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Abstract 

Schema theory is a framework based on the idea that behaviour in many areas depends 

on abstractions over instances called schemas, which work in a cooperative or 

sequential fashion, but also compete with each other for activation. Cooper & Shallice 

(2000) provide an implementation of schema-theory with their model that simulates 

how routine actions works in healthy and neurologically-impaired populations. While 

schema theory is helpful in representing functional interactions in the action-perception 

cycle, it has no commitment to a specific neural implementation. Redgrave et al.’s 

(2001) model of the basal ganglia is, in principle, compatible with a device that 

regulates the competition among schemas, carrying out action selection. This thesis is 

mainly concerned with improving the neurobiological plausibility of the schema 

theoretic account of action selection without sacrificing its theoretical underpinning. We 

therefore start by combining an implementation of schema-theory with a reparametrised 

version of the original basal ganglia model, building the model from the ground up. The 

model simulates two widely used neuropsychological tasks, the Wisconsin Card Sorting 

Test (WCST), and the Brixton Task (BRX). 

 

In order to validate the model, we then present a study with 25 younger and 25 over-60 

individuals performing the WCST and BRX, and we simulate their performance using 

the schema-theoretic basal ganglia model. Experimental results indicate a dissociation 

between loss of representation (present in older adults) and perseveration of response 

(absent in older adults) in the WCST, and the model fits adequately simulate these 

findings while grounding the interpretation of parameters to the neurobiology of aging. 

We subsequently present a further study with 50 participants, 14 of whom have an 

ADHD diagnosis, performing the WCST under an untimed and a timed condition, and 

we then use our model to fit response time. Results indicate that impulsivity traits, but 

not inattention ones, predict a slower tail of responses in the untimed task and an 

increased number of missed responses and variability across subtasks. Using the model, 

we show that these results can be produced by variation of a combination of two 

parameters representing basal ganglia activity and top-down excitation. We conclude 

with recommendations on how to improve and extend the model. 
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Neural and psychological investigations of 

frontostriatal circuits 

 

 Abstract 

This thesis is concerned with understanding, at a neural level, the mechanisms involved 

in human action selection. These mechanisms are generally be held to involve both 

frontal and striatal processes.  Here we therefore give a general overview of findings 

related to frontostriatal circuits, focusing on neurological, neuropsychological, 

neurobiological, and neurophysiological features. These findings should help constrain 

in both neural and psychological term. We start by analysing the gross anatomy of 

frontostriatal circuits, before briefly describing the neurobiological properties of those 

circuits, and examining how neuroimaging and neuropsychology join forces to explain 

how frontostriatal dysfunctions contribute to dysfunctional behaviour. The division of 

labour between cortex and basal ganglia in accomplishing higher order cognition is 

highlighted. We then proceed to illustrate several computational models of the basal 

ganglia, both as a neurophysiological set of nuclei, and as embedded in cognitive 

architectures that model, in addition, the contribution of the cortical areas.  

 

 Gross neuroanatomy of frontostriatal circuits 

The basal ganglia are a set of subcortical nuclei sitting underneath the cortical mantle. 

They comprise the caudate and the putamen (dorsal striatum), the globus pallidus 

(divided into external and internal segments), the nucleus accumbens (part of the ventral 

striatum), the subthalamic nucleus and substantia nigra further down in the midbrain 

(Fig. 1.1). 
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Fig. 1.1 Colour-coded parts of the basal ganglia as seen in axial MRI view (top left), 

coronal MRI view (bottom), and 3D view (top right) (from Borsook et al., 2010) 

 

The basal ganglia structures communicate in signal loops with cortical tissue and the 

thalamus (Alexander, DeLong, & Strick, 1986) called corticothalamic or frontostriatal 

loops. Afferent projections to the striatum come mainly from the cortex, where the 

somatopy of motor areas is preserved. Input from the thalamus and from the midbrain 

are also essential for the correct functioning of the circuit. Striatal structures receive 

input from interconnected cortical areas that are functionally related (e.g. they have 

been all implicated in controlling eye movements) and it is possible to distinguish 

between three or four main frontostriatal loops: the sensory-motor loop that connects 

the lateral striatum with the motor and premotor cortex, the associative loop that 

connects the central striatum with the associative cortical areas such as the orbitofrontal 

and dorsolateral prefrontal cortex (given the functional difference between these two 

loops they appear sometimes as distinct loops), and the limbic loop that connects the 

ventral striatum with the limbic areas such as hippocampus, amygdala and cingulate 

cortex (Fig. 1.2). The basal ganglia receive input from a multitude of other non-frontal 

areas, including parietal areas, which might be especially relevant for planning and 

execution of actions.  
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Fig. 1.2 Frontostriatal loops (from O'Callaghan, Bertoux, & Hornberger, 2013). 

SMA stands for Supplementary Motor Area. DLPFC stands for Dorsolateral Prefrontal 

Cortex. OFC stands for Orbitofrontal Cortex. AC stands for Anterior Cingulate. 

DS and VS stand for dorsal and ventral striatum, respectively. 

SNr stands for Substantia Nigra Pars Reticulata.   

 

Another important empirical finding in the neuroanatomy of the frontostriatal circuits is 

the ‘funneling’ of connections: each cortical region projects topographically to the 

striatum with a many-to-one connection. This organisation of convergent circuits was 

once believed to be a way to activate individual motor programs that result from activity 

on many other cortical areas (Kemp & Powell, 1971), but discovery of segregated loops 

in the cortical associative areas and the fact they operate in parallel with all the other 

loops brought some authors to think of the basal ganglia as an information compression 

device (Morris, Nevet & Bergman, 2003) or as an arbitration system that solves the 

problem of multiple parallel accesses to limited physical resources by means of a 

“centralised” device (Redgrave, Prescott & Gurney, 1999), as opposed to a “peripheral” 

approach that would rely on mutual inhibition in the cortical areas. 

 

The basal ganglia are evolutionary ancient, and identical nuclei with the same 

neurotransmitters and the same connection to the pallium (the evolutionary precursor of 

the neocortex in mammals, see Suryanarayana et al., 2017) can be found in the lamprey, 

a jawless fish that diverged from the vertebrate evolutionary line approximately 560 

million years ago (Grillner & Robertson, 2010).  
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The preceding picture of the gross neuroanatomy and evolutionary history of these 

subcortical structures might give the impression that these systems have a well-defined 

structure and function, that the loops between cortex and basal ganglia are the only 

mechanism that generate sequential and purposeful action, and there is no redundancy 

in how the central nervous system is organised. Yet, this is not entirely truthful. While 

in adult humans the frontostriatal circuit can be considered the primary (but not the 

only) action selection circuit, this is not true for other animals and non-adult humans. 

Cats deprived of cerebral cortex from infancy, for instance, display a sophisticated 

repertoire of actions, especially those that affect survival and reproduction (Bjursten, 

Norrsell, & Norrsell, 1976). It has also been speculated that the first loops formed 

between the basal ganglia sensorimotor loops in simple vertebrates are likely to be 

present in the brainstem (McHaffie et al., 2005) and that simple action selection could 

be performed by a circuit in the medial reticular formation (Humphries, Gurney, & 

Prescott, 2007).  

 

 Neurobiology and neurophysiology of cortex and striatum 

The total action of the basal ganglia is produced by three main circuits that start in the 

cortical neurons and terminate again in the cortex: the direct pathway, the indirect 

pathway (that pass through the striatum), and the hyperdirect pathway that bypasses the 

striatum to project into the subthalamic nucleus (Fig. 1.3). 

 

 

Fig. 1.3 Basal ganglia circuit with direct, indirect, and hyperdirect pathways (Schroll & 

Hamker, 2013). STN: Subthalamic nucleus, GPe: Globus Pallidus (external segment), 

GPi: Globus Pallidus (internal segment), SNr: Substantia nigra pars reticulata 
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The majority (95%) of the striatum consists of medium spiny neurons (MSN) (Fig. 1.4). 

These inhibitory neurons project to the globus pallidus and use the neurotransmitter 

gamma-aminobutyric acid (GABA), which is inhibitory by virtue of allowing 

negatively charged chloride ions inside the cell.   

 

 

Fig. 1.4 Medium Spiny Neurons and main connections (Loonen, & Ivanova, 2013). 

This striatal neuron receives connections from other Medium Spiny Neurons (MSN), 

Cholinergic Interneurons, Dopaminergic Neurons from the Substantia Nigra Pars 

Compacta (SNc) and the Ventral Tegmental Area (VTA), and the Cortex. 

 

There are two types of MSN. The first type expresses dopamine D1 excitatory 

receptors. These project directly to the internal segment of the globus pallidus (and the 

substantia nigra pars reticulata), which is the output of the basal ganglia. For this reason 

these neurons constitute what is known as the direct pathway. Since the overall effect of 

this pathway is to excite neurons in the thalamus, which in turn excites homologous 

neurons in the cortex, the pathway is also called the ‘Go’ pathway (Frank, Seeberger, & 

O'Reilly, 2004). The second type expresses dopamine D2 inhibitory receptors. They 

project indirectly to the internal globus pallidus but through the external segment of the 

globus pallidus and the subthalamic nucleus. For this reasons these neurons constitute 

what is known as the indirect pathway. Since the overall effect of this pathway is to 

inhibit neurons in the thalamus, which in turn excites homologous neurons in the cortex, 

the pathways is also called ‘NoGo’ pathway (Frank, Seeberger, & O'Reilly, 2004). 

 

The neurophysiology of the indirect and direct pathways is well-established. More 

recently a third pathway, the hyperdirect pathway, has been identified. This projects 

from the cortex directly to the subthalamic nucleus, bypassing the striatum. While the 

function of the other two pathways is somewhat less ambiguous, how the hyperdirect 

pathway affects the basal ganglia functionally is less clear, although Nambu et al. 
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(2002) propose a centre-surround model similar to the computation in the early visual 

areas such as the Lateral Geniculate Nucleus (LGN). This model should help inhibit 

further areas of the cortex that represent the competing motor programs. As we will see, 

all the properties of the microcircuits are an important element of contact between 

physiology and computational models.  

 

 

 Neurology and Neuropsychology of frontostriatal circuits 

Insights into the function of frontostriatal circuits can be gained through an examination 

of the behavioural impairments of patients with neurological damage affecting 

frontostriatal regions. These patients include those who have sustained lesions to the 

areas, as well as patients with selected neurodegenerative, psychiatric, or developmental 

disorders. This section surveys the results and the implications of studies of such 

patients for theories of frontostriatal function. 

 

1.4.1 Lesion studies  

Historically, the study of brain lesions has been the first important step in shedding a 

light on the relationship between mind and brain. Analysis of brain lesions has not been 

superseded by more recent techniques such as fMRI and PET, and there are reasons to 

believe that this approach is still valuable (Rorden & Karnath, 2004). Localised injury 

to a tissue is usually caused by anoxic encephalopathy or stroke. Lesions to the basal 

ganglia alone cause both behavioural and movement disorders. For example, Bathia and 

Marsden (1994) analysed a cohort of 240 patients with lesions in the caudate nucleus, 

putamen and globus pallidus. Lesions were circumscribed to the nuclei alone or 

involved the adjacent part of the internal capsule and periventricular white matter. The 

most common movement disorder detected was dystonia, while the most frequent 

behavioural problem detected was apathy, in the form of loss of initiative. Interestingly, 

parkinsonism was uncommon and more likely to appear in bilateral lesions. Even more 

strikingly, Laplene et al. (1989) observed that eight patients with bilateral basal ganglia 

lesions did not exhibit signs such as dystonia, tremor or rigidity. Rather, a few patient 

exhibited elaborate patterns of compulsive stereotyped activity (today this behaviour 

would be probably classified as ‘punding’, also common in amphetamine users and a 

side effect of PD medications).  
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Lesions in the prefrontal cortex alone can give rise to a great variety of deficits. 

Together with fMRI studies, lesion studies provide a great deal of insight into human 

cognition. While knowledge of gross neuroanatomy and cytoarchitecture of the PFC has 

made it into university textbooks, functional subdivisions are based on approximate 

locations in the brain and they are designed by combining the dorsal-ventral gradient 

with the lateral-medial gradient (plus the orbitofrontal location). A unitary theory of the 

PFC does not exist and there are numerous challenges to this project. One of the reason 

is that theories of PFC functioning, unlike theories of basal ganglia, seem to be only 

partially reconcilable (Badre & Nee, 2017). Progress could have also been hampered by 

the often atheoretical approach to experimental investigations of prefrontal function 

(Shallice & Cooper, 2011). Nevertheless, impairments in neuropsychological tasks 

following selective or cumulative lesions provide a good starting point for more 

elaborate theoretical work. 

 

Lesions to the dorsolateral prefrontal cortex (dlPFC), for instance, are usually associated 

with endogenous attention (Funderud et al., 2013), memory retrieval and manipulation 

of information in working memory (Barbey, Koenigs, Grafman, 2013), planning, rule 

learning, and task switching (Shallice & Burgess, 1991) impairment. Lesions to the 

ventrolateral prefrontal cortex (vlPFC) have been historically associated with language 

impairment alone, but this view has been abandoned. Despite the prominent 

involvement in language, in the dominant hemisphere (Stone et al., 1992), vlPFC could 

be more generally specialised to process hierarchical structures irrespective of 

dimensions (Fiebach and Schubotz, 2006). What is common to all prefrontal circuits, 

and this is probably one of the few certainties in the field, is that they process 

somatosensory input multimodally (or amodally), in that input from all the modalities 

(auditory, tactile, visual, olfactory/gustative) is processed and bound together to produce 

thought or action. The implication for computational study can be seen in how models 

of cognitive tasks and brain structures are usually devised. Whereas basal ganglia 

models become increasingly more detailed at the neuroanatomical level, posited 

operations at the prefrontal cortex level are still too vague (or rather too complex) to be 

efficiently implemented in a biologically realistic model. 

 

1.4.2 Parkinson’s Disease 

When a disease affects signal transmission to the basal ganglia rather than the basal 

nuclei themselves, motor and behavioural results are distinct. With a prevalence of 
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approximately 1% of over-60 population, Parkinson’s Disease (PD) is one of the most 

common neurological diseases of the elderly that affect these circuits. While the 

aetiology is still not entirely clear, post-mortem neuropathological examinations in 

humans and animal studies that selectively destroy specific neurons clearly suggest that 

PD manifests itself when 60%-80% of dopaminergic neurons in the midbrain die, 

pointing to a mechanism of functional compensation. In particular, the loss of neurons 

seems to be localised in the substantia nigra pars compacta (SNpc), but some evidence 

suggests that the adjacent ventral tegmental area (VTA) is affected, too (Alberico, 

Cassell, & Narayanan, 2015). These areas constitute input to the striatum and the 

prefrontal areas, respectively. 

 

Criteria for the diagnosis of PD are exclusively motoric and consist of bradykinesia 

(slowness of movement), gait imbalances, limbs rigidity, and resting tremor. Recent 

work tends to also emphasize non-motor (but non-diagnostic) symptoms such as sleep 

problems and higher-order cognitive impairments (Marsili, Rizzo, Colosimo, 2018). 

Even before the motor presentation, subtle cognitive and behavioural symptoms might 

be present (Postuma et al., 2012) and understanding the trajectory of cognitive 

symptoms in PD has proved challenging and it is unresolved as yet (Biundo et al., 

2014). Neuropsychological studies established that cognitive symptoms in PD are 

similar to those present in patients with frontal lobe injury, and medication can interfere 

with these deficits in opposite directions (Cools et al., 2001). In general, PD patients 

seems to be impaired in executive function (EF) tasks such as the Tower of London 

(Owen et al., 1992), and in early patients this impairment does not seem to be driven by 

spatial short-term memory deficits. Abnormal responses in tasks such as the Trail 

Making Test B, Wisconsin Card Sorting Test, digit span backward, and Stroop are also 

present (Kudlicka et al., 2011). Although there is no consensus yet over whether EF can 

be identified as a unitary construct or not, it is generally observed that impairment 

across tasks are mild but reliably present in PD patients. It is unclear how these 

impairments affect patient daily lives. 

 

Cognitive neuroscience research provides a more nuanced way of thinking about 

differential impairments in learning tasks in PD (and by extension, EF tasks). Cools, 

Barker and Sahakian (2001) analyse the cognitive effect of dopamine by comparing PD 

patients on and off medication in a task-set switching task and a probabilistic reversal 

task. In the task-set switching task (Rogers et al., 1998), participants are first trained and 
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then tested on a simple recognition test with a classical task switching paradigm: an 

AABB design that is aimed to elicit task-switch costs, defined as the difference between 

the reaction times between the same type of task (A->A or B->B) and the reaction time 

between two different types of task (A->B or B->A).  A ‘cross-talk’ condition where 

types of stimuli (letters and numbers) are not associated with the relevant task is also 

counter-balanced between groups. In the probabilistic reversal task (Swainson et al., 

2000), subjects are required firstly to choose between two stimuli, the correct stimulus 

receives a positive feedback 80% of the times. Then, in the second part, contingencies 

are reversed without warning, with the same percentage of probabilistic feedback. 

 

Results reveal that L-dopa medication, a precursor of dopamine, affects the two tasks 

differently, even when patients are matched for intelligence, disease severity and 

medication dosage. Task-set switching response time performance, implicating the 

dorsolateral prefrontal-dorsal caudate circuit, is ameliorated by medication, whereas 

probabilistic reversal learning, thought to depend on the orbitofrontal-ventrostriatal 

circuit, is impaired. This bolsters the evidence for the ‘dopaminergic overdose 

hypothesis’ (Cools et al., 2001; Cools & D’Esposito, 2007), that posits that the 

differential cognitive profile in PD patients (compared to age-matched controls) is due 

to an uneven dopamine binding profile in the striatum (i.e. too little DA in the ventral 

striatum and too much DA in dorsal striatum) 

 

Besides affecting assessment and treatment of PD, this work sheds a light on the 

different contribution of frontostriatal loops to cognitive tasks, and therefore on the 

cognitive operations or representations in cortical areas. However, while this work 

focuses on the different loops in the striatum, it does not directly address the distinctive 

and different type of operation of the striatum and the prefrontal cortex. This is 

addressed more in detail in van Schounwenburg, Aarts, and Cools (2010). These 

authors review several psychopharmacologic and cognitive neuroscience studies 

through the theoretical lens of Frank, Laughly, O’Reilly (2001) regarding basal ganglia 

and prefrontal cortex complementary role. In this framework the prefrontal cortex 

provides active maintenance of representations that are necessary to pursue the agent’s 

current goal, and this occurs by biasing activation of representations in more caudal 

cortical areas. This work will be addressed in more detail in the computational section 

of this chapter.  
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Frontal lobe-like dysfunction is present in a substantial number of cases of Parkinson’s 

Disease, despite the relatively low presence of dopamine in the PFC compared to the 

striatum (Kish et al., 1988), and therefore dopamine depletion in the frontal circuit alone 

cannot account for those cognitive deficits. On the other hand, the putative neural 

substrate of a cognitive task can vary, and some tasks can more heavily rely on cortical 

functions (active maintenance) while some other tasks might rely more on striatal 

functions (task-switching). In conclusion, the Schounwenburg et al. (2010) show that L-

dopa medication normalises the blood flow in the right dorsolateral prefrontal cortex 

(dlPFC), probably by increasing the efficiency of neural processing, and hence 

improves higher-order cognition that involves planning, spatial working memory, and 

visuomotor control. 

  

While the study of medicated patients reveals the different contribution of prefrontal 

cortex and striatum to various executive functions, many unmedicated patients do not 

display overt cognitive impairments, despite motor symptoms already being evident. In 

fact, neural compensatory mechanisms could be in place. Poston et al. (2016) showed, 

for instance, higher activation of the putamen in cognitively unimpaired patient 

performing a high workload numerical match-to-sample task. These compensatory 

mechanisms could occur quickly as a result of signals that counteract hypo or 

hyperfunctioning areas, or unfold slowly in time as a result of neural plasticity (Barulli 

& Stern, 2013)  

 

1.4.3 Huntington’s disease (HD)  

Another way to understand the functional significance of the frontostriatal circuit is by 

observing neurological and psychological changes in Huntington’s disease (HD). HD is 

a neurodegenerative condition with an autosomal dominant inheritance pattern due to an 

excessive number of CAG (cytosine-adenosine-guanine) repeats in the HTT gene 

(chromosome 4) that codes for the huntingtin protein that contains an abnormal number 

of glutamine aminoacids. Motor symptoms include chorea (dance-like movements), 

athethosis (slower writhing movements of the arms), and various abnormal eye 

movements (Walker, 2007). Psychological changes include depression and personality 

changes. Usually these are noticed during the first stage of the disease before motor 

symptoms develop. Later stages of the disease include dementia. 
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The main target of HD pathology is the putamen in the basal ganglia, but cortical 

changes are also detectable early on in the disease (Rosas, 2011). At present there is no 

therapy available to delay the onset of symptoms and pharmacological treatment is 

particularly challenging. Antipsychotics, drugs that act on dopamine, are used to relieve 

choreic symptoms but they can worsen Parkinson-like symptoms such as rigidity, which 

are also present.   

 

Since genetic testing can identify those who inherit the mutated HTT gene and the 

number of triple repeats that affect the onset of disease, it is possible to follow the 

progression of the disease before symptoms become overt and start affecting the lives of 

the people affected, and to understand how subtle structural changes in the brain 

progress and how psychological and neuropsychological impairments arise. For this 

reasons HD is considered to be an ‘ideal neuropsychiatric model of disease’, despite 

being studied less frequently than PD (understandably, as HD is much less prevalent). 

Although age of onset is inversely proportional to the number of CAG repeats 

(Langbehn et al., 2010), the relationship between motor symptoms, cognitive profiles, 

and CAG repeats is less obvious (Cummings et al., 2011) 

 

With regard to cognitive profiles, there is no codified battery for HD cognitive 

assessment and the cognitive phenotype can vary widely, but Stout et al. (2011) tested a 

large sample of prodromal HD patient at different stages before they received a 

diagnosis and showed that the only test that produced significantly worse performance 

in the group whose people would be diagnosed 15 years after or more was the Emotion 

Recognition Task (measuring only the ability to detect negative emotions), with a large 

effect size. Also, individuals tested nine years or less before the diagnosis did not show 

any significant impairment on the 3 Tower Task, a variation of the Tower of London 

(Shallice, 1982), the Serial Response Time Task (Willingham, Nissen, Bullemer, 1989), 

and the WASI Matrix Reasoning subtest. These aggregate data suggest that early 

prodromal HD is cognitively mainly characterised by emotional agnosia and that pre-

HD does not necessarily feature planning and intelligence impairment. This can shed 

some light on the relationship between psychological changes and neuropathological 

findings, especially given that HD pathology does not only affect basal ganglia. In fact, 

although HD has been long considered mainly caused by a pathology of the striatum, 

this view has considerably shifted during recent years to encompass cortical tissue.  
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Neuroimaging studies have shown that severity of symptoms is also predicted by 

neuroimaging and cellular findings in cortical areas connected to the striatum, such as 

motor and limbic cortices (Nana et al., 2014). The neurobiological mechanism by which 

cortical and striatal damage could reinforce each other is interesting and understanding 

it could yield a biological therapeutic target.  Loss of inhibitory interneurons in the 

cortex would cause the release of excessive glutamate in the cortex and damage to the 

medium spiny neurons (MSN) due to glutamate excitotoxicity would, in turn, cause 

excessive cortical activation (Hedreen & Roos, 2011). 

  

Studies where the pathology in the cortex is more or less advanced than pathology in the 

relevant part of the striatum are of psychological significance. If we assume that, in 

principle, there are distinctive roles of cortical and subcortical grey matter, we should 

observe different behavioural profiles in neuropsychological tasks in patients with an 

uneven distribution of pathology in the two areas. Nevertheless, compensatory 

mechanism could play a part in sustaining a below-average but adequate performance in 

some tasks that require either circuit (Feigin et al., 2006). In this respect, modelling can 

generally offer a way to explain compensatory mechanism and their relationship with 

complex tasks.  

 

1.4.4 OCD and Tourette’s syndrome  

While PD and HD are typical neurological disorders, Obsessive Compulsive Disorder 

(OCD) is instead classified as a psychiatric disorder in the DSM-V (American 

Psychiatric Association, 2013). As the name suggest, it is marked by obsessions, 

defined as recurrent and persistent intrusive thoughts that cause marked distress because 

they are perceived as inappropriate, and compulsions, defined as repetitive activities 

that are performed to reduce this distress.  

 

Neuropsychological testing of executive performance in OCD has produced conflicting 

results. Although it appears that deficits are globally present with large effect sizes, 

assessing set-shifting and verbal fluency has yielded mixed outcomes (Kuelz, Hohagen, 

& Voderholzer, 2004). In fact, individuals with OCD may have different performance 

depending on the specific OCD symptom presentations (e.g. fear of contamination vs 

obsessions), but work aimed at teasing out these differences is lacking (Abramovitch, 

Abramowitz, & Mittelman, 2013). 
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Neuroimaging combined with classical neuropsychological tests has slightly improved 

the overall picture. The extended model of fronto-striatal function (Melloni et al., 2012), 

for instance, suggests that two independent circuits can account for the heterogeneity of 

OCD symptoms. Globally, increased activation of orbitofrontal cortex (OFC), anterior 

cingulate cortex (ACC) and basal ganglia (BG) during extensive batteries of 

neuropsychological tasks is more correlated with the lack of inhibitory behaviours while 

decreased activation of dorsolateral prefrontal cortex (DLPFC) / parietal cortex circuit is 

more correlated to working memory impairments. Domain-specific theories suggest 

instead that dissociable neural frontostriatal circuits mediate different OCD dimensions 

such as hoarding, checking, washing, etc. (Mataix-Cols et al., 2004). These two theories 

on OCD neural substrates mostly regard the role of the PFC and do not address the 

differential role of the basal ganglia. 

 

Tourette’s syndrome (TS) is a childhood-onset disorder that can be diagnosed in the 

presence of at least two stereotypical movements (motor tics) such as blinking or 

shoulder shrugging and at least one stereotypical vocalisations (vocal tics) such as 

grunting, whistling or throat clearing. Complexity and typology of these tics is 

heterogeneous. Individuals with TS can often describe a premonitory feeling before the 

tic appears. Tics happen in bouts, and their appearance is affected by the time of day 

and the level of general stress (or arousal) (Bloch & Leckman, 2009). Neuroimaging 

data suggest that tics are produced by excessive activity of motor pathways and 

diminished control of frontostriatal inhibitory circuits (Wang et al., 2011).  

 

The relationship between OCD and TS is an important one. Individuals with either 

disorder report a subjective feeling of having to perform unwanted actions and report 

that internal resistance is being overridden (Martino, Madhusudan, & Cavanna, 2013). 

TS tics are generally more stereotypical and brief while OCD compulsions are more 

elaborated and purposeful, but it is sometimes difficult to discern one from the other. 

Furthermore, OCD and TS are highly comorbid in children. Approximately a third of 

children with TS meet the diagnostic criteria of OCD (Lombroso & Scahill, 2008). 

  

In conclusion, OCD and TS have been both conceptualised as the inability of the central 

nervous system to suppress pre-potent responses or thoughts at different level of 

complexity, but the search for more specific endophenotypes is an area of ongoing 

research. Progress has been made by  defining the impulsivity-compulsivity spectrum as 
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a candidate set of intermediate phenotype (Robbins et al., 2012). According to this 

framework, OCD is characterised by an over-reliance on habitual stimuli and relative 

insensitivity to outcome devaluation. This description is akin to how initial drug use 

appears to shift to addiction in drug users. Initial drug use would be mediated by 

impulsivity traits while successive drug consumption would be mediated by 

compulsivity traits, when drug-taking becomes unpleasant but ‘irresistible’. Also, there 

is evidence that self-reported level of impulsivity in OCD do not correlate with 

compulsivity (Ersche et al., 2010), suggesting a dissociation between the two 

constructs. This work constitutes a valuable way to bridge cognitive construct amenable 

to computational modelling with important trans-diagnostic clinical entities.  

 

1.4.5 ADHD  

Attention Deficit and Hyperactivity Disorder (ADHD) is classified as a 

neuropsychiatric disorder with childhood onset, since symptoms have to be present 

prior to the age of 12. Three primary subtypes are recognised: the predominantly 

inattentive, the predominantly hyperactive/impulsive, and a combination of both types) 

(American Psychiatric Association, 2013).   

 

The neuropsychology of ADHD is very rich and has identified three main domains of 

analysis, namely executive dysfunctions, delay aversion, and timing impairments. 

Although impairments in these domains seem to be present in ADHD children and 

adults, none of these alone seem to be necessary or sufficient to explain behavioural 

profiles. Meta-analyses of neuropsychological batteries show that measures of delay 

aversion have a medium mean effect size (d ~ .6) (Wilcutt et al., 2008). The effect size 

of executive measurements also falls in the medium range (Wilcutt et al., 2005), with 

the exception of a few more sensitive tests. For instance, commission errors in the 

Continuous Performance Test (CPT) (Rosvold et al., 1956), a prototypical test of 

attention, yields one of the strongest effect sizes seen with ADHD (d ~ 1.1) and has 

good positive predicted value in distinguishing adults with ADHD and controls (Woods, 

Lovejoy & Ball, 2002). 

 

Neuroimaging work has attempted to link these three domains with three distinct 

frontostriatal circuits. The dorsal frontostriatal loop would be implicated in executive 

dysfunction, the orbitofrontostriatal loop would be implicated in delay aversion, and the 

frontocerebellar dysfunction would be responsible for timing impairments (Durston, 
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Belle, & de Zeuuw, 2011). The approach is very promising but, admittedly, it falls short 

of delineating distinctive properties of frontal versus striatal dysfunction. It is possible 

that besides this division into three subgroups, a further division between cortical and 

subcortical dysfunction could eventually produce six different subtypes.  

 

Further complexity arises when addressing the behavioural phenotypes in the 

impulsivity dimension of ADHD. Impulsivity found in ADHD fits very well with the 

endophenotype described earlier for OCD (Robbins et al., 2012) but its relationship 

with the delay aversion construct might be more complex and break down into further 

independent constructs. For instance, the choice for ‘short and smaller rewards’ over 

‘large but delayed rewards’ that characterises children with ADHD might be due to the 

independent contribution of impulse drive and delay aversion (Marco et al., 2009) and 

not impulsivity alone. Similarly, timing deficits that are considered a by-product of an 

impulsivity endophenotype could break down in the attention lapses and impulsive 

responses. While these attentional lapses would appear as a larger positive tail in the 

individual response time distribution, impulsive responses would shift the distribution 

to the left (faster median responses) (Hervey et al., 2006) while sacrificing overall 

accuracy (Mulder et al., 2010). 

 

 Summary of neurobiological findings 

We have provided a brief survey of the neural attributes of frontostriatal circuits and 

how they relate to the psychological performance of individuals and patients.  The joint 

effort of neuroimaging and neuropsychology research has provided a greater 

mechanistic understanding of behaviour following disease or dysfunction, but capturing 

behavioural complexity with psychologically meaningful constructs is a challenging 

task. Take, for instance, the description of the impairment following prefrontal lesions. 

Some of these descriptions of impairment seem to belong together and they seem to 

have reasonable face validity (e.g. working memory and endogenous attention in the 

dlPFC), while some others seem more difficult to reconcile (spatial attention and 

expressive language in the vlPFC). Whereas constructs such as ‘expressive language’ 

and ‘visual attention’ can be helpful in a clinical environment, they are in fact too broad 

and vague. The need for breaking down individual neuropsychological tasks into 

precise representations and operations or unifying apparently unrelated construct at any 

level can be fulfilled by computational modelling.  
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In the next section we provide an overview of the most relevant computational models 

of frontostriatal operation, with particular consideration of their operation with 

dysfunction. 
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 Neurocomputational models of the basal ganglia  

We now move our focus to computational modelling by providing an overview of the 

most relevant computational models of the basal ganglia, both as a neurophysiological 

set of nuclei, and as embedded in cognitive architectures that model, in addition, the 

contribution of the frontal areas.  

 

The history of frontostriatal models is rich and complex. Given the advancement in 

neurobiology and neuroimaging and the knowledge gathered through analysing lesions 

and subcortical pathologies, modelling basal ganglia function alone has become more 

prominent during the last decades, bucking the trend of ‘cortico-centrism’, which 

arguably undervalued the contribution of white matter and subcortical grey matter in 

higher-order cognition (Parvizi, 2009). Modellers have been seeking to characterise the 

unique cellular structure and modulatory connections of the basal ganglia in terms of 

function. Although this task has proven challenging, a number of hypotheses are 

recognised to be viable. All the models analysed below incorporate different 

neurobiological features, like the ones we examined in the previous section of the 

chapter, but they also take into account different types of behavioural data from healthy 

and diseased individuals. 

 

Relating basal ganglia functions and anatomy with prefrontal or, more generally, 

cortical structure has proven to be much more elusive, for several reasons. First, there is 

no established link within the cortex between algorithm and neurobiology as in the case 

of the basal ganglia. Secondly, higher cortical functions most likely require a more 

complex dynamic framework, where information is processed in the same areas 

multiple times and in multiple areas at the same time. For this reasons, many 

connectionists and symbolic models of neuropsychological tasks have used cortical 

representation enhanced with basal ganglia operations. 

 

1.6.1 The box and arrow models 

DeLong (1990) proposed a box-and-arrow model of the basal ganglia that became 

influential and inspired many of the following attempts to characterise basal ganglia 

functions (Fig. 1.5). The paper analysed the motor loop with simplicity and explanatory 

power. Even today neuroscience textbooks make use of this model to explain 

Parkinson’s and Huntington’s diseases, describing them as two extremes in the 
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spectrum of the damage of the basal ganglia circuitry (Purves et al., 2008). The model 

represents an attempt to explain the motor activity of the basal ganglia from a 

qualitative perspective.  

 

 

Fig. 1.5 Diagram of the original box-and-arrow model. Figure from Bronfeld, and Bar-

Gad (2011). 

