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Abstract word count 262 

Background: Population-level associations between community measures of HIV viral load and HIV 

incidence have been interpreted as evidence for HIV anti-retroviral treatment (ART) as prevention 

amongst people who inject drugs (PWID). However, investigation of concurrent HCV and HIV 

incidence trends allows examination of alternative explanations for the fall in HIV incidence. We 

estimate the contribution of ART and reductions in injecting risk for reducing HIV incidence in 

Vancouver between 1996-2007.   

Methods: A deterministic model of HIV and HCV transmission amongst PWID was calibrated to the 

baseline (1996) HIV and HCV epidemic amongst PWID in Vancouver. While incorporating parameter 

uncertainty, the model projected what levels of ART protection and decreases in injecting risk could 

reproduce the observed reduction in HIV and HCV incidence for 1996-2007, and so what impact 

would have been achieved with just ART or reductions in injecting risk. 

Results: Model predictions suggest the estimated reduction (84%) in HCV incidence for 1996-2007 

required a 59% (2.5-97.5 percentile range 49-76%) reduction in injecting risk, which accounted for 

nine-tenths of the observed decrease in HIV incidence; the remainder being achieved with a 

moderate ART efficacy for reducing sexual HIV infectivity (70%, 51-89%) and an uncertain ART 

efficacy for reducing injection-related HIV infectivity (44%, 0-96%). Despite this uncertainty, 

projections suggest the decrease in injecting risk reduced HIV incidence by 76% (63-85%) while ART 

further reduced HIV incidence by 8% (2-19%), or on its own by 3% (-34-37%). 

Conclusion: Observed declines in HIV incidence in Vancouver between 1996-2007 should be seen as 

a success for intensive harm reduction, whereas ART probably played a small role.   
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Key messages  

 Existing evidence for the prevention benefit of ART amongst people who inject drugs (PWID) 

is based on observed temporal associations between community measures of decreasing 

HIV viral load and decreasing HIV incidence in Vancouver and Baltimore.  

 Through examination of concurrent declines in HCV incidence in Vancouver, our modelling 

suggests that reductions in injecting risk may have been the main reason for the observed 

declines in HIV incidence amongst PWID, with ART playing a smaller role.  

 Further evidence for the potential prevention benefit of ART among PWID is urgently 

needed. 
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Introduction 

The pivotal trial, HPTN 052, and numerous observational studies amongst sero-discordant couples 

have shown that HIV anti-retroviral treatment (ART) can reduce the risk of heterosexual HIV 

transmission by over 90%1,2, with new evidence also suggesting prevention benefit amongst men 

who have sex with men (MSM)3. However, although some prevention benefit should be expected 

amongst people who inject drugs (PWID), due to decreases in viral load, the magnitude of this 

benefit is uncertain.  

 

In a prospective cohort study conducted in Vancouver, associations between HIV incidence amongst 

PWID and community measures of the median HIV viral load amongst diagnosed PWID (so called 

community viral load) have been interpreted as evidence for the prevention benefit of ART amongst 

PWID4. However, although the association held after adjustment for time varying injecting risk 

behaviours, which also generally decreased over the study period, it is unclear whether all factors 

affecting HIV incidence were adequately accounted for5,6. Also, there is discussion over whether the 

median viral load amongst HIV-diagnosed PWID well proxies the overall infectivity of a PWID 

population7, firstly because it does not account for the variability in viral load7, and so infectivity, 

amongst unsuppressed PWID, which were the majority of HIV-diagnosed PWID in Vancouver during 

the late 90s4, and secondly because undiagnosed PWID are not incorporated in the community viral 

load measure, but may contribute disproportionately to transmission if many PWID are undiagnosed 

(as was case in late 90s in Vancouver8).  

