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Abstract

Background: Adolescents experience higher levels of non-adherence to HIV treatment. Drug concentration in hair
promises to be reliable for assessing exposure to antiretroviral (ARV) drugs. Pharmacokinetic modelling can explore
utility of drug in hair. We aimed at developing and validating a pharmacokinetic model based on atazanavir/
ritonavir (ATV/r) in hair and identify factors associated with variabilities in hair accumulation.

Methods: We based the study on secondary data analysis whereby data from a previous study on Zimbabwean
adolescents which collected hair samples at enrolment and 3 months follow-up was used in model development.
We performed model development in NONMEM (version 7.3) ADVAN 13.

Results: There is 16% / 18% of the respective ATV/r in hair as a ratio of steady-state trough plasma concentrations.
At follow-up, we estimated an increase of 30% /42% of respective ATV/r in hair. We associated a unit increase in
adherence score with 2% increase in hair concentration both ATV/r. Thinner participants had 54% higher while
overweight had 21% lower atazanavir in hair compared to normal weight participants. Adolescents receiving care
from fellow siblings had atazanavir in hair at least 54% less compared to other forms of care.

Conclusion: The determinants of increased ATV/r concentrations in hair found in our analysis are monitoring at
follow up event, body mass index, and caregiver status. Measuring drug concentration in hair is feasibly
accomplished and could be more accurate for monitoring ARV drugs exposure.
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Background
About 36.9 million people were living with Human Im-
munodeficiency Virus (HIV) worldwide in 2017. Of
these, approximately 3 million were children and adoles-
cents under 20 years of age [1]. Zimbabwe has a preva-
lence of 13.3%, with 1.3 million people living with HIV
including 77,000 children and adolescents [2]. Poor ad-
herence to treatment leads to sub-optimal drug exposure
limiting treatment efficacy [3, 4]. It has been estimated
that between 20 to 50% of adolescents experience
adherence-related antiretroviral (ARV) drug treatment
failure [5–11].
It is desirable to have a routine assessment of adher-

ence and exposure to ARV drugs available for use by
healthcare providers. The methods used for assessing ad-
herence and exposure to ARV drugs include self-
reported missed doses, monitoring pharmacy refills and
conducting pill counts, use of electronic monitoring de-
vices, measuring ARV concentration in plasma or hair
[12–14]. Quantifying ARV drugs in hair provides infor-
mation of both steady-state pharmacokinetics and long
term adherence and has shown to predict well the rela-
tionship between drug exposure and treatment out-
comes when compared to other approaches [15–21].
Some suggest that hair uptake most external sub-

stances or their metabolites from the systemic circula-
tion through the hair bulb blood supply by passive
diffusion from blood into growing hair cells at the base
of the follicle and then bound in the hair shaft [22–25].
Once the drug accumulates into the growing hair, we
can detect it long after elimination from the systematic
circulation, unlike in conventional biological samples
such as blood and urine [26–30]. The scalp hair fibre
grows at an average rate of 0.5 to 1.5 cm per month [31].
Thus the amount of drug in hair is constantly increasing
until the next hair cut or when all the drug is removed
from the systematic circulation.
In Zimbabwe and other resources limited settings,

pharmacokinetic (PK) modelling applied focused primar-
ily on systemic exposure to ARV drugs. It based the
models used on data generated by quantifying drugs
mostly from single time-point plasma samples [32–35].
Hypothetically hair PK parameters can provide add-
itional information about the patient’s drug exposure
overtime, hence the need to determine and apply hair
PK for prediction of drug amount in the hair in relation
to exposure in plasma.
Using single time-point plasma samples is considered

unreliable when assessing drug exposure in populations
at risk of non-adherence. Measuring ARV concentra-
tions in hair promises to be more accurate and feasibly
accomplished. However, there are very few studies which
analysed drug concentration measured in hair using PK
approaches. The aim of the work reported in this paper

was to develop and validate a population PK model for
ATV/r concentrations in hair and explore factors associ-
ated with increased or reduced concentrations assuming
a direct relationship between ratio in plasma and hair.

