
              

City, University of London Institutional Repository

Citation: Ter-Sarkisov, A., Ross, R. J. and Kelleher, J. D. (2017). Bootstrapping Labelled 
Dataset Construction for Cow Tracking and Behavior Analysis. In: 2017 14th Conference on 
Computer and Robot Vision (CRV). (pp. 277-284). IEEE. ISBN 9781538628188 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/24660/

Link to published version: http://dx.doi.org/10.1109/CRV.2017.25

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Bootstrapping Labelled Dataset Construction for
Cow Tracking and Behavior Analysis

Aram Ter-Sarkisov, Robert Ross, John Kelleher
School of Computing,

Dublin Institute of Technology
Dublin, Republic of Ireland

453615@dit.ie

Abstract—This paper introduces a new approach to the long-
term tracking of an object in a challenging environment. The
object is a cow and the environment is an enclosure in a cowshed.
Some of the key challenges in this domain are a cluttered back-
ground, low contrast and high similarity between moving objects
– which greatly reduces the efficiency of most existing approaches,
including those based on background subtraction. Our approach
is split into object localization, instance segmentation, learning
and tracking stages. Our solution is benchmarked against a range
of semi-supervised object tracking algorithms and we show that
the performance is strong and well suited to subsequent analysis.
We present our solution as a first step towards broader tracking
and behavior monitoring for cows in precision agriculture with
the ultimate objective of early detection of lameness.

Index Terms—machine learning; animal behavior; machine
vision

I. INTRODUCTION

In the domain of modern animal husbandry the early
detection and treatment of lameness is a serious and
challenging problem. Lack of adequate treatment can lead
to substantial losses for farms and reduced well-being for
animals [1], [2]. Detection and treatment of animal lameness
has traditionally involved the hiring of expensive specialists
after the disease has already become highly pronounced.
Due to the negative consequences of late detection, there
has recently been an increased interest in applying statistical
and machine learning methods to lameness detection. These
methods range from regressions and longitudinal studies
([3], [4]) through to neural networks and support vector
machines [5], [6], [7]. Analysis such as these mainly rely on
4 main sensor types: accelerometers, weight platforms, remote
sensors and video cameras. In our work we are particularly
focused on video data since it is convenient for both humans
and cows; there is no need for a lengthy installation of
equipment, the equipment is cheap when viewed over the
long term, and importantly for the animal the method is
non-invasive.

The main drawback of video based analysis in this domain is
the complexity in information retrieval: one needs to extract
the animal’s shape and behavior over a period of time and in
relatively complex environments. As such, to the best of our
knowledge, previous video recordings for lameness detection
were performed in open space with good contrast between the

background and the object, as in [7], [8] over a short period
of time. In Section II we discuss these and other results in
greater detail.

It has been shown elsewhere that there are multiple
features that correlate with lameness, i.e., gait, head tilt,
weight distribution, and behavior. While each of these can in
principle be analyzed through video, we suggest that analysis
of behavior is particularly interesting, because difference in
behavior between lame and so-called sound cows has been
observed extensively ([9], [10], [3], [11]). For example it has
been shown that the frequency and duration of actions like
lying and walking correlates with lameness onset.

Our long term research goal is to monitor animal behavior
directly from video to predict the early onset of lameness,
which, given the above, is harder than with the use of
accelerators or weight platforms from both scientific and
technical points of view. Among other things, it cannot
be approached in a straightforward manner (raw data →
features → classification), because extraction of raw features
and generation of a labelled corpus from video data full of
challenges (poor lighting conditions, frequent occlusion, bad
contrast) are problems that do not have a straightforward
solution. In the current article we set out a method that
combines deep learning algorithms, heuristic methods and an
ensemble learning algorithm to track the movement of a cow
and construct a labelled dataset.

Our method is constructed and benchmarked against a
new video corpus of animal behavior. We detail the content
and construction of this video corpus in Section IV. We then
present the details of our novel approach to object tracking in
Section V. In Section VI experimental results are presented
together with a comparison to other relevant algorithms.
Finally in Section VII we outline our conclusions and plans
for future work.

