1 Identification of common deletions in the spike protein of SARS-CoV-2

- 2 Zhe Liu^{*1,2}, Huanying Zheng^{*2}, Huifang Lin^{*1,2}, Mingyue Li³, Runyu Yuan^{1,2}, Jingju Peng^{1,2}, Qianlin
- 3 Xiong^{1,2}, Jiufeng Sun^{1,2}, Baisheng Li², Jie Wu², Lina Yi^{1,2}, Xiaofang Peng^{1,2}, Huan Zhang^{1,2}, Wei
- 4 Zhang^{1,2}, Ruben J.G. Hulswit⁴, Nick Loman⁵, Andrew Rambaut⁶, Changwen Ke², Thomas A. Bowden⁴,
- 5 Oliver G Pybus⁷, Jing Lu^{1,2}

6 Affiliations:

- ⁷ ¹Guangdong Provincial Institution of Public Health, Guangzhou, China;
- 8 ² Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China;
- 9 ³Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University,
- 10 Guangzhou, China
- ⁴Division of Structural Biology, Welcome Centre for Human Genetics, University of Oxford, Oxford,
- 12 UK
- 13 ⁵Institute of Microbiology and Infection, University of Birmingham, UK
- 14 ⁶Institute of Evolutionary Biology, University of Edinburgh, UK
- 15 ⁷Department of Zoology, University of Oxford, Oxford, UK
- 16
- 17 ^{*} Zhe Liu, Huanying Zheng, Huifang Lin contributed equally to this work. Author order was determined
- 18 in order of increasing seniority.
- 19
- 20 Correspondence to: Oliver G Pybus, oliver.pybus@zoo.ox.ac.uk or Jing Lu, Jimlu0331@163.com.

21 Abstract

22	SARS-CoV-2 is a novel coronavirus first identified in December 2019. Notable features make
23	SARS-CoV-2 distinct from most other previously-identified Betacoronaviruses, including the receptor
24	binding domain of SARS-CoV-2 and a unique insertion of twelve nucleotide or four amino acids
25	(PRRA) at the S1/S2 boundary. In this study, we identified two deletion variants of SARS-CoV-2 that
26	either directly affect the polybasic cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN).
27	These deletions were verified by multiple sequencing methods. In vitro results showed that the deletion
28	of NSPRRAR likely does not affect virus replication in Vero and Vero-E6 cells, however the deletion
29	of QTQTN may restrict late phase viral replication. The deletion of QTQTN was detected in 3 of 68
30	clinical samples and half of 24 in vitro isolated viruses, whilst the deletion of NSPRRAR was identified
31	in 3 in vitro isolated viruses. Our data indicate that (i) there may be distinct selection pressures on
32	SARS-CoV-2 replication or infection in vitro and in vivo, (ii) an efficient mechanism for deleting this
33	region from the viral genome may exist, given that the deletion variant is commonly detected after two
34	rounds of cell passage, and (iii) the PRRA insertion, which is unique to SARS-CoV-2, is not fixed
35	during virus replication in vitro. These findings provide information to aid further investigation of
36	SARS-CoV-2 infection mechanisms and a better understanding of the NSPRRAR deletion variant
37	observed here.

38

39 Important notes

40 The spike protein determines the infectivity and host range of coronaviruses. SARS-CoV-2 has two 41 unique features in its spike protein, the receptor binding domain and an insertion of twelve nucleotides 42 at the S1/S2 boundary resulting a furin-like cleavage site. Here, we identified two deletion variants of

 $\overline{\leq}$

0,
0
9
1
í.
Ó
a
L'
Q

43	SARS-CoV-2 that either directly affect the furin-like cleavage site itself (NSPRRAR) or a flanking
44	sequence (QTQTN) and investigated these deletions in cell isolates and clinical samples. The absence
45	of the polybasic cleavage site in SARS-CoV-2 did not affect virus replication in Vero or Vero-E6 cells.
46	Our data indicate the PRRAR and its flanking sites are not fixed in vitro, thus there appears to be
47	distinct selection pressures on SARS-CoV-2 sequences in vitro and in vivo. Further investigation of the
48	mechanism of generating these deletion variants and their infectivity in different animal models would
49	improve our understanding of the origin and evolution of this virus.

