

Title	Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems
Author(s)	Chowdhury, Pratiti Home; Okano, Hitoshi; Honda, Akiko; Kudou, Hitomi; Kitamura, Gaku; Ito, Sho; Ueda, Kayo; Takano, Hirohisa
Citation	Environmental Pollution (2018), 235: 223-234
Issue Date	2018-04
URL	http://hdl.handle.net/2433/254347
Right	© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社 版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

1	Aqueous and organic extract of PM _{2.5} collected in different seasons and cities of
2	Japan differently affect respiratory and immune systems
3	
4	Pratiti Home Chowdhury, Hitoshi Okano, Akiko Honda*, Hitomi Kudou, Gaku Kitamura,
5	Sho Ito, Kayo Ueda, Hirohisa Takano
6	
7	Environmental Health Division, Department of Environmental Engineering, Graduate
8	School of Engineering, Kyoto University. Kyoto, Japan
9	
10	Capsule: Respiratory health effects of PM _{2.5} extracts depend on their components
11	
12	*Corresponding author: Dr. Akiko Honda, Environmental Health Division, Department
13	of Environmental Engineering, Graduate School of Engineering, Kyoto University. C
14	Cluster, Katsura Campus, Nishikyo-ku, Kyoto 615-8540, Japan.
15	Tel.: +81-75-383-3345; Fax: +81-75-383-3344
16	E-mail: akko@health.env.kyoto-u.ac.jp

18 **ABSTRACT** (278 words)

Particulate matter with diameters <2.5 µm (i.e., PM_{2.5}) has multiple natural and 19anthropological sources. The association between PM2.5 and the exacerbation of 20respiratory allergy and asthma has been well studied, but the components of PM_{2.5} that 21are responsible for allergies have not yet been determined. Here, we elucidated the effects 22of aqueous and organic extract of PM2.5 collected during four seasons in November 2014-23December 2015 in two cities (Kawasaki, an industrial area and Fukuoka, an urban area 24affected by transboundary pollution matter) of Japan on respiratory health. Ambient PM_{2.5} 2526was collected by high-volume air samplers and extracted into water soluble and lipid 27soluble components. Human airway epithelial cells, murine bone marrow-derived antigen-presenting cells (APC) and splenocytes were exposed to $PM_{2.5}$ extracts. We 28measured the cell viability and release of interleukin (IL)-6 and IL-8 from airway 29epithelial cells, the DEC205 and CD86 expressions on APCs and cell proliferation, and 30 31TCR and CD19 expression on splenocytes. The water-soluble or aqueous extracts, especially those from Kawasaki in fall, had a greater cytotoxic effect than the lipid-32soluble or organic extracts in airway epithelial cells, but they caused almost no pro-33 34inflammatory response. Extract of fall, especially the aqueous extract from Fukuoka, increased the DEC205 and CD86 expressions on APC. Moreover, aqueous extracts of fall, 35

summer, and spring from Fukuoka significantly increased proliferation of splenocytes.
Organic extract of spring and summer from Kawasaki significantly elevated the TCR
expression, and organic extract of summer from Kawasaki decreased the CD19
expression. These results suggest that PM_{2.5} extract samples are responsible for
cytotoxicity in airway epithelial cells and for activating APCs and T-cells, which can
contribute to the exacerbation of respiratory diseases such as asthma. These effects can
differ by PM_{2.5} components, collection areas and seasons.

46 Introduction

According to a World Health Organization (WHO) factsheet issued in 2016, air 47pollution is causing alarming health hazards around the world, and approx. 88% of the 48 49 premature deaths due to air pollution have occurred in low- and middle-income countries (http://www.who.int/mediacentre/factsheets/fs313/en/). Several epidemiological studies 50have shown a close association between ambient particulate matter (PM) in the air and 51mortality (Lo et al. 2017, Zeng et al. 2017). Silva et al. (2013) have estimated that 2.1 52million premature respiratory deaths are due to cardiopulmonary diseases and lung cancer 53related to anthropogenic PM with diameters <2.5 µm (i.e., PM_{2.5}). Their study also 54indicated that mortality due to PM_{2.5} in East Asia and North America has increased 55recently due to the anthropogenic emmision burden and partially due to climate change. 56Air pollution and its ability to increase respiratory disorders such as asthma have 57been studied at various cities in different European countries and United States (Pope and 5859Dockery 2006). For example, an epidemiological study demonstrated that PM_{2.5} exacerbates nasal inflammation in asthmatic children (Nikasinovic et al. 2006). Mirabelli 60 et al. (2016) have described a model which derived exacerbation of asthma in asthmatic 61individuals may begin to increase when the PM_{2.5} level is \geq 7.07 µg/m³, and also the 62prevalence of asthma symptoms increases by 0.5% with each 1.0 μ g/m³ increase in PM_{2.5}. 63

64	Naser et al. (2008) have showed that the $PM_{2.5}$ level in an urban area of Saitama, Japan is
65	profoundly affected by the $PM_{2.5}$ from vehicular sources. Gautam et al. (2016) have
66	compared multiple Asian cities in which high levels of $PM_{2.5}$ were generated mostly from
67	cooking and heating with solid fuel and vehicular movements. Liang et al. (2016) have
68	reviewed multiple cities' $PM_{2.5}$ sources and observed that industrial activities, coal
69	combustion, vehicular sources, soil crust, biomass burning, dust storm and more were the
70	main sources of PM _{2.5} emission.

PM_{2.5} can be transported by air to distant locations. Some parts of Japan have suffered from transboundary pollution such as urban and industrialized particulate matter (Pan et al. 2016). Since Japan is one of the developed countries where asthma and respiratory allergies are consistently increasing (Fukutomi et al. 2011), it is of concern that PM_{2.5} from both inside and outside the country affects the increasing rates of respiratory diseases.

Several studies demonstrated that PM_{2.5} extracts have detrimental effects on
respiratory health (Cachon et al. 2014; Alfaro-Moreno et al. 2009). Fuentes-Mattei et al.
(2010) have suggested that organic extract of PM_{2.5} possibly suppress the role of pregnane
X receptor (PXR) and CYP3A5 on human epithelial cells which trigger an inflammatory
response. An epidemiological study demonstrated that in winter, the outbreaks of

82	respiratory allergy and asthma are higher than those in other seasons (Habre et al. 2014).
83	Kurai et al. (2016) reported that winter PM samples from western Japan augmented
84	respiratory allergy symptoms in mice. Takemura et al. (2016) found no correlation
85	between seasonal respiratory symptoms' variation and common allergens as pollens,
86	house dust mites, molds, and dog or cat dander. They suggested that the worsening of
87	these symptoms may be associated with environmental conditions and pollution.
88	However, very few studies have identified the precise correlations between
89	characteristics of seasonally variable $PM_{2.5}$ and their effects on the respiratory and
90	immune systems. The characteristics of ambient $PM_{2.5}$ vary with location and season, and
91	so do their effects (Mirowsky et al. 2015). However, the contributing factors of $PM_{2.5}$ for
92	respiratory allergy and their biological responses have not been fully understood. It is
93	necessary to determine whether different types of components of seasonally variable
94	ambient $PM_{2.5}$ extracts affect the human respiratory and immune systems.
95	We conducted the present study to identify the association between seasonal
96	variations of $PM_{2.5}$ and the effects on respiratory allergy and inflammation in two cities
97	of Japan. First, aqueous and organic extracts of PM2.5 were collected from Kawasaki (an
98	industrial area) and Fukuoka (an urban area affected by transboundary PM) during the

99 spring, summer, fall and winter seasons. We then exposed human airway epithelial cells,

murine bone marrow-derived antigen-presenting cells (APC), and murine splenocytes to
the aqueous and organic extract of PM_{2.5}. We examined the cell viability, proliferation,
cytokines, and cell surface markers associated with respiratory allergy and inflammation.
We also characterized possible contributing components of PM_{2.5} that affect respiratory
diseases such as asthma.