II. PREVIOUS WORK

The use of Computer Vision in monitoring animal behavior
has a varied history. Rather than providing a comprehensive
review of all such work here, we instead focus on the
challenge at hand, i.e., the specific case of behavior tracking
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for bovines. To the best of our knowledge, there has
to date been no direct overlap in the literature between
object tracking and behavior-based cow lameness detection
from video. However, there have been attempts to use
machine learning algorithms like support vector machines
(SVM) to directly predict cow lameness stage and lameness
identification from video. In [7] cow’s backposture was
extracted from two sets (n1 = 28, n2 = 66) of cows shot
on video while walking and scored by observers based on
the presence of lameness features between 1 (no lameness)
and 3 (severe lameness). The authors report a 96% accuracy
(percentage of correctly classified observations) of estimation
using this method. Background subtraction in the publication
was done in a relatively straightforward manner, because
the video was shot outside at a convenient angle with
little to no clutter in the background and very mild partial
occlusion. Most importantly, contrast between the cow and
the background is quite sharp, and there were no other cows
in the video.

Earlier work [8] showed that cow’s movement (locomotion)
was examined in a manner similar to [7]. That work
established high correlation (94.2%) between hoof positions
estimated by the camera and humans, and the difference in
the position of the hooves between sound and lame cows.
In addition to these two studies, there have been other
publications on lameness detection based on video, but all
of them were shot outside, with good contrast between
background and object, making the task much easier then the
problem we address in this paper.

Beyond the specific application to cow tracking, there
has of course been significant research into object tracking.
Of this work the kernel-based, semi-supervised and ensemble
tracking algorithms have shown much promise. Tracking
algorithms in these categories are some of the most popular,
because they fulfil two important requirements: they do not
require fully-labelled datasets for supervised learning and
they generalize well to different problems. Semi-supervised
algorithms include Tracking-Learning-Detection (TLD),
developed by Kalal et al, [12], a related Median Flow
algorithm, also by Kalal et al, [13], Multiple Instance
Learning (MIL) ([14], [15]) with an extension built upon
random forests, [16]. Kernel-based algorithms use a Kernel
filter for similarity measure: [17]. One of the most recent
approaches is Kernelized Correlation filter (KCF) by
Henriques et al, [18], [19], that employs circulant matrices,
several types of kernels (Gaussian, Linear, Ridge) and Fast
Fourier Transform to learn a set of dense samples (all
subwindows) from the tracked object. A big advantage of
all these algorithms is that the user only needs to define the
starting coordinates and the size of the bounding box(hence
semi-supervised), therefore they are easy to test. Also recently,
deep learning algorithms, such as Convolutional Neural Nets
(ConvNN) were adapted for tracking tasks by Ma et al in
[20]. These ConvNNs use a popular VGG-Net-19 architecture

([21]). A major disadvantage to these algorithms and the
reason that we cannot apply them directly at this point is that
they require a significant amount of labelled data.

III. APPROACH OVERVIEW

In our work we have been interested in the automated
bootstrapping of labelled dataset construction to cut down on
the cost and technical challenges associated with building a
large labelled dataset suitable to use with for example Deep
Learning methods. Our approach to building this dataset is
to build a predictive model that can track a particular cow
through the video. We use a Random Forest classifier to do
this tracking. Here we will give a high-level overview of the
stages in the approach so as to help reader understand how
the different components in our approach interact.

Our approach to building a tracking model for a given
cow involves a number of steps. The first step is that we
choose the cow in the video that is to be tracked. We do
this by drawing a bounding box around that cow in the first
frame of the video and label this bounding box as containing
the target cow. We then also draw bounding boxes around all
the other cows in the video and label these bounding boxes
as distractor cows. We then sequentially process each frame
in the video.

When processing each frame we first apply a model
called CRFasRNN [22] to localize blobs of pixels that
the model predicts as belonging to a cow or multiple
cows. Because of this ambiguity, we then apply an edge
detector called HED [23] followed by a thresholding method
(ISODATA [24]) and this process isolates instances of cows
within each blob. In other words, this process may segment a
blob further into multiple cow instances. Note, that for now
we do not address the problem of merging blobs but we will
discuss this in future work.