51 Introduction

52	SARS-CoV-2 is a novel coronavirus that was first identified at the end of December 2019 (1) and
53	responsible for the global pandemic of COVID-19(2). Unlike the two other zoonotic coronaviruses,
54	SARS-CoV-1 and MERS-CoV(3), the evolutionary history of SARS-CoV-2 is largely unknown. A
55	recent analysis of genetic information and the spike (S) protein structure(4, 5) highlights two notable
56	features of the SARS-CoV-2 genome. First, the receptor binding domain (RBD) of SARS-CoV-2 is
57	distinct from the most closely-related virus (RaTG13) of bat origin and more closely related to
58	pangolin coronaviruses(6, 7). The spike protein of SARS-CoV-2 is demonstrated to have a high affinity
59	for the human ACE2 receptor molecule(4). Second, a unique insertion of 12 nucleotides (encoding four
60	amino acids, PRRA) at the S1/S2 boundary(8) leading to a predictively solvent-exposed PRRAR/SV
61	sequence, which corresponds to a canonical furin-like cleavage site(9, 10).
62	
63	With respect to the first feature, an RBD identified in a SARS-like virus from a pangolin suggests that
64	an RBD similar to that of SARS-CoV-2 may already exist in mammalian host(s) prior to its
65	introduction into humans(7). The question remaining is the history and function of the insertion of the

introduction into humans(7). The question remaining is the history and function of the insertion at the
S1/S2 boundary, which is unique to SARS-CoV-2. By sequencing the whole genome of SARS-CoV-2
from cell isolates and clinical samples, we identified two deletion variants that directly affect the furin
cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN). We screen these two deletions in
cell-isolated strains and clinical samples. To explore the potential effect of these deletions, these two
deletion variants were isolated and their replication kinetics were investigated in both Vero and
Vero-E6 cells.

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

72 Results

73 Identification of deletions in SARS-CoV-2 spike protein

74 The first COVID-19 clinical case (Sample 014, Table1) in Guangdong was reported on 19th January, 75 with illness onset on 1st January(11). A BALF (bronchoalveolar lavage fluid) sample from this patient 76 was collected and inoculated on Vero-E6 cells. A cell-isolated viral strain was obtained after three 77 rounds of passage. Multiple sequencing methods were used for whole genome sequencing and the 78 validation of variants (Figure1 A, Table1), including multiplex-PCR with Miseq platform (PE150), 79 direct CDNA sequencing in Nanopore platform and Sanger sequencing (See Materials and Methods for 80 detail). After mapping to the SARS-CoV-2 reference genome (MN908947.3), we found that there were 81 two variants in the cell-isolated viral strain with deletions at (1) 23585-23599 (Var1), flanking the 82 polybasic cleavage site, resulting in a QTQTN deletion in the spike protein (one amino acid before the 83 polybasic cleavage site) and (2) 23597-23617 (Var2), resulting in a NSPRRAR deletion that includes 84 the polybasic cleavage site (Figure 1A). To exclude the possibility that these findings were caused by 85 errors in PCR amplification, both of the deletion variants were verified through direct cDNA 86 sequencing on the ONT nanopore platform. Sanger sequencing with specific primers also identified 87 heterozygous peaks with distinct double peaks starting at the position 23585 and triple peaks after that, 88 highlighting the existence of multiple variants caused by the above two deletions (Figure 1B). To 89 investigate the dynamics of these deletion variants, we performed nanopore sequencing on the 014 90 viral strain, isolated at different rounds of passage from the Vero-E6 cell culture (Figure 1C). High 91 frequencies of the deletion variant Var1 were observed after the first passage and high frequencies of the 92 deletion variant Var2 were observed after the 4th passage, at which point the frequency of Var1 and 93 Var2 reached around 50%. The percentages of these two deletion variants were steady in the following Journal of Virology

M

94 passages.

95

96 The deletion is commonly identified in cell isolated strains

97	To investigate whether the deletions described above were random mutations that occasionally arise in
98	a strain, or whether they commonly occur after cell passages, we performed whole genome sequencing
99	on 23 other SARS-CoV-2 strains collected after two rounds of cell passage in Vero-E6 or Vero cells
100	(Table 1). The corresponding original samples for these strains were collected between 19 th January and
101	28 th February 2020. In addition to the 014 strain mentioned above, 10 out of 18 Vero-E6 isolated strains
102	and 1 out of 5 Vero isolated strains displayed the Var1 deletion variant (>10% of sequencing reads;
103	Figure 1D). Additionally, in two Vero-E6 isolated strains (619 and 4276), Var2 was detected, and this
104	variant has been independently identified by another group almost at the same time, using direct RNA
105	sequencing method(12). To find out whether these deletions were restricted to a specific genetic lineage,
106	we next investigated the phylogenetic relationship of these viral strains. As shown in Figure 1D, the
107	strains with a relatively higher ratio of this deletion were dispersed in the phylogenetic tree, that
108	suggesting the deletion mutations did not arise through shared ancestry and were not restricted to a
109	specific genetic lineage of SARS-CoV-2 viruses.