105

115

106 Material and methods

105	D14		1.	• .
10'7	PM_{25}	camp	lina	CITOC
101	1 1112.5	sump	ung	SILES

The city of Kawasaki has long been one of the premium industrial and business hubs in
Kanagawa Prefecture, a coastal prefecture south of Tokyo. It is known internationally for
its global industrial enterprises. Honda et al. (2017) demonstrated that a PM_{2.5} extract
from Kawasaki had a pro-inflammatory effect on airway cells and activated immune cells,
causing respiratory allergy.
In contrast, the city of Fukuoka is situated in southwestern Japan, on an island
different from Japan's largest/main island, at approx. 545 miles (878 km) from Kawasaki.

- 116 from China are most likely to be transported to Japan during the monsoon season, i.e.,
- 117 winter and spring (Yoshino et al. 2016). Moreover, as the city of Fukuoka is one of the

Fukuoka Prefecture has suffered from transboundary emission from China. Emissions

largest cities in Japan and also a commercial and industrial hub, the local emissions arealso a significant contributor to the ambient air.

120

121 *PM*_{2.5} sampling and extraction

A high-volume air sampler (Sibata Scientific Technology, Saitama, Japan) equipped with
 a PM_{2.5} impactor (Tokyo Dylec, Tokyo) was installed at one collection point of each cities

124 of Kawasaki and Fukuoka for 4–5 days at a flow rate of 740 L/min.

125During each of the four seasons, namely spring (March, 2015), summer (July-August, 2015), fall (Nov.-Dec., 2014), and winter (January, 2015), ambient PM_{2.5} was collected 126127by the air samplers' quartz-fiber filters (one filter/each season) and later divided for the 128preparation of aqueous extraction and organic extraction. Water-soluble fractions were 129extracted from half-cut PM2.5-collected quartz-fiber filters using sonication and distilled water (deionized and RNase free, Wako Pure Chemical Industries, Osaka, Japan) at 65°C. 130 131The temperature helps to stop bacterial growth in the extract (Ministry of Health and 132Welfare Ordinance, 1951). The aqueous crude extracts were centrifuged.

Lipid-soluble fractions were extracted from the rest of the half-cut filters using Soxhlet and dichloromethane (dioxin analysis-grade, Kanto Chemicals, Tokyo) for 16 h. The organic crude extracts were centrifuged at 4,800 rpm 60 min. Both fractions were evaporated and then set under a gentle stream of nitrogen gas flow until they were dry. Blank filters were also handled in the same manner. The dried extracts were resuspended in water/dimethylsulfoxide (DMSO, molecular biology-grade, Wako) (1:1) to make the organic extracts and the aqueous extracts at a concentration of 75 mg/mL using weight of $PM_{2.5}$ collected on filter and stored at 4°C in darkness until the bio-assay. The reason we used DMSO and water in both extracts as solvent is to make the background same as far as possible both in organic and aqueous extracts and to improve solubility of both extracts after dry by adding DMSO and water.

At the time of the bioassay, organic or aqueous extracts of $PM_{2.5}$ were diluted to give a final concentration of 0, 7.5, 22.5, or 75 µg/mL in media (0.05% DMSO, 0.05% water). The doses were selected based on our prior literature (Honda et al. 2017).

The percentages of mass concentration of organic extracts and aqueous extracts in that of PM_{2.5} mass on filter from Kawasaki were 10.8% and 63.4% (spring), 7.0% and 44.3% (summer), 17.3% and 51.4% (fall), 12.4% and 38.6% (winter), respectively. The percentages of mass concentration of organic extracts and aqueous extracts in that of PM_{2.5} from Fukuoka were 17.4% and 59.7% (spring), 9.3% and 44.8% (summer), 14.2% and 58.5% (fall), 13.4% and 56.8% (winter), respectively. Corresponding dose of total PM_{2.5} mass by using data on extraction efficiency is shown in suppl. table 1.

154

155 Chemical and biological analyses

156 Chemical characterization was done following the protocol from the Japan Ministry of157 the Environment. The heavy metal analysis in organic and aqueous extracts was done by

158 inductively coupled plasma mass spectrometry (ICP-MS). The analysis of ions in organic

159	and aqueous extracts was performed using ion chromatography, and that of polycyclic
160	aromatic hydrocarbons (PAHs) only in organic extract was done by Gas Chromatography/
161	Mass Chromatography (GC/MS), and that of elemental carbon (EC) and organic carbon
162	(OC) in organic and aqueous extracts were done by the interagency monitor of protected
163	visual environments (IMPROVE) method. To measure the biological components of the
164	$PM_{2.5}$ extracts, we performed an endotoxin test and a β -glucan test (both from Associates
165	of Cape Cod, Falmouth, MA, USA) per the manufacturer's instructions.

167 *Cell culture and PM*_{2.5} *exposure*

168 <u>Airway epithelial cells</u>

169 The airway epithelial cell line BEAS-2B was purchased from the European Collection of

170 Cell Cultures (Salisbury, Wiltshire, UK) and maintained by subculture in 37°C at 5% CO₂

171 in LHC-9 medium. Cells were exposed to an aqueous or organic extract of $PM_{2.5}$ at the

172 concentrations of 0, 7.5, 22.5 or 75 μ g/mL for 24 hr. We measured the cell viability and

the secretion of the cytokines IL-6 and IL-8 from the airway epithelial cells after 24 hr of

- 174 exposure to the aqueous or organic extract by conducting a Water Soluble Tetrazolium
- 175 Salts (WST-1) assay and quantikine Enzyme Linked Immuno Sorbent Assay (ELISA),

176 respectively.

178 Immune cells (APCs and splenocytes)

Single-cell suspensions at the final density of 1.0×10^6 /mL for APCs and splenocytes 179were prepared after sacrificing NC/NgaTendCrlj male mice (Chares River Japan, Osaka, 180 Japan) by cervical dislocation and exsanguination. The procedures used in all animal 181 studies were approved by the Animal Research Committee at Kyoto University. 182183 APCs were maintained in RPMI 1640 basal medium (Invitrogen, Grand Island, NY) containing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) to 184 185induce dendritic cell during cell culture. Splenocytes were also incubated in basal RPMI 1640 medium. APCs and splenocites were exposed to the same doses of aqueous or 186organic extracts of PM_{2.5} as those used for the airway epithelial cells, at the concentration 187

of 0, 7.5 and 75 µg/mL. The details of the cell preparations were as described previously
(Chowdhury et al. 2017).

After 24 hr of exposure to each extract, we measured the cell viability and the expression of two cell surface molecules of APCs (i.e., DEC205, a dendritic cell marker; CD86, an APC marker) by performing a WST-1 assay and fluorescence-activated cell sorter (FACS) analysis, respectively. The cell viability, cell proliferation, and the expression of two cell surface molecules of splenocytes (T-cell receptor [TCR], a T-cell

11

marker; CD19, a B-cell marker) were measured by a WST-1 assay, 5-Bromo-2'deoxyuridine (BrdU), ELISA, and FACS analysis, respectively.

