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ABSTRACT  26 

Background: Type 1 diabetes mellitus (T1DM) is partly driven by autoimmune 27 

destruction of the pancreatic beta cell, facilitated by the release of inflammatory 28 

cytokines including IFNγ, TNF-α and IL-1β by cells of the innate immune system.  29 

Mesenchymal stem cells (MSCs) have been used to counteract autoimmunity in a 30 

range of therapeutic settings due to their secretion of trophic and immunomodulatory 31 

factors that ameliorate disease independently of the cells themselves.  32 

Objective: The aim of this study was to assess the effect of the secretome of human 33 

bone-marrow derived MSCs on cytokine-driven beta cell apoptosis.  34 

Methods: All experiments were conducted in two insulin-secreting islet cell lines 35 

(BRIN-BD11 and βTC1.6) with selected experiments confirmed in primary islets. MSC 36 

secretome was generated by conditioning serum-free media (MSC-CM) for 24 hours 37 

on sub-confluent MSC populations. The media was then removed and filtered in 38 

readiness for use.  39 

Results: Exposure to IFNγ, TNF-α and IL-1β induced apoptosis in cell lines and 40 

primary islets. The addition of MSC-CM to cell lines and primary islets partially 41 

reversed cytokine-driven apoptosis. MSC-CM also restored glucose-stimulated insulin 42 

secretion in cytokine-treated cell lines, which was linked to improved cell viability 43 

following on from cytokine challenge. Characterization of MSC-CM revealed significant 44 

concentrations of IL-4, IL-10, PIGF and VEGF. Of these, IL-10 alone prevented 45 

cytokine-driven apoptosis. Furthermore, inhibition of IL-10 via the addition of blocking 46 

antibody reversed the anti-apoptotic effects of MSC-CM.  47 

Conclusion: Overall, the protective effects of MSC-CM on islet beta cell survival 48 

appear to be largely IL-10-dependent.  49 
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INTRODUCTION 50 

 51 

T1DM is a complex autoimmune disease in which several inflammatory cells inflict a 52 

coordinated assault on the pancreatic islets of Langerhans and the insulin-producing 53 

beta cells therein, contributing to an absolute insulin requirement. Autoimmune beta 54 

cell destruction begins when autoantigens (i.e. GAD65) are released during 55 

spontaneous turnover of beta cells. The antigens are processed by antigen presenting 56 

cells and presented to CD4+ TH1 cells, which secrete cytokines including Interferon 57 

(IFN), Tumour Necrosis Factor (TNF)-, TNF-, and Interleukin (IL)-2. IFN causes 58 

macrophages to become cytotoxic and release substantial quantities of cytokines 59 

(including IFN, TNF-, and IL-1) leading to beta cell apoptosis [1]. It is believed that 60 

beta cell mass is reduced by 70-80% at the time of diagnosis of T1DM. Due to the 61 

absence of detectable beta cell necrosis and variable degrees of insulitis, it has been 62 

suggested that beta cell loss occurs slowly over years [2]. This is supported by the 63 

detection of insulin antibodies years before the appearance of clinical symptoms in the 64 

susceptible individuals [3]. 65 

 66 

Mesenchymal stem/stromal cells / Medicinal Signaling Cells (MSCs) are multipotent 67 

cells that can be found in almost all adult organs and tissues and are characterized by 68 

their immunomodulatory abilities. In the context of diabetes research, MSCs have been 69 

used to counteract autoimmunity and enhance islet engraftment and survival [4,5]. 70 

Despite the reported antidiabetogenic effects of MSCs [6], the mechanism of action 71 

remains poorly understood. This is partly due to the diverse range of effects that MSCs 72 

and their secreted products have on the surrounding environment. Emerging evidence 73 

suggests that the therapeutic utility of MSCs could be based primarily on their 74 

production of trophic and immunomodulatory factors. Indeed, the infusion of MSC 75 

conditioned media (MSC-CM) every 3 days relieved hyperglycemia in a rodent model 76 
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of T2DM [7]. The animals showed enhanced concentrations of c-peptide and insulin 77 

as well as improvements in glucose metabolism. The authors concluded that these 78 

improvements largely stemmed from the secretion of cytokines and growth factors by 79 

the MSCs. An earlier study revealed that trophic factors from MSCs aided islet survival 80 

and function after transplantation [8]. This study reported high concentrations of IL-6, 81 

vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor (HGF), and 82 

transforming growth factor (TGF)-β found in MSC-CM. MSCs secrete soluble factors 83 

that play multifactorial roles in the regulation of circulating inflammatory cells. For 84 

example, MSCs secrete TGF-β and IL-10, which blocks T-cell proliferation [9,10], while 85 

soluble factors secreted by MSCs are also believed to alter the secretion profile of 86 

dendritic cells leading to increased production of anti-inflammatory cytokines including 87 

IL-10 and decreased production of inflammatory cytokines including IFNγ [11].  88 