  

1.6.2 The basal ganglia as a dimensionality reduction device 

Bar-Gad et al. (2000) substantially challenged the original information-processing 

model of DeLong (1990), postulating that the BG nuclei act as a dimensionality 

reduction device with a sparse distribution coding, and proposing that the degree of 

reduction was determined by reinforcement learning mechanisms (Fig. 1.6). The main 

argument was driven by the fact that the number of cortical projection to the striatum is 

approximately double the number of striatal neurons and a similar reduction occurs in 

the striatopallidal projections. The authors also suggested that the information flow is 

far too complicated to be captured by nested loops, that the D1 and D2 pathway 

distinction is spurious, and that there is no convincing evidence of lateral inhibition 

between the medium spiny neurons in the striatum (see also Bar-Gad and Bergman, 

2001). While it is true that D1 and D2 receptors are not anatomically distinguishable in 

parallel pathways (Aizman et al., 2000), it is likely that the two kind of modulatory 

neurons are functionally dissimilar and even complementary (Sano et al., 2003).  
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Fig. 1.6 Diagram of the dimensionality reduction model. Figure from Bronfeld, and 

Bar-Gad (2011). 

 

1.6.3 The basal ganglia as a sequence generator 

Another different approach to the basal ganglia function came from Berns and 

Sejnowski (1998), who showed how sequences in the striatum can be encoded in a 

neural network as long as the subthalamic nuclei project onto the globus pallidus with a 

temporal delay (Fig. 1.7). The model is particularly valuable for its simplicity and 

because it implements reinforcement learning through a decreasing error function. 

Furthermore, there is evidence that habitual actions differ from goal-oriented ones in 

that habitual sequences might be run irrespectively of the outcome of each single action 

(Dezfouli & Balleine, 2013). However, within the model the structure of the basal 

ganglia does not accommodate the difference between the two segments of the globus 

pallidus (external and internal) and the subthalamic nucleus has two units for each 

“action” in the sequence, with a different time delay. This speculation is not supported 

by anatomical evidence, and this is the greatest limitation of this model. This detail is 

nevertheless instructive for the design of computational modelling. If low-level details 

are instrumental in producing meaningful behaviour, empirical work can be directed 

towards finding whether these details are true. If there is no evidence, then the 

behaviour must be produced by some other algorithm, or by the cooperation of another 

set of brain structures. In the case of Berns and Sejnowski (1998), these statement are 

both likely to be correct: the subthalamic nucleus is unlikely to include any delaying 
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mechanism and sequence learning and production probably requires an active role of 

the prefrontal cortex (Pariyadath et al., 2012). 

 

 

Fig. 1.7 Schematic of the Berns and Sejnowski model (1998) 

 

1.6.4 The basal ganglia as an actor critic mechanism 

Model Description 

Schultz, Dayan, and Montague (1997) postulated that midbrain neurons could compute 

the equivalent of reward prediction error in the reinforcement learning (RL) literature, 

and this established what has become a long and fruitful collaboration between machine 

learning and neuroscience research. A model of the basal ganglia that applies RL 

algorithms in an explicit fashion is the actor critic model (Barto, 1995). At present, 

many actor critic models have been described, and they vary greatly in their details, 

such as the way knowledge is represented, and the way the temporal difference (TD) 

learning signal is processed and passed onto other structures. Joel, Niv, and Ruppin 

(2002) provided an extensive overview of all these models. One of the core common 

features of these models is the presence of two distinct functional subsystems: the critic 

and the actor. The critic evaluates the policy, that is the probability to select a specific 

action given a specific state, and uses a temporal difference learning signal to update the 

value function of a state. The actor selects a policy probabilistically as a function of a 

temperature parameter that alters the trade-off between exploration of the state space 

and exploitation of the best policy retrieved up to that point in the learning process. 

 

The basal ganglia structures have been mapped to the functional components of the 

actor-critic model (Fig. 1.8). The cortex estimates the current state of the agent, in 

addition to encoding the temporal properties of the state, while the striatum compresses 

information from the cortex, similarly to the function Bar-Gad and Bergman (2001) 
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proposed. The neural implementation of the actor, in particular, is associated with the 

matrix compartments of the striatum, which constitute 85-90% of the striatum 

(Brimblecombe & Cragg, 2016),  while the critic is associated with patch (striosome) 

compartments, which constitute the rest of the striatum. Neurons in the midbrain are 

associated with the dopamine signal that drives learning in the critic by providing a 

signal that resembles the TD signal. 

 

 

Fig. 1.8 Actor-Critic model schematic. Figure adapted from Bogacsz and Larsen (2011) 

 

Model Evaluation 

The actor-critic model has been rather successful in solving reinforcement learning 

problems in a very structured environment. Yet, the algorithm struggles to deal, among 

other things, with tasks where reward structure is dynamic, when irrelevant reward in 

the environment is conducive to a suboptimal policy, or when the 

exploration/exploitation trade-off is not optimised to escape shallow local minima 

(Szepesvari, 2010). A possible solution to this lack of flexibility is to make use of 

additional operations that would take place in the prefrontal cortex, which would exert 

cognitive control in a rapid, flexible, and context-sensitive fashion. In other words, 

basal ganglia units would still solve simple action selection, while prefrontal structure 

would shape the input to those units regarding correct rewards, the degree of 

exploration, and the features (states) to which the agent should attend given a specific 

context (Stolyarova, 2018). 

 

1.6.5 The basal ganglia as an action selection mechanism 

 

Model Description 

Redgrave, Prescott, and Gurney (1999) presented the basal ganglia as a set of structures 

selected during evolutionary processes to accomplish centralised action selection. The 
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need for centralised action selection, they argued, arose because of the increasing 

complexity of motor programs in vertebrates and, in particular, from the necessity to 

find a more efficient mechanism than lateral inhibition given the increasing number of 

many-to-many relationship between motor programs and effectors. Bogacz and Gurney 

(2007) claimed that specific nuclei of the basal ganglia instantiate the multi-hypothesis 

sequential probability ratio test (MSPRT) (Dragalin, Tartakovsky, & Veeravalli, 1999), 

an algorithm for choosing one or more hypotheses among other several competing ones. 

By virtue of its mathematical properties, the author argues that the MSPRT provides a 

solution for action selection in presence of noisy stimuli. In fact, while the most obvious 

solution to the problem of action selection would be to execute an action as soon as the 

integration over salience or activation value exceeds a fixed threshold, as in the 'race 

model' (Forstmann, Ratcliff & Wagenmakers, 2016), this process has been shown to be 

suboptimal and inconsistent with neurophysiological evidence, because it does not take 

into account the magnitude of conflict between alternative decisions (Bogacz, 2007).  

 

Gurney, Prescott, and Redgrave (2001) built a neuroanatomically detailed model of the 

basal ganglia nuclei that implements this algorithm using linearised computations in the 

individual units (Fig. 1.9). A very similar (but non-linear and therefore not analytically 

tractable) version of this model will be focus of part of this thesis, so we refer to the 

next chapters for a detailed explanation of structure, parameters, and behaviour of the 

model. In order to show the model abilities in action in a physical scenario, Prescott et 

al. (2006) embedded this model into a robotic architecture equipped with perceptual and 

motivational sub-systems that compute action salience, that it is then fed to the basal 

ganglia and output to the motor programs. The robot models animal foraging behaviour 

by performing simple operations such as collecting cylinders (equivalent to food) and 

carrying them back to the corner of a specified place in the scenario (equivalent to an 

animal’s nest). The input to the program that implements the basal ganglia operations 

represent the salience of individual actions, while the output represent the signal that 

inhibits unwanted motor acts (or, alternately, disinhibit relevant motor acts).  
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Fig. 1.9 Schematic of the Redgrave, Prescott, and Gurney (1999) model (adapted) 

 

Humphries, Stewart, and Gurney (2006) also showed how the algorithm implemented 

by the basal ganglia can be simulated by sets of spiking neurons that have different 

electrophysiological properties corresponding to the different nuclei of the basal 

ganglia. It is worth noticing that this thread of work attempts to bridge psychological 

features of decision making with lower-level neural dynamic by using an intermediate 

step that defines an optimal algorithm. 

 

Unlike most models that focus mainly on learning, Gurney, Prescott, and Redgrave’s 

(2001) work focused on the so-called 'proficient phase', as opposed to the 'learning 

phase'. Whereas the latter is associated with reinforcement learning algorithms, the 

former is associated with action selection, and assumes that stimulus-action associations 

have already been mapped. Focusing on this phase offers an explanation for various 

real-time symptomatology in pathologies of the basal ganglia (e.g. bradychardia or 

freezing in Parkinson’s disease, chorea in Huntington’s disease) that cannot be 

attributed to aberrant learning alone. 

 

However, reinforcement learning and action selection operations are not necessarily 

mutually exclusive. Bogacsz and Larsen (2011), for instance, integrated an actor-critic 

model with the action selection mechanism by incorporating the latter in the actor 

segment. In order to implement optimal decision making, the weight update in the critic 

part had to be modified by restricting the range of weights between 0 and 1.  
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Model Evaluation 

These principles of action selection in a neuropsychological task were described in a 

computational model of the Stroop task by Stafford and Gurney (2007). The Stroop task 

is a well-known experimental paradigm of cognitive control. Subjects are presented 

with a word on screen each trial and they are asked to name the ink colour of the word 

they see (colour naming task) or the word itself (word reading task). In the colour 

naming task, if the word name and the ink colour conflict (conflict condition; e.g. RED 

written in green ink), errors become more frequent and reaction times are slowed. This 

is called the 'Stroop effect'. In the control condition only colours without words are 

shown. If word and ink are congruent (congruent condition), reaction times improve 

compared to the control condition. This is called a 'facilitation effect'. In the word 

reading task reaction times are unaffected, irrespective of the condition. The Stroop task 

is used as a selective attention task that primarily measures response inhibition (Miyake 

et al., 2000).  

 

The model presented by the authors was essentially an extension of the seminal work by 

Cohen et al. (1990). This early connectionist model consists of two ink-colour units, 

two word units, and four associated hidden units (Fig. 1.10). Additionally, two task 

units (colour naming and word reading) bias the hidden units. Two output units 

integrate across time and record the response when the difference between the two 

integrated values exceeds a threshold (diffusion model). The model is trained by 

presenting words input to the network ten times more often than colours input. This 

reflects the quicker response time to words that subjects usually exhibit. Cohen's model 

predicts Stroop and facilitation effects with an excellent degree of accuracy, but fails to 

replicate the reaction time data when the irrelevant dimension is presented before the 

relevant one (e.g. the word appears some milliseconds before the colour in the colour 

naming task, or the colour appears a some milliseconds before the word in the word 

reading task). Stafford and Gurney (2007) left Cohen's model structure as it is, but they 

added an action selection mechanism as the one described earlier (Gurney et al., 2001). 

Results showed that empirical data are better described by the enhanced model that 

makes use of an alternative evidence accumulation process using basal ganglia units. 

The incorrect behaviour arises, instead, from the inability of the diffusion model to 

produce action selection even with small saliencies and non-simultaneous inputs. The 

basal ganglia correct this issue by implementing a robust action selection mechanism, in 

addition to the original model of the Stroop task. 
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Fig. 1.10 Schematic of Cohen's model (1990) 

 

 

1.6.6 The basal ganglia as a gating mechanism 

Model Description 

Another influential model of the basal ganglia was presented by Frank, Loughry, and 

O’Reilly (2001) and updated in O'Reilly and Frank (2006). Their approach started from 

evolutionary considerations, like the action selection models we have just examined, 

and asked whether the basal ganglia nuclei represent an evolutionary precursor of the 

prefrontal cortex and therefore have similar functions on different psychological 

domains. As we have seen in the previous section, the basal ganglia and the cortex 

evolved in parallel in both non-mammals and mammals, so a good working hypothesis 

consists in considering these two systems as functionally separable. Specifically, the 

authors argued for a division of labour between the two sets of structures. According to 

the model, frontal cortex neurons continuously fire in order to maintain task 

representations at different levels, after receiving corresponding stimuli from posterior 

cortices. The basal ganglia, on the other hand, fire to allow the updating of frontal 

cortex representation and switching the information maintenance mechanism. This 

triggers the update of new states in working memory or in the more posterior frontal 

cortex (premotor and motor cortices), triggering motor actions. Dopamine plays a role 

in modulating the excitability of striatal neurons by altering their firing threshold. 

 

This model is unique in that it uses simple biophysical modelling of neurons to model 

higher order cognitive tasks without intermediate steps. In this way, the classic 

algorithmic and implementational level (Marr, 1982) becomes blurred. This can be 
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compared with the previously examined model by Gurney et al. (2001), in which 

algorithm and its implementation are instead distinct (Humphries, Stewart, and Gurney, 

2006). 

 

Model Evaluation 

In order to validate their model the author simulated an extended version of a version of 

the continuous performance task (CPT-AX; Cohen et al., 1997). Within the simulated 

task, virtual subjects were asked to push a button on their right if they detected a target 

sequence, otherwise they would push the button on their left. The target sequence was a 

consecutive set of letter that varies according to the last numerical digits displayed. If 

the last digit shown as 1, subjects had to look for the target sequence A,X. If the last 

digit shown was 2, subjects had to look for the target sequence B,Y. 

 

The task requires participants to register numbers and letters in their working memory, 

and to ignore letters and digits that are not relevant to the task at hand. In cognitive 

terms, the task requires three main operations on working memory. First, the ability to 

update the prefrontal representation of the correlated stimulus or set of stimuli (e.g. 

when the '1' is displayed). Secondly, the ability to update that representation whenever it 

becomes task-irrelevant (e.g. if '1' is displayed and 'A' appears, 'A' should be updated). 

Thirdly, the ability to maintain and protect the information from interference of similar, 

or similarly task-relevant stimuli.  Moreover, all these properties need to work for 

different subtasks, cued by different stimuli. The model is built in the Leabra framework 

(O'Reilly & Munakata, 2000), that uses units whose behaviour is regulated by equations 

modelled on electrophysiological data (O'Reilly, 1998), and layers use a k-winners-

take-all mechanism. Learning of representations and tasks use Hebbian, error-driven, 

and backpropagation algorithms. 

 

Compared to the earlier version of the model (Frank et al., 2001), the later version 

(O’Reilly & Frank, 2006) allows the PFC to learn its own representations. The model 

was used to simulate the differential effect of being on and off dopaminergic medication 

in patients with Parkinson's Disease performing two procedural learning tasks (one 

probabilistic, simply called the probabilistic stimulus selection (PSS) task, the other 

deterministic) (Frank, Seeberger, & O'Reilly, 2004). Both tasks use a set of two 

symbols of which one is associated with either the same feedback or associated 

correctly 80% of the time, in the case of probabilistic task. Subjects learn the paired 
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association between two symbol, and they are then presented with previously unseen 

combination of symbols. Errors from transitive inference are believed to show whether 

subjects learnt more accurately from negative or positive feedback. Data from patients 

off medication showed that learning for positive feedback is impaired, while learning 

from negative feedback is enhanced (higher than baseline). Patients on medication 

displayed the opposite learning pattern. 

 

1.6.7 The basal ganglia as rule-selection mechanism 

Model Description 

Amos (2000) presented a model of the interaction between frontal cortex, basal ganglia 

and the thalamus, grounded within a specific neuropsychological task – the Wisconsin 

Card Sorting Test (WCST). The model uses different computational principles to those 

discussed above, and does not fully belong to any of the paradigms examined so far.  

 

In the classic version of the WCST (Heaton, 1981) participants are presented with four 

target cards and they have to match the stimulus card to one of the four target cards 

according to a specific criterion. The only possible rules are: sort by colour, sort by 

number, or sort by shape. Participants are not instructed about the existence of these 

rules and therefore have to work them out during the task based only positive or 

negative feedback that is given in response to the subject's actions. After six consecutive 

correct answers in a row the rule is changed without warning the participant. 

Participants have then to infer the new rule and stick to it until the rule changes again. 

Stimulus cards may have more than one feature in common with target cards. 

Researchers mainly focus on counting performance errors such as the number of 

categories completed, the number of total errors, and the number of perseverative errors 

(counted each time a subject persists in using the same rule despite negative feedback). 

 

The architecture of the Amos (2000) model employs an information-processing 

approach in neuron-like units that mainly add or apply transfer functions to signal 

across the network, employing binary local representation of the stimulus feature. The 

input units set is comprised of four 12-units sets representing the target cards and one 

12-units set representing the constantly changing stimulus card. Striatal units are four 

12-units sets, and they integrate information from the frontal units and the target units 

card. Each set feeds into one nigropallidal units, for a total of four units, de facto 

compressing information. The signal finally flows into the thalamic units, which feature 
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a mutual inhibition mechanism, and the appropriate action is selected there through a 

winner-take-all mechanism. Frontal units are comprised of memory nodes, rule nodes, 

and inhibitory nodes. Reward mechanism acts directly on the inhibitory nodes. The 

effect of dopamine in the circuits were simulated by changing the slope of the activation 

function in the specified units. 

 

Model Evaluation 

The model aimed to simulate performance of patients with Parkinson's Disease (PD), 

Huntington's Disease (HD). Parkinson's Disease was simulated by reducing gain in the 

striatal units only. This is consistent with the reduced tonic input from the substantia 

nigra pars compacta, lesioned in Parkinson's pathology. Patterns observed in 

schizophrenic patients was reproduced by decreasing the slope and increasing the 

threshold in the frontal units’ activation function, and this is deemed to be consistent 

with the frontal pathology in schizophrenia. Huntington's Disease was simulated by 

reducing the activation of all striatal units and by decreasing the slope of activation 

function in the frontal units. This is consistent with the pattern of degeneration of the 

striatum, but also with the concomitant frontal pathology.  

 

The model has several issues that we address below. In the model there are 

corticothalamic connections, but there is no corticothalamic loop. Rather, the striatal 

units represent the stimulus card pattern modified by the frontal units (that allocate 

attention) and the target cards’ units. Information is compressed downstream between 

the striatal and nigropallidal layers, but the compression ratio is not comparable with the 

one observed in the neuroanatomical circuits (as in the dimensionality reduction 

models; Bar-Gad & Bergman, 2001). Response selection occurs at the thalamic level, 

and not at the motor/premotor level, and thalamic units mutually inhibit each other. If 

we ignore the fact that thalamic units do not project back to cortical ones, thalamic 

inhibition works in practice as cortical inhibition, defeating the purpose of having basal 

ganglia units as a device that arbitrates between actions. Also, the striatal units do not 

process any feedback signal, but reward occurs only through inhibition and excitation of 

frontal units. While reward processing might also occur in the frontal areas through the 

mesocortical pathway, a signal from the substantia nigra is known to feed into the 

striatal units, too. Finally, the model fitting is not as rigorous as it could be, as no 

variance in the scores is taken into account and there is no formal discussion of the 
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model fitting techniques utilised. However, the author compares different models of 

damage when fitting different patients’ data. 

 

The model is historically important, as it establishes the practice of linking 

neurobiology with information processing in a concrete task. Most importantly, it 

features a simple model fitting procedure to match data to patients' performance in the 

WCST, and therefore constitutes a general attempt to elucidate the relationship between 

behavioural and biological deficits in higher-order cognition. The issues that we 

addressed will be a starting point in the development of the work shown later on in the 

thesis. 

 

1.6.8 The basal ganglia as a procedural module within the ACT-R cognitive 

architecture 

Stocco (2018) presents a replication of the probabilistic stimulus selection model 

described in a previous section (Frank, Seeberger, & O'Reilly, 2004) in the cognitive 

architecture ACT-R (Anderson, 1996). In this architecture declarative knowledge such 

as perceptual inputs, semantic memory, and motor programs is stored in static data 

structures called "chunks", while procedural knowledge is stored in "production rules", 

that encode state-action associations. Production rules are associated with basal ganglia 

activity. Thus, in this architecture, basal ganglia activity has semantic content that 

depends on a specific procedure (e.g. "attend this stimulus"), and the conflict between 

procedures is handled by assigning to them a scalar quantity called "utility" whose value 

is updated every time the unit fires. Comparing the canonical model with one 

production for each action (‘Pick this choice’) and a version with two competing 

productions associated with one action (‘Pick this choice’ and ‘Do not pick this 

choice’), the author shows that only the latter version of the model correctly replicates 

the experimental data in PD patients, and these alterations to the architecture are 

compatible with the physiology of the basal ganglia structure. Although this work does 

not use any specific implementation of the basal ganglia action based on the collective 

activity of the nuclei, it demonstrates that the higher-order cognitive architectures can, 

in principle, accommodate lower-order neurobiological findings, by using bridge 

principles. 
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1.6.9 The basal ganglia as a global inhibition system 

At the neural level, cortical activity needs to be regulated in order to prevent over-

excitation, but also to avoid activity dying out prematurely and with subsequent early 

loss of representations. While local inhibitory cortical mechanisms play a role in global 

inhibition, Wickens (1993) suggests that cortical activity is regulated by the basal 

ganglia, through mutual inhibition in the striatum. Distributed neural populations in the 

cortex project into a smaller population of striatal neurons and the competition therefore 

occurs in the striatum only, and only neurons that belong to the same motor domain 

mutually inhibit each other and have a common set of cortical afferent. Each domain 

then projects to different neurons downstream in the pallidum. The anatomical and 

functional distinction between indirect and direct pathway is not present. This theory of 

the striatum is consistent with many aspects of neurophysiological data, especially of 

connectivity, and the information processing aspect can be implemented in artificial or 

spiking neural networks.  

 

 Evaluation: The nature of dopamine signal 

The role of the basal ganglia both in learning and behaviour is deeply related to the 

functional significance of dopamine. Its role is the central nervous system, and in 

particular in the basal ganglia nuclei and the cortex, is still contentious, but progress has 

been made during the last decades, as at least a few plausible theories have been 

identified and these have generated different research programmes. As mentioned 

above, Schultz et al. (1997) ascribes a precise algorithmic property to dopamine, such as 

the ability to signal the discrepancy between predicted and observed reward (reward 

prediction error, RPE). This computational framework is essential within actor-critic 

models, but its long-lasting influences can also be appreciated by its constant presence 

in other models.  

 

Redgrave, Gurney and Prescott (1999) offer a radically alternative theoretical 

framework. Dopamine signalling, they argue, would have too short a latency to be able 

to signal reward prediction error, and it is more plausible that short phasic burst of 

dopamine are elicited by novel stimuli (see also Schultz, 2016). Dopamine signal would 

be therefore instrumental in allocating mental resources to attend to a novel stimulus or 

set of stimuli. Other criticisms of the RPE hypothesis come from Pennartz (1996) and 

more recently from Salamone et al. (2005). They noticed that dopamine cells in striatal 

structures increase their firing rate in response to stimuli other than rewards or 
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predictions of primary or secondary rewards. In fact, novel stimuli and motivational 

states seem to be more predictive of dopaminergic activity.  Also, in order for the RPE 

to be valid, a stimulus needs to carry an additional temporal component that allows the 

explicit representation of time from stimulus to reward. It is unclear whether this is true 

or not of the dopamine signal. Recent work suggests that reward signals and temporal 

properties of cues are represented in the sensorimotor cortex (Ramakrishnan et al., 

2017).  

 

Berridge, Robinson, and Aldridge (2009) suggest yet another function for dopamine 

signals. Dopamine would rather mediate the 'incentive salience' of stimuli, altering their 

motivational value and increasing the probability of a reward to be approached by the 

agent. This motivational aspect would be dissociable from the hedonic aspect of a 

reward (pleasure) and from the learning component. 

 

At the algorithmic level, the temporal learning algorithm is still a valid learning 

mechanism, but all the presented computational and empirical work cast a doubt on 

whether the relationship with dopaminergic signalling is as straightforward as 

envisioned by Schultz et al. (1997).  

 

 Summary 

While computational models before the 1990s tended to focus on the neuroanatomy of 

the basal ganglia in relation to posited higher-order operations (sequencing) and on how 

to explain the fundamentals of pathology in neuropsychiatric population, a new 

approach, focussed on modelling neuropsychological data became increasingly more 

common in that decade. Simulating a neuropsychological task has a great advantage 

over simulating general processes, in that human and animal data can be compared 

against the model to an arbitrary degree of accuracy, and parameters can be fitted 

accordingly. Furthermore, the neuropsychological literature is very rich and can provide 

raw material for the computational modeller. Modelling neuropsychological tasks in 

clinical populations is also useful for capturing dysfunctions in cognitive and neural 

systems, thereby advancing the clinical neurosciences, and helping, in turn, to design 

better assessment and diagnostic instruments for specific populations.  

 

The models analysed above are some of the most influential in the field of 

neurocomputational modelling, but they represent only a fraction of the models 
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produced during the last decades. The collaboration between clinical centres, 

experimental facilities, and modellers has given rise to a multitude of variations of these 

models. What appears clear from examining them closely, is that models that use 

different architectures tend to successfully simulate specific results within a domain 

and, accordingly, although progress has been made during the last decades, these 

models have yet to be unified.  

 

 Research questions 

The broad question that we would like to explore in the present thesis is whether it is 

possible to reconcile top-down and bottom-up approaches to simulate higher-order 

neuropsychological tasks, integrating distinct and distinguishable level of analysis. 

 

More specifically, we model the Wisconsin Card Sorting Test (WCST; Heaton, 1981) 

and the Brixton Task (BRX; Burgess & Shallice, 1996), two tasks used in clinical 

neuropsychological practice to assess executive functions in a variety of clinical 

conditions. 

 

The structure of the two tasks comes from two compatible models: that of Cooper & 

Shallice (2000), that describes routine action selection, and that of Gurney et al. (2001) 

(outlined earlier in the chapter), that describes how a biologically accurate model of the 

basal ganglia implements action selection. The choice of adopting Gurney et al.’s model 

(2001) is motivated by several reasons. All the other models analysed have been either 

developed to work with a specific cognitive architecture (e.g. Stocco et al., 2018; Frank, 

Loughry & O'Reilly, 2001), do not have the adequate level of biological detail (e.g. 

Amos, 2000), or if a localist representation is used the required number of mutual 

inhibitory connections in the striatum would grow disproportionately (Wickens, 2003). 

Furthermore, Gurney et al.’s work seems to be unique in being able to distinguish 

between algorithmic and implementational levels (Marr, 1982), and in distinguishing 

between performance and learning components of the model. All these desirable 

properties indicate a high compatibility with Cooper and Shallice (2000). In the thesis, 

we start by replicating and then extending this basal ganglia model. We then embed it 

within a corticothalamic loop in a structure that simulates first the WCST, then the 

BRX. A further departure from the Cooper and Shallice (2000) model is an additional 

mechanism that controls the stability of representations, together with the basal ganglia 

section controlling their flexibility. We finally validate these models examining the 
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ability to simulate data collected in two experiments with older adults and adults with 

ADHD. A qualitative analysis of parameter space is presented in each case, in order to 

verify whether the intuitive meaning of parameter is coherent with the direction of 

changes (or the lack of thereof) in behavioural variables. Quantitative model fitting and 

model comparisons provide additional evidence for the model. It is worth noting that 

the model is not only assessed with respect to the ability to fit empirical data and to fit 

them better than any other model using the same magnitude of complexity (Rodgers & 

Rowe, 2002; but also see Roberts & Pashler, 2000), but also the ability to cut across 

domains and levels of understanding. Another important research question is therefore 

whether the model can generalise to executive tasks that can be constructed with 

hierarchical schemas, and to what extent stability and flexibility in behaviour are 

affected by control parameters and by the computational representations of dopamine 

signalling. 
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Basic action selection: simulating a multi-

channel basal ganglia 

 

 Abstract 

In this chapter we report the results of the reimplementation of the basal ganglia model 

of Gurney et al. (2001) in Simulink™ and Matlab™, and we introduce a variation in the 

way internal and external signals are controlled within that model, by associating a 

sigmoid function with variable bias (threshold), gain (slope), and skewness, to each 

output. We then analyse how the properties of the basal ganglia units change as a 

function of these parameters. We show that manipulating the bias in the striatal units is 

equivalent to adding a signal to them, and that the skewness parameter is redundant. We 

then extend the model from two to five channels, and examine the properties of this 

network in terms of channel selectivity. Finally, we explore the possibility of having 

channels expressing different parameters, to see how this affects selection. 

 

 Introduction 

Many basal ganglia models have been developed, but that of Gurney et al. (2001a) is 

important in two respects. First, the computational, algorithmic, and implementational 

level (Marr, 1982) are distinct, clearly identifiable and provided with bridge laws. The 

computational purpose of the basal ganglia, the authors argue, is to perform action 

selection when a simple stimulus-response association is not sufficient anymore to 

guarantee the effective use of motor program. This belief arises from evolutionary 

considerations. The algorithm that optimally process the salience of signals is the multi-

hypothesis sequential probability ratio test (MSPRT), as illustrated by Bogacz and 

Gurney (2007). This consideration mainly arise from the domain-general nature of the 

signals processed in the basal ganglia, and the limitations of decision-making 

mechanisms that employ diffusion or race models.  Finally, the implementational level, 

as illustrated in Humphries et al. (2006), links the basal ganglia nuclei and their 

electrophysiological properties. Second, the model is compatible with higher order 

cognitive operations that may take the implementational form of a production system or, 
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as we will see in future chapters, schema-activation based computation as described in 

Cooper and Shallice (2000). 

 

Although the MATLAB™ code was provided by the original authors, the model was 

reimplemented following the description in the papers by Gurney et al. (2001a) and 

Gurney et al. (2001b) with both Simulink™ and MATLAB™. This process was aimed 

at testing reproducibility by ensuring that the authors had provided not only a well-

documented analysis of all the processes, but also a set of principles and key findings 

that would hold irrespective of the programming language used for the implementation 

(Lane & Gobet, 2003). 

 

The model assumes that the computation of the basal ganglia consists in selection of 

motor plans. These motor plans might share motor resources or not. In the former case, 

the basal ganglia prevent the simultaneous execution of incompatible motor plans. The 

first theoretical assumption in this kind of models is the identification of an individual 

nucleus with a specific computational function. This is an approach typical of system 

neuroscience. 

 

The second theoretical assumption is related to the distinction between performance and 

learning. While other models of the basal ganglia are mostly concerned with the 

learning aspects (e.g. Montague, 1996), sensorimotor models like the one discussed here 

focus on the performance aspects. The dissociation between performance and learning 

seems to be necessary to undertake a more rigorous analysis of how action selection is 

carried out, independently of how the different rewards of the individual actions are 

processed. This distinction can be justified with neurophysiological and experimental 

evidence. As we saw in the previous chapter, evidence indicates that dopamine phasic 

firing rates encode the error between expected and current reward (Schultz, 1998). 

However, besides brief burst of high frequency spikes, dopaminergic neurons display a 

tonic firing pattern, firing spontaneously at a low rate (4-10Hz). We will assume, for the 

moment, that these two different patterns might have a differential effect on learning 

and performance, respectively. A piece of evidence for this distinction comes from 

Parkinson’s disease (PD) patients. Administration of levodopa yields an almost 

immediate improvement in motor functions, measured with the Short Duration 

Response (SDR). Also, the amount of drug injected positively correlates with the SDR. 

This could be related to the immediate increase in tonic dopamine in the basal ganglia 
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circuits. Conversely, a lasting motor improvement can be noticed after many drug 

administration sessions, even after levodopa elimination, measured with the Long 

Duration Response (LDR). This differential effect might in fact be due to the immediate 

dopamine modulation of synaptic plasticity (Nutt et al., 1997). These observations 

suggest that performance in action and motor selection could not solely arise from 

learning mechanisms but be computationally differentiable. In this chapter we simulate 

aspects related to action selection only, and in the next chapters we will gradually 

introduce the learning aspect and investigate how these two aspects can be interrelated 

in progressively complex models. 

 

 Model description 

The model is informed by the anatomical connections between the nuclei and by the 

presence of parallel and partially segregated pathways (Alexander et al., 1986). Each 

signal from the cortex is thought to encode an action or an action plan. 

 

The model has been implemented in Matlab™ and Simulink™. The time signal is 

assumed to be correlated with the average firing rate of the nuclei. In this chapter we 

show only the results obtained with Simulink™, but the Matlab™ implementation 

yields identical results and after this chapter only results from models coded in 

Matlab™ are reported. 

 

The diagram of the model and its parameters are shown in Fig. 2.1. (At this stage of 

simulation, only two channels compete for being selected. In principle, the network can 

be extended to an unlimited amount of channels, following the same principles of 

excitation and inhibition, because of the ability of the network to scale signals.) The 

cortical signal, which represents the salience of the signal, feeds into the three main 

nuclei of the basal ganglia: striatum controlled by D1 receptors (STRD1), subthalamic 

Nuclei (STN) and striatum controlled by D2 receptors (STRD2). It is assumed that all 

three groups of nuclei receive copies of the same signal. While this is not known with 

certainty it is plausible that these signals are highly correlated (Feger et al., 1991). 

 

Both the STR and STN outputs feed into the globus pallidus (internal segment) (GPi), 

which represents the basal ganglia output to the thalamic nuclei. This part of the circuit 

is what Gurney et al. (2001) named the “selection circuit”, in place of the more familiar 

“direct pathway”. This pathways is equivalent to a feedforward off-centre and on-
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surround network that disinhibit programs with higher salience and inhibit the weaker 

ones. From a purely algorithmic standpoint this part of the striatum instantiates a simple 

race model between the channels (Bogacz & Gurney, 2007) 

 

The GPi also receives projections from the globus pallidus external segment (GPe), 

which in turn feeds back to the STN through inhibitory projections. This part of the 

circuit is what Gurney et al. (2001) called the “control circuit”, in place of the more 

familiar “indirect pathway”. The algorithm instantiated by this section is a scaling 

process that reduces the minimum activation salience of each individual channel by an 

amount proportional to the sum over all the other saliences (Bogacz & Gurney, 2007). 

When this algorithmic solution is stacked up against a system of the striatal regulation 

of cortical activity (Miller & Wickens, 1991), it has the advantage of requiring many 

fewer connections, under a localist assumption.  

