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Abstract 21 

SARS-CoV-2 is a novel coronavirus first identified in December 2019. Notable features make 22 

SARS-CoV-2 distinct from most other previously-identified Betacoronaviruses, including the receptor 23 

binding domain of SARS-CoV-2 and a unique insertion of twelve nucleotide or four amino acids 24 

(PRRA) at the S1/S2 boundary. In this study, we identified two deletion variants of SARS-CoV-2 that 25 

either directly affect the polybasic cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN). 26 

These deletions were verified by multiple sequencing methods. In vitro results showed that the deletion 27 

of NSPRRAR likely does not affect virus replication in Vero and Vero-E6 cells, however the deletion 28 

of QTQTN may restrict late phase viral replication. The deletion of QTQTN was detected in 3 of 68 29 

clinical samples and half of 24 in vitro isolated viruses, whilst the deletion of NSPRRAR was identified 30 

in 3 in vitro isolated viruses. Our data indicate that (i) there may be distinct selection pressures on 31 

SARS-CoV-2 replication or infection in vitro and in vivo, (ii) an efficient mechanism for deleting this 32 

region from the viral genome may exist, given that the deletion variant is commonly detected after two 33 

rounds of cell passage, and (iii) the PRRA insertion, which is unique to SARS-CoV-2, is not fixed 34 

during virus replication in vitro. These findings provide information to aid further investigation of 35 

SARS-CoV-2 infection mechanisms and a better understanding of the NSPRRAR deletion variant 36 

observed here. 37 

 38 

Important notes 39 

The spike protein determines the infectivity and host range of coronaviruses. SARS-CoV-2 has two 40 

unique features in its spike protein, the receptor binding domain and an insertion of twelve nucleotides 41 

at the S1/S2 boundary resulting a furin-like cleavage site. Here, we identified two deletion variants of 42 
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SARS-CoV-2 that either directly affect the furin-like cleavage site itself (NSPRRAR) or a flanking 43 

sequence (QTQTN) and investigated these deletions in cell isolates and clinical samples. The absence 44 

of the polybasic cleavage site in SARS-CoV-2 did not affect virus replication in Vero or Vero-E6 cells. 45 

Our data indicate the PRRAR and its flanking sites are not fixed in vitro, thus there appears to be 46 

distinct selection pressures on SARS-CoV-2 sequences in vitro and in vivo. Further investigation of the 47 

mechanism of generating these deletion variants and their infectivity in different animal models would 48 

improve our understanding of the origin and evolution of this virus. 49 

  50 
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 4 

Introduction 51 

SARS-CoV-2 is a novel coronavirus that was first identified at the end of December 2019 (1) and 52 

responsible for the global pandemic of COVID-19(2). Unlike the two other zoonotic coronaviruses, 53 

SARS-CoV-1 and MERS-CoV(3), the evolutionary history of SARS-CoV-2 is largely unknown. A 54 

recent analysis of genetic information and the spike (S) protein structure(4, 5) highlights two notable 55 

features of the SARS-CoV-2 genome. First, the receptor binding domain (RBD) of SARS-CoV-2 is 56 

distinct from the most closely-related virus (RaTG13) of bat origin and more closely related to 57 

pangolin coronaviruses(6, 7). The spike protein of SARS-CoV-2 is demonstrated to have a high affinity 58 

for the human ACE2 receptor molecule(4). Second, a unique insertion of 12 nucleotides (encoding four 59 

amino acids, PRRA) at the S1/S2 boundary(8) leading to a predictively solvent-exposed PRRAR|SV 60 

sequence, which corresponds to a canonical furin-like cleavage site(9, 10).  61 

 62 

With respect to the first feature, an RBD identified in a SARS-like virus from a pangolin suggests that 63 

an RBD similar to that of SARS-CoV-2 may already exist in mammalian host(s) prior to its 64 

introduction into humans(7). The question remaining is the history and function of the insertion at the 65 

S1/S2 boundary, which is unique to SARS-CoV-2. By sequencing the whole genome of SARS-CoV-2 66 

from cell isolates and clinical samples, we identified two deletion variants that directly affect the furin 67 

cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN). We screen these two deletions in 68 

cell-isolated strains and clinical samples. To explore the potential effect of these deletions, these two 69 

deletion variants were isolated and their replication kinetics were investigated in both Vero and 70 

