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solution of generalized Paden–Kahan
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Abstract
Kinematics as a science of geometry of motion describes motion by means of position, orientation, and their time
derivatives. The focus of this article aims screw theory approach for the solution of inverse kinematics problem. The
kinematic elements are mathematically assembled through screw theory by using only the base, tool, and workpiece
coordinate systems—opposite to conventional Denavit–Hartenberg approach, where at least n þ 1 coordinate frames
are needed for a robot manipulator with n joints. The inverse kinematics solution in Denavit–Hartenberg convention is
implicit. Instead, explicit solutions to inverse kinematics using the Paden–Kahan subproblems could be expressed. This
article gives step-by-step application of geometric algorithm for the solution of all the cases of Paden–Kahan subproblem 2
and some extension of that subproblem based on subproblem 2. The algorithm described here covers all of the cases that
can appear in the generalized subproblem 2 definition, which makes it applicable for multiple movement configurations.
The extended subproblem is used to solve inverse kinematics of a manipulator that cannot be solved using only three basic
Paden–Kahan subproblems, as they are originally formulated. Instead, here is provided solution for the case of three
subsequent rotations, where last two axes are parallel and the first one does not lie in the same plane with neither of the
other axes. Since the inverse kinematics problem may have no solution, unique solution, or many solutions, this article
gives a thorough discussion about the necessary conditions for the existence and number of solutions.
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Introduction

Historically, fundamental Chasles’ theorem states that every

proper motion is given by screw motion. Proper motion is

three-dimensional (3-D) rotation about arbitrary axis fol-

lowed by 3-D translation and describes the rigid body

motion. A screw motion is rotation about arbitrary axis,

followed by translation along the same axis. Formulation

and proof using modern mathematical language is given

by Palais and Palais1 and in more depth and details by Selig.2

If the set of geometrical characteristics is given, the posi-

tion and orientation of every link of the robot could be

expressed as function of the joint variables. A chain of coor-

dinate systems is attached to the joints using traditional Dena-

vit–Hartenberg (DH) convention, originally established in the
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study by Denavit and Hartenberg.3 They are related by 4� 4

matrices used to describe rigid body motion. Details for DH

convention and non-DH method discussion and introduction

to screw theory, are given in the study by Jazar,4 as well.

The most comprehensive and exact approach to build

the screw theory and its application in robotics is given

by Murray et al.5

Rotation about direction specified with the unit vector

o 2 R3 and angle q is represented by 3� 3 matrix, given in

exponential form

eôq ¼ I3 þ ô sin qþ ôð1� cosqÞ ð1Þ

Equation (1) also is known as Rodrigues formula and its

exponential form gives efficient computing method. I3 is the

identity matrix of order 3 and ô is the skew-symmetric matrix

obtained of coordinates of the vector o ¼ ½o1 o2 o3 �T

ô ¼
0 �o3 o2

o3 0 �o1

�o2 o1 0

2
64

3
75 ð2Þ

Let v;o 2 R3 are unit vectors in 3-D. A twist coordi-

nates x are determined as

x ¼
v

o

� �
2 R

6 ð3Þ

and a twist x̂ is defined as 4 � 4 matrix

x̂ ¼
ô v

0 0

� �
ð4Þ

A screw motion consists of rotation about an axis in

direction determined by the unit vector o, through an angle

q followed by translation by an amount d along the same

axis. If it is not pure translation, then q 6¼ 0, so a pitch of the

screw could be defined as h ¼ d=q. Let q be the arbitrary

point of the axis of the screw. In a case of general screw

motion which is not pure translation, the vector

v ¼ �o� qþ ho ð5Þ

determines the twist coordinates, equation (3) and as well

the twist, equation (4). This screw motion is represented by

4 � 4 matrix, denoted as exponential of x̂q

ex̂q ¼ eôq ðI3 � eôqÞðo� vÞ þ ooT vq
0 1

" #
ð6Þ

The pure rotation as special case of screw motion with

pitch h ¼ 0 is represented by equation (6) as well, taking

the twist coordinates to be

x ¼
�o� q

o

� �
ð7Þ

In the case of pure translation in a direction determined

by unit vector v by amount q, the twist is defined as

x ¼
v

0

� �
ð8Þ

and its exponential form is given by

ex̂q ¼
I3 vq
0 1

� �
ð9Þ

Robot manipulator consists of sequence of rigid links, con-

nected by joints with motors attached on them. Robot manip-

ulator with n joints is said to have n degrees of freedom (DOF).