 89 

It has been hypothesized that MSCs may offer protection against diabetes via 90 

paracrine actions to include cytoprotective, anti-inflammatory, and anti-apoptotic 91 

effects [12]. The current study sought to characterize the effect of the secretome of 92 

human bone-marrow derived MSCs on cytokine-driven beta cell apoptosis. Here, we 93 

report that the secretome of human MSCs protects beta cell lines and primary islets 94 

from cytokine-driven apoptosis via an IL-10 dependent mechanism.  95 



 5 

METHODS 96 

 97 

Beta cell models 98 

All experiments were conducted in two beta cell lines to ensure that data was not 99 

skewed by the nuances of any individual cell line. BRIN-BD11 cells were purchased 100 

from ECACC General Cell Collection (ECACC 10033003) and cultured as previously 101 

described [13]. βTC1.6 cells were purchased from ATCC (ATCC CRL-11506, LGC 102 

Standards, UK) and cultured according to the supplier’s instructions. In brief, BRIN-103 

BD11 cells were cultured in RMPI and βTC1.6 cells cultured in DMEM (4.5g/L glucose). 104 

Both culture media were supplemented with 10% fetal bovine serum (FBS; Lonza, UK) 105 

and 1% Penicillin-Streptomycin (Lonza). Cells were routinely passaged with 1x 106 

trypsin/EDTA (Lonza). 107 

 108 

Where possible, experimental results were confirmed in primary islets isolated from 109 

CD1 mice aged 12-16 weeks and bred in-house. All procedures were conducted in 110 

accordance with the Animals Scientific Procedures Act 1986. Animals were euthanized 111 

under Schedule 1 methods and the pancreas excised and transferred to Hank’s 112 

Balanced Salt Solution (HBSS) transport buffer comprising 0.14 M NaCl, 0.005 M KCl, 113 

0.001 M CaCl2, 0.0004 M MgSO4, 0.0005 M MgCl2, 0.0003 M Na2HPO4, 0.0004 M 114 

KH2PO4, 0.006 M Glucose, 0.004 M NaHCO3 and 10 mM Hepes. The pancreas was 115 

chopped, placed in collagenase P (0.5 mg/ml collagenase clostridium histolyticum, 116 

(Fisher, UK) in HBSS), and agitated at 37 °C for 10 minutes followed by the addition 117 

of HBSS supplemented with 0.1% Bovine Serum Albumin (Sigma, UK) to neutralize 118 

enzymatic action. Pancreatic tissue was then centrifuged for 5 mins at 1000 rpm, the 119 

pellet washed three times in wash buffer (HBSS + 5% FBS), the homogenized tissue 120 

passed through a fine mesh filter, and the filtrate centrifuged for 5 mins at 1000 rpm. 121 

Pelleted islets were resuspended in RPMI media supplemented with 5% FBS and 1% 122 
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Penicillin-Streptomycin and hand-picked using a fine glass pipette. The islets were 123 

maintained in an incubator at 37 °C and 5% CO2 for 24 hours before experimentation. 124 

 125 

Cytokine stimulation of beta cell models 126 

Recombinant Tumor Necrosis Factor-α (TNF-α), Interferon Gamma (IFN-γ) and 127 

Interleukin-1β (IL-1β) were purchased from PeproTech, UK. Cell lines were seeded at 128 

1 x 105 cells/cm2 and allowed to attach overnight. Islets were seeded at a density of 50 129 

islets/cm2 and maintained in culture overnight. Cell lines and islets were then exposed 130 

to a range of IFNγ, TNF-α and IL-1β concentrations (0.1 ng/ml - 1000 ng/ml) for 24 h. 131 

Determination of cytokine concentrations that induced an approximate reduction in cell 132 

viability of 50% was established with MTT (Sigma, UK) in the first instance and 133 

induction of apoptosis confirmed by TUNEL assay (TUNEL in situ direct DNA 134 

fragmentation kit (Abcam, UK)).  135 

 136 

Human bone marrow-derived Mesenchymal Stem Cells (MSCs) 137 

Human Bone Marrow Mononuclear cells (hMNCs) were purchased from (Lonza, UK) 138 

and hMSCs isolated according to a previously published methodology [14]. 139 

Mononuclear cells were seeded at a density of 1 x 105 MNC/cm2. Culture vessels were 140 

pre-coated with 10 ng/ml of fibronectin (Sigma, UK) in PBS for one hour at room 141 

temperature. Seeded MNC cells were maintained in DMEM media supplemented with 142 

5% FBS, 1% L-Glutamine (Lonza, UK), 1% Non-essential amino acid (Lonza, UK) and 143 