Once we have extracted a set of cow instances from
the frame, we then label each of these cow instances in the
frame as belonging to either the target cow or one of the
distractor cows. We do this by labelling each instance in the
current frame with the label of the nearest instance in the
previous frame. Using this process of frame analysis followed
by the nearest neighbor instance labelling, we can track
the target cow successfully through a short well-behaved
video sequence. However, this approach doesn’t scale to
longer noisier videos. To do this we use the labelled short
video to construct a training set for a random forest model
that can track the cow through the longer more difficult
video sequences. We build this training set for the random
forest model by extracting 9 features from each instance in
each frame. We then construct the training set by having
one-row-per-instance-per-frame with each row labelled as
being either the target instance or distractor instance. We then
train and validate the random forest model on this constructed
dataset and then test this model on the portions of the video



not used to construct the dataset. Having obtained the results,
we manually identify true and false positives on a frame by
frame basis.

IV. DATASETS

Our raw datasets consist of video data collected over
a period of 14 days in a cowshed environment. Cameras
observed enclosures which contained 10 individual animals.
Cameras were mounted at a fixed angle to the animals, and in
total 3TB of video data was collected. The data was collected
and provided by the Irish National Agriculture and Food
Development Authority (Teagasc), No labelling of the raw
data was provided.

From this wealth of data we extracted a number of snippets,
listed in Table I. As a video sequence is a time series,
i.e. ordered data, each snippet is split into two consecutive
subsets: training/validation and testing. Test datasets are
usually a few times longer than training and validation
datasets. Since cows move slowly, we only took every 10th
frame from the video sequence. Therefore, in Table I we
report both the number of frames and the length of the video.
Names of datasets consist of the channel/camera id, date
(day, month, year format) and the time in hour:minute:second
format, with the actual time corresponding to the first second
of the snippet. For example, ch0106092015115543 means
camera number 1 shooting on June, 9, 2015 starting at
11:55:43.

Training and testing datasets were selected with the
following objectives in mind: in the training set the cow
that we want to track has to be fairly well visible for the
whole duration (therefore they are quite short), so that the
learning algorithm has enough correctly labelled features to
train with. In the test set, on the other hand, most or at least
some challenges should be present. While we recognize that
these are simplifying assumptions in comparison to making
a purely random selection of sequences from the data, we
believe that this method is useful at this stage.

Given the nature of the problem and the recording
environment, the dataset includes a number of challenges:

1) Background: background in the video is generally dark
and suffers from the low contrast, it is easy to confuse
the background with animals, especially dark-skinned
(black and brown), certain cows (especially black ones)
are often not discernible even by a human eye,

2) Lighting: the lighting is generally low and uneven due
to the presence of narrow and long gaps in the walls and
ceilings. As a result, many cows have bright rectangular
patches on their skin, often splitting the object in two
or more parts.

3) Objects: In every enclosure there are 10 cows of approx-
imately the same size and different skin color, usually
black, brown, white and striped (white and black), hence

they are easy to confuse with each other. As cows are
malleable objects, throughout the video their appearance
changes substantially, from small while facing away
from the camera and blending with the background to
large and contrasting when standing perpendicular to the
camera’s direction.

4) Occlusion: there are two types of occlusion in the
dataset. First, the components of the cowshed and
enclosure, like metal bars and concrete troughs that
serve as boundaries of the enclosure. Secondly, due
to the size of the enclosure, cows block each other
from view much of the time, thus if a cow changes
its action (walking→standing, standing→lying) while
blocked away from the view, it is very challenging to
identify this change automatically.