The motion for every joint is determined with three constant

parameters and one variable. All the n variables of the joints

form the machine space (joint space) of the robot manipulator.

The machine coordinates of the manipulator of n DOF are

q ¼ ½ q1 q2 . . . qn �T ð10Þ

The end effector of the robot manipulator is needed to be

controlled in the sense to control its pose—position and

orientation. That determines the pose space of the robot

manipulator.

Forward kinematics is a procedure for obtaining the

pose of the robot manipulator if the machine coordinates

are given. More formally, forward kinematics is a function

from machine space to pose space of the robot.

Using screw theory, the forward kinematics is deter-

mined as product of the exponentials of the appropriate

twists for each link, respectively

gðqÞ ¼ ex̂1q1 ex̂2q2 :::ex̂nqn ð11Þ

Only two coordinate frames are sufficient—the tool and

base frame. If gbtð0Þ is the transformation matrix from tool

to base coordinate frame when all machine coordinates are

zeros, the forward kinematics map is determined by

gbtðqÞ ¼ gðqÞgbtð0Þ ¼ ex̂1q1 ex̂2q2 :::ex̂nqn gbtð0Þ ð12Þ

Some robotized machines are configured with two kine-

matics chains. Forward and inverse kinematics can be solved

in similar manner.6 Xiang and Altintas6 give comparison

between DH approach against screw theory approach. The

latter is better since no local coordinate systems are needed

and it provides explicit solution to the inverse kinematics

problem.7 Details and different inverse kinematic formula-

tion methods for industrial robot manipulators using screw

theory could be found in the study by Sariyildiz et al.8 Com-

parison between both methods is given by Rocha et al.9

If the pose coordinates of the end effector are given,

inverse kinematics problem is used to find the machine

coordinates. Inverse kinematics problem may have no solu-

tion, unique solution, or many solutions. Standard

approach, using DH convention is focused on solving equa-

tion systems and optimization techniques in some cases.

We prefer screw theory, especially the geometric algo-

rithm approach explained in this article, over the traditional

DH method. There are several advantages
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� In DH convention at least n þ 1 coordinate frames

are needed, since a robot manipulator with n joints

will have n þ 1 links, and we rigidly attach a coor-

dinate frame to each link.10

� The choice for a coordinate frames in DH convention is

constrained by the DH coordinate frame assumptions,

so a procedure for assigning coordinate frames that

satisfy the constraints is needed to be performed.10

� In screw theory, often, only two coordinate frames

are sufficient, the base frame, and the tool frame, so

it is more simple to explain entire kinematic chain.5

� Given the DH parameters for a manipulator, the cor-

responding twists can be easily determined.5

� The inverse kinematics solution in DH convention is

implicit. Using screw theory, it is possible to find

explicit solutions to inverse kinematics using the

Paden–Kahan subproblems or its extensions.7

The screw theory offers way to express explicit solution

that can be reduced to an application of geometric algo-

rithm. There are many researches and case studies based on

screw theory published in the last decade.11–18

For a large number of robot manipulators, it is sufficient

to implement three classical Paden–Kahan subproblems,

originally established in the study by Paden.19

Paden–Kahan subproblems

The most commonly used geometric algorithms in inverse

kinematics problem solutions are addressed by Murray et al.5

Subproblem 1

Let x be a zero-pitch twist with unit magnitude and

p; q 2 R3 two points. Find q such that

ex̂qp ¼ q ð13Þ

Subproblem 2

Let x1 and x2 be two zero-pitch twists with unit magnitudes

with intersecting axes and p; q 2 R3 two points. Find q1

and q2 such that

ex̂1q1 ex̂2q2 p ¼ q ð14Þ

Subproblem 3

Let x be a zero-pitch twist with unit magnitude, p; q 2 R3

two points and d positive real number. Find q such that

kq� pex̂qk ¼ d ð15Þ

All subproblems stated this way are completely solved

in the study by Murray et al.5 There are also several exam-

ples of robot manipulators and the inverse kinematics prob-

lem solutions based on reducing the full inverse kinematics

problem into appropriate subproblems.

There exist robot manipulators that cannot be solved

using only these three such formulated subproblems. The

study of Yew-sheng and Ai-ping20 gives example of 5-DOF

manipulator with two consequent nonintersecting rota-

tional axes. They have changed the condition for existing

intersection point of the axes in subproblem 2. The new

subproblem is formulated and the complete solution for

nonintersecting axes is fully explained in the study by

Yew-sheng and Ai-ping.20

Generalization of subproblem 2

From mathematical point of view, subproblems considered

in the studies by Murray et al.5 and Yew-sheng and Ai-

ping20 are just cases of one general subproblem. All of the

cases can be covered considering the generalized formula-

tion as it follows.