Vero-E6 cells.  71 
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 5 

Results 72 

Identification of deletions in SARS-CoV-2 spike protein 73 

The first COVID-19 clinical case (Sample 014, Table1) in Guangdong was reported on 19th January, 74 

with illness onset on 1st January(11). A BALF (bronchoalveolar lavage fluid) sample from this patient 75 

was collected and inoculated on Vero-E6 cells. A cell-isolated viral strain was obtained after three 76 

rounds of passage. Multiple sequencing methods were used for whole genome sequencing and the 77 

validation of variants (Figure1 A, Table1), including multiplex-PCR with Miseq platform (PE150), 78 

direct CDNA sequencing in Nanopore platform and Sanger sequencing (See Materials and Methods for 79 

detail). After mapping to the SARS-CoV-2 reference genome (MN908947.3), we found that there were 80 

two variants in the cell-isolated viral strain with deletions at (1) 23585–23599 (Var1), flanking the 81 

polybasic cleavage site, resulting in a QTQTN deletion in the spike protein (one amino acid before the 82 

polybasic cleavage site) and (2) 23597–23617 (Var2), resulting in a NSPRRAR deletion that includes 83 

the polybasic cleavage site (Figure 1A). To exclude the possibility that these findings were caused by 84 

errors in PCR amplification, both of the deletion variants were verified through direct cDNA 85 

sequencing on the ONT nanopore platform. Sanger sequencing with specific primers also identified 86 

heterozygous peaks with distinct double peaks starting at the position 23585 and triple peaks after that, 87 

highlighting the existence of multiple variants caused by the above two deletions (Figure 1B). To 88 

investigate the dynamics of these deletion variants, we performed nanopore sequencing on the 014 89 

viral strain, isolated at different rounds of passage from the Vero-E6 cell culture (Figure 1C). High 90 

frequencies of the deletion variant Var1were observed after the first passage and high frequencies of the 91 

deletion variant Var2 were observed after the 4th passage, at which point the frequency of Var1 and 92 

Var2 reached around 50%. The percentages of these two deletion variants were steady in the following 93 

 on S
eptem

ber 7, 2020 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 6 

passages.   94 

 95 

The deletion is commonly identified in cell isolated strains 96 

To investigate whether the deletions described above were random mutations that occasionally arise in 97 

a strain, or whether they commonly occur after cell passages, we performed whole genome sequencing 98 

on 23 other SARS-CoV-2 strains collected after two rounds of cell passage in Vero-E6 or Vero cells 99 

(Table 1). The corresponding original samples for these strains were collected between 19th January and 100 

28th February 2020. In addition to the 014 strain mentioned above, 10 out of 18 Vero-E6 isolated strains 101 

and 1 out of 5 Vero isolated strains displayed the Var1 deletion variant (>10% of sequencing reads; 102 

Figure 1D). Additionally, in two Vero-E6 isolated strains (619 and 4276), Var2 was detected, and this 103 

variant has been independently identified by another group almost at the same time, using direct RNA 104 

sequencing method(12). To find out whether these deletions were restricted to a specific genetic lineage, 105 

we next investigated the phylogenetic relationship of these viral strains. As shown in Figure 1D, the 106 

strains with a relatively higher ratio of this deletion were dispersed in the phylogenetic tree, that 107 

suggesting the deletion mutations did not arise through shared ancestry and were not restricted to a 108 

specific genetic lineage of SARS-CoV-2 viruses.  109 

 110 

Replication kinetics of the deletion variants 111 

To evaluate the effect of these deletions on virus replication, we performed plaque assays and picked 112 

individual clones for different variants. Single plaques for Var1 and Var2 were obtained and confirmed 113 

by whole genome sequencing (014-Var1, 014-Var2; Table 1). However, the 014 strain without these 114 

deletions could not be successfully selected from plaques, possibly due to the replication advantage of 115 
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 7 

the deletion variants in cell culture. We investigated the replication kinetics of 014-Var1 and 014-Var2 116 

in Vero-E6 and Vero cells. The strain 029/E6 was used as a reference, which has no deletion mutations 117 

and only one amino acid difference from strain 014 on the spike protein (H47Y). The viral replication 118 

kinetics were assessed by detecting the intracellular viral loads at 1, 3, 6, 9, 12 and 24 hours post 119 

inoculation (Figure 2). As shown in Figure 2A, the 014-Var1 and 014-Var2 exhibit similar replication 120 

dynamics to the 029 strain in Vero-E6 cells. In contrast, the deletion of 23583–23599 in SARS-CoV-2 121 