 

Hepatitis C (HCV) is a blood borne virus transmitted primarily through parenteral exposure, and 

much less effectively by sexual exposure9. In the Vancouver study,4 declines in HCV incidence10-12 

occurred concurrently with observed decreases in HIV incidence (Figure 1). These decreases in HCV 

incidence are likely to indicate reductions in injecting risk, which would also impact on HIV 

transmission. We use a joint HIV and HCV transmission model amongst PWID to estimate the degree 
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to which HIV treatment contributed to the observed decline in HIV incidence in Vancouver between 

1996 and 2007, as considered by Wood et al. BMJ 20094, or alternatively how much was due to 

reductions in injecting risk. We do not consider more recent years because our primary aim was to 

consider possible reasons for the large decrease in HIV incidence previously suggested to be due to 

ART scale-up.   

 

[Figure 1 here]  

 

Methods 

 

Model Description 

We developed a deterministic mathematical model to simulate the transmission of HIV and HCV 

amongst PWID. The model incorporates the transmission of HIV and HCV due to injecting drug use 

and HIV transmission due to sexual risk behaviour (Figure 2; further details in supplementary 

material). HCV transmission was not assumed to be sexually transmitted because sexual HCV 

transmission is rare9,13 unless linked to riskier sex acts amongst MSM14. The PWID population is 

divided into ten classes depending on HIV (susceptible, acute, latent, ART, lost to follow up from 

ART) and HCV (susceptible, chronic infection) infection status, and by whether the PWID has low or 

high injecting risk. The model is open, with new PWIDs entering through initiation of injecting drug 

use, and leaving due to HIV death, non-HIV death or cessation of injection. Although HCV infection 

causes excess mortality15,16, which is elevated by HIV co-infection17,18, and partially reversed by 

ART17, HCV-related mortality was not included because data from Vancouver19 suggests it 

contributes little to mortality (6.0% of deaths amongst HCV-infected PWID - see supplementary 

materials). Lastly, data is conflicting on whether HCV affects HIV disease progression20 or response to 

ART20-25, and so this was not included in our model. 
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[Figure 2 here]  

 

The model assumes the rate at which PWID become infected with HIV or HCV is proportional to the 

prevalence of that infection, which can change over time through the effect of interventions. 

Because of a lack of strong evidence, ART is not assumed to reduce HCV infectivity26 or the 

susceptibility of HIV-infected PWID to acquiring HCV infection14,27-31. A proportion of the baseline HIV 

transmission risk is assumed to be sexually transmitted, which is unaffected by decreases in injecting 

risk and so increases in importance as injecting risk decreases. Individuals in the HIV latent state can 

be recruited on to ART and experience reduced HIV-related mortality unless they are lost to follow 

up32. For PWID on ART, the relative reduction in the injecting and sexual HIV infectivity for the period 

1996-2007 is denoted by factors 𝛼2 and 𝛼3, respectively, compared to the HIV latent phase – 

defined as the efficacy of ART for reducing sexual and injecting HIV infectivity. The relative decrease 

in the overall HIV and HCV injecting transmission risk over the period 1996-2007 is denoted by 𝛾, 

with 𝛾 = 0 denoting no change in baseline (1996) levels of injecting risk and 𝛾 = 1 denoting a 100% 

reduction in injecting risk.  

 

Model parameterisation  

All model parameters were obtained from the literature, with most being specific to Vancouver 

(Table 1). Uniform uncertainty bounds were assigned to all model parameters except for: 1. The 

baseline HIV transmission rate during the latent stage of HIV (𝛽) and the factor difference between 

the baseline HIV (during HIV latent stage) and HCV transmission rate (𝜓11); and 2. The efficacy of 

ART in reducing a PWID’s injection-related HIV infectivity (𝛼2), and the factor decrease in HIV and 

HCV injecting transmission risk (𝛾), which were all varied widely in the model fitting process. More 

details are included in the model calibration section.  