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

110

111 Replication kinetics of the deletion variants

To evaluate the effect of these deletions on virus replication, we performed plaque assays and picked individual clones for different variants. Single plaques for Var1 and Var2 were obtained and confirmed by whole genome sequencing (014-Var1, 014-Var2; Table 1). However, the 014 strain without these deletions could not be successfully selected from plaques, possibly due to the replication advantage of

116	the deletion variants in cell culture. We investigated the replication kinetics of 014-Var1 and 014-Var2
117	in Vero-E6 and Vero cells. The strain 029/E6 was used as a reference, which has no deletion mutations
118	and only one amino acid difference from strain 014 on the spike protein (H47Y). The viral replication
119	kinetics were assessed by detecting the intracellular viral loads at 1, 3, 6, 9, 12 and 24 hours post
120	inoculation (Figure 2). As shown in Figure 2A, the 014-Var1 and 014-Var2 exhibit similar replication
121	dynamics to the 029 strain in Vero-E6 cells. In contrast, the deletion of 23583-23599 in SARS-CoV-2
122	(Var1) significantly diminishes cellular viral load at 24 hours post-inoculation in Vero cells (Figure 2B)
123	and to a lesser extent in Vero-E6 cells (Figure 2A). This is the possible reason that 014-Var1 was
124	observed less often in Vero cells than in Vero-E6 cells (Figure 1D).
125	
126	Screening for deletion variants in original clinical samples
126 127	Screening for deletion variants in original clinical samples To identify whether these deletions also occurred in the original clinical samples, we screened
126 127 128	Screening for deletion variants in original clinical samples To identify whether these deletions also occurred in the original clinical samples, we screened high-throughput sequencing data from 149 clinical samples, which were collected between 6 th February
126 127 128 129	Screening for deletion variants in original clinical samples To identify whether these deletions also occurred in the original clinical samples, we screened high-throughput sequencing data from 149 clinical samples, which were collected between 6 th February and 20 th March in Guangdong, China. There were 68 SARS-CoV-2 genomes, with an average
126 127 128 129 130	Screening for deletion variants in original clinical samples To identify whether these deletions also occurred in the original clinical samples, we screened high-throughput sequencing data from 149 clinical samples, which were collected between 6^{th} February and 20^{th} March in Guangdong, China. There were 68 SARS-CoV-2 genomes, with an average sequencing depth ≥ 20 at the sites neighboring 23585. As shown in Table 2, variants with the QTQTN
126 127 128 129 130 131	Screening for deletion variants in original clinical samples To identify whether these deletions also occurred in the original clinical samples, we screened high-throughput sequencing data from 149 clinical samples, which were collected between 6^{th} February and 20 th March in Guangdong, China. There were 68 SARS-CoV-2 genomes, with an average sequencing depth \geq 20 at the sites neighboring 23585. As shown in Table 2, variants with the QTQTN (Var1) were found in 3 (4%) of clinical samples, with the ratio of deletion variant in total reads ranging
126 127 128 129 130 131 132	Screening for deletion variants in original clinical samples To identify whether these deletions also occurred in the original clinical samples, we screened high-throughput sequencing data from 149 clinical samples, which were collected between 6^{th} February and 20 th March in Guangdong, China. There were 68 SARS-CoV-2 genomes, with an average sequencing depth \geq 20 at the sites neighboring 23585. As shown in Table 2, variants with the QTQTN (Var1) were found in 3 (4%) of clinical samples, with the ratio of deletion variant in total reads ranging from 8.8–32.8%, indicating that this deletion also occurs in <i>in vivo</i> infections. Notably, two out of the
126 127 128 129 130 131 132 133	Screening for deletion variants in original clinical samples To identify whether these deletions also occurred in the original clinical samples, we screened high-throughput sequencing data from 149 clinical samples, which were collected between 6 th February and 20 th March in Guangdong, China. There were 68 SARS-CoV-2 genomes, with an average sequencing depth \geq 20 at the sites neighboring 23585. As shown in Table 2, variants with the QTQTN (Var1) were found in 3 (4%) of clinical samples, with the ratio of deletion variant in total reads ranging from 8.8–32.8%, indicating that this deletion also occurs in <i>in vivo</i> infections. Notably, two out of the three patients from which these samples were derived displayed mild symptoms and recurrence of

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

136 infection case. To date, there are no genome sequences deposited in public databases containing these

137 two deletions. While the described Var1 deletion variant was only detected in clinical samples after

4 days and 17 days after discharge, respectively. The third case (20SF5645) was an asymptomatic

Journal of Virology

 \geq

Journal of Virology

138 deep sequencing, such variants may be underrepresented in databases due to the low frequency and

139 consequent elimination upon consensus sequence generation.