(Var1) significantly diminishes cellular viral load at 24 hours post-inoculation in Vero cells (Figure 2B) 122 

and to a lesser extent in Vero-E6 cells (Figure 2A). This is the possible reason that 014-Var1 was 123 

observed less often in Vero cells than in Vero-E6 cells (Figure 1D).    124 

 125 

Screening for deletion variants in original clinical samples 126 

To identify whether these deletions also occurred in the original clinical samples, we screened 127 

high-throughput sequencing data from 149 clinical samples, which were collected between 6th February 128 

and 20th March in Guangdong, China. There were 68 SARS-CoV-2 genomes, with an average 129 

sequencing depth ≥20 at the sites neighboring 23585. As shown in Table 2, variants with the QTQTN 130 

(Var1) were found in 3 (4%) of clinical samples, with the ratio of deletion variant in total reads ranging 131 

from 8.8–32.8%, indicating that this deletion also occurs in in vivo infections. Notably, two out of the 132 

three patients from which these samples were derived displayed mild symptoms and recurrence of 133 

SARS-CoV-2 infection after being discharged from hospital. The sequenced samples were collected at 134 

4 days and 17 days after discharge, respectively. The third case (20SF5645) was an asymptomatic 135 

infection case. To date, there are no genome sequences deposited in public databases containing these 136 

two deletions. While the described Var1 deletion variant was only detected in clinical samples after 137 
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 8 

deep sequencing, such variants may be underrepresented in databases due to the low frequency and 138 

consequent elimination upon consensus sequence generation. 139 

 140 

Discussion 141 

The spike protein of coronaviruses plays an important role in viral infectivity, transmissibility and 142 

antigenicity. Therefore, the genetic character of the spike protein in SARS-CoV-2 may shed light on its 143 

origin and evolution(7, 8). For SARS-CoV-1, positive selection was identified in the spike coding 144 

sequence(13) and deletions in ORF8(14) during the early, but not late, stage of the epidemic, 145 

suggesting that SARS-CoV-1 may have been sub-optimal in the human population during the early 146 

epidemic stage after it was first transmitted from an intermediate animal host, and underwent further 147 

adaptation. SARS-CoV-2, however, has presented high infectivity and efficient transmission capability 148 

since its identification(1) suggesting the polybasic cleavage site is an important component of the virus’ 149 

fitness within the human population. Genetic changes related to viral fitness of SARS-CoV-2 require 150 

further epidemiological investigation and functional analysis. 151 

 152 

Here, we use different sequencing methods to identify and verify two deletion variants either directly 153 

affecting the polybasic cleavage site (Var1) or a site immediately upstream of it (Var2). The QTQTN 154 

deletion variant (Var1) was detected in 3 out of 68 clinical samples and half of the 24 in vitro isolated 155 

viral strains tested in this study. The cellular replication kinetic data suggests the deletion of the 156 

polybasic cleavage site does not affect SARS-CoV-2 replication in Vero and Vero-E6 cells, whilst the 157 

QTQTN deletion may restrict virus replication in Vero cells at the late phase. These data indicate that (i) 158 

the deletions of QTQTN and the polybasic cleavage site are likely under strong purifying selection in 159 
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 9 

vivo, since the deletion is rarely identified in clinical samples, (ii) there may be an efficient mechanism 160 

for generating these deletions, given that the QTQTN deletion (Var1) is commonly detected after two 161 

rounds of cell passage and (iii) the PRRA insertion, which distinguishes SARS-CoV-2 from other 162 

SARS-like viruses, is not fixed in vitro, because the NSPRRAR deletion variant (Var2) is observed in 3 163 

out of 24 Vero-E6 isolated strains, but does appear to be subject to purifying selection in vivo. 164 

 165 

Given that these residues are located in solvent-accessible loops of the spike protein, combined with 166 

the observation that they are either partially (QTQTN) or completely (NSPRRAR) unresolved in 167 

recently reported SARS-CoV-2 S cryoEM structures(4, 5) (Figure 3), it seems likely that this region is 168 

structurally tolerant to deletions. Whilst the deletion of the furin site, as observed in Var2, would result 169 

in a loss of susceptibility to furin cleavage at this site, the effect of Var1 on furin cleavage is less 170 

evident. However, it is likely that these overlapping deletion variants have arisen through the same 171 

selective pressure and are therefore both likely to compromise furin-mediated cleavage at this position 172 

in the S protein, albeit possibly to different extents. Furthermore, it is possible that the presence of a 173 

conserved cathepsin L site 10 residues downstream of the polybasic cleavage site may provide 174 

functional tolerance(15) to any reduction in proteolytic cleavage efficiency that may arise from changes 175 

in this region (Figure 1A). Consistent with the modeling analysis, the replication dynamics in Vero and 176 