 

While the functionality of the striatum is not contingent on the presence of recurrent 

inhibitory connections, here a low level of mutual inhibition has been implemented in 

the form of the parameter winh, owing to the fact that a minimal amount of intrinsic 

inhibition in the striatum is still plausible (Brown & Sharp, 1995; Burke, Rotstein & 

Alvarez, 2017). Other simulations not shown here that the impact of this parameter does 

not affect the overall function of the basal ganglia, but it might mildly affect selection 

when multiple channels are on. 
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Fig. 2.1 Schematic of the two channel network and legend. The left and the right green 

box represent the internal and external segments of the Globus Pallidus, respectively. 

The dotted line represents the output of the BG nuclei to the thalamus. The arrow with 

the standard pointer represents excitatory projections and the arrow with the dot pointer 

represent inhibitory projections. The model is fed with two dopaminergic signals 

labelled D1 and D2. The system outputs the signals that feed the thalamic nuclei, and 

that are generally tonically active but inhibited by basal ganglia action. 

 

Internally, each nucleus has very similar features. This demonstrates that the functional 

qualities of the basal ganglia are not brought about by the diversity of processes in each 

individual nucleus, but by the architecture of the system. Dopamine control is exerted 

by an external signal from D1 and D2 channels, that we call DA when both of them are 

manipulated at the same time (D1 = 1 + DA and D2 = 1 - DA). Noise is added to both 

the cortical input and external dopamine signal. The input signal from the cortex is 

multiplied by the dopamine signal before entering the striatum. Decreasing the 

dopamine signal results in excessive input in the subthalamic nucleus, compared to the 

striatum. The dopamine control signal represents the tonic firing of the substantia nigra 

pars compacta (SNpc) and it is kept constant across all the nuclei in order to investigate 

the differential effect of the dopamine signal on the overall circuit.   

 

The globus pallidus (external segment) sends inhibitory projections back to the 

subthalamic nuclei, where they are subtracted from the main cortical signal and 
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therefore diminish the excitatory influence of the subthalamic nuclei over the globi 

pallidi.  

 

In Simulink™ the Leaky Integrator is simulated with a simple transfer function with a 

single pole: 

 

𝑻(𝒔) =  
𝑮𝑰

(𝒔 – 𝑷𝑰)
 

 

The gain is indicated as GI and PI is the pole, in this case negative. The pole is the root 

of the expression at the denominator. The transfer function T(s) maps input and output 

following the leaky integrate and fire model of the neuron, where v(t) is the membrane 

potential, I(t) is the sum of the input currents added up in the dendrites and τ is the time 

constant (product of the membrane resistance Rm and the membrane capacitance Cm): 

 

𝝉
𝒅𝒗

𝒅𝒕
= −(𝒗 − 𝒗𝒓𝒆𝒔𝒕) + 𝑹𝒎𝑰   

  

The leaky integrate and fire model is completed by the generation of spikes after 

reaching a threshold and a reset mechanism. Input x(t) and output y(t) represent the 

normalised mean firing rate of the population (spike/sec) and the resting activation is 

null. The injected current is the input signal x(t). 

 

𝝉
𝒅𝒚

𝒅𝒕
= −𝒚 + 𝑹𝒎𝒙 

 

Applying the Laplace transform to both the terms yields  

 

𝝉𝒔𝒀(𝒔) = −𝒀(𝒔)  + 𝑹𝒎𝑿(𝒔) 

 

And rearranging the term yields a transfer function: 

 

𝒀(𝒔)

𝑿(𝒔)
=

𝑮𝑰
𝒔 − 𝑷𝑰

 

 

Which is formally identical to the leaky integrator transfer function, where: 
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𝑮𝑰  =  
𝑹𝒎
𝝉
, 𝑷𝑰  = − 

𝟏

𝝉
 

 

Thus, the gain parameter is directly proportional to the resistance in the leaky integrator 

and the pole parameter is the opposite of the reciprocal of the time constant. In essence, 

here the leaky integrator acts as a simple low-pass filter that evens out fast-varying 

signals. All the nuclei use the same parameters for the leaky integrator. 

 

In Matlab™, the leaky integrator is implemented in the form of difference equation, 

where the solution to the differential equation of the integrator is approximated by 

breaking the time domain up into discrete steps. 

 

The squash function restricts the output to within 0 and 1 and maps input and output 

linearly within the limits, to include threshold and saturation for the neural signal. The 

sigmoid function is usually preferred for these applications, but Gurney et al. used this 

function because of its analytical tractability. At present, the reimplementation proposed 

here also makes use of the same squash function. The variable x represents the input, y 

the output, and the threshold value ε varies across the nuclei. 

 

𝒚(𝒙) =

{
 
 

 
 

 𝟎 𝒇𝒐𝒓 𝒙 < 𝜺

   𝒎(𝒙 − 𝜺) 𝒇𝒐𝒓 𝝐 ≤ 𝒙 ≤
𝟏

𝒎
+ 𝜺

           𝟏 𝒇𝒐𝒓 𝒙 >
𝟏

𝒎
+ 𝜺

 

   

Mutual inhibition has been implemented in the striatum by subtracting the weighted 

sum of all the other units from each salience value of the channel. Since medium spiny 

neurons also synapse with each other in the striatum, this computation is biologically 

plausible. Mutual inhibition is not essential to perform a successful action selection but 

there is evidence that a small amount of it could be present in the striatal circuits (Jeager 

et al., 1994). In the equation, xi represents the input and yi the output for the channel i. 

The Kronecker delta (ij) has a unitary value if the indices are identical, otherwise it is 

zero. In the following simulations the value of winh has been set to a very low value. 
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𝐲𝐢 = 𝐱𝐢 −𝐰𝐢𝐧𝐡∑(𝟏− 𝛅𝐢𝐣)𝐱𝐣

𝐍

𝐣

 

 

The signal processing in the two segments of the globus pallidus has an identical kind 

of processing units: after a gain control, external excitatory and inhibitory signals are 

added up together and they are then filtered in a leaky integrator and a squash function. 

 

 Simulation 

2.4.1 Effects of channel salience 

The values of parameters used in the simulation in this section are shown in Table 2.1.  
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Table 2.1 Parameters Value 

Symbol Value Meaning 

𝑮𝒊 5 Transfer function gain 

𝑷𝒊 -5 Transfer function pole 

𝑫𝟏 0.5 Dopamine signal to STR D1 

D2 0.5 Dopamine signal to STR D2 

𝜺𝒔𝒕𝒓 0.2 Threshold for saturation fnc. in STR 

𝜺𝒔𝒕𝒏 -0.25 Threshold for saturation fnc. in STN 

𝜺𝒈𝒑𝒊  -0.2 Threshold for saturation fnc. in GPi 

𝜺𝒈𝒑𝒆 -0.2 Threshold for saturation fnc. in GPe 

𝝃𝒄𝒉  10-4 Noise signal to all channels 

𝒘𝒆 1.00 Weight GPe to GPi  

𝒘𝒈 1.00 Weight GPe to STN 

 𝒘𝒕 1.00 Pre-gain to STN 

𝒘𝒔 1.00 Pre-gain to STR 

𝒘+ 1.00 Weight STR to GP 

𝒘_ 1.05 Weight STN to GP 

𝒘𝒊𝒏𝒉 0.10 Mutual channels inhibition in STR 

 

Parameter ξch represents the noise added to all channel inputs, it has been drawn from a 

uniform distribution, and it is set to a very low value.  

 

A simulation was run to examine the effects of cortical excitation in the basal ganglia 

circuit. Fig. 2.2 shows the basal ganglia circuit response to stepwise increasingly higher 

cortical excitation (dashed line) that partially overlaps for a few seconds. The cortical 

activation is also called salience to indicate the perceptual quality of a stimulus. A 

greater cortical signal correspond to a greater salience (importance) of the stimulus.   

 

The simulation is divided in 8 segments, each one lasting 5 time units. Assuming that a 

value below 0.5 means that the channel is activated, both channels becomes disinhibited 

only when salience exceeds 0.8 and they are not activated simultaneously. 
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Fig. 2.2 The plot shows the response of the basal ganglia output (solid line) caused by 

cortical excitation (dashed line), associated with the signal salience. A higher output 

signal corresponds to greater inhibition of the thalamic structures.  

 

2.4.2 Simulating the effects of dopamine manipulation 

We briefly examine the effect of the parameter DA (Fig. 2.3). DA determines the value 

of both D1 and D2 parameters shown in Table 1. When dopamine signal is too low (DA 

= 0), both channels do not reach the threshold and are therefore inhibited, irrespective of 

the cortical input. Increasing dopamine (DA = 1) yields a channel selection compatible 

with just the higher saliences. A further increased (DA = 1.5) allows multiple selections. 

In other words, increasing global tonic dopamine “flattens out” the channel response 

allowing thalamic disinhibition, while lower values inhibit the channels. This is 

compatible with what is seen in Parkinson's Disease, although the interpretation for 

higher values of dopamine is at the moment unclear. 
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Fig. 2.3 Effects of dopamine manipulation for both the channels.  

 

 Variation of parameters 

At this point, we alter the mechanism of control by replacing the linear saturation 

function with a generalized sigmoid function with a “skewing parameter” ν that can 

simulate the asymmetric behaviour of a neural substrate near threshold and near 

saturation.   

 

[
𝟏

𝟏 + 𝒆−𝜶(𝒙−𝜷)
]
𝟏/𝝂

 

 

This allows a more fine-tuned control of parameters. This addition is justified by the 

kind of behaviour visible at the level of single neurons and accurately described by the 

current-frequency curves. For instance, after a certain threshold is reached, Type II 

neurons start firing at a fixed frequency much greater than zero, while Type I neurons 

increase their firing rate from zero to the maximum. Parameter ν mimics this tendency 

to an asymmetric response close to threshold and saturation that is not reproducible with 

a symmetric sigmoid (ν = 1). This parameter might turn out to be useful to simulate 

temporal asymmetric behaviours. The smaller the value of ν, the flatter in the lowest 

part of the domain the sigmoid curve looks. In other words, the neural substrate needs a 

higher firing rate to produce minimal output. The new values of the parameters used in 

the simulation, unless otherwise specified, are shown in Table 2.2 
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Table 2.2 Parameters value (variation) 

Symbol Value Meaning 

𝑮𝒊 5 Transfer function gain 

𝑷𝒊 5 Transfer function pole 

𝑫𝟏 1.00 Dopamine signal to striatum D1 

D2 1.00 Dopamine signal to striatum D2 

𝒗𝒔𝒕𝒓 1.00 Skewness for saturation fnc. in striatum 

𝒗𝒔𝒕𝒏 1.00 Skewness for saturation fnc. in STN 

𝒗𝒈𝒑𝒊  1.00 Skewness for saturation fnc. in GP (internal) 

𝒗𝒈𝒑𝒆 1.00 Skewness for saturation fnc. in GP (external) 

𝝃𝒄𝒉  10-4 Noise signal to all channels 

𝒘𝒆 1.00 Weight GPe to GPi  

𝒘𝒈 1.00 Weight GPe to STN 

𝒘𝒕 1.00 Pre-gain to STN 

𝒘+ 0.8 Pre-gain to STR 

𝒘− 1 Weight STR to GP 

 𝜷𝒔𝒕𝒓 0.7 Threshold for saturation fnc. in striatum 

𝜷𝒔𝒕𝒏 0.25 Threshold for saturation fnc. in STN 

𝜷𝒈𝒑𝒊 0.3 Threshold for saturation fnc. in GP (internal) 

𝜷𝒈𝒑𝒆 0.3 Threshold for saturation fnc. in GP (external) 

𝜶𝒔𝒕𝒓 5.33 Slope for saturation fnc. in striatum 

𝜶𝒔𝒕𝒏 5.33 Slope for saturation fnc. in STN 

𝜶𝒈𝒑𝒆 5.33 Slope for saturation fnc. in GP (internal) 

𝜶𝒈𝒑𝒊 5.33 Slope for saturation fnc. in GP (external) 

𝒘𝒊𝒏𝒉 0.03 Mutual channels inhibition in striatum 

 

With these carefully chosen new values, the plots of the simulation are essentially 

analogous to the ones depicted in the previous paragraph. 

 

2.5.1 Parameter evaluation 

This version of the model allows more control on parameters and partially ties them to 

specific neurobiological interpretation. However, it is important to realise that all the 

parameters that control the sigmoid function are closely interlinked. Figs. 2.4 to 2.7 

show the effects of manipulation of the input tonic dopamine signal and saturation 
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parameters in the striatum only, while Figs. 2.8 and 2.9 show the effects of 

manipulating parameters of the subthalamic nucleus. Each relevant parameter has been 

mapped onto the total possible disinhibition of the channel, calculated by counting the 

total time in the simulation where the selected channels exceed an arbitrary threshold of 

0.5 and then normalised by dividing all values by the maximum. The choice of a 

threshold is motivated by the binary nature of an action: despite the use of continuous 

signal by the brain (and by the model), an action can be either selected or not. Also, 

specifying a threshold makes a qualitative comparison between the parameters possible 

and enables the identification of transition points.  

 

Manipulation of the amount of tonic dopamine DA, parameters νstr and βstr yields a very 

similar qualitative result: the total percentage of inhibition increases or decreases in a 

step-wise fashion. However, in the case of νstr, the amount of disinhibition is stationary 

from νstr ≈ 0.3 to νstr ≈ 1.2, and then it steadily grows until the maximum is reached 

within 0.5 units. Fig. 2.6 shows the effect of the variation of the βstr parameter, which 

manipulates the threshold of the saturation curve, effectively translating it to the right.  

The βstr plot in Fig. 2.6 is the mirrored image of the DA plot in Fig. 2.4. In other words, 

increasing dopamine input and decreasing the β parameter cause an almost identical 

step-wise increment of the overall channel disinhibition. This result is not surprising 

given our implementation, but it is common practice to simulate the computational 

action of dopamine by changing the gain of the sigmoid function (Li & Sikström, 2002) 

rather than the threshold. The gain corresponds in the present model to αstr. Fig. 2.7 

shows how the value of αstr affects the total channel disinhibition. The function is 

increasing in a sigmoid fashion and between αstr ≈ 7 and αstr ≈ 9.5 it can be considered 

quasi-linear, and quasi-constant outside those values. The effects of manipulation of the 

ν parameter in the subthalamic nucleus (νstn) are negligible, as long as the value is far 

enough from the null value (Fig. 2.8), and the effects of manipulation of the β parameter 

in the subthalamic nucleus (βstn) are very close to those of βstr (Fig. 2.9). 
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Fig. 2.4 Effect of variation of the DA parameter 

 

 

 

Fig. 2.5 Effect of variation of  parameter in the striatum. 

 

 

 

Fig. 2.6 Effects of manipulation of the  parameter in the striatum. 
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Fig. 2.7 Effects of manipulation of the α parameter in the striatum. A higher α in the 

saturation function shifts the function into a translated step function. 

 

 

 

Fig. 2.8 Effect of manipulation of the ν parameter in the subthalamic nucleus. If the ν in 

the saturation function is far enough from the null value the parameter has almost a 

negligible effect with respect to the total inhibition. 

 

 

 

Fig. 2.9 Effect of manipulation of the  parameter in the subthalamic nucleus.   
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In order to discern the contribution of different internal variables to mimicking the 

amount of external dopamine signal, we supplement the above qualitative analysis with 

a quantitative one. Multiple correlation analysis of the total possible disinhibition is 

used to test if the external dopamine signal and the parameters of the saturation function 

were significantly inter-correlated across the simulation time. All the values displayed 

in the matrix (Table 2.3) are significant at p < .05 excluding that marked with ∎. 

Results indicate that the external dopamine signal and manipulation of the parameters of 

the saturation function in the striatum (even the translation parameter βstn in the 

subthalamic nucleus) produce almost analogous results. Parameter αstr correlates with 

all the β parameters. Also, νstr  moderately correlates with the all the variables but νstn  

does not. 

 

Table 2.3 Correlation matrix of the total possible disinhibition 

 DA αstr βstr βstn υstr υstn 

DA 1 0.92 −0.92 0.91 0.77 −0.42 

αstr  1 −0.86 0.91 0.70 −0.36∎ 

βstr   1 −0.96 −0.75 0.54 

βstn    1 0.74 −0.55 

υstr     1 −0.51 

υstn      1 

 

2.5.2 Discussion 

We increased the model complexity by introducing a saturation function in the form of 

a sigmoid function instead of the linear and analytically tractable one used in the 

previous section. This analysis gave us the opportunity to consider whether parameters 

are useful to characterise an algorithm and link to putative neurobiological function, or 

whether specific parameters are simply redundant. Manipulating parameter βstr is, for 

instance, equivalent to altering the DA signal. Increasing αstr is also somewhat similar to 

increasing the DA signal, but the since the shape of the transformation is qualitatively 

different, it is not advisable to drop the parameter just yet. Parameter νstr works also 

very similarly to βstr, and the similar shape of the curve suggests that this parameter 

should be dropped. If, for instance, the plot produced a U-shaped form, there would be a 

reason to keep the parameter. Altering parameter νstn does not affect inhibition 

properties if not at extremely small values.  
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In the following simulations the model will be extended to more channels, to observe 

whether the properties of the model examined so far still hold for more than two 

channels. Tonic dopaminergic input will be simulated by altering βstr, and parameters 

νstr and νstn will be set to 1, effectively changing the generalised saturation function into 

a simple saturation function. 

 

 Extension to more channels 

A new version of the model with 5 channels was implemented. The Simulink™ 

diagram is shown in Fig. 2.10. The nuclei are connected in a fashion identical to the 

two-channel version, but this time there is only one five-component vector input 

representing the saliences of each individual channel. A further extension to more 

channels is therefore possible and relatively easy to implement. Changes in striatum 

dopaminergic tonic input from the substantia nigra have been replaced by the 

manipulation the βstr parameter, since they have been shown to be functionally 

equivalent in the previous section.  

 

Fig. 2.10 Schematic of the basal ganglia with vector input and output, represented by 

one single black line. The light violet structure is the D1 Striatum (D1 STR), the dark 

violet is the D2 Striatum (D2 STR). The red structure is the subthalamic nucleus (STN). 

The dark green structure is the GP external segment (GPe) and the light green one is the 

GP internal segment (GPi). The grey structure computes the cumulative sum of the 

outputs from the subthalamic nucleus. This structure is identical to the one shown in 

Fig. 2.1, but this is the Simulink™ schematic extended to 5 channels. 
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Fig. 2.11 shows an example of the output given a series of step signals that sometimes 

overlap. The dashed green line indicates the input to the basal ganglia while the blue 

line represents the output level of inhibition to the thalamus (the thalamic units are not 

shown here). The five-channel structure behaves similarly to the two-channel version. 

Manipulation of parameters of the striatum changes the level of total inhibition and, 

allowing single or multiple action selection. 

 

Fig. 2.11 The blue line represents the output of the basal ganglia (5 channels). The 

dashed green line represents the cortical input. Parameters in this simulation are 

identical to those in Table 2.2. The areas highlighted in pink show when the signal is 

going below the threshold (0.5), and the channel becomes disinhibited. 

 

In order to investigate how the selection of multiple channels is affected by βstr and αstr , 

we define the hard selectivity ratio as:  

 

𝝋𝒉  =  𝟏 −
𝑺

𝑿
 

 

Where S is the number of basal ganglia outputs that are below the threshold (0.5) and 

therefore input to the thalamus, while X is the number of channel inputs (cortical signal) 

whose activation values is above the threshold. The selectivity ratio essentially 
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measures how many channels would be selected if their activation was strong enough to 

be selected. The selectivity ratio was averaged across time for the input in Fig. 11, 

which features very strong signals (maximum activation) for a fixed time duration, 

some of them overlapping.  Similarly, we define the soft selectivity ratio as: 

 

𝝋𝒔 = 𝒎𝒂𝒙
𝒊

𝒄𝒊
𝟏 − 𝒐𝒊

 

 

where ci is the cortical input and oi is the basal ganglia output. In practice, this index 

gives a more graded view of what happens to the channels, given that the numerator is 

almost always smaller than or equal to the denominator, a smaller value of the index 

indicates a greater disinhibition, and a larger index indicate a greater inhibition of the 

channel.  

 

 

Fig. 2.12 Hard selectivity ratio against βstr, for three values of αstr  

(values are normalised to the maximum value) 
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Fig. 2.13 Soft selectivity ratio against βstr, for three values of αstr 

(values are normalised to the maximum value) 

 

Fig. 2.12 shows that both parameters βstr and αstr have little effect on the 'hard' 

selectivity ratio measure, apart from the extremes of the parameters. Fig. 2.13 shows a 

different picture, and suggests that the basal ganglia work in a fairly graded fashion. 

Also, a higher value of αstr seems to have an amplifying effect, but more so in the value 

of βstr around 0.5, and at extreme values. 

 

If we repeat the same analysis for a random set of inputs that covers the whole range of 

cortical activations (from 0 to 1) instead of being just a step function at the maximum 

level, results are substantially different. Fig. 2.14 and Fig. 2.15 illustrate the hard and 

soft selectivity measures for these new inputs. 

 

 

Fig. 2.14 Hard selectivity ratio against βstr, for three values of αstr, with a broader range 

of cortical stimuli (values are normalised to the maximum value) 
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Fig. 2.15 Soft selectivity ratio against βstr, for three values of αstr with a broader range of 

cortical stimuli (values are normalised to the maximum value) 

 

As we see, both the hard and soft selectivity measures become very sensitive to the 

variation of βstr. This demonstrates that the mechanism of the basal ganglia structure is 

fit for the purpose of general channel inhibition and disinhibition, and the threshold 

(bias) of the striatal function, conceptualised as the dopamine signal, smoothly controls 

this mechanism. Also, parameter αstr affect the process to a much small extent. 

However, the higher the cortical salience, the less sensitive to hard-switching the 

mechanism is. In other words, when actions are maximally salient, manipulation of the 

equivalent of the dopamine signal should affect basal ganglia output amplitude, but not 

selection. This is also psychologically plausible considering that multiple extremely 

salient sensory stimuli cannot be attended simultaneously (Miller & Buschman, 2013) 

 

The structure requires an additional system to select actions and allow action 

exploration in a probabilistic fashion, and this is examined in the next section. 

 

 Non-deterministic action selection 

The next step is to expand the structure to accommodate the fact that selection is not 

always deterministic. So far we saw what happens when we change βstr and αstr when 

the values for all the channels are identical. Learning mechanisms (not yet specified) 

could alter the parameters differentially. Fig. 2.14 shows how varying the threshold βstr 

only for the first channel leaves the other one unvaried. The areas highlighted in red are 

those for which the signal drops below the threshold (0.5). For βstr = 0.3 the first 

channel is always selected despite not being excited by the cortical signal, with the 

exclusion of 5 time units where the second channel is excited. This excessive channel 
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disinhibition caused by the low βstr ceases to work abruptly only when the other channel 

is entirely activated. A soft-switch (multiple channels activated) occurs between 30 and 

40 time units, when the cortical signal is 0.8 and both channels are then activated. 

Similarly, a soft-switch occurs when βstr are both 0.5. When βstr in channel one increases 

to 1, a hard-switch occurs. Only channel two is selected when the cortical activations 

are strong (but not at the maximum value). Finally, when βstr is equal to 1.3, the first 

channel is totally inactivated.  

 

 

Fig. 2.16 Displaying the output of two channels changing the value of βstr only for the 

first channel. Since the other channels are permanently not excited, only channel one 

and two are shown. 

 

This shows that hard and soft switching (that is to say, the activation of single or 

multiple channels) or biasing the channel to allow its selection can be done by 

manipulating βstr differentially. This will be relevant when we introduce a learning 

mechanism in a cognitive model that makes use of this action selection mechanism. 

 

 Summary 

The reimplementation of a variation of Gurney et al. (2001a,b) model in Matlab™ and 

Simulink™ yields results very close to those outlined in the original paper. The overall 

purpose of the original computational model was to show that the basal ganglia nuclei 

in the brain instantiate a channel selection mechanism that is compatible with 

evolutionary constraints, algorithmic constraints, and the differential neurobiological 

role of dopamine signalling to the striatum in the form of D1 and D2. We succeeded in 
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re-implementing the model, following exclusively the outline described in the original 

paper and without resorting to the online code. Since this cannot be said of many 

computational models discussed in research papers (even with code made available) 

(Cooper & Guest, 2014), we can consider the model successful with respect to 

replicability standards, among other things. 

 

In addition to re-implementing the model, we replaced the mechanism that controls 

striatal inputs via dopaminergic channels with a general sigmoid saturation curve and 

we studied how parameters affect the channel disinhibition process. Qualitative and 

quantitative simulations showed that the exponential parameter υ was redundant 

because it did not display any novel property in relation to the inhibition, despite being 

neurobiologically justified. The only important parameters that affect the model 

significantly are βstr and αstr. The model was then extended to five channels and we 

showed how the model naturally scales to a different number of channels without the 

need for changing parameters. 

 

Finally, we briefly ventured into what may be called 'learning' aspect of the model, 

showing that a differential manipulation of the βstr parameters allows the transition from 

a complete disinhibition of the channel, to a hard-switch, then to a soft-switch 

behaviour, and finally to a complete channel inhibition. This will be relevant in future 

chapters, when we will explore the relationship between dopamine control, action 

selection, and learning. 

 

The model is now ready to be implemented in a larger scale circuit, namely the 

corticothalamic loop, with the final purpose of simulating at significant aspects of 

higher order cognition. Therefore, in the next chapter this model of the basal ganglia 

will be embedded in a corticothalamic loop with three channels, and we will see for the 

first time a distinction between striatal processes and cortical processes, which was not 

present in this chapter. From the next chapter onwards we will exclusively employ the 

Matlab™ code equivalent to run each model, instead of the more cumbersome 

Simulink™ processes.   
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Simulation of corticothalamic loop 

 

 Abstract 

This chapter embeds the extended basal ganglia model presented in the previous in a 

corticothalamic loop. For the first time we introduce a differentiation between the basal 

ganglia units and the cortical units, in an attempt to simulate frontostriatal connections. 

The model is characterised as a loop since the cortical units receive an external signal, 

but also an additional one from the basal ganglia units that project back to that unit. We 

build a three-channel loop and study how basal ganglia parameters affect action 

selection, how reaction times distributions are produced, and how they relate to the ex-

Gaussian distribution. We discuss the role of dopamine in the circuit and possible 

extensions of the model. 

 

 Introduction 

As we examined in more detail, in the brain there are at least three of the corticostriatal 

loops that have been identified: motor, associative, and limbic (Fig. 3.1). These loops 

seem to be organised in a parallel fashion, with a remarkable degree of segregation 

among pathways (Purves et al., 2008), although a slight degree of overlap across all the 

basal ganglia nuclei is possible. In this chapter we aim to build a computational model 

of three corticostriatal loops bearing in mind these neuroanatomical constraints.  

 

In the brain, sensorimotor areas, including motor, sensory and parietal cortices, project 

into the putamen, which is located lateral to the caudate nucleus. The fibres then 

maintain their segregation into the lateral globus pallidus and then project onto the 

ventrolateral and anteroventral (VL and VA) nuclei of the thalamus, where they are 

relayed back to cortex. Associative areas such as the dorsolateral prefrontal cortex 

(DLPFC) but also the temporal and parietal association cortices project onto the anterior 

caudate and the medial putamen, and then they are relayed back to cortex via the 

anteroventral (VA) and mediodorsal (MD) nuclei of the thalamus. Hippocampus, 

amygdala, orbitofrontal (OFC) and anterior cingulate cortex (ACC), known as the 

limbic and paralimbic cortices, project onto the ventral striatum (pallidus and caudate, 
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part of the nucleus accumbens) and they are sent back to the cortex via the mediodorsal 

(MD) nucleus of the thalamus. Computationally, this can be realised by creating a set of 

cortical units that project into basal ganglia units, then thalamic units, and then back to 

the same cortical units.  

 

At this point a question regarding the meaning of the signal that individual units process 

can be asked. The firing rate of pools of neurons that process the same information is a 

possible answer but a more psychologically oriented term is salience (Gonzalez et al., 

2000). The relationship between firing rate and salience is unclear but attempts to link 

the two in a more rigorous fashion have been made (Humphries et al., 2006). Salience is 

computed from perceptual and motivational sub-system, that resembles top-down and 

bottom-up influences to the schemas in the Contention Scheduling framework (Norman 

& Shallice, 1986). The model presented in this chapter contains three main overarching 

structures: cortex, basal ganglia and thalamus: the first component can assume various 

“meanings” and for the purpose of the simulations in this chapter they can mean any 

action or thought, at any level of a hierarchy. However, in the following chapters an 

explicit association between motor/cognitive schemas and computational 

implementation in the cortical tissue will be made.  

 

In the present architecture, the purpose of the basal ganglia will be to facilitate or 

resolve the competition among the various channels that are part of the same 

corticothalamic loop (Alexander et al., 1986). The focus is on corticobasal circuits 

(cortex – basal ganglia – thalamus) – nothing will be said about the absence of other 

brain structures such as cerebellum and amygdala. The information processing 

happening in those circuits is known to influence cognitive control (Etkin et al., 2006; 

Middleton & Strick, 2000) and should not be neglected, in principle. However, for the 

present purposes, this computation can be ignored. The architecture of the present 

model leaves room for additional signal processing, where structures can mutually bias 

each other, resulting in theoretically justifiable differences in simulated 

neuropsychological data.  
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Fig. 3.1 Different cortico-strio-thalamic loops. From Aronson, Katnani, and Eskandar 

(2014) 

 

 Model description 

3.3.1 Introduction 

Here, we show an extension of the model presented in the previous chapter, embedded 

in a corticothalamic loop for three channels. A cortical unit processes both external 

input and a looped signal from the thalamus. Signals are processed by the basal ganglia 

unit, which perform a computation across all the other channels, to inhibit the less 

salient ones. Cortical units are isolated from the other cortical units, but at this stage a 

mild self-inhibition is applied as well. This should simulate the decay of working 

memory in neural circuits, where the signal is reverberated. The thalamus applies the 

inhibition computed by the basal ganglia back to the cortical channel (Fig. 3.2) 

 

At present, the model does not have any learning capabilities, but gives room for 

implementing them in the future in the form of simple reinforcement learning algorithm 

modulated by dopamine signals, as we will see in future chapters. So each state of the 

model depends on the current and the immediately previous one but not on the history 

of its responses to input and output signals. 
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Fig. 3.2 Schematic of the corticothalamic circuit 

 

3.3.2 Computation in the cortical units 

Computation in the cortex is described below. Letter ui  represent the input of the 

channel i and letter oi represents the output of the channel i. If time is not indicated, the 

function is calculated at the current time t. The letter oext,i represents the external signal 

applied to the cortical unit (and it can be considered an output from an external source), 

while othal,i  represents the external feedback signal from the thalamus. The fixed 

parameter ∂ is used to simulate discrete integration of the signal, and it should not be 

confused with the partial derivative sign. The parameters used for the sigmoid function 

σ (defined in paragraph 2.5, with υ = 1) in the cortex are αctx and βctx. The symbol ⟸ 

indicates an assignment of value. The meaning and the value of the constants are plotted 

in Table 3.1. 

 

ui ⟸ ∑wi,juj
j

+ oext,i + othal,i 

 

ai(t) ⇐ ∂ ∙ ai(t − 1) + (1 − ∂)ui(t − 1) 

 

oi ⟸ σ (ai) 
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3.3.3 Computation in the basal ganglia units 

Computation in the Basal Ganglia (BG) is more detailed than that outlined in the 

previous chapter. Drawing from the previous simulations, the joint activity of the basal 

ganglia nuclei register the activity in all the channels and suppress the activation of 

most of them, leaving just one or a few to “win the competition”. In the present model, 

computation happens in the caudate and putamen (str subscript), the subthalamic 

nucleus (stn subscript), the globus pallidus external segment (gpe subscript) and the 

globus pallidus internal segment (gpi subscript). As in the Gurney et al. (2001) model, 

the basal ganglia resolve competition between channels. However, unlike in Gurney et 

al. (2001), the loop signal is fed back to the cortex and units do not process the signal 

linearly, but through saturation functions. Parameters in these saturation curves in 

cortical and striatal units can be independently manipulated to achieve a dynamic 

channel selection. The parameters used for the sigmoid function in the cortex are αstr 

and βstr  for the striatum, αstn and βstn  for the subthalamic nuclei, αgpe and βgpe  for the 

globus pallidus (external segment), and αgpi and βgpi  for the globus pallidus (internal 

segment). All the unit ai are initialised at a null value. 

 

Striatum (D1) 

 

ui ⟸ octx,i 

 

ai(t) ⇐ ∂ ∙ ai(t − 1) + (1 − ∂)ui(t − 1) 

 

oi ⟸ σ(ai) 

 

Striatum (D2) 

 

ui ⟸ octx,i 

 

ai(t) ⇐ ∂ ∙ ai(t − 1) + (1 − ∂)ui(t − 1) 

 

oi ⟸ σ(astrD2,i) 

 

 

Subthalamic nucleus 
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ustn,i(t) ⟸ wstnoctx,i + wgpe_stnogpe,i (t − 1) 

 

astn,i(t) ⇐ ∂ ∙ astn,i(t − 1) + (1 − ∂)ustn,i(t − 1) 

 

ostn,i ⟸ σ (astn,i) 

 

Globus Pallidus External Segment 

 

ugpe,i ⟸ wstn_gpe∑ostn,i 
i

+ wstrD2_gpeostrD2,i  

 

agpe,i(t) ⇐ ∂ ∙ agpe,i(t − 1) + (1 − ∂)ugpe,i(t − 1) 

 

ogpe,i ⟸ σ (agpe,i) 

 

Globus Pallidus Internal Segment  

 

ugpi,i(t) ⟸ wstn_gpi∑ostn,i 
i

+ wgpe_gpiogpe,i (t − 1) + wstrD1_gpiostrD1,i (t − 1) 

 

agpi,i(t) ⇐ ∂ ∙ agpi,i(t − 1) + (1 − ∂)ugpi,i(t − 1) 

 

ogpi,i ⟸ σ (agpi,i) 
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3.3.4 Computation in the thalamic units 

Computation in the thalamus (thal subscript) is very elementary. Despite the thalamus 

being a subcortical structure with a wide range of electrophysiological data (Sherman & 

Guillery, 2006), its computation is thought to be fairly simple, at least when it has the 

functional role of relaying cortical signals. Although the thalamus is tonically active and 

its disinhibition increases channel activity, here the thalamus acts as a direct signal 

suppressor. This is computationally equivalent to having a constant excitation from the 

thalamus suppressed by the globus pallidus, if the thalamus does not receive any other 

external excitation. As a whole, a corticothalamic loop suppresses the salience of a 

signal as a function of how many signals there are, what signal gained importance 

earlier (early comers tend to win, all other things being equal) and the striatal saturation 

threshold (βstr) of the channel. (Low βstr facilitates selection and high βstr facilitates 

suppression.)  