1% Penicillin Streptomycin Amphotericin-B (Lonza, UK). After one week a 50% media 144 

change was performed and cells incubated for a further week after which, a 100% 145 

media change was performed. Routine media changes were performed twice weekly 146 

thereafter. Cells were passaged at 80-90% confluency as described [14]. 147 

 148 



 7 

hMSC multipotency determination was established via differentiation into osteogenic, 149 

adipogenic and chondrogenic cells using chemical induction with differentiation media 150 

as outlined in the Supplement and as shown in Figure S1 (Supplement). 151 

 152 

Preparation of MSC-conditioned media (CM) 153 

MSC conditioned media (MSC-CM) was prepared by medium-cell contact with 70% 154 

confluent hMSCs for 24 hours. MSCs were washed once with 10 ml PBS and twice 155 

with 10 ml of serum free DMEM. Either 15 ml RPMI-1640 or DMEM media (Lonza, UK) 156 

was then left in contact with the MSCs for 24 hours after which the conditioned media 157 

was collected, centrifuged to remove any cell debris, filtered through 0.2 µm filter then 158 

stored at -80 °C until required for experimental use. 159 

 160 

Measurements of cellular viability and apoptosis 161 

MTT reagent 5 mg/ml (Sigma, UK) was mixed with RPMI1640 media, added to cells 162 

and incubated for 2 hours at 37 °C. MTT solution was removed and DMSO added to 163 

each well before incubation at 37 °C for a further 45 minutes. The absorption was 164 

measured with a micro-plate reader (Dynatech, MR5000 version 3.7) at a wavelength 165 

of 570 nm with a reference wavelength reading at 650 nm. 166 

 167 

Following optimization of cytokine concentration, TUNEL (terminal deoxynucleotidyl 168 

transferase mediated deoxyuridine triphosphate nick end labelling) assay (TUNEL in 169 

situ direct DNA fragmentation kit (Abcam, UK)) was used to determine if reductions in 170 

cell viability observed with the MTT assay resulted from apoptosis. The TUNEL assay 171 

was performed following a modified version of the manufacturer’s protocol. Media was 172 

first removed from cells and islets (islets were gently centrifuged at 900 rpm prior to 173 

each step in the following protocol), washed once with PBS, and fixed with 95% 174 

methanol for 10 mins. Methanol was removed and the cells washed twice with washing 175 

buffer, and then re-suspended in staining solution comprising reaction buffer, TDT 176 
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enzyme, FITC_dUTP and ddH2O. The cells were incubated at 37 °C for one hour and 177 

staining solution removed. The cells were washed with rinse buffer twice after which 178 

DAPI (4,6-Diamidino-2-phenylindole) (Sigma, UK) was added for 30 mins at room 179 

temperature. Images of cell lines were acquired by fluorescent microscope (Olympus 180 

Fluoview, Nikon Eclipse, Japan) while islets were visualised using a laser scanning 181 

confocal microscope (Olympus, Japan). 182 

 183 

Glucose-stimulated insulin secretion 184 

To determine the effect of MSC-CM on insulin secretion from pancreatic beta cells, cell 185 

lines were seeded at a density of 1 x 105 cells/cm2 and allowed to attach overnight. 186 

Following this step the cells were treated with pro-inflammatory cytokines (IFN-γ. TNF-187 

α, IL-1β) with and without MSC-CM. Glucose solutions were prepared in 1x Hepes 188 

buffered saline (HBS comprising 10 mM Hepes, 145 mM NaCl, 5 mM KCl and 1 mM 189 

MgSO4) at three different concentrations (1.1 mM, 5.6 mM and 16.7 mM D-Glucose). 190 

After exposing the cells to cytokines for 24 hours, the media was removed and the 191 

cells were washed twice with 1 ml HBS followed by addition of 1.1 mM glucose solution 192 

for 40 mins. This was then removed and 1.1, 5.6, or 16.7 mM glucose solution added 193 

for a further 20 mins after which the supernatant was removed and stored at -20 °C 194 

until further analysis. Cells were lysed using 200 μl/well/24well plate RIPA buffer 195 

(Sigma) and transferred to fresh tubes, which were maintained on ice with regular 196 

vortexing for 20 mins. Lysates were centrifuged at full speed and 4 °C for 20 mins. The 197 

total protein present in the resulting supernatants was quantified using the Pierce BCA 198 

Protein Assay Kit (Thermo Scientific, UK) according to the manufacturer’s instructions. 199 

Insulin secretion into the supernatants was quantified using ALPCO ELISA kits 200 

(ALPCO, USA) according to the manufacturer’s instructions.  201 

 202 

Characterization of conditioned media 203 
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Following identification of candidates from a secretome screen of MSC-CM (Marwan 204 

and Forsyth, under review) ELISA was used to quantify the concentration of 205 

interleukin-4 (IL-4), interleukin-10 (IL-10), vascular endothelial growth factor (VEGF) 206 

and placental growth factor (PIGF) in our MSC-CM. ELISA development kits were 207 

purchased from PeproTech (UK) and assays were developed for each cytokine or 208 

growth factor according to the manufacturer’s instructions. 209 

 210 

Statistical Analysis 211 

Data are presented as mean ± minus standard deviation (SD) for a given number of 212 

observations (n) as indicated in the Figure legends. Groups of data were compared 213 

using two-tailed unpaired Student t-tests, or One-way ANOVA with post-hoc test 214 

(Graphpad, PRISM software, USA), with significance being accepted if P<0.05.  215 



 10 

RESULTS 216 

 217 

MSC-CM ameliorates cytokine-driven apoptosis in beta cell models 218 

Cytokine concentration was optimized by MTT assay. Following 24h exposure to 1 219 