Vero-E6 cells also indicate that polybasic cleavage site deletion (Var2) does not affect virus replication 177 

in vitro. 178 

 179 

Notably, a recently reported SARS-like strain, RmYN02, which is phylogenetically related to 180 

SARS-CoV-2, also has a possible deletion at the QTQT site(16). This raises another possible scenario, 181 

 on S
eptem

ber 7, 2020 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 10 

which is that some SARS-CoV-2-like viruses in animals may not have had QTQTN in their spike 182 

protein. The origin of polybasic cleavage site (PRRA) is important to understanding the evolution 183 

history and tracing the potential animal reservoir(s) of SARS-CoV-2. Here, the different deletion 184 

frequencies observed in vitro and in vivo have provide clues that will aid further investigation of this 185 

evolutionary tale. The absence of NSPRRA in isolated SARS-CoV-2 strains could be used to further 186 

investigate its infectivity in different potential intermediate animal hosts and resolve the origin of this 187 

feature of the SARS-CoV-2 genome. In addition, the different selective pressure observed on NSPRRA 188 

region of SARS-CoV-2 in vivo and in vitro highlight the NSPRRA deletion variant generated in this 189 

study as a promising vaccine candidate in the future.  190 

  191 
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Materials and Methods  192 

Ethics 193 

This study was approved by ethics committee of the Center for Disease Control and Prevention of 194 

Guangdong Province. Written consent was obtained from patients or their guardian(s) when clinical 195 

samples were collected. Patients were informed about the surveillance before providing written consent, 196 

and sequence data were analyzed anonymously. 197 

 198 

Viral isolation 199 

Vero E6 or Vero cells were used for SARS-CoV-2 virus isolation and passage. The cells were inoculated 200 

with 100 µl processed patient sample. Cytopathic effect (CPE) were observed daily. If there was no CPE 201 

observed, cell lysis was collected by centrifugation after three repeated freeze-thaw and 100 µl 202 

supernatant were used for the second round of passage.  203 

 204 

Genetic sequencing and sequence analysis 205 

The deletion variants of SARS-CoV-2 were confirmed by different approaches as previously 206 

described(17) (i) using version 1 of the ARTIC COVID-19 multiplex PCR primers 207 

(https://artic.network/ncov-2019), followed by sequencing on a Miseq PE150 or an ONT 208 

MinION, (ii) CDNA directly sequencing on an ONT MinION and (iii) sanger sequencing by 209 

using the nCoV-2019_78_LEFT and nCoV-2019_78_RIGTH primers from the ARTIC 210 

COVID-19 multiplex PCR primers set. The amplification products targeting the 23444-23823 211 

fragment of viral genome (numbered according to MN908947.3).  212 

 213 

For metatranscriptomics, total RNAs were extracted from different types of samples by using 214 

QIAamp Viral RNA Mini Kit, followed by DNase treatment and purification with TURBO 215 
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 12 

DNase and Agencourt RNAClean XP beads. Libraries were prepared using the SMARTer 216 

Stranded Total RNA-Seq Kit v2 (according to the manufacturer’s protocol starting with 10 ng 217 

total RNA. Sequencing of metatranscriptome libraries was conducted on the Illumina Miseq 218 

PE 150 platform. For the multiplex PCR approach, we followed the general method of 219 

multiplex PCR as described in (https://artic.network/ncov-2019)(18). Briefly, multiplex PCR was 220 

performed with two pooled primer mixtures and cDNA reverse-transcribed with random primers was 221 

used as a template. After 25-35 rounds of amplification, PCR products were collected and quantified, 222 

followed by sequencing on Illumina Miseq PE 150 platform or MinION sequencing device. 223 

Assembly of the Illumina raw data was performed using Geneious v11.0.3 224 

(https://www.geneious.com). Assembly of the nanopore raw data was performed using the ARTIC 225 

bioinformatic pipeline for COVID-19 with minimap2(19) and medaka 226 

(https://github.com/nanoporetech/medaka) for consensus sequence generation. Variant sites were called 227 

by using iVar(20) with depth >=20 as a threshold. For direct cDNA sequencing, we followed the 228 

