
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 1299

BaBar Simulation Production—A Millennium of
Work in Under a Year

D. A. Smith, F. Blanc, C. Bozzi, and A. Khan, Member, IEEE

Abstract—The BaBar experiment requires simulated events be-
yond the ability of a single computing site to provide. This paper
describes the evolution of simulation and job management methods
to meet the physics community requirements and how production
became distributed to use resources beyond any one computing
center. The evolution of BaBar simulation along with the devel-
opment of the distribution of the computing effort is described.

As the computing effort is distributed to more sites there is a
need to simplify production so the effort does not multiply with
number of production centers. Tools are created to be flexible in
handling errors and failures that happen in the system and respond
accordingly, this reduces failure rates and production effort.

This paper will focus on one cycle of simulation production
within BaBar as a description of a large scale computing effort
which was fully performed, and provided new simulation data to
the users on time.

Index Terms—BaBar, distributed computing, Linux, production
management, simulation, Solaris.

I. BABAR SIMULATION HISTORY

THE BaBar High Energy Physics (HEP) detector [1] is
based at the Stanford Linear Accelerator Center (SLAC),

Menlo Park, CA USA. The experiment investigates the subtle
differences between matter and anti-matter by continuously
colliding bunches of high-energy electrons and positrons 250
million times per second and searching for the creation of rare
B-meson and anti-B-meson particles. In early 2003, BaBar was
into its third run cycle of data taking (run 3). The experiment
already had nearly 80 fb (inverse femtobarn, a gauge of the
sensitivity of the data to measure rare interactions) of data,
and by the end of run 3 BaBar would have 110 fb available
for analysis. The physics community had requested a certain
amount of simulated events to compare to this amount of data.
The requests were: three times the data set for generic signal
events; matching the data for generic background events; and
various specific signal events as requested. These three requests
were roughly similar in computing effort.

The total request translates to a number of events to be pro-
duced in simulation. In BaBar the simulation and reconstruc-
tion code is tagged in major software releases, and each major

Manuscript received October 4, 2005.
D. A. Smith is with the Stanford Linear Accelerator Center, Menlo Park, CA

94025 USA (e-mail: douglas@slac.stanford.edu).
F. Blanc is with the Department of Physics, University of Colorado, Boulder,

CO 80302 USA (e-mail: fblanc@pizero.colorado.edu).
C. Bozzi is with the Department of Physics, INFN Ferrara, Universita di Fer-

rara, I-44100 Ferrara, Italy (e-mail: bozzi@fe.infn.it).
A. Khan is with the School of Engineering and Design, Brunel University,

Uxbridge, UB8 3PH Middlesex, U.K. (e-mail: akram@slac.stanford.edu).
Digital Object Identifier 10.1109/TNS.2006.873080

release is used in a cycle of production which roughly matches
the data cycles. These cycles of simulation production are num-
bered, and this paper will mention three cycles in detail, SP4,
SP5 and SP6. In 2002, SP4 had the purpose of producing sim-
ulation for data run cycles 1 and 2, and to match the physics
request would require 1.2 billion events. SP5 in 2003 would pro-
duce events for run cycles 1–3, and need 1.6 billion events. For
SP6 it was recognized that the new reconstruction code would
not produce significantly different events than what was pro-
duced in SP5, so SP6 would only produce events for run cycle
4, and SP5 could be used for analysis of run cycles 1–3. This
change resulted in SP6 only needing 1 billion events to match
the request.

This resulted in the fact that SP5 would be the largest re-
quested production cycle in BaBar, and would need a greater
amount of distribution of the computing effort to get done on
time. This effort was performed and finished earlier this year,
and this paper will concentrate on this effort as a description of
a complete large scale computing effort.

II. COMPUTING RESOURCES NEEDED

Assuming a fictional 1 GHz Pentium III machine, we can look
at the resources needed at an event level. There is a range of the
computing time needed to produce an event in production, de-
pending on the type of decay mode to be simulated. The range
is 3 to 10 sec to fully simulate and reconstruct each event, and
the amount of data produced in SP5 was 30 to 45 kB per event.
When averaging over decay modes the time per event is 8 sec-
onds, and the data produced per event is 40 kB.