Subproblem 2 (generalized)

Let x1 and x2 be two zero-pitch twists with unit magnitudes

and p; q 2 R3 two points. Find q1 and q2, so that the equa-

tion (14) is satisfied.

Solution

Geometrically, the problem is to find the angles q1 and q2,

so then if the point p is rotated about axis of the twist x2 by

the angle q2 and then is rotated about axis of the twist x1 by

the angle q1, it will coincident with the point q.

Let o1 and o2 be the unit vectors in a direction of the

axes of the twists x1 and x2, respectively. In general, there

are four cases (two cases by two subcases), on dependence

on relative position of the axes in the space.

Case 1

o1 � o2 6¼ o: axes of rotation intersect in exactly one point

or they are skew lines.

Case 1a. The axes of rotation intersect in exactly one point

r. This is the case completely solved in the study by Murray

et al.,5 but necessary conditions for solution are just men-

tioned in passing.

Case 1b. The axes of rotation are skew lines. This is the case

solved in the study by Yew-sheng and Ai-ping,20 but dis-

cussion for existence of the solution and number of solu-

tions is purely mentioned.

Below is given a new geometrical solution that covers the

both subcases—cases 1a and 1b with detailed discussion

about the existence of a solution and the number of solutions.

This new algorithmic approach of geometrical solution con-

sists of five steps detailed below. In fact, this solution is

described as geometric algorithm and its steps refer to

well-known geometric algorithms. Most of them have good

explanation in the study by Dunn and Parberry.21
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Step 1. Determine the closest points r1 and r2 between

the axes of twists x1 and x2.

In the case where the two axes intersect in exactly one

point, the closest point between them will be the intersect-

ing point, and r1¼ r2¼ r. So, all the equations given in this

section will be valid as well for the both subcases.

Step 2. Determine plane
P

1, the plane that is normal to

the unit vector o1 and passes through the point q (plane of

the red circle—Figure 1). Determine plane
P

2, the plane

that is normal to the unit vector o2 and passes through

the point p (plane of the blue circle—Figure 1). Next,

determine the intersecting line l(t) of these two planesP
1 and

P
2

lðtÞ ¼ l0 þ t � D ð16Þ

where l0 is an arbitrary point of line l(t) and D is unit vector

in direction of line l(t).

Step 3. Use the point r1 to determine the projection s1 of

the point q on the axis of the twist x1

s1 ¼ r1 þ o1ðo1
T vÞ ð17Þ

where v ¼ q� r1.

Determine the intersection between the line l(t) and the

red circle, circle k1 centered in point s1 and radius R1

R1 ¼ kv� o1oT
1 vk ð18Þ

The set A as intersection between the line l(t) and the

circle k1 (both of them lie on the plane
P

1) could contain

zero, one, or two points depending on the relative position

of the line l(t) and the circle k1.

Then determine the point s1
0, the closest point from the

point s1 to the line l(t). First, the necessary condition for

existence of the solution is

dðs1; s1
0Þ � R1 ð19Þ

If this condition is satisfied, then it is not possible A to be

the empty set. Depending on, whether the equality or the

strict inequality is satisfied, the set A will contain one or

two elements.

Step 4. Now, use the point r2 to determine the projection

s2 of the given point p to the axis of twist x2

s2 ¼ r2 þ o2ðoT
2 uÞ ð20Þ

where u ¼ p� r2.

Then determine the intersection between the line l(t) and

the blue circle k2 centered in point s2 and radius R2

R2 ¼ ku� o2oT
2 uk ð21Þ

The intersection will also be a set B that could also

contain zero, one, or two points, depending on the relative

position of the circle k2 and the line l(t).

Next determine the closest point s2
0 from the point s2 to

the line l(t), in order to get the second necessary condition

for existence of the solution:

dðs2; s2
0Þ � R2 ð22Þ

The discussion is similar to the one given with the first

necessary condition or if the condition given in equation

(22) is satisfied, then it is not possible the set B be the

empty set. If the equality is satisfied then the set B will

have one element, and if the strict inequality is satisfied

then the set B will have two intersecting points as elements.