Nanopore Direct cDNA sequencing protocol (SQK-DCS109). Briefly, 100ng viral RNA were reverse 229 

transcripted using SuperScript™ IV First-Strand Synthesis System (Invitrogen, USA) followed by 230 

RNA chain digestion and second strand synthesis. A total of 20ng cDNA libraries were loaded to 231 

FLO-MIN106 flow cell. Generated sequences were mapped to MN908947.3 reference sequence using 232 

minimap2. The ML phylogeny for 24 viral strains genomes was estimated with PhyML(21) 233 

using the HKY+Ⲅ4 substitution model(22) with gamma-distributed rate variation(23). 234 

 235 

Viral kinetics analysis 236 
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 13 

The individual clones of deletion variants were selected by using a plaque assay. The isolated 014 237 

strains were serially-diluted and used to inoculate the monolayer of Vero-E6 cells. When CPE were 238 

observed, the cell monolayers were scraped with the back of a pipette tip. Virus lysate was used for 239 

genetic sequencing and viral strain amplification. To assess the kinetic of virus replication, different 240 

viral strains were first tiltered and inoculated with Vero-E6 and Vero cells at MOI 0.5. Time was set as 241 

zero when cells were incubated with viruses. After 1 hour adsorption, the culture media were removed 242 

and cells were washed twice with PBS to remove unattached virus. Cells were lysed at different time 243 

post inoculation and total RNA was extracted by using RNeasy mini kit (QIAGEN, Germany). Cellular 244 

viral loads were calculated by using SARS-CoV-2 RT-PCR kit (DAAN GENE, Guangzhou, China) and 245 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene was parallelly quantified as an 246 

endogenous control.  247 

 248 

Data Availability 249 

Metagenomic sequencing, multiplex PCR sequencing and cDNA direct sequencing data after mapping 250 

to SARS-COV-2 reference genome (MN908947.3) have been deposited in the Genome Sequence 251 

Archive(24) in BIG Data Center(25), Beijing Institute of Genomics (BIG), Chinese Academy of 252 

Sciences, under project accession numbers CRA002500, publicly accessible at 253 

https://bigd.big.ac.cn/gsa. The sample information and corresponding accession number for each 254 

sample are listed in the Table 1. 255 
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Figure legends 349 

Figure1. Deletion variants identified in SARS-CoV-2 cell strains. (A) High-throughput sequencing 350 

of the cell-isolated strain (014) from the first SARS-CoV-2 patient (EPI 403934) in Guangdong, China. 351 

Representative reads mapping to the SARS-CoV-2 genome (MN908947.3 used as reference genome) 352 

showed two deletion variants. Redundant proteolytic cleavage sites including furin cleavage site 353 

(PRRARS|V) and cathepsin L site (QSIIAY|T) are marked with red arrows (B) Sanger sequencing of 354 

the 014 cell strains. Heterozygous peaks are highlighted with a red box and sites with distinct three 355 

peaks are marked with * (C) Results of high-throughput sequencing, showing the ratio of deletion 356 

variants in original clinical sample SF014 (P0) and in cell strains, after 7 rounds of cell passage (P1-7). 357 

The size of square was proportion to the number of reads having these deletions. (D) Phylogenetic tree 358 

of genome sequences of all 24 SARS-CoV-2 cell strains (see Table 1). The size of the circles is 359 

proportional to the percentage of Var1 (QTQTN deletion at 23585–23599) in total reads, except for 360 

strains 619, 4279 and 014 in which Var2 deletions were detected. The maximum likelihood tree was 361 

rooted with the reference genome MN908947.3.  362 

 363 

Figure 2. The replication kinetics of the deletion variants in Vero-E6 and Vero cells. Vero-E6 and 364 

Vero cells were infected with the isolated strains 014_Var1, 014_Var2, and 029/E6 (Table 1) at 365 

multiplicity of infection (MOI) 0.5. Viral RNA was quantified by real-time PCR using GAPDH as 366 

endogenous control. At the each time point, the relative fold-change in total intracellular viral RNA 367 

was measured by comparison with the viral RNA level at 1-hour post inoculation. Data are the mean ± 368 

SD of three independent experiments. Asterisk indicate the significant difference (p<0.05).   369 

 370 
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Figure3. Observed deletions near the S1/S2 boundary map to a unresolved region in the cryoEM 371 

structure of SARS-CoV-2 S. Cartoon representation of the SARS-CoV-2 S protein ectodomain, as 372 

resolved by Walls and colleagues(4) (PDB: 6VXX). The S1 and S2 subunits of the different protomers 373 

are indicated (white and grey, respectively). The unresolved loop that contains part of deletion Var1 374 

