
              

City, University of London Institutional Repository

Citation: Smith-Creasey, M. and Rajarajan, M. (2019). A novel scheme to address the 
fusion uncertainty in multi-modal continuous authentication schemes on mobile devices. 
2019 International Conference on Biometrics (ICB), doi: 10.1109/ICB45273.2019.8987390 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/24696/

Link to published version: http://dx.doi.org/10.1109/ICB45273.2019.8987390

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/333901123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Dempster-Shafer for score fusion with uncertainty in multi-modal continuous
authentication schemes on mobile devices

Max Smith-Creasey, Muttukrishnan Rajarajan
City, University of London, Northampton Square, Clerkenwell, London, EC1V 0HB, UK

max.smith-creasey@city.ac.uk, r.muttukrishnan@city.ac.uk

Abstract

Interest in continuous mobile authentication schemes
has increased in recent years. These schemes use sensors on
mobile devices to collect biometric data about a user. The
use of multiple sensors in a multi-modal scheme has been
shown to improve accuracy but sensor scores are often com-
bined naı̈vely using averaging techniques. The effects of un-
certainty in score fusion has not been explored. We present
a novel Dempster-Shafer based score fusion approach for
continuous authentication schemes. Our approach com-
bines sensor scores factoring in the uncertainty of the sen-
sor. We propose and evaluate five techniques for computing
uncertainty. Our proof-of-concept system is tested on three
state-of-the-art datasets and compared with common fusion
techniques. We find our approach yields the highest accu-
racies and achieves equal error rates as low as 8.05%.

1. Introduction

Mobile devices have become a ubiquitous part of mod-
ern life. This creates a need for protecting private data
stored on devices. Traditional authentication techniques are
knowledge-based where a user provides input such as a PIN,
password or pattern. However, these have been shown to be
vulnerable to smudge attacks and shoulder surfing [1].

The inclusion of sensors in mobile devices has seen bio-
metrics used to authenticate users. Common biometrics
used to authenticate include fingerprints and facial recogni-
tion. However, these continue to suffer from spoof attacks
[2]. Furthermore, all discussed security mechanisms so far
are one-shot authentication approaches; the device does not
re-authenticate after it is unlocked.

Continuous authentication techniques have been pro-
posed to alleviate issues with current authentication tech-
niques [17]. Such schemes create a biometric profile using
sensor data such that future data can then be compared to the
user profile to authenticate. Most schemes combine several
modalities due to enhanced accuracy and robustness [24].

One popular way to continuously authenticate is to sam-
ple device sensors periodically to build a profile of passively
collected behavioural biometrics [12]. Such schemes com-
bine multiple modalities (e.g.: movement sensors, location
and wi-fi hotspots) and rely on the fact that humans are crea-
tures of habit to authenticate. When attackers take a device
from a user the behaviour will deviate from that of the gen-
uine user and the device can subsequently lock.

Whilst there is research on including a variety of differ-
ent modalities, there is little research on the effective fusion
of scores obtained from sensor readings. Most continuous
authentication approaches combine scores using techniques
such as averaging. This does not factor uncertainty into the
fusion and assumes absolute levels of belief in scores.

In this paper we propose a new continuous authentica-
tion scheme that uses Dempster-Shafer theory to incorpo-
rate uncertainty into sensor scores. We evaluate and discuss
different ways of computing uncertainty. We show how our
approach yields better accuracy against fusion techniques
used in other multi-modal continuous authentication sys-
tems. The primary contributions of this paper are:

i) A new scheme for continuous authentication using
Dempster-Shafer theory for sensor score uncertainty.

ii) We propose and evaluate multiple mechanisms for
computing the uncertainty of sensor scores.

iii) We propose a generalised impostor for characterisa-
tion so the system does not require all impostor data.

The remainder of this paper is organized as follows. Sec-
tion 2 explores the related work. Section 3 presents the un-
derlying theory our scheme implements. In Section 4 our
general idea is described. Section 5 discusses the exper-
iments and discusses results. Section 6 concludes the re-
search and discusses future work.

2. Related Work

In this section we discuss studies about biometric fusion,
multi-modal authentication and Dempster-Shafer theory.



2.1. Biometric Fusion

In [18] the authors provide an overview of fusion in bio-
metric systems. There are three levels at which data can be
fused: the extraction-level, the score-level and the decision-
level. Extraction-level fusion will often concatenate fea-
tures into a single vector before classification. Score level
combines scores from classifiers. Decision level uses binary
decisions from classifiers to form a decision.

