
Abstract. Background/Aim: To study the changes of
glioblastoma multiforme during chemoradiotherapy (CRT)
and to evaluate the impact of changes on dosimetry and
clinical outcomes. Patients and Methods: Forty-three
patients underwent volumetric imaging-based replanning.
Prognostic factors and gross tumor volume changes in
relation to overall survival and the effect of adaptive
replanning were statistically analyzed. Results: Patients with
total tumor removal, with shorter time to CRT (<27 days),
with methylated O-6 methylguanine DNA methyltransferase
and good performance status (>60%) had better survival.
Tumor shrinkage in 24 patients resulted in improved survival
compared to 19 in whom tumor was unchanged or
progressed (25.3 vs. 11.1 months, p=0.04). Adapted planning
target volume allowed a reduction in irradiated volume,
while increasing survival (12.06 vs. 28.98 months, p=0.026).
Conclusion: Tumor response during CRT has significant
impact on the outcome. Adaptation of the planning target
volume to the tumor changes proved to be beneficial and
warrants further investigation.

The advent of various forms of high-tech volumetric imaging
has opened up the possibility of defining and following
target and normal structures in the brain with high resolution
prior to and during a course of radiation therapy (RT).
Enhanced dose-delivery methods using new generation linear
accelerators (LINAC) or increasingly available nuclear
particle accelerators allow highly selective dose distribution
for predefined structures (1-4). These developments can lead
to a remarkably improved therapeutic ratio. Toward that

goal, many newly defined structures have to be delineated.
Furthermore, if the volume and location of the primarily
contoured structures change, particularly small structures
(such as chiasma, subventricular zone (SVZ) and
hippocampus), those should also be followed and the RT
plan subsequently modified (5). Several studies have
investigated spatial and dosimetric changes in critical
structures during treatment for different cancer types (6-8),
but much less research has been performed on RT of the
brain, which has great anatomical constancy due to the
closed skull volume and lack of organ movement. However,
tumor volume, the surgical cavity, the peritumoral region and
several sensitive brain structures are assumed to undergo
slow but evident changes (e.g. hemorrhage, edema and shift
of anatomical structures) owing to the development of
radiation-related reactions and residual tumor response (9-
12). The importance of such anatomical changes during the
course of RT increases if growing numbers of small
substructures [target and organs at risk (OARs)] are defined
for dose prescription. The standard OARs for brain tumor RT
include the optic nerves, optic chiasm, eyes, lenses, brain and
brainstem. Optionally, the cochleae, lacrimal glands, pituitary
gland, hypothalamus and hippocampus could be taken into
account for treatment planning when the tumor is in a
location that will allow sparing without compromising the
dose to the target (13-15).

Glioblastoma is a tumor that invades surrounding tissues
aggressively, becomes infiltrative and spreads into different
regions of the brain. Defining the clinical target volume
(CTV) on postoperative images is therefore a highly
challenging task (16-18). Preoperative contrast-enhancing
volume cannot be directly used due to postoperative
changes, and the resection cavity does not correspond
accurately to the high number tumor cell region.
Additionally, residual contrast-enhancing and non-enhancing
tumor should be included in the CTV. Recently, advanced
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imaging techniques have been recommended to define the
volume of the tumor mass, such as different sequences of
magnetic resonance imaging (MRI) and amino acid-based
positron-emission tomography images (11C-methionine and
O-(2- [18F]fluoroethyl)-L-tyrosine) (17-19). Furthermore,
different approaches to the definition of ‘target volume’ are
practiced. The Radiation Therapy Oncology Group (RTOG)
guidelines suggest two-phase irradiation, using larger CTV,
including postoperative peritumoral edema, delineated on
MRI T2-weighted fluid-attenuated inversion recovery
(FLAIR) images, plus a 2 cm margin up to 46 Gy, followed
by boost therapy encompassing the residual tumor with an
additional margin of 2 cm (20). In Europe, the European
Organisation for Research and Treatment of Cancer
(EORTC) consensus guideline recommends single-phase
irradiation with a 20 mm margin around the gross tumor
volume (GTV), defined as the resection cavity plus residual
contrast-enhancing tumor enlarged with a 3-5 mm margin
for institutional set-up uncertainties (21). A recent
retrospective analysis of the recurrence pattern exhibited no
significant difference using such a limited (EORTC)
approach or even further reduced margins (10 mm and 5
mm, respectively) around the GTV for glioblastoma to
create the CTV (22). Whether to incorporate
pre/postoperative edema is also a subject of debate. In
recent years, growing attention has been paid to the dose in
the SVZ, the region around the lateral ventricles, postulated
as a main niche of pluripotent neural stem cells of the
central nervous system. These cells, with their capacity to
act as tumor stem cells, are able to differentiate into neurons
or glial cells and serve as a source of tumor development
and recurrence. Based on retrospective dose distribution
analyses, a high dose to the ipsilateral SVZ resulted in
significant improvement of progression-free (PFS) and
overall (OS) survival for patients with glioblastoma (23-29).
Therefore, the inclusion of the ipsilateral SVZ into the CTV
may be considered.