These features cause considerable trouble for existing tracking
algorithms. This is exhibited in Fig. 1, where we used five
tracking algorithms implemented in OpenCV 3.1.0 library for
Python 2 and mentioned in Section II: MIL, TLD, KCF,
Boosting and MeanFlow. Their drawbacks become evident
after about first 70-100 frames (35-50 s) as the cow starts
to move from its starting position. Trackers fail to account for
the changing shape of the cow as it turns around and instead
learn from other objects in the bounding box: a similar cow
and the background. The second challenge are the metal bars
(enclosure boundary) serving as a partial occlusion as the cow
moves behind it.

V. METHOD

An essential feature of many tracking algorithms is the
dependence on the contrast between the tracked object and
background, however cluttered it is. This poses a particular
challenge for our project, because pixel intensity (hence the
color) of large areas of the background, such as the floor,
drinking troughs, metal bars and pathways between enclosures
are very similar to that of many dark-skinned cows. Similarly,
light-skinned cows are easily confused with patches of light
passing through gaps in the wall and ceiling. Another problem
is that cows of the same color are essentially similar, hence
it is enormously challenging for a tracking algorithm to tell
between two brown cows, especially if one of them blocks the
other from camera view. The main idea of our approach for
this reason is to extract contours of the tracked object instead
of the background. As explained in Section III, the algorithm
consists of two steps: the first one does instance segmentation,
feature extraction and training and validation, it is presented
in Fig. 2 and the second does feature extraction and testing of
a learning algorithm, and is presented in Fig. 3. The instance
segmentation phase is presented in Fig. 4.

A. Framewise cow instance segmentation

This is the first important phase in both steps of our
approach. We start by localizing potentially interesting areas
in the frame, and for this purpose we use a pre-trained deep
learning algorithm: Conditional Random Fields as Recurrent
Neural Network (CRFasRNN), recently introduced in a paper



Fig. 1: Performance of KCF (purple box), MIL (light blue box), TLD (white box), MedianFlow (green box) and Boosting
(orange box) tracking algorithms on the test dataset ch0106092015115543. The red arrow points to the cow that these algorithms
must track for the whole duration of the snippet. Each algorithm is initialized in the frame (a) with the features sampled from
the user-defined bounding box that includes the greater part of the tracked cow. All six of them break down as the cow starts
moving away from the starting position. The cow first ruminates close to the starting position in (b), then moves to the right
of the vertical bar and stops to drink in (c), then continues its movement to the right in (d) in order to finally stop and start
eating/drinking from the trough, in (e) and (f). As detailed in Table I, the total length of this snippet is 300 seconds. Best
viewed in color.

TABLE I: Size (in frames) and length (in seconds) of training/holdout and test sets.
Title Size of training and Size of test set Length of training and Length of

holdout sets and holdout sets holdout sets test set
ch0106092015115543 107 600 43 300
ch0406272015143027 150 360 150 360
ch0106292015090316 92 750 91 765
ch0710062015201033 89 362 89 364
ch0915062015120155 47 600 25 605

by Zheng et al in [22]. This is a combination of a fully
convolutional network (FCN, see [25]) and a conditional
random field (CRF) with a layout of a recurrent neural
network, RNN. This novel object segmentation algorithm
returns a mask with the color of the pixels corresponding
to the identified class, see Fig. 4. Yellow blobs in the mask
correspond to the identified cow pixels (some cows in this
video were misclassified as sheep and horses; to avoid
further complications, we relabelled these pixels as cows
and note that further training of the CRFasRNN is likely
to increase accuracy). So far CRFasRNN has shown very
high performance on our video data, compared to other
algorithms, including FCN. ConvNN’s architecture used for
our approach is FCN-8, which is based on VGG-16 ([21]).
This identification of elements in the raw image is by far
the most computationally intensive part of our model, taking
∼50s/frame on the CPU and ∼7s/frame on GPU (Tesla K40).

Once we have localized the blobs with potentially interesting
objects, we get a bounding box around those larger than
an optimal threshold empirically found to be 800 pixels
and extract this patch from the original image. What we
want now is to identify instances of cows, since CRFasRNN
does not report the number of instances, but only that
the observations in these blobs are consistent with the

class ‘cow’. As explained above, background subtraction is
intractable in cowsheds due to very noisy and low-contrast
background. Instead, we attempt to extract contours of objects.
This comes from the observation that, even if the objects
have a similar pixel intensity, the value of the derivative
at the boundary has the potential for delineating between them.