 

[Table 1 here] 
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To be conservative, ART was assumed to decrease sexual HIV transmission (𝛼3) by 50-90%2 with the 

lower bound based on the proportion of PWIDs on ART that were virally suppressed in Vancouver at 

this time33.  This variable was varied more widely in the initial exploratory analysis. The ART 

recruitment rate (𝜔) was calibrated such that the proportion of HIV-infected PWID on highly 

effective ART (HAART) was negligible in 199634,35, then increased up to 40% by 2000 and remained 

stable at that level till 200735, roughly similar to the real trends which increased rapidly to about 34% 

coverage by 1999, and then slowly increased to 40% by 2006.36,37 Coinciding with increases in OST 

coverage12 and decreases in syringe sharing12,38, injecting risk was assumed to decrease 

exponentially over this period to a calibrated stable level (see supplementary materials).  

 

More details on the model parameters are included in the supplementary materials and Table 1. The 

proportion of the baseline HIV transmission rate due to sexual risk (τ=10% (5-25%)) was based on 

the population attributable fraction (6.4%, minimum to maximum range 1.0-18.5%39 – see 

supplementary materials) for the only sexual risk factor shown to be associated with incident HIV 

sero-conversion amongst Vancouver PWID (having a HIV-positive sexual partner39) over this time 

period. The range was widened to allow for unobserved sexual risk factors that may have been 

important for HIV transmission in this setting, and to ensure the importance of sexual HIV 

transmission was not underestimated. Importantly, no other ‘high-risk’ sexual behaviours, such as 

having sex with another man40, commercial sex39-46, having >20 lifetime sexual partners46,47, or 

unprotected/unsafe sex4,38-46,48,49, were related to incident HIV sero-conversion in adjusted analyses 

over this time in Vancouver; whereas many injection-related risk factors were consistently and 

strongly related, such as daily cocaine/speedball injecting4,38-44,47-51, requiring help 

injecting39,40,42,44,49,51, binge drug use39,41,44,50, and borrowing needles40,43,48,50,51. This gives a highly 

consistent picture that injecting risk behaviours were the main drivers of HIV transmission over this 
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time period, with sexual HIV transmission probably playing a small role, and so our assumption is 

unlikely to underestimate the importance of sexual HIV transmission.  

 

Baseline (1996) HIV and HCV prevalence11, and incidence4,12 estimates were obtained from the 

Vancouver Injection Drug Users Study (VIDUS). HCV and HIV antibody prevalence (82% and 21%11 

respectively) came from PWID recruited between 1996-1999. As approximately 26% of individuals 

spontaneously clear acute HCV infection52, a baseline HCV chronic prevalence of 61% was assumed. 

Because of uncertainty and yearly fluctuations in incidence estimates (measured amongst those at 

risk), negative exponential curves (with non-zero asymptotes) were fit to the incidence data for 

1996-20074,10 using the nonlinear least squares method. This suggested that HIV and HCV incidence 

decreased by 84% (95%CI 76-86%) and 84% (95%CI 78-93%), respectively, over the decade (Figure 

3).  

 

[figure 3 here]  

 

Model calibration  

The HIV and HCV prevalence at baseline and HIV and HCV incidence in 2007 (estimated from the 

curve fits), and all model parameters with uncertainty distributions in Table 1, were randomly 

sampled to give 5000 model parameter sets. For each parameter set, the HIV transmission rate (𝛽) 

and factor difference between the HIV and HCV transmission probabilities (𝜓) were firstly varied to 

fit the model’s endemic HIV and HCV prevalence to the sampled baseline HIV and HCV prevalence 

amongst PWID in 1996. This was done using the Matlab function lsqnonlin to minimise the squared 

error. A parameter set was accepted as a ‘baseline model fit’ if it also gave a HIV and HCV incidence 

within the uncertainty range of the baseline HIV and HCV incidence data for 1996.  
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These baseline model fits were then used to determine what combinations of ART efficacy for 

reducing injection-related HIV infectivity (𝛼2) and decreases in injecting risk (𝛾) could result in the 

sampled HIV and HCV incidence after ten years in 2007 (using the same Matlab numerical routine), 

with runs being rejected if the decrease in injecting risk needed to achieve the sampled decrease in 

HCV incidence resulted in a decrease in HIV incidence larger than observed. This produced 902 ‘full 

model fits’. Further details of the model calibration are in the supplementary material.  

