.J. Ramírez, I. Barba, C.D. Valle, B. Weber, Generating multi-objective optimized
business process enactment plans, in: Proceedings of the 25th International Con-

ference on Advanced Information Systems Engineering. CAISE ’13, 2013, pp. 99–
115 ISBN: 978-3-642-38708-1.

[27] D. Knuplesch, L.T. Ly, S. Rinderle-Ma, H. Pfeifer, P. Dadam, On enabling data-aware

compliance checking of business process models, in: Conceptual Modeling - ER,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2010, pp. 332–

346 ISBN: 978-3-642-16372-2.
28] R.A. Kowalski, M.J. Sergot, A logic-based calculus of events, New Gener. Comput.

4 (1) (1986) 67–95 ISSN: 0288-3635.
29] A. Krzysztof, Principles of Constraint Programming, Ed., Cambridge University

Press, New York, NY, USA, 2003 ISBN: 978-0-521-12549-9.

30] B. Li, J. Iijima, A Hybrid Approach for Business Process Verification, in: Research
and Practical Issues of Enterprise Information Systems II, vol. 254, IFIP The Inter-

national Federation for Information Processing, 2008, pp. 1–9 ISBN: 978-1-4757-
0563-8.

[31] L.T. Ly, S. Rinderle-Ma, P. Dadam, Integration and verification of semantic con-
straints in adaptive process management systems, Data Knowl. Eng. 64 (1) (2008)

3–23 ISSN: 0169-023X.

32] L.T. Ly, S. Rinderle-Ma, P. Dadam, Design and verification of instantiable compli-
ance rule graphs in process-aware information systems, in: Proceedings of the

22th International Conference on Advanced Information Systems Engineering.
CAISE ’10, 2010, pp. 9–23 ISBN: 978-3-642-13093-9.
[33] L.T. Ly, S. Rinderle-Ma, D. Knuplesch, P. Dadam, Monitoring business process com-
pliance using compliance rule graphs, in: Proceedings of the 19th International

Conference on Cooperative Information Systems (CoopIS 2011), in: Volume 7044
of LNCS, Springer, 2011, pp. 82–99 ISBN: 978-3-642-25108-5.

34] F.M. Maggi, M. Montali, M. Westergaard, W. van der Aalst, Monitoring business
constraints with linear temporal logic: an approach based on colored automata,

in: Proceedings of the 9th International Conference on Business Process Manage-
ment, Springer-Verlag, 2011, pp. 132–147 ISBN: 978-3-642-23058-5.

[35] F.M. Maggi, M. Westergaard, M. Montali, W. van der Aalst, Runtime Verification of

LTL-Based Declarative Process Models, in: Proceedings of RV, in: LNCS, Springer-
Verlag, 2011c ISBN: 978-3-642-29859-2.

36] F.M. Maggi, M. Dumas, L.G.-B. nuelos, M. Montali, Discovering data-aware declar-
ative process models from event logs, in: F. Daniel, J. Wang, B. Weber (Eds.),

Business Process Management, Lecture Notes in Computer Science, vol. 8094,
Springer, Berlin Heidelberg, 2013a, pp. 81–96 ISBN: 978-3-642-40175-6.

[37] F.M. Maggi, C.D. Francescomarino, M. Dumas, C. Ghidini, Predictive

Monitoring of Business Processes, CoRR abs/1312.4874 (2013b) ISBN: 978-1-
4673-2318-5.

38] F.M. Maggi, T. Slaats, H.A. Reijers, The Automated Discovery of Hybrid Processess,
in: Business Process Management, in: Lecture Notes in Computer Science, vol.

8659, Springer Berlin Heidelberg, 2014, pp. 392–399 ISBN: 978-3-319-10171-2.
39] M. Le, B. Gabrys, D. Nauck, A hybrid model for business process event and out-

come prediction, Expert Syst. (2014) ISSN: 1468-0394.

40] F.M. Maggi, M. Westergaard, W.M.P. van der Aalst, F. Staff, M. Pesic, H. Schonen-
berg, Declare tool (2014) (accessed 24.02.14).