 

ui ⟸ ogpi,i 

ai(t) ⇐ ∂ ∙ ai(t − 1) + (1 − ∂)ui(t − 1) 

oi ⟸−σ (ai) 

 

 

Table 3.1Model parameters 

Symbol Value Meaning 

𝛛 0.6 Integration constant, acting as a low-pass filter 

𝛂𝐬𝐭𝐫 4 Slope sat. func. in the striatum 

𝛃𝐬𝐭𝐫 0.5 Threshold sat. func in the striatum 

𝛂𝐬𝐭𝐧 5 Slope sat. func in the subthalamic n. 

𝛃𝐬𝐭𝐧 0.3 Threshold sat. func in the subthalamic n. 

𝛂𝐭𝐡𝐚𝐥 6 Slope sat. func in the thalamic n. 

𝛃𝐭𝐡𝐚𝐥 0.4 Threshold sat. func in the thalamic n. 

𝛂𝐠𝐩𝐞 5 Slope sat. func in the globus pallidus (ext. seg.) 

𝛃𝐠𝐩𝐞 0.2 Threshold sat. func in the globus pallidus (ext. seg.) 

𝛂𝐠𝐩𝐢 5 Slope sat. func in the globus pallidus (int. seg.) 

𝛃𝐠𝐩𝐢 0.2 Threshold sat. func in the globus pallidus (int. seg.) 

𝛂𝐜𝐭𝐱 8 Slope sat. func. in the cortex 

𝛃𝐜𝐭𝐱 0.5 Threshold sat. func. in the cortex 
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𝐰𝐠𝐩𝐞_𝐠𝐩𝐢 -0.3 Fixed weight from globus pallidus ext. to int. 

𝐰𝐬𝐭𝐫𝐃𝟏_𝐠𝐩𝐢 -1 Fixed weight from striatum D1 to int. pallidus 

𝐰𝐬𝐭𝐫𝐃𝟐_𝐠𝐩𝐞 -1 Fixed weight from striatum D2 to ext. pallidus 

𝐰𝐬𝐭𝐧 1 Fixed weight from cortex to subthalamic n. 

𝐰𝐬𝐭𝐧_𝐠𝐩𝐢 0.9 Fixed weight from subthalamic n. to int. pallidus 

𝐰𝐠𝐩𝐞_𝐬𝐭𝐧 -1 Fixed weight from ext. pallidus to subthalamic n. 

𝐰𝐬𝐭𝐧_𝐠𝐩𝐞 0.9 Fixed weight from subthalamic n. to ext. pallidus 

𝐰𝐬𝐦𝐚,𝐢,𝐣 
-0.2 for i = j 

0 for i ≠ j 

Fixed weight from cortex to cortex (here a mild 

auto-inhibition is implemented) 

 

 Simulations 

3.4.1 Introduction and Methods 

After introducing the details of the model, we run a simulation of an individual 

corticothalamic loop with three channels. All the channels receive an external signal, 

which is meant to originate from other adjacent cortical or associated subcortical 

structures, or directly from the representation of the environment in the more primary 

cortices. Channels are isolated from each other in the cortical and thalamic units, but 

their inputs converge in the basal ganglia circuit, as schematically shown in Fig. 3.2. 

The purpose of these simulations is to determine the qualitative behaviour of the model 

and to examine whether the theoretical intuitions behind the parameters explored in the 

previous model still hold.  

 

3.4.2 Results 

Figs. 3.3, 3.4, and 3.5 show the output (octx,i) of three channels following external 

excitation (red dashed line) with three different βstr. All three channels have the same 

βstr = 0, 0.5, 1.5, respectively. External excitation (oext,i) increases stepwise and takes 

on values 0.5, 0.7, 0.9, and 1 at different times. Irrespective of the power of external 

excitation, channels that have already a level of excitation tend to remain excited (as 

visible in Fig. 3.4). While the relative value of βstr between the channel is important to 

decide which channels will be more likely to be selected, its absolute value also 

determines how channels become sensitive or insensitive to the input from cortical 

units. Low absolute values of βstr for all channels allows multiple channels to be active 

simultaneously provided that their input is powerful enough. Thus, this constitutes a 
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suboptimal mechanism. High absolute values of βstr for all channels produce a scaled-

down version of the channel, suppressing all the channel outputs equally. This also 

constitutes a suboptimal mechanism.  

 

 

Fig. 3.3 Simulation of the activation of three channels, given a varying external signal 

(red dashed lines). Parameter βstr is set to 0 for all the three channels. Time Units is on 

the X-axis and Activation value is on the Y axis. All the other variables are fixed as 

above. Pink areas highlight values of cortical excitation above 0.5. Note that picking 

this value of threshold allow multiple channels to be active simultaneously if their input 

is powerful enough, failing to do what is required by the circuit. 
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Fig. 3.4 Simulation of the activation of three channels, given a varying external signal 

(red dashed lines). Parameter βstr is set to 0.5 for all the three channels. Time Units is on 

the X-axis and Activation value is on the Y axis. All the other variables are fixed as 

above. Pink areas highlight values of cortical excitation above 0.5. This value of βstr is 

optimal for the required computation. 

 

 

Fig. 3.5 Simulation of the activation of three channels, given a varying external signal 

(red dashed lines). Parameter βstr is set to 1.5 for all the three channels. Time Units is on 

the X-axis and Activation value is on the Y axis. All the other variables are fixed as 

above. Pink areas highlight values of cortical excitation above 0.5. The red dashed line 

represents the external signal. Note that in this case the output of the channel is almost a 
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scaled down version of the input, without much interaction between the channels. In 

other words, picking a high threshold for the basal ganglia saturation function only 

depresses the output. Note that picking this value of threshold allow multiple channels 

to be active simultaneously if their input is powerful enough and it is fed to the channels 

at the same time, failing to do what is required by the computation. 

 

In order to study further this behaviour, we vary βstr for all three channels and plot the 

absolute difference between the external excitation to the cortical units and the cortical 

activation (|octx − oext|)  averaged across all three channels, keeping all the other 

parameters (Table 3.1) constant. Values below 0.1 have been trimmed by the mean, to 

avoid cluttering up the plot. This difference increases monotonically (top Fig. 3.6), 

displaying a global inhibition effect of the basal ganglia, which decreases the cortical 

activation up to 20% of its original value. The standard deviation of this difference 

(bottom Fig. 3.6) shows a maximum at βstr = 0.5, indicating that around that value the 

basal ganglia units produce hard-switching between the channels. Systematically, the 

plot can be roughly subdivided in three continuous areas, each displaying smoothly 

changing behaviour. For βstr > 0.8 the difference between cortical activation and input is 

greater than 0.4. The output of an individual channel seems to be poorly sensitive to the 

input to the other channels. In other words, the cortical activation looks like an 

attenuated version of the cortical input. Too high values of βstr correspond to an 

excessive activation of the basal ganglia, where all channel are equally depressed. For 

βstr < 0.3 cortical activation tends to match the input. In other words, outputs looks like 

the inputs for all channels. Too low values of βstr correspond to the inactivation of the 

basal ganglia (excessive disinhibition). For 0.3 < βstr  < 0.8 an optimum is reached (at 

βstr = 0.5), and the basal ganglia exerts its functional role of suppressing the inputs of 

the other channels. It is important to notice that the suppression is only partial here, 

since all the channels have the same βstr. The maximum of the standard deviation in Fig. 

3.6 (bottom) indicates that signals almost match their cortical input when a threshold is 

reached, while the other signals are almost totally suppressed. This is all consistent with 

the previous qualitative observations.  
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Fig. 3.6 Plot of the mean difference (top) and the standard deviation (bottom) between 

cortical activation and external signal (|octx − oext|), against βstr.  

 

This existence of an optimal value (or range) of βstr, which can be interpreted as the 

external dopamine signal, is consistent with the inverted-U correlation between 

concentration of dopamine and working memory performance (Cools & D’Esposito, 

2011), albeit the phenomenon is usually referred to the prefrontal cortex and not the 

basal ganglia functions. 

 

Fig. 3.7 shows the plot of the threshold of the cortical saturation function βctx against 

|octx − oext| for the same cortical input used in Fig. 3.3 - 3.5, averaged across time . As 

expected, decreasing βctx in all channels yields to a gradual overall disinhibition, 

irrespective of the input to channel. The oscillating value of mean and standard 

deviation for the difference is due to the combined effect of mutual inhibition exerted 

by the basal ganglia and the presence of the absolute value of the difference. The impact 

of decreasing βctx is by and large an overall disinhibiting effect. Since βctx appears to 

have an optimal value too, it is possible to interpret the βctx parameter as related to the 

dopamine in the cortical circuits.  
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Fig. 3.7 Plot of the mean difference (top) and the standard deviation (bottom) between 

cortical activation and external signal (|octx − oext|) against βctx. 

 

3.4.3 Discussion 

Although the model built and analysed in the chapter is not yet embedded in a cognitive 

model and the conclusions are therefore limited to the current arrangement, it appears 

that under this theoretical framework there exists an optimum range of values for the 

threshold of the saturation function (βstr) in the striatum units, where the basal ganglia 

units perform their function optimally. Outside this range, channels behave either 

independently of each other or seem to be increasingly sensitive only to their individual 

inputs. This is consistent with what has been observed in the previous chapter when 

channels were not embedded in a corticothalamic loop. Similarly, manipulation of βctx 

exerts inhibitory and excitatory effect on the channels. Ultimately, the effect on cortical 

output depends on the interaction between these two thresholds (βstr and βctx). 

 

A substantial difference with the previous model of the basal ganglia alone is the 

presence of a compensatory effect. If, for instance, a channel decreases its output, basal 

ganglia activity will decrease too, facilitating channel disinhibition. How this effect will 

translate on simulations of cognitive tasks will depend on the system architecture, that is 

to say, how the channels are arranged. 
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 Reaction time distributions analysis 

We analyse now how the equivalent of dopamine depletion in the basal ganglia units 

qualitatively affects how signals are processed and, before using individual channels to 

simulate a specific psychological task, investigate the shape of the distributions of 

reaction times (RT) in relation to the dopamine signalling in the basal ganglia. This will 

serve to draw comparisons between more simple processes (stimulus-response) and 

emergent ones, and to identify, more specifically, how the computational labour 

between prefrontal cortex and basal ganglia is divided. 

 

We ran the current model of corticothalamic loop as described above, but instead of 

using step functions as inputs, we feed all six cortical units with random uniform noise 

between 0 and 0.5: 

 

𝑜𝑖  ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, .5) 

 

A randomly chosen cortical unit was then chosen to be the 'correct one', and its βctx is set 

to 0.4 from the original value of 0.5, while the βctx of the other cortical units is left to 

0.5. The random input was then integrated over time with a threshold of θd = 9. In other 

words, the channel whose area under the activation curve first exceed θd was selected 

and the associated RT registered. In this respect, this system is an accumulator where 

continuous evidence is accumulated in a continuous time-scale. This can be extended to 

multiple channels (see also Smith & Ratcliff, 2004). If the selected channel was the one 

with the lower βctx the choice was considered accurate. An example of resulting RT 

distribution is shown in Fig. 3.8. 

 

 

Fig. 3.8 Instance of a histogram of the response time  
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One of the most common distributions used to fit data from reaction times is the 

Exponential Gaussian distribution, also known as ex-Gaussian, that results from the 

convolution of a normal and an exponential distribution. The distribution is described 

by three parameters, the mean μ, the standard deviation σ, and τ, commonly associated 

to the shape of the tail.  

 

Fits were evaluated with a MATLAB™ function as outlined in Lacouture and Cousineau 

(2008). An ordinary maximum likelihood method (MLE) was used, whereby the 

opposite of a log-likelihood function is minimised as a function of the three parameters 

μ, σ, and τ. Since the parameter space can become sizable, a Simplex algorithm was 

used to minimise this quantity. This algorithm determines the direction of change for 

the parameters by calculating the steepest gradient of the negative log-likelihood and it 

terminates the search when a stopping criterion is met. The log-likelihood is generally a 

continuous and smooth function and this allows the algorithm to find a minimum. 

However, the parameter search can get stuck in local minimum. A way to prevent this 

from happening is to start the parameter search from a reasonable starting value, like μ 

as the mean of the data minus the skewness, τ as 80% of the standard deviation of the 

data, and σ2 as the variance of the data minus the τ2. Notice that these starting points are 

more meaningful for a positively skewed distribution, which is consistent with the 

shape of reaction times distributions. 

 

The ex-Gaussian was chosen not only for the good fit obtained, but for its more intuitive 

psychological properties and the considerable amount of prior research. Although the 

relationship between decision-making cognitive processes and parameters of this 

distribution is controversial (Matzke & Wagenmakers, 2009), a number of authors tend 

to interpret the μ parameter as being more related to stimulus properties and the τ 

parameter as being more related to higher cognitive functions (with the exception of 

Penner-Wilger, Leth-Steensen, & Lefevre, 2002, who argue that parameter μ is linked 

to retrieval processes). These characterisations are often vague because they attempt to 

capture general properties of these parameters without situating them in the context of a 

task. This model can, in principle, be extended from perceptual reaction times to 

response times that require more layers of cognitive operations, and this is not true for 

random walk models, which have been mostly studied for two forced choice rapid 

decision makings (Smith & Ratcliff, 2004) 
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The random input is the psychological equivalent of a noisy top-down influence, 

whereas the βctx represents a bias for an individual more salient stimulus. Since noise 

variance does not seem to change the qualitative trends of parameters, psychologically 

noise can be considered as representing an environment where stimuli saliences are 

fluctuating. This simulated process is meant to represent simple stimulus-driven 

responses.  The model can produce a reaction time (RT) distribution and a 

correct/incorrect response. Keeping all the other parameters fixed and changing either 

βstr or αstr of all channels yield results shown in Fig. 3.9 and Fig. 3.10, respectively.   

 

 

Fig. 3.9 βstr against each ex-Gaussian parameter, simulated for 20 participants across 25 

values of βstr 
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Fig. 3.10 αstr  against each ex-Gaussian parameter and accuracy, simulated for 20 

participants across 25 values of αstr 

 

All the values were normalised by dividing the values by the maximum value and 

multiplying by 100, so it is possible to appreciate the magnitude of change in the 

dependent variable instead of the absolute values. An increase in the βstr value from 0 to 

1.5 increases the μ up to approximately 30%, increases the σ parameter to a greater 

extent (approximately 50%) and a produces a reversed U-shaped effect for τ, altering up 

to 40% of the maximum value, and peaking at around 0.6. Accuracy behaves in a 

similar way, although the range is much smaller (approximately 15%), and it peaks 

around 0.5. A different picture was produced when αstr is varied from 2 to 20, with μ, σ, 

and accuracy decreasing by approximately 20%, 40% and 25%, respectively. Parameter 

τ increased by approximately 50% of the maximum value. 

 

As we observed in the previous simulations, higher values of βstr for all the channels 

produce a scaled-down version of the channel input, and lower values of βstr produce 

excessive disinhibition. However, here one specific channel’s βctx is lowered to allow 

one channel to prevail over the others. This indicates that when a channel is slightly 

more likely to be selected by design, there is a suboptimal value for βstr, but that value is 

still above the 33% that one would expect by chance, given the presence of three 

channels.  In other words, a lower value for accuracy corresponds to a higher degree of 

exploration of other channels. Importantly, no reward mechanism has been introduced 

in the circuit yet, in that if the correct channel is selected there is no subsequent 
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alteration in the saturation function. All these results are quite robust to the variation of 

other parameters in the model, excluded the manipulation of the accumulation 

threshold, which reduces the accuracy but leaves the qualitative shape of the ex-

Gaussian parameters unchanged. 

 

These simulation results confirm several important empirical results with respect to 

Parkinson’s disease pathology. First, increasing βstr increases the reaction time (higher 

μ) and also increases the width of the RT distribution (higher σ). This is consistent with 

the slowing and increased inter-trial variability of reaction times in Parkinson’s disease 

(Burton et al., 2006). The change in τ parameter value may appear baffling at first, but it 

indicates that the reaction time curve would not simply shift in case of basal ganglia 

malfunction, but it would be squashed to the right. Decisions would be, in other words, 

slower, more variable, but without the presence of attentional lapses. This can be 

experimentally verified by observing how basal ganglia pathology alters reaction times 

in purely perceptual tasks where top-down influence is minimised. To our knowledge 

no research has addressed such issues. Furthermore, the decrease in accuracy suggests a 

lesser degree of exploratory behaviour, although these results have to be interpreted 

with caution due to the absence of a reward system that reinforces correct actions.  

 

 Discussion and Summary 

3.6.1 The role of dopamine 

We saw in the previous chapter that dopamine in the striatum is associated with the 

modulation of the βstr parameter (threshold of activation function). We also saw that 

manipulating αstr in the striatum (slope of the activation function) had a similar but more 

gradual effect on channel inhibition. Findings in this chapter confirmed this to be case 

also in a corticothalamic loop. What is the relationship between dopamine and the 

processes we simulated in this chapter? Since phasic dopamine burst are usually 

associated with either learning or salience (more specifically stimuli detection, 

identification and valuation; for an integrative overview see Schultz, 2016), it is 

reasonable to associate βstr alteration for all channels to tonic dopamine action. 

Neuronal tonic firing refers, as we have already mentioned, to a dopaminergic 

background activity of 4-10 Hz that, unlike the phasic firing, is not related to any event, 

but it is thought to affect movement, motivation and attentional processes by regulating 

postsynaptic neuron activity in a slow timescale. Models involving manipulation of 

tonic dopamine are then compatible with the proficient phase (Gurney et al., 2001) as 
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opposed as the learning phase. However, decoupling these two might even at the level 

of one three-channel corticothalamic loop be challenging. Hamid et al. (2016), for 

instance, claim that the distinction between 'phasic' and 'tonic' action is spurious, and 

that mesolimbic dopamine signals represent a real-time estimate of future reward that 

animals use to calculate whether to work towards this reward (motivation). Reward 

prediction error would be coded in tandem with motivational signals to influence future 

and current behaviour. The parameter βstr is suitable for representing these processes 

because it can be altered by the same amount in all channels, by a different amount in 

one channel, or by an opposite amount in different channels so that the individual value 

of each channel is altered, but so is the average value of all the channels (if there are 

more than two channels). Notice that equally valid conclusions can be drawn for αstr and 

although the two parameters are not interchangeable, they might compute similar 

processes at different timescales. To complicate things even further, one should take 

into account dopamine activity in the prefrontal structures or, more generally, in 

neocortical areas. These processes are compatible with the modulation operated by βctx. 

This parameter simply biases a schema for selection. Equally, a parameter like αctx, that 

has not been examined in detail, might compute similar processes at different 

timescales.  

 

All these considerations lays the groundwork for the next chapters, where we will 

extend the corticostriatal loop framework in a structure that simulates a cognitive task, 

and examine to what extent the reasoning behind the meaning of the corticothalamic 

loop parameters extends to a bigger structure. In this thesis, the timeframe where 

cognitive operations occur is limited to seconds and minutes, and so we assume that 

there is no long-term change in learning. We focus therefore on on-line cognitive 

control. However, it is known that dopamine influences long-term plasticity (Otani et 

al., 2003) and this could potentially bear on the strength of association between cortical 

schemas.  

3.6.2 Extension to the model 

The model is structured in a way that allows several extensions to be appended and this 

can serve as an introduction for the additional features that will be added in future 

chapters. The first one has to do with the communication signals from cortical units to 

other cortical units, or even between sets of cortical units. Neuroanatomically, many 

connections between cortices are not mediated by the basal ganglia: layers I and III of 

the cortex receive projection from layers III across the two hemispheres, and layer IV 
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(present only in granular or dysgranular cortex) receives projections from the same 

hemispheres. In terms of cognition, learnt sensory and motor representations could shift 

from corticostriatal circuitry to corticocortical circuitry, without the mediation of the 

basal ganglia (Ashby et al., 2007). This implies a more automatic and faster 

actualisation of a motor schema following a sensory stimulus (habit formation) and the 

subsequent reduction of dopamine modulation from the substantia nigra pars compacta 

(SNpc). This can be computationally realised by letting cortical units communicate with 

each other and allowing increased communication of the signal by means of increased 

weights. This would result in partially bypassing basal ganglia operations. 

 

A second extension, stemming directly from the first, is related to the different 

hierarchies in the cortices that progress anteriorly to form more complex representations 

in the brain (Badre & D’Esposito, 2017). This hierarchy is believed to be reflected in 

the basal ganglia loops we have examined so far (McHaffie et al., 2005), where each 

loop would control different sets of cortical units separately. Lehericy et al. (2005), for 

instance, found that the associative basal ganglia structures are more active in early 

learning while the sensorimotor structures are more active in advanced learning of a 

motor task. This indicates that different loops are differentially involved in various 

stages of learning, and that the basal ganglia mediate structures for all the loops. 

Although the nigrostriatal pathway from the SNpc seems to be less involved in habitual 

actions (Wickens et al., 2007), the ventral tegmental area (VTA) projects onto the 

limbic system via the mesolimbic projections and onto the prefrontal areas via the 

mesocortical projections, and it might exert direct control on those structures (Miller, 

2000). This anatomical arrangement can be computationally realised by designing more 

than one layer of cortical units which, in turn, send signal to a segregated pathway to the 

basal ganglia and then feed back to the cortical units again. This type of structure will 

be utilised in the next chapter with the simulation of a cognitive task where 

corticothalamic loops are segregated in a hierarchical fashion, but a signal is also sent 

downstream from the higher order cortical units. 
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Modelling the Wisconsin Card Sorting Test 

with the Extended Schema Theory 

 

 Abstract 

In this chapter we present a model of the Wisconsin Card Sorting Task (WCST) where 

competition between motor and cognitive schemas is resolved using a variation of a 

neuroanatomically detailed model of the basal ganglia. We then use a genetic algorithm 

to search the model’s parameter space and obtain a good fit for the data.  

We proceed to show the relationship between dependent variables and threshold 

parameters, in order to observe how a theoretically justified alteration of parameters 

affect performance and whether this reflects empirical results.  

We then show that further analysis of correlations between error types, however, 

suggests the need to model participant data at a more fine-grained level. Yet for reasons 

of computational efficiency this is impractical and it is unclear how advantageous this 

type of analysis can be as opposed to the group clustering. We therefore cluster 

participant performance into five distinct groups and run separate genetic algorithms to 

fit the groups individually. The final results capture both group performance and 

correlations between error types across individuals. Model fits for individual groups are 

also analysed with bootstrapping sampling techniques. 

 

 Model description 

The corticothalamic loop analysed in the previous chapters will be now implemented in 

a meaningful cognitive structure, to perform a specific cognitive task, the Wisconsin 

Card Sorting Test. Here, the most important and most delicate assumption is to set the 

equivalence between a channel and a schema.  The definition of channel has been 

explored in the previous chapter as a segregated signal flow. In this section we assume 

that these channels can be interpreted as specific schemas that control specific rules of 

action selection and the salience of a channel is simply equivalent to the activation 

value of the corresponding schema. 
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Schema theory is a framework based on the idea that behaviour in many areas depends 

on abstractions over instances, i.e., schemas (Northway, 1940). In these abstract terms, 

schema theory is very general and it has been applied in domains ranging, for example, 

from event memory (Bartlett, 1932) to motor control (Schmidt, 1976). Here, we refer 

more specifically to the Norman and Shallice (1980) version, which is applied in the 

domain of routine sequential action. Their theory proposes that action schemas work in 

a cooperative or sequential fashion, but also compete with each other for activation. 

Schemas can be organised into hierarchical, heterarchical or sequential patterns. While 

schema theory is helpful in representing functional interactions in the action-perception 

cycle, it is not committed to a specific neural implementation. However, at the neural 

level the basal ganglia have been proposed as a good candidate for resolving 

competition between schemas in order to carry out action selection (Redgrave et al., 

1999). In part this is because of their recurrent connections with the cortex. Schemas 

can be implemented in a variety of ways, ranging from neural network to production 

systems. From this chapter on, we will assume that cortical schemas represent 

abstraction of actions, while the basal ganglia computes values based on those 

representations and inhibits those cortical schemas in a centralised fashion (rather than 

relying on mutual schema inhibition).  

 

4.2.1 Task and model description 

In the WCST, participants are required to sort a series of cards into four categories 

based on binary (i.e., correct /incorrect) feedback. Each card shows one, two three or 

four shapes, printed in one of four colours, and there are four shapes (triangle, star, 

cross, circle). (Fig. 4.1) It is therefore possible to sort cards according to colour, number 

or shape. To succeed, participants must match each successive card with one of four 

target cards (One Red Triangle, Two Green Stars, Three Yellow Crosses, Four Blue 

Circles), and use the subsequent feedback to discover the appropriate rule, but once they 

have discovered the rule (as indicated by a succession of 10 correct sorts), the 

experimenter changes the rule without notice. The task yields a number of dependent 

measures, including the number of rules obtained (with a deck of 64 cards), the number 

of cards correctly sorted, the number of perseverative errors (where negative feedback is 

ignored) and the number of set-loss errors (i.e. responses where the participant fails to 

stick with a successful rule).  
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Fig. 4.1 Stimulus card in the bottom row has to be matched by the subject to one of the 

four cards above according to one changing rule 

 

The model comprises three cognitive schemas and four motor schemas (see Fig. 4.2). 

Cognitive schemas represent the selection rules (Sort by Colour, Sort by Number, Sort 

by Shape) while the four motor schemas represent the acts of putting the stimulus card 

below each of the four target cards. Each schema has an activation level that varies over 

time as a function of input from various sources. Cognitive schemas are fed by an 

external channel that changes by a fixed amount according to external positive/negative 

feedback. Motor schemas are fed by cognitive schemas, and this signal is rule-

dependent. If, for instance, the stimulus card displays three red circles, the shape 

schema will excite the fourth motor schema (Four Blue Circles), the number schema 

will excite the third motor schema (Three Yellow Crosses), and the colour schema will 

excite the first motor schema (One Red Triangle). Motor schemas are also fed by 

environmental cues depending on the stimulus card feature. Thus, when cognitive 

schemas are not strong enough to influence motor schemas, action selection may be 

driven by stimulus features only. This simple model is complemented by a mechanism 

that implements and resolves competition between schemas within each hierarchical 

level: cognitive and motor schemas feed into two parallel computational mechanisms 

that each return a signal in the form of inhibition to the individual channels at each level 

(see Fig. 4.2 for an illustration at the cognitive level). In the brain, this competition 

between schemas is thought to be carried out by the basal ganglia (Gurney et al., 2001). 

Corticobasal loops are mostly segregated (Alexander et al., 1986) and this is reflected in 

the model through the independence of information processed in the basal ganglia units 

at the two levels (cognitive and motor). The model also implements a rudimental 

learning mechanism. This consists in a fixed change in signal to the cognitive schemas 

following a reward. Its purpose is to analyse how baseline levels of signal influence 
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schema selection and ultimately, performance on the WCST. Manipulation of the 

thresholds of saturation functions in cortical units and associated basal ganglia units 

represents dopamine signalling in the cortex and in the basal ganglia, respectively. 

Therefore, the mechanism underlying cognitive control is a feedback-driven signal to 

the cognitive schemas. 

 

 

Fig. 4.2 Schematic of the cortical schemas, not showing competition between schemas. 

Cognitive schemas (top row) send signals to the motor schemas (bottom row) 

 

 

Fig. 4.3 Schematic of the competition between schemas. The basal ganglia units 

compute the amount of inhibition that each schema receives given the activation of the 

others. 

 

4.2.2 Computation 

The model consists of 7 cortical units, 3 of which control cognitive operations and 4 of 

which control motor operations (see Fig. 4.2). These units correspond to schemas. 

Cognitive and motor units send their signal to their respective striatal units (see Fig. 4.3) 

and in this chapter they are simply indicated with the sma (Supplementary Motor Area) 

subscript. Subthalamic units connect all units at the same hierarchical level (cognitive or 

motor), ensuring that the basal ganglia units act as a competitive suppressor of schemas 

as a function of the other schemas’ outputs. Individual units are connected as shown in 

Fig. 4.4. Their computations are shown below. In all cases, ui represents the entry signal 

to the unit, ai is the result of integration along the time domain. The parameter ∂ 
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represent the weight used to integrate the discrete function along this time domain. 

Lastly, oi represents the output of the individual units. The function σ computes the 

sigmoid function of the input, ensuring output values are bounded between 0 and 1. The 

analytic form of the sigmoid function is shown below.  

 

σ(x) =
1

1 + 𝑒−𝛼(𝑥−𝛽)
 

 

Parameter α  represent the slope of the sigmoid function and β is the threshold. These 

valus are not identical across all units and a subscript indicates the relevant unit. 

Varying the threshold of cortical or striatal units alters the way competition between 

units is carried out, and can be considered a function of tonic dopamine present in the 

circuit. In the previous chapters it has been shown that the level of external dopamine 

from the substantia nigra pars compacta (SNpc) unit can be simulated by varying the 

threshold of the saturation curve in the striatum (βstr), without making use of an 

additional unit. 

 

Feedback takes place after each trial. If the selected response is correct, the external 

signals oext,i to the cognitive units that correspond to the matched features are increased 

by a fixed amount bl. If the selected response is incorrect, inputs to those units that 

correspond to the matched features are decreased by a fixed amount bl. 

 

A schema is selected if three conditions are satisfied. First, the area below the activation 

curve of a schema must be greater than the 'area-threshold' θA. This ensure that schema 

selection mimics the accumulation-to-threshold  mechanism in the brain (Bogacz et al., 

2006). The other condition specifies that the current activation must be greater than a 

'decision-threshold' θS, usually set to 0.4. This prevents action selection when schemas 

are not active enough.  In addition, a cortical schema auto-excitation threshold (θT, set 

to 0.7), implemented with a step function h, that enables quicker schema selection. The 

use of three thresholds is purely for implementation purposes and it is not intended to 

account for reaction times. This schema selection is equivalent to the ‘race model’, 

where the evidence for each alternative is accumulated separately (Forstmann, Ratcliff 

& Wagenmakers, 2016). When one of the accumulators reaches a threshold (θA in this 

case, expressed as an area), the decision is made. This contrasts with the more studied 

‘drift diffusion model’, where the evidence would be represented by the difference 
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between the areas under the curve of the activation value across time. 

 

 

Fig. 4.4 Schematic of the basal ganglia. Legend: Cortex-Thalamic complex (CTX-

THAL), Striatum (STR), Subthalamic nucleus (STN), Globus Pallidus Internal/External 

Segment (GPi and GPe) 

 

Cortical (cognitive schema) 

 

ui ⟸ ∑wi,j ∙ uj
j

+ oext,i + othal,i + h(ui − θT) 

 

ai(t) ⇐ δ ∙ ai(t − 1) + (1 − δ) ∙ ui(t − 1) 

 

oi ⟸ σ (ai) 

 

 

Cortical (motor schema) 

 

ui ⟸ ∑wi,j ∙ uj
j

+ wcogocog,i +wenvoenv,i + othal,i + h(ui − θT) 

 

ai(t) ⇐ δ ∙ ai(t − 1) + (1 − δ) ∙ ui(t − 1) 

 

oi ⟸ σ (ai) 
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Striatum (StrD1) 

 

ui ⟸ osma,i 

 

ai(t) ⇐ δ ∙ ai(t − 1) + (1 − δ) ∙ ui(t − 1) 

 

oi ⟸ σ(ai) 

 

 

Striatum (StrD2) 

 

ui ⟸ osma,i 

 

ai(t) ⇐ δ ∙ ai(t − 1) + (1 − δ) ∙ ui(t − 1) 

 

oi ⟸ σ(astrD2,i) 

 

  

Subthalamic nucleus (STN) 

 

ustn,i(t) ⟸ wstn ∙ osma,i + wgpe_stn ∙ ogpe,i (t − 1) 

 

astn,i(t) ⇐ δ ∙ astn,i(t − 1) + (1 − δ) ∙ ustn,i(t − 1) 

 

ostn,i ⟸ σ (astn,i) 
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Globus Pallidus External Segment (GPe) 

 

ugpe,i ⟸ wstn_gpe∑ostn,i 
i

+ wstrD2_gpe ∙ ostrD2,i  

 

agpe,i(t) ⇐ δ ∙ agpe,i(t − 1) + (1 − δ) ∙ ugpe,i(t − 1) 

 

ogpe,i ⟸ σ (agpe,i) 

 

 

Globus Pallidus Internal Segment (GPi) 

 

ugpi,i(t) ⟸ wstn_gpi∑ostn,i 
i

+ wgpe_gpi ∙ ogpe,i (t − 1) + wstrD1_gpi ∙ ostrD1,i (t − 1) 

 

agpi,i(t) ⇐ δ ∙ agpi,i(t − 1) + (1 − δ)u ∙gpi,i (t − 1) 

 

ogpi,i ⟸ σ (agpi,i) 

 

 

Thalamus (Thal) 

 

ui ⟸ ogpi,i 

 

ai(t) ⇐ δ ∙ ai(t − 1) + (1 − δ) ∙ ui(t − 1) 

 

oi ⟸−σ (ai) 
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 Simulation 

4.3.1 Introduction 

To simulate the WCST, a virtual deck of 64 cards is produced, shuffled and presented to 

the model. All the units perform the computation outlined in the previous section. The 

first motor unit to reach a threshold (as described in the previous section) is selected. 