The most common method for biometric fusion is score-
level fusion [7]. This level offers an ease of accessing and
combining scores and does not suffer from the rigidity of
decision-level fusion or potential feature incompatibilities
of extraction level-fusion [9]. There are several techniques
for combining classifier scores [11]. Commonly used tech-
niques, due to simplicity, are averages, minimum score,
maximum score, sum score and the product of all scores.

2.2. Multi-modal Continuous Authentication

In [22] a scheme is built on two weeks of phone, SMS,
browser and location data from over 50 subjects. Probabil-
ity density functions model the behaviour at different times
of different days. Scores for different modalities are fused
using weighted sum and product techniques. In [12] the au-
thors authenticate with app usage. They train rule-based and
neural-network techniques on user behaviour. The scheme
achieves an equal error rate (EER) of 9.8% and can be
adapted to a false acceptance rate (FAR) of 4.17% and a
false rejection rate (FRR) of 11.45% through parameter ad-
justment. The scheme is, however, limited to authenticating
with app usage. This is a visible behaviour and may vulner-
able to shoulder-surfing attacks. Furthermore, once an app
is authenticated there is no re-authentication during usage.

In [8] a scheme is shown combining orientation, ac-
celerometer and touch-gesture data. The study evaluates
min, max, product and sum fusion techniques with sum
yielding the lowest EER of 0.31%. Similarly, in [15] the
authors combine touch-gestures with accelerometer, orien-
tation and power consumption data. They achieve EERs
ranging from 6.1% to 6.9% using a majority voting fu-
sion approach. Touch-gestures are also employed in [25]
where passively collected multi-modal sensor scores adjust
the threshold of touch-gesture authentication. The approach
to the multi-modal component uses an averaging approach
for score fusion. This unrealistically implies the same and
constant certainty applies to all sensor scores.

In [20] the authors build a multi-modal scheme employ-
ing linguistic analysis, keystroke dynamics and behavioural
profiling to authenticate. They fuse these modalities using
sum and weighted average techniques, achieving an EER
of 8%. The authors expand this work in [19]. The study
achieves EERs as low as 3.3%. The authors implement sum
fusion and matcher weighting [26] to combine scores but
does not consider flexibility based on certainty. The scheme

in [4] uses face, voice, keystroke and touch-gesture modal-
ities on mobile devices. The system provides a framework
but does not provide an implementation or results so the
practicality is unknown. The scheme selects weighted sum
score fusion, noting the ease and accuracy of the approach,
but does not consider potential uncertainty.

Calls, SMS, browser and wifi data are used in [29] to
authenticate users with an accuracy of 98.36%. However,
these are limited modalities because they can be infrequent.
This is expanded on in [30] with an adaptive neuro-fuzzy
inference system. The scheme achieves competitive accu-
racies of 94.95%. The study uses only 5 users and therefore
results are limited in their robustness. Sum fusion is used to
combine some of the scores in the papers. In [5] stylometry,
app usage, browsing and location data are used achieving
an EER of 5%. However, the scheme uses binary classifiers
that unrealistically use data from all impostors. Also, their
applied data fusion centre requires a priori probabilities and
does not consider uncertainty which limits flexibility.

A multi-modal scheme is proposed in [10] using prob-
ability density models spatial and temporal contexts. It
shows impostor detection rates ranging from 53-99% de-
pending on different attacker types. Scores are fused via a
simple average. The study does not consider the influence
of uncertainty in scores. In [13] the authors expand on this
study to produce a more adaptive sensor sampling scheme
due to the computational cost of sampling. However, the
averaging is still used to fuse scores. In [6] a scheme is
presented that collects wifi, bluetooth and location every 5
minutes to infer the environment security. Modality scores
are fused via averaging techniques. The precision and recall
the system achieves is 85% and 91%, respectively.

2.3. Dempster-Shafer for Sensor Systems

Dempster-Shafer theory has commonly been applied to
sensor-based systems employing multiple sensors that may
vary in their certainty or trustworthiness [27, 3]. The use
of Dempster-Shafer theory in biometric systems is limited.
In [23] the authors use the predictive ability of classifiers
based on previous performance to form a belief in a hy-
pothesis. In [16] Dempster-Shafer theory is applied to a
biometric system incorporating face, fingerprint and iris.
The authors construct uncertainty values as a function of the
EERs achieved by the classifiers. They show that Dempster-
Shafer improves fusion accuracy. However, the study is lim-
ited to three modalities and is not continuous.