The target volume definition of GBM varies remarkably
at different institutions worldwide as a result of contradictory
recommendations. The use of several MRI sequences at
different time points, including preoperative MRI with a
diffusion-weighted sequence for tractography and functional
MRI, thereafter MRI within 48 hours post-surgery and a
further pre-RT MRI, has recently become a standard
requirement (30). 

We investigated the potential of the use of repeated
CT/MRI during two-phase RT delivery and adaptation of the
structure definition for replanning and its impact on survival. 

Patients and Methods

Study population. Forty-three consecutive patients with GBM
treated at the Department of Oncotherapy University of Szeged,

Hungary, between January 2013 and June 2016 were selected for a
retrospective study. The patient and tumor characteristics as well as
the volumetric data for the defined targets are provided in Tables I
and II. The average age of the 43 patients (19 males and 24 females)
was 58.6 (range=12-85) gears. Thirty-nine patients were treated
with concurrent temozolomide chemotherapy during RT followed
by temozolomide monotherapy, and four patients received only RT.
All the patients underwent surgical tumor removal, with the tumor
type confirmed by histology. The extent of the tumor removal of the
entire study group was by subtotal resection in the majority of cases
(N=27). The O-6 methylguanine DNA methyltransferase (MGMT)
status was available for 33/43 tumor samples for the present
analysis and 17 were defined as being promoter region methylated
by immunohistochemistry. The average time to planning CT after
surgery was 2.8 (range=0.7-5.1) weeks. RT generally started 1 week
after the planning CT, thus the mean time interval between surgery
and CRT was 29.1 days (range=5-59 weeks). GBM was treated with
75 mg/m2 temozolomide each day during RT, with a 60 Gy total
dose administered in two phases (40 Gy + repeated planning
CT/MRI-based replanning of a 20 Gy boost) conventionally
fractioned at 2 Gy per fraction. All the patients had an additional
(secondary) replanning CT/MRI (mean=3.9, range=3.7-4.0 weeks)
after the start of RT [mean=7.7 (range=5.3-14.3) weeks after
surgery], which was registered to the initial (primary) planning CT.
The University Ethics Committee and the local Institutional Review
Board approved the study under registration no. 46/2015.
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Table I. Patient characteristics. 

Characteristic                                                      Frequency, n

Gender
  Male                                                                         19
  Female                                                                      24
Age
  ≥60 Years                                                                 22
  <60 Years                                                                 21
Histology
  Glioblastoma                                                           43
Type of surgery
  Biopsy                                                                        7
  Subtotal resection                                                    27
  Gross total resection                                                  9
KPS
  >60%                                                                        16
  ≤60%                                                                        27
MGMT status
  >40%                                                                        17
  ≤40%                                                                        16
  Unknown                                                                 10
RT start
  <27 Days                                                                  22
  ≥27 Days                                                                  21
Therapy
  Chemoradiotherapy                                                 39
  Radiotherapy alone                                                   4

KPS: Karnofsky Performance Status; MGMT: O-6 methylguanine DNA
methyltransferase promoter methylation; RT start: time interval between
the surgery and the radiotherapy start date.