197

- 198 Experimental protocol
- 199 <u>Cell Viability</u>
- 200 We measured the cell viability by WST-1 assay using the Premix WST-1 Cell Proliferation
- 201 Assay System (TaKaRa Bio, Shiga, Japan). WST-1 reagent was added to each well of a
- 202 96-well plate in 1/10 of volume of cell suspension and mixed well by gently rocking the
- 203 plate. Cells were incubated with WST-1 reagent at 37°C for 3 hr (BEAS-2B), 30 min
- 204 (APC) and 4 hr (splenocytes). After the incubation, absorbance was measured on an
- 205 iMark Microplate Absorbance Reader (Bio Rad Laboratories, Hercules, California) with
- the wavelength at 450 nm and a reference wavelength at 630 nm. The results are expressed
- as the percentage of viable cells compared to untreated cells ($0 \mu g/mL$).
- 208

209 Quantitation of Pro-Inflammatory Proteins in the Culture Supernatants

- 210 After exposure to extracts of PM_{2.5}, the medium was harvested and centrifuged at 300g
- for 5 minutes to remove floating cells. The supernatants were stored at -80°C for further
- analysis. The levels of IL-6 and IL-8 (Thermo Scientific, Waltham, Massachusetts) in the

213	supernatants were measured by ELISA, according to the manufacturer's instructions.
214	Absorbance was measured on the iMark Microplate Absorbance Reader with the
215	wavelength set at 450 nm and a reference wavelength at 550 nm. The detection limits of
216	IL-6 and IL-8 were <1 pg/mL and <2 pg/mL respectively.

218 Fluorescence-Activated Cell Sorter Analysis

For the FACS analysis, the following monoclonal antibodies were used: Mouse BD Fc
Block purified anti-mouse CD16/CD32 (Becton Dickinson), DEC205 (NLDC-145, PE-

- 221 conjugated; BioLegend, San Diego, California), Rat IgG2a, k Isotype Control (RTK2758,
- 222 PE-conjugated; BioLegend), CD86 (GL-1, PEconjugated; Becton Dickinson), Rat IgG2a,
- 223 k Isotype Control (R35-95, PE-conjugated; Becton Dickinson), Hamster AntiMouse
- 224 TCR-βChain (H57-597, FITC-conjugated; Becton Dickinson), Hamster IgG2, 11 Isotype
- 225 Control (Ha4/8, FITC-conjugated; Becton Dickinson), Rat Anti-Mouse CD19 (1D3, PE-
- 226 conjugated; Becton Dickinson), and Rat IgG2a, k Isotype Control (R35-95, PE-
- 227 conjugated; Becton Dickinson). After the exposure of the PM_{2.5} extracts, the cells were
- resuspended in 50 µL phosphate-buffered saline (PBS) with 0.3% bovine serum albumin
- and 0.05% sodium azide (Wako) and then incubated with 0.05 to 1 μg of each antibody
- 230 for 45 minutes at 4°C. After incubation, the cells were washed, and the fluorescence was

measured by a FACSCalibur (Becton Dickinson). For each sample, fluorescence data of
10,000 cells were collected, and positive cells expressed as the percentage events were
calculated.

234

235 <u>Cell Proliferation</u>

Cell proliferation was measured with a Cell-ProliferationELISA Kit (Roche Molecular 236237Biochemicals, Mannheim, Germany), according to the manufacturer's instructions. This technique is based on the incorporation of the pyrimidine analogue BrdU instead of 238239thymidine into the DNA of proliferating cells. 5-Bromo-2´-deoxyuridine incorporated into DNA is measured by a sandwich-type enzyme immunoassay using monoclonal anti-240241BrdU antibodies. Splenocytes were exposed to extracts of PM_{2.5} for 72 hours, and cell proliferation was measured by adding BrdU to each well 20 hours before the measurement. 242Absorbance was measured on the iMark Microplate Absorbance Reader with the 243244wavelength set at 450 nm and a reference wavelength at 630 nm.

245

246 Statistical analysis

The data are presented as the mean ± standard error of the mean (SEM) for each
experimental group (n=4). Differences among groups were analyzed using Tukey's test

249	(Excel Statistics 2012, Social Survey Research Information, Tokyo). A <i>p</i> -value <0.05 was
250	considered significant. Relationships between components in aqueous extract and cell
251	viability were tested using Pearson's correlation.
252	
253	Results
254	Ions, Metals, OC, EC and PAHs in the Aqueous and Organic $PM_{2.5}$ Extracts
255	
256	The chromatography results revealed the ions, metals, and OC and EC from both the
257	aqueous and organic extract samples. The ion and metal concentrations are illustrated for
258	the extracts from Kawasaki (Fig. 1A) and Fukuoka (Fig. 1B). It was noticeable that the
259	aqueous extracts contained higher concentrations of ions, among which SO_4^{2-} , NO_3^{-} and
260	$\mathrm{NH_{4}^{+}}$ were particularly high in both cities. On the other hand, Na, K and Ca were high in
261	aqueous extracts during almost all seasons at both locations. OC3 was highest in the
262	concentration in both cities especially in organic fall extract followed by OC2. Level of
263	EC1, EC2 and EC3 were low compared to OC (Figure 2 A,B)
264	As shown in Figure 2C, the concentrations of PAHs including Benzo
265	[b]fluoranthene, Benzo[e]pyrene, Indeno[1,2,3-cd]pyrene, and Benzo[g,h,i]pyrene were
266	particularly high in the summer and fall samples from Kawasaki.

267	The endotoxin level was under the detection limit (0.0078 EU/mL) for almost all
268	samples. β -glucan was detected in the aqueous extracts from both cities. The β -glucan
269	levels in aqueous extracts (75 μ g/mL) from Kawasaki collected in the spring, summer,
270	fall and winter were 494.60, 648.26, 330.56 and 359.63 pg/mL, respectively. Those from
271	Fukuoka collected in the spring, summer, fall and winter were 473.84, 764.53, 436.46
272	and 181.06, respectively. The β -glucan level in a blank filter was 5.97 pg/mL, and the
273	level in almost all of the organic extracts from both cities were under the detection level
274	(data not shown).
275	
276	The PM _{2.5} Extracts' Effects on Airway Epithelial Cells
277	Cell viability
278	
	Under exposure to the 75 μ g/mL aqueous extract of PM _{2.5} from Kawasaki, the viability
279	Under exposure to the 75 μ g/mL aqueous extract of PM _{2.5} from Kawasaki, the viability of the airway epithelial cells was significantly decreased in spring (16.43% lower than
279 280	Under exposure to the 75 μ g/mL aqueous extract of PM _{2.5} from Kawasaki, the viability of the airway epithelial cells was significantly decreased in spring (16.43% lower than the control value), summer (21.14% lower) and fall (31.68% lower) but not in the winter
279 280 281	Under exposure to the 75 μ g/mL aqueous extract of PM _{2.5} from Kawasaki, the viability of the airway epithelial cells was significantly decreased in spring (16.43% lower than the control value), summer (21.14% lower) and fall (31.68% lower) but not in the winter (Fig. 3A). The organic extract exposure at the same dose did not show much variation
279 280 281 282	Under exposure to the 75 µg/mL aqueous extract of PM _{2.5} from Kawasaki, the viability of the airway epithelial cells was significantly decreased in spring (16.43% lower than the control value), summer (21.14% lower) and fall (31.68% lower) but not in the winter (Fig. 3A). The organic extract exposure at the same dose did not show much variation with seasons, and cell viability was only significantly higher with aqueous extract (Fig.
279 280 281 282 283	Under exposure to the 75 µg/mL aqueous extract of PM _{2.5} from Kawasaki, the viability of the airway epithelial cells was significantly decreased in spring (16.43% lower than the control value), summer (21.14% lower) and fall (31.68% lower) but not in the winter (Fig. 3A). The organic extract exposure at the same dose did not show much variation with seasons, and cell viability was only significantly higher with aqueous extract (Fig. 3A).