3. Dempster-Shafer Theory
The scheme we propose uses Dempster-Shafer (D-S)

theory [21] as the theoretical basis. D-S theory is a gen-
eralisation of probability theory and provides an evidence
based framework that incorporates uncertainty. The theory
is based on the ideas of obtaining degrees of belief for a



question and combining degrees of belief such they provide
combined nuanced beliefs in hypotheses. The motivation
for employing D-S theory into our framework is the ability
to factor in the reliability in the sensor scores as uncertainty.

D-S theory requires a finite set of mutually exclusive and
wholly exhaustive possibilities (e.g.: system states). This
is the frame of discernment, represented by Ω such that
Ω = {P1, P2, ..., Pn} where Pk represents a possibility.
Any hypothesis, A, refers to a subset of Ω. The power
set, 2Ω, contains all possible hypotheses (known as focal
elements) and can be derived from Ω. The power set 2Ω

contains all subsets of Ω, including itself and the null set ∅.
All subsets in 2Ω are assigned a probability (degree of

belief) known as a basic belief mass in a process called ba-
sic belief assignment. Belief in a hypothesis is computed by
the sum of all sets in which it appears, contrary to traditional
probability theory in which a single probability represents
one atomic hypothesis. The mass function m maps each hy-
pothesis A in 2Ω to a value between 0 and 1 such that:

m(∅) = 0, and
∑
A∈2Ω

m(A) = 1 (1)

The next assignment is given by a belief function that
attributes a value bel(A) between 0 and 1 to hypothesis A
such that:

bel(A) =
∑

B|B⊆A

m(B) (2)

The final assignment to the hypotheses in 2Ω is given by
a plausibility function that assigns a value pls(A) between
0 and 1 to hypothesis A such that:

pls(A) =
∑

B|B∩A 6=∅

m(B) (3)

The D-S framework carries the benefit that it is possi-
ble to derive the results of any two assignments provided
that one assignment is available. Belief and plausibility are
related by the following:

pls(A) = 1− bel(A) (4)

Combining evidence from multiple observations for a set
of focal elements is provided by Dempster’s rule of combi-
nation. The joint mass in a hypothesis A provided by two
observers 1 and 2 is given by m(A) = m1(A) ⊕ m2(A).
This is calculated as the following orthogonal sum:

m1(A)⊕m2(A) =
1

1−K
∑

B∩C=A6=∅

m1(B)m2(C) (5)

where:

K =
∑

B∩C=∅

m1(B)m2(C) (6)

4. Proposed Approach
In this section we describe our continuous authentication

scheme as well as the components, architecture and how we
incorporate Dempster-Shafer theory.

4.1. General Idea

This study introduces a novel and flexible continuous
multi-modal behavioural authentication scheme for mobile
devices. We hypothesise that introducing uncertainty into
sensor scores can improve the accuracy and robustness of
the scheme. Furthermore, we aim to show how uncertainty
components can be manipulated due to temporal context or
a growing lack of trust in sensor scores.

Our scheme continuously samples readings from sensors
Sn on the mobile device. After a training phase of m days,
collected sensor data is used to create behavioural models
for the user. Because different behaviour can be expected
at different times of day we use the concept of anchors [10,
25] where each anchor represents a behavioural model for
a sensor for a period of the day. The probabilistic models
are trained on the collected sensor data resulting in a model
for each sensor for each anchor (assuming sensor data was
available for that anchor). During this training phase the
collected sensor data is also used to establish the uncertainty
in the scores produced by each sensor (see Section 4.5).

Upon training the probabilistic behavioural models the
scheme switches to an authentication mode. Sensors are
continuously sampled during the this phase such that au-
thentication is truly continuous. After each time period p, a
collected window w of sensor readings is classified by the
appropriate classifiers. If more than one sample from an
individual sensor is present the scores are averaged.

Once likelihood scores are given by the behavioural
models for each sensor for the period p they are fused in
a score-level fusion strategy. Our novel approach applies
D-S theory for score-level fusion (Section 4.4 expands on
this). We use the obtained scores and the computed uncer-
tainty U in those scores to model the belief in the related
hypotheses. Dempster’s rule of combination [25] is then
used to fuse the belief that the user is genuine with con-
sideration to the uncertainty represented in the scores. The
final score is compared to a threshold. If the score surpasses
the threshold access is maintained, otherwise an explicit au-
thentication method (such as a PIN) is triggered.