µg/ml IFNγ, 100 ng/ml TNF-α and 100 ng/ml IL-1β, both BRIN-BD11 and βTC1.6 cells 220 

displayed significant reductions in cellular viability of up to 50% (Figure 1 and Table 221 

S1, Supplement). These concentrations were used for subsequent experiments. In 222 

primary islets, the equivalent concentrations were 100 ng/ml IFNγ, 100 ng/ml TNF-α 223 

and 100 ng/ml IL-1β (Figure 1 and Table S1, Supplement). In both the BRIN-BD11 and 224 

βTC1.6 cell lines, MSC-CM was able to ameliorate (P<0.05 – 0.001) these reductions 225 

in cellular viability (Figure 1). Modest improvements (P<0.05) in viability were observed 226 

in primary islets in response to both IFNγ and IL-1β in the presence of MSC-CM. 227 

However, MSC-CM had little effect on the viability of primary islets following exposure 228 

to TNF-α (Figure 1). 229 

 230 

To confirm that observed reductions in cellular viability resulted from apoptosis rather 231 

than necrosis, the percentage of TUNEL positive cells was assessed following 232 

exposure to optimal concentrations of cytokines, in the presence and absence of MSC-233 

CM (Figure 2A). Exposure to 1 µg/ml IFNγ caused an 8-fold increase in apoptosis in 234 

BRIN-BD11 cells (P<0.001) and a 28-fold increase in βTC1.6 cells (P<0.001). 235 

Treatment of BRIN-BD11 and βTC1.6 cells with 100 ng/ml TNF-α or 100 ng/ml IL-1β 236 

also elicited significant increases in the percentage of TUNEL positive cells (TNF-α: 7-237 

fold increase in BRIN-BD11 cells and 26-fold increase in βTC1.6 cells (P<0.001); IL-238 

1β: 6-fold increase in BRIN-BD11 cells and 21-fold increase in βTC1.6 cells (P<0.001) 239 

(Figure 2B). Positive control (1% H2O2) resulted in 12- and 39-fold increases in 240 

apoptosis (P<0.001) in BRIN-BD11 and βTC1.6 cells respectively (Figure 2B). In all 241 

instances, increases in apoptotic frequency in response to cytokine challenge were 242 

largely reversed by MSC-CM (Figure 2). Representative images suggest that MSC-243 
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CM is also protective against cytokine-driven apoptosis in primary islets (Figure S2, 244 

Supplement).  245 

 246 

MSC-CM restores glucose stimulated insulin secretion by enhancing islet cell viability, 247 

but not function 248 

Examination of insulin secretion in response to 1.1, 5.6 and 16.7 mM D-glucose before 249 

and after the addition of MCS-CM revealed that in all instances, glucose-stimulated 250 

insulin secretion from BRIN-BD11 (Figure 3) and βTC1.6 (Figure 4) cells was 251 

significantly higher (P<0.01-P<0.001) in the presence of MSC-CM. At stimulatory 252 

concentrations of glucose (16.7 mM), a 1.2-fold increase (P<0.05) in insulin release 253 

was observed in untreated BRIN-BD11 cells cultured in the presence of MSC-CM 254 

(Figure 3). A significant impact of MSC-CM on insulin release was not observed in 255 

untreated βTC1.6 cells (Figure 4). However, MSC-CM resulted in significant 256 

enhancements in insulin release in cells treated with 1 µg/ml IFNγ, 100 ng/ml TNF-α 257 

or 100 ng/ml IL-1β for 24h prior to acute exposure to glucose. This observation was 258 

true of all glucose concentrations tested and consistent for both the BRIN-BD11 259 

(Figure 3) and βTC1.6 (Figure 4) cell lines. Culture of BRIN-BD11 cells in the presence 260 

of MSC-CM and 1 µg/ml IFNγ, 100 ng/ml TNF-α or 100 ng/ml IL-1β for 24h prior to 261 

exposure to 16.7 mM glucose resulted in 1.5-fold increases in insulin release in all 262 

instances (P<0.001; Figure 3). In the βTC1.6 cell line, MSC-CM resulted in 1.5-fold 263 

increases in insulin release in response to 16.7 mM glucose in cells treated with IFNγ 264 

or IL-1β (P<0.001) and a 1.7-fold increase in cells treated with TNF-α (P<0.001, Figure 265 

4). 266 

 267 

With the demonstration that MSC-CM protects against beta cell apoptosis, we wished 268 

to determine if the observed increase in insulin secretion was a direct consequence of 269 

enhanced beta cell survival. Therefore, data was standardized according to protein 270 

concentration, which acted as a surrogate for cell number in this instance. Following 271 
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standardization, many of the apparent increases in insulin secretion were abolished 272 

indicating that improvements in glucose-stimulated insulin secretion likely results from 273 

enhancements in the viability of cells, rather than augmentation of beta cell function 274 