[41] A. Meyer, L. Pufahl, D. Fahland, M. Weske, Modeling and enacting complex data
dependencies in business processes, in: Business Process Management, in: Lec-

ture Notes in Computer Science, vol. 8094, Springer Berlin Heidelberg, 2013,
pp. 171–186 ISBN: 978-3-642-40175-6.

42] A. Meyer, S. Smirnov, M. Weske, Data in business processes, EMISA Forum 31 (3)

(2011) 5–31.
43] M. Montali, Specification and Verification of Declarative Open Interaction Models

- A Logic-Based Approach, in: Lecture Notes in Business Information Processing,
vol. 56, Springer, 2010 ISBN: 978-3-642-14537-7.

44] M. Montali, F. Chesani, P. Mello, F.M. Maggi, Towards data-aware constraints in
declare, in: Proceedings of the 28th Annual ACM Symposium on Applied Com-

puting, SAC ’13, ACM, 2013, pp. 1391–1396 ISBN: 978-1-4503-1656-9.

45] M. Montali, F.M. Maggi, F. Chesani, P. Mello, W.M.P. van der Aalst, Monitoring busi-
ness constraints with the event calculus, ACM Trans. Intell. Syst. Technol. 5 (1)

(2014) 17:1–17:30 ISSN: 2157-6904.
46] M. Montali, Specification and Verification of Declarative Open Interac-

tion Models: A Logic-Based Approach, University of Bologna, 2009 (Ph.d.
thesis).

[47] B.V. Nuffelen, A.C. Kakas, A-system: declarative programming with abduction, in:

Proceedings of the 6th International Conference on Logic Programming and Non-
monotonic Reasoning, , LPNMR 2001, vol. 2173, Springer, Vienna, Austria, Septem-

ber 17-19, 2001„ pp. 393–396 ISBN: 3-540-42593-4.
48] OMG, Business Process Model and Notation (BPMN) Version 2.0. Object Manage-

ment Group Standard (2011).
49] L. Parody, M.T. Gómez-López, R.M. Gasca, Extending BPMN 2.0 for modelling the

combination of activities that involve data constraints, in: J. Mendling, M. Wei-
dlich (Eds.), BPMN, Lecture Notes in Business Information Processing, vol. 125,

Springer, 2012a, pp. 68–82 ISBN: 978-3-642-33154-1.

50] L. Parody, M.T. Gómez-López, R.M. Gasca, A.J. Varela-Vaca, Improvement of op-
timization agreements in business processes involving web services, Commun.

IBIMA, 2012 (2012b), doi:10.5171/2012.959796.
[51] M. Pesic, W.M.P. van der Aalst, A declarative approach for flexible business pro-

cesses management, in: J. Eder, S. Dustdar (Eds.), Business Process Manage-
ment Workshops, Lecture Notes in Computer Science, vol. 4103, Springer, 2006,

pp. 169–180 ISBN: 978-3-540-38444-1.

52] M. Pesic, Constraint-Based Workflow Management Systems: Shifting Control to
Users, Technische Universiteit Eindhoven, 2008 (Ph.D. thesis).

53] M. Pesic, H. Schonenberg, W.M.P. van der Aalst, Declarative workflow, in:
A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, N. Russell (Eds.), Mod-

ern Business Process Automation, Springer, 2010, pp. 175–201 ISBN: 978-3-642-
03121-2.

54] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, H.A. Reijers, Imperative

versus declarative process modeling languages: an empirical investigation, in:
Business Process Management Workshops (1), in: Lecture Notes in Business

Information Processing, vol. 99, Springer, 2011, pp. 383–394 ISBN: 978-3-642-
28107-5.

55] M. Reichert, B. Weber, Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies, Springer, 2012 ISBN: 978-3-642-

30408-8.

56] H.A. Reijers, T. Slaats, C. Stahl, Declarative modelingan academic dream or the fu-
ture for BPM?, in: F. Daniel, J. Wang, B. Weber (Eds.) Business Pprocess Manage-

ment 2013, Lecture Notes in Business Information Processing, vol. 8094, Springer,
2013, p. 307322 ISBN: 978-3-642-40175-6.