Methods
Source of data
The study used secondary data from a previously pub-
lished study conducted in Zimbabwe [15]. They col-
lected the data between January 2015 and May 2016. It
comprised 50 adolescents aged between 10 to 18 years
and were on ATV/r (300/100 mg) based 2nd line HIV
treatment for at least 6 months. They enrolled these par-
ticipants at a public health hospital in Harare,
Zimbabwe, and randomized to either adherence inter-
vention or standard of care arms. They excluded partici-
pants if they were on anti-TB treatment, did not prefer
home be followed-ups, had viral load < 1000 copies/ml
within the previous 2 months, or were on ATV/r as 1st
line treatment. The goal of the primary study was to test
the impact of a home-based modified directly adminis-
tered adherence intervention on virologic outcome. They
collected questionnaire data, blood samples and hair
samples cut closest to the scalp at baseline and at 90
days follow-up. ATV/r in hair were measured using li-
quid chromatography/mass spectrometry/ mass spec-
trometry (LC/MS/MS) and the assay range for ATV/r
was 0.05–20.0 /0.01–4.0 ng/mg hair, respectively, and a
correlation co-efficient of 0.99 for both. Additional de-
tails about hair sample preparation and analysis are de-
scribed in the primary study [15].

Pharmacokinetic modelling
We developed a population PK model to describe ATV/
r concentrations in hair. We fixed parameters describing
the PK of atazanavir and ritonavir in plasma based on
previously published estimates got from studies con-
ducted in almost similar settings [36, 37]. Some of the
inter-individual (IIV) and inter-occasion (IOV) variabil-
ity parameters were estimated while others were fixed in
order to improve model fit or stability. We did model
development using the first-order conditional estimation
method with interaction (FOCE-I) in NONMEM (ver-
sion 7.3) ADVAN 13 [38]. We schematically presented
the structural population PK model applied to both ata-
zanavir and ritonavir concentrations using Fig. 1.
The model describes the concentration of drug in hair at

steady-state trough plasma concentrations in the body 24 h
after a dose. Given that there were no plasma concentration
data, we used a simplified model which estimate ratios of
concentrations between hair and plasma. We describe the
rate of change of amount of drug between compartments
in Fig. 1 using the differential equations:
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dA1

dt
¼ − k12:A1; ð1Þ

dA2

dt
¼ k12:A1 − k20:A2; ð2Þ

dA3

dt
¼ Frac k20ð Þ:A2; ð3Þ

C ¼ A3

Vh
; ð4Þ

Equation 1 describe drug absorption into the plasma
circulation i.e. central compartment at a rate (k12) pro-
portional to the dose amount (A1); Equation 2 describe
input from Equation 1 and total elimination of the drug
at rate (k20 ¼ CL

Vc
, where CL and Vc represents clearance

and apparent volume of distribution of the bioavailable
drug proportional to the amount in the central compart-
ment (A2); Equation 3 describe a ratio (Frac) of hair con-
centration relative to steady-state plasma trough
concentration. Equation 4 predicts the drug concentra-
tion C in hair using the ratio of amount of drug in the
hair (A3) and apparent volume of distribution (Vh) of the
bioavailable drug in the hair.
We tested all covariates in Table 1 during covariate ana-

lysis. We selected the optimal covariates relationships
through clinical and prior assessment of statistical signifi-
cance testing using the Stepwise Covariate Model building
(SCM) method as implemented in Perl-speaks-NONMEM
(PsN). We tested relations on the Frac parameter only.

Model evaluation
We used the change in objective function value (ΔOFV)
provided from NONMEM model output at 5% level of
significance (i.e. ΔOFV > 3.83, Chi-square 1-degree of
freedom) in forward selection process and then at 1%
level of significance (i.e. ΔOFV > 6.64, Chi-square 1-
degree of freedom) in the backward deletion process, to
make discriminations between hierarchical models. We

performed bootstrap analysis and 90% confidence inter-
vals on the final covariate models by re-sampling 1000
times in PsN as part of model evaluation numerically.
We used graphical assessment of the standard goodness-
of-fit plots [39]. Both proportional and additive or com-
bined error models were tested and discriminated by
means of change in objective function value (ΔOFV).