For contour detection we found that the Holistically-
Nested Edge Detector (HED), recently introduced by Xie
and Tu in [23] performs strongly by filtering out most of
the noise in the image. Therefore in the next stage we run
each localized area in the image through HED to obtain
edges. The output of HED is an image with the darker pixels
corresponding to more important edges. Since we only need
the most important of them, we want to split each contour
image into two disjoint subsets: objects and background. We
do this by using the threshold detection algorithm ISODATA,
introduced by Ridler and Calvard in [24]. A combination of
these two methods produces a set of isolated objects that we
label as such and add to the training set should their area
exceed 800 pixels (also found empirically). We also get the
objects’ convex hulls (to track the change in the cows’ shape)
and bounding boxes.This step is much less computationally
expensive, taking 5-7s on a CPU or < 1s on a GPU (Tesla
K40).



Our approach takes CRFasRNN’s output a step further
by offering a solution for instance segmentation: blobs from
CRFasRNN’s output merely tell us that there are cows in this
locality. We extract the hypothesis for the number of cows
and the approximation for their shapes and locations. In Fig.
4 we present the flowchart of the instance segmentation step.

B. Feature Extraction

The process detailed in the previous subsection is applied to
every frame in the video sequence. We combine that process
with a simple 1-Nearest Neighbor (1NN) tracking method
to automate feature extraction from instances identified in
the first phase of processing. In the very first frame of the
sequence, we select the cow we want to track and assign it
label 1; all other objects are labelled with 0. For all other
frames, once we have all the instances, we get a simple
distance matrix, where the number of rows is equal to the
number of instances in the current frame, and the number of
columns to the number of labelled instances in the previous
frame, hence each entry in the matrix is a distance from every
instance in this frame to every labelled instance in the previous
frame. Once we have this matrix, we assign every instance in
this frame the label of the nearest instance from the previous
frame. This heuristic approach is too simple for any serious
tracking problem, and therefore our training databases are very
small (50-100 frames) and well-behaved, i.e. the cow we want
to track is well visible throughout the video of the training set.
Once we have labelled all instances in the frame, we extract
features from them, which are added to the training dataset in
the correct order (i.e. concatenated with the previous data). In
total, we use 9 features from three types:

1) Pixel intensity: We use the instance’s centroid as the
mean and σ2 = 5 to sample 100 5x5 patches in each
object; after averaging over their pixel intensities we get
a vector of features: overall mean, maximum and three
quartiles.

2) Size: we use the size of the bounding box around the
object. This is motivated by the fact that in the previous
stage we ignored small objects (under 800 pixels), and
that our instance segmentation algorithm tends to find
large portions of cows.

3) Location: we store the (x, y) coordinates of the centroid
of the bounding box as the distance feature. During the
training and test phases, we find the distance between
every instance’s centroid and the centroid of the pre-
vious observation of the tracked cow. This coordinate
difference is the actual feature used.

Finally, once we have collected all the data from the training
video sequence, we manually clean up the training dataset by
removing mislabelled (false positive) observations and pass
the correctly labelled dataset to the training algorithm.

C. Training

With features extracted for each cow, we trained a classifier
to automatically identify an individual animal in a video frame.
We selected the Random Forest (RF) classifier, attributed to
Breiman [26] to learn the features. Originally in each training
set the proportion of positive (tracked cow) observations
is about 16 %. To provide the classifier with more data,
we sampled out about 50 % of negative (distractor cows)
observations, thus increasing the positive data points to about a
third of the training database. As the data is essentially a time
series, we train the algorithm on the first K observations and
validate on the remaining n−K. The second contribution of
this paper, after instance segmentation algorithm, is optimizing
a classifier based on the training, validation and testing output.
We found that RF with 300 trees, cross-entropy error function,
using all features during training, with bootstrap samples and
out-of-bag samples for generalization do the best job on our
data. Training of a single forest takes a very small amount of
time, ∼ 5 seconds.