(Figure 3, BRIN-BD11 cells and Figure 4, βTC1.6).  275 

 276 

MSCs secrete high concentrations of anti-inflammatory proteins  277 

To explore the content of our MSC-CM, possible candidates were chosen based on 278 

data obtained from a secretome cytokine array (Data not shown). MSC-CM was 279 

analyzed for IL-4, IL-10, VEGF and PIGF content by commercially available ELISA 280 

assays. IL-10 was the most abundant of the candidates and measured at respective 281 

concentrations of 3270 ± 378 pg/ml and 3039 ± 122 pg/ml in RMPI1640 and DMEM 282 

MSC-CM, respectively (Figure 5). Significant concentrations of VEGF (RPMI1640: 283 

2315 ± 61 pg/ml; DMEM: 1423 ± 382 pg/ml), PIGF (RPMI1640: 153 ± 20 pg/ml; DMEM: 284 

109± 46 pg/ml) and IL-4 (RPMI1640: 93 ± 7 pg/ml; DMEM: 107 ± 6 pg/ml) were also 285 

detected (Figure 5). For comparison, the expression of each candidate protein was 286 

also assessed in RMPI1640 or DMEM medium that had not undergone conditioning 287 

by MSCs. These proteins were not detected in either medium indicating that they are 288 

secreted products of hMSCs (Figure 5). 289 

 290 

IL-10 confers protection against IFNγ or TNF-α-induced apoptosis. 291 

We next assessed the impact of each of these candidates on cellular viability and 292 

apoptosis. BRIN-BD11 and βTC1.6 cells were exposed to rising concentrations (0.01 293 

– 100 ng/ml) of recombinant IL-4, IL-10, VEGF and PIGF in the presence or absence 294 

of pro-apoptotic IFNγ, TNF-α, and IL-1β. A significant increase in cell viability was 295 

noted between cells treated with IFN-γ or TNF-α alone and those treated with IFNγ or 296 

TNF-α in the presence of recombinant IL-10. At 1 ng/ml IL-10, BRIN-BD11 cells 297 

showed a 46% improvement (P<0.001) in IFNγ-driven reductions in cellular viability 298 

and a 25% improvement (P<0.01) in response to TNF-α treatment. Similar findings 299 
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were observed in βTC1.6 cell lines (Figure 6). IL-10 appeared to have no effect on IL-300 

1β mediated reductions in cellular viability. Furthermore, addition of IL-4, VEGF or 301 

PIGF conferred little protection against cytokine-driven reductions in cellular viability 302 

(Data not shown). 303 

 304 

We next confirmed that improvements in cellular viability in response to IL-10 resulted 305 

from reductions in apoptosis. BRIN-BD11 and βTC1.6 cells were exposed to IFN-γ or 306 

TNF-α in the presence or absence of 1 ng/ml IL-10 and induction of apoptosis 307 

investigated by TUNEL assay. As shown in Figure 7, significant (P<0.001) reductions 308 

in the number of TUNEL positive cells were observed in the presence of IL-10. In the 309 

BRIN-BD11 cell line, 95% reductions in the number of TUNEL positive cells were 310 

observed in cells treated with IFN-γ and TNF-α in the presence of IL-10, compared 311 

with those treated with IFN-γ or TNF-α alone (Figure 7B, P<0.001). In the βTC1.6, the 312 

number of TUNEL positive cells observed in response to IFN-γ and TNF-α was 313 

reduced by 88% and 84% respectively when IL-10 was present (Figure 7B, P<0.001). 314 

 315 

The anti-apoptotic action of MSC-CM is largely driven by IL-10. 316 

We evaluated the expression of IL-10 receptors in BRIN-BD11 and βTC1.6 cells at the 317 

transcriptional level by RT-PCR. IL-10RA and IL-10RB mRNA transcription was 318 

confirmed in both BRIN-BD11 and βTC1.6 cells as shown in Figure S4 (Supplement). 319 

To determine if the anti-apoptotic actions of MSC-CM was partly facilitated by the anti-320 

inflammatory action of IL-10, MSC-CM was depleted of IL-10 through the addition of 321 

100 ng/ml of anti-IL-10 antibody (PeproTech). IL-10 depleted MSC-CM was applied to 322 

BRIN-BD11 and βTC1.6 cells along with 1 μg/ml IFNγ or 100 ng/ml TNF-α. Cell viability 323 

was significantly reduced in cells treated with IL-10 depleted MSC-CM (Figure 8). In 324 

comparison with cells treated with IFNγ and MSC-CM, BRIN-BD11 cells displayed a 325 

31 ± 1.4% reduction in cell viability when cells were treated with IFNγ plus IL-10-326 

depleted MSC-CM. Under the same conditions, βTC1.6 cells displayed a 32 ± 3.7% 327 
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reduction in viability (Figure 8). Treatment of BRIN-BD11 and βTC1.6 cells with TNF-328 

α plus IL-10 depleted MSC-CM resulted in respective 33 ± 3.2% and 30 ± 4.1% 329 

reductions in cell viability when compared with cells cultured in the presence of TNF-α 330 

plus complete MSC-CM (Figure 8). Furthermore, an almost complete reversal of the 331 

anti-apoptotic effect of MSC-CM was observed in the presence of the anti-IL-10 332 

antibody (Figure 9).   333 
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DISCUSSION 334 

