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To achieve efficient multi-port model order reduction, a multi-port Cauer ladder network (CLN) method is formulated that directly 

yields resistance and inductance matrices that consist of the network elements in the matrix Cauer form. The eddy current field driven 

by multiple power sources is accurately reconstructed using a small number of network elements. The matrix Cauer form achieves 

faster convergence of the transfer function than a single-port CLN method and almost the same convergence as a block PVL method.  

 
Index Terms— Cauer ladder network, finite element eddy current analysis, model order reduction, multiport.  

 

I. INTRODUCTION 

URRENT computer-aided design of electric machines 

requires the coupled analysis of the electromagnetic field 

and control circuit. When the electric machine is driven by a 

power electronic control circuit, the control circuit that 

operates at a high switching frequency is analyzed 

simultaneously with the eddy current (EC) field induced in the 

machine. However, EC analysis for high-frequency ranges 

requires fine finite element (FE) division because of thin skin 

depths and small time steps. 

For an efficient representation of the EC field, several 

model order reduction (MOR) methods have been developed, 

such as the PVL method [1]-[4] and POD method [5], [6]. The 

CLN method [7], [8] is an energy-based MOR method that 

provides a clear physical interpretation of the network 

elements. The CLN method was originally derived as a single-

port system similar to other MOR methods. Most electric 

machines and devices, however, have multiple ports that arise 

from multiple windings, such as transformers.  

To apply control theory with a multiple-input/multiple-

output (MIMO) system to electric machine control, a multi-

port MOR method [2], [3], [6], [9] is required to yield a 

MIMO transfer function. The impedance/admittance matrix 

representation is useful for connecting several subsystems in a 

blockwise style. 

Following the preliminary examination of multi-port CLN 

in [10], in this paper, we provide a mathematical derivation of 

multi-port CLN method based on the matrix Cauer form, 

which is a natural extension of a single-port CLN [8]. Its 

practical application to three-phase motor analysis is given in 

[11]. 

II. MULTIPORT CLN METHOD  

A. Multiport CLN Procedure 

Vector potential A and electric field E are represented in FE 

space as  

  
T1

1 2, , ,...i ii
a a a= =A w a  

  
T1

1 2, , , ...i ii
e e e= =E w e ,  (1) 

where ai and ei are the line integrals of A and E on edge i, and 

w1
i is the edge element.  

Using edge-face incident matrix C, the governing equation 

of the EC field is  
T , jω= = −C νCa σe Ce Ca ,  (2) 

where CTνC is the coefficient matrix for FE EC analysis; the 

reluctance matrix ν and conductivity matrix σ are given by  
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where μ is the permeability, σ is the conductivity, and w2
j is 

the facial element of face j. For simplicity, the A-formulation 

is discussed in this paper. The A-ϕ formulation can be applied 

to the CLN method [12], which is often required especially in 

the three-dimensional analysis. The Dirichlet or Neumann 

condition is assumed at the boundary. It is supposed that the 

operation of [CTνC]−1 is possible. If necessary, a gauge 

condition is imposed to (2). 

Let the number of ports be M. In a similar manner to the 

single-port version [7], [8], a multiport CLN is constructed as  
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where R2n and L2n+1 are M × M resistance and inductance 

matrices, and e2n = (e1,2n, ..., eM,2n) and a2n+1 = (a1,2n+1, ..., 

aM,2n+1) are the n-th basis vector matrices. The m-th columns 

em,2n and am,2n+1 are field basis vectors when source m has a 

unit power source and the other sources are zero.  

Unit power sources are given to start the CLN procedure. 

For example, if a unit voltage is given to port m (m = 1, …, M) 

as the boundary condition and the resultant scalar potential 

distribution is represented as ϕm, then the initial condition is 

given by the electrostatic field e0: 

 

a−1 = 0, e0 = −G[ϕ1, …, ϕM] ,  (8) 

 

where G is the node-edge incidence matrix that corresponds to 

the grad operator, which satisfies CG = 0. If a unit direct 

current is given as the power input to port m and it imposes 

current density j0m, then the initial condition is given by  

 
T 1

0 1 01 00, ( ) [ , , ]M
−= =e a C νC j j .  (9) 

In this case, R0 can be skipped. After power sources are given 

at the first step, the first equation of (5) is solved for 

2 1n+a with the Dirichlet or Neumann boundary condition 

without power inputs in the following steps [13].  

The first equation of (5) yields 2 1n+a as a new set of basis 

vectors from which the second equation gives a2n+1 so that 

a2n+1 will be orthogonal to other a2i+1  (i < n). Similar to the 

single-port version, it can be proven that procedure (5)-(7) 

generates the basis vectors that have blockwise orthogonality  
T 1 T T
2 2 2 2 1 2 1 2 1δ , δi j ij i i j ij i

−
+ + += =e σe R a C νCa L  (10) 

where δij is the Kronecker delta. 

B. Derivation of the Network Equation 

The electromagnetic fields are expanded as  

2 2 2 1 2 10 0
,n n n nn n + += =

= = e e V a a I , (11) 

where I2n+1 = (I1,2n+1, …, IM,2n+1)T and V2n = (V1,2n, …, VM,2n)T 

are coefficient vectors. The substitution of (11) into (2) yields  

 2 2 2 1 2 10 0
jωn n n nn n + += =

= − C e V Ca I  (12) 
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From (8) and (12), the electric field is represented by 
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− = − e V e V a I , (14) 

 

 
Fig. 1. Matrix Cauer network (M = 2). 

 
Fig. 2. First and second conductors and iron core (unit: mm). 

 

where VS = (VS1, …, VSM) is the voltages of power sources.  