140

141 Discussion

142 The spike protein of coronaviruses plays an important role in viral infectivity, transmissibility and 143 antigenicity. Therefore, the genetic character of the spike protein in SARS-CoV-2 may shed light on its 144 origin and evolution(7, 8). For SARS-CoV-1, positive selection was identified in the spike coding 145 sequence(13) and deletions in ORF8(14) during the early, but not late, stage of the epidemic, 146 suggesting that SARS-CoV-1 may have been sub-optimal in the human population during the early 147 epidemic stage after it was first transmitted from an intermediate animal host, and underwent further 148 adaptation. SARS-CoV-2, however, has presented high infectivity and efficient transmission capability 149 since its identification(1) suggesting the polybasic cleavage site is an important component of the virus' 150 fitness within the human population. Genetic changes related to viral fitness of SARS-CoV-2 require 151 further epidemiological investigation and functional analysis.

152

153	Here, we use different sequencing methods to identify and verify two deletion variants either directly
154	affecting the polybasic cleavage site (Var1) or a site immediately upstream of it (Var2). The QTQTN
155	deletion variant (Var1) was detected in 3 out of 68 clinical samples and half of the 24 in vitro isolated
156	viral strains tested in this study. The cellular replication kinetic data suggests the deletion of the
157	polybasic cleavage site does not affect SARS-CoV-2 replication in Vero and Vero-E6 cells, whilst the
158	QTQTN deletion may restrict virus replication in Vero cells at the late phase. These data indicate that (i)
159	the deletions of QTQTN and the polybasic cleavage site are likely under strong purifying selection in

160	vivo, since the deletion is rarely identified in clinical samples, (ii) there may be an efficient mechanism
161	for generating these deletions, given that the QTQTN deletion (Var1) is commonly detected after two
162	rounds of cell passage and (iii) the PRRA insertion, which distinguishes SARS-CoV-2 from other
163	SARS-like viruses, is not fixed in vitro, because the NSPRRAR deletion variant (Var2) is observed in 3
164	out of 24 Vero-E6 isolated strains, but does appear to be subject to purifying selection in vivo.

166 Given that these residues are located in solvent-accessible loops of the spike protein, combined with 167 the observation that they are either partially (QTQTN) or completely (NSPRRAR) unresolved in 168 recently reported SARS-CoV-2 S cryoEM structures(4, 5) (Figure 3), it seems likely that this region is 169 structurally tolerant to deletions. Whilst the deletion of the furin site, as observed in Var2, would result 170 in a loss of susceptibility to furin cleavage at this site, the effect of Var1 on furin cleavage is less 171 evident. However, it is likely that these overlapping deletion variants have arisen through the same 172 selective pressure and are therefore both likely to compromise furin-mediated cleavage at this position 173 in the S protein, albeit possibly to different extents. Furthermore, it is possible that the presence of a 174 conserved cathepsin L site 10 residues downstream of the polybasic cleavage site may provide 175 functional tolerance(15) to any reduction in proteolytic cleavage efficiency that may arise from changes 176 in this region (Figure 1A). Consistent with the modeling analysis, the replication dynamics in Vero and 177 Vero-E6 cells also indicate that polybasic cleavage site deletion (Var2) does not affect virus replication 178 in vitro.

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

179

180 Notably, a recently reported SARS-like strain, RmYN02, which is phylogenetically related to
181 SARS-CoV-2, also has a possible deletion at the QTQT site(16). This raises another possible scenario,

182	which is that some SARS-CoV-2-like viruses in animals may not have had QTQTN in their spike
183	protein. The origin of polybasic cleavage site (PRRA) is important to understanding the evolution
184	history and tracing the potential animal reservoir(s) of SARS-CoV-2. Here, the different deletion
185	frequencies observed in vitro and in vivo have provide clues that will aid further investigation of this
186	evolutionary tale. The absence of NSPRRA in isolated SARS-CoV-2 strains could be used to further
187	investigate its infectivity in different potential intermediate animal hosts and resolve the origin of this
188	feature of the SARS-CoV-2 genome. In addition, the different selective pressure observed on NSPRRA
189	region of SARS-CoV-2 in vivo and in vitro highlight the NSPRRA deletion variant generated in this
190	study as a promising vaccine candidate in the future.