Looking at the resources needed to produce the requested
events, it is important to remember that the requests are the
starting point and not the full story. We designed the system
to use at least get 80% of the given cpu, this will increase the
amount of resource needed. Also, users might require more than
first requested, and large amounts of production will have to be
re-done for various reasons. These above reasons will increase
the amount of needed resources beyond what was first requested
to get the simulated events in time to users.

The resources needed to complete the requests can be deter-
mined by using the above figures as follows. In SP5 the request
was for 1.6 billion events. Multiplying this by the averages, you
get 420 years on the fictional machine, and 61.5 TB of data pro-
duced. Since large blocks of the production needed to be re-cre-
ated and people requested more as the production continued, the
actual number of events was 2.2 billion. Putting in the 80% of
cpu use with this larger number of events the computing time
comes to 700 years and the data produced is 84.5 TB. This sets
the scale of the computing effort for the SP5 production cycle.

0018-9499/$20.00 © 2006 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1300 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Fig. 1. Simulation production in the BaBar experiment by week, for the time period covering the SP5 cycle of production. The figure displays the different cycles
of production in BaBar, and how they overlap in time. The details of the simulation cycles are described in the text.

The production of these events is divided up into computing
jobs, where each job will produce 1000 to 2000 events, and the
final 2.2 billion events were created with over 1 million com-
puting jobs. On the fictional 1 GHz Pentium III machine these
jobs would take on average 2.3 or 4.5 hours to complete.

The code to run these jobs was developed in BaBar on So-
laris and Linux systems. In the SP4 production cycle, some
simulation was produced using Solaris, but by 2002, when SP5
was starting, all new cpus purchased were commodity Intel ma-
chines running Linux, and all of the production in SP5 would
be on Linux machines, this continues to be true in SP6.

In summary the SP5 computing effort was the management
of over 1 million jobs on Linux machines, this continues to be
true in SP6, each taking 2 to 5 hours to run.

III. AN OVERVIEW OF SIMULATION PRODUCTION

Fig. 1 shows a plot covering most of the time period of the SP5
production that started in January 2003, including some of the
time period before and after to show the overlap with the end of
the previous SP4 production, and the start of the SP6 production.
This plot displays the production in terms of millions of events
per week for each week in this time period.

This plot illustrates a year and a half of the history of BaBar
simulation production, and how simulation cycles SP4, SP5, and
SP6 overlap in time. Further comments on the styles of each
production is needed, since each cycle of production was not
just a new release of BaBar software used to simulate events,
but was actually a complete re-working of how production was
to be done, a revolution in production style for each cycle.

In SP4, production was split into three jobs—a simulation
stage with particle generation and Geant4 [2] simulation; a
mixing stage to produce detector signals including measured
background events; and a reconstruction stage to produce events
to be used in analysis. The use of three stages of production,
each having a separate job, was a harder management problem
to solve, since the 1.2 billion events were produced in over 1.8
million jobs. Also there were three times more failures to track,
where each failure would affect the management of the next job
(i.e., simulation failures effected submission of mixing jobs).

In SP5 the three-stage production was replaced with a new
simulation executable, which would perform all three stages

(simulation, mixing, and reconstruction) on each event, before
producing output. This had a huge affect on the management
and production of simulation. There were now one third as many
jobs to manage. There was less server load since there was no
output from each stage (for technical reasons it was 8 times less
server load). Each job was now longer, so the batch queues could
be used more efficiently. This resulted in a greater efficiency in
production in SP5 in comparison to SP4, since less work was
involved to produce the same amount of data. There was a trade
off, since the new executable required 512 MB of memory to
run (previously it was only 256 MB of memory needed), and
there would be some computing overhead so each event would
take 10% longer to produce. At the time, memory was becoming
cheaper and most of the batch farms already had at least this
amount, so it turned out to not be a serious restriction to pro-
duction.