After the selection and feedback, a new card is presented. The resulting plot for 

activation of the cognitive units is shown in Fig. 4.5. As can be seen in the figure, when 

the first card is presented the system must work out that "colour" is the first correct 

sorting criterion. Feedback alone is not sufficient, as the selected card may match more 

than one feature. Basal ganglia units intervene by suppressing the inappropriate 

cognitive schemas, enabling the correct schema to be permanently selected. When the 

sorting criterion changes (after 10 correct responses) the system tends to perseverate for 

a short period of time, before selecting the correct criterion again. Feedback-dependent 

external activation and resolution of competition both play a role in activating the 

correct cognitive schemas. Whereas the activation of cognitive schemas is regulated by 

feedback, the activation of motor schemas is regulated by cognitive schemas and 

environmental cues. 

 

4.3.2 Parameters 

The model has a number of parameters whose values are shown in Table 4.1 

 

Table 4.1 Model Parameters 

Symbol Value Meaning 

𝛅 0.6 Integration constant, acting as a low-pass filter 

𝛂𝐬𝐭𝐫 4 Slope sat. func. in the striatum 

𝛃𝐬𝐭𝐫 0.5 Threshold sat. func in the striatum 

𝛂𝐬𝐭𝐧 5 Slope sat. func in the subthalamic n. 

𝛃𝐬𝐭𝐧 0.3 Threshold sat. func in the subthalamic n. 

𝛂𝐭𝐡𝐚𝐥 6 Slope sat. func in the thalamic n. 

𝛃𝐭𝐡𝐚𝐥 0.4 Threshold sat. func in the thalamic n. 

𝛂𝐠𝐩𝐞 5 Slope sat. func in the globus pallidus (ext. seg.) 

𝛃𝐠𝐩𝐞 0.2 Threshold sat. func in the globus pallidus (ext. 

seg.) 

𝛂𝐠𝐩𝐢 5 Slope sat. func in the globus pallidus (int. seg.) 
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𝛃𝐠𝐩𝐢 0.2 Threshold sat. func in the globus pallidus (int. 

seg.) 

𝛂𝐬𝐦𝐚 8 Slope sat. func. in the supplementary mot. cort. 

𝛃𝐬𝐦𝐚 0.5 Threshold sat. func. in the supplementary mot. 

cort. 

𝐰𝐠𝐩𝐞_𝐠𝐩𝐢 -0.3 Fixed weight from globus pallidus ext. to int. 

𝐰𝐬𝐭𝐫𝐃𝟏_𝐠𝐩𝐢 -1 Fixed weight from striatum D1 to int. pallidus 

𝐰𝐬𝐭𝐫𝐃𝟐_𝐠𝐩𝐞 -1 Fixed weight from striatum D2 to ext. pallidus 

𝐰𝐬𝐭𝐧 1 Fixed weight from cortex to subthalamic n. 

𝐰𝐬𝐭𝐧_𝐠𝐩𝐢 0.9 Fixed weight from subthalamic n. to int. pallidus 

𝐰𝐠𝐩𝐞_𝐬𝐭𝐧 -1 Fixed weight from ext. pallidus to subthalamic n. 

𝐰𝐬𝐭𝐧_𝐠𝐩𝐞 0.9 Fixed weight from subthalamic n. to ext. pallidus 

𝐰𝐬𝐦𝐚,𝐢,𝐣 +0.2 for i = j 

0 for i ≠ j 

Fixed weight from cortex to cortex  

(here a mild auto-excitation is implemented) 

𝐰𝐜𝐨𝐠 

𝐰′𝐜𝐨𝐠 

0.831 

0.230 

Weight for active cognitive schemas 

Weight for non-active cognitive schemas  

𝐰𝐞𝐧𝐯 

𝐰′𝐞𝐧𝐯 

0.635 

0.270 

Weight for active motor schemas 

Weight for non-active motor schemas 

θT 0.7 Threshold to schema auto-excitation. 

θA 3•105 Area-threshold 

θS 0.4 Threshold to activation (minimal necessary) 

bl 0.465 Signal added/subtracted to a schema following 

reward (altering oi) 

ζpfc  0.01 Noise added to the bl 

ζenv 0.01 Noise added to the lower schemas input 

(environment) 

 

Compared with the previous chapter, the number of parameters has slightly increased. 

This is predictable, as the model complexity has increased, too. Parameters can be 

clustered into a selected number of domains, with different significance. The most 

important parameters are βstr and βsma, which represent this threshold in the striatum and 

the schema, respectively. Extreme values (increasingly further away from 0.5, either 

towards 0 or towards 1) of this parameter disrupt the competition between schemas. 
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When the threshold is too high, schemas are driven by their input values and they 

undergo increasingly homogenous inhibition from the basal ganglia. This phenomenon 

is analogous to the Parkinson's Disease (PD) dopamine depletion in the SNpc (Cooper 

& Shallice, 2000). The effect is consistent to what has been observed in the previous 

chapter, where decreasing βstr produces a failure in instantiate a competition between 

the channels, while increasing it suppresses and yields undifferentiated output. Since in 

this model the final mechanism of schema selection is determined by a fixed 'area-

threshold', an altered βstr renders schemas more susceptible to be wrongly selected due 

to noise (ζpfc and ζenv).  

 

4.3.3 Performance measures 

Performance was scored according to a range of measures as indicated in Heaton 

(1981). Completed Categories (CC) and Total Errors (TE) measure the overall 

performance. A Set Loss Error (SL) is counted whenever an incorrect response 

 

 

 

Fig. 4.5 Activation of cognitive schemas during a complete run (involving sorting all 64 

cards). Activation value is on the Y axis and Time Units on the X axis.  

Solid blue lines represent the actual activation, while dashed red lines represent the 

external input due to positive/negative feedback. Here, βstr is set to 0.5 for all schemas. 

 

is selected after 5 or more correct responses, where at least one is unambiguous (i.e., the 

card matches only one feature). A Perseverative response (PR) is counted whenever a 

response would have been correct under the previous rule. (A subject can score a 

perseverative response even before completing the first category: if three consecutive 
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responses are made selecting the same incorrect sorting rule, that rule will be the 

criterion that the subject can perseverate to.) Those perseverative responses that are also 

incorrect responses are counted as Perseverative Errors (PE). Non-perseverative errors 

(NPE) are calculated as the Total Errors (TE) minus Perseverative Errors (PE). 

 

4.3.4 Model fit 

Results for two sets of 48 participants (48 healthy young adults from Cooper, Wutke, & 

Davelaar and 48 simulated participants) are depicted in Fig. 4.6. The figure compares 

the aggregate results from the simulation (Sim) with the aggregate data from the human 

participants (Data). A genetic algorithm attempted to find the best parameters that 

produce low t statistics and low z statistics between data and simulation. Given the 

presence of a multitude of parameters that influence each other in a non-linear fashion, a 

perfect fit is unattainable. However, the model appears to do an excellent job in 

reproducing group means and standard errors. The worst performance is produced for 

the least important1  Perseverative Response (z = 0.56), but for the most important 

dependent variable score either perfect fit (Completed Categories and Set Loss Errors) 

or adequate in the other cases (PE: z = 0.10, TE: z = 0.07 , NPE: z = 0.29). 

 

Genetic Algorithm 

Genetic algorithm (GA) is a simple tool to solve optimisation problems (Whitley, 

1994). Here, we use a simplified and modified version of the genetic algorithm with 

only two iterations to identify the best set of parameters. Details can be found in the 

Appendix. 

 

Correlational Analysis 

Analysing aggregate data is not sufficient to assess model performance, since a model 

should also aim to dissociate between psychological constructs (Cassimatis et al., 2008). 

Therefore, correlational analysis between the most informative variables (TE, PE, SL) 

was also performed, using bootstrapping and sampling the mean value to obtain 1000 

points. Multiple runs of the sampling algorithm produce very similar results. Fig. 4.7 

and Fig. 4.8 show the correlation matrices for these variables in both the human data 

and the simulation. The correlation matrices show that the simulation correctly 

                                                 
1 Perseverative Responses reflect responses that would have been correct in the previous set and they are 

essential to calculate Perseverative Errors but they do not accurately reflect performance per se, because 

they depend on the card randomised sorting. Conversely, Perseverative Errors reflect the inability to 

change rule.  
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identifies that the mechanism that produces set loss error can be dissociated from the 

process that causes other types or errors. However, the simulation fails to reproduce the 

high correlation (r = .91, p < .01) between Total Errors and Perseverative Errors. In 

addition, it displays a weak but significant negative correlation (r = -.31, p < .01) that is 

not present in the empirical data. 

 

 Interim Discussion 

The model yields an adequate fit for young participants on the WCST. Computation in 

the model appears to be stable, in that minimal parameter variations do not disrupt 

functioning. The model also correctly reflects the independence between Set Loss 

Errors (SL) and Total Errors (TE) found in the human data, suggesting a dissociation in 

the cognitive processes that produce those errors. However, the model is subject to 

several limitations. The lack of positive correlation between PE and TE in the 

simulation is both puzzling and concerning. One possibility, however, is that this 

apparent failing reflects the implicit assumption that performance of the human 

participants can be modelled by a single set of parameter values (i.e., by a group of 48 

virtual participants with identical cognitive characteristics). We explore this possibility 

in the following section. 
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Fig. 4.6 Comparison between Simulation and Data from neurologically healthy young 

participants. Z values above each variable indicate the z score of the difference between 

human (Data) and simulated data (Sim) for each dependent measure. 

 

 

Fig. 4.7 Correlations – Neuropsychological Data 
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Fig. 4.8 Correlation – Simulation 

4.4.1 Effect of alteration of saturation curves 

Once the best set of parameters have been established and the model achieves a good fit 

for aggregate data across all participants we observe the differential effect of altering 

the threshold of the saturation curve βstr for the striatum and βctx for the cortical 

(cognitive and motor) schemas.  

 

 

Fig. 4.9 Countour plot of threshold of saturation curves βstr (striatum) and βsma (cortical) 

schemas against dependent variables (TE, PE, SL, NPE). 
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As it can be seen in the contour plots in Fig. 4.9, altering βstr or βsma is not equivalent 

with regard to producing errors. The number of total errors and non-perseverative errors 

appears to be very stable across the variation of the parameters. Decreasing βsma 

increases the instability threshold for βstr, where the error gradient becomes very steep.  

While the model performs very well in fitting aggregate data for healthy young 

participants, altering saturation curve parameters alone does not produce the level of 

neuropsychological impairment seen in the elderly, in Parkinson's Disease and other 

neurodegenerative conditions (Paolo et al., 2006). This issue is discussed in detail in the 

General Discussion section.  

 

 Analysis of grouped data 

4.5.1 Introduction 

In the light of the failure of the model to reproduce the empirically observed 

correlations between TE and PE, we analyse how data from young participants can be 

clustered into a small number of groups based on the three critical dependent variables 

reflecting errors (TE, PE, SL). These three types of errors have been specifically chosen 

because they are most representative of performance failures. Data clustering was 

calculated using a k-means algorithm with k = 5 (purely for reasons of computational 

efficiency). Two points were excluded because they were outliers. The k-means is an 

unsupervised learning algorithm (MacQueen, 1967) that requires the number of 

centroids (points in the sample space with the same dimension of the dependent 

variable, in our case 3) as an initial condition. The number is equivalent to the number 

of groups chosen (5, in our case). The algorithm was initialised based on the 

observation of the spatial 3D distribution of point. The Manhattan (city block) distance 

was used instead of the more common Euclidean, because of the discrete character of 

the data.  

 

The most distinctive features are the accumulation of points around the origin, the 

sparseness of points as total and perseverative errors increase, and an isolated cluster of 

points with SL equal to 1. Fig. 4.10 shows how the clustering of the groups looks like 

on a three-dimensional plot and Table 4.2 shows mean and standard deviation of the 

dependent variables in the individual groups. 
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Fig. 4.10 Clustering of experimental data 

 

4.5.2 Simulation 

After clustering the groups we run five genetic algorithms separately to determine best-

fitting parameter values for each group. In each case, seven model parameters were 

initially randomised to values within their reasonable ranges, and model errors recorded. 

A t-value between the simulation’s and the original experimental data was computed 

and its mean used as the inverse of the GA’s fitness value. Table 4.3 shows performance 

errors of the simulation with the highest fitness and Fig. 4.11 shows a three-dimensional 

scatter plot of the individual values. 

 

 

Fig. 4.11 Simulated data with five clusters 
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4.5.3 Discussion and model fit 

Results from the simulation are shown in Table 4.2. Outliers have been removed in each 

group if values are less than 0.5 times the minimum value of the corresponding 

empirical group and more than 1.5 times the maximum of the corresponding empirical 

group. This guarantees that errors due to model instability are excluded from the 

analysis. In total, 14 outliers have been excluded from the analysis (4, 3, 2, 5 from 

groups 1, 2, 3, 4, respectively). The extreme values of the outliers suggests that they 

may conceivably have been produced by the model’s unstable response to particular 

parameter values, but this could be avoided in the future by increasing noise in the input 

values. Clustering the participant data into a small number of more homogenous groups 

greatly increases the correlation between TE and PE (r increases from .04 to .50, 

compared with the observed value of .92) and decreases the correlation between SL and 

TE/PE, improving the fit of the model in both respects. Fig. 4.12 displays the new 

correlation plots worked out combining all of the five simulations together, and a 

bootstrapping of 200 points using the mean has been carried out within each individual 

group. In Fig.4.13 bootstrapping has been carried out across all the points.  

 

Empirical Data Groups 

 
G N TE PE SL 

1● 18 8.89 (SD = 2.03) 6.22 (SD = 2.03) 0 (SD = 0) 

2● 13 14.85 (SD = 1.77) 8.77 (SD = 1.92) 0 (SD = 0) 

3● 5 28.00 (SD = 1.73) 18.40 (SD = 2.30) 0 (SD = 0) 

4● 7 14.71 (SD = 2.63) 9.57 (SD = 0.53) 1 (SD = 0) 

5● 3 22.33 (SD = 2.08) 11.67 (SD = 1.15) 0 (SD = 0) 

 

Simulation of the five clusters 
 

G N TE PE SL 

1● 14 10.86 (SD = 3.16) 6.13 (SD = 1.70) 0.00 (SD = 0.00) 

2● 10 13.10 (SD = 6.10) 7.50 (SD = 3.15) 0.00 (SD = 0.00) 

3● 3 20.67 (SD = 7.37) 12.00 (SD = 1.00) 0.00 (SD = 0.00) 

4● 2 13.00 (SD = 1.41) 9.50 (SD = 0.71) 1.00 (SD = 0.00) 

5● 3 12.33 (SD = 2.52) 7.00 (SD = 1.73) 0.00 (SD = 0.00) 

 

Table 4.2 Empirical data groups and simulations 
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Fig. 4.12 Correlation between performance errors aggregating the values from five 

different set of parameters. Bootstrapping with the mean has been performed within the 

individual groups 

 

 

Fig. 4.13 Correlation between performance errors aggregating the values from five 

different set of parameters. Bootstrapping with the mean has been performed across all 

the five groups 

 

All the groups with their dependent variables (TE, PE, and SL) are then evaluated in 

terms of model fitting with a bootstrapping technique (Mooney et al., 1993) here 

described. For each dependent variable a sample of integer values from the simulation 

group of the same size of the group has been drawn 200'000 times with the probability 

of the value being chosen proportional to its frequency (Si). Results have been then 

normalised to a proportion value (by dividing by the total sum) and the same procedure 

have been carried out for the groups of empirical data (Ei). A squared error 

 

𝑆𝑆𝐸 = ∑(𝐸𝑖 − 𝑆𝑖  +  𝜁)
2

𝑖
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was then calculated each time and the distribution plotted. An extremely dim noise (𝜁) 

drawn from a normal distribution with mean 0 and standard deviation 0.0001 was 

inserted to smooth results and make the distribution plots more readable. Removing the 

noise does not significantly affect final results in any way. Finally, the actual value of 

the sum of the square (SSE) error for the two groups is calculated and the probability 

that the statistic SSE group being greater than that value is the p-value (areas under the 

curve are normalised).  

 

 

Fig. 4.14 Histograms of bootstrapped distribution of SSE.  Distributions are shown for 

the dependent variables Total Errors (TE), Perseverative Errors (PE), and Set Loss 

Errors (SL). The number in brackets represents the cluster (values not normalised).   

 

Using Perseverative Errors in Group 1 as an example we explain the technique step by 

step. The numbers below represent the tabulated frequencies for both the groups: 
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Empirical Data Simulated data 

Total: 18 

Value 5 6 7 8 

Frequency 5 6 5 2 
 

Total: 14 

Value 4 5 6 7 9 

Frequency 1 6 3 1 3 
 

 

Then we sample from these distributions. The probability to draw from that sample is 

proportional to the frequency of the element in the original distribution. Then, 

probabilities are converted to a proportion, as shown below.  

 

Empirical Data (Sample 1) Simulated data (Sample 1) 

Total: 18 

Value 4 5 6 7 8 9 

Frequency 0 4 8 5 1 0 

Prop. 0 0.22 0.44 0.28 0.06 0 
 

Total: 14 

Value 4 5 6 7 8 9 

Frequency 1 4 6 0 0 3 

Prop. 0.07 0.29 0.43 0 0 0.21 
 

 

These proportions are then substituted in the SSE formula (noise will not be shown 

being at least 4 orders of magnitude smaller than the actual proportions) .  

 

𝑆𝑆𝐸 = ∑(𝐸𝑖 − 𝑆𝑖)
2

𝑖

= (0 − 0.07)2 + (0.22 − 0.29)2 + (0.44 − 0.43)2 + (0.28 − 0)2

+ (0.06 − 0)2 + (0 − 0.21)2 =  0.136 

 

This procedure is repeated 200'000 times and results are stored in a vector that 

represents the final distributions shown in Fig.4.14. The actual value of SSE for the 

distribution is hence calculated in order to compute the p-value for that statistic. 

 

 General Discussion 

 

4.6.1 General Analysis and cognitive endophenotypes 

The model we presented combines a variation of the Cooper and Shallice (2000) model 

of action selection and a variation of the Gurney et al. (2001) model of the basal 

ganglia. One of the strengths of this combined model is the possibility to generalise it to 

other cognitive control tasks (e.g. Stroop task, Probabilistic Reversal Learning, Eriksen 
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Flanker Task, etc.) and to accommodate the presence of units representing other brain 

areas where different computation is performed (e.g., amygdala, cerebellum), enabling 

the simulation of cognitive tasks in broader contexts (e.g. Emotional Stroop Task, 

WCST in cerebellar patients). In principle, this enhances the contention scheduling 

theory with neuroanatomical detail, allowing a more precise localisation of processes in 

a particular task, and integration with functional neuroimaging data. In addition, this 

implementation allows for the inclusion of two distinct learning mechanisms in the 

cortex and the basal ganglia: the current model can potentially be updated to a learning-

based model by developing these mechanisms. With respect to cortical learning, in the 

model as it stands, the supervisory system that controls how subjects respond to positive 

and negative feedback is fixed and consequently performance tends to be too robust to 

basal unit dysfunctions. This might be addressed by incorporating dynamic learning that 

allows supervisory control to vary according to the schemas’ activations, resulting in 

low or high baseline levels of dopamine in the striatum having a greater impact on 

cognitive performance. The present chapter makes the case for modelling subgroup data 

(or, whenever possible, individual data), instead of aggregate results, and presents 

evidence of how data clustering improves the model overall fit. Clustering is especially 

advisable for models of higher-order cognition, where subjects tend to have variable 

attention and may use qualitatively different cognitive strategies. The choice of 5 groups 

was dictated by computational constraint but the trade-off between number of 

participants in a group and separate performance should be acknowledged.  

 

In fact, group 2, 3, and 4 contains very few participants and one wonders whether 

values could be aggregated in one single group. However, closer inspection of the data 

suggests that group 4 has a distinct pattern of errors: those subjects who commit one SL 

errors also tend to make a number of PE between 15 and 20. While this seems to be 

indicative of different cognitive processes, it also suggests that SL errors might not be 

the most appropriate way to capture a loss of representation. 

 

A final conclusion emerges from two joint observations: First, fitting clusters with 

increasingly extreme error values becomes increasingly more problematic. Second, 

another set of simulations (not reproduced here) shows that damaging the cortical and 

subcortical units threshold does not seem to produce the level of decline in performance 

found in Parkinson's disease patients without dementia (Paolo et al., 1996). Since 

healthy older controls have a different performance profile than the younger controls 
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against which the current model was assessed, the loss of dopaminergic cells in SNpc 

does not alone explain the inferior performance in the elderly and PD patients. These 

two joint findings suggest that the cognitive mechanisms producing perseverative and 

set loss errors might be independent only for a small number of errors. As that number 

increases, these two mechanisms might be correlated and possibly causally related. New 

experimental data to confirm this hypothesis is warranted.  

 

4.6.2 Parkinson's Disease cognitive impairments 

It is often posited that cognitive impairments in PD, not unlike the associated motor 

problems, have their genesis in the disruption of the information from and to the basal 

ganglia. The model shown in this chapter predicates on the same assumptions, and it 

shows that an alteration in the competition mechanism between cognitive schemas 

produces perseveration. However, cognitive impairments in PD are very heterogeneous 

and conflicting data on neuropsychological tests are common (Galtier, 2016).  

 

Robbins & Cools (2014) argue that non-motor impairment in PD arise from two distinct 

processes. The former is driven by the presence of Lewy bodies in the cortex, it is 

highly correlated with cognitive decline (Aarsland, 2005) and it is rooted in the 

neurobiology of dementia. The latter is driven by the differential effect of dopaminergic 

medication in different part of the brain, and it is attributable to impaired information 

processing. This impairment is more likely to be noticed in systematic 

neuropsychological testing, because it does not always translate in impairment in the 

activities of daily living (ADLs) for PD patients. To complicate things further, the two 

can significantly overlap, producing different clinical scenarios and computational 

conundrums. The model we presented divides the computational labour between basal 

ganglia and cortical structures, so that gradual damage can be applied to either structure 

(or both) and behavioural predictions can be tested. A radically different perspective 

comes from Matsui et al. (2007), who argue that PD non-motor impairments are not 

pure dysexecutive syndromes. Their Diffusion Tensori Imaging (DTI) study tests non-

demented PD patients and found a moderate positive correlation between the fractional 

anisotropy values and the categories completed and a moderate negative correlation 

between the fractional anisotropy value and perseverative errors. However, these errors 

have been measured according to the modified version of the test (Nelson, 1976). In this 

simplified version of the WCST an error is counted if the response and the immediately 
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preceding response are incorrect and of the same category, resembling the PPR score 

previously outlined.  

Swainston et al. (2000) attempt to explain all the different cognitive deficits in PD with 

the baseline level of dopamine receptor availability and the effect of dopamine 

medication in different brain areas. Those can account for the different profile of 

impairments seen not only in the WCST test, but also in visuospatial reasoning tests.  

At least in early PD, depletion of dopamine (DA) might be confined to the putamen and 

the dorsorostral aspect of the caudate, hence acting on the motor and dorsolateral loops, 

that supply supplementary motor area (SMA) and dorsolateral prefrontal cortex 

(DLPFC), respectively. Since dopaminergic medications act systemically, dopaminergic 

medications such as L-dopa re-establish close-to-optimal level of dopamine in motor 

and premotor loops, therefore improving motor symptoms and set-shifting. On the other 

hand, they 'overdose' dopamine in the pathways that are less affected by dopamine 

depletion, such as the lateral orbitofrontal and the inferotemporal loops, causing 

impairments on reversal tasks and visuospatial learning. 

 

While the model we presented does not model individual brain cortical areas, different 

schemas require different cognitive resources that are located in different cortical areas, 

so it is not possible in principle to test these hypothesis with our simulation. 

 

4.6.3 Expanding the model 

Within this particular theoretical framework, representation of an action and 

computation over that representation are merged together. Given this, the model can be 

extended to accommodate either other areas of the brain or sub-routines of the program. 

Whether those schemas or sub-schemas are activated or not depends on the activation of 

the other schemas and the properties of their saturation functions. This entails that 

various areas of the brain would perform a different computation on a signal that, in 

turn, would contribute to a different function (Doya, 2000). For instance, a motor 

schema could have a basal ganglia tail, a cerebellum tail, a motor cortex tail, a sensory 

tail, a limbic tail, etc. and damage to a different tail would impair the specific 

computation on that representation rather than directly damaging the representation. To 

illustrate this general concept we can use the emotional Stroop task as a more 

comprehensive example. In this task, subjects have to name the ink colour of emotional-

laden words (such as 'cancer', 'death', 'mayhem') and neutral words (such as 'chair', 

'phone', 'car'). Words related to the subject's area of clinical impairment tend to elicit 
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significantly slower response (Compton et al., 2003). This test is thought to measure 

inhibition of emotional attentional biases, particularly those associated with a perceived 

threat. In schema terms, uttering the different names (colours or words) could be 

represented by different schemas. The competition between these schemas is, 

speculatively, resolved by the basal ganglia. However, in this emotional task the limbic 

system is also involved, and the learning curves in limbic structures is different and it 

affects the information processing with projections to the prefrontal areas and to the 

basal ganglia.   

 

Extending the schema theory in this fashion could also address the problem of 

cerebellar involvement in higher-order cognition (Bellebaum & Daum, 2007). Until 

very recently, the cerebellum had been thought as a purely motor organ, with no 

significant involvement in higher order cognitive processes such as attention, working 

memory, emotions, etc. New data about the cerebellar cortex and nuclei needs to be 

accommodated in a theoretical framework that takes into account these functions at a 

much higher level of abstraction, bearing in mind that the cerebellum has a very 

homogenous histological properties that constrain its computational functions in a 

specific way. Doya (1999) argues that asking about the goal or the sensorimotor activity 

of a brain ‘organ’ might not be fruitful and we would rather ask what learning algorithm 

an ‘organ’ implements. Accordingly, the cerebellum seems more suited to perform a 

supervised learning algorithm that compares actual output with planned output. Schema 

theory could be extended with these specific computational requirements for the 

cerebellar units.  

 

In conclusion, such an extended schema theory could potentially capture the 

abstractions of habitual actions, the cognitive control mechanism, and the presence of 

emotional bias. Furthermore, it allows the modeller to be less agnostic with regards to 

the neural implementation, and to produce testable prediction in a variety of scenarios 

(neuropharmacology, neuropsychology, neuroimaging, etc.).  

 

4.6.4 Further directions 

Clustering and bootstrapping proved to be an excellent way to fit model data and they 

improved the overall model fit. However, it is unclear how many groups are needed, 

given that this does also require other theoretical assumptions, and what the minimum 

number of subjects in each group is. A general answer to this question is perhaps 
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difficult to answer without other specific constraints, since it may depend on the model 

and the available data.  

 

As for the parameters governing the model, they need to be more specifically grounded 

to a theoretical architecture. In particular, the division of roles between PFC and BG has 

to be more clearly defined, but given the complex computation in the frontal circuits, 

these processes needs to be better specified. The model uses a simple 'static' feedback, 

where negative and positive reward increase or decrease the cognitive schemas input by 

a fixed amount. This is successful in some respects, but a more dynamic Reinforcement 

Learning mechanism needs to be implemented to take into account the different 

learning mechanisms in PFC and BG in more accurate fashion. More specifically, 

prefrontal circuits use dopamine and possibly co-release of glutamate to stabilise 

representation necessary to pursue a goal (Durstewitz et al., 2000). On the other hand 

subcortical circuits are more likely to be involved in habit formation (Wickens et al., 

2007). In the next chapter we expand the model mechanisms so as to overcome these 

conceptual limitations and we observe how this also contributes to improve model 

fitting. 
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A Neurocomputational model of action 

selection for the Wisconsin Card Sorting 

Test 

 

 Abstract 

This chapter represents the natural extension of the previous one. First, we present an 

extended model of Wisconsin Card Sorting Test, based on the one presented in the 

previous chapter. This model features a dual mechanism for cognitive control, regulated 

by two new learning parameters. Compared to the previous model, it is also simplified 

in many ways by removing or grouping old parameters. We describe the core model 

omitting the details outlined in the previous chapters and then explain how cognitive 

control is conceptualised using two simple ideas from reinforcement learning and 

information theory. All the theoretical assumptions made in the previous chapters still 

hold here, unless specifically stated. Then, we report simulations and observe how they 

fit the available empirical evidence. As in the previous chapter, we then shift the focus 

from a qualitative analysis based on aggregate data to a more specific quantitative 

cluster analysis. The data obtained from a previous experiment is divided in three 

clusters, this time following a more rigorous procedure than the one we previously used. 

Then, we show how three different sets of parameters can simulate the various sets of 

performances. Finally, we analyse strengths and shortcomings of the approach in terms 

of neurobiological plausibility, parsimony, adaptability to other experiments, and model 

fit. 

 

 Core assumptions 

The model that underlies the work in this chapter is a development of that presented in 

the previous chapter. In particular, it consists of separate cognitive and motor schemas 

(conceptualised as localised in the frontal and premotor areas respectively), with 

competition within each set of schemas implemented within a subcortical loop centred 

on the basal ganglia. The model features a set of 3 cognitive schemas and 4 motor 
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schemas, and basal ganglia units that solve competition between the schemas at each 

level independently. From this chapter on, cognitive schemas units have a pfc subscript, 

and motor schemas properties have sma subscript. In the cortical computation 

(cognitive and motor schemas), the self-excitation and the extra excitation after 

threshold θT have been removed. Removal of these parameters did not significantly 

compromise the model performance and results have not been crucially altered. Several 

parameters have been changed as shown in Table 5.1. Changes are highlighted with an 

arrow.  

 

Table 5.1 The table shows the change of value of all the parameters from the previous 

model. Other changes in the learning mechanism have been outlined in the text 

 

Parameter Change from previous 

model 

βpfc 

 

0.4 → 0.5 

 

wcog 0.831 → 0.99 

w’cog 

 

0.230 → 0.3 

 

wenv 

 

0.635 → 0.6 

 

w’env 

 

0.270 → 0.35 
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 Model description 

The change to the feedback mechanisms is more substantial. In the previous model, 

positive or negative feedback simply resulted in increasing or decreasing external input 

to the cognitive schemas by a fixed amount according to which schemas matched the 

correct or incorrect response. This rudimentary mechanism has now been replaced by a 

dual mechanism that operates in the cortical cognitive units and basal ganglia units. 

 

We start by illustrating the mechanism acting in the cortical cognitive schemas. We 

assume that the slope in the activation function is a function of the uncertainty 

associated with the schema at the same level of abstraction. Higher uncertainty 

corresponds to a state where the activation values alone are closer to each other. In that 

case, noise can be drastically affect the selection when the activation function gain is 

high and the values are close to the selection threshold by forcing the system to resolve 

the uncertainty. Uncertainty is commonly conceptualised within cognitive models in 

terms of Shannon entropy (1948), that is obtained by calculating the expected value of 

the surprise (Eq. 2), defined simply as the logarithm of pX (x), that represents the 

probability (p) of the distribution values (x) of the random variable X (Eq. 1) 

 

𝐼(𝑝𝑋(𝑥)) = log(𝑝𝑋(𝑥)) 

 

Eq.1 

𝐻(𝑋) = 𝔼(𝐼(𝑝𝑋)) =∑𝑝𝑖 ∙ log(𝑝𝑖)

𝑖

 

 

Eq. 2 

Entropy has an immediate interpretation in terms of unpredictability and it has an 

important analytical property: it is maximised for uniform distributions. 

   

Cortical schemas are biased according to an entropy function H dependent on the trial T 

(from 1 to 64 in the WCST) according to the following equations: 

 

𝑎𝑐𝑡𝑖(𝑡)  =  𝑜𝑝𝑓𝑐(𝑡) + 10
−3 Eq. 3 

  

𝑝𝑖(𝑡) =  
𝑎𝑐𝑡𝑖(𝑡)

∑ 𝑎𝑐𝑡𝑖𝑖 (𝑡)
 

Eq. 4 
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𝐻(𝑡) =
1

𝐻(𝑜𝑛𝑒𝑠)
∑−𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)

𝑖

 
   Eq. 5 

 

The output of the cognitive schemas are increased by a minimum amount (Eq. 3), in 

order to lessen the effect of small variation in activation values. The activation at time t 

is normalised with all the other activation values (Eq. 4) so that the sum of all the values 

is 1, following the axioms of probability. In other words, the activation in the cognitive 

schemas becomes a random variable that associates to each schema a probability to be 

selected proportional to its activation. The entropy is then calculated using the natural 

logarithm2 and normalised by dividing by the maximum value possible, calculating by 

using the function H on a unitary vector (the value of H(ones) is 1.0986 for 3 schemas) 

(Eq. 5). The formula generalises to any number of schemas. 

 

For instance, a vector that contains all the same values (e.g. 0.9, 0.9, 0.9, 0.9 or 0.4, 0.4, 

0.4) has maximum entropy (1.0), since the instantaneous probability that each schema is 

selected is identical (0.33 for three schemas or 0.25 for four schemas). If a schema is 

maximally active and the others are de-activated (e.g. 0, 1, 0 or 1, 0, 0) the entropy is 

simply 0.  