 

Model Analyses  

To understand the contribution of ART and changes in injecting risk to decreasing HIV and HCV 

incidence, the 902 full model fits were used to project the decrease in HIV and HCV incidence that 

would occur over 10 years with varying efficacies of ART for reducing sexual and injection-related 

HIV infectivity (𝛼2and 𝛼3=0, 30, 60 and 90%) and/or different relative decreases in injecting risk 

(𝛾=0, 30, 60 and 90%). 

 

The 902 full model fits were then used to estimate the likely contribution that ART or changes in 

injecting risk made to the observed reduction in HIV incidence amongst PWID for 1996-2007. The 

proportion of the modelled decrease in HIV incidence that would have occurred with just the effect 

of ART on HIV transmission being included (𝛾 set to zero across all full model fits), or without the 

prevention effect of ART being included (𝛼2 and 𝛼3 set to zero across all full model fits) was 

estimated.  

 

Lastly, a linear regression analysis of covariance (ANCOVA) was undertaken53 on the range of model 

projections for the contribution of ART to decreasing HIV incidence for all 902 full model fits. This 

analysis estimated the proportion of the variability in the model projections (proportion of the sum 

of squares) that could be attributed to uncertainty in different model parameters or inputs. A Linear 

regression model was then developed; including the most important parameters from the ANCOVA 
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analysis, to determine across what parameter region the model predicted ART made a noticeable 

contribution (≥20% decrease in HIV incidence). 

 

 

Results  

Impact of injecting risk and ART on HIV and HCV incidence  

Figure 4 shows, for different reductions in injecting risk (𝛾) and ART efficacy for decreasing HIV 

infectivity(𝛼2 and 𝛼3), the projected decrease in HIV and HCV incidence for 1996-2007 amongst 

PWID in Vancouver. Both high ART efficacy (~90%) or moderate decreases in injecting risk (≥30%) 

could have resulted in noticeable decreases in HIV incidence, whereas only reductions in injecting 

risk would have decreased HCV incidence. However, increases in HIV incidence could have occurred 

with just ART if there had been low to moderate ART efficacy (𝛼2 and 𝛼3<50%), due to 

improvements in HIV survival with ART, and ART is unlikely to have decreased HIV incidence by over 

40% even with high ART efficacy (90%) due to the moderate coverage of ART over this period 

(≤40%).  

 

[Figure 4 here] 

 

Contribution of ART and reductions in injecting risk to reducing HIV incidence in Vancouver 

The model closely fitted the HCV and HIV incidence trends (Figure 3) except for the high HIV 

incidence in 1997. This high HIV incidence should be considered an outlier, probably due to an HIV 

outbreak11, because it is three-fold higher than any other time period.   

 

To achieve the observed decrease in HCV incidence for 1996-2007, a large decrease in injecting risk 

(median of 59%, 2.5 to 97.5 percentile range 49-76%) must have occurred. This resulted in a median 

76% (63-85%) decrease in HIV incidence among PWID (Figure 5); contributing nine-tenths (90%, 77-
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98%) of the overall reduction in HIV incidence achieved from 1996-2007.38 Once this reduction in 

injecting risk had been accounted for, the full observed reduction in HIV incidence was achieved with 

a moderate efficacy of ART for reducing sexual HIV infectivity (70%, 51-89%) and an uncertain 

efficacy for reducing injection-related HIV infectivity (44%, 0-96%). Model projections suggest the 

scale-up of ART alone (Figure 5) would have at best resulted in a 37% (3%, -34-37%) decrease in HIV 

incidence, with an 86% chance that the decrease was <25%, while its incremental impact on top of 

what was achieved through decreasing injecting risk was a median 8% (2-19%) decrease in HIV 

incidence. Uncertainty in the beneficial impact of ART alone results partly from HIV incidence 

increasing between 1996-2007 if ART has low efficacy (as shown in Figure 4), with the ART efficacy 

needing to be >50% to result in HIV incidence decreasing.  