Results
Study participant details
We used 50 participant data in the analysis. The mean
(standard deviation) age in years of the study partici-
pants was 15.8 (1.8). Fifty-four percent were female. The
majority (89%) of these adolescents were attending sec-
ondary school, while others were still primary school.
Ten percent of the study participants were under the
care of fellow siblings below the age of 19 years while
others were under the care of parents or relatives.
Eighty-two percent of the adolescents were on tenofovir,
lamivudine and ATV/r. ATV/r in hair was measured at
baseline and 90 days follow-up for every participant and
for both drugs, out of the 100 hair samples collected for
ATV/r, only 82% / 88%, respectively, were considered
for pharmacokinetic modelling, while the remainder 18%
/ 12% were below the limit of quantification, The me-
dian length of hair samples was 1 cm (range 0.5 cm to
1.5 cm). The mean (standard deviation) weight of hair
samples was 2.0 g (0.15 g). The mean (standard devi-
ation) drug concentration for atazanavir / ritonavir was
2.5 ng/mg hair (2 ng/mg hair)/0.5 ng/mg hair (0.4 ng/mg
hair) respectively. The mean (standard deviation) adher-
ence level of a visual analogue scale of 0 to 100% was
84.1% (18.1%). Further we present details on characteris-
tics of the study population in Table 1.

Population pharmacokinetic modelling
Atazanavir model
We fixed the parameters describing the steady-state
population pharmacokinetics of atazanavir in the plasma

Fig. 1 Schematic representation of the structural population PK model used to predict atazanavir and ritonavir concentrations measured in hair
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to 0.44 l per hour for k12, 10 l per hour for CL/F and
63.4 l for Vc [36, 37]. We included body weight as a co-
variate on CL/F and Vc through allometric scaling, fixing
the exponents to 0.75 and 1 for CL/F and Vc respectively
[40]. We initially estimated Vh for atazanavir in hair but
later on fixed it to 1 because the model estimates were
close to 1 and also to stabilise the final model results.

We estimated that ATV concentration measured in hair
is approximately16% the amount of atazanavir plasma
trough concentration after adjusting for covariate effects.
Covariate model results show that participants had ATV
concentration 30% less at enrolment than that at follow-
up event (p-value < 0.0001). A unit increase in self-
reported adherence score increased ATV concentration
by 2% (p-value = 0.0004). Thinner participants had 54%
higher ATV concentration, while overweight participants
had 21% lower ATV concentration compared to partici-
pants with normal body mass index-for-age (p-value =
0.0165). Participants receiving care from a parent and
uncle or aunt had atazanavir in hair 53 and 12% higher
respectively, while those receiving care from fellow sib-
lings had atazanavir in hair 54% lower compared to par-
ticipants receiving care from grandparents (p-value =
0.0406). Based on the change in the OFV value, the most
significant covariate was the follow-up occasion
(ΔOFV = 47.8, d.f = 1); followed by adherence score
(ΔOFV = 18.4, d.f = 1); Body Mass Index-for-age
(ΔOFV = 7.5, d.f = 2); and guardian status (ΔOFV = 14.0,
d.f = 2), respectively. We present the detailed results in
Table 2 and Table 3.

Ritonavir model
We fixed the parameters describing the steady-state popu-
lation pharmacokinetics of ritonavir in the plasma to 2.31
l per hour for k12, 12.8 l per hour for CL/F and 105 l for Vc

[36, 37]. We initially estimated Vh for ritonavir in hair but
later on fixed it to 1 because the model estimates were
close to 1 and also to stabilise the final model results. We
estimated that ritonavir concentration measured in hair is
approximately 18% the amount of ritonavir plasma trough
concentration after adjusting for covariate effects. Covari-
ate model results show that participants had ritonavir frac-
tion 42% less at enrolment than that at follow-up event
(p-value = 0.0003). A unit increase in self-reported adher-
ence score increased ritonavir concentrations by 2% (p-
value = 0.0245). Based on the change in the OFV value,
the most significant covariate was the follow-up occasion
(ΔOFV = 14.8, d.f = 1) and then followed by adherence
score (ΔOFV= 5.3, d.f = 1). We present the detailed results
in Tables 4 and 5.