The production cycle SP6 was another revolution in method
since it included BaBar’s computing model 2 changes [3], [4].
This new computing model included a number of base changes
in BaBar computing, but the one to most affect production was
the change from an event store based on databases, to an event
store based on files. This change meant control code would
now have to manage the production and distribution of the
produced files. Although this increased the complexity of the
control scripts compared to database use (where the database
system would control the files produced), the added control
over production freed up how production could be done, and
again increased efficiency. Production output was now stored
into a file structure, and removed the overhead of maintaining
a database. This drastically reduced server load again, and
reduced the chance for job failures, making production much
easier for production managers. The trade off was increasing
the complexity of the control code, but this was something
under our control, done once and perfected in testing, so it was
not a concern for production itself.

IV. PRODUCTION METHODOLOGY

Since the SP5 data would be needed by the beginning of 2004,
and we could not wait for one machine to do the production in
700 years, we would need to run the jobs in parallel on thou-
sands of cpus. At the end of 2002, SLAC had over one thousand

SMITH et al.: BABAR SIMULATION PRODUCTION—A MILLENNIUM OF WORK IN UNDER A YEAR 1301

cpus but these were needed for other efforts, such as data re-
construction and analysis. Before this point there was a stated
desire that the computing efforts within BaBar should become
distributed to more of the institutions in the collaboration. Simu-
lation production was sited as a good candidate for distribution.
Lack of required resources at SLAC would not be a problem,
since computing resources would be found at any BaBar insti-
tution that could provide them.

When increasing the number of sites, one must be careful not
to also multiply the effort to the collaboration. The initial pro-
duction at SLAC was done with 3 people working in shifts. The
BaBar collaboration could not withstand 3 people per produc-
tion site. The standard which was agreed upon was that each site
could only require one half-time person in the collaboration to
get the work done.

To get a large amount of production done, without increasing
the total effort required good tools to be created. A set of
tools providing a number of services were created called
“ProdTools”, these were command line tools and libraries to
help the production managers with their daily tasks. Also they
would provide control for the jobs, so the task could get done
efficiently with the provided resources at each site. In the case
of SP5, the tools provided specific requirements to be able to
use the database event store in a production environment (such
as only one job could start in the database per minute).

ProdTools provides an interface between the central produc-
tion database at SLAC, and the local batch systems at each site
(see Ref [5]). The system was developed around one single data-
base at SLAC, which would provide the global coordination for
simulation requests, runs, and jobs. All sites would attach to this
database to determine configuration information for the jobs to
be submitted.

But the main point of the tools was not the submitting of jobs,
but recognising when the jobs fail, and how to fix these fail-
ures. This requires recognizing different failure modes, and de-
termining what is the proper response for each. As these modes
were recognized, the recovery of each failure could then be
coded, and improvements on the recovery procedures were pos-
sible.

In any production failures always happen, no matter how
stable the computing systems can be made. In SP5 the best we
were able to do was a failure rate of 4–6%. The standard was
that the tools should be developed until they are able to respond
correctly for all but 1 in 10 000 jobs, including failures. Also
a failure of a single job should not hang all production. In SP5
there was over 1 million jobs, about 50 000 of these will fail.
The tools should be able to then fix all but 100 of the total jobs,
so the effort does not increase with failures. In SP5 to further
reduce effort, once this level of production was reached, we
would then just abandon the remaining failed jobs and accept
that they would not get done. Along with ProdTools to manage
the jobs, there was a tool developed to manage the transfer of
the produced databases, which was called “MocaEspresso”.
This tool would recognise the closed databases produced in
SP5 and package them for transfer to SLAC. All data produced
in BaBar has to be transferred back to SLAC for archiving
before it can then be distributed to other sites for analysis. The
total data produced in SP5 was 80 TB over the course of a year,

and this meant an average of 200 GB a day would be coming
into SLAC, and there was a maximum in production of 500 GB
per day over the course of the year. This required the use of a
set of file servers dedicated for transfers, and local tools were
developed to handle the file archiving and attaching them to the
production databases. These tools also had to be careful and
error correcting to keep up with the required transfer rates—if
they could not handle the 200 GB on any given day, they would
need to be able to handle 400 GB the next day.

