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Register complexity and determinisation of

max-plus automata

Laure Daviaud

Abstract

We survey some results about the sequentiality problem for max-plus
automata and its generalisation, the register complexity problem for cost
register automata. We compare classes of functions computed by max-
plus automata and by cost register automata with respect to the notion
of ambiguity. The two models are introduced gently, so the novice reader
is welcome!

1 Introduction

Weighted automata (introduced in [Sch61]) are a well-studied quantitative gen-
eralisation of finite non deterministic automata, computing functions which map
words to values. This allows to model the computations of probabilities, costs,
running time... Each transition carries a weight and, on reading a word, these
weights are combined using two operations: one to aggregate the weights along
a given run; one to put together computations of the runs labelled by a given
word. Max-plus automata are a special case of weighted automata where these
two operations are addition and maximum.

They have been applied in natural language processing [Moh97, MPR02],
automatic analysis of complexity of programs [CDZ14], study of discrete event
systems [GM99], termination of rewriting systems [Wal07] and to prove results
in tropical algebra [DGM17] and automata theory [Has88, Sim78, Sim88].

Unlike for non determinisitc finite automata, given a max-plus automaton,
there does not necessarily exist an equivalent deterministic one, i.e. one com-
puting the same function. The sequentiality problem asks whether, given a
max-plus automaton, there exist an equivalent deterministic one. Whether the
sequentiality problem is decidable or not is a prominent long-standing open
problem, solved only in particular cases (see Section 2.3).

While this paper focuses on max-plus automata on words, they have also
been studied on trees [BR82, Sei94, Kui97] and in particular, generalisations of
some of the results given in this paper can be found in [Pau17, Pau19].

More recently, Alur et al. introduced an equivalent model: the cost regis-
ter automata [ADD+13, AR13]. A cost register automaton is a deterministic
machine which computes a function mapping words to values. A finite set of
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so-called registers are used to store values and operations can be performed on
these values (in our case, maxima and sums). The register complexity of a cost
register automaton computing a function f is the minimum number of registers
that are necessary to compute f . Computing the register complexity of any cost
register automaton is a highly challenging open problem.

2 Max-plus automata and ambiguity

In this section, we present the model of max-plus automata and the notions of
ambiguity and sequentiality.

Notation An alphabet Σ is a finite set of symbols, called letters and Σ∗

denotes the set of (possibly empty) finite words over Σ. The length of a word
w is denoted by |w|. The set N ∪ {−∞} is denoted by Nmax. The operations
maximum and addition are extended to Nmax as usual.

We chose to use the set of natural numbers N as a base set in this paper and
to present max-plus automata. However, we could have considered Z or Q and
min-plus automata and presented exactly the same results. See Remark 1 for
more details.

2.1 Max-plus automata

Before giving the formal definition of a max-plus automaton, we present a simple
example in Figure 1. A max-plus automaton is an automaton whose transitions
carry weights. In Figure 1, the automaton has two states p and q. Initial states
are denoted by ingoing arrows and final states by outgoing arrows. Both p and
q are initial and final. Transitions between states are labelled by a letter (in this
example, from the alphabet {a, b}) and a non negative integer, called the weight
of the transition. Along a fixed path (or run), the weights on the transitions
are added. The weight of a path is then defined as the sum of the weights of
its transitions. The automaton is said to compute a value on every word: for
a given word w, this is the maximum of the weights of all paths labelled by
w going from an initial state to a final state. For example, in Figure 1, the
word aaabbaba labels exactly two runs: one looping around p, which has weight
1 + 1 + 1 + 0 + 0 + 1 + 0 + 1 = 5 and one looping around q which has weight
0+0+0+1+1+0+1+0 = 3. The weight computed on w is then the maximum
of 5 and 3, so 5. More generally speaking, the max-plus automaton represented
in Figure 1 computes the maximum of the number of occurrences of the letter a
and the number of occurrences of the letter b in a word. Indeed, every word w
labels exactly two runs going from an initial state to a final state: one looping
around p with weight the number of a’s in w and one looping around q with
weight the number of b’s in w.