Multiplying (14) by σe2kR2k and using (5) yields 
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From (10) and (15), it holds that 
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Multiplying (13) by a2k+1L2k+1
−1 and using (6) yields 
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From (10) and (17), it holds that 
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Equations (17) and (18) represent the matrix Cauer circuit, 

which is shown in Fig. 1 for M = 2. The impedance matrix is 

represented by a matrix continued fraction as 
1

1
1

1 1 1
0 1 0 3

1 1
( )

j j 

−
−

−

− − −

    
 = + + + +  
     

Z R L R L . (19) 

C. Comparison with the Block Lanczos Method 

The similarity between the single-port CLN and PVL 

methods discussed in [8] suggests that the multiport CLN 

method is similar to the block Lanczos method [2]. The 

multiport CLN method, however, allows the non-

orthogonality of basis vectors within a stage (R2n and L2n+1 are 

not diagonal), whereas the block Lanczos method 

orthogonalizes all the basis vectors. This fact simplifies the 

CLN procedure by avoiding Gram–Schmidt 

orthonormalization, and may affect the convergence property, 

which is examined later. The CLN method is more convenient 

than the PVL method because the CLN method directly yields 

the network representation [Fig. 1] whose current and voltages 

provide the coefficients of the orthogonal expansion of the 

electromagnetic field (11). Additionally, the multiport CLN 

does not require the singular value decomposition that is often 
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required in other MOR methods. Accordingly, the 

implementation of multiport CLN is easy because its 

formulation is as simple as that of the single-port version.  

III. NUMERICAL RESULTS  

First, the admittance matrices with respect to the first and 

second conductors shown in Fig. 2(a) were computed, where 

their conductance was 4 × 107 S/m and permeability was 4π × 

10–7 H/m. Accordingly, the number of ports was two. The 

bulk-type iron core had permeability of 4π × 10–4 H/m and 

conductivity of 1 × 106 S/m.  

The frequency dependence of admittance components Y11 

and Y12 given by the two-port CLN is shown in Fig. 3, where 

the CLN was terminated with R2n (n = 1, 2, 4, 6). For 

comparison, Y11 given by both the single-port CLN [8] and 

block PVL [2] methods is shown in Figs. 4 and 5. The 

admittances given by FE EC analysis are also shown in Figs. 

3–5. The 2n-cycle of the block PVL procedure yielded 2n 

basis vectors that corresponded to the n-cycle of the two-port 

CLN procedure. The computational cost of EC analysis was 

roughly evaluated by the number of multiplications of K−1 

where K = CTνC. The block PVL method required the 

operation of K−1 once in the first M (= 2) steps for the initial 

setting and twice per cycle of the bi-Lanczos procedure. This 

means that the 2n-cycle of the PVL procedure required 4n − 2 

operations of K−1, whereas the two-port CLN required 2n 

operations of K−1. The number of operations of K−1 are 

indicated in parentheses in Figs. 3–5.  

The two-port CLN achieved much faster convergence to 

accurate admittances than the single-port CLN and the 

multiport CLN proposed in [9] that has the same convergence 

property as the single-port CLN. The two-port CLN of n 

cycles with 2n operations of K−1 achieved almost the same 

convergence as the block PVL of 2n cycles with 4n − 2 

operations of K−1 since the both schemes use 2n basis vectors. 

This is expected from the similarities of both methods [14]. 
 

 
Fig. 3. Frequency dependence of (a) Y11 and (b) Y12. 

 
Fig. 4. Frequency dependence of Y11 given by the single-port CLN method. 

 

 
Fig. 5. Frequency dependence of Y11 given by the block PVL. 

 

Next, a rectangular voltage waveform of 1 V [Fig. 6(a)] was 

fed to the first conductor while the second conductor was 

short-circuited. The resultant currents I1 and I2 are shown in 

Fig. 6, where the multiport CLN [Fig. 6(b)] achieved a more 

accurate representation than the single-port CLN [Fig. 6(d)]. 

The magnetic flux distribution at t = 825 msec given by EC 

FE analysis [Fig. 7(c)] was reconstructed by the two-port CLN 

[Fig. 7(b)] and single-port CLN [Fig. 7(c)] in 15 stages. The 

two-port CLN accurately reproduced the flux distribution, 

whereas the single-port CLN was slightly inaccurate.  

Next, the admittance matrices with respect to the first and 

second conductor shown in Fig. 2(b) were computed by the 

two-port CLN, single-port CLN, and block PVL methods 

[Figs. 8, 9], where the material parameters were the same as 

those in Fig. 2(a). The two-port CLN achieved much faster 

convergence to accurate admittances than the single-port CLN, 

and almost the same convergence as the block PVL. 

IV. CONCLUSION 

An efficient and convenient multiport MOR method was 

derived, which directly provided a CLN representation of an 

EC field without Gram–Schmidt orthonormalization and 

singular value decomposition. Although the formulation of the 

multiport CLN is as simple as that of the single-port CLN, its 

convergence is faster than that of the single-port version and 

as fast as that of block Lanczos-based MOR. Its practical 

application to three-phase motor analysis is reported in 

another work [11]. 
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Fig. 6. Time-dependent analysis under rectangular voltage inputs: (a) voltage 

waveform, and (b) current I1, (c) current I2, and (d) current I1 given by a 

single-port CLN. 

 
Fig. 7. Magnetic flux lines given by (a) EC FE analysis, (b) two-port CLN, 
and (c) single-port CLN. 
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Fig. 8. Frequency dependence of (a) Y11 and (b) Y12. 

 

   
Fig. 9. Frequency dependence of Y11 given by the single-port CLN and block 

PVL methods.  