Model diagnostics
There was no huge variation between all the estimated
final model parameters and those got using 1000 sam-
ples bootstrap. All the estimated final model were falling
within the 90% confidence intervals. Figure 2 presents
the basic goodness-of-fit plots showing the population
model predictions versus observations and the residual
error plots for both atazanavir and ritonavir final
models. The results show low bias, and fairly good preci-
sion showing fairly acceptable predictive performance.

Table 1 Summary statistics describing data variables of the
original study

Variable Response

Length of hair (cm), median (range) 1 (0.5–1.5)

Hair weight (grams), mean (Standard Deviation; Range) 2.0 (0.15; 1.76–
2.28)

Samples Below limit of quantification

Atazanavir 18 (18)

Ritonavir 12 (12)

Drug regimen: recruitment + follow-up, n (%)

Tenofovir/Lamivudine/Atazanavir-ritonavir 75 (82)

Abacavir/Didanosine /Atazanavir-ritonavir 6 (7)

Zidovidine/Lamivudine/Atazanavir-ritonavir 6 (7)

Abacavir/Lamivudine/Atazanavir-ritonavir 3 (3)

Tenofovir/ Emtricitabine /Atazanavir-ritonavir 2 (2)

Body mass index-for-age, n (%)

Normal 25 (54)

Overweight 7 (15)

Thinness 14 (30)

Age (years), mean (Standard Deviation; Range) 15.8 (1.8; 11–
18)

Gender, n (%)

Female 27 (54)

Caregiver, n (%)

Parent 10 (20)

Grandparent 20 (40)

Sibling 5 (10)

Aunt/uncle 15 (30)

Level of education, n (%)

Secondary school 39 (89)

Primary school 8 (9)

Dropped 1 (2)

WHO disease progression stage, n (%)

Early 16 (32)

Late 34 (68)

Adherence by visual inspection of analogue scale,
mean (Standard Deviation; Range)

84.2 (18.1; 30–
100)

Atazanavir concentration (ng/mg), mean (Standard
Deviation; Range)

2.5 (2.0; 0.07–
8.65)

Ritonavir concentration (ng/mg), mean (Standard
Deviation; Range)

0.5 (0.4; 0.01–
1.39)

Ngara et al. BMC Pharmacology and Toxicology           (2020) 21:58 Page 4 of 9



Discussion
This is a breakthrough study to perform joint pharmaco-
kinetic modelling of plasma and hair drug concentra-
tions, determine the relationship between exposure of
the drug in hair and that to plasma. Several studies have
used drug concentration as a tool for measuring anti-
retroviral drug exposure in situations where non-
adherence to treatment maybe a challenge. However the
choice of the multivariate statistical models involving
hair concentration as the outcome variable in these stud-
ies lacked the dose component which plays a critical role
when optimising the relationship between drug exposure
and treatment outcomes [5, 15, 17–20]. A non-linear
mixed effect PK model has an advantage that includes
the dose component. The main purpose of the current

model is basically to inform future study design that in-
volve measuring drug concentrations in hair. Later in
the discussion, we will present some limitations and rec-
ommendations that can improve the power of this
method.
Some of the plasma pharmacokinetic parameter we re-

ported while fixing to constant values for the drugs var-
ied from those reported in studies conducted in almost
similar settings [36, 37], this could be as a result that
some of these values were adjusted by the median body
weight observed in our study using allometric scaling.
While it is novel to use transit compartment as applied
in one of these studies versus the conventional approach
(Tlag) to cater for delay in absorption, the disease sever-
ity experienced was different in our case due to lower

Table 2 Effect of covariate inclusion on the OFV for the atazanavir in hair model

Model OFV ΔOFV Cummulative ΔOFV Cummulative D.F

Baseline 268.6 – – –

Baseline+Occassion 220.8 47.8 47.8 1

Baseline+Occasion+Adherence 202.4 18.4 66.2 2

Baseline+Occasion+ Adherence +BMI 194.9 7.5 73.7 4

Baseline+Occasion+ Adherence VAS + BMI + Guardian 180.9 14.0 87.7 7

Table 3 Final model parameters describing joint fixed plasma and hair pharmacokinetics of atazanavir

Parameter Population mean (SE
as %)

1000 samples bootstrap medians
(90% CI)

Variability (SE
as %)