At dose 22.5 μ g/mL exposure, the aqueous extracts collected in the summer and

285	fall lowered the cell viability, whereas the organic extracts collected in the spring, summer
286	and winter increased the cells' viability (Suppl. Fig. S1C). The 7.5 $\mu g/mL$ aqueous extract
287	collected in the fall showed a detrimental effect on cell viability, whereas the organic
288	extract at the same dose did not show any effect compared to the control (Suppl. Fig.
289	S1A).

- The aqueous extracts from Fukuoka did not show any effect, whereas the organic
 extract at 75 µg/mL increased the cell viability compared to the control in all seasons (Fig.
 3B, Suppl. Fig. S1B,D).
- 293

294 The Secretion of the Cytokines IL-6 and IL-8

295 <u>The Kawasaki extracts</u>

296 No extracts of Kawasaki were able to make any significant difference in IL-6 release at

297 75µg/mL dose (Fig. 4A). Similarly, the lower doses as 22.5 and 7.5 µg/mL also did not

```
298 have any significant effect on IL-6 expression (Suppl. Fig. S2A,C).
```

Regarding the IL-8 secretion from the airway epithelial cells, the aqueous extracts

- 300 did not have any effect. In contrast, the organic extracts from summer lowered the IL-8
- 301 secretion compared to the control (Fig. 4C). Similarly, at 22.5 µg/mL, the organic extracts
- 302 from spring and summer samples lowered the IL-8 secretion slightly (Suppl. Fig. S3A,C).

- 304 The Fukuoka extracts
- 305 The organic extracts from Fukuoka had no effect on IL-6 and IL-8 secretion (Fig. 4B,D,
- 306 Suppl. Fig. S3B,D)

307

- 308 The PM_{2.5} Extracts' Effects on APCs
- 309 <u>Cell viability: Kawasaki extracts</u>
- 310 The cell viability of the APCs was significantly lowered by exposure to the 75 μ g/mL
- dose of aqueous extracts of Kawasaki from all seasons compared to control: 43.46%
- reduced for spring, 55.41% for summer, 49.11% for fall and 36.05% for winter (Fig. 5A).
- 313 The lower dose of 7.5 µg/mL also showed a reducing effect (Suppl. Fig. S4A).

314

315 <u>Cell viability: Fukuoka extracts</u>

- 316 Similarly, the 75 µg/mL aqueous extracts of Fukuoka from all seasons also significantly
- 317 decreased the viability of APCs (Fig. 5B). The 7.5 µg/mL dose of the fall and winter
- samples also significantly lowered the viability compared to the control (Suppl. Fig. S4B).
- 319 The 75 μ g/mL dose of the organic extract did not reduced the cell viability compared to
- 320 control. The 7.5 µg/mL organic extract showed no change in viability.

20	1
54	T

322 <u>Cell surface molecules</u>

323 Kawasaki aqueous and organic extract did not change the number of DEC205 positive 324 cells at a 75 μ g/mL (Fig. 6A). Fukuoka aqueous extracts at 75 μ g/mL also showed a higher 325 expression of DEC205-positive cells in fall. The Fukuoka organic extracts showed no 326 effect on the number of DEC205-positive cells (Fig. 6B). The lower dose of 7.5 μ g/mL 327 failed to cause any changes in DEC205 expression (Suppl. Fig. S5A,B).

328The 75 µg/mL dose of both the aqueous and organic extracts collected from 329Kawasaki in the summer significantly increased the CD86-positive cell expression (Fig. 6C). Moreover, the 7.5 µg/mL summer and fall organic extracts also significantly 330 increased this expression compared to the control (Suppl. Fig. 5C). The Fukuoka aqueous 331extracts collected in the fall and winter significantly increased the CD86 expression (Fig. 3326D), and the Fukuoka organic extract collected in the summer induced CD86 expression. 333 334Similarly, at the lower dose of 7.5 µg/mL, the Fukuoka aqueous extracts from fall and winter caused elevated CD86 expression, and the organic extracts from all the seasons 335also increased it (Suppl. Fig. S5D). 336

337

338 The PM_{2.5} Extracts' Effects on Splenocytes

339 <u>Cell viability</u>

340 The 75 μ g/mL Kawasaki aqueous extracts from all four seasons lowered the splenocytes'

- cell viability: spring (decreased 68.17%), summer (69.64%), fall (81.67%) and winter
- (23.90%) (Fig. 7A). Except for winter, these reductions in cell viability were significant
 compared to the control as well as compared to the corresponding seasons' organic extract
- at the same dose. At the lower dose (7.5 μ g/mL), no noticeable changes were observed
- 345 (Suppl. Fig. S6A). The Kawasaki organic extracts at all doses and from all seasons had
- no significant effect on the splenocytes' cell viability.
- The 75 μ g/mL Fukuoka aqueous extracts had a detrimental effect on the splenocytes' viability: spring (45.47% reduction), summer (34.30%), fall (47.73%) and winter (46.09%) (Fig. 7B). At the lower dose, the Fukuoka aqueous extracts produced no changes (Suppl. Fig. S6B).

351

352 Cell proliferation: Kawasaki extracts

353 After 3 days of incubation with the 75 and 7.5 µg/mL doses of Kawasaki aqueous extract,

the splenocytes' proliferation was not significantly different from that of the control. The

- 355 Kawasaki organic extracts at both doses also had little effect on the proliferation. However,
- 356 the cells' proliferation in winter aqueous extracts was significantly higher than organic

357	extract of the same (Fig. 7C). The proliferation results for the fall and winter samples of
358	aqueous extracts were also significantly higher than those of the same dose (7.5 μ g/mL)
359	of organic extracts (Suppl. Fig. S6C).
940	

361 <u>Cell proliferation: Fukuoka extracts</u>

Unlike the Kawasaki extracts, the Fukuoka samples had significant effects on cell proliferation (Fig. 7D). Interestingly, while the aqueous samples from spring (47.2%), summer (50.2%), and fall (76.5%) significantly increased the proliferation, the organic extracts lowered the proliferation; by season: summer (23.43%), fall (31.2%) and winter (36.3%) compared to the control. The 7.5 μ g/mL dose aqueous samples increased the proliferation at fall sample, but the organic extracts from spring, summer and fall lowered the proliferation compared to aqueous sample samples (Suppl. Fig. S6D).

369

370 <u>Cell surface molecules</u>

The aqueous extracts from Kawasaki did not have much effect on the TCR expression, with the exception of the 75 μ g/mL fall sample (Fig. 8A), which significantly increased the TCR expression. At the lower doses of 7.5 μ g/mL, no effect was observed (Suppl. Fig. S7A). The spring and summer 75 μ g/mL organic extracts also increased the

375	TCR expression (Fig. 8A), whereas the 7.5 μ g/mL extracts showed no noticeable effects
376	(Suppl. Fig. S7A). None of the extracts from Fukuoka produced any difference in TCR
377	expression, from any season or at any doses (Fig. 9B, Suppl. Fig. S7B).
378	Regarding the CD19 expression, 75 μ g/mL Kawasaki aqueous extracts from the
379	spring and summer significantly decreased the CD19 expression (Fig. 8C), and the 7.5
380	μ g/mL extracts produced no difference (Suppl. Fig. S7C). Besides, Kawasaki organic
381	extract only from summer lowered CD19 expression (Fig. 8C). None of the Fukuoka
382	aqueous or organic extracts had any effect on the CD19 expression, at any doses (Fig. 8D,
383	Suppl. Fig. S7D).

385 *Correlation between cell viability and the PM*_{2.5} *components*

Determining the correlations between components of $PM_{2.5}$ extracts at 75 µg/mL dilution and cell viability is important to understand the potential cytotoxicity of the extract samples. As our results indicated that the aqueous extracts affected the viability of the airway epithelial cells, we evaluated the Pearson's correlation coefficients for the cell viability and extract components. Our analysis revealed negative correlations between the viability of BEAS-2B cells and several heavy metals in the aqueous extracts including Mn, Mo, Zn, Co and Ni, W, Cr, Cu, Fe, Al and more (Table 1).