V. REMOTE SITE RESOURCES

Most of the management and control of the jobs was handled
by one system at SLAC, but production was done at remote sites,
and there were certain requirements on the resources needed to
be able to run BaBar jobs. For SP5 there was the database to
setup and hold the produced events until these databases could
be closed for export. This database setup also needed to include
the BaBar conditions database, and the background events to be
used for the mixing stage. This produced the requirement of a
file server with about 500 GB of space.

To run the jobs each site would need as many cpus as they
could get, with a limit of about 120 possible jobs per file senrver.
Each of these cpus would be put into a batch system for job
submission, and they each had to read and write to the file server
over the network, requiring a network switch that could handle
the load. There was a requirement for one control machine per
site, which would connect to SLAC and to the global database.
Any of these machines could be shared with other services, but
these types of machines at least had to exist.

The sites setups were very diverse within these requirements.
Many of the academic sites had obtained funding to be a ded-
icated production site, and they were setup with a fairly basic
32 dual processor machines and a file server with attached disk
array. But the other larger sites would often already be setup in
some manner which we could not change. Batch queues would
have to share resources with other efforts, with numbers of cpu
used for production that would vary day to day. File servers
would be shared with other efforts, making server load an im-
portant concern. Simulation jobs could be background processes
on other production efforts. Also the batch machines could have
variable amount of memory and local disk, including one site
with batch nodes that had no local disk at all.

With the variability of resources, there was also a variable
software infrastructure, with sites using either nfs or ams to
serve the databases, nfs service could be Linux or Solaris, which
have slightly different responses to load, afs could be used at a
site or not. But the largest difference was in use of batch sys-
tems. We could not specify the batch systems in use at any sites,
and many were put into use, with LSF, BQS, PBS, SGE, Condor,
Codine, and others. To support these different batch systems a
module abstraction layer to batch interaction was created, and
a template with needed functions was created. Central develop-
ment could not test each of the batch systems in use, but remote
sites could build an interface from the template, and check in
new batch system support to the code base. As other sites would
modify and improve each interface, this proved to be a good de-
velopment model, and produced stable interfaces rather quickly,

1302 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006

Fig. 2. How the production was distributed around the world for production
cycle SP5, divided by country. The USA has more production sites within BaBar
than any other country; jobs are well distributed among the existing sites.

without a need for central development to have detailed knowl-
edge and test systems for each batch system in use.

Tools would freely get modified to satisfy different produc-
tion site requirements. If a site had resources which could be
used, we would find a way to use those resources. This resulted
in 22 production sites in 6 countries on 2 continents: CalTech,
CO State Univ., CO Univ. at Boulder, Iowa State Univ, Ohio
State Univ, SLAC, SUNY Albany, Univ. Texas at Dallas, Univ.
Tenn., Univ. Victoria, and Vanderbilt in North America; Birm-
ingham, Bristol, IN2P3, FZK, INFN, Liverpool, Queen Mary,
RAL, Royal Holloway, ScotGrid, and Tech. Univ. of Dresden
in Europe.

The push to get work distributed among sites in SP5 was very
successful, with no one site dominating production. The relative
amount of data produced in SP5 by country is shown in Fig. 2.

VI. SP6 IMPROVEMENTS

BaBar’s Computing Model 2 changes were put into pro-
duction with SP6, as was commented on earlier [3], [4]. This
increased the amount of control that production could have
over what was produced, and with this control we were able to
achieve a much lower failure rate for jobs. In SP5 the failure
rate for jobs was between 4–6%. Most of this failure rate was
because of the use of databases for production, producing
strange restrictions on production (such as only one job starting
per minute into a database, carefully tuned container sizes, data
caches to be tweaked, etc.). But with more control over the
output files, we were able to get the SP6 failure rate down to
0.2–0.5%, where most of this failure is now due to hardware.
With this lower failure rate and the removal of a database to
support, the effort for production managers was also reduced.
The average of one half-time person per site has now been
reduced to only one tenth-time person per site. Many site
managers have reported that things are now stable enough to
run for a week, without any interaction beyond just checking
on the status of jobs.