Contouring and treatment planning. Patients were positioned and
fixed using a 3-point individual thermoplastic mask, with a CT scan
taken with slice thickness of ≤5 mm with the patient in a supine
position. The GTV and planning target volume (PTV) were defined
on the primary CT using pre- and postoperative MRI images.
Registration and contouring were performed with Advantage SIM
software (version 4.7; General Electric Healthcare, Chicago, IL,
USA). Contouring was performed in axial reconstructions of the CT
data set after MRI-CT image fusion. The PTV margin around the
GTV on the preoperative gadolinium-enhanced T1-weighted MRI
sequence was defined according to our Institutional protocol based
on the RTOG contouring guidelines. Around the GTV, a 20 mm
margin was created encompassing the peritumoral edema defined
on the basis of postoperative T2-FLAIR MRI. In the case of
excessive edema, the margin was adapted manually in individual
cases. All plans were made and optimized in the Xio Planning
System (version 4.7; Elekta, Stockholm, Sweden). The PTV was
treated with 3-dimensional conformal RT or intensity-modulated RT
(IMRT) up to 40 Gy in 20 fractions with regular position control
using portal imaging or cone-beam CT. After the first period of
study, a second planning CT or, more recently, MRI, was performed.

GTV1 and PTV1 were defined on the secondary planning CT. When
an MRI was taken, image registration was applied for delineation
of GTV1 and PTV1 on the planning CT (Figure 1). PTV1 was
assigned by adding a 10 mm margin around GTV1. The PTV1
volume was treated with 3D-conformal RT/IMRT delivering an
additional 20 Gy in 10 fractions. 

Statistical analysis. The primary endpoint was OS and target-
volume parameters. OS was measured from the date of histological
diagnosis to the date of death from any cause. Patients who
developed none of these time-to-event endpoints were censored on
the date of their last follow-up. Survival distributions and median
survival data were estimated using the Kaplan–Meier method, and
comparisons were performed based on the log-rank test for
categorical characteristics. Cox proportional hazards regression
models were fitted to examine the association of RT parameters with
OS. Variables with p-values of less than 0.05 in the univariate
analysis were selected for the multivariate Cox proportional hazards
model. Statistical analysis was performed using the SPSS statistical
analysis software package (version 20; IBM, Armonk, NY, USA).
Statistical significance was set at a threshold of p<0.05.
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Table II. Gross tumor volume (GTV) and planning target volume (PTV) on primary and on secondary (GTV1 and PTV1) computed tomography and
their difference. Data are the mean±standard deviation.

Volume                                        GTV (cm3)               GTV1 (cm3)         ΔGTV (cm3)                PTV (cm3)                 PTV1 (cm3)           ΔPTV (cm3)

Overall                                    98.9±67.4 (n=43)          106.3±67.7              6.7±2.7               530.2±160.5 (n=43)         359.9±125.2         –183.2±130.5
Regression                            113.1±69.4 (n=24)            85.5±56.9          –27.56±20.8           547.2±162.3 (n=41)         353.6±122.8         –193.6±124.4
No change/progression          94.6±66.2 (n=19)          113.5±75.5            19.2±1.8               460.0±114.5 (n=2)            489.6±140.6             29.6±26.0

ΔGTV=GTV1−GTV; ΔPTV=PTV1−PTV.

Figure 1. A: Initial gross tumor volume (GTV - yellow) and planning target volume (PTV - red) after 40 Gy. B: Irradiation target volumes were
recontoured (GTV1 - pink; PTV1 - purple).



Results

The initial size of the GTV was strongly inversely correlated
with OS. The patients were separated for the Kaplan–Meier
analysise into two groups according to the mean GTV size:
≤99 cm3 and >99 cm3. The median OS was 25.33 months
(95% CI=19.59-35.27 months) for the first group and 15.21
months (95% CI=10.82-22.27 months) for the second,
corresponding to a hazard ratio (HR) of 1.006 (95%
CI=1.00-1.01, p=0.031) (Figure 2A). Using the average
value as cut-off point, the PTV did not exhibit a correlation
with survival. Median OS was 15.21 months (95%
CI=15.06-31.34 months) in the first group and 19.12 months
(95% CI=15.64-28.67 months) in the second group
corresponding to an HR of 1.001 (95% CI=0.99-1.01,
p=0.910) (Figure 2B). 