394 Discussion

In the present study, the aqueous extracts, especially those collected during fall in 395396 Kawasaki, had more cytotoxic effects than the organic extracts in airway epithelial cells, but none of the extracts cause any pro-inflammatory response. The aqueous extracts from 397 398 Fukuoka, especially those collected during fall, increased the expressions of DEC205 and 399 CD86 on APCs. Aqueous extracts from both cities significantly decreased the viability of 400 splenocytes apart from the winter extract from Fukuoka. In addition, the Fukuoka aqueous 401 extract samples from spring, summer, and fall significantly increased the proliferation of 402splenocytes. The Kawasaki organic extracts collected during the spring and summer 403 significantly elevated the TCR expression, whereas those collected during the summer decreased the CD19 expression. Negative correlations were observed between the 404 405viability of airway epithelial cells and metal components in the aqueous extracts such as 406 Mn, Mo, Zn, Co and Ni.

To understand the active/direct effects of $PM_{2.5}$ on respiratory damage, the cytotoxicity of $PM_{2.5}$ in airway epithelial cells is a key issue. In our study, the BEAS-2B cells suffered cytotoxicity from the Kawasaki aqueous extract collected in fall. In previous studies, $PM_{2.5}$ (Zhou et al. 2015) and its extract (Rodríguez-Cotto et al. 2014)

both clearly lowered cell viability. In a study of an urban area of Puerto Rico (Fuentes-411 Mattei et al. 2010), a polar organic extract lowered the viability of BEAS-2B cells dose-412dependently whereas a non-polar organic extract showed no significant effect. 413414 In contrast, Huang et al. (2014) have shown that an aqueous extract of $PM_{2.5}$ had a toxic effect on airway epithelial cells. A study of components of PM_{2.5} aqueous extracts 415416 collected from Baghdad, Iraq showed that trace elements such as V and Ni correlated with the reactive oxygen species (ROS) production of alveolar macrophages (Hamad et al. 4172016). Our present findings indicated that aqueous extracts from Kawasaki, especially 418 419 those collected during the fall, contain components that affect cellular viability. It is 420possible that the decrease in cell viability induced by these components permit the invasion of inhaled xenobiotics including allergens, which can contribute to the 421exacerbation of respiratory diseases such as asthma. On the other hand, organic extracts 422423from Fukuoka increased the cell viability compared to the control in all seasons, which 424may relate with carcinogenic effects of PM_{2.5} (Bayram H et al 2013, Bayram H et al, 2006). 425IL-6 and IL-8 are the two most prominent pro-inflammation mediators (Martin et 426

al. 1997; Richman-Eisenstat et al. 1993). Our previous study (Honda et al. 2017) based
on Kawasaki and Fukuoka have shown that organic extracts had more pro-inflammatory

effect via IL-6 than aqueous extracts. As the IL-6 and IL-8 expression did not increase at
all in the present study, we did not observe any noticeable pro-inflammatory effect by any
extract.

432Rodriguez-Cotto et al. (2014) have found that both IL-6 and IL-8 were decreased when BEAS-2B cells were exposed to an aqueous extract of PM_{2.5}. Although they noted 433434that the result was dependent on the complex mixture of components, they could not explain the underlying mechanism. As the components of PM_{2.5} extracts differ by 435collection days, the components can cause different health effects. For instance, it has 436437been seen that the after festival days the mortality and morbidity become high due to 438fireworks and associated causes (Thakur et al. 2010). Fireworks and other burning activities produce significantly higher $PM_{2.5}$ as well as black carbon (Lin et al. 2016). 439Here we observed that the aqueous extracts from both Kawasaki and Fukuoka 440

significantly lowered the viability of APCs, as was observed for BEAS-2B cells. DEC205-positive cells was high in the fall extract of Fukuoka. DEC205 is an important cell surface molecule for antigen uptake, processing, and presentation of the antigen by dendritic cells (Tel et al. 2011). Previous investigations indicated that environmental pollutants including PM_{2.5} extract, carbon black nanoparticles, Asian sand dust particles, and di-(2-ethylhexyl) phthalate can promote the maturation/activation and function of 447 DEC205 on APCs (Honda et al. 2017; Koike et al. 2008, 2009; Honda et al. 2014). From 448 our experimental results, it can be concluded that aqueous $PM_{2.5}$ extracts from Fukuoka 449 induce the maturation/activation of DEC205. The components contained in aqueous 450 extracts such as metals may contribute to DEC205 expression.

On the other hand, the number of CD86-positive cells was increased in the summer 451sample in both the aqueous and organic extracts from Kawasaki in the present study. 452CD86 is a crucial cell surface molecule for antigen presentation for asthmatics, and it is 453associated with late reaction to allergens (Balbo et al. 2001). CD86 is an important and 454sensitive cell surface molecule for PAHs, as we recently have observed (Chowdhury et al. 4552017). Moreover, our previous studies revealed aqueous extract from Kawasaki and 456Fukuoka were able to increase the CD86 expression on the cells (Honda et al, 2017). 457Hulette et al, 2005 showed that aqueous soluble chemicals including nickel sulphate and 458hydroquinone are capable to induce CD86 expression in human dendritic cells. Taking 459460 the above findings together, it seems that PM_{2.5} can activate APCs via DEC205 and CD86, and this phenomenon could be related to their enhancing effects on allergic diseases or 461 462responses.

The viability of splenocytes was also diminished in the aqueous extract samples from both Kawasaki and Fukuoka, as we also observed for the BEAS-2B cells.

26

465	Interestingly, the aqueous extracts from Fukuoka significantly increased the splenocytes'
466	proliferation but decreased their viability. This may be due to the longer incubation time
467	(72 hr) for cell proliferation than cell viability assay (24 hr). Moreover, the ability of metal
468	components to cause aberrant cell proliferation and altered apoptosis is well known
469	(Waalkes et al. 2000). PAHs were also found to be responsible for cell proliferation via
470	AhR ligand activation in mouse liver cells (Chramostová et al. 2004), whereas they
471	suppressed the growth of B and T cells (Allan et al. 2006; Davila et al. 1996).
472	In our study, wherever TCR-positive cells increased in number, CD19 tended to
473	decrease in the same cases. For instance, the number of TCR-positive cells was increased
474	by organic extract of spring and summer while and the number of CD19-positive cells
475	was decreased by the same extracts. Hence, in the organic extract of spring and summer
476	of Kawasaki city, significantly more T lymphocytes than B lymphocytes were activated.
477	As organic summer extract of Kawasaki had high PAH concentration we suspect the PAH
478	alone (in case of summer) and synergistically with other component (in case of spring)
479	can induce TCR expression. Previous publication also indicated the responsibility of
480	organic extracts from PM _{2.5} for inducing TCR positive cell (Honda et al, 2017). However,
481	we cannot exactly identify the responsible factor yet. Thus, the aqueous extracts proved
482	to be more cytotoxic to B cells while organic extracts may responsible for T cell activation.

483	To analyze the correlation between biological responses and components of $PM_{2.2}$
484	correctly, larger regression coefficient is needed. In brief, large variation of biologica
485	responses is required. It is clear from our present findings that the responsible factor for
486	cytotoxicity of PM _{2.5} extract affect all three types of cells, i.e., human airway epithelia
487	cells, murine bone marrow-derived APCs, and splenocytes. A notable finding is the
488	decrease of the viability of airway epithelial cells induced by the components in the
489	aqueous extracts, because it is possible that a lower viability of airway epithelial cells wil
490	permit the invasion of inhaled xenobiotics including allergens. Therefore, we investigated
491	the correlation between viability of airway epithelial cells and the components in aqueous
492	extracts including ion, metal, EC and OC.
491 492	the correlation between viability of airway epithelial cells and the components in aqueo extracts including ion, metal, EC and OC.