 

This level of uncertainty drives the alteration of the slope of the saturation function in 

the cortical cognitive schemas: 

  

𝛼𝑝𝑓𝑐  =  𝜂5−25[5 −  20 ∙ 𝜖𝑝𝑓𝑐(1 + 𝜁𝑝𝑓𝑐) ∙ 𝑙𝑜𝑔(𝐻𝑇)] Eq. 6 

  

The logarithm function is chosen for implementation purpose, since it produces a 

negative value with an input between 0 and 1. Being dependent of HT, the value of αpfc 

is identical for all the cognitive schemas. The update of αpfc occurs after each trial. Also, 

the slope is limited between 5 and 25 by the hard-limit function η5-25 defined as: 

 

𝜂𝑎−𝑏(𝑥) = {
𝑎,                 𝑥 < 𝑎
 𝑥,        𝑎 ≤ 𝑥 ≤ 𝑏
𝑏,                 𝑥 > 𝑏

 
Eq. 7 

 

                                                 
2 The entropy formula usually features a base 2 logarithm. This is not relevant here, because any 

logarithm of the probability encodes the concept of 'surprising event' irrespective of the base used. 
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When the entropy is maximum the slope is kept to a minimum (5.0). Conversely, when 

the choice between the schemas is more predictable, because the probability of selecting 

one of them is much higher than the others, the entropy becomes closer to zero and the 

slope of the threshold function increases according to the parameter εpfc. This might 

appear paradoxical as, other parameters being equal, a higher value of αpfc occurs 

whenever a schema is much more active than others and lower value of αpfc occurs when 

schemas are more equally likely to be selected. This seems to drive the schemas towards 

a greater state of uncertainty, rather than the opposite. However, one should take into 

account the presence of noise in the signal: a higher slope in the cortical schemas is 

much more sensitive to noise and slight variations in the input can drive schemas to be 

deselected more easily. This is especially true considering that schemas are activated 

only if their threshold is greater than βpfc (0.5). Therefore a schema with an activation 

value fluttering around the threshold becomes unstable and when the sigmoid becomes 

a step function (αpfc→∞), a minimal amount of negative random noise can deactivate a 

previously active schema. Likewise, a minimal amount of positive random noise can 

activate a previously inactive schema. On the other hand, a schema that is generally 

very active is more easily stabilised towards its active state, and the opposite is true for 

an inactive schema. While 'active' means above the threshold, in the core version of the 

model the top-level schemas pass a signal to the low-level schema irrespective of their 

values.3 

 

Fig 5.1 shows the computed value of αpfc given the entropy of the cognitive schemas and 

the amount of dopamine in the cortical circuit εpfc, while Fig. 5.2 shows three different 

sets of values for the cognitive schemas and how this affects the cortical slope αpfc when 

the value of εpfc is fixed. If dopamine is barely present the saturation function is very 

relaxed, irrespective of the entropy of the schemas. If entropy is really low (for instance, 

a schema has been selected because the signal from the alternative schemas have been 

depressed by the basal ganglia) the saturation function has a very high slope, at least for 

a moderate amount of dopamine.  

 

                                                 
3 In a variation of the model at the end of the chapter we explore how activating/deactivating the schema 

by unblocking/blocking the signal to the low-level schemas affects the overall model behaviour. This 

computational behaviour is somewhat compatible with the process of active maintenance (O’Reilly & 

Frank, 2006) and with the idea that dopamine signal through the mesocortical pathway increases the 

signal-to-noise ratio by inhibiting cues that are not anymore relevant to the current goal (currently active 

schemas) (Arnsten, 2011).  
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Fig. 5.1 The plot shows the computed value of αpfc given the entropy of the cognitive 

schemas and the amount of dopamine in the cortical circuit εpfc. 

 

 

 

Fig. 5.2 This left panel displays three different sets of activation values for the cognitive 

schemas and the right panel shows how each activation configuration affects the αpfc 

(resulting value above each plot). Learning parameter εpfc is set to 0.4 and the threshold 

βstr is set to 0.5. 

 

The basal ganglia units regulate the signal in a very different fashion from the cortical 

units. While cortical units are solely regulated by online state, regardless of history of 

activation and external stimuli, basal ganglia units change their characteristics with a 

history-based and reward-driven course. The units have a structure identical to the one 

illustrated in the previous chapter, where the level of striatal dopamine is assumed to be 

regulated by altering βstr, the threshold of the saturation function in striatal units. The 
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new element introduced in this chapter consists in a dynamic mechanism to vary this 

threshold as a function of current feedback and past history of activation in the 

respective cortical units.  

 

𝑎𝑐𝑡𝑖(𝑡)  =  𝑜𝑝𝑓𝑐(𝑡) Eq.8 

  

𝑝𝑟𝑒𝑑_𝑎𝑐𝑡(𝑡)  =   ∑ 𝑎𝑐𝑡𝑖(𝑡) ∙ 2
−𝑇+𝑡−1

𝑇

𝑡 = 1

 

 

Eq.9 

  

𝛿(𝑡)  =  𝑟𝑖(𝑡) − 𝑎𝑐𝑡𝑖(𝑡) + 𝛾 ∙ 𝑝𝑟𝑒𝑑_𝑎𝑐𝑡(𝑡) Eq.10 

 

Eq. 9 shows the calculation of the predicted value at the trial T. In practice, the 

predicted value is proportional to a weighted mean of the activation values in the 

previous trials, with more weight assigned to the recent trials. Predictions of feedback 

are also taken into account. If all the recent trials have been rewarded positively, a 

reasonable prediction will be that the next one will be positively rewarded too. 

Feedback can also be internally generated, and this enables the extension of the model 

to tasks that involve internal monitoring of performance, such as the Brixton Task 

(Burgess & Shallice, 2000). The predicted activation is discounted by a factor γ, that 

expresses how much importance is given to future rewards compared to the current 

ones.  This requires a further assumption regarding the brain ability to keep track of the 

recent history of each schema. This hypothesis has been shown to be realistic at the 

algorithmic (Sutton & Barto, 1998) and the neuronal (Gerstner et al., 2018) level. 

 

Eq. 10 is the temporal difference learning equation commonly used in reinforcement 

learning literature, but predicted activation and current activation are compared with 

rewards to yield the prediction error δ (delta). Fig. 5.3 displays the different errors 

against values of γ from 0 to 1. Giving higher weight to a future predicted value tends to 

increase all the errors with a gradient mildly dependent on γ values (see Eq. 10). On 

account of the small linear variations for the majority of performance errors, this 

parameter can be used a fixed parameter, incorporated in the reward values or even 

dropped. In chapter 7 it will fixed to a small value. 
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Fig. 5.3 The plot displays different performance errors evaluated  

against values of gamma from 0 to 1. The black, red, and blue lines represents the data 

from Paolo et al. (1996) and Cooper, Wutke, & Davelaar (2012) for young adults, 

elderly subjects, and Parkinson's Disease patients, respectively. 25 subjects have been 

simulated for each set of values of  γ and εstr. 

 

The reward vector ith component ri  assumes a value of +1 whenever the matched feature 

is active when positive feedback is given. If the virtual subject matches a card by colour 

and by number and the feedback is positive, colour and number schemas ri are set to +1 

and the shape schema to -1.While this rule seems to be contrived, it achieves good 

performance and is relatively simple to understand and implement. This implementation 

has a number of built-in assumptions. First, the reward is fixed and does not vary in 

intensity. Second, it is assumed that the subject understands what the correct feedback 

is. Third, the correct feedback is not determined by the most currently active schema, 

but a general matching rule. This does not require any memory search. This is certainly 

the strongest assumption and one that requires further scrutiny. Later in this chapter the 

cognitive plausibility of this will be analysed and more plausible alternatives will be 

examined.  

 

The error value δ drives the variation of the threshold of saturation curve in the striatal 

units following Eq.11 
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𝛽𝑠𝑡𝑟,𝑖(𝑡 + 1)  =  𝜂𝑜−1[𝛽𝑠𝑡𝑟,𝑖(𝑡)  −  𝜖𝑠𝑡𝑟 ∙ 𝛿(𝑡) + 𝜁𝑠𝑡𝑟] Eq.11 

 

The alteration of the properties of striatal units tends to favour the activation of one of 

the three cognitive schemas, according to the reward received, the history of reward, the 

discount factor, and the learning parameter εstr.   

 

 Simulation 

As in the previous chapter, we run the model and observe how performance is affected 

by parameters. The first simulation (Fig. 5.4) shows the profile of the main errors (Total 

Errors, Perseverative Errors, Set Loss errors, Non Perseverative Errors) obtained by 

altering εstr.  

 

 

Fig. 5.4 The plot shows the four errors in the WCST against the parameter εstr. The 

black, red, and blue lines represents the data from Paolo et al. (1996) and Cooper, 

Wutke, & Davelaar (2012) for young adults, elderly subjects, and Parkinson's Disease 

patients, respectively. 25 subjects have been simulated for each set of values of  εstr and 

εpfc. 

  

After a value of εstr greater than 0.4, Set Loss errors become increasingly more frequent, 

exceeding the values normally produced by patient with dorsolateral lesions (Stuss et 

al., 2000), far beyond those observed even in PD patient performance. Conversely, 

lower values of εstr yield higher perseverative errors, showing a dissociation between the 
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mechanism that produces SL and PE. Non perseverative errors (NPE) increase also after 

0.4. Fig 5.5 shows a zoomed plot of SL errors with εstr  on the x-axis.  

 

 

 

 

Fig. 5.5 The plot shows the four errors in the WCST against the parameter εstr for a 

narrow area of values (0.05 to 0.4).  

 

Figure 5.5 shows that there is an optimal value εstr that minimised SL errors, and that 

this value changes with different values of εpfc. The average minimum value seems to be 

around εpfc = 0.15-0.20 for the observed values of εpfc.  This result will be considered in 

term of the inverted-U performance functions (Cools & D’Esposito, 2007) in the 

discussion. 
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Fig. 5.6 The plot shows the four errors in the WCST against the parameter εpfc. The 

black, red, and blue lines represents the data from Paolo et al. (1996) and Cooper, 

Wutke, & Davelaar (2012) for young adults, elderly subjects, and Parkinson's Disease 

patients, respectively. 25 subjects have been simulated for each set of values of εstr and 

εpfc. 

 

 

Fig. 5.7 The plot shows the four errors in the WCST against the parameter αstr. The 

black, red, and blue lines represents the data from Paolo et al. (1996) and Cooper, 

Wutke, Davelaar (2012) for young adults, elderly subjects, and Parkinson's Disease 
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patients, respectively. 25 subjects have been simulated for each set of values of εstr and 

αpfc. 

 

Fig. 5.6 shows the four errors in the WCST against the parameter εpfc while Fig. 5.7 

shows the same four errors in the WCST against the parameter αstr. A comparison 

between the two figures demonstrate that for values of αpfc greater than 17, the model 

performs without any error anywhere. But this is simply due to a failure to start and 

those are the initialisation values of the variable.  In other words, performance is mostly 

unaffected for values of αpfc less than 17, but the simulation abruptly stops working after 

that, and only for a specific values of εstr. This very strongly indicates that choosing αpfc 

as free parameter representing the presence of dopamine or any other neurotransmitter 

in the cortical circuits is not appropriate. In reimplementing Gurney et al. (2001) model 

of basal ganglia, αstr and βstr have been shown to yield qualitatively equivalent 

behaviour, at least in a simple two-channel simulation. Taken together, these results 

suggest that the division of labour between basal ganglia and cortex is reflected in the 

computational action of their saturation curve parameters, too.  

 

 Discussion 

The model presents a dynamical system where the slope of the threshold αpfc is updated 

as a function of the uncertainty among the cortical schemas, regardless of previous 

history of any other variables, and the dopamine dependent parameter εpfc. In other 

words, the model features an ‘online’ mechanism that modulates aspects of cognitive 

control in real time. Here, it is implemented in the cognitive schemas only, but in 

principle it could be implemented in (sensori)motor schemas as well. The necessity for 

such a system that operates alongside the one in the basal ganglia units comes from 

several considerations. First, cognitive control requires both stability and flexibility as 

requirements for its correct functioning (van Schouwenburg, 2010). These two 

constructs have an optimal value and are conceptually dissociable. Stability can be 

defined as the ability to resist distractions or, in computational terms, the ability to 

sustain the activation of a goal-relevant schema. An excessively low stability makes the 

system more vulnerable to distractions, which is computationally comparable to 

susceptibility to noise or external signal. Conversely, a system that is too stable tends to 

ignore evidence coming from rewards, assumed to be computed in the basal ganglia 

units, and therefore coming to a correct decision too slowly. A system that is too stable 

also tends to be less sensitive to feedback and to environmental stimuli that require 
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immediate evaluation on account of their adaptive value or relevance to the overarching 

goal. Flexibility is a somewhat orthogonal concept to stability and it can be 

conceptualised as the speed to which the system adapts to newly rewarded 

representations. Too little flexible system affects the ability to respond to new feedback 

appropriately, while a too flexible system does not take into account the history of 

response and yield to an ineffectual inhibition of inappropriate schemas. Importantly, in 

this model reward is a fixed value the system computes irrespective of which schema is 

most active. This entails that, in the present model, rewards are exclusively processed in 

the basal ganglia units.  

 

In the previous chapters we showed that altering the threshold or the slope of saturation 

functions in the striatum yields very similar results, by affecting the competition 

between the channels very similarly. While changing slope and threshold are 

computationally similar, this is not necessarily true for structures other than the basal 

ganglia. Implementation details and simulations therefore suggest that modifying the 

slope is more appropriate. Furthermore, from the neurobiological point of view, it is 

possible to argue that slope and bias in a saturation function mimic the effect of tonic 

and phasic dopamine, respectively. However, this requires other simulations that are 

capable of teasing out these specific contributions of neurophysiological data. For now, 

the use of αpfc as a parameter that helps to link neuropsychological constructs such as 

working memory and attention with the neurobiological activity of dopamine 

neuromodulation in the prefrontal cortex, and therefore to avoid the definition of 

attention as an external central processor (Gibbs & Esposito, 2005). Rather, attention is 

conceptualised as the ability to switch set as a function of the cortical state. While the 

state of cortical representations is indirectly affected by reward and history of reward 

(as habitual actions are performed faster), we assume that its modulation does not 

depend only on those values. Biologically speaking, activity in the prefrontal cortex is 

known to be strongly modulated by dopamine. Computationally, we manipulate directly 

the amount of dopamine that act on the cortical circuits that are engaged in the 

execution of the schema by varying parameter εpfc (Eq. 6). Dopaminergic neurons 

ascend to the anterior cortex from the ventral tegmental area (VTA), where the DA 

nuclei sits, to form the mesocortical pathway. The activity of DA neurons affect 

prefrontal neurons, that show persistent activity when a task requires holding 

information in order to guide future action (Curtis & D’Esposito, 2003). This persistent 

activity could be caused by a combination of reverberatory activity within homogenous 
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cell assemblies, within chains of neuronal pools, or even by bistable properties of 

neurons (Durstewitz et al., 2000). Importantly, this activity is distinct from processes 

that involve short or long term plasticity (Dayan & Abbott, 2001). The tonic activity of 

dopaminergic neurons is thought to alter the signal-to-noise ratio in neuronal firing in 

the PFC, increasing or decreasing the stability of goal-relevant representations 

(Seamans & Yang, 2004). However, the functional role of tonic and phasic dopamine 

burst in the PFC is still open to debate. Some evidence suggests that these two 

mechanisms have different functional effects. Durstewitz et al. (2000) produced a 

biophysically accurate model of phasic and tonic DA actions and argued that, given the 

intrinsic properties of dopaminergic neurons, tonic action only is responsible for 

working memory functions in the PFC, namely stabilisation of representations. Despite 

the fact Shultz et al. (1993) showed that phasic action in DA is seen during the intervals 

between stimuli updating, the scale of phasic dopamine signal seems to be too slow for 

such fast processes. However, there is also evidence for DA neurons co-release 

glutamate (Seamans & Yang, 2004), which is a fast acting neurotransmitter. While it is 

fair to say that maintenance of representations is not a process driven by plasticity, at 

the moment it is unclear what role phasic or tonic dopamine play in this respect. We 

therefore assume that, in the present model, εpfc represents direct DA manipulation 

without making any commitment to the spike train modality. 

 

Parameter αpfc could be a free parameter but, in the model, it also depends on the state 

of the schemas (Eq. 6) (Collins et al., 1998). This is a theoretically sound choice for 

three reasons. First, the kind of task and the cognitive demand are crucial determinant 

for the optimal amount of DA, even when the brain areas involved are identical (Cools 

& Esposito, 2011). This is consistent with what happens in our model: adding another 

unit below the threshold slightly increases the entropy, relaxing the slope of the cortical 

saturation function. The effects of DA receptor stimulation also depend on the baseline 

WM capacity. In this respect, Kimberg et al. (1997) showed that bromocriptine (a 

dopamine agonist) interacts with the baseline working memory capacity of the subjects, 

as measured by the listening span task. The drug improved performance in subjects with 

lower baseline abilities but worsened it in the other subjects with higher abilities.  

 

Second, single neurons in the midbrain do not only reflect reward prediction error but 

distinct groups of neurons in the macaque monkey midbrain show a separate sustained 

and gradually increasing activity proportional to the uncertainty of being rewarded 
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(Schultz, 2008). In terms of information theory, this means that the gradient of firing 

rate of those neurons is proportional to the entropy of the system. These neurons are 

mainly found in some areas of the substantia nigra pars compacta (SNpc) and mainly in 

the ventral tegmental area (VTA). Functional MRI also reflects these findings in 

humans (Schultz, 2008). Third, in absence of a hierarchical higher schema bias, the 

system has to be able to exert top-down control without the aid of an external controller 

and be able to determine which schemas are needed for a task even in the absence of an 

external reward or surprising event.  

 

Crucially, simulations (Fig. 5.5) with αpfc as a free parameter show how the dependency 

on entropy is of paramount importance in producing sound results. Without this variable 

modulating the slope of saturation functions in the WCST, task errors become 

independent of the amount of dopamine in the PFC, Set Loss errors do not have a clear 

profile and values above a threshold result in a computational deadlock. In conclusion, 

theoretical considerations, empirical and simulation results shows that entropy plays an 

important role in controlling how parameters are altered in cortical areas. In spite of 

this, the specific implementation of this process is arguably still not optimal, and there 

is room for improvement with regard to the mathematically optimal form to use. A core 

theoretical commitment that can be made is that the process of altering αpfc work better 

when it is driven by internal variables, that is to say by activation values of the cortical 

schemas. This differs from the process in the basal ganglia units (Eq.8-10), that is 

driven by external rewards or sensory evidence.  

 

A cautionary note about associating DA manipulation and saturation curve should be 

made. In computational modelling altering the slope of the saturation function is a fairly 

common artifice to simulate neurotransmitter availability in a certain region of the 

brain. However, the implementation is not obvious, and different authors use this 

parameter in a very different manner. In fact, the relationship between the presence of a 

neurotransmitter in a brain circuit and the proposed function depends on the cognitive 

architecture and the chosen structure. For instance, Li et al. (2001) build a neural 

network to evaluate the effects of ageing on word learning interference. They associate 

the slope of the threshold function with the presence of dopamine in the cortical circuits. 

In this framework, mental representations become increasingly more distorted as the 

slope becomes flatter, hindering the encoding and the retrieval of word memories. 

Given that dopamine and many other neuromodulators are known to enhance long term 
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potentiation in local circuit, flattening the slope of activation function in connectionist 

networks can successfully explain impairments in encoding and retrieval on account of 

abnormal plasticity or neurodegenerative disorders. However, while this mechanism can 

constitute a compelling explanation for plasticity-driven processes, where age-driven 

loss of plasticity can be due to distortion in representation, this may not always work as 

a general paradigm in cognitive control. In fact, various forms of damage in a simple 

feed-forward neural network generally yield a monotonic relationship between type of 

damage and performance errors, irrespective of representation (Guest, Caso, & Cooper, 

submitted). This is in stark contrast with the inverted-U shape between DA receptor 

stimulation and working memory performance in executive control tasks (Seamans & 

Young, 2004). In other words, it appears that a simple feedforward neural network 

alone cannot account for a specific cognitive control phenomenon and that simulating 

neurotransmission in higher-order cognition is not exclusively achieved by 

manipulating a transfer function parameter, but is highly dependent on the level of 

explanation and the employed architecture. 

 

The implementation of the concept of entropy might appear very coarse at this stage of 

the simulation, considering the full space of possibilities, but some of the possible 

choices that stem from this theoretical reasoning have been more carefully scrutinised 

and compared with each other in terms of simplicity and model fit, and the current 

choice of function achieves adequate results. Therefore, for the time being, the main 

feature of this cognitive process is a quantity defined as entropy driving the variation in 

the slope of the saturation function in the cortical units.  

 

In contrast to the fast-acting mechanism that updates the αpfc, basal ganglia units are 

subject to a relatively slower and incremental learning, sensitive to reward in the form 

of temporal difference. These units control how ‘habitual’ schemas are, reducing the 

selection time of an habitually selected schema. Indeed, there is evidence that the basal 

ganglia are more active in the earlier phases of learning and their activation decreases 

once an action has been well learnt (Yin & Knowlton, 2006). In this framework, the 

basal ganglia acting on the cognitive schemas are part of the associated loop, 

corresponding to the more dorsomedial part of the striatum (caudate). In the core model 

presented here the motor units do not feature any learning parameter, since the stimuli 

are randomised and it is assumed that the subject do no habituate with regard to the 
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position of the pile on which the card has to be put. Still, the basal ganglia as a whole 

acts as a selection device by resolving competition between lower-level motor schemas.  

 

The choice of Eq. 11 to drive the learning mechanism in the basal ganglia unit is 

straightforward and it is in the form of Temporal Difference Learning (TDL). 

Essentially, TDL is a temporally extended version of the more basic Rescorla-Wagner 

(RW) model (Rescorla & Wagner, 1972; Sutton & Barto, 1998). Both postulate that 

learning occurs when experience violates expectations but the RW equation does not 

contain the discounted term. Rescorla-Wagner equation alone explains several simple 

animal behaviours such as blocking and overshadowing, but it fails to explain second-

order conditioning (or second order predictions) and it does not take into account the 

difference in time between rewards or, more specifically, neglects reward history 

(Miller et al., 1995). These limitations are partially overcome by the hierarchical 

structures of the schemas and the activation mechanism so, in principle, the discount 

parameter γ can be dropped. However, in Eq. 11 we chose to use the TDL rather than 

the simpler RW because of its widespread use in reinforcement learning and the close 

relationship with neuroscience data (Sutton & Barto, 1998) 

 

Form the cognitive point of view, basal ganglia units control the flexibility of cognitive 

control. A too flexible system does not process signals from hierarchically superior 

representation and it cannot ‘stick to the task’, while an inflexible system cannot adapt 

to new external data and will persist in the same behaviour despite negative feedback. 

This is shown in Fig. 5.2, where Perseverative Errors are negatively correlated with the 

parameter εstr and Set Loss errors show the opposite pattern before reaching a minimum. 

Flexibility is a therefore orthogonal to stability and it can be conceptualised as the speed 

to which the system adapts to newly rewarded representations. 

 

The choice of cognitive architecture and the two learning processes mainly stems from 

theoretical considerations, but in order to be validated the model has to be tested against 

the experimental evidence.  Fig. 5.3 and 5.4 shows that increasing parameter εstr 

decreases the number of Perseverative Errors and increasing εpfc  increases those same 

errors to a lesser extent. Remembering that these two parameters reflect the amount of 

dopamine in two different brain circuits, we can draw an analogy with experimental 

data and observe how this qualitative behaviour has been demonstrated in empirical 

studies. Roberts et al. (1994) showed that injecting a neurotoxic drug that selectively 
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destroys dopaminergic cells (6-ODHA) into the PFC of a monkey enhanced 

performance in a task that required attentional set shifting and concurrently impaired the 

ability to hold the necessary set in mind. In contrast, Collins et al. (2000) showed that 

lesioning a marmoset caudate impaired the animal’s response on a set that had been 

previously relevant to obtain reward. However, shifting from the first set does not seem 

to be affected by the lesion. Wanatabe (2005) shows that perseveration in stimulus-

response association in pigeons is not be due to memory loss by damaging the 

equivalent of the caudate and hippocampus in a discrimination task. Only basal ganglia 

lesions cause perseveration-like errors. 

 

The concept of instability in clinical population is captured instead by Mullane and 

Corkum (2007). They compared two small groups of children with and without a 

diagnosis of ADHD and observed that Set Loss (SL) errors are more frequent in ADHD 

children. ADHD children do commit more Perseverative Errors (PE), but group 

differences disappear upon controlling for IQ and age. Although divergent data exist, 

the majority of evidence points toward a different role of basal ganglia and prefrontal 

structures. These empirical data therefore fit generally well with simulations in this and 

in the previous chapter and provide good qualitative evidence for the model.  

 

 Addressing the model's shortcomings 

Despite the model performing adequately and reproducing the trade-off between 

stability and flexibility with some simple assumptions, it has several shortcomings. We 

analyse these in this section. A variation of the model is also presented which 

overcomes one limitation – the absence of response timing in the previous model. Three 

other limitations are discussed, with their resolution left to future research.  

 

5.6.1 Reward mechanism 

The most important limitation of the model described above is the absence of a realistic 

reward mechanism. As pointed out in the previous section, the reward mechanism in 

place is straightforward but it is an implausible optimal solution. While the model 

simply assigns positive or negative unitary values to actions, the subject should know 

which rule received positive or negative feedback, based on the degree of memory 

activation of that particular rule. Perhaps surprisingly, implementing a variable reward 

proportional to the activation value of that schema when feedback is given does not 

improve the model fit, but rather impairs model performance. Counting a 
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positive/negative reward whenever positive/negative feedback is given to a schema 

above a specific activation threshold fails, too. The most reasonable explanation for this 

is that, within this architecture, memory search process cannot be reliably simulated by 

simply altering the reward value as a function of schema activation values. Memory 

search seems to necessarily require adding other schemas representing rules. When the 

subject engages in evaluating which individual rule has been rewarded, the rule does not 

necessarily always correspond to the most active schema, especially whenever more 

than one rule could be potentially correct. If perceptual stimuli drive the evaluation, the 

more salient feature will receive the reward, whereas if top-down signals drive the 

evaluation, the most active cognitive schema should be rewarded.  

This unnecessarily complicates the model, and the question for future research is 

whether the addition of an extra mechanism help answer specific research questions or 

not. 

 

5.6.2 Response time 

A second shortcoming has to do with response time. Altering εpfc and εstr does not 

produce any significant variation in this dependent measure. This is somewhat 

unsurprising, because the signal is processed at the same time in all schemas. To 

overcome this limitation, we introduce a new simple process by programming the top 

schemas to work independently and then pass a signal down to the bottom schemas only 

whenever a certain area-threshold is reached and the signal is also greater than a static 

threshold (set to 0.5). Both static and area threshold are the same for higher and lower 

level schemas. Habitual actions and actions with strongly salient stimuli elicit short 

response times by the virtue of preferential activation. 

 

Simulating this variation preserves the pattern of errors (see Figs. 5.8 and 5.9) that was 

observed in the original simulation, but adds the response time component that was 

absent in that simulation. 
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Fig. 5.8 The plot shows the four errors in the WCST against the parameter εstr, for the 

new simulation. The black, red, and blue lines represents the data from Paolo et al. 

(1996) and Cooper et al. (2012) for young adults, elderly subjects, and Parkinson's 

Disease patients, respectively. 25 subjects have been simulated for each set of values of  

εstr and εpfc 

 

Fig. 5.9 The plot shows the number of categories achieved (CC), the mean response 

time for all trials (RT), the Set Loss error after 3 correct responses (SL3) as in Stuss et 

al. (2000) and the Non-Perseverative Errors (NPE) against the parameter εstr. Notice 
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how SL3 errors, which are generally more sensitive to the loss of information in 

working memory than their SL5 counterpart, display a clearer U-shaped function. The 

existence of an optimal point is consistent with studies that link dopamine in PFC and 

Working Memory. Twenty-five subjects have been simulated for each set of values of  

εstr and εpfc 

 

In this variation of the architecture, the aspect of cognitive control as such depends on 

the very structure of the architecture, and it is separate from the reward mechanism and 

from the timing aspect of the task. De Zeeuw et al. (2012) analysed a cohort of children 

with an ADHD diagnosis and showed that this aspect of cognitive control, reaction 

time, and reward sensitivity can be separated using Latent Class Analysis (LCA). This 

distinction emerges in our model, too. However, there are several important caveats to 

mention. First, the LCA shows that these results are detected in patients diagnosed with 

ADHD (any subtype) but as yet it is unclear how this generalises to controls or other 

populations. This statistical technique did not identify these deficits in healthier 

populations, but it is reasonable to expect that these dissociable features are in principle 

dependent on different brain networks and constitute a valid generalisation. Second, De 

Zeeuw et al. (2012) focused on reward sensitivity measured with a variation of the MID 

(Monetary Incentive Delay) task, where timing between rewarded and non-rewarded 

tasks are ranked and regressed against each other. While both ADHD subjects and 

control have faster reaction times when they anticipate reward, ADHD subjects show a 

significantly smaller difference. The basic reinforcement learning mechanism in our 

model is incapable of simulating these aspects of behaviour, although response times 

and the assigned value of rewards are intimately related to the reaction time. Third, 

reaction times are not the same as response time. While the former are quick and 

essentially stimulus-driven, the latter encompass a sequence of layered mental 

operations. A sizeable motor response time should be also taken into account. While it 

is reasonable to assume that response time increases with the number and the 

complexity of mental operations, the timing of these operations is essentially difficult to 

quantify. This last issue is probably the most relevant limitation in interpreting 

experimental data as a validation of the proposed model. 

 

5.6.3 Encoding reward in the PFC 

Not only neurons in the striatum respond to Reward Prediction Error (RPE). Neurons in 

the Ventral Tegmental Area (VTA), that projects to the prefrontal areas via the 
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mesocortical pathway, do too (Schultz, 2000). It seems that the model can easily 

accommodate another RPE equation that would drive changes in the threshold of the 

cortical schemas (motor or cognitive) but this has not been implemented for sake of 

simplicity. Facilitation of the activation of cortical schemas due to a prediction error 

should be much slower than the one occurring in the striatum, but in the long run it 

would essentially take over the striatum’s function, whose role would become less 

crucial. This would essentially be the computational implementation of the process by 

which habitual action are gradually transferred to the cortical tissue, where their 

activation becomes computationally less effortful (Ashby, 2010) but also less amenable 

to change. If the model was trying to predict how habitual actions develop or are 

unlearnt, this additional parameter would be necessary. However, the simulation only 

concerns events that unfold in seconds, when cognitive control is exerted, or in minutes, 

where additional schemas are unlikely to be learnt anew.   

 

 Simulating clustered data 

In the previous chapter we analysed the result from the simpler model simulation and 

we fitted the model to existing empirical data from Cooper et al. (2012). In this section, 

we repeat the clustering and the data fitting for the current model, but with some 

variations. Firstly, set loss errors were rescored as involving at least 3 correct sorts 

(rather than at least 5) before an error (see Stuss et al., 2000). Secondly, rather than 

arbitrarily choosing 5 clusters, we used the “elbow function” to determine the number 

of clusters. Thirdly, rather than using a genetic algorithm with many parameters to find 

best fitting parameter values for each cluster centroid, only two parameters were 

considered and a simple connectionist network was used to map between values of these 

parameters and the dependent values (performance errors).  

 

The elbow function, which can help establish a data set is amenable to the use of the k-

means algorithm (Hastie et al., 2001), shows how the minimum (dashed yellow line), 

the maximum (dashed blue line) and the mean (solid orange line) within-clusters sums 

of point-to-centroid distance against the number of clusters adopted. Evaluating the 

elbow function (Fig. 5.10) for the current dataset with increasingly higher number of 

clusters shows that the within-cluster sums of point-to-centroid plateaus out after 3 

clusters.  
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Fig. 5.10 The elbow function for the data set from Cooper et al. (2012).  

The light yellow and blue lines represent, respectively, the minimum and maximum 

values of the within-group sum of the distances. After 3 clusters the within-group sum 

does not appreciably diminish. 

 

Figure 5.10 was produced by an unsupervised learning algorithm applied to the data 

from Cooper et al. (2012). Each participant was scored on three dependent measures: 

PE, TE and SL3. SL3 refers to Set Loss Error calculated after 3 correct responses (as in 

Stuss et al., 2000) instead of 5 (as in Heaton, 1975). This ensures greater variability in 

the data. The algorithm was not given any initial centroid as a starting point. Rather, 

data points were sampled from a multivariate uniform distribution, and the algorithm 

was repeated 500 times to ensure replicability. Clusters with the least within-clusters 

sums of point-to-centroid were selected.  

 

The outcome for the empirical data, with three clusters, is shown in Fig. 5.11. Table 5.2 

shows the statistics for the clusters of empirical data. 
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Fig. 5.11 The plot shows the empirical data points clustered in three groups by means of 

the k-means algorithm 

 

 

Table 5.2 Clusters of empirical data 

G N TE PE SL3 

1● 5 24.40 (SD = 3.2) 13.60 (SD = 2.79) 1.80 (SD = 0.71) 

2● 39 12.08 (SD = 3.59) 7.69 (SD = 1.94) .72 (SD = 1.21) 

3● 4 29.25 (SD = 2.63) 2.75 (SD = 2.75) 1.00 (SD = 1.41) 

 

 

 

Whereas in the previous chapter corresponding, simulated clusters were produced with 

a genetic algorithm by varying a large number of parameters, here only parameters εstr 

and εpfc are varied. In order to fit the right set for each of the three clusters, a function 

that maps εstr and εpfc to the three dependent variables TE, PE, and SL3 was needed. For 

this purpose, we built a simple feedforward neural network and we fed it with all the 

data from the simulation run in the previous paragraph and depicted in Fig. 5.11. The fit 

to each cluster was then calculated for a large selection of εstr and εpfc.  Further details 

can be found in the Appendix and results are shown in Fig. 5.12. Table 5.3 shows how 

the three clusters were simulated with different set of parameters.  
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Fig. 5.12 The plot shows the results of three different simulations with three different 

set of parameters 

 

Table 5.3 Clusters of simulated data 

 

G N TE PE SL3 

1● 5 22.60 (SD = 3.64) 15.20 (SD = 3.27) .40(SD = .55) 

2● 39 10.51 (SD = 1.62) 8.12 (SD = 1.85) .64 (SD = .74) 

3● 4 29.00 (SD = 2.31) 20.75 (SD = 2.50) 1.00 (SD = 1.15) 

 

 

While this approach considerably improves on the previous clustering approach by 

‘letting the data talk’ without forcing any prior analysis, there are still limitations. Data 

distribution in each cluster cannot be quickly captured, especially on account of the 

paucity of empirical data and the difference in the number of participants that belong to 

different classes.  

 

In conclusion, simulation with different set of parameters produces different sets of 

performance that match different clusters of empirical data. Whether this can be 

extended to include the performance of neuropsychological impairment without 

including extra parameters and without altering the architecture is an object of future 

research. 