 

[Figures 5 here] 

 

Sensitivity analyses 

In ANCOVA analyses, most (>95%) of the variability in the projected overall contribution of ART for 

decreasing HIV incidence in Vancouver was due to uncertainty in both the level of sexual HIV 

transmission (τ – contributes 19% to the variability) and the assumed decrease in HIV and HCV 

incidence between 1996-2007 (contributes 28% and 51%, respectively). The effect of all other model 

parameters was small (Supplementary Figure 1). Linear regression analyses also suggested that ART 

alone would only have achieved moderate impact (≥20% decrease in HIV incidence) if the observed 

decreases in HIV and HCV incidence were towards the upper (86%) and lower (78%) bounds, 

respectively, of what data suggested and there had been considerable sexual HIV transmission (τ 

=25%).  
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Discussion  

HIV treatment to prevent heterosexual HIV transmission is well-accepted at the individual level1,2, 

and community randomized trials are underway to assess its impact at the population level54. 

Although HIV treatment is also likely to reduce parenteral HIV transmission, current evidence for its 

effectiveness is limited4.   

 

Although both modelling and observational data will suffer from the weaknesses, specifically in 

terms of evidence for causation, our analyses are still useful for raising alternative hypotheses for 

why HIV incidence declined in Vancouver. In contrast to earlier studies, our evaluation suggests large 

decreases in injecting risk dramatically reduced HIV incidence in Vancouver between 1996-2007, 

with the scale-up of HIV treatment over that period playing a smaller role4. The current analysis 

addresses concerns voiced by other researchers5,6. Without question, scale-up of ART occurred35 and 

this scale-up probably contributed to a decline in “community viral load”4,55.  However, the 

concurrent decline in HCV incidence10,12 observed during the scale-up of ART indicates that injecting 

risks also decreased10,38, and contributed to the decrease in HIV incidence. Indeed, our model 

projections suggest that the reductions in injecting risk required to reproduce the observed declines 

in HCV incidence probably accounted for most (~90%) of the observed decline in HIV incidence. 

These projections are consistent with ART only contributing an additional 8% (2-19%) decrease in 

HIV incidence on top of reduced injecting risk. Although uncertain, possible reasons for this small 

contribution of ART could be the moderate ART coverage (~40% of HIV-infected PWID) and low 

proportion of HIV-infected PWID that were virally suppressed (less than 28%) over this period4,36,55.  

 

Limitations 

As with all modelling studies, this analysis has limitations. Firstly, we cannot reject the possibility 

that the decreases in HIV and HCV incidence were partly due to a closed cohort effect, where the 

observed HIV and HCV incidence in a cohort tends to decrease over time because the highest-risk 
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PWIDs become infected first with high HIV/HCV incidence risk followed by successively lower-risk 

PWID with decreasing HIV/HCV incidence risk56. However, this should not be a concern because the 

Vancouver PWID cohort was an open cohort11, and data from other more recent cohorts in 

Vancouver (ARYS) suggest similar HCV incidence rates amongst PWID (6.5 per 100 person years) and 

very little HIV transmission57. Also, one could hypothesise that HCV incidence decreased due to the 

epidemic saturating or peaking at high prevalence, rather than due to decreases in injecting risk. 

However, this was not considered the main effect in a recent analysis evaluating the decreases in 

HCV incidence in Vancouver since 1996.10 This is supported by data showing HCV incidence remained 

high till 2000(>15 per 100 person years) despite there being high HCV prevalence (82%),10,11 and as 

Figure 1 shows the decreases in HCV incidence followed HIV incidence trends suggesting common 

factors affected both infections, which coincided with large reductions in injecting risk and increases 

in intervention coverage10,12,38  

 