493 A negative correlation was revealed between some heavy metals and cell viability, and we selected the five most highly correlated metals for a discussion of their 494cytotoxicity: Mn, Mo, Zn, Co and Ni (Table 1). Previous study Honda et al. (2015) 495showed that TC50 values (concentration that reduces cell viability to 50%) of Mn^{+2} in 496 airway epithelial cells were as low as 3.0µM. Mn has a proven neurological effect and 497 also increased the risk of lung cancer (Mirmohammadi 2014). The mechanism of Mn 498 cytotoxicity is likely to be associated with the formation of ROS in dopamine-producing 499cells (Stredrick et al. 2004), but Mn cytotoxicity in respiratory system has not yet been 500

501	studied. Ott et al. (2004) proposed that a chronic inhalation of Mo may induce subclinical
502	alveolitis. Moreover, Honda et al. (2015) concluded that Ni and Zn are also responsible
503	for low cell viability in a certain dose range, which supports our present findings of
504	negative correlations for these two metals as well. An occupational health study
505	established that Co associated with other metals has a respiratory effect as allergic
506	hypersensitivity (Cugell et al. 1990). Our data showing that Mn, Mo, Zn, Co and Ni affect
507	the airway agree with these previous findings.
508	Considering the effect of the differences in geographic areas on the viability of
509	airway epithelial cells, Suvarupa and Baek (2016) pointed out that the heavy metal
510	concentration is sometimes higher in industrial areas than residential or commercial areas.
511	They noted that Mn comes into the air from soil and resuspended dust, industrial
512	processes and break wear. On the other hand, Zn emissions are associated with industrial
513	processes and break wear, the Co emission source is mostly coal combustion, and Ni
514	emission is also from break wear. Mo is also an industrial pollutant frequently used in
515	hard metals (Ott et al. 2004).

516 Kawasaki, as an industrial area, is thus more likely to contain higher concentrations 517 of metal ions in its PM_{2.5} extracts than Fukuoka (Figs. 1), which can explain our 518 observation of low viability of BEAS-2B cells in the Kawasaki samples.

29

519	We also found that the aqueous extracts collected from Kawasaki in the winter did
520	not lower the cell viability, as they contain fewer metals compared to other seasons.
521	Suvarupa and Baek also suggested that the $PM_{2.5}$ concentration is high in the summer in
522	a few cases, mostly because of solar radiation and the consequent secondary aerosol
523	formation. Moreover, the easy suspension of crustal elements during the summer may
524	contribute to high concentrations of heavy metal in the ambient air. This may explain our
525	finding of fewer metals in the winter, which induces higher viability in airway epithelial
526	cells.
527	β -glucan did not appear to be a significant contributor to any of the present results.
528	β -Glucan was detected only in the aqueous extracts from both cities. The levels were high
529	in the summer: 764.53 pg/mL in Fukuoka and 648.26 pg/mL in Kawasaki. β -Glucan
530	profoundly increased the IL-6 and IL-8 expressions in airway epithelial cells in vitro and
531	in an animal model (Carmona et al. 2010, Neveu et al. 2011). It was also reported that the
532	cell viability of macrophages was significantly decreased at a 300 μ g/mL dose of β -glucan
533	(Chang et al. 2009). We did not observe any significance difference of IL-6 and IL-8
534	expression in the present study. As the level of β -glucan in our study was very low
535	compared to those of the previous studies, we suspect that the level of β -glucan in our
536	extracts failed to cause any noticeable changes in the cells.

537	Getting different extraction efficiency is a limitation of conventional method to
538	collect particulate matter on filter paper. The extraction efficiency can largely depend on
539	composition of $PM_{2.5}$. Moreover, the extraction of $PM_{2.5}$ on filter cause loss of a part of
540	components of $PM_{2.5}$ and eventual difference of extraction efficiency among samples. To
541	avoid the problem, new techniques without extraction may be needed to evaluate health
542	effects of PM _{2.5} in future research.
543	
544	Conclusion
545	Our results indicate that aqueous extracts, especially those collected in fall from Kawasaki,
546	had more cytotoxic effect than organic extracts in airway epithelial cells, although the
547	aqueous extracts caused almost no pro-inflammatory response. The correlation analysis
548	showed that heavy metals such as Mn, Mo, Zn, Co and Ni in PM _{2.5} may be associated
549	with airway epithelial degeneration.
550	Both the aqueous and organic extract collected during the summer from Kawasaki
551	were capable of activating APCs via CD86 expression. In contrast, the fall Fukuoka
552	aqueous extract activated APCs via the expression of both CD86 and DEC205. Aqueous
553	extract of fall, summer and spring from Fukuoka significantly increased cell proliferation
554	of splenocytes. Organic extract of spring and summer from Kawasaki probably activate

555 T-lymphocytes more than B-lymphocytes.

556	Therefore, in conclusion, the adverse effects of both the aqueous and organic
557	extracts of $PM_{2.5}$ on respiratory health can occur via the activation of APCs and
558	concomitantly T cells, whereas metal components as Mn, Mo, Zn, Co and Ni in aqueous
559	extracts from industrial cities are cytotoxic to airway epithelial cells.
560	
561	Acknowledgement
562	The study was performed as part of a study project on PM _{2.5} by Japan Ministry of the
563	Environment. We are indebted to Mari Tsuboi for her immense help in the data analysis.

564

565	Reference
566	
567	Alfaro-Moreno E, Torres V, Miranda J, Martínez L, García-Cuellar C, Nawrot TS et al.
568	(2009) Induction of IL-6 and inhibition of IL-8 secretion in the human airway
569	cell line Calu-3 by urban particulate matter collected with a modified method of
570	PM sampling. Environ Res. 109(5):528-35. doi: 10.1016/j.envres.2009.02.010.
571	
572	Allan LL, Schlezinger JJ, Shansab M, Sherr DH (2006) CYP1A1 in polycyclic aromatic
573	hydrocarbon-induced B lymphocyte growth suppression. Biochem Biophys Res
574	Commun. 31;342(1):227-35. doi: 10.1016/j.bbrc.2006.01.131.
575	
576	Balbo P, Silvestri M, Rossi GA, Crimi E, Burastero SE (2001) Differential role of CD80
577	and CD86 on alveolar macrophages in the presentation of allergen to T
578	lymphocytes in asthma. Clin Exp Allergy. 2001 Apr;31(4):625-36.
579	
580	Bayram H, Ito K, Issa R, Ito M, Sukkar M, Chung KF. (2006) Regulation of human lung
581	epithelial cell numbers by diesel exhaust particles. Eur Respir J.;27:705–713
582	
583	Bayram H, Fakili F , Gögebakan B , Bayraktar R , Oztuzcu S , Dikensoy O , Chung K F
584	(2013) Effect of Serum on Diesel Exhaust Particles (DEP)-induced Apoptosis of
585	Airway Epithelial Cells in VitroToxicol Lett 218 (3), 215-223.
586	
587	Cachon BF, Firmin S, Verdin A, Ayi-Fanou L, Billet S, Cazier F et al. (2014)
588	Proinflammatory effects and oxidative stress within human bronchial epithelial
589	cells exposed to atmospheric particulate matter (PM(2.5) and PM(>2.5))
590	collected from Cotonou, Benin. Environmental Pollution (Barking, Essex: 1987)
591	185:340-351. doi:10.1016/j.envpol.2013.10.026.
592	
593	Carmona EM, Lamont JD, Xue A, Wylam M, Limper AH (2010). Pneumocystis cell
594	wall β -glucan stimulates calcium-dependent signaling of IL-8 secretion by
595	human airway epithelial cells. Respir Res. 11(1), 95.
596	http://doi.org/10.1186/1465-9921-11-95.
597	
598	Chang ZQ, Lee JS, Hwang MH, Hong JH, Jung HK, Lee SP et al. (2009) A novel beta-
599	glucan produced by Paenibacillus polymyxa JB115 induces nitric oxide
600	production in RAW264.7 macrophages. J Vet Sci. 10(2):165-7.