We give now the formal definition.

Definition 1 (Max-plus automata) A max-plus automaton over an alphabet
Σ is a tuple (Q,QI , QF , T ) where:
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p

q

maximum

a : 1

b : 0

a : 0

b : 1

Figure 1: Max-plus automaton computing the maximum of the numbers of
occurrences of the letters a and b

• Q is a finite set of states,

• QI ⊆ Q is a set of initial states,

• QF ⊆ Q is a set of final states,

• T is a transition function Q× Σ×Q→ Nmax.

Given two states p and q and a letter a, whenever T (p, a, q) 6= −∞, we say
that (p, a, q) is a transition, T (p, a, q) is its weight and we write:

p
a:T (p,a,q)−−−−−−→ q

A run on a word w = w1w2 . . . wn where wi ∈ Σ for all i = 1, . . . , n, is a
sequence of compatible transitions:

q0
w1:m1−−−−→ q1

w2:m2−−−−→ q2
w3:m3−−−−→ · · · wn:mn−−−−→ qn

In this case, we can say that w labels the run. The weight of a run is the sum
of the weights of the transitions in the run i.e.

∑n
i=1mi. The run is said to be

accepting if q0 ∈ QI and qn ∈ QF . The weight of a word w in the automaton
is the maximum of the weights of the accepting runs labelled by w (with the
usual convention that the maximum of the empty set is −∞).

The semantics or function computed by a max-plus automaton A over al-
phabet Σ is the function which maps every word of Σ∗ to its weight in Nmax. It
is denoted by [[A]].

2.2 Sequentiality and Ambiguity

A max-plus automaton is said to be deterministic or sequential if for all states
p and letters a, there is at most one state q such that T (p, a, q) 6= −∞. It is said
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to be finitely sequential if it is the union (maximum) of finitely many sequential
max-plus automata.

It is said to be k-ambiguous for some positive integer k, if every word labels
at most k accepting runs. It is said to be unambiguous if it is 1-ambiguous
and finitely ambiguous if it is k-ambiguous for some k. Finally, it is said to
be polynomially ambiguous if there is a polynomial P such that the number
of accepting runs labelled by any word w is bounded by P (|w|). Note that
these notions do not depend on the weights on each transition, but only on the
underlying automaton. They can be checked in polynomial time [BH77, WS91,
AMR08].

The class of functions computed by a deterministic (resp. finitely sequen-
tial, unambiguous, finitely ambiguous, polynomially ambiguous, any) max-plus
automaton is denoted by DET (resp. FSEQ, UNAMB, FAMB, PAMB, MAX-
PLUS).

Proposition 1 We have the following inclusions:

DET

 
FSEQ  

 
UNAMB

 

FAMB  PAMB  MAX-PLUS

Moreover, all the inclusions are strict and FSEQ and UNAMB are uncompara-
ble.

Examples of max-plus automata in each class, proving the strict inclusions,
can be found (or derived from examples) in [KLMP04, Kir08, MR18, CMMR20].

2.3 The sequentiality problem

Sequentiality problem

Input: A max-plus automaton A over an alphabet Σ.
Output: “Yes” if and only if there exist a max-plus automaton B over Σ
such that:

1. [[A]] = [[B]], and

2. B is deterministic.

In this case, A is said to be determinisable.

Theorem 1 ([KL09]) The sequentiality problem is decidable for the class of
polynomially ambiguous max-plus automata.
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This result emerged after a long history of research. To make the long
story short, it was first proved for the class of unambiguous max-plus au-
tomata [Moh97] and finitely ambiguous max-plus automata [KLMP04]. The
generalisation to the class of polynomially ambiguous automata is very intri-
cate and demonstrated new deep insights in the problem.

The question whether the sequentiality problem is decidable for the whole
class of max-plus automata is wide open.

Another linked problem is the one of finite sequentiality: given a max-plus
automaton A, is [[A]] in FSEQ? This has been proved to be decidable for unam-
biguous [BK13] and finitely ambiguous max-plus automata [Bal13].