Second, uncertainty in the HIV and HCV incidence data made it hard to determine the precise 

reductions in incidence. Uncertainty in many model parameters also hampered the analysis. To 

counter these uncertainties, smooth curves were fit to the incidence trends, and our modelling 

incorporated the uncertainty in these incidence trends as well as the model parameters, and were 

consistent despite this. Third, we modelled sexual HIV transmission simply, which we feel is 

warranted because evidence suggests it played a small role over this period (see methods). Further, 

we assumed the observed decrease in HIV incidence was solely due to decreases in injecting risk and 

the prevention effect of ART, whereas decreases in sexual HIV risk behaviour may have also 

contributed. If decreases in sexual risk occurred, our ART impact projections would be optimistic and 

so should not affect our conclusion of a limited effect of ART.  We also assumed there was negligible 

sexual HCV transmission, which is rare9,13 unless associated with anal sex14,27. This behaviour was 

reported by less than 10% of PWID in Vancouver58,59, and even amongst MSM much lower HCV 

incidence rates normally occur than amongst PWID27,60.  
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Fourth, our modelling did not attempt to explicitly attribute the decline in injecting risk to specific 

interventions, although our modelled decline (60%) was consistent with observed reductions in 

syringe sharing38. However, a number of important determinants of injecting risk changed 

concurrently with the declines in HIV/HCV incidence, and so could account for our predicted 

decrease in injecting risk. These include OST scaling-up from about 12% to 40% of PWID12, changes in 

syringe exchange program policy38, recent incarceration decreasing from 35% to 15% of PWID in last 

6 months, and unstable housing12 decreasing from 63% to 50% of PWID, all of which have been 

shown to be associated with decreased individual HIV and HCV acquisition risk in Vancouver10,38,43,61-

63. Subsequent analyses should evaluate the potential population impact of these intervention and 

structural changes.  

 

Fifth, because of a lack of evidence we assumed that ART does not affect HCV infectivity. This could 

be a conservative assumption as some studies suggest HCV viral loads are elevated amongst 

individuals on ART26. Lastly, we did not consider the impact of ART in Vancouver for more recent 

years8,36,37 because this was not the primary aim of our analysis. It is likely that ART has had more 

impact since 2007, as has been considered in other recent modelling64, because the coverage of ART, 

retention, and viral suppression are now much higher8,36,37 

 

Other Evidence 

The impact of HIV treatment as prevention amongst PWIDs has been considered in other modelling 

analyses65-69, including Vancouver64. Despite limited evidence, these analyses a priori assumed ART 

had moderate to high efficacy for preventing parenteral HIV transmission64. Through modelling 

competing hypotheses for why HIV incidence decreased in Vancouver, we estimate the potential 

effectiveness of treatment as prevention amongst PWID in a specific setting, and test the robustness 

of findings from earlier analyses.  
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Conclusion 

Reducing HIV and HCV transmission among PWID remains a critical goal. The considerable (>75%) 

reductions in HCV and HIV incidence that occurred amongst PWID in Vancouver represents a 

remarkable success for intensive harm reduction interventions. Although ART is undoubtedly 

important for reducing HIV morbidity and mortality70, our analyses suggest it may not have 

substantially reduced HIV transmission amongst PWID in Vancouver over this period. As with all 

modelling, our analysis cannot replace empirical evidence, but the insights obtained do give 

alternative hypotheses for why HIV incidence declined. This does not diminish the potential for HIV 

treatment as prevention amongst PWID, but rather suggests that further studies are needed to 

determine its benefits54.   
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Tables 

 

Table 1. Parameter values and uncertainty ranges (all uniformly sampled) used in numerical simulations 

Parameter Definition and (symbol) Range or 

value used 

Data source 

HIV Biological parameters   

HIV transmission probability in the latent stage (𝜷) Varied 

freely 

Varied to fit HIV prevalence in 1997 

Cofactor difference in HIV transmission rate in HIV acute stage 

compared to latent HIV stage (𝜶𝟏) 

 

3-25 

 
71 

Duration of acute HIV stage in years (𝟏/𝝃) 1/12-0.25 71 

HIV mortality rate per year during latent HIV stage (𝝋) 1/10 72-74 

HCV biological parameters   

Factor difference between HCV and HIV transmission rate 

compared to HIV latent stage (𝝍) 

 

4-10 

 