[57] W.D. Roover, F. Caron, J. Vanthienen, A prototype tool for the event-driven en-
forcement of SBVR business rules, in: F. Daniel, K. Barkaoui, S. Dustdar (Eds.), Busi-

ness Process Management Workshops (1), Lecture Notes in Business Information

Processing, vol. 99, Springer, 2011, pp. 446–457 ISBN: 978-3-642-28107-5.
58] G. Rummler, A. Brache, Improving Performance: How to Manage the White Space

on the Organization Chart, Jossey-Bass, San Francisco, CA, 1995 ISBN: 978-1-118-
14370-4.

http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0015
https://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/doc/etl/
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0037
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0038
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0039
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0040
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0041
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0042
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0043
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0044
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0044
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0045
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0046
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0047
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0048
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0048
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0048
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0049
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0049
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0049
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0049
http://dx.doi.org/10.5171/2012.959796
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0051
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0051
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0051
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0052
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0052
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0053
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0053
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0053
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0053
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0054
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0054
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0054
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0054
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0054
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0054
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0054
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0055
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0055
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0055
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0056
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0056
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0056
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0056
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0057
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0057
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0057
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0057
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0058
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0058
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0058

[59] I. Rychkova, G. Regev, A. Wegmann, High-level design and analysis of business
processes: the advantages of declarative specifications, in: O. Pastor, A. Flory, J.-

L. Cavarero (Eds.), Proceedings of the RCIS, IEEE, 2008a, pp. 99–110 ISBN: 978-1-
4244-1677-6.

[60] I. Rychkova, G. Regev, A. Wegmann, Using declarative specifications in business
process design, Int. J. Comput. Sci. Appl. 5 (3b) (2008b) 45–68.

[61] I. Rychkova, S. Nurcan, Towards adaptability and control for knowledge-intensive
business processes: Declarative configurable process specifications, in: Proceed-

ings of the HICSS, 2011a, pp. 1–10 ISBN: 978-1-4244-9618-1.

[62] I. Rychkova, S. Nurcan, The old therapy for the new problem: declarative con-
figurable process specifications for the adaptive case management support, in:

Business Process Management Workshops, in: Lecture Notes in Business Infor-
mation Processing, vol. 66, Springer Berlin Heidelberg, 2011b, pp. 420–432 ISBN:

978-3-642-20510-1.
[63] S.W. Sadiq, M.E. Orlowska, W. Sadiq, Specification and validation of process con-

straints for flexible workflows, Inf. Syst, 30 (5) (2005) 349–378 ISSN: 0306-4379.

[64] S. Sadiq, M. Orlowska, J. Lin, W. Sadiq, Quality of service in flexible workflows
through process constraints, in: C.-S. Chen, J. Filipe, I. Seruca, J. Cordeiro (Eds.), En-

terprise Information Systems VII, Springer Netherlands, 2006, pp. 187–195 ISBN:
978-1-4020-5323-8.

[65] OMG, Semantics of business vocabulary and business rules (SBVR) (2008) (ac-
cessed 24.02.14).

[66] H. Schonenberg, B. Weber, B.F. van Dongen, W.M.P. van der Aalst, Supporting flex-

ible processes through recommendations based on history, in: M. Dumas, M. Re-
ichert, M.-C. Shan (Eds.), BPM, Lecture Notes in Computer Science, vol. 5240,

Springer, 2008, pp. 51–66 ISBN: 978-3-540-85758-7.
[67] V. Torres, V. Pelechano, Building business process driven web applications, in:

S. Dustdar, J.L. Fiadeiro, A.P. Sheth (Eds.), Business Process Management, Lecture
Notes in Computer Science, vol. 4102, Springer, 2006, pp. 322–337 ISBN: 3-540-

38901-6.
[68] W.M.P.V.d. Aalst, M. Stoffele, J. Wamelink, Case handling in construction, Autom.
Constr. 12 (3) (2003) 303–320 ISSN: 0926-5805.