Step 5. By determining the set M that represents the

intersection of the sets A and B, it is obtained the third and

final necessary condition for existence of the solution

M ¼ A \ B 6¼: ð23Þ

If equation (23) is not satisfied, then the subproblem 2

does not have a solution. If equation (23) is satisfied, then

exists point c such that

c ¼ ex̂2q2 p ¼ e�x̂1q1 q ð24Þ

Let us introduce notations

z1 ¼ c� r1; z2 ¼ c� r2 ð25Þ

u0 ¼ u� o2oT
2 u; v0 ¼ v� o1oT

1 v;

z01 ¼ z1 � o1oT
1 z1; z02 ¼ z2 � o2oT

2 z
ð26Þ

The problem is now reduced to two subproblems 1 using

equation (24). First, q2 should be determined by

q2 ¼ atan2
�
oT

2 ðu
0 � z

0

2Þ; u
0T z

0

2

�
ð27Þ

and then in the same manner q1 is determined by

q1 ¼ atan2
�
� oT

1 ðv
0 � z

0

1Þ; v
0T z

0

1

�
ð28Þ

When equation (23) is satisfied, the set M may have one

or two elements. In the case of one element set, unique c

exists and that is the element of intersection, that is,

c 2 A \ B. Namely, this means that the point c represents

1

2

r1

q

v

uz2

z1

r2

s1

s2

p

c

l t( )

Figure 1. Geometry representation of the solution to general-
ized subproblem 2 case: o1 � o2 6¼ o
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the unique common point of two circles k1 and k2. If the

next two conditions

u0 ¼ u� o2oT
2 u 6¼ o ð29Þ

and

v0 ¼ v� o1oT
1 v 6¼ o ð30Þ

are satisfied, the final solution is unique pair of angles ðq1; q2Þ.
If equation (29) is not satisfied, that is, u0 ¼ o, then any

q2 satisfies c ¼ ex̂2q2 p, since p lies on the axis of the screw

x2 and must be c ¼ p. Additionally, if equation (30) is

satisfied, there are infinitely many solutions ðq1; q2Þ—q1

is determined by equation (28) and q2 is any angle. In

opposite, any angles q1 and q2 are solution of the problem,

since must be c ¼ p ¼ q ¼ r. If equation (29) is satisfied,

but equation (30) is not, that is, v0 ¼ o, then any q1 satisfies

c ¼ ex̂1q1 q, since q lies on the axis of the screw x1 and must

be c¼ q. There are infinitely many solutions ðq1; q2Þ—q2 is

determined by equation (27) and q1 is any angle.

In the case when the set M have two elements, and there

are two points c, denoted by c1 and c2. Assumption given in

equation (29) is not satisfied or equation (30) is not satisfied

leads to contrary with condition M to contain two points. So,

in this case, conditions from equations (29) and (30) have to

be satisfied for both points c1 and c2, and the final solution is

set of two pairs of angles ðq11; q21Þ, ðq12; q22Þ.

Case 2

o1 � o2 ¼ o-—the vectors o1 and o2 are collinear, even

more since they are unit vectors must be o1 ¼ o2 ¼ o; the

axes of rotation coincide or they are parallel.

Case 2a: Coincide axes: x1 ¼ x2. The problem is reduced to

subproblem 1.

First necessary condition for solution existence is

oT � ðp� rÞ ¼ oT ðq� rÞ ð31Þ

Geometrically, the condition given in equation (31)

means that points p and q lie on a plane normal to the axis

of the both screws.

Second necessary condition for solution existence is

kp� r � o � oT � ðp� rÞk
¼ kq� r � o � oT � ðq� rÞk

ð32Þ

Geometrically, the condition from equation (32) means

that points p and q are equally distanced from the axis of the

screws.

If equations (31) and (32) are both satisfied, then the fol-

lowing necessary condition for uniqueness should be checked

p� r � o � oT � ðp� rÞ 6¼ o ð33Þ

If equation (33) is satisfied, there is unique value of q,
given by

a ¼
�

p� r � o � oT � ðp� rÞ
�

b ¼
�

q� r � o � oT � ðq� rÞ
�

q ¼ atan2
�
oT � ða� bÞ; aT � b

� ð34Þ

and there are infinitely many solutions of the problem.

Namely, every pair of angles

ðq1; q2Þ such that q1 þ q2 ¼ q ð35Þ

is a solution of the subproblem 2 in this case.

If the conditions given in equations (31) and (32) are

satisfied, but equation (33) is not, then any pair ðq1; q2Þ is a

solution of the problem, since p and q lie on the axis of the

screws. If any of the conditions from equations (31) and

(32) are not satisfied, then there is no solution.