(675QTQTN679) and all of deletion Var2 (679NSPRRAR685) is indicated within each protomer of the 375 

trimeric assembly through signposting flanking residues T676 and S689 as spheres in deep teal. Similarly, 376 

the first residue of Var1 (Q675), which is resolved in the structure, is indicated as an orange surface 377 

within each of the S protomers. N-linked glycans are shown as blue spheres and the Asn side chains to 378 

which the glycans are linked are presented as sticks. Inset: A zoomed-in side view representation of this 379 

local arrangement is shown. T676 and S689, which flank the unresolved loop, and Var1 residue Q675 are 380 

numbered and indicated under transparent spheres as deep teal and orange sticks, respectively. A 381 

dashed line indicating the approximate position of the connecting unresolved loop is shown. N-linked 382 

glycans are presented as in the original image with their residue numbers marked. 383 

  384 
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Table1. Sample information and accession numbers for all sequences 385 

Patient 

identifier 

Sample 

isolated from 

Passage 

 

Sample name 

 

 

Sequencing 

method 

Accession 

number 

 

 

 

Case1 

BALF Original 014 Metagenomic SAMC151281 

Vero-E6 3 014/MiSeq PCR+MiSeq SAMC150996 

Vero-E6 

3 014/cDNA 

Nanopore direct 

cDNA  

SAMC150997 

Vero-E6 Plaque 014_Var1 PCR+Nanopore SAMC192628 

Vero-E6 Plaque 014_Var2 PCR+Nanopore SAMC192629 

Case2 Vero-E6 2 025/E6 PCR+Nanopore SAMC150991 

Case3 

Vero 2 028/Vero PCR+Nanopore SAMC150988 

Vero-E6 2 028/E6 PCR+Nanopore SAMC150992 

Case4 Vero-E6 2 029/E6 PCR+Nanopore SAMC150975 

Case5 

Vero-E6 2 107/E6 PCR+Nanopore SAMC150977 

Vero 2 107/Vero PCR+Nanopore SAMC150989 

Case6 

Vero-E6 2 108/E6 PCR+Nanopore SAMC150993 

Vero 2 108/Vero PCR+Nanopore SAMC150995 

Case7 

Vero-E6 2 112/E6 PCR+Nanopore SAMC150976 

Vero 2 112/Vero PCR+Nanopore SAMC150994 

Case8 

Vero-E6 2 115/E6 PCR+Nanopore SAMC150978 

Vero 2 115/Vero PCR+Nanopore SAMC150990 
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Case9 Vero-E6 2 252/E6 PCR+Nanopore SAMC150980 

Case10 Vero-E6 2 262/E6 PCR+Nanopore SAMC150981 

Case11 Vero-E6 2 263/E6 PCR+Nanopore SAMC150983 

Case12 Vero-E6 2 265/E6 PCR+Nanopore SAMC150982 

Case13 Vero-E6 2 272/E6 PCR+Nanopore SAMC150984 

Case14 Vero-E6 3 619/E6 PCR+Nanopore SAMC153235 

Case15 Vero-E6 2 1676/E6 PCR+Nanopore SAMC150979 

Case16 Vero-E6 3 4276/E6 PCR+Nanopore SAMC153234 

Case17 Vero-E6 2 F2/E6 PCR+Nanopore SAMC150985 

Case18 Vero-E6 2 F4/E6 PCR+Nanopore SAMC150986 

Case19 Vero-E6 2 F5/E6 PCR+Nanopore SAMC150987 

Case20 nasopharyngeal Original 20SF5645 PCR+Nanopore SAMC150972 

Case21 nasopharyngeal Original ST-N3-D PCR+Nanopore SAMC150973 

Case22 nasopharyngeal Original SZ-N16-D PCR+Nanopore SAMC150974 

 386 

  387 
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Table 2: QTQTN deletion variant (23585–23599, Var1) identified in clinical samples 388 

Samples Days post 

illness onset 

REF_depth ALT_depth Del Variant Ratio 

20SF5645 Asymptomatic 104 25 19.4% 

ST-N3-D* 16 82 8 8.8% 

SZ-N16-D* 30 256 125 32.8% 

* Cases detected with the recurrence of SARS-CoV-2 after discharge 389 
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