4.2. User Profile Creation

As discussed in Section 4.1, our scheme uses probabilis-
tic models to maintain the behavioural profiles of a user.
These models are realised through the use of kernel den-
sity estimators (KDEs) (for sensors that output continuous
values) and histograms (for sensors that output discrete val-
ues). These techniques are used due to their simplicity and
popularity in similar studies [10, 25, 13].



The anchors are constructed to model temporal contexts
and represented a time period of the day (e.g.: each hour).
Sensor samples scored against these models result in a like-
lihood score that the sample is that of the genuine user. If
there is no probabilistic model for a sensor at an anchor then
it is omitted from the score fusion.

4.3. Generalised Impostor

Some uncertainty strategies in our scheme require
knowledge of impostor scores to identify score distribu-
tions or sensor accuracies. In practice, we cannot know
the scores that would result from all real-world impostors
because we would not have access to their data. This unre-
alism is present in schemes such as [5] where the classifier
is trained on the genuine user and then on all impostors (in-
cluding the impostors the scheme is tested on). Our scheme
therefore models a generalised impostor from a set of im-
postors not currently involved in the experiments.

The approach of a generalised impostor has been used
with success in [28] for touch-gestures. The generalised im-
postor data can be scored on the trained scheme to generate
generalised impostor scores. Therefore our scheme does not
require data of real-world impostors but may use an initial
set of impostors to calibrate the scheme. This approach is
predicated on the assumption and likelihood that real-world
impostors will share more in common with the generalised
impostor than the genuine user.

4.4. Application of Dempster-Shafer Score Fusion

For a sensor Sn sample with a score of s and a current
uncertainty U , the masses attributed to the hypotheses to
satisfy the D-S formulation are given as:

m(∅) = 0 (7)

m(G) = (1− U)× s (8)

m(I) = (1− U)× (1− s) (9)

m(E) = U (10)

As defined for D-S in Section 3,m(∅)+m(G)+m(I)+
m(E) = 1. The uncertainty U is computed as defined
in Section 4.5. When multiple sensors provide mass for
a hypothesis, the combined belief can be computed using
Dempster’s rule of combination, discussed in Section 3.

4.5. Uncertainty Computation

In this section we describe the novel mechanisms we
have devised for deriving the mass attributed to the uncer-
tainty of each sensor score.

Accuracy: In this approach the uncertainty of a sensor
score is based on the accuracy (in terms of EER) of the clas-
sifier, similar to [16]. Thus, uncertainty is proportional to
the ability of a classifier to distinguish between genuine and
impostor sensor data. The motivation for using accuracy-
based uncertainty is that scores which are highly distinct
will reduce uncertainty and increase trust. The uncertainty
USn

for a score from a sensor Sn is given in Equation 11.

USn
= max(0, 1− (2 ∗ EERSn

)) (11)

Quality: Here the uncertainty of a score is based on its
statistical quality and stability. The aim is to increase uncer-
tainty for scores that are sporadic and unstable. Therefore,
uncertainty USn

is computed on prior scores from a sen-
sor Sn for a user by a function of the mean µ (establishing
how well the classifier recognises the scores) and the range
r (identifying score consistency). It is given by the below:

USn
= ((1− µsn) + rsn)/2 (12)

Temporally-aware Accuracy This method builds on
our accuracy approach and introduces a temporal awareness
at an anchor at to the uncertainty applied to each sensor
score. The approach is based on the idea that different sen-
sors will have different amounts of uncertainty present in
the scores at different times of day. It is computed by:

USn,at
= max(0, 1− (2 ∗ EERSn,at

)) (13)

Temporally-aware Quality This approach expands on
quality by incorporating temporal awareness for anchor at
to the uncertainty USn,at applied to sensor scores. The ap-
proach is derived from the assumption that different sen-
sors will have different amounts of uncertainty present in
the scores at different times. It is given by:

USn,at
= ((1− µsn,at

) + rsn,at
)/2 (14)

Temporally-aware Quality & Accuracy This approach
combines the above temporal quality and accuracy uncer-
tainty USn,at

mechanisms by computing their product. This
mechanism is based on the assumption that the two separate
mechanisms may compliment each other for improved ac-
curacy. The equation is given as:

USn,at = (((1− µsn,at) + rsn,at)/2)∗
max(0, 1− (2 ∗ EERSn,at))

(15)

5. Experimental Results and Discussion
In this section, we evaluate our framework. We first dis-

cuss the datasets and evaluation metrics. We then perform
and discuss the experiments we perform with on our system
to assess the accuracy and robustness.