Case 2b: Parallel axes. Let r1 be arbitrary point on the axis of

the screw x1(Figure 2). Denote

d ¼ q� r1 � o �
�
oT � ðq� r1Þ

���� ��� ð36Þ

The problem is now reduced to finding angle q2 to rotate

the point p around the axis of the screw x2 to come at the

distance d from the point s1, where

s1 ¼ r1 þ o �
�
oT � ðq� r1Þ

�
ð37Þ

That means to call subproblem 3 to find angle q2 and

then to call subproblem 1 to find angle q1.

Obviously, all the points p, q, and s1 need to lie on the

same plane normal to o, so the first necessary condition for

the solution existence is

oT � ð p� s1Þ ¼ 0 ð38Þ

In algorithmic manner, following two steps should be

done if equation (38) is satisfied.

1

2

r1 q

v

u

z

w

v’

u’

r2

s2

p

s1

c

Figure 2. Geometry representation of the solution to general-
ized subproblem 2, parallel axes case.
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Step 1. Call the subproblem 3 with p, s1, x2, and d.
Subproblem 3 solution details can be found in the study

by Murray et al.5

Let r2 be arbitrary point on the axis of the screw x2.

Geometrically, there is a solution if the circle centered at

s2 (orthogonal projection of the point p on the axis of the

screw x2) with radius

R ¼ kp� r2 � o � oT � ðp� r2Þk ð39Þ

intersects the circle centered at s1 with radius d.
Because of equation (38), the condition

d � joT � ðp� s1Þj ð40Þ

is satisfied. Denote

u ¼ p� r2; v ¼ s1 � r2 ð41Þ

u0 ¼ u� o � oT � u; v0 ¼ v� o � oT v ð42Þ

Second necessary condition for solution existence is

ku0k2 þ kv0k2 � d2
�� �� � 2ku0k � kv0k ð43Þ

Suppose u0 6¼ o and d > 0. If the condition given in

equation (43) is satisfied, then using the law of cosine

follows

q2 ¼ atan2
�
oT � ðu0 � v0Þ; u0T � v0

�

+ cos�1 ku0k
2 þ kv0k2 � d2

2ku0k � kv0k

 !
ð44Þ

If inequality in equation (43) is strict, there are two

angles q12 and q22 obtained from equation (44). If equality

is hold in equation (43), then both of the circles touch each

other, so there is unique angle q2.

Step 2. For every angle q2, obtained in step 1, call the

subproblem 1, with q, x1, and c, where

c ¼ ex̂2q2 p ð45Þ

Denote

z ¼ c� r1; w ¼ q� r1 ð46Þ

z0 ¼ z� o � oT � z;w0 ¼ w� o � oT � w ð47Þ

The angle q1 is then determined by

q1 ¼ atan2
�
oT ðz00 � w0Þ; z0T � w

�
ð48Þ

If u0 ¼ o, then the point p lies on the axis of the screw x2,

so there is no solution in the case kp� s1k 6¼ d. If addition-

ally, kp� s1k ¼ d, there are infinitely many solutions—q2

could be any angle and q1 is determined by equation (48).

The case v0 ¼ o is not possible, since it leads to conclu-

sion s1 lies on the axis of the screw x1, what is contrary to

the assumption the axes of both of the screws are parallel.

If d ¼ 0, then q lies on the axis of the screw x1 and q¼ s1.

The problem is then reduced to subproblem 1 and if equation

(38) is satisfied and ku0k ¼ kv0k 6¼ 0, then there is a unique

solution for q2 obtained by equation (44) and q1 is any angle

(infinitely many solutions); otherwise, there is no solution.

Extension of subproblem 2:
New subproblem

In the previous section, a detailed elaboration about the

generalization of Paden–Kahan subproblem 2 was given,

and now this subproblem 2 can be used in general case

without a consideration about the actual position of the

axes of rotation. However, the given generalization of

the subproblem 2 as well as the three Paden–Kahan sub-

problems are not enough to solve the inverse kinematics

of a robot with general configuration. Chen et al.22 noted

that the solution for inverse kinematics of a serial robot

with 6-DOF ‘Qianjiang I’ using the three well-known

Paden–Kahan subproblems, as they are originally

formulated, is impossible. So, they formulated a new

subproblem just to solve the inverse kinematics of the

above-mentioned robot.