Anatomical changes in the brain and tumor growth or
shrinkage occurred during RT. The GTV volume change
(ΔGTV=GTV1−GTV) during RT was correlated with OS.
The median OS was 25.33 months (95% CI=21.68-35.28
months) in the group with ΔGTV<0 cm3, i.e. GTV
regression, and 11.10 months (95% CI=10.63-22.69 months)
in the group with ΔGTV≥0 cm3, i.e. no change or
progression of GTV, corresponding to an HR of 1.006 (95%
CI=0.99-1.01, p=0.040) (Figure 3A). The recontouring and
change of PTV was significantly different between the two
groups: Patients with ΔPTV ≤183 cm3 and those with
ΔPTV >183 cm3. The median OS was 12.06 months (95%
CI=11.63-22.91 months) for the first group and 28.98
months (95% CI=22.36-38.82 months) for the second,
corresponding to an HR of 1.001 (95% CI=0.99-1.01,
p=0.026) (Figure 3B). 
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Figure 2. Correlation of initial gross tumor volume (GTV) (A) and initial planning target volume on primary (PTV) (B) on primary computed
tomography with overall survival. 



The type of surgery had a significant impact on survival,
patients who underwent biopsy had a mean survival of 6.97
months, those with subtotal tumor resection 20.5 months and
with gross tumor resection of 25.33 months (p=0.009)
respectively. A Kaplan–Meier analysis of the time from
surgery to the start of CRT and OS revealed that CRT started
within 27 days resulted in a significantly higher mean OS
(26.48 vs. 15.21 months, p=0.046). Our results demonstrated
that MGMT promoter methylation was associated with
significantly longer OS. The median OS was 7.03 (95%
CI=7.58-18.44) months in those with non-methylated MGMT
promoter (≤40%) and 26.48 (95% CI=19.54-35.86) months
in those with >40% MGMT promoter methylation,
corresponding to an HR of 1.017 (95% CI=0.99-1.03,
p=0.065), retrospectively. Patients with higher postoperative

Karnofsky Performance Status (KPS) status (KPS>60%) also
demonstrated increased OS, with 38.31 (95% CI=27.46-
42.01) months versus 11.10 (95% CI=10.11-17.75) months
for the other group, corresponding to an HR of 0.949 (95%
CI=0.92-0.97, p<0.001). 

Discussion

In accordance with the literature, our data confirm the impact
of general prognostic factors on disease outcome, i.e. better
KPS, larger extent of tumor removal and methylated MGMT
promoter status resulted in longer survival. The optimal time
interval between the surgery and start of CRT is a matter of
debate in the literature (29) and a clear conclusion cannot be
drawn in our patient group, although the shorter time to CRT

Végváry et al: Adaptive Brain Radiotherapy for GBM

4241

Figure 3. Correlation of change in gross tumor volume (ΔGTV) (A) and in planning target volume (ΔPTV) (B) with overall survival.



proved to be significant factor for better OS. Adaptive RT
has mainly been applied in patients with extra-cranial
localization taking into account anatomical changes
associated with weight loss, internal organ movement, organ
filling, tissue edema and potential tumor regression. These
changes may significantly influence the dose distribution,
resulting in target volume missing or overdosing in the OAR
region. The studies published on adaptive RT have varied
between daily onboard imaging-based plan adaptation and
CT/MRI-based replanning prior to boost definition. The final
definition of the optimal time point and methodology for
these resource-consuming procedures is yet to be
determined. The advantageous effect of replanning for brain
irradiation is not yet supported by strong clinical evidence
despite the increased attention to adaptive techniques and a
growing amount of clinical data for tumors in other
locations. There are limited data available on adaptive RT
including brain structures in publications on head and neck
region RT. A study by Ho’s team found no relevant effect of
a daily assessment of dose-distribution changes for the
brainstem and spinal cord in oropharyngeal cancer and hence
did not recommend frequent replanning from this aspect
(31). In contrast, numerous other studies have confirmed the
benefit of adaptive RT for the treatment of head and neck
tumors to outcomes (32-36). A recent study on adaptive RT
of advanced head and neck cancer (36) demonstrated an
improved therapeutic index by increasing the tumor coverage
and dose reduction to the OARs. It confirmed that without
replanning, the dose to some OARs would have exceeded
their respective tolerance threshold, including central nerve
system structures, i.e. the brainstem and spinal cord. 