1000 samples bootstrap medians
(90% CI)

k12 (litres hour
− 1) 0.44 fixed 0.44 fixed 0.45 fixed 0.44 fixed

CL/F (litres hour−1) 10 fixed 10 fixed 1.04 (99) 0.97 (0.50–1.98)

Vc (litres) 63.4 fixed 63.4 fixed 0.50 fixed 0.50 fixed

Frac 0.16 (16) 0.15 (0.06 to 0.26)

Vh (litres) 1 fixed 1 fixed

Occasion (Follow-up)_ Frac * *

Occasion (Enrolment)_ Frac −0.30 (23) −0.27 (−0.50 to −0.07)

Adherence score_ Frac 0.02 (18) 0.015 (0.004 to 0.017)

Body Mass Index-for-age (Normal)_
Frac

* *

Body Mass Index-for-age (Thin)_
Frac

0.54 (22) 0.49 (0.06 to 0.74)

Body Mass Index-for-age (Over-
weight)_ Frac

−0.21 (121) − 0.15 (− 0.26 to − 0.05)

Guardian (Grandparent)_ Frac * *

Guardian (Parent)_ Frac 0.53 (56) 0.55 (0.03 to 2.58)

Guardian (Uncle/Aunt)_ Frac 0.12 (177) 0.17 (0.05 to 1.60)

Guardian (Sibling)_ Frac −0.54 (35) −0.60 (− 0.92 to − 0.27)

ɛADD 0.30 (1) 0.29 (0.14 to 0.44)

ɛPROP 0.50 (2) 0.50 (0.39 to 0.61)

σ 1 1

k12: Absorption rate constant; CL/F: apparent drug clearance; Vc and Vh: apparent volume of distribution in the central and hair compartments, respectively; Frac
amount of drug cleared into the hair as a proportion of the amount of drug in plasma at steady-state troughs; FACTOR_ Frac: effect of covariate on Frac; ɛADD and
ɛPROP: additive and proportional error terms, respectively; σ: residual error; SE: standard error. *: reference group
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age groups in the previously published study [37]. There
is a possibility that certain enzymes and or transporters
played a role which physiologically were not possible to
incorporate in our model. Hence these two studies were
used as a better reference in our study because they were
comparable to our study population geographically but
had no influence in selection of all parameters describ-
ing plasma pharmacokinetics.
The amount of atazanavir concentration determined in

hair is approximately 16% of steady-state plasma trough.
We estimated an almost similar ratio of 18% for ritonavir
as part of model testing. In our conceptual framework, we
are interested in finding covariates that affect drug expos-
ure to improve the dosing strategies. We used the SCM in
identifying covariates associated with variation in hair
drug exposure. The drug that accumulates in hair comes
from plasma, therefore one of the major assumption is
that the covariates found to have an association with accu-
mulation of drug in hair in our results are a function of an
altered plasma PK profile.
ATV/r concentrations increased on follow-up occasion

irrespective of study arm which could result from design
biases the original study could not eliminate. By being
involved in a study, participants are more aware that
they are under investigation, hence they adhere more to

treatment, increasing hair drug concentrations in both
arms. The primary study randomized participants to
study arms without blinding, so this could have intro-
duced the biases. High body mass index (BMI)-for-age
decreased atazanavir concentrations in hair, while low
body mass index-for-age increased atazanavir accumula-
tion in hair. These findings concur with earlier studies in
adults [41, 42]. They associated low BMI with high
plasma drug concentrations, often resulting in supra-
therapeutic drug concentrations, with subsequent drug
toxicity, side effects and defaulting treatment. Further-
more, the same literature associates high BMI with low
plasma drug concentrations, often resulting in sub-
therapeutic drug concentrations and subsequent treat-
ment failure and drug resistance. To the best of our
knowledge, our study is the first to show this association
in adolescents and using drug concentrations in hair.
We associated receiving care from siblings with lower

drug concentrations in hair. Based on current know-
ledge, this is the 1st study to prove this association using
hair samples. Results from a different previous study
showed higher self-reported adherence in children and
youth who stayed with their parents and grandparents,
than those who stayed with siblings [43]. Siblings of
HIV-infected children and youth are often immature