Remark 1 As stated earlier, we have similar results when the weights are con-
sidered in Z or Q or when the minimum is used instead of the maximum opera-
tion (and +∞ instead of −∞). The ambiguity and sequentiality notions are not
really affected by these choices (the situation is different when looking at prob-
lems such as equivalence and containment, for which one has to pay attention
to the set in which the weights are considered).

The reason for this is that there are transformations of max-plus automata
which preserve ambiguity without “modifying the semantics too much”.

From N to Z Consider a max-plus automaton A with weights in Z and sup-
pose that −n is the smallest weight on a transition for some positive integer
n. Consider the max-plus automaton A constructed from A by adding n to
all the weights on transitions of A. Then A has weights in N, its ambigu-
ity/sequentiality is the same as A and for all w, [[A]](w) = [[A]](w) + n|w|.

From Z to Q Consider a max-plus automaton A with weights in Q and let
n be a common denominator of all the weights on the transitions, with n in
N. Consider the max-plus automaton A constructed from A by multiplying
all the weights on the transitions of A by n. Then A has weights in Z, its
ambiguity/sequentiality is the same as A and for all w, [[A]](w) = n[[A]](w).

Results. Using these transformations, one can easily prove that all the results
stated in this section are also correct in Z and in Q.

Min and Max Moreover, the sets Z ∪ {−∞} with operations max and +
and the set Z ∪ {+∞} with operations min and + are isomorphic (taking the
opposite). Using this observation and the transformations given above (from
N to Z and conversely), the results in this section can be stated in terms of
min-plus automata, i.e. automata defined with weights in N and substituting
operation max by min and −∞ by +∞ in the definition of max-plus automata.
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3 Register complexity

In this section, we give an equivalent model to max-plus automata: cost register
automata. Introduced in a more general setting by Alur et al. [ADD+13, AR13],
they have been intensively studied and give models equivalent to weighted au-
tomata and transducers. We give here a definition which is not necessarily ex-
actly the standard one (in particular regarding the final function) but is made
to match the model of max-plus automata given above. More details about this
can be found in Remark 2.

Notations For any positive integer `, given two tuples a = (a1, a2, . . . , a`)
and b = (b1, b2, . . . , b`) of elements in Nmax, we denote by (a, b) the element of
Nmax equal to max(a1 + b1, a2 + b2, . . . , a` + b`).

Given a tuple a = (a1, a2, . . . , a`), and a set of indices S ⊆ {1, . . . , `}, we
denote by a|S the set {ai | i ∈ S}.

3.1 Cost register automata

We first introduce an example. Consider the picture in Figure 2. A cost register
automaton is an automaton with a unique initial state (denoted by an ingoing
arrow). The cost register automaton in Figure 2 has only one state which is the
initial one. The automaton has a finite set of registers aimed at storing values
in Nmax (initially 0). In the example, the automaton has two registers Xa and
Xb. Each transition is labelled by a letter (in the example, from the alphabet
{a, b}) and an update of the registers: the value in each register can be updated
using the operation max and the current values in the registers added with some
constants. For example in Figure 2, when reading an a, the value of the register
Xa is updated by adding 1 to it and the value of the register Xb is unchanged.
In this example, any update of the form Xa := max(Xa + c,Xb + d) for any c, d
in Nmax would be a valid update for the register Xa; and similarly for Xb. For
every letter and every state, only one transition labelled by the former can go
out of the latter, making a computation in the automaton deterministic. Given
a word w, the run on w starts from the initial state, and performs the updates
of the registers on each transitions that are taken while reading w. Finally, each
state has an output: a subset of the set of registers. In the example in Figure 2,
the only state has the set of all the registers {Xa, Xb} as output and the value
computed is the maximum of the values contained in these registers. It is easy
to see that in Figure 2, the register Xa stores the number of a’s seen so far,
and the register Xb the number of b’s. As the automaton outputs the maximum
of the values contained in Xa and Xb, this cost register automaton computes
exactly the same function as the one computed by the max-plus automaton in
Figure 1.