Unlike extra-cranial localizations, data on adaptive RT for
brain tumors is sparse in spite of the fact that GBM is known
as a rapidly growing tumor type, and CRT is applied
postoperatively when relevant changes in post-surgical and
tumor volume are supposed to occur (5, 9-12, 37). Both
internationally applied guidelines (RTOG and EORTC) define
target volume based on surgical cavity, edema and residual
tumor. However, neither of them contains a recommendation
for CT/MRI-based replanning during the course of RT.
According to the institutional strategy at our Oncotherapy
Department, two-phase irradiation is planned with the
shrinking-volume technique. A pre-therapeutic boost definition
is applied in conjunction with a recontouring of the residual
tumor mass (GTV2) for repeated planning CT/MRI in an
adapted CTV2-PTV2 approach. Recently, an evaluation on
inter-fractional variation for completely resected GBM has
been reported. Surgical cavities of 19 patients with
glioblastoma with gross total resection were measured at three
time points, 1 day following surgery, 4 weeks thereafter at the
planning of RT and 5 weeks later (after 50 Gy was delivered)
prior to boost planning. The differences between the surgical
defect volumes were statistically significant (p<0.001), and

based on the planning comparison, the authors concluded that
the volume-adapted replanning during RT might reduce the
irradiated volume of normal brain tissue and prevent a radiation
target miss for boost RT (10). In line with this research, we
detected relevant morphological changes on CT/MRI-based
replanning performed prior to the boost irradiation. Moreover,
patients were included with macroscopic tumors after partial
resection and biopsy in which tumor response had contributed
greatly to target volume changes in addition to post-surgical
and RT-triggered reactions. In a preliminary study on three
patients with GBM using integrated high-field MRI-LINAC,
relevant volumetric changes in GBM tumor volume had been
observed over the course of RT (37). Muruganandham et al.
compared the status of tumor metabolic activity with MRI
spectroscopy prior to and during the third week of RT,
revealing a significant correlation with PFS (38). In our study,
both the initial residual tumor volume and the extent of tumor
shrinkage exhibited a significant impact on OS. The outcome
of survival analysis showed no significant difference in terms
of the initial size of the PTV. However, the GTV volume
difference i.e. the difference between the GTV defined on the
first plan and the tumorous mass seen on the replanning image,
did show a significant correlation with OS in univariate
analysis. Similarly, a relevant decrease in the size of the PTV
(the PTV volume difference, analogous to the GTV volume
difference) predicted better OS.

Our research has certain limitations due to its retrospective
nature and relatively small number of patients. Thus, the
correlation between the adapted boost volume and OS
disappeared in the multivariate analysis, taking into account
stronger prognostic factors, such as KPS and MGMT
promoter methylation status. Furthermore, the first series of
replanning took place using repeated CT images but in the
later part of the study, all patients underwent repeated MRI.
In order to compensate for the lack of MRI and increase the
accuracy of the boost volume delineation, in all cases, two
experts (one of them a neuro-radiologist) defined GTV1. 

Our findings support the great importance of monitoring
anatomical changes in the course of fractionated
postoperative brain tumor irradiation. A follow-up of the
residual tumor during CRT and adaptation of the PTV to
tumor volume changes result in increased accuracy of dose
delivery to the tumor and relevant normal brain tissue
sparing. According to our data, reduction of the PTV did not
compromise survival; in contrast, it seemed to be beneficial.
Our preliminary data on improved survival on the basis of a
higher degree of PTV reduction warrant further clinical
studies to confirm these encouraging results. 

The implementation of an adaptive RT approach is
suggested for postoperative irradiation of GBM to optimize
coverage of the target and minimize the dose to OARs. The
reported data confirm that significant changes occur in
different brain structures and in the residual tumor during
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fractionated CRT. The tumor response and adapted boost
volume definition exhibited a strong correlation to treatment
outcome. Optimization of the imaging (MRI and amino acid-
based PET/CT) for replanning could further improve the
quality of the adaptive approach.
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