 

 General Discussion 

We began the chapter by analysing the stability-flexibility dilemma in general and we 

addressed how the model of the WCST presented in the previous chapter could be 

modified to explain this feature of cognitive control with a small number of meaningful 
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parameters that govern a few control mechanisms. We identified these mechanisms in 

the alteration of the slope of the saturation curve for the cortical units and the alteration 

of the threshold of the saturation curve for the basal ganglia units. These two 

mechanism are driven by two different principle. Basal ganglia unit parameters are 

altered by a simple Temporal Difference Learning equation, while cortical units 

parameters are altered by a function of the entropy of the schema activations. It has 

been shown that these two principles have clear neurobiological correlates and that 

employing them produces the U-shaped form observed in performance of animal tasks 

when lesion of dopamine depletion is applied to frontal or basal ganglia circuits. 

 

Importantly, we showed that the slope of the cortical saturation function αpfc cannot be a 

free parameter but must depend on a function of the current state of schemas and the 

dopaminergic state of the cortical area representing that schema. More precisely, the 

function has to be contingent on the probability of being selected and therefore exerting 

a top-down influence on lower level schemas. We then showed that entropy satisfies 

these constraints and therefore justifies the form of Eqs. 3-6 shown earlier when 

describing the model governing equations. By the same token, we proceed to described 

how the concept of flexibility can be well associated with the value of βstr, namely the 

threshold of the striatal units. We showed how βstr must vary to accommodate current, 

past, and future rewards in order to produce appropriate results in the task simulation. 

We analysed results and then examined limitation and possible extension of the model. 

 

The model produces quantitatively different results for different sets of parameters and 

it is tested against empirical data. Healthy young participants produce a variable set of 

performance within a single task, and suggests that a clustering algorithm can be used to 

identify different areas of performance and each one can be then simulated with a 

difference sets of parameters. This avoids comparisons between aggregate data, which 

can be misleading. While this technique can be very powerful, several problems arise. 

Future research must focus on understanding how to choose the right number of clusters 

for the analysis. This depends on both the variance of the model output given a fixed set 

of parameter and the separability of the empirical data. Another question worth asking 

is whether we can account for multiple performances in multiple tasks simulated with 

the same cognitive architecture with the same (or, more realistically, a similar) set of 

parameters.  This will be addressed in future chapters.  
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In conclusion, the model provides a possible and provisional answer to the stability-

flexibility dilemma in a specific executive task such as the Wisconsin Card Sorting 

Test, but it does so in a general cognitive architecture that extends the contention 

scheduling (Cooper & Shallice, 2000) with an anatomically detailed model of the basal 

ganglia (Gurney et al., 2001). The model postulates only two free parameters with a 

possible neurological interpretation, and it produces an acceptable fit with the empirical 

data, provided that these are clustered in different groups that are simulated separately. 

In the following chapter we will explore how the model can be extended to simulate a 

variation of the Brixton Task (Burgess & Shallice, 1997) 
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Modelling the Brixton Task with the 

Extended Schema Theory 

 

 Abstract 

In this chapter we present a model of a variation of the Brixton Task (the original test is 

described in Burgess & Shallice, 1996) developed from the extended schema theory. 

The BRX model consists of 5 higher-level schemas and 9 lower-level schemas. Low-

level schemas receive activation from their parent schemas as well as the stimulus. 

High-level schemas receive constant activation. Both are connected to basal ganglia unit 

that bias the selection of schemas.  The control mechanism is almost equivalent to the 

one in the WCST outlined in the previous chapters, including the presence of free 

parameters εstr and εctx. The only significant architectural differences are the number of 

schemas and the way reward is assigned. Like in the WCST, a dedicated mechanism 

provides positive reward in the form of a positive scalar if the rule matches target 

stimuli. However, whereas in the WCST each rule is matched separately, in the BRX a 

rule is activated as long as two successive stimuli match part of a rule.   

 

We describe the model and we simulate how changing learning parameters affect 

performance in a qualitative fashion and whether the model displays general trends in a 

uniformly distributed set of parameter space. We discuss the model in relation to the 

previously described WCST, and how specific parameters relate to mind and brain 

processes. This lays the groundwork for the next chapter, where quantitative model fit 

against data from experimental data are evaluated.  
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 Model description 

6.2.1 Task description 

The Wisconsin Card Sorting Test (WCST) has been shown to be useful for a variety of 

assessment, but it suffers from several shortcomings both as a clinical and research tool. 

First, stimuli such as colour, shape, and number do not have the same perceptual 

saliency. Secondly, WCST can often produce ambiguous responses when more than one 

feature matches the target card. The Brixton Task (BRX) (Burgess & Shallice, 1996) 

design circumvents these problems and similarly to the WCST it can be considered a 

cognitive set-shifting and concept attainment task. Unlike the WCST, BRX can be also 

viewed as a visuospatial sequencing task. In the BRX subjects are presented with a 

series of circle. One of these circles is always coloured in and it moves around 

according to a pattern, following subject’s response. The subject has to work out what 

pattern is described by the moving circle and select the next circle they believe will be 

coloured in. The response to the first circle is a guess. The pattern changes from time to 

time and the subject has to adapt to the new pattern. Stimuli in the original Brixton Task 

consists of a 2 by 5 matrix of circles. In the variation proposed here there are 9 circles 

arranged in a circular fashion. This arrangement is useful to obviate the potentially 

confusing passages from the first and the second row. In terms of computational 

architecture, the arrangement of circles in a 2x5 matrix (Fig. 6.1) as in the original test 

or in a circular shape as in our test (Fig. 6.2) is irrelevant. However from now on we 

will always refer to this variation of BRX as the BRX. An important difference with the 

WCST is that the BRX task does not have an explicit feedback signal. If the individual 

understand the instructions, and the new filled-in circle appears where the individual 

clicked, that should be processed as a positive feedback. 

 

 

Fig. 6.1 Template of the original Brixton Task (Burgess & Shallice, 1996) 
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Fig. 6.2 Template of the variation of the Brixton Task used here 

 

In our paradigm there are four possible rules that can be picked by the subject: 

clockwise, counter clockwise, alternate between circles 1 and 5, and counter clockwise 

skipping one circle each time. At the end of the task, several performance variables are 

computed. The most important performance error is the Total Error (TE) score, simply 

measured as the number of incorrect responses. There are three types of errors in the 

‘perseverative responses’ class. Perseverative Response Error (PRSRE) are computed 

whenever the subject presses the current circle, as it was driven by the stimulus only. 

These can be considered as errors due to ‘perseveration of stimulus’. Preceding 

Response Errors (PRE) are counted whenever participants select the same response of 

the immediately previous trial, as they considered the previous response to be correct, 

because of inability to process feedback, for instance. These can be considered 

‘perseveration of response’ error. Perseverative Rule (PRU) errors are counted 

whenever participants select a response that would be correct under the previous rule, as 

they did not switch from applying the old rule to the new one. A minimum of 4 PRU is 

recorded whenever the task is completed correctly, and a maximum of 12 PRU can be 

recorded (3 for each overlap with a new rule). PRSRE, PRE and PRU are merged 

together in Burgess and Shallice (1996) as perseverative errors, because of the inability 

to distinguish them correctly given the 2x4 matrix design and the specific choice of 

patterns in the study design. Here, we distinguish between these errors since they might 

indicate two distinct phenomena at the computational level such as an increased effect 

of the stimulus-response relationship and the inability to effectively and quickly adapt 

to changing contingencies. These errors are also analysed in combination to identify 

whether there is a general perseveration construct. 
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6.2.2 General model description 

The model consists of 5 high-level schemas. Each one represents one of the four 

possible rules that can be applied (clockwise, counter clockwise, alternate between 1-5, 

counter clockwise skipping one circle) and there is an additional schema that represents 

all the other rules. The rule represented by this last schema is randomised on each trial, 

and contributes to account for inter-subject variability in the simulation. Different 

subjects might have different concepts that are not necessarily triggered by the 

presented stimuli. For example, some individuals might overcomplicate rules and infer 

that clockwise motion of the circles is mirrored anticlockwise after a semi-circle is 

completed or, like in the case of patients with anterior frontal damage, infer bizarre 

responses (Burgess & Shallice, 1996) that do not reflect any of the most common rules 

that healthy individuals seem to employ. Adding this fifth schema is necessary to 

produce meaningful variations in responses, and one could potentially account frontal 

damage by damaging all the schemas except for the fifth. The present simulation is not 

concerned with any aspect of rule inference per se, since this probably happen higher up 

in the mental processing hierarchy, but it mainly focus on the cognitive control of these 

rules.  Psychologically, this assumes that individuals have memorised similar inference 

patterns in childhood and their concept attainment mechanism is not impaired by 

physical damage of the brain.   

 

All the high-level schemas are fed with a constant input and uniformly distributed noise. 

A high level schema is and then selected if satisfied two conditions: its activation must 

be greater than θS and the integration of its activation value over time must be greater 

than θA. When a high level schema is activated, activation values are passed onto the 

children schema that represent the action of pressing on a circle (Fig. 6.3). The weight 

between the high-level schemas and the low-level schemas are assigned based on the 

current stimulus. For example, if the third lower-level schema (third circle) is active and 

the second rule (counter clockwise) has also been selected, the second higher-level 

schema feeds the circle prior to the current stimulus, namely the second circle. 
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Fig. 6.3 Schematic of the model without the basal ganglia arbitration device. For 

instance, given that specific filled-in circle as an input, the +1 schema (clockwise) 

excites the following circle, whereas the -1 schema (counter-clockwise) excites the 

preceding one.  

 

The 9 lower-level schemas represent all the 9 possible selection choices, and they are 

also activated by environmental cues (stimuli). In this way, in absence of top-down 

control, environmental cues drive the choice of pattern. Higher and lower order schemas 

all feed into two parallel mechanism that resolve the competition within the same 

hierarchical level, exactly as in the WCST model. Basal ganglia units implement this 

arbitration device, feeding back all the schemas with inhibition signals, as described in 

the WCST chapter. The internal structure of the basal ganglia unit is shown in Fig. 6.4.  

 

Fig. 6.4 Schematic of the basal ganglia. Legend: Cortex-Thalamic complex (CTX-

THAL), Striatum (STR), Subthalamic nucleus (STN), Globus Pallidus Internal/External 

Segment (GPi and GPe) 
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6.2.3 Feedback and bias mechanism 

Feedback mechanism are similar to the ones operating in the WCST, but with some 

important differences. While in the WCST high level rules are reinforced according to 

their success (positive or negative feedback) through a basal ganglia mechanism only, 

BRX requires a different mechanism that matches the last stimulus with the available 

rule sets. A preliminary implementation (not reported here) with a simple reward 

mechanism identical to the one in WCST yields a higher number of total errors than 

individuals usually make. Although the amount is not much bigger, this shows that this 

process needs to be fine-tuned to produce at least a reasonable first approximation of 

human performance. This mechanism prescribes that if two consecutive circles appears 

in counter clockwise fashion, that particular schema will be activated. If this 

arrangement has some features in common with the random schema, the latter will also 

be activated. Computationally, this amounts to find the (ordered) intersection between 

the vector that represents the last two presented stimuli and one possible rule set. If the 

match is positive, the transfer function of the relevant rules are then biased to increase 

the likelihood of being selected. The reward value is generated via a simple reward 

prediction learning rule, with a discount factor: 

 

𝛿𝑖 =  𝑟𝑖 − 𝑎𝑖 + γ · 𝑝𝑟𝑒𝑑_𝑎𝑐𝑡𝑖(𝑡) 

 

Where all terms are the ith component of a vector, and r is either 1 or 0, depending 

whether there is a match with any rule set and the previous one or two stimuli. The ith 

component a represents the activation of that specific higher-level schema.  

 

The discounted term is calculated like in the WCST model, using the memory of 

previous activations. 

 

 

𝑎𝑐𝑡𝑖(𝑡)  =  𝑜𝑝𝑓𝑐(𝑡) Eq.8 

  

𝑝𝑟𝑒𝑑_𝑎𝑐𝑡(𝑡)  =   ∑ 𝑎𝑐𝑡𝑖(𝑡) ∙ 2
−𝑇+𝑡−1

𝑇

𝑡 = 1

 

 

Eq.9 

  

𝛿(𝑡)  =  𝑟𝑖(𝑡) − 𝑎𝑐𝑡𝑖(𝑡) + 𝛾 ∙ 𝑝𝑟𝑒𝑑_𝑎𝑐𝑡(𝑡) Eq.10 
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The reward prediction error δ then drives the change in the basal ganglia transfer 

function according to the previously outlined equation: 

 

𝛽𝑠𝑡𝑟,𝑖(𝑡 + 1) =  𝜂0−1[𝛽𝑠𝑡𝑟,𝑖(𝑡) − 𝜖𝑠𝑡𝑟 ∙ 𝛿(𝑡) + 𝜁𝑝𝑓𝑐,𝑖]   

 

where β represent the slope of the basal ganglia transfer function, εstr represent the 

learning coefficient (and more concretely, the amount of dopamine in the basal ganglia 

circuit), and ζ is noise sampled from a uniform distribution. The function η0-1 limits the 

output between 0 and 1:  

 

𝜂0−1(𝑥) = {
0, 𝑥 < 0

      𝑥,       0 ≤ 𝑥 ≤ 1
1, 𝑥 > 1

 

 

In conclusion, the only two substantial differences between the WCST model and the 

BRX model are in the number of schemas that the basal ganglia unit process in each 

level and in the reward mechanism. In order to simulate the BRX the structure of the 

WCST has been adapted and expanded to accommodate a new task, without undergoing 

any major architectural changes. 

 

6.2.4 Computation in individual units 

Computation in the individual units is very similar to the one described for the first 

model of WCST, but, as in the complete WCST, the step function and the self-

excitation weights in the cortical cognitive schemas (higher-level schemas) has been 

removed. Since it has been shown that this did not significantly affect the WCST 

model’s behaviour, these unnecessary details have been left out. All the units (higher 

level cortical, lower level cortical, striatum, subthalamic nucleus, globus pallidus 

external segment, globus pallidus internal segment) process signal in a very similar 

fashion, as indicated by the equations below.  

 

Each cortical unit receives input from parent schemas and feedback from the associated 

basal ganglia units while the basal ganglia units receive input from the cortical units and 

it distributes the signal according to its circuit pathways. Signal is manipulated with 

three operation shown below:  
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ui ⟸ ∑on
N

 

 

ai(t) ⇐ δ ∙ ai(t − 1) + (1 − δ) ∙ ui(t − 1) 

 

oi ⟸ σ (ai) 

 

The thalamus unit has a different output function, because the thalamus is activated via 

disinhibition: 

  

oi ⟸−σ (ai) 

 

A sigmoid function that squashes the output values between 0 and 1 is applied to all the 

outputs. For completeness, the analytic form of the sigmoid function is again shown 

below.  

 

σ(x) =
1

1 + 𝑒−𝛼(𝑥−𝛽)
 

 

Importantly, parameters such as α (slope of the sigmoid function) and β (threshold of 

the saturation function) are not identical for all units. Table 6.1 below illustrates the 

value of the parameters, including α and β, that are kept constant during all simulations. 

  

Table 6.1 Brixton Model Parameter  

(the part delimited by red borders represent the parameters that are unchanged from the 

WCST model) 

 

Symbol Value Meaning 

δ 0.6 
Integration constant, acting as a 

low-pass filter 

αstr 4 Slope sat. func. in the striatum 

βstr 0.5 Threshold sat. func in the striatum 

αstn 5 Slope sat. func in the subthalamic n. 

βstn 0.3 
Threshold sat. func in the 

subthalamic n. 
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αthal 6 Slope sat. func in the thalamic n. 

βthal 0.4 
Threshold sat. func in the thalamic 

n. 

αgpe 5 
Slope sat. func in the globus pallidus 

(ext. seg.) 

βgpe 0.2 
Threshold sat. func in the globus 

pallidus (ext. seg.) 

αgpi 5 
Slope sat. func in the globus pallidus 

(int. seg.) 

βgpi 0.2 
Threshold sat. func in the globus 

pallidus (int. seg.) 

αsma 8 
Slope sat. func. in the 

supplementary mot. cort. 

βsma 0.5 
Threshold sat. func. in the 

supplementary mot. cort. 

wrule 

w′rule 

1 

0 

Weight for active cognitive schemas 

Weight for non-active cognitive 

schemas 

wstim 

wstim,base 

0.635 

0.270 

Weight for active motor schemas 

Weight for non-active motor 

schemas 

θA 3•105 Area-threshold 

θS 0.4 
Threshold to activation (minimal 

necessary) 

ζpfc 0.10 
Noise added to the update of b.g. 

transfer function 

ζenv 0.10 
Noise added to the lower schemas 

input (environment) 

wgpe_gpi -0.3 
Fixed weight from globus pallidus 

ext. to int. 

wstrD1_gpi -1 
Fixed weight from striatum D1 to 

int. pallidus 

wstrD2_gpe -1 Fixed weight from striatum D2 to 
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ext. pallidus 

wstn 1 
Fixed weight from cortex to 

subthalamic n. 

wstn_gpi 0.9 
Fixed weight from subthalamic n. to 

int. pallidus 

wgpe_stn -1 
Fixed weight from ext. pallidus to 

subthalamic n. 

wstn_gpe 0.9 
Fixed weight from subthalamic n. to 

ext. pallidus 

 

 Simulations 

6.3.1 Introduction 

In this section we aim to explore how parameters variation affect model behaviour 

rather than to find a good set of parameter that fits experimental data. This qualitative 

analysis will help reflect on the psychological meaning of our parameter set and help 

contrast qualitative results with those obtained for the WCST. This would ensure that 

the model is both robust, it can be relate to psychological and biological phenomena, 

and it lays the groundwork for a quantitative fit once experimental data are collected. 

 

6.3.2 Exploring the parameter space 

In this section we want to examine whether the value of a selected set of parameters is 

free to vary at the same time, and to what extent, without altering the qualitative trend 

of performance change when altering the main learning parameters εstr and εpfc. 

Observing a general trend would suggest that the qualitative outcome across εstr and εpfc 

is primarily due to the structure of the architecture itself and not solely to the parameter 

values. The qualitative behaviour of the model in relation to the learning parameters 

should not be overly sensitive interaction among all the parameters, but mainly to the 

architecture and the interaction between various elements of it. Variation in parameters 

within a viable range would rather express inter-individual or intra-individual 

differences in performance.  

 

In this first simulation we vary the set of parameter shown in Table 6.2 below, sampling 

from a uniform distribution in the range shown. The choice of parameters and range is 

not arbitrary, but here varying fewer relevant parameters within a slightly bigger range 
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is preferable to altering all parameters within a smaller range. Extreme variation or 

extreme values can give rise to deadlock or degenerate cases on account of the 

extremely non-linear behaviour of the model. For instance, if the lower schemas are fed 

a signal greater than the response threshold and higher-level schemas do not counter-act 

with a strong signal, a tiny variation in those parameters can produce exclusively one 

type of errors. While this happen unfrequently and only for extreme values of 

parameters, the system can potentially break down due to extremely unbalanced signal 

ratios.  

 

 

Table 6.2 Parameter space lower and upper bounds 

Parameter Lower bound Upper bound 

oext 0.8 1 

γ 0 0.25 

αsma 6 11 

αstr,ctx 10 15 

βthal 0.3 0.5 

wstim 0.4 0.6 

Wstim, base 0.2 0.3 

wrule 0.4 0.5 

 

 

We simulate 15 participants for each of the value of the free parameter εstr from 0 to 1 in 

6 equally spaced intervals and for four values of εpfc (0, 0.33, 0.67, and 1). For each 

participant the values of the set of parameters described in Table 6.2 (first column on 

the left) are drawn from a uniform distribution within the indicated range (middle and 

right columns of the table). Fig. 6.5 reveals general trends for all the performance errors 

except for PRSRE. TE negative trend with εstr is clear and consistent with what we 

expect to see and what we observed in the WCST. Furthermore, parameter εpfc seems to 

have an optimal value changing across εstr. PRSRE seem to be erratic and its average 

excessively high, indicating that the environment seem to drive responses unpredictably 

when the set of above parameters varies excessively. PRE, the ‘perseveration of 

response’ is increasing when εstr is decreased, and the trend is clear and consistent with 

the WCST results, albeit the errors plateaus out much more quickly than the TE. What 

seems to be counter-intuitive is the positive correlation between εstr and PRU errors due 
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to ‘perseverations of rule’. After all, the εstr learning mechanism is applied to the higher-

level schemas only. However, not enough PRU might be committed simply because 

other perseveration (stimulus or response) take place in the same 50 trials. 

 

 

 

Fig. 6.5 Fifteen subjects for each value of εstr and εpfc are simulated. Parameters have 

been uniformly sampled within the range sets above. 

 

6.3.3 Exploring single parameters 

Here we want to analyse the effect of individual parameters on errors, and especially 

compare it with what our intuition suggests, given the knowledge of the architecture. 

This help build a bridge between our intuitions and the real behaviour of the model. 

Moreover, we can study whether there are singular points for which the model breaks 

down. Here, we can also compare our results with those obtained by modelling the 

WCST. Table 6.3 displays the values parameters have been set to while only one of 

them is being altered. 

 

 

Table 6.3 Parameters of interest for the following simulations 

Parameter Values 

oext 0.85 
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γ 0.10 

αsma 10 

αstr,ctx 9.5 

βthal 0.40 

wstim 0.45 

Wstim, base 0.30 

wrule 1.10 

 

We start with the analysis of parameter γ. This parameter called discount factor appears 

in the Bellman’s Equation, and it is used to decrease the cumulative reward function 

exponentially in order to ensure convergence (Sutton & Barto, 1998).  Here, the 

discount factor is used in a significantly different way, namely to increase the 

magnitude of predicted activation in the prediction error, in accord with the behaviour 

of dopamine neurons in the striatum (Sutton & Barto, 1998). This, in turn, activate a 

mechanism that reinforces the correct rule. A discount factor of 0 neglects future 

prediction of activation while a discount factor of 1 takes into account only the feedback 

when the activation of the schema is predicted to be equal to the current activation. This 

suggests that a lower γ should decrease total errors and there should not be any singular 

point. While this hypothesis is correct, the impact of γ is very small, like in the WCST 

(Fig. 6.6). This common observation probably from those mechanisms that are triggered 

only after each feedback is administered, and not in discrete small steps. In addition, 

response time are unaffected by this manipulation. 
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Fig. 6.6 The plot depicts all the performance errors against the parameter γ. 

 

We examine now how the external parameter oext parameter affects the simulation. If the 

model had more parent schemas, oext would be essentially a top-down bias. 

The hypothesis is that the model would break down abruptly below a specific threshold 

and that decreasing this parameter should gradually increase response time, as well. As 

Fig. 6.7 shows, the model stops producing responses below a threshold, while response 

times peak very quickly after a value less than .85 and the model cannot start for a value 

less than .80 (Fig. 6.8). Importantly, there is no difference between response time after 

correct and incorrect responses. Contrary to our prediction, the variation of response 

time is very steep and almost abrupt. 
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Fig. 6.7 The plot depicts all the considered performance errors against the parameter oext 

 

 

 

 

Fig. 6.8 The plot depicts the response time after correct (left) and incorrect (right) 

responses against the parameter oext 

 

 

In this model oext is static, but it can potentially be modulated by other higher-level 

schemas that are activated by stimuli and current or previous reward. Fig. 6.9 shows 

how the stimulus intensity wstim affects performance errors.  
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Fig. 6.9 The plot depicts all the performance errors against the parameter wstim 

 

When values are greater than 0.5 the model produces only stimulus errors (not shown 

here). This is predictable, as the static threshold for schema activation has been set to 

0.5. This transition point will be therefore excluded in the following simulations. Errors 

due to perseveration of rules (PRU) does not seem to be greatly affected by changes in 

the stimulus intensity, remaining approximately constant, while perseveration of 

stimulus is affected the most. This confirms that the two perseverative processes are 

somewhat independent, at least for a restricted range of parameters. Response times do 

not seem to be affected by this alteration, either. Altering wstim,base has minimal effects. 
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Fig. 6.10 The plot depicts all the performance errors against the parameter wstim,base 

 

Analysing how errors (Fig. 6.11) and response times (Fig. 6.12) change when 

simultaneously altering wstim,base and wrule . Results show that a baseline external 

excitation of the lower order schemas has to be set below 0.5 for the model to work. 

Gradually decreasing excitation from the higher order schemas from 0.7 has an 

exponential effect on response time and therefore on the number of completed trials in 

fixed timeframe. Performance errors seem to be little affected by the ratio between 

wstim,base and wrule, in that the magnitude of changes does not seem to be able to 

reproduce the larger variance present in experimental samples.  
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Fig. 6.11 The plot depicts all performance errors against the parameter pairs wstim,base 

and wrule 

 

 

 

Fig. 6.12 The plot depicts all the response time and completed trials against the 

parameter pairs wstim,base and wrule 
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Lastly, we plot αsma against all the performance errors. Fig. 6.13 shows how αsma affects 

performance errors. For PRE and PRU noise seems to affect the outcome variables 

unpredictably, without a clear general trend. 

 

 

 

 

Fig. 6.13The plot depicts all the performance errors against the parameter αsma 

 

 Discussion 

Analysing qualitative model behaviour over a vast range of variables is an important 

preliminary step. Initially, a reasonable range of parameters that can be used in model 

fitting has to be established before proceeding to a more rigorous quantitative model fit. 

Exploring model behaviour with a set of random parameters helps the modeller to 

assess model robustness by evaluating general performance trends, and therefore 

provides a stronger theoretical account for the relevant properties of the model (Cooper 

and Guest, 2014). In our case, the model’s total errors steadily increase as εstr decreases, 

but the other errors also present recognisable trends provided that εpfc values are not too 

extreme. This suggests that the architecture plays a major role in determining behaviour, 

that within the designated parameter space it is possible to find optimal and suboptimal 

solution for particular groups in a reliable way, and that our intuition on the role of εstr 

and εpfc  is reasonable (although only a more precise quantitative fit can answer this 
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question) and mirrors the role of same parameters in the WCST. Had we observed a 

mostly random, unpredictable behaviour, we would have concluded that while within 

that parameter space an optimum might exist, the architecture does not play a causal 

role in determining it. Consequently, a quantitative fit would be misleading. 

 

After the analysis in the parameter space, systematic variation of individual parameters 

allows one to test their intuition on how the model should work and aids the modeller in 

evaluating for what values the model start producing random or no responses.  It is 

important to appreciate that in a complex model one could not possibly simulate the 

variation of all the combination of parameters for all the possible ranges. However, a 

reasoned choice of parameters helps, in principle, ruling out alternative explanation for 

specific behaviours.  

 

More concretely, here we varied the αsma parameters, representing the slopes of the 

transfer function in cortical and basal ganglia schemas, and we observed that although 

sometimes performance tends to fluctuate for extreme values of εpfc ganglia, the trend is 

generally stable and not approximately flat. This, together with the absence of a 

straightforward neurobiological interpretation for this parameter, suggests that αsma 

should not be varied in order to fit models to specific groups of participants (although it 

could adjusted when fitting the whole experimental sample). Also, the parameter is not 

an integral part of the theoretical argument we are trying to make, namely that two 

different learning mechanisms drive cortex and basal ganglia behaviour to produce 

different sets performances. 

 

Conversely, variation of parameter oext produces regular trends in all performances 

errors. When the value decreases below .85 model performance is destabilised, and for 

values below .80 the model stops running abruptly. This suggests that oext could be a 

suitable additional parameter if εstr and εpfc alone failed to capture intergroup variations, 

as long as it is its value is greater than .85. 

 

Altering wstim,base and wrule seem to have a robust but rather small effect on performance 

errors. Provided that excitation of lower order schemas does not exceed 0.4, and 

excitation of lower order schemas from higher order schemas does not fall below 0.5, 

response times seem to be affected in an exponential fashion, a cognitive analog to the 

Parkinson’s freezing of gait (Rahman et al., 2008).  
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Finally, it is important to notice that in the analysed parameter space perseveration of 

rule errors (PRU) does not seem to increase above the average of 4 errors (which is the 

value expected given perfect performance), suggesting that no parameter in this space is 

responsible for generating perseveration of rule errors. An additional simulation (not 

shown) demonstrates that the discrepancy between reward values for correct and 

incorrect responses does not affect PRU either. Notably, this does not happen in the 

WCST, where the manipulation of  εstr and εpfc and also the weights between higher and 

lower order schemas all affect rule perseveration behaviour (PE, in the case of the 

WCST). Reasoning by exclusion, the only mechanism capable of affecting PRU errors 

in a substantial way might be the rule matching mechanism. Although the model has not 

yet been compared to an actual dataset, this mechanism has been designed to produce 

gross aspects of expected human behaviour. One likely interpretation is that rule 

perseveration does not happen under general circumstances and, unlike what it is 

observed in the WCST, the continuous presence of the stimulus prevents the subject 

from committing PRU. Potentially, this can be empirically verified by observing the 

PRU errors in different populations.   

 

We have shown how qualitative analysis of model behaviour in the form of exploration 

of a parameter space and systematic variation of single or pair of parameters is essential 

to the success of the model, laying the groundwork for a more precise quantitative 

analysis against experimental data. 
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Simulating aging in the Wisconsin Card 

Sorting Test and Brixton Task 

 

 Abstract 

In this chapter we further explore the Wisconsin Card Sorting Test (WCST) and Brixton 

Task BRX) models developed in the previous chapters, in relation to novel experimental 

data. We aim to give a computational account of these two tasks in younger and older 

individuals, and more generally to establish a computational framework to study the 

deterioration of executive functions in aging. We tested twenty-five young adults and 

twenty-five adults over the age of 60 who completed both WCST and BRX in the same 

session. Performance errors and response times were analysed and compared within and 

between tasks. Results show that when performing the WCST older adults do not 

persevere on the same responses more often than younger adults, but they tend to 

commit more set loss errors. The variability in performance is also analysed. When 

performing the BRX the difference in performance between younger and older adults is 

minimal. Response times are affected by positive or negative feedback and age in both 

tasks. We also analyse the construct of perseveration across both tasks. Subsequently, 

we introduce again the computational models of the two tasks presented in detail in the 

previous chapters and we search through the parameter space using the simulated 

annealing technique in order to find the best set of parameters for all the different 

groups. Clustering groups by performance for the WCST only and comparing different 

model fits yield two distinct solutions with a different set of parameter values for each 

cluster.  We argue from this for a new way to interpret computational parameters, 

namely εstr, εpfc and oext, and a new general framework to think about age-related changes 

in executive function, namely in terms of compensatory mechanisms. 
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 Experiment 

7.2.1 Introduction 

Executive functions are an umbrella term for a large set of abilities that includes, for 

instance, forming novel goal representations and the ability to carry out goal-directed 

actions. Their definition is still controversial, especially in the light of the wide variation 

in performance between tasks, between individuals, between healthy and clinical 

population, and within clinical populations.  

 

Although there is consensus on specific cognitive vulnerability in aging, it is unclear 

how the pattern of loss of executive functions unfolds during the lifespan (Jurado & 

Rosselli, 2007) and an attempt to correlate these findings to brain structure has been 

compromised by methodological problems. Other approaches attempt to explain the 

deterioration in cognitive performance with aging with the decrease in concentration of 

neurotransmitters (mainly dopamine, but also acetylcholine and norepinephrine) in 

prefrontal areas that affects the elderly population (de Keiser et al., 1990), but then 

again without distinguishing between brain areas, and failing to take into account 

operations across diverse cognitive domains. Experimentally and clinically there are a 

number of ways to measure executive functions and the number of individual tests or 

batteries available is high. Although their ecological validity is often called into 

question, these tests still have a good predictive validity, at least in elderly population, 

in terms of the ability to live independently (Cahn-Weiner et al., 2000) or to develop 

mild dementia (Natahan et al., 2001). Nevertheless, the so-called 'task impurity' 

problem hinders the understanding of executive functions, which have multiple process-

behaviour relationships compared to low-level brain processing (e.g. early visual 

perception processes such as edge recognition) (Hughes & Graham, 2002). Non-

executive processes can easily encroach on executive processes, as domain general 

systems act and depend on at least a few domain specific processes at the same time. In 

aging research this problem becomes evident from the dissociation between classic 

executive tasks and everyday task that require extensive problem solving (Salthouse, 

2012). Older adults show impaired strategy selection when solving higher-order tasks. 

However, to complicate things further, healthy older adults tends to perform better in 

every-day problem solving, especially if they involve social reasoning (Crawford & 

Channon, 2002). It is unclear whether experience or other abilities are responsible for 

these dissociations. Broad constructs and huge variability in different experimental 
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paradigms make fields such as cognitive decline and executive functions fraught with 

difficult questions that have remained unanswered.  

 

The neural substrates of these domain-general operations are often traced to the 

prefrontal cortex (PFC), where lesions or functional disconnection tend to impair tasks 

across different cognitive modalities. Joint results from functional imaging and naturally 

occurring lesions suggest that different part of the PFC perform different operations on 

tasks (Shallice et al., 2008), but discriminating their specific functions has been proven 

challenging. This view of the PFC as a general supervisory device is not universally 

accepted, and the PFC is functionally described by some authors in terms of its lateral-

medial and dorsal-lateral gradient (Badre & D’Esposito, 2007).  

 

With regard to neurobiology, loss of neurons in the prefrontal cortex has been 

classically associated to aging, but also related to decreased concentration of 

neurotransmitters such as dopamine and norepinephrine in the same areas. Greenwood 

and colleagues (2000) argue that these physical changes in the frontal lobe alone are 

insufficient to bring about general cognitive decline, and reject the localisation of aging 

processes in the prefrontal cortex, for a network theory of cognitive aging. 