Let us now give the formal definition. Given a finite set of registers X , an
update on X is given by a function X → NXmax, i.e. a function mapping every
register to a tuple of elements in Nmax, one per each register. The set of updates
on X are denoted by UP(X ).
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max(Xa, Xb)

a :

{
Xa := Xa + 1

Xb := Xb

b :

{
Xa := Xa

Xb := Xb + 1

Figure 2: Cost register automaton computing the maximum of the numbers of
occurrences of the letters a and b

Definition 2 (Cost register automata) A cost register automaton over an
alphabet Σ is a tuple (Q, q0,X , δ, µ) where:

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• X is a finite set of registers,

• δ is a transition function δ : (Q× Σ)→ (Q× UP(X )),

• µ is the final function which maps every state to a (possibly empty) set of
registers.

The semantics of such an automaton is given by means of valuations of the
registers. From now on, let us write X as the set of ` registers {X1, X2, . . . , X`}
for some positive integer `. A valuation of the registers is a tuple in NXmax.
The initial valuation is (0, 0, . . . , 0). Update functions act on valuations as
follows: given a valuation v = (v1, v2, . . . , v`) and an update function f , we
denote (extending notation) f(v) = ((v, f(v1)), (v, f(v2)), . . . , (v, f(v`))) which
is itself a valuation. A configuration is an element of Q × NXmax. The initial
configuration is the pair formed with the initial state and the initial valuation.
A run on a word w = w1w2 . . . wn where wi ∈ Σ for all i = 1, . . . , n is a sequence
of compatible configurations:

(q0, v
0)

w1−−→ (q1, v
1)

w2−−→ (q2, v
2)

w3−−→ · · · wn−−→ (qn, v
n)

such that (q0, v
0) is the initial configuration, δ(qi−1, wi) = (qi, fi) and vi =

fi(v
i−1) for all i = 1, . . . , n.
Note that by definition of the model, every word labels exactly one run. We

denote by (qw, v
w) the uniquely defined configuration in which the run labelled

by w ends. A cost register automaton A maps each word w to an element of
Nmax defined by:

[[A]](w) = max((vw)|µ(qw))
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It is standard that max-plus automata and cost register automata are equiva-
lent models [ADD+13, Theorem 9]. More precisely, given a max-plus automaton
A with n states, one can construct a cost register automaton B with n regis-
ters such that [[A]] = [[B]]. Conversely, given a cost register automaton B with
n states and ` registers, one can construct a max-plus automaton A with n`
registers such that [[A]] = [[B]].

3.2 Register complexity

Cost register automata are deterministic by definition. The challenge for this
model is to minimise the number of registers that are needed to compute a
function. The register complexity of a cost register automaton A is the least
positive integer k such that there exists a cost register automaton B with k
registers and [[B]] = [[A]].

Register complexity minimisation

Input: A cost register automaton A over an alphabet Σ and an integer k.
Output: “yes” if and only if there exist a cost register automaton B over Σ
such that:

1. [[A]] = [[B]], and

2. B has at most k registers.

It is easy to see, using the constructions from [ADD+13, Theorem 9], that a
max-plus automaton is determinisable if and only if there exist a cost register
automaton of register complexity 1 computing the same function, making the
register complexity minimisation problem for cost register automata at least as
difficult as the sequentiality problem for max-plus automata.

Proposition 2 A max-plus automaton A is determinisable if and only if there
exist a cost register automaton B of register complexity 1 such that [[A]] = [[B]].

Remark 2 Alternative definitions of max-plus automata and cost register au-
tomata involve final weights: states in a max-plus automata are associated with
weights (−∞ if the state is not final) that are added to the weight of any run
ending in the state. The equivalent adaptation for cost register automata is to
modify the final function µ to allow adding non negative integers to the valuation
of the registers in µ(q) for any state q (just before computing their maximum
at the end of a run). Similar results as the ones presented in this paper hold.
These modifications do not increase the expressive power of the models, and the
class of functions computed whether allowing final weights or not is the same.
However, the notion of sequentiality is impacted by these modifications: in order
to transform an max-plus automaton with final weights into a max-plus automa-
ton as in the definition presented in this paper, one has to “guess” the last letter
of the word, thus introducing non determinism.