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

192 Materials and Methods

193 Ethics

194 This study was approved by ethics committee of the Center for Disease Control and Prevention of 195 Guangdong Province. Written consent was obtained from patients or their guardian(s) when clinical 196 samples were collected. Patients were informed about the surveillance before providing written consent, 197 and sequence data were analyzed anonymously.

198

199 Viral isolation

Vero E6 or Vero cells were used for SARS-CoV-2 virus isolation and passage. The cells were inoculated
with 100 µl processed patient sample. Cytopathic effect (CPE) were observed daily. If there was no CPE
observed, cell lysis was collected by centrifugation after three repeated freeze-thaw and 100 µl
supernatant were used for the second round of passage.

204

205 Genetic sequencing and sequence analysis

The deletion variants of SARS-CoV-2 were confirmed by different approaches as previously described(17) (i) using version 1 of the ARTIC COVID-19 multiplex PCR primers (https://artic.network/ncov-2019), followed by sequencing on a Miseq PE150 or an ONT MinION, (ii) CDNA directly sequencing on an ONT MinION and (iii) sanger sequencing by using the nCoV-2019_78_LEFT and nCoV-2019_78_RIGTH primers from the ARTIC COVID-19 multiplex PCR primers set. The amplification products targeting the 23444-23823 fragment of viral genome (numbered according to MN908947.3).

213

214 For metatranscriptomics, total RNAs were extracted from different types of samples by using

215 QIAamp Viral RNA Mini Kit, followed by DNase treatment and purification with TURBO

	2	ž	2
	ð	5	
	ç	5	
•	ŝ		
2	,		
	(2	
	ζ	5	
	i		
	2	5	
	Î	2	

216	DNase and Agencourt RNAClean XP beads. Libraries were prepared using the SMARTer
217	Stranded Total RNA-Seq Kit v2 (according to the manufacturer's protocol starting with 10 ng
218	total RNA. Sequencing of metatranscriptome libraries was conducted on the Illumina Miseq
219	PE 150 platform. For the multiplex PCR approach, we followed the general method of
220	multiplex PCR as described in (https://artic.network/ncov-2019)(18). Briefly, multiplex PCR was
221	performed with two pooled primer mixtures and cDNA reverse-transcribed with random primers was
222	used as a template. After 25-35 rounds of amplification, PCR products were collected and quantified,
223	followed by sequencing on Illumina Miseq PE 150 platform or MinION sequencing device.
224	Assembly of the Illumina raw data was performed using Geneious v11.0.3
225	(https://www.geneious.com). Assembly of the nanopore raw data was performed using the ARTIC
226	bioinformatic pipeline for COVID-19 with minimap2(19) and medaka
227	(https://github.com/nanoporetech/medaka) for consensus sequence generation. Variant sites were called
228	by using $iVar(20)$ with depth >=20 as a threshold. For direct cDNA sequencing, we followed the
229	Nanopore Direct cDNA sequencing protocol (SQK-DCS109). Briefly, 100ng viral RNA were reverse
230	transcripted using SuperScript TM IV First-Strand Synthesis System (Invitrogen, USA) followed by
231	RNA chain digestion and second strand synthesis. A total of 20ng cDNA libraries were loaded to
232	FLO-MIN106 flow cell. Generated sequences were mapped to MN908947.3 reference sequence using
233	minimap2. The ML phylogeny for 24 viral strains genomes was estimated with PhyML(21)
234	using the HKY+ Γ_4 substitution model(22) with gamma-distributed rate variation(23).
235	

236 Viral kinetics analysis

237	The individual clones of deletion variants were selected by using a plaque assay. The isolated 014
238	strains were serially-diluted and used to inoculate the monolayer of Vero-E6 cells. When CPE were
239	observed, the cell monolayers were scraped with the back of a pipette tip. Virus lysate was used for
240	genetic sequencing and viral strain amplification. To assess the kinetic of virus replication, different
241	viral strains were first tiltered and inoculated with Vero-E6 and Vero cells at MOI 0.5. Time was set as
242	zero when cells were incubated with viruses. After 1 hour adsorption, the culture media were removed
243	and cells were washed twice with PBS to remove unattached virus. Cells were lysed at different time
244	post inoculation and total RNA was extracted by using RNeasy mini kit (QIAGEN, Germany). Cellular
245	viral loads were calculated by using SARS-CoV-2 RT-PCR kit (DAAN GENE, Guangzhou, China) and
246	GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene was parallelly quantified as an
247	endogenous control.
248	
249	Data Availability
250	Metagenomic sequencing, multiplex PCR sequencing and cDNA direct sequencing data after mapping
251	to SARS-COV-2 reference genome (MN908947.3) have been deposited in the Genome Sequence
252	Archive(24) in BIG Data Center(25), Beijing Institute of Genomics (BIG), Chinese Academy of
253	Sciences, under project accession numbers CRA002500, publicly accessible at
254	https://bigd.big.ac.cn/gsa. The sample information and corresponding accession number for each
255	sample are listed in the Table 1.