Table 4 Effect of covariate inclusion on the OFV for the ritonavir in hair model

Model OFV ΔOFV Cummulative ΔOFV Cummulative D.F

Baseline −61.2 – – –

Baseline+Occassion −76.0 14.8 14.8 1

Baseline+Occasion+Adherence − 81.3 5.3 20.1 2

Table 5 Final model parameters describing joint fixed plasma and hair pharmacokinetics of ritonavir

Parameter Population mean (SE as
%)

1000 samples bootstrap medians
(90% CI)

Variability (SE as
%)

1000 samples bootstrap medians
(90% CI)

k12 (litres hour
−1) 2.31 fixed 2.31 fixed 0.45 fixed 0.45 fixed

CL/F (litres hour−1) 12.8 fixed 12.8 fixed 0.28 (31) 0.28 (0.01 to 0.68)

Vc (litres) 105 fixed 105 fixed 0.50 fixed 0.50 fixed

Frac 0.18 (16) 0.18 (0.14 to 0.21)

Vh (litres) 1 fixed 1 fixed

Occasion (Follow-up)_
Frac

* *

Occasion (Enrolment)_
Frac

−0.42 (22) −0.39 (−0.56 to −0.21)

Adherence score_ Frac 0.02 (47) 0.014 (0.008 to 0.017)

ɛADD 0.34 (95) 0.36 (0.04 to 0.63)

ɛPROP 0.26 (26) 0.24 (0.13 to 0.31)

σ 1 1

k12: Absorption rate constant; CL/F: apparent drug clearance; Vc and Vh: apparent volume of distribution in the central and hair compartments, respectively; Frac:
amount of drug cleared into the hair as a proportion of the amount of drug in plasma; FACTOR_ Frac: effect of covariate on Frac; ɛADD and ɛPROP: additive and
proportional error terms, respectively; σ: residual error; SE: standard error. *: reference category
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themselves and still coming to terms with burdens asso-
ciated with child-headed families, orphan-hood and pov-
erty. The needs of HIV-infected children come in as an
extra burden that the siblings may not manage the pres-
sure that comes with the burden, leading to missed
doses and hospital visits, and subsequent treatment fail-
ure in the HIV-infected adolescents.
A major limitation of the modelling approach applied

in the article is we had a small sample size (n = 50) and
that we got only two times-points of drug concentration
data from each participant. An additional number of

participants coupled with having several or segmental
measurement of drug concentration from the hair and
additionally measuring drug concentration in plasma will
improve the power of the modelling framework that
used in this paper. Using prior estimates on the plasma
PK model could have led to an underestimation of
steady state trough concentration because of unavailabil-
ity of adherence data, however including prior estimates
in the form of both fixed and random effects on the
plasma PK model could have reduced the bias. Most of
the study participants (82%) were on a uniform drug

Fig. 2 Basic goodness-of-fit plots for the final model for atazanavir 300 mg (a) and ritonavir 100 mg (b). Upper left panel: The observations are
plotted versus the population predictions. Upper right panel: The observations are plotted against the individual predictions. Lower left panel: The
individually weighted residuals are plotted versus the individual predictions. Lower right panel: The conditional weighted residuals are shown
versus time (in hours). The open black circles represents observed data. The bold-dashed line is a locally weighted scatter-plot smoother (LOESS),
while the solid line is identity or zero
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combination, however the unavailability of data on non-
HIV/AIDS linked co-therapies limited investigations of
the drug-drug interactions which is also very critical to
test during PK analysis. Also, apart from the low sample
size, the unavailability of data about how the participants
cosmetically treated their hair before it was sampled for
the study can possible explain why some of the model
parameters were reported with notable very high re-
sidual standard errors, hence limiting the accuracy of
the model estimates.

Conclusion
We have showed some work which can complement the
efforts being taken by other scientists to establish the
use of measuring drug concentration in hair at HIV/
AIDS points of care. Most important determinants of in-
creased concentrations in hair were monitoring at follow
up event, BMI-for-age and caregiver. Measuring ARV
concentrations in hair promises to be more accurate and
feasibly accomplished. It is crucial to perform follow-up
work which involves establishing the relationship be-
tween hair drug concentrations and a measure of treat-
ment response such as viral loads. Comparing the
predictive accuracy for exposure-response models when
exposure of interest is plasma or hair drug concentra-
tions is necessary to perform.
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