8



3.3 Characterisation of the register complexity in a spe-
cial case

As seen above, characterising the register complexity is a highly challenging
problem. We can at least state one result that answers this question in a par-
ticular case.

Consider the class of cost register automata for which the only updates that
are allowed are of the form X := Y + c where X and Y are registers and c an
element of Nmax; and the final function µ maps every state to a single register.
Essentially, we disallow the use of the operation max.

It can be proved that this class of cost register automata computes exactly
the same functions as the class of unambiguous max-plus automata. The register
complexity can be computed in this particular case [AR13], and is characterised
by means of a twinning property [DRT16].

Theorem 2 ([AR13, DRT16]) There is an algorithm which outputs the reg-
ister complexity of any unambiguous max-plus automaton taken as input.

4 Classes of max-plus automata and cost regis-
ter automata

As already mentioned the class of deterministic max-plus automata and the class
of cost register automata with 1 register compute exactly the same functions.

Similarly, other restrictions on cost register automata coincide with classes
of max-plus automata.

An important notion, introduced in the study of cost register automata is
the notion of copyless. Essentially, a cost register automaton is copyless if a
register cannot be used twice in an update on a transition. We present here
a particular case of copyless, that suits our framework, though this notion is
usually more general.

A cost register automaton is said to be copyless if for all states p, q, letter
a and update function f such that δ(p, a) = (q, f), for all registers X, Y and Z
such that X is distinct from Y , if the Z-component of f(X) is finite then the
Z-component of f(Y ) is not.

Let CRAc(max,+) be the class of functions computed by copyless cost reg-
ister automata. Let CRAc(max,+, := c) be the class of functions computed by
copyless cost register automata with an additional update rule that is of the
form X := c for any non negative integer c. Let CRA(+)max be the class of
functions computed by cost register automata where the only update rules are
of the form X := Y + c and CRA(+) the subclass of CRA(+)max with the
further restriction that µ(q) is a singleton for all states q.

Proposition 3 We have the following equalities of classes:

• UNAMB = CRA(+)

9



• FSEQ = CRAc(max,+)

• FAMB = CRA(+)max

We obtain the following (strict) hierarchy. The proofs of inclusions and
equalities of classes are routine by adapting the constructions given in [ADD+13,
Theorem 9] to go from max-plus automata to cost register automata and con-
versely; and using the fact that any function computed by a finitely ambiguous
automaton is computed by the union (maximum) of unambiguous ones. Some
examples justifying strictness are given below.

Max-plus automata
Cost register automata

PAMB

FAMB
CRA(+)max

CRAc(max,+, := c)

FSEQ

CRAc(max,+)
UNAMB
CRA(+)DET

1 REG

Figure 3: Classes of max-plus automata and cost register automata

Function in UNAMB, not in CRAc(max,+, := c) Consider the alphabet
{a, b, c}. Every word w can be written as w1cw2c · · · cwn with wi ∈ {a, b}∗. Let
`i be the number of a’s in wi if the last letter of wi is an a and the number of
b’s in wi otherwise (if wi’s last letter is a b or wi is empty). The function which
maps w to the sum `1 + `2 + · · ·+ `n is computed by an unambiguous max-plus
automaton but is not in CRAc(max,+, := c).

Function in CRAc(max,+, := c), not in FAMB Consider the alphabet
{a, b}. Every word w can be written as a`0ba`1b · · · ba`n for non negative integers
`0, . . . , `n. The function which maps w to max(`0, . . . , `n) is in CRAc(max,+, :=
c) but not computed by a finitely ambiguous max-plus automaton.
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Other classes Other classes of cost register automata can be defined when
relaxing/modifying the update rules and the notion of copyless. However, for
now, there exist no characterisation of the polynomially ambiguous max-plus
automata in terms of cost register automata.
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