Table 1. This table shows the modalities selected from each dataset
to be used in our experimentation. For tri-axis motion sensor data
the magnitude of the axes is used to represent a reading.

Modality Sherlock [14] MSC [25] GCU [10]
Wi-fi X X X

Accelerometer X X X
Bluetooth X X ×
Location X X ×

Cell Towers X X X
Device Volume X × ×

Gravity × X ×
Gyroscope X X X

Ambient Light X X X
Call Info X × ×

SMS Messages X × ×
Magnetometer X X X

Activity × X ×
Ambient Noise X X X

5.1. Datasets

In order to robustly validate our approach we use three
state-of-the-art datasets. A summary of the modalities in
these datasets is given in Table 1.

SHR (Sherlock) Dataset This is a long-term data collec-
tion project [14] employing 50 users on Samsung Galaxy S5
devices. Data collected is extensive with approximately 670
million records per month from sensors detailing hardware,
software, telephony, network, motion, application and en-
vironment. Data is separated into quarterly partitions. We
use the first quarter of 2016 and include 39 users that have
consistent and daily samples from all sensors.

MSC (Mobile Sensor Collection) Dataset This dataset
[25] was collected in 2017 and contains data from six vol-
unteers using Nexus 4 mobile devices for a minimum of
two-weeks each. Data is sampled continuously from mo-
tion, network, location and environmental sensors. We use
all six participants in our study.

GCU (Glasgow Caledonian University) Dataset The
GCU dataset [10] contains sensor data collected from the
university staff and students in 2013. The dataset comprises
of sensor readings from networks, applications, motion and
environment. The data is collected from each user for a
minimum of 14 days. The publicly available dataset that is
used in this study contains data from four users.

5.2. Evaluation Metrics

We test the accuracy of our system using the following
evaluation metrics that are common to biometric systems:

False Acceptance Rate (FAR): This is the rate that an
impostor is wrongly classified as the genuine user.

False Rejection Rate (FRR): This is the rate that the
genuine user is wrongly classified as an impostor.

Equal Error Rate (EER): When FAR is equal to FRR.

Table 2. This table shows EERs for the different uncertainty mech-
anisms for all datasets. Note that A, Q, TA, TQ and TQA are Ac-
curacy, Quality, Temporally-aware Accuracy, Temporally-aware
Quality and Temporally-aware Quality & Accuracy, respectively.

A Q TA TQ TQA
SHR 15.60% 22.48% 15.12% 22.05% 16.91%
MSC 10.52% 39.68% 9.94% 36.42% 19.48%
GCU 14.10% 17.65% 13.83% 18.71% 15.77%

FAR and FRR sets are obtained as an acceptance threshold
is adjusted and are correlated such that if one increases the
other decreases. In our experiments, EER=(FAR+FRR)/2
for the FAR and FRR with the smallest difference.

Receiver Operating Characteristic (ROC): This plots
a curve that is used to assess the performance of a binary
classifier system. ROC uses the axis of true positive rate
and false positive rate for acceptance thresholds.

5.3. Uncertainty Experimentation

In this experiment we evaluate the uncertainty computa-
tion techniques (described in Section 4.5) that produce the
lowest EER during D-S score fusion. We further demon-
strate the uncertainty allocation to some sensors in the
scheme. This experiment is performed on all datasets.

This experiment uses a training duration of 10 days be-
cause similar behavioural studies indicate this provides time
for the profile to stabilise [10, 25]. We use the subsequent
7 days of data for testing (if available for the user). A data
collection period of 1 minute is used such that authentica-
tion occurs every 1 minute on the data collected during that
period. This ensures fast and responsive authentication. A
period of 1 hour for the temporal anchors windows is used.

Characterisation in some uncertainty computation strate-
gies requires positive and negative scores. We use 5-fold
cross validation on the 10 days of the genuine user’s training
data to produce positive scores. To produce negative scores
a generalised impostor is created by generating scores for
the training data of all users not involved in the current test
during the 5-fold cross validation. The scores are randomly
selected such that the total for the positive and negative
scores are equal (such that the system is kept lightweight).

Results for this experiment are shown in Table 2. We see
the uncertainty that yields the lowest EER for all datasets
is the temporal accuracy uncertainty, which is modelled on
the ability of the sensor classifier to correctly distinguish a
genuine user from an impostor during a time period. In Fig-
ure 1 we show uncertainties for sensors at different times
of day to illustrate temporal differences in uncertainty. We
find some sensors have consistently low uncertainty (such
as wi-fi and Bluetooth) and others have frequently high un-
certainty (such as light and noise sensors).