 335 

The immunomodulatory effects of MSCs are well established. Although the 336 

mechanism remains unclear, several studies have shown that MSC transplantation 337 

can improve the metabolic profile of diabetic animal models [15]. Some studies have 338 

suggested a cardinal role for the secretome and the paracrine signals it exerts (rather 339 

than stem cell differentiation) in the regenerative effects observed following therapeutic 340 

stem cell administration [16]. It is thought that the secretome consists of a complex set 341 

of proteins, growth factors, cytokines, angiogenic factors, hormones and extracellular 342 

matrix proteins [17], which have important biological roles including replication, cell 343 

growth, differentiation, and apoptosis [18]. In addition to the direct secretion of soluble 344 

factors there is also increasing attention focused on the release of extracellular 345 

vesicles (exosomes, microvesicles) carrying potentially therapeutic, bioactive cargo 346 

[20–22]. Several studies have investigated the manner by which these soluble factors 347 

act and it is generally thought that they may either act directly, by mediating 348 

intracellular pathways in injured cells, or indirectly, by inducing the secretion of 349 

functionally active products from adjacent tissues [19]. 350 

 351 

In the present study, we sought to evaluate the anti-apoptotic effect of the MSC 352 

secretome. Conditioned media from human bone marrow derived MSCs (MSC-CM) 353 

was added to insulin-secreting cell lines and primary islets in the presence or absence 354 

of cytokines known to promote beta cell apoptosis, namely IFN, TNF-, and IL-1 a 355 

synergistic effect of these cytokines in the demise of the beta cell [23]. However, the 356 

concentrations and interaction of pro-inflammatory cytokines are thought to vary 357 

significantly during the development of T1DM. This may explain the different levels of 358 

protection achieved through blocking the action of these cytokines in rat models of 359 

autoimmune diabetes [24]. The current study sought to understand the individual 360 

contribution of each cytokine in beta cell apoptosis and to identify specific mechanisms 361 
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by which MSC-CM may confer protection against this process. Therefore, cells were 362 

exposed to individual cytokines and their independent effects studied.  363 

 364 

Unsurprisingly, IFN TNF- and IL-1 each induced apoptosis in beta cell models and 365 

primary islets. Addition of MSC-CM to cell lines and primary islets largely reversed 366 

cytokine-driven apoptosis. This is consistent with prior observations that MSCs and 367 

their secretome confer protection against cytokine-driven islet loss and that islet 368 

function is enhanced islet function via secreted products [25]. Here, MSC-CM restored 369 

glucose-stimulated insulin secretion in cytokine-treated cell lines. However, it has been 370 

shown that enhancements in insulin secretion in response to MSC co-culture likely 371 

result from improvements in cell viability rather than enhancements in the secretory 372 

function of the cells [26]. Our insulin secretory data was therefore standardized 373 

according to the protein content of the cells. The enhancements in glucose stimulated 374 

insulin secretion observed in the presence of MSC-CM were lost upon standardization 375 

of the data, suggesting that this effect was indeed linked to improvements in cellular 376 

viability rather than any direct enhancement in functionality of the cells. 377 

 378 

Soluble factors secreted by MSCs are believed to alter the secretion profile of dendritic 379 

cells leading to increased production of anti-inflammatory cytokines like IL-10 and 380 

decreased production of inflammatory cytokines like IFN-γ and TNF-α [11]. MSCs can 381 

reduce T cell infiltration into pancreatic islets and the progression to diabetes via the 382 

induction of IL10-secreting FOXP3(+) T cells [27]. MSCs produce anti-apoptotic effects 383 

not only through their ability to restore the local microenvironment, but also by 384 

specifically producing anti-inflammatory or anti-apoptotic proteins including IL-10 [28]. 385 

Tang and colleagues also report that MSC-treated cardiac cells displayed lower levels 386 

of pro-apoptotic factors including Bax and cleaved caspase 3 while the levels of pro-387 

angiogenic factors including VEGF and FGF were increased [29]. Consistently, the 388 
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restoration of cardiac function in response to MSC therapy has been linked to the 389 

secretion of paracrine protective factors rather than myocardial regeneration [30].  390 

 391 

In the current study, characterization of MSC-CM revealed significant concentrations 392 

of IL-4, IL-10, PIGF and VEGF. Prior work has shown that IL-4 and IL-10 can directly 393 

impact beta cell function and promote beta cell viability. Furthermore, circulating levels 394 

of both cytokines are reduced in T1D [31–33]. The potential cytoprotective 395 

mechanisms of IL-4 and IL-10 in beta cells are complex. As summarized by Russell 396 

and Morgan [34], both cytokines are thought to reduce oxidative stress and to inhibit 397 

various inflammatory pathways including NF-B, likely via stabilization of IB [34]. The 398 

potential roles of PIGF and VEGF in beta cell survival are less well studied. PIGF is a 399 

member of the VEGF sub-family with confirmed roles in angiogenesis and vascular 400 

regeneration. PIGF-overexpressing transgenic mice displayed inflammation and 401 

evidence of metabolic disease when receiving a high fat diet [35]. It has been 402 

suggested that VEGF governs the formation of intra-islet capillaries during 403 

embryogenesis [36] and improves graft revascularization when islets are implanted 404 

