BIROn - Birkbeck Institutional Research Online

Hart, Sarah and Anabanti, Chimere (2020) A question of Mazurov on groups of exponent dividing 12. Communications in Algebra, ISSN 0092-7872. (In Press)

Downloaded from:

Communications in Algebra

A question of Mazurov on groups of exponent dividing 12

Chimere Stanley Anabanti , Sarah Beatrice Hart \& Michael C. Slattery

To cite this article: Chimere Stanley Anabanti , Sarah Beatrice Hart \& Michael C. Slattery (2020):
A question of Mazurov on groups of exponent dividing 12, Communications in Algebra, DOI: 10.1080/00927872.2020.1788569

To link to this article: https://doi.org/10.1080/00927872.2020.1788569

© 2020 Austrian Science Fund (FWF).
Published with license by Taylor \& Francis
Group, LLC.
Published online: 08 Jul 2020.

Submit your article to this journal

Article views: 156

View related articles

View Crossmark data ©

A question of Mazurov on groups of exponent dividing 12

Chimere Stanley Anabantia* (D) Sarah Beatrice Hart ${ }^{\text {b }}$ (D) and Michael C. Slattery ${ }^{\text {c }}$ (D)
${ }^{a}$ Institut für Analysis und Zahlentheorie, Technische Universität Graz (TU Graz), Graz, Austria; ${ }^{\text {b }}$ Department of Economics, Mathematics and Statistics, Birkbeck, University of London, London, UK; 'Department of Mathematical and Statistical Sciences, Marquette University, Wisconsin, USA

Abstract

Mazurov asked whether a group of exponent dividing 12, which is generated by x, y and z subject to the relations $x^{3}=y^{2}=z^{2}=(x y)^{3}=(y z)^{3}=1$, has order at most 12. We show that if such a group is finite, then the answer is yes.

ARTICLE HISTORY

Received 27 December 2019
Revised 12 June 2020
Communicated by Mark L.
Lewis

KEYWORDS

Exponent; finite presentation; groups

2010 MATHEMATICS
SUBJECT CLASSIFICATION
20F05; 20D60

The following question of Mazurov is listed as Question 19.53 in the collection of open problems in the Kourovka Notebook [2].

Question 1 (Mazurov). Let G be a group of exponent 12 generated by elements x, y, z such that $x^{3}=y^{2}=z^{2}=(x y)^{3}=(y z)^{3}=1$. Is it true that $|G| \leq 12$?

Recall that the exponent of a group G is the smallest positive integer n such that $g^{n}=1$ for all $g \in$ G; meanwhile, G has period n whenever the exponent of G divides n. In fact, the question as stated in [2] requires "exponent 12 " rather than "exponent dividing 12 ", but Mazurov has confirmed to the authors that "exponent dividing 12 " (that is, period 12) was intended. If the answer to the question is yes, then one consequence would be that groups of period 12 are locally finite (see [3]).

As a step in this direction, we have the following. Here, C_{3} is the cyclic group of order 3, and A_{4} is the alternating group of degree 4.

Lemma 2. Let G be a group of exponent dividing 12, which is generated by x, y and z subject to the relations $x^{3}=y^{2}=z^{2}=(x y)^{3}=(y z)^{3}=1$. If G is finite, then G is either trivial or isomorphic to either C_{3} or A_{4}.

Proof. Let G be a group of exponent dividing 12 with the given presentation. Then G certainly satisfies the additional relations $(x z)^{12}=1$ and $(x y z)^{12}=1$. Therefore G is a quotient of the

[^0]group U given by
$$
U:=\left\langle x, y, z \mid x^{3}=y^{2}=z^{2}=(x y)^{3}=(y z)^{3}=(x z)^{12}=(x y z)^{12}=1\right\rangle .
$$

We observe that a finite group G of exponent dividing 12 must have order $2^{a} 3^{b}$ for some a and b. Therefore, by Burnside's Theorem, G is solvable. Hence, G is a solvable quotient of U. We may therefore employ the command
Solvablequotient(U);
in MAGMA [1]. This function returns the largest solvable quotient of a given finitely presented group. The outcome is as follows.

```
>U:= Group<x,y,z|x^3, y^2, z^2, (x*y)^3,(y*z)^3, (x*z)^12, (x*y*z)^12>;
>SolvableQuotient(U);
GrpPC of order 12= 2^2*3
PC-Relations:
$.1^3 = Id($),
$.2^2=Id($),
$.3^2=Id($),
$.2^$.1 = $.3,
$.3^$.1 = $. 2*$.3
```

Therefore, $|G| \leq 12$. It is now quick to check by hand that the only possibilities for G, apart from the trivial group, are C_{3} and A_{4}.

We note that, in terms of the original Question 1 above, Lemma 2 shows that if a group of exponent exactly 12 with the given relations exists, then it must be infinite.

Funding

Chimere S. Anabanti is supported by the Austrian Science Fund (FWF): P30934-N35.

ORCID

Chimere Stanley Anabanti (ID http://orcid.org/0000-0003-4564-4179
Sarah Beatrice Hart (iD http://orcid.org/0000-0003-3612-0736
Michael C. Slattery (ID http://orcid.org/0000-0001-8178-3534

References

[1] Bosma, W., Cannon, J., Playoust, C. (2019). The Magma algebra system, Version 2.24-5. http://magma. maths.usyd.edu.au/calc/.
[2] Khukhro, E. I., Mazurov, V. D. Unsolved problems in group theory. The Kourovka Notebook. No 19. arXiv:1401.0300v17. https://arxiv.org/pdf/1401.0300.pdf.
[3] Lytkina, D. V., Mazurov, V. D. (2015). On groups of period 12. Sib. Math. J. 56(3):471-475. DOI: 10.1134/ S0037446615030106.

[^0]: CONTACT Chimere S. Anabanti \otimes anabanti@math.tugraz.at \otimes Institut für Analysis und Zahlentheorie, Technische Universität Graz (TU Graz), Graz 8010 Austria.
 ${ }^{*} \mathrm{He}$ is also at the Department of Mathematics, University of Nigeria, Nsukka (UNN), and he uses chimere.anabanti@unn.edu.ng.
 This article has been republished with minor changes. These changes do not impact the academic content of the article.
 (C) 2020 Austrian Science Fund (FWF). Published with license by Taylor \& Francis Group, LLC.

 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