Varied to fit HCV prevalence in 1997 

Relative HCV transmissibility if HIV co-infected (𝜽) 1-3.7 Reviewed in 75 

Proportion of HCV infections that spontaneously clear (𝜹) 0.22-0.29 52 

Relative risk of spontaneous clearance if HIV co-infected (𝝈) 0.21-0.58 Reviewed in 75 

PWID behavioural and demographic parameters   

Recruitment rate (𝚽) Recalibrated 

for each run 

Varied to balance non HIV exit rates 

Injecting cessation rate per year (𝝂) 1/23-1/7 76 

Non-HIV mortality rate per year (𝝁) 1.5-2.0% 12 

Proportion of baseline HIV transmission risk due to sexual HIV 

transmission (τ) 

10% (5-25%) Derived based on the population attributable fraction (6.4% (1.0-18.5%)39) for only sexual 

risk factor consistently associated with HIV sero-conversion amongst PWID in VIDUS 

between 1996 and 2003 (having a HIV-positive sexual partner39)  

Proportion of the PWID population that are high-risk (𝑴) 0.3-0.6 Similar to the proportion of PWID in unstable housing or crack/heroin injecting in 

Vancouver in 1996 12,62 

Factor difference in HIV and HCV injecting transmission risk 

amongst high-risk PWID compared to low-risk PWID (𝒎) 

1-4.8 Based on the enhanced HIV or HCV transmission risk associated with daily cocaine or 

heroin injecting or unstable housing in the VIDUS cohort 4,10,11,62 

Duration that PWID remain high-risk in years (𝟏/𝒄) 3.2 (1.6-4.8) 12 
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Degree to which PWID mix proportionately or assortatively (like-

with-like) with PWID of the same injecting risk (𝜺) 

0-0.6 No data, so allowed proportionate ‘random’ mixing (휀 = 0) as well as up to double the 

level of assortative mixing (휀>0 but up to 0.6) found amongst PWIDs in UK 77 

ART and changes in injecting risk parameters   

Relative decrease in HIV and HCV transmission risk due to 

decreases in injecting risk (𝜸) 

0-1 Set to zero for initial fitting to 1996 data, then varied to fit to decrease in HCV incidence 

over 10 years from 1996 to 2007. Assumed to increase to stable level, similar to recent 

trends in OST coverage and decreases in syringe sharing in Vancouver  12,38 

Rate of recruitment on to ART per year (𝝎) >0 Set to zero for initial model fitting in 1996, and then varied to fit to ART coverage trends in 

Vancouver 35 

Rate of permanent loss to follow up from ART per year (ζ) 15% (10.5-

19.5%) 

Data from Nosyk AIDS 2015 32 used to estimate the rate of permanent loss to follow up 

from ART for PWID.  

Relative decrease in parenteral HIV transmission rate while on 

ART compared to latent HIV stage (𝜶𝟐) 

0-0.95 Trials suggest >90% reduction for sero-discordant couples 1 but no data for IDUs or 

parenteral HIV transmission and recent observational data suggests efficacy amongst 

couples could be much lower in real life2 

Relative decrease in sexual HIV transmission rate while on ART 

compared to latent HIV stage (𝜶𝟑) 

0.5-0.9 Range obtained from meta-analysis of trials and observational studies undertaken amongst 

sero-discordant couples1,2 with lower bound based on the proportion of PWIDs virally 

suppressed after 1 year of ART in Vancouver33 

Cofactor difference in HIV mortality rate while on ART compared 

to latent HIV stage (𝝀) 

1/6-1/2 Estimate for Vancouver for 1996 to 200778, but allow uncertainty 79 – Does not affect 

model projections because only modelling duration of current injecting  

HIV and HCV epidemiological data used to calibrate the model 

HIV prevalence at baseline in 1996 21%  

(19.2-23.7%) 

HIV prevalence amongst PWID recruited into VIDUS between 1996 and 1999 11 

HIV incidence per 100 person years at baseline in 1996 6.3  

(95%CI 3.3-9.3) 