601	
602	Chowdhury PH, Kitamura G, Honda A, Sawahara T, Hayashi T, Fukushima W et al.
603	(2017) Synergistic effect of carbon nuclei and polyaromatic hydrocarbons on
604	respiratory and immune responses. Env. Tox. 2017 (in press). doi:
605	10.1002/tox.22430.
606	
607	Chramostová K, Vondrácek J, Sindlerová L, Vojtesek B, Kozubík A, Machala M (2004)
608	Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic
609	epithelial stem-like WB-F344 cells. Toxicol Appl Pharmacol. 1;196(1):136-48.
610	doi: 10.1016/j.taap.2003.12.008.
611	
612	Cugell DW, Morgan WK, Perkins DG, Rubin A (1990) The respiratory effects of cobalt.
613	Arch Intern Med. 150(1):177-83.
614	
615	Davila DR, Romero DL, Burchiel SW (1996) Human T cells are highly sensitive to
616	suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect
617	is differentially reversed by alpha-naphthoflavone. Toxicol Appl Pharmacol.
618	139(2):333-41. doi: 10.1006/taap.1996.0173.
619	
620	Fuentes-Mattei E, Rivera E, Gioda A, Sanchez-Rivera D, Roman-Velazquez FR,
621	Jimenez-Velez BD (2010), Use of human bronchial epithelial cells (BEAS-2B)
622	to study immunological markers resulting from exposure to $PM(2.5)$ organic
623	extract from Puerto Rico. <i>Toxicol Appl Pharmacol</i> . 15;243(3):381-9. doi:
624	10.1016/j.taap.2009.12.009. Epub 2009 Dec 21.
625	
626	Fukutomi Y, Taniguchi M, Watanabe J, Nakamura H, Komase Y, Ohta K et al. (2011)
627	Time trend in the prevalence of adult asthma in Japan: findings from population-
628	based surveys in Fujieda City in 1985, 1999, and 2006. Allergol Int. $60(4)$:443-8.
629	doi: 10.2332/allergolint.10-OA-0282. Epub 2011 May 25.
630	Contain C. Malan A. Trai CI. Kanna D. (2016) A maintenance in
631	Gautam S, Yadav A, Isal CJ, Kumar P (2016) A review on recent progress in
632	observations, sources, classification and regulations of PM2.5 in Asian
033 694	2 2 21103. doi:10.1007/811336-016-7515-
034 625	2.
000	Habre P. Machier F. Castro W. Nath A. Grupin A. Pahr A at al. (2014) The affects of
000	Hable K, Widshiel E, Casud W, Naul A, Glunni A, Konf A et al. (2014) The effects of

637	PM2.5 and its components from indoor and outdoor sources on cough and
638	wheeze symptoms in asthmatic children. J Expo Sci Environ Epidemiol.
639	24(4):380-7. doi: 10.1038/jes.2014.21.
640	
641	Hamad SH, Schauer JJ, Antkiewicz DS, Shafer MM, Kadhim AKH (2016) ROS
642	production and gene expression in alveolar macrophages exposed to PM2.5 from
643	Baghdad, Iraq: Seasonal trends and impact of chemical composition. Science of
644	the Total Environment. 543:739–745.
645	
646	Honda A, Fukushima W, Oishi M, Tsuji K, Sawahara T, Hayashi T et al. (2017) Effects
647	of components of PM2.5 collected in Japan on the respiratory and immune
648	systems. Int J Toxicol 36(2):153-164. doi: 10.1177/1091581816682224.
649	
650	Honda A, Matsuda Y, Murayama R, Tsuji K, Nishikawa M, Koike E et al. (2014) Effects
651	of Asian sand dust particles on the respiratory and immune system. J Appl
652	Toxicol. 34:250-257. doi: 10.1002/jat.2871.
653	
654	Honda A, Tsuji K, Matsuda Y, Hayashi T, Fukushima W, Sawahara T et al. (2015)
655	Effects of air pollution-related heavy metals on the viability and inflammatory
656	responses of human airway epithelial cells. Int J Toxicol. 34(2):195-203. doi:
657	10.1177/1091581815575757.
658	
659	Huang Q, Zhang J, Peng S, Tian M, Chen J, Shen H (2014) Effects of water soluble
660	PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic
661	study. J Appl Toxicol. 34(6):675-87. doi: 10.1002/jat.2910. Epub 2013 Aug 14.
662	
663	Hulette BC, Ryan CA, Gildea LA, Gerberick GF. (2005) Relationship of CD86 surface
664	marker expression and cytotoxicity on dendritic cells exposed to chemical
665	allergen. Toxicol Appl Pharmacol.;209(2):159-66. DOI:
666	10.1016/j.taap.2005.03.019
667	
668	Japan Ministry of the Environment. Metal:
669	http://www.env.go.jp/air/osen/pm/ca/130628/manual-2.pdf ,
670	Ion : <u>http://www.env.go.jp/air/osen/pm/ca/130628/manual-4.pdf</u> (2013)
671	PAH, <u>https://www.env.go.jp/air/osen/manual2/pdf-gas/pahs.pdf</u> (2011),
672	EC, OC : <u>http://www.env.go.jp/air/osen/pm/ca/130628/manual-6.pdf</u> (2013)

673	
674	
675	Koike E, Inoue K, Yanagisawa R, Takano H (2009) Di-(2-ethylhexyl) phthalate affects
676	immune cells from atopic prone mice in vitro. Toxicology. 259:54-60.
677	
678	Koike E, Takano H, Inoue K (2008) Carbon black nanoparticles promote the maturation
679	and function of mouse bone marrow-derived dendritic cells. Chemosphere.
680	73:371-376.
681	
682	Kurai J, Watanabe M, Sano H, Hantan D, Shimizu E (2016) The effect of seasonal
683	variations in airborne particulate matter on asthma-related airway inflammation
684	in mice. Int J Environ Res Public Health. 9:13(6). pii: E579. doi:
685	10.3390/ijerph13060579.
686	
687	Liang CS, DuanFK, He KB, Ma YL (2016) Review on recent progress in observations,
688	source identifications and countermeasures of PM2.5. Environment International
689	86:150–170.
690	
691	Lin C, Yang L, Cheng Y (2016) Ambient PM2.5, Black carbon, and particle size-
692	resolved number concentrations and the ångström exponent value of aerosols
693	during the firework display at the Lantern Festival in Southern Taiwan. Aerosol
694	and Air Quality Research. 16:373–387, 2016, doi: 10.4209/aaqr.2015.09.0569.
695	
696	Lo WC, Shie RH, Chan CC, Lin HH (2017) Burden of disease attributable to ambient
697	fine particulate matter exposure in Taiwan. J Formos Med Assoc. (1):32-40. doi:
698	10.1016/j.jfma.2015.12.007. Epub 2016 Feb 10.
699	
700	Martin LD, Rochelle LG, Fischer BM, Krunkosky TM, Adler KB (1997) Airway
701	epithelium as an effector of inflammation: molecular regulation of secondary
702	mediators. <i>Eur Respir J</i> . 10(9):2139-46. doi: 10.1183/09031936.97.10092139.
703	
704	Mirabelli MC, Vaidyanathan A, Flanders WD, Qin X, Garbe P (2016) Outdoor PM2.5,
705	ambient air temperature, and asthma symptoms in the past 14 days among adults with patient actions actions. Final $H_{\rm e}$
706	with active astima. <i>Environ Health Perspect</i> . 124(12):1882-1890. Epub 2016.
707	001: 10.1289/EHP92
108	