VI. RESULTS

Results from testing the RF classifier, precision and recall,
are summarized in Tables II and III. Test sets, which are
taken from the same video, are different to the training set
in a number of ways: there are many issues that an algorithm
must handle, such as full and partial occlusion, bad lighting,
low contrast, cluttered background and other. For comparison
we use the five trackers mentioned above: TLD, MIL, KCF,
MedianFlow and Boosting on each test set. In three datasets
our approach achieves the highest precision and in two - the
highest recall rate. Its strength is particularly well visible on
ch0106092015115543 and ch0915062015120155, where the
tracked cow moves around. Other either immediately loose
it (as TLD in ch0106092015115543) or confuse it with the
background as soon as the cow leaves the area where the
tracking started. We consider this to be a specific strength
of our algorithm. On two sets where our approach underper-
formed (e.g.ch0710062015201033) the problem is related to
the generalization capacity of the classifier: the cow does not
move much, but its features are too easily confused with those
of other objects.

VII. DISCUSSION AND FUTURE WORK

In this article we have presented a new tracking algorithm
developed for tracking malleable objects (cows) in a challeng-
ing environment (enclosures in a cowshed). The ultimate goal
of this project is to identify lameness in cows at an early stage;
successful cow tracking is the first stage in this project. This
article has three main contributions:

1) Framewise instance segmentation,
2) Optimal Random Forest algorithm,
3) Construction of a large dataset for further analysis of

cows’ behavior
From here there are three main directions in which we would
like to take the development of this algorithm:



Fig. 2: Flowchart of the first step of the algorithm. Video data is processed framewise: phases within the bounding box are
repeated for the full duration of the video, adding labelled data points to the training dataset. Once the training dataset is fully
built and manually cleansed of mislabelled observations, it is passed on to the Random forest (RF) algorithm for training and
cross-validation. The final output of this stage is an RF classifier with optimal parameters for tracking a particular cow.

Fig. 3: Flowchart of the second step of the algorithm. Video data is processed framewise: phases within the bounding box are
repeated for the full duration of the video. RF classifier optimized in the first step processes objects segmented in the instance
segmentation stage in each frame and labels them based on the features extracted from instances. Labels and instances are
added to the video output. Some data is stored and output for further analysis.

TABLE II: Performance of the five algorithms available in the OpenCV library on the test datasets compared to ours. Values
in each column are the percentage of frames the algorithm identified the tracked cow, i.e. recall. Bold are the best algorithm
for this test dataset.

Video KCF TLD MIL Boost MF Ours
ch0106092015115543 0.21/0.2 0/0 0.17/0.2 0.2 0 0.98/0.54
ch0406272015143027 1/0.76 0.56/0.41 1/0.88 0.93/0.17 0.4/0.41 1/0.77
ch0106292015090316 1/1 0.02/0 1/0.56 1/0.35 0.5/0.13 0.7/0.47
ch0710062015201033 1/1 0.44/0.16 1/1 0.78/1 0.4/0.16 0.83/0.08
ch0915062015120155 0.36/0.34 0.25/0.4 0.36/0.34 0.36/0.34 0.28/0.33 0.56/0.85

1) Improvement of instance segmentation step. Currently
we use a combination of two deep learning, thresholding
and a labeling algorithm. Although they do the job
reasonably well, there is enough space for improvement.

2) Improvement of generalization. Although Random For-
est does a good job with the tracking, it does not
always confidently generalize to any angle at which the
cow faces the camera. We therefore intend to retrain
algorithm like CRFasRNN to get it to track objects
(transfer learning) using the segmentation information
from the previous step.

3) Construction of cow behavior dataset. In addition to
tracking the cows’ movement, we need to track their
behavior, as it correlates with the physiological condition
(overall, lame cows lie for longer periods of time). For
this purpose we will be training a large deep learning
algorithm like LSTM ([27]) or a similar recurrent neural
network.

REFERENCES

[1] L. Warnick, D. Janssen, C. Guard, and Y. Gröhn, “The effect of lameness
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