[69] W.M.P. van der Aalst, M. Weske, D. Grübauer, Case handling: A new paradigm for
business process support, Data Knowl. Eng. 53 (2) (2005) 129–162 ISSN: 0169-

023X.
[70] W.M.P. van der Aalst, C. Stahl, A Petri Net-Oriented Approach, The MIT Press,

2011 ISBN: 978-0-262-01538-7.
[71] R.J. Wallace, Directed arc consistency preprocessing, Constraint Processing, Se-

lected Papers, Springer-Verlag, London, UK, 1995, pp. 121–137 ISBN: 3-540-

59479-5.
[72] B. Weber, S.W. Sadiq, M. Reichert, Beyond rigidity - dynamic process lifecycle sup-

port, Comput. Sci. R&D 23 (2) (2009) 47–65 ISSN: 1865-2034.
[73] M. Weske, Business Process Management: Concepts, Languages, Architectures,

Springer, 2007 ISBN: 978-3-540-73521-2.
[74] M. Weske, Formal foundation and conceptual design of dynamic adaptations in a

workflow management system, in: Proceedings of the 34th Annual Hawaii Inter-

national Conference on System Sciences, 2001, 2001, p. 10. ISBN: 0-7695-0981-9.
[75] M. Westergaard, Better algorithms for analyzing and enacting declarative work-

flow languages using ltl, in: S. Rinderle-Ma, F. Toumani, K. Wolf (Eds.), Business
Process Management, Lecture Notes in Computer Science, vol. 6896, Springer

Berlin Heidelberg, 2011, pp. 83–98 ISBN: 978-3-642-23059-2.
[76] X. Zhou, S. Sadiq, S.H. Tao, X. Li, M.A. Sharaf, Z. Huang, K. Zheng, J. Hunter, P. Green,

M. Indulska, Data Centric Research at The University of Queensland, Sigmod Rec.

42 (3) (2013) 63–68 ISSN: 0163-5808.
[77] S. Zugal, P. Soffer, J. Pinggera, B. Weber, Expressiveness and understandability

considerations of hierarchy in declarative business process models, in: I. Bider,
T. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer, S. Wrycza (Eds.),

Enterprise, Business-Process and Information Systems Modeling, Lecture Notes
in Business Information Processing, vol. 113, Springer Berlin Heidelberg, 2012,

pp. 167–181 ISBN: 978-3-642-31072-0.

http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0059
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0059
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0059
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0059
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0060
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0060
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0060
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0060
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0061
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0061
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0061
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0062
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0062
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0062
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0063
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0063
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0063
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0063
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0064
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0064
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0064
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0064
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0064
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0065
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0065
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0065
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0065
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0065
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0066
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0066
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0066
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0067
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0067
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0067
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0067
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0068
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0068
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0068
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0068
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0069
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0069
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0069
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0070
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0070
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0071
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0071
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0071
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0071
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0072
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0072
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0073
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0073
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0074
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0074
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0076
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0077
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0077
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0077
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0077
http://refhub.elsevier.com/S0950-5849(15)00173-1/sbref0077

	Hybrid business process modeling for the optimization of outcome data
	1 Introduction
	1.1 Detailing a case study: trip planner
	1.2 Our proposal

	2 Formalization of the data-oriented optimization business process languages
	2.1 Subprocess description
	2.2 Subprocess relationships
	2.3 Grammar and graphical notation
	2.4 Specification applied to the trip planner

	3 Data-oriented optimization model approaches
	3.1 Background in constraint satisfaction problem
	3.2 How to obtain an imperative business process model from a white-box specification
	3.3 Implementation of white-box model approach
	3.4 White-box model approach applied to trip planner

	4 Empirical evaluation
	4.1 Experimental design
	4.2 Experimental result
	4.3 Scope of applicability of our proposal

	5 Related work
	5.1 Comparison of declarative languages
	5.1.1 Main characteristics of declarative languages
	5.1.2 Main declarative languages

	5.2 From declarative to imperative descriptions
	5.3 Role of data in execution time

	6 Conclusions and future work
	 Acknowledgment
	 References