The new subproblem comprises of a rotation of a point p

(shown in Figure 3) about three axes of zero-pitch twists x3,

x2, and x1 successively, such that it coincides with a given

point q. Thereto the axes of twists x2 and x3, respectively,

are parallel to each other and the first axis, the axis of twist

x1 is not parallel to the remaining two axes and does not lie

in the same plane neither with the axis of twist x2 nor axis

of twist x3. In order to solve the new subproblem, the angles

q1, q2, and q3 have to be determined, such that

ex̂1q1 ex̂2q2 ex̂3q3 p ¼ q ð49Þ

So, the point p first rotates about the green axis of twist x3

by angle q3, in Figure 3 represented by yellow arc, then it

rotates about the blue axis of twists x2 by angle q2 repre-

sented by the dark blue arc and at the end it rotates about the

red axis of twists x1 by angle q1 represented by the red arc.

1

1

s1

k1

q

qc1

Rs

p

c

3
2

2

l t( )

qc2

Figure 3. Geometry representation of the extended subproblem
2 solution.
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Chen et al.22 gave complete solution, but as a part of the

solution, they used the assumption that the axis of twist x1

is perpendicular to the two remaining axes of twists x2 and

x3. Again, the solution of this new subproblem is not a

general one.

In this article, a new geometric solution is given to this

new subproblem in general case, where the axis of twist x1

is in an arbitrary position and does not have to be perpen-

dicular to the other axes of twists x2 and x3. This solution

only excludes the position when the axis of twist x1 is

parallel to the other two axes, but this case does not have

to be taken into account because the problem definition

excluded this case. In this new geometric solution, the gen-

eralized Paden–Kahan subproblem 2 is used, with the case,

when the two axes are parallel to each other that was

detailed in the previous section.

Let o1 be the unit vector in a direction of the first axis of

twist x1 and o2 be the unit vectors in a direction of the two

parallel axes of twists x2 and x3. Figure 3 visualizes the new

geometrical solution that is constituted of four steps,

explained below.

Step 1

Determine the plane
P

1, the plane of the red circle that is

normal to the unit vector o1 and passes through the point q.

Determine the plane
P

2, the plane of a green circle that is

normal to the unit vector o2 and passes through the point p.

Next, determine the line l(t) that is the intersection of these

two planes
P

1 and
P

2 (Figure 3)

lðtÞ ¼ l0 þ t � d ð50Þ

This intersecting line l(t) is determined, since the unit

vectors o1 and o2 are not parallel to each other.

Step 2

Determine the projection s of the point q on the axis of the

twist x1

s ¼ s1 þ o1

�
oT

1 � ðq� s1Þ
�

ð51Þ

where s1 is an arbitrary point on the axis of the twist x1.

Step 3

Determine the intersection qc between the line l(t) and a

circle k1 centered in the point s with radius

R ¼ kq� sk ð52Þ

on the plane
P

1.

To find the intersection of the line l(t) and a circle, one

needs to find the roots of a quadratic equation with t as an

unknown. From the value of the discriminant D of the

quadratic equation depends whether the line l(t) intersects

the circle or not, and if it does, in how many points

D¼ ð2lT
0 � d� 2dT � sÞ2� 4ðkl0k2� 2lT

0 � s�kqk
2þ 2qT � sÞ

ð53Þ

Step 4

If D < 0, then the line l(t) doesn’t intersect the circle k1,

and the new subproblem does not have a solution.

If D ¼ 0 then the line l(t) and the circle k1 have one

common point qc

qc ¼ l0 þ td ð54Þ

where t ¼ lT
0 � d � dT � s.

Once the point qc is determined, the angle q1 can be

found by calling the Paden–Kahan subproblem 1, so that

the point qc coincides with the point q when it rotates about

the axis of twist x1

ex̂1q1 qc ¼ q ð55Þ

The two remaining unknown angles q2 and q3 can be

determined by calling the Paden–Kahan subproblem 2, so

that the point p first rotates about the axis of twist x3 and then

rotates about the axis with twist x2 to coincides with point qc

ex̂2q2 ex̂3q3 p ¼ qc ð56Þ

Here, the original formulation of Padern–Kahan subpro-

blem 2 is not used, but our generalized version of this

subproblem 2 detailed in the previous section, because the

axes of twists x2 and x3 are parallel to each other, and case

2b needs to be considered.

If D > 0 then the line l(t) intersect the circle k1 in two

points qc1 and qc2 that can be determined

qc1 ¼ l0 þ t1d and qc2 ¼ l0 þ t2d ð57Þ

where t1=2 ¼
�ð2lT

0
�d�dT �sÞ+

ffiffiffi
D
p

2

In this case in order to determine the unknown angles q1,

q2, and q3, again it has to be done by calling of the Paden–

Kahan subproblems 1 and 2 in the same manner like in the

previously detailed case when D ¼ 0, but two times: once

for the point qc1 and then the same for the point qc2. At the

end, the solution is a set of two or four triples of angles, if the

given data satisfy necessary conditions for existence and

uniqueness of the solution in generalized subproblem 2.