Exponential curve fitting to HIV incidence data from Wood et al. 4 

Chronic HCV prevalence at baseline in 1996 61%  

(58.9-61.9%) 

HCV antibody prevalence amongst PWID (81.6%) recruited into VIDUS between 1996 and 

1999 11 scaled down by 26% due to spontaneous clearance52 

HCV incidence per 100 person years at baseline in 1996 41.2 (95%CI 

33.7-48.7) 

Exponential curve fitting to HCV incidence data from Grebely et al.  10 

Percentage decrease in HIV incidence over 1996-2007 84% (95% CI 76-

86%) 

Exponential curve fitting to HIV incidence data from Wood et al. 4  

Percentage decrease in HCV incidence over 1996-2007 84% (95% CI 78-

93%) 

Exponential curve fitting to HCV incidence data from Grebely et al. 10.  
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Figures 
 
Figure 1: HIV incidence and HCV incidence data amongst at risk susceptible PWID in Vancouver 
from 1996 to 2007. Data from Wood et al. (2009) 4 and Grebely et al. (2014) 10  
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Figure 2. Model schematic showing the HCV and HIV infection states and transitions. Variables are 
denoted by capital letters for the HIV infection states (X,H,Y,T and L representing susceptible, acute, 
latent, ART, and ART lost to follow up, respectively) and the lower case letters for HCV infection 
states ( representing susceptible and chronic infection, respectively). Arrows show possible 

transitions from one state to the other and are labelled by the flow rates. New PWID enter the 
population at a rate Φ and leave all compartments due to non-HIV death (rate 𝜇) or cessation of 
injection (rate 𝜈). Forces of infection for HIV and HCV are Π and 𝜋, respectively. For HIV 
transmission, PWID infected with HIV enter the acute stage (with average duration of 1/ 𝜉) and then 
progress to the latent stage. Latently infected HIV individuals experience HIV-related death at a rate 
𝜑 and are also recruited onto anti-retroviral treatment (ART) at a rate 𝜔. For those on ART, HIV-
related death is reduced by a factor 𝜆, but some individuals are permanently lost to follow up from 
ART at rate ζ. For HCV transmission, a proportion of those infected with HCV spontaneously clear 
infection and the remaining proportion progress to chronic infection (proportion 𝛿 for those 
uninfected with HIV, reduced by a factor σ for those co-infected with HIV). 
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Figure 3: Curve fits to temporal trends in HIV and HCV incidence data amongst among at risk 
susceptible PWID in the Vancouver VIDUS cohort with model fits shown for comparison.  Red 
circles show HIV (figure 3a) or HCV (figure 3b) incidence data, whereas the grey line shows the curve 
fit to these data using non-linear least squares method and dashed grey lines are the 95% 
confidence intervals. The squares are the median with whiskers representing 2.5 and 97.5% 
percentiles from the model fits.  
a. HIV incidence  

  
b. HCV incidence  
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Figure 4. Relative decrease in HIV and HCV incidence for 1996 to 2007 for different efficacies of 
ART for reducing HIV infectivity (𝜶𝟐 and 𝜶𝟑), and reductions in injecting risk (𝜸). All projections 
assume a scale-up to 40% ART coverage amongst HIV-infected PWID by 2006 and assume ART 
reduces HIV morbidity even when ART is assumed to have no effect on HIV transmission.  The box 
plots signify the uncertainty (middle line is median, limits of boxes are 25% and 75% percentiles, and 
whiskers are 2.5% and 97.5% percentiles) in the impact projections due to uncertainty in the model 
parameters. 
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Figure 5: Model projections of the degree to which ART on its own (blue box), just reductions in 
injecting risk (red box), or both combined (white box) decrease HIV incidence amongst PWID in 
Vancouver over the period 1996 to 2007. Note – we still assume ART reduces HIV morbidity in all 
model projections even when ART is assumed to have no effect on HIV transmission. The curve fit 
estimated decrease in HIV incidence is shown for comparison (point and whisker on left). 
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