[37]. However, of the four abundant candidates identified in our MSC-CM only IL-10 405 

was found to prevent cytokine-driven apoptosis. Importantly, the anti-apoptotic effect 406 

of IL-10 was only observed in response to IFNγ, or TNF-α challenge and not in 407 

response to IL-1β suggesting that the pathways involved are highly specific. IL-10 408 

signals via unique receptor complexes that do not share homology with IL-4, PIGF, or 409 

VEGF signaling. Expression of both isoforms of the IL-10 receptor (IL-10RA and IL-410 

10RB) was confirmed in the two cell lines used in this study (Supplement, Figure S3), 411 

which is consistent with findings in human islets [34]. Indeed, inhibition of IL-10 action 412 

by addition of blocking antibody reversed the anti-apoptotic effects of MSC-CM.  413 

Overall, the protective effects of MSC-CM on islet cell survival appear to be largely IL-414 

10-dependent. 415 

CONCLUSION 416 
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 417 

In this study we show that (1) factors secreted from MSCs are sufficient to promote 418 

islet beta cell survival in response to cytokine challenge, (2) that this increase in 419 

survival is able to sustain glucose-stimulated insulin secretion in the face of 420 

inflammatory challenge and (3) that IL-10 plays a significant part in the anti-apoptotic 421 

effects of MSC-CM, which may indicate some of the mechanisms by which MSCs 422 

confer protection on pancreatic islet beta cells.   423 
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FIGURE LEGENDS 560 

 561 

Figure 1: MSC-CM protection against cytokine-driven reductions in islet cell 562 

viability. 563 

Following exposure to increasing concentrations of IFNγ, TNF-α or IL-1β for 24 h, the 564 

cellular viability of BRIN-BD11 cells, βTC1.6 cells and primary islets grown in standard 565 

non-conditioned medium (NCM) or MSC-conditioned medium (CM) was assessed by 566 

colorimetric MTT assay. Data are normalized to untreated controls and presented as 567 

mean ± standard deviation (SD). n=4 with all experiments assayed in duplicate. 568 

*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 compared with non-conditioned 569 

media. MSC-CM, Mesenchymal Stem Cell Conditioned Medium; IFNγ, Interferon 570 

gamma; TNF-α, tumour necrosis factor alpha; IL-1β, Interleukin 1 beta.  571 

 572 

Figure 2: MSC-CM confers protection against cytokine-driven apoptosis in islet 573 

cell models. 574 

BRIN-BD11 and βTC1.6 cells were exposed to 1 µg/ml IFN-γ, 100 ng/ml TNFα, and 575 

100 ng/ml IL-1β for 24h in the presence or absence of MSC-CM and the induction of 576 

apoptosis assessed by TUNEL assay. (A) Fluorescent images showing the ability of 577 

MSC-CM to reduce the % positive TUNEL cells after cytokine challenge. 1% H2O2 578 

acted as a positive control in these experiments. Blue staining represents DAPI 579 

staining of the nuclei while green staining indicates TUNEL positive cells (B) The % 580 

positive TUNEL cells was measured by calculating the number of TUNEL positive cells 581 

divided by the total number of cells. Data are presented as mean ± standard deviation 582 

(SD) with n=3.  ***P<0.001 compared with untreated controls.  The scale bar in all 583 

images equals 100 µm. MSC-CM, Mesenchymal Stem Cell Condition Media; IFNγ, 584 

Interferon gamma; TNF-α, tumour necrosis factor alpha; IL-1β, Interleukin 1 beta. 585 

 586 

 587 
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Figure 3: MSC-CM restores glucose-stimulated insulin secretion in BRIN-BD11 588 

cells following cytokine challenge. 589 

BRIN-BD11 cells were exposed to 1 µg/ml IFN-γ, 100 ng/ml TNFα, and 100 ng/ml IL-590 

1β for 24h prior to exposure to rising concentrations of D-Glucose (1.1, 5.6, 16.7 mM) 591 

in the presence or absence of MSC-CM. Insulin secretion was measured by ELISA 592 

and data presented according to insulin concentration or insulin concentration as a 593 

function of protein content. Data are presented as mean ± standard deviation (SD). 594 

n=4 with all experiments assayed in duplicate. *P<0.05, **P<0.01, and ***P<0.001 595 

compared with corresponding treatments in the absence of MSC-CM. MSC-CM, 596 

Mesenchymal Stem Cell Conditioned Media; IFN-γ, Interferon gamma; TNFα, Tumour 597 

Necrosis Factor alpha; IL-1β, Interleukin-1 beta. 598 

 599 

Figure 4: MSC-CM restores glucose-stimulated insulin secretion βTC1.6 cells 600 

following cytokine challenge. 601 

βTC1.6 cells were exposed to 1 µg/ml IFN-γ, 100 ng/ml TNFα, and 100 ng/ml IL-1β for 602 