Examples, experiments and results

Kinematic model of 6-DOF industrial robot

We have used kinematic model based on the screw theory

and our geometric algorithms as a part of experiment for

accuracy improvement of 6-DOF industrial robot KUKA

KR 360 R2830, manufactured by KUKA AG company.

Using the scheme shown in Figure 4 and the notations

explained in “Introduction” section, construction of the

twists for pure rotation are made according to equation (7)
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o1 ¼
0

0

1

2
664
3
775o2 ¼

0

�1

0

2
664

3
775o3 ¼

0

�1

0

2
664

3
775

o4 ¼
�1

0

0

2
664

3
775o5 ¼

0

�1

0

2
664

3
775o6 ¼

�1

0

0

2
664

3
775

q1 ¼
0

0

0

2
664
3
775 q2 ¼

a1

0

d1

2
664

3
775 q3 ¼

a
1

0

d
1
þ d2

2
664

3
775

q4 ¼ q5 ¼ q6 ¼
a1 þ a3

0

d1 þ d2 þ d3

2
664

3
775

x1 ¼

0

0

0

0

0

1

2
666666666664

3
777777777775
x2 ¼

d1

0

a1

0

�1

0

2
666666666664

3
777777777775
x3 ¼

d1 þ d2

0

a1

0

�1

0

2
666666666664

3
777777777775

x4 ¼ x6 ¼

0

�d1 � d2 � d3

0

�1

0

0

2
666666666664

3
777777777775
x5 ¼

d1 þ d2 þ d3

0

�ða1 þ a3Þ
0

�1

0

2
666666666664

3
777777777775
ð58Þ

Initial configuration is the transformation matrix of the

robot’s tool with respect to the robot base, when all of the

joint angles are zeros. It is determined by

gbtð0Þ ¼

1 0 0 a1 þ a3 þ a6

0 1 0 0

0 0 1 d1 þ d2 þ d3

0 0 0 1

2
6664

3
7775 ð59Þ

According to equation (12), the forward kinematics is

determined by the matrix

gbtðqÞ ¼ ex̂1q1 ex̂2q2 ex̂3q3 ex̂4q4 ex̂5q5 ex̂6q6 gbtð0Þ ð60Þ

Inverse kinematics solution: If a pose is given, as posi-

tion and orientation with matrix T, the vector q of machine

coordinates should be found

T ¼

nx ox lx px

ny oy ly py

nz oz lz pz

0 0 0 1

2
6664

3
7775 ð61Þ

Since the point q6 lies on all three last axes, from equa-

tion (60) and the equation gbtðqÞ ¼ T follows

ex̂1q1 ex̂2q2 ex̂3q3 q6 ¼ T � gbtð0Þ�1 � q6 ð62Þ

Finding q1, q2, and q3 is now reduced to applying the

extended subproblem 2—the new subproblem explained in

the previous section, since axes of the twists x2 and x3 are

parallel, and the axis of the twist x1 is not parallel to the

remaining two axes and does not lie in the same plane

neither with the axis of twist x2 nor axis of twist x3.

Taking into consideration, the obtained values for q1, q2,

and q3 and that the point

q7 ¼
a1 þ a3 þ a6

0

d1 þ d2 þ d3

2
64

3
75 ð63Þ

lies on the axis of the twist x6, applying the standard Paden–

Kahan subproblem 2 yields the solution for q4 and q5, since

ex̂4q4 ex̂5q5 q7 ¼ e�x̂3q3 e�x̂2q2 e�x̂1q1 T � gbtð0Þ�1 � q7 ð64Þ

Finally, any referent point on the axis of the twist x5,

different from q6 can be used for obtaining the angle q6,

applying the standard Paden–Kahan subproblem 1. For

instance, taking the point

q8 ¼ q6 þ
0

b

0

2
64
3
75 ¼

a1 þ a3

b

d1 þ d2 þ d3

2
64

3
75 ð65Þ

and using the equation

ex̂6q6 q8 ¼ e�x̂5q5 e�x̂4q4 e�x̂3q3 e�x̂2q2 e�x̂1q1 T � gbtð0Þ�1 � q8

ð66Þ

Figure 4. Coordinate frames scheme.
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the last angle q6 is obtained.