VII. COMMENTS ON GRID USE

This has been a presentation of a large scale distributed com-
puting effort, and it sounds like it should be a GRID talk, but it is
not. There has been some activity within the BaBar simulation
production involving GridPP resources in the UK, and INFN-
Grid resources in Italy [6]. Both approaches are converging to
a unique model based on the LCG middleware. These are de-
velopment projects and at this point only provide for a small
amount of the current production.

The production effort within BaBar started well before there
were any Grid projects, but as the Grid project continue to ma-
ture the production team have watched them to see what we
could use. Recently, the Grid has not been stable enough for our
simulation production to be useable, since we need to get pro-
duction out stably, day after day. Also, until recently the Grid
was not installed on enough resources throughout the world to
be able to provide the needed production for BaBar. The re-
sources now installed are more than adequate, although shared
with several other large scale efforts. But even so the Grid re-
quires more effort at this time than the use of the current tools,
and current dedicated cpus already in use.

Grid production has been proven to work for BaBar, but only
with heroic efforts. Until the Grid proves to be more stable in
development than it currently is, and easier to use for our pro-
duction effort, these will have to be development projects. For
now the Grid is not the answer for BaBar simulation production.
But this will change, with future development within BaBar to
better match Grid models, and within the Grid to have more
stable tools which will be easier for large projects to use. The
next couple of years with production, Grid use should prove to
be interesting.

VIII. CONCLUSION

Production of simulated events for BaBar is a large com-
puting effort requiring over 1000 cpus throughout the world
(we are now at 1800 cpus and growing). Even though this is
a large and difficult computing effort, it was done and on time
for physics analysis, using a reasonable number of people.

To reduce the effort to a reasonable level, good tools are re-
quired, and need to be robust to handle failures without causing
more work for producers, and be stable for at least three days.
In any production most of the effort is spent in recovering from
problems, tools need to be designed with automatic recovery if
effort is truly to be reduced.

The system in BaBar is working well, producing needed
events in a timely manner with a supportable effort in the
collaboration. Improvements continue to be made, as sites add
cpus as more sites come on-line. The system continues to scale
well for increasing production, and we look forward to SP7
starting in the fall.

ACKNOWLEDGMENT

This work builds on a large body of development by the
BaBar Computing Group, and would not have been possible
without a strong collaborative effort.

SMITH et al.: BABAR SIMULATION PRODUCTION—A MILLENNIUM OF WORK IN UNDER A YEAR 1303

REFERENCES

[1] B. Aubert, “The BaBar detector,” Nucl. Instrum. Methods Phys. Res.
A, vol. A479, pp. 1–116, 2002.

[2] S. Agostinelli, “GEANT4: a Simulation Toolkit, ,” Nucl. Instrum.
Methods Phys Res. A, vol. A506, pp. 250–303, 2003.

[3] P. Elmer, “BaBar computing—From collisions to physics results,” pre-
sented at the 2004 Conf. for Computing in High-Energy and Nuclear
Physics (CHEP04), Interlaken, Switzerland.

[4] M. Steinke and P. Elmer, “How to build an event store—The new kanga
event store for BaBar,” presented at the 2004 Conf. for Computing in
High-Energy and Nuclear Physics (CHEP04), Interlaken, Switzerland.

[5] D. Smith et al., “Global management of BaBar simulation production,”
presented at the 2003 Conf. for Computing in High-Energy and Nuclear
Physics (CHEP03), La Jolla, CA.

[6] C. Bozzi, “Using the Grid for the BaBar experiment,” IEEE Trans.
Nucl. Sci., vol. 51, no. 5, pt. 1, pp. 2045–2049, Oct. 2004.