24h prior to exposure to rising concentrations of D-Glucose (1.1, 5.6, 16.7 mM) in the 603 

presence or absence of MSC-CM. Insulin secretion was measured by ELISA and data 604 

presented according to insulin concentration or insulin concentration as a function of 605 

protein content. Data are presented as mean ± standard deviation (SD). n=4 with all 606 

experiments assayed in duplicate. *P<0.05, **P<0.01, and ***P<0.001 compared with 607 

corresponding treatments in the absence of MSC-CM. MSC-CM, Mesenchymal Stem 608 

Cell Conditioned Media; IFN-γ, Interferon gamma; TNFα, Tumour Necrosis Factor 609 

alpha; IL-1β, Interleukin-1 beta. 610 

 611 

Figure 5: Quantification of candidate anti-inflammatory and anti-apoptotic 612 

proteins in MSC-CM 613 

The concentration of candidate anti-inflammatory or anti-apoptotic proteins in MSC-614 

CM was quantified by ELISA assays. The results showed a high concentration of IL-615 
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10 in MSC-CM Irrespective of whether RMPI1640 (A) or DMEM (B) medium was 616 

conditioned. Candidates were not detected in non-conditioned media. Data are 617 

presented as mean ± standard deviation (SD). N=3 with samples assayed in duplicate.   618 

 619 

Figure 6: Recombinant IL-10 protects against IFN-γ and TNF-α-driven reductions 620 

in cellular viability. 621 

The viability of BRIN-BD11 and βTC1.6 cells was assessed by calorimetric MTT assay 622 

after exposure to IFNγ, TNF-α, or IL-1β ± rising concentrations of IL-10 as indicated in 623 

the Figure. Data are normalized to untreated controls and presented as mean ± 624 

standard deviation (SD). N=4 with all experiments assayed in duplicate. **P<0.01 and 625 

***P<0.001. IFNγ, Interferon gamma; TNF-α, tumour necrosis factor alpha; IL-1β, 626 

Interleukin 1 beta; IL-10, Interleukin 10.  627 

 628 

Figure 7: Recombinant IL-10 protects against IFN-γ and TNF-α-driven apoptosis. 629 

(A) Fluorescent images showing the ability of IL-10 (1 ng/ml) to reduce the % positive 630 

TUNEL cells after treatment with a combination of IL-10 and 1 μg/ml of IFN-γ or 1 μg/ml 631 

of TNF-α. 1% H2O2 acted as a positive control in these experiments. Blue staining 632 

represents DAPI staining of the nuclei while green staining indicates TUNEL positive 633 

cells (B) The % positive TUNEL cells were measured by calculating the number of 634 

positive TUNEL cells divided by the total number of cells. Data is presented as mean 635 

± standard deviation (SD) with n=3.  ***P<0.001 and ****P<0.0001 compared with 636 

untreated controls.  The scale bars in all images equal 100 µm. IFNγ, Interferon 637 

gamma; TNF-α, tumour necrosis factor alpha; IL-10, Interleukin 10.  638 

 639 

Figure 8: MSC-CM protection against beta cell susceptibility to IFN-γ or TNF-α 640 

challenge is IL-10-dependent 641 

The viability of BRIN-BD11 (A) and βTC1.6 cells (B) was assessed by colorimetric MTT 642 

assay after the addition of 100 ng/ml of anti-IL-10 ± IFN-γ or TNF-α. Data are 643 
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normalized to untreated controls and presented as mean ± standard deviation (SD). 644 

n=3 with all experiments assayed in duplicate. **P<0.01 and ***P<0.001 compared 645 

with corresponding non-conditioned media control (i.e. RMPI or DMEM). MSC-CM, 646 

Mesenchymal Stem Cell Conditioned Media; IFN-γ interferon gamma, TNF-α tumour 647 

necrosis factor alpha. 648 

 649 

Figure 9: Blockage of IL-10 prevents the anti-apoptotic activities of MSC-CM. 650 

BRIN-BD11 and βTC1.6 cells were exposed to 1 µg/ml IFN-γ or 100 ng/ml TNFα, for 651 

24h in the presence or absence of IL-10 depleted MSC-CM (100 ng/ml anti-IL-10 652 

antibody) and the induction of apoptosis assessed by TUNEL assay. (A) Fluorescent 653 

images showing the inability of IL-10 depleted MSC-CM to reduce the % positive 654 

TUNEL cells after cytokine challenge. 1% H2O2 acted as a positive control in these 655 

experiments. Blue staining represents DAPI staining of the nuclei while green staining 656 

indicates TUNEL positive cells (B) The % positive TUNEL cells was measured by 657 

calculating the number of TUNEL positive cells divided by the total number of cells. 658 

Data are presented as mean ± standard deviation (SD) with n=3.  ***P<0.001 659 

compared with untreated controls.  The scale bar in all images equals 100 µm. MSC-660 

CM, Mesenchymal Stem Cell Condition Media; IFNγ, Interferon gamma; TNF-α, 661 

tumour necrosis factor alpha; IL-10, Interleukin 10. 662 