The validity of the algorithm is confirmed by taking the

parameters values

a1 ¼ 500; a3 ¼ 1025; a6 ¼ 290; b ¼ 200

d1 ¼ 1045; d2 ¼ 1300; d3 ¼ �55

d1 ¼ 1045; d2 ¼ 1300; d3 ¼ �55 ð67Þ

and pose matrix

T ¼

0:11699 �0:83031 �0:54489 628:93

0:90972 0:30968 �0:27659 1294:40

0:39839 �0:46335 0:79158 2414:96

0 0 0 1

2
6664

3
7775
ð68Þ

obtained applying forward kinematics algorithm, taking

machine coordinates

q ¼ p
3
;
p
12
;� p

15
;
p
4
;
p
6
;�p

9

h i
ð69Þ

Proposed inverse kinematics procedure is applied

and eight solutions are obtained, shown in Table 1.

All these solutions are checked by simulation and for-

ward kinematics procedure and all of them lead to

desired pose (68) with maximal orientation deviation

of 3:5� 10�15 and maximal position deviation of

1:5� 10�12 mm.

Algorithm testing on 7-DOF AFP machine

The geometric algorithm presented in the previous section

was implemented in the postprocessor part of MikroPlace

[version 4.0]—software for off-line programming, design

and simulation of automated fiber placement (AFP) and

automatic tape layup (ATL) machines. Specifically, it was

experimentally tested on AFP machine with 7 DOF—three

linear axes and four rotational, deployed in the next parent/

child order:

Linear X ! Linear Y ! Linear Z ! Rotation Z !
Rotation X ! Rotation Z and another free axis Rotation

around X (Figure 5).

The algorithm was tested on different mandrel shapes

covering the two general types of mandrel geometry:

� Open shape surface mandrel (flat, shaped parabolic)

(Figure 6(a)) and

� Closed surfaces—360	 rotational mandrel surfaces

(Figure 6(b)).

The layup was under different layup angles in order to

test more axes combination. Figure 7 shows different

machine positions on the software simulation.

In Figure 8, the actual laid material is shown.

Table 1. Eight solutions of inverse kinematics.

Solution # Joint # q (	) Solution # Joint # q (	)

1 1 60.0000 2 1 60.0000
2 15.0000 2 15.0000
3 �12.0000 3 �12.0000
4 45.0000 4 �135.0000
5 30.0000 5 �30.0000
6 �20.0000 6 160.0000

3 1 60.0000 4 1 60.0000
2 �72.6269 2 �72.6269
3 �161.8571 3 �161.8571
4 158.9850 4 �21.0150
5 99.6360 5 �99.6360
6 �162.7859 6 17.2141

5 1 �120.0000 6 1 �120.0000
2 31.2018 2 31.2018
3 �216.1085 3 �216.1085
4 �132.5502 4 47.4498
5 28.6805 5 �28.6805
6 �22.8099 6 157.1901

7 1 �120.0000 8 1 �120.0000
2 75.6283 2 75.6283
3 42.2514 3 42.2514
4 �32.1828 4 147.8172
5 41.5901 5 �41.5901
6 �133.9015 6 46.0985

Figure 5. 7-DOF AFP Machine. DOF: degrees of freedom; AFP:
automated fiber placement.

Figure 6. Open (a) and closed (b) surface mandrel.
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Conclusion

Concentrating on the necessary and sufficient conditions,

as well as the number of solutions for the inverse kine-

matics of the robot manipulator in order to transfer from

pose to machine space coordinates, this article has pre-

sented a geometric algorithm that can be applied on multi-

ple movement configurations. Three basic Paden–Kahan

subproblems of screw theory were used in order to extend

subproblem 2 designed not to depend on the mutual posi-

tioning of the screw axes. The article sets and solves (giv-

ing an algorithmic approach) a new subproblem where

three independent screw axes are used in order to move the

manipulator from one to another point in the space. Practi-

cally, this subproblem is used to solve a specific configura-

tion of a 6-DOF robot that cannot be solved using the three

well-known Paden–Kahan subproblems. The algorithms

given here, solve the problem of inverse kinematics gener-

ally, so when they are implemented in some programming

language there is no need to look after the mutual

Figure 7. AFP Machine simulation. AFP: automated fiber placement.

Figure 8. AFP technology product. AFP: automated fiber
placement.
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positioning of the axes of rotation. Finally, combining the

algorithms presented in this article gives a wider use of the

screw theory based methods for several differently config-

ured manipulators.

Although, this article has been specifically focused on

the step-by-step geometric algorithm for the solution of

extended Paden–Kahan subproblems, these are the key

algorithms to the actual inverse kinematics implementation

for robotic movement and industrial gantry type machines

with multiple movement axes.
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