709	Mirmohammadi S (2014) Manganese exposure and toxicity. J Pollut Eff Cont. 2:2.
710	
711	Mirowsky JE, Jin L, Thurston G, Lighthall D, Tyner T, Horton L et al. (2015). In vitro
712	and in vivo toxicity of urban and rural particulate matter from California.
713	Atmospheric Environment (Oxford, England : 1994). 103:256–262.
714	http://doi.org/10.1016/j.atmosenv.2014.12.051.
715	
716	Ministry of Health and Welfare Ordinance No. 52, December 27, 1951, Ministerial
717	Ordinance on Milk and Milk products Concerning Compositional Standards, etc.,
718	http://www.mhlw.go.jp/english/topics/foodsafety/dl/t-1.pdf
719	
720	Naser TM, Yoshimura Y, Sekiguchi K, Wang Q, Sakamoto K (2008) Chemical
721	composition of PM2.5 and PM10 and associated polycyclic aromatic
722	hydrocarbons at a roadside and an urban background area in Saitama, Japan.
723	Asian Journal of Atmospheric Environment. 2-2:90-101. doi:
724	10.5572/ajae.2008.2.2.090.
725	
726	Neveu WA, Bernardo E, Allard JL, Nagaleekar V, Wargo MJ, Davis RJ et al. (2011)
727	Fungal allergen β -glucans trigger p38 mitogen-activated protein kinase-mediated
728	IL-6 translation in lung epithelial cells. Am J Respir Cell Mol Biol. 45(6):1133-
729	41. doi: 10.1165/rcmb.2011-0054OC. Epub 2011 Jun 3.
730	
731	Nikasinovic L, Just J, Sahraoui F, Seta N, Grimfeld A, Momas I. Nasal inflammation
732	and personal exposure to fine particles PM2.5 in asthmatic children. J Allergy
733	Clin Immunol, 17:6. doi:10.1016/j.jaci.2006.03.023.
734	
735	Ott HC, Prior C, Herold M, Riha M, Laufer G, Ott G (2004) Respiratory symptoms and
736	bronchoalveolar lavage abnormalities in molybdenum exposed workers. Wien
737	Klin Wochenschr. 116 Suppl. 1:25-30.
738	
739	Pan X, Uno I, Hara Y, Osada K, Yamamoto S, Wang Z et al. (2016) Polarization
740	properties of aerosol particles over western Japan: classification, seasonal
741	variation, and implications for air quality. Atmos. Chem. Phys. 16:9863-9873.
742	doi:10.5194/acp-16-9863-2016
743	
744	Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines

745	that connect. J Air Waste Manag Assoc. 56(6):709-42.				
746					
747	Richman-Eisenstat JB, Jorens PG, Hébert CA, Ueki I, Nadel JA (1993) Interleukin-8: an				
748	important chemoattractant in sputum of patients with chronic inflammatory				
749	airway diseases. Am J Physiol. 264(4 Pt 1):L413-8.				
750					
751	Rodríguez-Cotto RI, Ortiz-Martínez MG, Rivera-Ramírez E, Mateus VL, Amaral BS,				
752	Jiménez-Vélez BD et al. (2014) Particle pollution in Rio de Janeiro, Brazil:				
753	increase and decrease of pro-inflammatory cytokines IL-6 and IL-8 in human				
754	lung cells. Environ Pollut. 194:112-20. doi: 10.1016/j.envpol.2014.07.010. Epub				
755	2014 Aug 6.				
756					
757	Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque J-F, Shindell DT et al. (2013)				
758	Global premature mortality due to anthropogenic outdoor air pollution and the				
759	contribution of past climate change. Environ. Res. Lett. 8:034005.				
760	doi:10.1088/1748-9326/8/3/034005.				
761					
762	Stredrick DL, Stokes AH, Worst TJ, Freeman WM, Johnson EA, Lash LH (2004)				
763	Manganese-induced cytotoxicity in dopamine-producing cells. Neurotoxicology.				
764	25(4):543-53.				
765					
766	Suvarapu LN, Baek SO (2017) Determination of heavy metals in the ambient				
767	atmosphere. Toxicol Ind Health. 33(1):79-96. doi: 10.1177/0748233716654827.				
768	Epub 2016 Jul 9.				
769					
770	Takemura M, Inoue D, Takamatsu K, Itotani R, Ishitoko M, Sakuramoto M et al. (2016)				
771	Co-existence and seasonal variation in rhinitis and asthma symptoms in patients				
772	with asthma. Respir Investig. 54(5):320-6. doi: 10.1016/j.resinv.2016.05.006.				
773	Epub 2016 Jun 30.				
774					
775	Tel J, Benitez-Ribas D, Hoosemans S, Cambi A, Adema GJ, Figdor CG et al. (2011)				
776	DEC-205 mediates antigen uptake and presentation by both resting and activated				
777	human plasmacytoid dendritic cells. Eur J Immunol. 41(4):1014-23. doi:				
778	10.1002/eji.201040790. Epub 2011 Mar 17.				
779					
780	Thakur B, Chakraborty S, Debsarkar A, Chakrabarty S, Srivastava RC (2010) Air				

781	pollution from fireworks during festival of lights (Deepawali) in Howrah, India
782	– a case study. Atmósfera 23(4):347-365.
783	
784	Waalkes MP, Fox DA, States JC, Patierno SR, McCabe Jr. MJ (2000) Metals and
785	disorders of cell accumulation: modulation of apoptosis and cell proliferation.
786	Toxicol Sci. 56(2):255-261. doi: 10.1093/toxsci/56.2.255.
787	
788	Yoshino A, Takami A, Sato K, Shimizu A, Kaneyasu N, Hatakeyama S et al. (2016),
789	Influence of trans-boundary air pollution on the urban atmosphere in Fukuoka,
790	Japan. Atmosphere. 7(4):51. doi:10.3390/atmos7040051.
791	
792	Zeng Q, Ni Y, Jiang G, Li G, Pan X (2017) The short term burden of ambient particulate
793	matters on non-accidental mortality and years of life lost: A ten-year multi-
794	district study in Tianjin, China. Environ Pollut. 220(Pt A):713-719. doi:
795	10.1016/j.envpol.2016.10.036. Epub 2016 Oct 18.
796	
797	Zhou Z, Liu Y, Duan F, Qin M, Wu F, Sheng W, et al. (2015) Transcriptomic analyses of
798	the biological effects of airborne PM2.5 exposure on human bronchial epithelial
799	cells. PLoS ONE 10(9): e0138267. doi:10.1371/journal.pone.0138267.
800	
801	
802	
000	
803	

Fig. 1

Fukuoka

Fig. 4

Fig. 8

Fall

Fig. 7

Kawasaki

Fukuoka

Kawasaki

Fukuoka

Suppl. Fig. S6.

Suppl. Table 1. Corresponding dose of total $PM_{2.5}$ mass by using data on extraction efficiency ($\mu g/m^3$)

	Season	Kawasaki	Fukuoka
Aqueous	Spring	22.95	10.21
	Summer	18.12	10.39
	Fall	10.90	7.20
	Winter	9.42	11.47
Organic	Spring	3.91	2.98
	Summer	2.86	2.16
	Fall	3.67	1.75
	Winter	3.03	2.71