256

257 Acknowledgments

258 This work was supported by grants from Guangdong Provincial Novel Coronavirus Scientific and

- 259 Technological Project (2020111107001), Science and Technology Planning Project of Guangdong
 260 (2018B020207006). The Welcome Centre for Human Genetics is supported by Welcome Centre grant
 261 203141/Z/16/Z.
- 262 Conflict of interest: None declared.

Reference

1.

265		Yuan M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L, Holmes EC, Zhang
266		Y-Z. 2020. A new coronavirus associated with human respiratory disease in China. Nature
267		1–8.
268	2.	WHO (2020). Coronavirus disease (COVID-2019) situation reports.
269	3.	Cui J, Li F, Shi Z-L. 2019. Origin and evolution of pathogenic coronaviruses. Nat Rev
270		Microbiol 17:181–192.
271	4.	Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure,
272		Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell.
273	5.	Li F. 2005. Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed
274		with Receptor. Science 309:1864–1868.
275	6.	Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou J-J, Li N, Guo Y, Li X, Shen X, Zhang Z,
276		Shu F, Huang W, Li Y, Zhang Z, Chen R-A, Wu Y-J, Peng S-M, Huang M, Xie W-J, Cai
277		Q-H, Hou F-H, Chen W, Xiao L, Shen Y. 2020. Isolation of SARS-CoV-2-related
278		coronavirus from Malayan pangolins. Nature 1–4.
279	7.	Lam TT-Y, Shum MH-H, Zhu H-C, Tong Y-G, Ni X-B, Liao Y-S, Wei W, Cheung WY-M, Li
280		W-J, Li L-F, Leung GM, Holmes EC, Hu Y-L, Guan Y. 2020. Identifying SARS-CoV-2
281		related coronaviruses in Malayan pangolins. Nature.

Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y,

Journal of Virology

282 Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020. The proximal origin 8. 283 of SARS-CoV-2. Nat Med.

284 9. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. 2020. The spike 285 glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in 286 CoV of the same clade. Antiviral Research 176:104742.

287 Izaguirre G. 2019. The Proteolytic Regulation of Virus Cell Entry by Furin and Other 10. 288 Proprotein Convertases. Viruses 11:837.

289 11. Kang M, Wu J, Ma W, He J, Lu J, Liu T, Li B, Mei S, Ruan F, Lin L, Zou L, Ke C, Zhong

290 H, Zhang Y, Chen X, Liu Z, Zhu Q, Xiao J, Yu J, Hu J, Zeng W, Li X, Liao Y, Tang X, Xiao

291 S, Wang Y, Song Y, Zhuang X, Liang L, Zeng S, He G, Lin P, Deng H, Song T. 2020. Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

292 Evidence and characteristics of human-to-human transmission of SARS-CoV-2. medRxiv 293 2020.02.03.20019141.

294 Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom K, Zambon M, 12. 295 Ellis J, Lewis PA, Hiscox JA, Matthews DA. 2020. Characterisation of the transcriptome 296 and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass 297 spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike 298 glycoprotein that removes the furin-like cleavage site. bioRxiv 2020.03.22.002204.

299 The Chinese SARS Molecular Epidemiology Consortium. 2004. Molecular Evolution of the 13. 300 SARS Coronavirus During the Course of the SARS Epidemic in China. Science 303:1666-301 1669.

302	14.	14. Muth D, Corman VM, Roth H, Binger T, Dijkman R, Gottula LT, Gloza-Rausch F, Ba				
303		A, Battilani M, Rihtarič D, Toplak I, Ameneiros RS, Pfeifer A, Thiel V, Drexler JF, Müller				
304		MA, Drosten C. 2018. Attenuation of replication by a 29 nucleotide deletion in				
305		SARS-coronavirus acquired during the early stages of human-to-human transmission.				
306		Scientific Reports 8:1–11.				

307 15. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens
308 TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020.
309 SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically
310 Proven Protease Inhibitor. Cell S0092-8674(20)30229–4.

311 16. Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes
312 AC, Bi Y, Shi W. 2020. A novel bat coronavirus reveals natural insertions at the S1/S2
313 cleavage site of the Spike protein and a possible recombinant origin of HCoV-19. bioRxiv
314 2020.03.02.974139.