Figure 1. This figure shows the average uncertainties in the differ-
ent sensor scores for users in all datasets at two different hours of
day (00:00-01:00 and 12:00-13:00).

5.4. Comparison with other Fusion Techniques

In this experiment we compare our Dempster-Shafer
based scheme with other commonly used biometric fusion
techniques identified in the literature in Section 2. We
find the most common approaches to score fusion in multi-
modal continuous authentication schemes are average and
weighted average so these are used for comparison.

We adopt the approach used in the previous experiment
with the uncertainty mechanism that provided the lowest
EER. This time scores are also fused using average and
weighted average fusion techniques. The weighting applied
to scores in the weighted average technique is computed as
1− U . This experiment is performed on all datasets.

The results for this experiment are shown as ROC curves
in Figure 2. We see that for all datasets the D-S fusion ap-
proach yields lower EERs than average and weighted av-
erage approaches. The EERs for each individual user in
each dataset are shown in Figure 3. The D-S fusion ap-
proach shows lowered EER score groups when compared
to the other techniques. These results indicate that D-S can
yield lower EERs and achieve higher levels of accuracy.

5.5. Generalised Impostor Size

The experiments so far have used all users not involved
in the test to model the generalised impostor. This exper-
iment evaluates EERs whilst varying the number of im-
postors forming the generalised impostor. This experiment
follows the previous approaches and uses the uncertainty
mechanism that yielded the lowest EER (in Section 5.3).
The experiment randomly selects an increasing number of
users not involved in the each test to form the generalised

impostor until EERs stabilise. This experiment uses only
the Sherlock dataset because it provides the greatest num-
ber of users to vary the generalised impostor size.

The experiment is run and each time the impostors in the
generalised impostor is increased. The results are shown in
Figure 4. The figure shows a single impostor as the gen-
eralised impostor yields an EER of 18.85% but the EER
stabilises at approximately 9 users and provides an EER of
15.13% (comparable to when the generalised user is made
up of all 37 impostors in Table 2). We therefore posit that 9
users are sufficient for a generalised impostor.

5.6. Multiple Scores Window

Some continuous authentication systems use multiple
authentication scores to form a final decision because it can
be less volatile than a single result. This experiment there-
fore evaluates the EERs using a window of multiple D-S
fused scores to form a decision. To do this we adopt the ex-
perimental approach used in the previous experiments that
have yielded the lowest EERs so far.

Here, multiple scores are collected during a time window
providing nD-S fused scores. We firstly use majority voting
whereby the user is deemed genuine if a majority of scores
are greater than the threshold. The second technique used is
applying an average over the score window and comparing
the average to the threshold.

The experiments show results for a window of 5 to 30
scores in Figure 5. We see the EER decreases as the window
size increases. The change in EER appears small because
score changes seem to occur for significant durations and
therefore cannot be contained in the window sizes tested.
The lowest EER is 8.05% for the MSC dataset with majority
voting but requires a 30 minute window size. We note that
larger window sizes improve EER but increases the window
for attacks (due to larger time before re-authentication).

6. Conclusion
In this paper a novel continuous authentication scheme

is produced for mobile devices using Dempster-Shafer the-
ory for incorporating uncertainty in score fusion. The paper
has evaluated multiple methods of computing uncertainty
and compared the fusion approach to other commonly used
used approaches. The scheme shows a generalised impostor
provides characterisation without requiring data from the
impostor being tested. Finally, it is shown that windows of
scores are used to form a more accurate decision.

Future work will explore how the behavioural models
can be adapted over time to include new behaviours such
that concept drift is minimised. This will allow the scheme
to mitigate the act of re-training the entire system every time
behaviour changes. Furthermore, the future work will ex-
plore novel ways to decide when to collect data and authen-
ticate. This is so the scheme can preserve battery life.



Figure 2. This figure shows the ROC curves for all three datasets when scores of the readings of different sensors are fused using average,
weighted-average and Dempster-Shafer theory.

Figure 3. This figure shows the EERs obtained for each user (rep-
resented by red dots) in each dataset for the average, weighted
average and Dempster-Shafer fusion techniques.

Figure 4. This figure shows the EERs obtained when the number
of impostors forming the generalised impostor is varied.
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