17. Lu J, du Plessis L, Liu Z, Hill V, Kang M, Lin H, Sun J, François S, Kraemer MUG, Faria
NR, McCrone JT, Peng J, Xiong Q, Yuan R, Zeng L, Zhou P, Liang C, Yi L, Liu J, Xiao J,
Hu J, Liu T, Ma W, Li W, Su J, Zheng H, Peng B, Fang S, Su W, Li K, Sun R, Bai R, Tang
X, Liang M, Quick J, Song T, Rambaut A, Loman N, Raghwani J, Pybus OG, Ke C. 2020.
Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell
S0092867420304864.

321 18. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G,
322 Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG,

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

323		Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Jr LCA, Sabino EC,
324		Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. 2017.
325		Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus
326		genomes directly from clinical samples. Nature Protocols 12:1261–1276.
327	19.	Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
328		34:3094–3100.
329	20.	Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL,
330		Paul LM, Brackney DE, Grewal S, Gurfield N, Van Rompay KKA, Isern S, Michael SF,
331		Coffey LL, Loman NJ, Andersen KG. 2019. An amplicon-based sequencing framework for
332		accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biology
333		20:8.
334	21.	Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
335		algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
336		performance of PhyML 3.0. Syst Biol 59:307-321.
337	22.	Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular
338		clock of mitochondrial DNA. J Mol Evol 22:160–174.
339	23.	Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with
340		variable rates over sites: approximate methods. J Mol Evol 39:306–314.
341	24.	Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q, Bai Z,
342		Dong X, Chen H, Sun M, Zhai S, Sun Y, Yu L, Lan L, Xiao J, Fang X, Lei H, Zhang Z,

Journal of Virology

Σ

343	Zhao W. 2017. GSA: Genome Sequence Archive. Genomics Proteomics Bioinformatics
344	15:14–18.

345 25. National Genomics Data Center Members and Partners. 2020. Database Resources of the

346 National Genomics Data Center in 2020. Nucleic Acids Res 48:D24–D33.

347

348

349 Figure legends

350	Figure1. Deletion variants identified in SARS-CoV-2 cell strains. (A) High-throughput sequencing
351	of the cell-isolated strain (014) from the first SARS-CoV-2 patient (EPI 403934) in Guangdong, China.
352	Representative reads mapping to the SARS-CoV-2 genome (MN908947.3 used as reference genome)
353	showed two deletion variants. Redundant proteolytic cleavage sites including furin cleavage site
354	(PRRARS V) and cathepsin L site (QSIIAY T) are marked with red arrows (B) Sanger sequencing of
355	the 014 cell strains. Heterozygous peaks are highlighted with a red box and sites with distinct three
356	peaks are marked with * (C) Results of high-throughput sequencing, showing the ratio of deletion
357	variants in original clinical sample SF014 (P0) and in cell strains, after 7 rounds of cell passage (P1-7).
358	The size of square was proportion to the number of reads having these deletions. (D) Phylogenetic tree
359	of genome sequences of all 24 SARS-CoV-2 cell strains (see Table 1). The size of the circles is
360	proportional to the percentage of Var1 (QTQTN deletion at 23585-23599) in total reads, except for
361	strains 619, 4279 and 014 in which Var2 deletions were detected. The maximum likelihood tree was
362	rooted with the reference genome MN908947.3.
363	
364	Figure 2. The replication kinetics of the deletion variants in Vero-E6 and Vero cells. Vero-E6 and
365	Vero cells were infected with the isolated strains 014_Var1, 014_Var2, and 029/E6 (Table 1) at
366	multiplicity of infection (MOI) 0.5. Viral RNA was quantified by real-time PCR using GAPDH as
367	endogenous control. At the each time point, the relative fold-change in total intracellular viral RNA
368	was measured by comparison with the viral RNA level at 1-hour post inoculation. Data are the mean \pm
369	SD of three independent experiments. Asterisk indicate the significant difference (p<0.05).

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

370

 $\overline{\leq}$

Journal of Virology

371	Figure3. Observed deletions near the S1/S2 boundary map to a unresolved region in the cryoEM
372	structure of SARS-CoV-2 S. Cartoon representation of the SARS-CoV-2 S protein ectodomain, as
373	resolved by Walls and colleagues(4) (PDB: 6VXX). The S1 and S2 subunits of the different protomers
374	are indicated (white and grey, respectively). The unresolved loop that contains part of deletion Var1
375	(⁶⁷⁵ QTQTN ⁶⁷⁹) and all of deletion Var2 (⁶⁷⁹ NSPRRAR ⁶⁸⁵) is indicated within each protomer of the
376	trimeric assembly through signposting flanking residues T^{676} and S^{689} as spheres in deep teal. Similarly,
377	the first residue of Var1 (Q^{675}), which is resolved in the structure, is indicated as an orange surface
378	within each of the S protomers. N-linked glycans are shown as blue spheres and the Asn side chains to
379	which the glycans are linked are presented as sticks. Inset: A zoomed-in side view representation of this
380	local arrangement is shown. T^{676} and S^{689} , which flank the unresolved loop, and Var1 residue Q^{675} are
381	numbered and indicated under transparent spheres as deep teal and orange sticks, respectively. A
382	dashed line indicating the approximate position of the connecting unresolved loop is shown. N-linked
383	glycans are presented as in the original image with their residue numbers marked.

Downloaded from http://jvi.asm.org/ on September 7, 2020 by guest

Patient	Sample	Passage	Sample name	Sequencing	Accession
identifier	isolated from	8-		method	number
	BALF	Original	014	Metagenomic	SAMC151281
	Vero-E6	3	014/MiSeq	PCR+MiSeq	SAMC150996
Case1	Vero-E6	3	014/cDNA	Nanopore direct	SAMC150997
	Vero-E6	Plaque	014_Var1	PCR+Nanopore	SAMC192628
	Vero-E6	Plaque	014_Var2	PCR+Nanopore	SAMC192629
Case2	Vero-E6	2	025/E6	PCR+Nanopore	SAMC150991
Casa3	Vero	2	028/Vero	PCR+Nanopore	SAMC150988
	Vero-E6	2	028/E6	PCR+Nanopore	SAMC150992
Case4	Vero-E6	2	029/E6	PCR+Nanopore	SAMC150975
Case5	Vero-E6	2	107/E6	PCR+Nanopore	SAMC150977
	Vero	2	107/Vero	PCR+Nanopore	SAMC150989
Casa6	Vero-E6	2	108/E6	PCR+Nanopore	SAMC150993
Caseo	Vero	2	108/Vero	PCR+Nanopore	SAMC150995
Coso7	Vero-E6	2	112/E6	PCR+Nanopore	SAMC150976
Case/	Vero	2	112/Vero	PCR+Nanopore	SAMC150994
Casa	Vero-E6	2	115/E6	PCR+Nanopore	SAMC150978
Caseo	Vero	2	115/Vero	PCR+Nanopore	SAMC150990

385 Table1. Sample information and accession numbers for all sequences

Case9	Vero-E6	2	252/E6	PCR+Nanopore	SAMC150980
Case10	Vero-E6	2	262/E6	PCR+Nanopore	SAMC150981
Case11	Vero-E6	2	263/E6	PCR+Nanopore	SAMC150983
Case12	Vero-E6	2	265/E6	PCR+Nanopore	SAMC150982
Case13	Vero-E6	2	272/E6	PCR+Nanopore	SAMC150984
Case14	Vero-E6	3	619/E6	PCR+Nanopore	SAMC153235
Case15	Vero-E6	2	1676/E6	PCR+Nanopore	SAMC150979
Case16	Vero-E6	3	4276/E6	PCR+Nanopore	SAMC153234
Case17	Vero-E6	2	F2/E6	PCR+Nanopore	SAMC150985
Case18	Vero-E6	2	F4/E6	PCR+Nanopore	SAMC150986
Case19	Vero-E6	2	F5/E6	PCR+Nanopore	SAMC150987
Case20	nasopharyngeal	Original	20SF5645	PCR+Nanopore	SAMC150972
Case21	nasopharyngeal	Original	ST-N3-D	PCR+Nanopore	SAMC150973
Case22	nasopharyngeal	Original	SZ-N16-D	PCR+Nanopore	SAMC150974

387

 \leq

Samples	Days post	REF_depth	ALT_depth	Del Variant Ratio
illness onset				
20SF5645	Asymptomatic	104	25	19.4%
ST-N3-D*	16	82	8	8.8%
SZ-N16-D*	30	256	125	32.8%

388 Table 2: QTQTN deletion variant (23585–23599, Var1) identified in clinical samples

389 * Cases detected with the recurrence of SARS-CoV-2 after discharge

Journal of Virology

А

2,000

23,569

В

D

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

S1 / S2

26,000 28,000

29,903

Var1: deletion at 23585-23599 -CAGACTCAGACTAAT Var2: 23597-23617

P6

P7

. P3

Passage

e619/E6_Var2

P2

. P4

. P5

0.1.

0.0.

P0 P1

> 116/Vero 112/E6 112/Vero

 \sum

 $\overline{\leq}$

 \leq

Journal of Virology