 

A potential solution to these problems consists in narrowing down the focus to 

individual executive tasks that are posited to require similar, but not identical, mental 

operations and representations. Therefore, here we direct our attention on a variation of 

the Wisconsin Card Sorting Test (WCST; Heaton, 1981) and a variation of the Brixton 

Task (BRX; Burgess & Shallice, 1997). There are several reasons for this choice. First, 

both tasks are thought to measure some level of executive functioning. Secondly, both 

tasks have been used in clinical populations such as frontal patients (Burgess & 

Shallice, 1997) and on healthy elderly participants (Bialek et al., 2006). Despite their 

apparent simplicity, both of them are considered tests of higher order cognition. Both 

tasks give us the opportunity to investigate the psychological construct of perseveration 

from two different points of view. In this chapter this specific concept will be further 

analysed computationally, to explore how the similarity and differences in performance 

in the two tasks can be explained within the framework of the extended schema theory, 

described in the previous chapters, and to demonstrate how a computational explanation 

can build a bridge between psychological and neural levels for these tasks. 
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As discussed in previous chapters, in the WCST subjects can commit two different 

kinds of errors, perseverative errors (PE) and set loss errors (SL). These two forms of 

error are mutually exclusive but not collectively exhaustive. That is to say that the same 

errors can be counted either as perseverative error or as a set loss error (but not both), or 

as another kind of non-perseverative errors, often counted when the subject attempts to 

find the correct rule. We argue that these two main types of error depend on partially 

separable cognitive processes, and that these cognitive processes can be, at least 

partially, although not exclusively, differentially localised to cortical and subcortical 

structures. A first necessary (but not sufficient) step to argue in support of this 

dissociation is to show that types of error are independent, at least in some populations 

or subsets of these populations. An aging population is ideal, because functional decline 

of cognitive control in the elderly covaries with the degree of overlap in task 

representation, in that even simple cognitive tasks stimuli and responses sets have 

representations in common, and older individual might be more susceptible to 

interference when changing task set (Mayr, 2001). Prior research has also found that in 

older populations there is an overall decline of proactive control (Paxton et al., 2007), 

defined as the ability to sustain goal-relevant information. Reactive control, that is the 

ability to mobilise resources once interference is detected, is instead thought to be 

spared by aging.   

 

With regards to perseverative errors, research seems to point to opposite conclusions. 

For instance, Heaton (1981) reports that individuals over 60 produce more perseverative 

errors than young controls. Conversely, Boone et al. (1990) reports that individuals 

older than 70 did not. Haaland (1987) found that perseveration appears only after the 

age of 80. These results are difficult to reconcile, but they possibly stem from 

aggregating results and neglecting individual compensatory mechanisms, at both 

neurobiological and psychological levels.  

 

In fact, while the relationship between aging and perserverative errors in WCST is now 

well documented (Rhodes, 2004), age-related perseveration, unlike the set loss error, is 

moderated by the number of year of education, as more educated patients tend to 

commit fewer perseverative errors. In other words, while SL errors are more likely to be 

a hallmark of aging, perseveration seems to be dependent on other factors and it is less 

clearly connected to the underlying neurobiology of the frontal cortex alone. Possibly, 

perseverative errors might arise from the inability to use feedback to update the new 

correct representation, and this might not be solely dependent on unspecified frontal 
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dysfunction. It is also possible that more educated people use more efficient strategies, 

or they have greater cognitive reserve, and hence less susceptible to the aging effects. 

 

In order to examine how performance in WCST and BRX declines or not with aging, 

we asked 25 younger people and 25 older people to complete a computerised version of 

a variation of the WCST and a variation of BRX whose procedure will be illustrated in 

the appropriate paragraph. In this experimental section we analyse only aggregate data 

and we look for between-groups differences in performance, such as performance errors 

and response times. 

 

We hypothesise that in WCST we will observe a significant difference in SL errors 

between the older and the younger group (with older participants making more SL 

errors) but, given the convenience sample, that there will be no significant difference in 

the number of perseverative errors. With regard to the BRX, we hypothesise an increase 

in non-perseverative errors in the older group compared to the younger group, which 

means that only the total error will be significantly greater for older participants. 

Furthermore, we hypothesise a positive correlation between PE in WCST and PRU in 

BRX.  

 

7.2.2 Methods 

Participants consisted of 25 young adults (9 men and 16 women) and 25 older adults (8 

men and 17 women). The age of young participants ranged from 19 to 53 years (M = 

27.1, SD = 9.1). The age of the older participants ranged from 62 to 84 years (M = 70.8, 

SD = 6.4). A chi-square test was performed and no relationship was found between 

gender and the being aged over 60, χ2 (1) = 0.089, p =.77.  Young participants were 

recruited mainly through the university database while the older ones were recruited via 

charities for the elderly such as Age UK and the University of the Third Age. 

Participants were required to be free of any neurological or psychiatric diagnosis, 

although these conditions were not formally assessed. The data was collected from a 

touch screen tablet, so that participants did not have to use any external device to 

respond to the stimuli.  
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7.2.3 Procedure and performance measurements 

All 50 participants completed these variation of WCST and BRX in random order. One 

elderly participant was excluded from the analysis of the BRX on account of a high 

number of errors, possibly due to misunderstanding the instructions. In order to 

minimise distractions, participants were encouraged to switch off their phone, and to try 

to focus on the task as much as they could. The study took place in an acoustically 

isolated booth.  If participants wore glasses they were asked to wear them. Also, 

participants were asked to avoid overthinking or rushing, and to complete the tasks at 

their normal pace.  

 

Wisconsin Card Sorting Test (WCST) 

A computerised variation of the Wisconsin Card Sorting Test (Heaton, 1975) was 

administered to all participants. In this variation of the Wisconsin Card Sorting Test 

(WCST) subjects were presented with a card at the bottom of the screen that changes at 

each trial, and they had to drag that card to below one of the four target cards above in 

order to match it according to a rule. There were only three possible rules to choose 

from: sort by colour, sort by shape, and sort by number. Once they had dragged the card 

into one of the four positions, they received a feedback both on screen and by voice on 

whether their choice was correct or incorrect according to the current sorting criterion. 

Once the card was released it was possible to see it only for a second, and then it 

disappeared. This is essentially, the most substantial variation on the version of the task 

that is usually employed in clinical practice, since usually the last card remains visible 

to the participant. Given the feedback, participants had to identify the rule and stick to 

it. The rule changed after 8 correct attempts, but participants were not given this piece 

of information. There were 64 cards in total to match. 

 

Responses were registered in order to compute performance errors. Here we focus on 

the most important for our analysis: the number of total errors (TE), the number of 

perseverative errors (PE), and the number of Set Loss errors (SL3). Perseverative errors 

were calculated as indicated in Heaton’s (1975) manual. Each response that would have 

been corrected in the previous set only was counted as a PE. It is possible to commit 

perseverative errors without having completed the first set, if the subject selects the 

incorrect rule unambiguously for more than three successive times and they persist on 

that rule. Set Loss errors were calculated as in Stuss et al. (2000). After three correct 
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and unambiguous4 responses in a set (hence the number 3 after SL), an error was 

counted as a set loss error. All errors after a set loss errors were not counted as such. 

Perseverative errors and set loss errors are mutually exclusive, but the total error set 

contains both perseverative and set loss errors. A performance variable called Learning 

to Learn was also calculated for participants who completed 4 or more categories (60% 

of the older and 84% of the younger subject). LTL is defined as the mean between the 

percentage change in errors between successive categories. In other words, LTL 

measures how the subject improves in solving the task. In this respect, our prediction is 

that subjects would not show any appreciable LTL in either population, as prior to the 

task participants have been carefully instructed about the three possible choices and had 

several practice trials when they were encouraged to ask questions regarding the rules of 

the task.   

 

Brixton Task (BRX) 

A variation of the Brixton Task (Burgess & Shallice, 1997) was also administered to all 

participants. In this computerised version, participants are presented with a set of nine 

circles arranged in a circular fashion. One of them is always filled in with a black 

colour. Subjects were asked to press lightly on the screen, on the position where they 

believed the next filled circle would be. Filled circle moved around following a series of 

five sequences rules, each comprising ten circles in succession. Responses were 

registered in order to compute performance errors. Overall response times and response 

times after a correct and incorrect response were measured, too. 

 

The number of Total Errors (TE) was calculated without any correction, so that it 

captured the highest number of possible total inaccuracies. Preceding Response Error 

(PRE) were counted whenever subjects click on the current circle (the previous target) 

instead of the expected one. This can be due to the failure of understanding instructions 

or the activation of the relevant schema linked to the stimulus. For these reasons PRE 

can be considered as ‘stimulus perseverating errors’. Whenever subjects select the 

previous response they commit perseverative response errors (PRSR). For these reasons 

they can be considered as ‘response perseverating errors’. However, PRSR can be PRE 

errors, too. Subjects commit Perseverative Rules (PRU) errors whenever they select the 

                                                 
4 An unambiguous response is counted if at least one of the previous correct responses 

has a single match with the rule. This decreases the probability to assign a set loss error 

when the subject has not internalised the rule. 
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response that would have been correct under the previously active rule. Since the 

subject is unaware of when the rule will change, a few PRU are inevitable whenever 

subject guess the previous rule correctly. Bizarre responses (BRE) were recorded 

whenever subjects tapped outside the circles. We strove to minimise the number of 

these responses by carefully instructing participants and by showing text on screen 

reminding participants to tap inside the circle whenever they tapped outside. It is 

however difficult to judge whenever these responses are due to distraction, inaccuracies 

(that we made sure to minimise by having big circles in the diagram), or inferring an 

unusual position for the next circle.  

 

7.2.4 Results 

Wisconsin Card Sorting Test (WCST) 

Table 7.1 shows descriptive statistics for the two groups of participants in the 

Wisconsin Card Sorting Test (WCST) 

 

 

Table 7.1 Performance errors in the WCST 

 
Categories 

Achieved 

Perseverative 

Errors (PE) 

Set Loss 

Errors 

(SL3) 

Total 

Errors 

(TE) 

Learning to 

Learn 

(LTL) 

Younger 
M = 6.2 

(SD = 1.9) 

M = 11.3 

(SD = 4.29) 

M = 0.64 

(SD = 1.00) 

M = 17.0 

(SD = 5.59) 

M = 4.5% 

(SD = 4.5%) 

Older 
M = 4.5 

(SD = 2.8) 

M = 13.3 

(SD = 6.40) 

M = 1.48 

(SD = 1.56) 

M = 20.9 

(SD = 8.97) 

M = 2.3% 

(SD = 4.0%) 

 

None of the performance variables analysed (Total Errors, Perseverative Errors, Set 

Loss Errors, Mean of Median Response Time) were normally distributed, as shown by 

running a Shapiro-Wilk test (p < .001) but running equivalent non-parametric tests 

yield very close results. All directional tests are two-tailed tests, unless otherwise 

specified. The Mean of Median Response Time (henceforth mean RT) was obtained 

calculating the median RT for each participant and then calculating the mean across 

subjects. Analysis of Learning To Learn (LTL) showed that it LTL ranges between -

3.9% and 12.5% and a single sample t-test compared with a mean of zero shows the 

difference to be significant t(35) = 4.94, p < .001. This showed that all subjects 

generally improved their performance during the task, albeit modestly (M = 3.6%, SD = 
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4.4%). However, an unpaired t-test between LTL in young and old subject showed no 

significant difference in the two groups, t(34) = 1.49, p = .14. 

 

Independent t-tests were conducted between performance variables. Comparing Total 

Error in Younger (M = 17, SD = 5.59) and Older (M = 20.9, SD = 8.97) subjects 

yielded a non-significant difference, t(48) = 1.81,  p = .076. Comparing Perseverative 

Errors in Young (M = 11.3, SD = 4.29) and Old (M = 13.3, SD = 6.40) subjects also 

yielded non-significant results, t(48) = 1.14, p = .259. Comparing Set Loss Errors in 

Young (M = .64, SD = 1.00) and Old (M = 1.48, SD = 1.56) subjects produced 

significant results, t(48) = 2.27, p =  0.028. Comparing Categories Achieved in Young 

(M = 6.2, SD = 1.9) and Old (M = 4.5, SD = 2.8) subjects also produced significant 

results, t(48) = -2.42, p =  .019. 

 

A two-way ANOVA was then conducted to examine the effect of age and feedback on 

mean response time. Main effects analysis showed that older subjects had significantly 

longer response times than younger (F(1,48) = 27.3, p < .001, partial η2= .36), and 

response time was significantly longer after an incorrect response than after a correct 

response (F(1,48) = 35.7, p < .001, partial η2= .43). A significant interaction between 

the effects of age and feedback was found, F(1,48) = 5.66, p = .021, partial  η2= .11. 

As can be seen from Fig. 7.1, which shows the difference between response time after a 

correct response and after an incorrect response in younger and older participants, the 

interaction reflects a greater slow down in responses of older participants following an 

incorrect response than in responses of younger participants following an incorrect 

response. 

 

With respect to the main effects, t-tests corrected for multiple comparisons (Bonferroni) 

indicate that response times of the younger participants were greater after an incorrect 

response (M = 4.36 , SD = 1.04) than a correct response (M = 3.36, SD = .57),  t(24) = 

5.77, p < .001; response times of the older participants were also significantly greater 

after an incorrect response (M = 6.64, SD = 2.56), than after a correct response  (M = 

4.68, SD = 1.25), t(24) = 4.47, p < .001. 
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Fig. 7.1 Wisconsing Card Sorting Test (WCST): Mean response time on trials following 

correct and incorrect responses for young and older participants (*** is p < .001). Error 

bars indicates standard deviation 

 

Brixton Task (BRX) 

Table 7.2 shows descriptive statistics for the two groups of participants in the Brixton 

Task (BRX). 

 

 

Table 7.2 Performance errors in the BRX 

 

Total 

Errors 

(TE) 

Perseverative  

Rules (PRU) 

Preceding 

Responses 

(PRE) 

Perseverative  

Responses 

(PRSR) 

Bizarre 

Responses 

(BRE) 

Younger 
M = 10.4 

(SD = 4.7) 

M = 4.2 

(SD = 1.4) 

M = 0.44 

(SD = 0.92) 

M = 1.36 

(SD = 1.04) 

M = 1.10  

(SD = 0.40) 

Older 
M = 13.8 

(SD = 7.0) 

M = 3.8 

(SD = 0.8) 

M = 0.17 

(SD = 0.64) 

M = 1.67 

(SD = 1.79) 

M = 0.92 

(SD = 0.65) 

 

None of the performance variables analysed (Total Errors, Perseverative Rules, 

Preceding Responses, Perseverative Responses, Bizarre Responses) were normally 

distributed, as shown by running a Shapiro-Wilk test (p < .001). Since running 

equivalent non-parametric tests yields very close results, we report parametric tests 

only. All directional tests are two-tailed tests, unless otherwise specified. 
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Independent t-tests were conducted between performance variables. Comparing Total 

Errors in Young (M = 10.4, SD = 4.7) and Old (M = 20.9, SD = 8.97) subjects shows 

that the observed difference is close to significance, t(47) = -1.988,  p = .053, with a 

medium effect size of d = -0.57.  

 

All the other comparisons show non-significant differences and inspection of 

distributions showed significant overlapping. Comparing Perseverative Rule Errors in 

Young (M = 4.2, SD = 1.4) and Old (M = 3.8, SD = 0.8) subjects shows that the 

observed difference is close to significance, t(48) = 1.14, p = .26. 95 

% CI [-4.86 1.34]. 

Fig. 7.2 shows the difference between response time after a correct response and after 

an incorrect response in young and elderly participants. A two-way ANOVA was 

conducted on this data to examine the effect of age and feedback. Main effects analysis 

showed that older subjects had significantly longer response times than younger 

(F(1,47) = 84.1, p < .001, partial η2= .61), and response time was significantly longer 

after an incorrect response (i.e., negative feedback) than after a correct response (i.e., 

positive feedback) (F(1,47) = 15.16, p < .001, partial η2 = .24). A significant 

interaction between the effects of age and feedback was also found (F (1,47) = 5.9, p = 

.019, partial η2= .043). 

 

 

Fig. 7.2 Brixton Task (BRX): Mean response time on trials following correct and 

incorrect responses for young and older participants (*** is p < .001). Error bars 

indicates standard deviations. 
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Wisconsin Card Sorting Test and Brixton Task 

Running a correlation between total errors in WCST and BRX revealed a moderate 

correlation between the two (r = .36, p = .011). A correlation between  perserverative 

errors in the BRX (PRE, PRSR, PRU) and perseveration in the WCST (PE) revealed a 

modest correlation between PRE and PRSR (r = .387, p = .006), between PRE and PE 

(r = .322, p = .024) and between PRSR and PE (r = .387, p = .006). No significant 

correlation was found between PRU and PE, as hypothesised. Correlation with total 

error were also observed. TE correlates well with PE, which is not surprising being PE a 

subset of TE (r = .384, p = .006). TE also correlates very well with PRSRE (r = .561, p 

< .001), but no other correlation was observed. 

 

In order to understand whether PE on the WCST can be better predicted by any other 

variable in the BRX we then ran a exploratory multiple regression analysis to 

complement the correlation analysis. The initial model that predicts Perseverative Errors 

for the WCST included all the perseverative scores for the BRX (PRE, PRU, PRSRE).  

 

When considered independently (as it can be directly obtained from the previous 

correlation analysis), PRE accounted for 10.4% of the variance in PE (r2 = .104, p = 

.024) and PRSR for 15% of the variance (r2 =  .15, p = .006), while PRU did not 

meaningfully predict PE (r2 =  .008, p = .547).  A multiple regression model with the 

first two variables did not perform better than the model with PRSR alone, since PRE 

did not have a significant contribution, t(48) =  1.4, p = .167. Therefore, PRSR alone 

appeared to explain a moderate amount of variance of PE. Using age as a covariate in 

this model did not appear to affect the outcome greatly (Δr2 =  .011).  

 

This conclusion is interesting because it goes counter the more intuitive hypothesis 

stated at the beginning, where PRU in BRX should be more predictive of PE in WCST 

and it reveals different mechanism of perseveration between the WCST and BRX task, 

irrespective of age.  

 

It is worth noticing that, in this case, a factor analysis would have been more 

appropriate to tease out common factor from the two tasks, but the sample size is 

inadequate (Comfrey & Lee, 1992) 
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Running a correlation analysis between the response time following positive or negative 

feedback in relation to the task revealed that response times after positive feedback were 

highly correlated in the two tasks (r = .46, p < .001), as were the response times after 

negative feedback, to a similar degree (r = .41, p = .003). 

 

The relationship between age, feedback, and task were investigated by running a 2x2x2 

ANOVA with feedback prior to the response (correct/incorrect) and task as the two 

within-subject factors, and age as the between-subjects factor, and response time as the 

outcome variable. The effect of feedback was significant and explained a large amount 

of variance (F(1,95) = 104.56, p < .001, η2= .50). The interaction between age and 

feedback was significant, too (F(1,47) = 9.40, p = .003, η2= .045). Regarding the 

between-subject factors, the effect of age was significant (F(1,95) = 37.7, p < .001, η2= 

.128), and so was the effect of task (F(1,95) = 157.58, p < .001, η2= .533) and the 

interaction between age and task (F(1,95) = 5.18, p < .025, η2= .018). All these 

statistics confirm the previous separate sets of analyses. The interaction between task 

and feedback type is not significant (F(1,47) = 0.162, p = .689), and this can be taken 

as weak evidence to suggest that the feedback processes used by the two tasks are 

shared. 

 

7.2.5 Discussion  

In the WCST the moderate correlation between set loss errors and age is consistent with 

the detrimental effect of aging in proactive control, conceptualised as the process in 

which information is sustained in working memory to bias attention towards goal-

relevant schemas (Braver, 2007). The absence of a significant effect of age on 

perserverative errors has been predicted, but prior research suggest that it can be 

understood in terms of the convenience sample adopted. Older people recruited through 

age charities are unlikely to constitute a representative sample of the elderly population 

in that they might be in fact more active and educated than average. However, our 

results show that the dissociation between these two error types holds, at least for a 

subset of healthy people. This is especially true if one bears in mind that the WCST task 

is made slightly more difficult by the disappearance of the cards one second after one is 

selected and placed below one of the piles. If this time was to be reduced to zero in a 

variant of this experiment, this could probably elicit a greater number of set loss errors. 
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Analysis of performance in the BRX reveals an almost significant difference in total 

errors between the two groups of participants. Merging all the errors in two classes of 

perseverative and non-perseverative errors and examining the difference in the two 

groups suggest that older participants might be less able to infer the rule itself rather 

than being unable to exert cognitive control on the task.  

 

Joint analysis of both BRX and WCST reveals a correlation between PRSR 

(perseveration of stimuli in the BRX) and PE (perseveration of response the WCST), 

instead of PRU (perseveration of rules in the BRX) and PE, as hypothesised. This 

results suggest that merging errors is not the best way to proceed when thinking about 

perseveration as a construct. Comparing these results with data broken down into all the 

errors shows that, if we wish to postulate a perseveration tendency that works across 

individuals, we need to think of it as acting at different levels of abstraction, and not as 

a general perseverative construct. Results could be accounted for by a perseverative 

traits across ages. In other words, while the Brixton Task sensorimotor schemas are 

affected by the stimulus to a greater extent, the WCST requires more top-down 

activation in order to produce accurate behavioural results. Perseverative behaviour 

would then affect processes higher in the hierarchy in the WCST, whereas in the BRX 

task lower processes would be more affected. The former interpretation appears to be 

more plausible, but it is harder to model as it requires different information processing 

layers that start from perceptual schemas up to strategy choice.  

 

Analysing response times in both tasks was also informative. Response time is not the 

same as reaction times, as the latter includes many more layers of cognitive operations 

to resemble distributions obtained by psychophysical tasks (Ratcliff & Rouder, 1998). 

As expected, response times are greater for older participants in both tasks, and the 

difference between response time after correct and incorrect responses are twice as large 

for older participants than younger participants, even though less so in the BRX. This 

might reflect a slower memory search, or a reduced update of the reward value for the 

incorrect rule. 

 

A potential limitation for this study is the lack of distinction between recognition and 

implementation of the rule and the generation of new rules in the BRX. Whereas in this 

variation of the WCST participants receive instructions regarding the three rules they 

will have to sort by and they have an opportunity to practice the task (albeit for only 20 
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trials) and to verbalise their rules, the Brixton Task was completed without any of these. 

In future work with the BRX it is therefore advisable to include a complete practice 

session to familiarise the subjects with the task. Asking participants to learn a greater 

number of possible rules beforehand and have text on screen that reminds subjects they 

have to tap the next circle in the sequence (e.g. 'Guess where the circle is going to be 

NEXT') might help in telling apart aspects of rule induction and cognitive control on 

those rules. 

 

 Simulation 

7.3.1 Introduction 

In the previous section we analysed the outcome of the experiment with younger and 

older individuals performing the WCST and the BRX task. Now, with the two models 

of the tasks outlined in the previous chapter we attempt to fit our sets of parameters to 

both categories of participants. Since prefrontal activity and amount of 

neurotransmitters in the frontal cortex diminish with age, we hypothesised that aging is 

generally best described by changes in the εctx parameter in both tasks.  

 

7.3.2 Model fitting 

Simulated annealing 

In the WCST fitting model to previous data was performed with a simplified version of 

a genetic algorithm. Since the simulation of Brixton Task is faster than the WCST and 

the parameter space we use is larger, Simulated Annealing (SA) is a suitable algorithm. 

More details on how the SA works and how it was generally employed to navigate the 

parameter space in this chapter can be found in the Appendix. 

 

Wisconsin Card Sorting Test (WCST) 

We proceeded to look for the suitable set of parameters for the Wisconsin Card Sorting 

Task. We run the SA as described with all the parameters in Table 7.3 as independent 

variables, including εstr and εctx. We modelled the cost function against the z value of the 

trimmed mean (10%) of TE (total errors), PE (perseverative errors), and SL (set loss 

errors) for all the 50 participants (25 young and 25 old) and 5 virtual subjects. Initial 

values were chosen following qualitative plots in the previous chapters.  

 

 



 177 

Table 7.3 Initial and final set of parameter for the simulation of the WCST. Initial 

parameters were chosen between a set of reasonable values obtained in previous 

simulations. 

 

Parameter Meaning Initial Value Final Value 

oi 

External input to 

higher-order 

schemas. 

1 1.3378 

γ Discount factor 0 0.0947 

αsma 

Slope of the motor 

schemas transfer 

function 

10 5.8365 

wstim 

Input to lower 

schemas when 

stimulus is present 

0.45 0.3660 

wstim,base 

Input to lower 

schemas when 

stimulus is absent 

(baseline) 

0.30 0.2367 

wrule 

Weight from higher 

schemas to lower 

schemas 

0.85 1.2792 

εstr 
Learning parameter 

for striatal units 
0.5 0.1287 

εctx 
Learning parameter 

for cortical units 
0.25 0.3932 

 

The model fit adequate, as the cost function steadily declined after 100 iterations and 

stabilised at 0.4353, which means that all the dependent variables are at most 0.4353 

standard deviations from the means. Running 50 simulations with the final parameters 

produces acceptable results, although differences between the simulated and the 

experimental group are .45, .40, .95 standard deviations away from the experimental 

group mean for TE, PE, and SL, respectively (Fig. 7.3).  
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Fig. 7.3 Comparison between all 50 experimental (blue) and 50 simulated (yellow) 

participants with parameters indicated in Table 7.3. Error bars represent SD (G.O.F = 

129.52) 

 

Once we obtained the general set of parameters for all participants, we proceeded to run 

another search through the parameter space. This time we kept εstr and εctx as free 

parameters while all the other parameters were fixed (as in the final values of Table 

7.3). The target of dependent variables was set to fit younger and older participants 

separately, starting from the common set of parameters. In other words, the more 

general model parameters established from fitting the full dataset were fixed while those 

relevant to our hypotheses were allowed to vary in order to fit the two subgroups. 

 

Table 7.4 shows the values for younger and older participants, averaged across the best 

five sets of parameters, with the mean value of the cost function over the five best sets. 

The percentages represent the variation from the baseline values (εstr = 0.1287, εctx = 

0.3932).   

 

Table 7.4 Parameter values for εstr  and εctx young and old participants 

Parameter Older Mean Cost Younger Mean Cost 

εstr 0.1028 (-20.1%)  

0.40 

 

0.1129 (-12.2%)  

0.56 

 
 

εctx 

 

0.4531 (+15.2%) 

 

0.3042 (-22.6%) 
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Percentage change from the baseline values show that in both sets older subjects are 

simulated with a positive discrepancy of the εctx from the baseline value, which is not in 

line with our predictions. The overall fit is adequate, as indicated by the relatively low 

mean cost. Fig. 7.4 and Fig. 7.5 show how simulation and experimental data match for 

older and younger participants, respectively. 

 

 

Fig. 7.4 Comparison between 25 experimental (blue) and 25 simulated (yellow) older 

participants with parameters indicated in Table 7.4. Error bars represent SD (G.O.F = 

164.84) 

 

 

Fig. 7.5 Comparison between 25 experimental (blue) and 25 simulated (yellow) younger 

participants with parameters indicated in Table 7.4. Error bars represent SD (G.O.F = 

65.28) 

 

Results on Response Time are disappointing because the model does not capture any 

difference in correct and incorrect responses in older and younger participants. 

Response time within this simulation do not show an appreciable variance across 

simulations.  
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Brixton Task (BRX) 

We proceeded to look for the suitable set of parameters for the Brixton Task. Very 

similarly to what we did for the WCST, we run the SA as described earlier with all the 

parameters in Table 7.5 as independent variables. We model the cost function against 

the z-value of the trimmed mean (10%) of TE, PRE, PRU, and PRSRE for all the 50 

participants (25 young and 25 old) and 5 virtual subject. Variability was minimised by 

reducing all the noise parameters to 0.10. Table 7.5 shows the parameter values before 

and after SA.  

 

 

Table 7.5 Initial and final set of parameter for the simulation of the BRX. Initial 

parameters were chosen between a set of reasonable values obtained in previous 

simulations. 

Parameter Meaning Initial Value Final Value 

oi 

External input to 

higher-order 

schemas. 

0.9 0.7549 

γ Discount factor 0.05 0.0702 

αsma 

Slope of the motor 

schemas transfer 

function 

10 6.5253 

wstim 

Input to lower 

schemas when 

stimulus is present 

0.45 0.4876 

wstim,base 

Input to lower 

schemas when 

stimulus is absent 

(baseline) 

0.30 0.2196 

wrule 

Weight from higher 

schemas to lower 

schemas 

0.85 0.7835 

εstr 
Learning parameter 

for striatal units 
0.5 0.5985 

εctx 
Learning parameter 

for cortical units 
0.25 0. 2784 
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The model fit is very accurate, as the cost function steadily declined and stabilised at 

0.0981 after 100 iterations, which means that all the dependent variables are at most 

0.0981 standard deviations from the means (Fig. 7.6). 

 

 

Fig. 7.6 Comparison between all 49 experimental (blue) and 49 simulated (yellow) 

participants with parameters indicated in Table 7.5. Error bars represent SD (G.O.F = 

50.06) 

 

Once we obtain the general set of parameters for all participants we re-run a simulated 

annealing. This time we only keep εstr and εctx as free parameters while all the other 

parameters are fixed. The target of dependent variables is set to fit young and old 

participants separately. In summary, we first found a general model capable of 

simulating people of all ages and then we observed whether and how aging could be 

represented in terms of the theoretically defined εstr and εctx parameters. Table 7.6 shows 

the values for younger and older participants, averaged across the best five sets of 

parameters, with the mean value of the cost function over the five best sets. Importantly, 

these points are close enough in space and they do not constitute local minima. In 

brackets it is shown the percentage change to the baseline (εstr = 0.5985, εctx = 0.2784).  
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Table 7.6 Parameter values for εstr  and εctx young and old participants 

Parameter Old Mean Cost Young Mean Cost 

 

εstr 
0.4782 (-20.1%) 

0.40 

0.7038 (+17.6%) 

0.29 

 

εctx 

 

0.2550 (-8%) 

 

0.1985(-28.7%) 

 

The obtained fit is adequate, being the mean cost function smaller than 1. Percentage 

change from the baseline values show that in both sets older subjects are simulated with 

a larger discrepancy of the εstr from the baseline value, and εctx is smaller than the 

baseline for younger participants. Again, this is not in line with our predictions. 

Fig. 7.7 and Fig. 7.8 show how simulation and experimental data match for older and 

younger participants, respectively. 

 

Results on Response Time are disappointing because the model does not capture any 

difference in correct and incorrect responses in older and younger participants and the 

response time distribution do not show an appreciable variance across simulations.  

 

 

Fig. 7.7 Comparison between all 24 experimental (blue) and 24 simulated (yellow) 

older participants with parameters indicated in Table 7.6. Error bars represent SD 

(G.O.F = 50.06) 
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Fig. 7.8 Comparison between all 25 experimental (blue) and 25 simulated (yellow) 

younger participants with parameters indicated in Table 7.6. Error bars represent SD 

(G.O.F = 50.06) 

 

7.3.3 Discussion 

When a model has eight free parameters, and even when these parameters are within a 

reasonable range of values, parameter space can become vast. Since the cost function 

we used is a three-dimensional vector and running one individual simulation takes up to 

two minutes, it is possible that the explored parameter space will be just a fraction of the 

existing one. In this scenario, because of time constraints, lack of computational power, 

or both, it is all but impossible to find the ‘best set of parameter’ that minimises the 

discrepancy between model and experimental data. When finding a value close to the 

global minimum, simulated annealing helped fit data to this value, and this technique 

has been shown to be particularly effective when models are complex and have local 

variability that produces many local minima in the cost function (Trosset, 2001). 

Deciding how small the cost function should become in order to accept results is also a 

difficult challenge, since quite small local minima can be found in different points of the 

parameter space. Also, running the simulation many times may produce different sets of 

parameters given different initial conditions, if there are several equally small minima. 

Biological systems behave in this fashion because of their complex internal structures 

(Poile & Safayeni, 2016), and this should encourage caution when interpreting findings. 

Despite these intrinsic limitations, the results we presented so far are encouraging, and 

suggest that the proposed model can fit the set of data for both tasks to a reasonable 

extent, provided that we model subgroups in the WCST, given that an excessive 

variability that does not yield an adequate model fit on aggregate data. Both 

computational models (WCST and BRX) have been built on the same theoretical 

framework (the extended schema theory) and this suggests the model has some sort of  

generalisability, at least for higher order cognitive tasks. A direct comparison of the 
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estimated values of the main parameters across tasks would be helpful to establish this 

more rigorously. This would require, however, a different reparametrisation within and 

across tasks, and this can be an interesting direction for future research. This point will 

be discussed further in the last chapter. There are two major limitations that need to be 

addressed.  

 

Firstly, while experimental results in the WCST display high variability, results from 

BRX do not. So, it is not surprising that the BRX model has a better fit with the whole 

data set. The major source of overall variability in BRX is in the Total Errors (TE). 

Nevertheless, the difference between TE in younger and older subjects in the BRX task 

borders on significance. As noted in the discussion on experimental results, this 

indicates that the computational and experimental paradigms might have a meaningful 

difference in that the former is exclusively concerned with the control aspect of the task, 

while the latter is also partially concerned with rule inference. In other words, either the 

BRX experimental paradigm needs to be adapted to be more focused on cognitive 

control or the computational model needs to be enriched with induction mechanisms.  

 

Secondly, the prediction regarding εctx are reversed, in both the WCST and the BRX. As 

for the WCST, although εctx generally varies across a smaller range compared to εstr, this 

parameter was expected to be higher in the older group, where members tend to commit 

more set loss errors. This was verified in the qualitative analysis outlined in the 

previous chapters, which show that set loss errors become particularly sensitive to εctx 

when εstr increases. There are several possible explanations for this puzzling finding. 

First, parameter εctx might not be a valid parameter, and may be unnecessary. This 

suggestion can be immediately discarded on the grounds that our previous simulations 

show that the variation of εstr and non-dynamic modulation of the slope of the schema 

threshold function alone are not capable of producing adequate results. Secondly, the 

parameter εctx might be suboptimally high for the older group. This is not plausible 

either, given that the qualitative results for the model show an increase in set loss error 

as εctx decreases and experimental data support the isolated presence of set loss error in 

the older subjects. Thirdly, parameter εctx could simply be a purely cognitive parameter 

and have a non-linear or even no relationship with prefrontal activity. This would be 

disappointing, in that it would not allow a direct comparison with neural data. A fourth 

possibility is that εctx does not represent the actual amount of neurotransmitter released 

but the activity of the prefrontal cortices, but instead reflecting task difficulties or 
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downstream activation due to alternative strategy selection. In the WCST, an example 

of this could be the vocalisation of a rule (anecdotally, older individuals often reported 

the use of this strategy after completing the session), while in the BRX a more contrived 

example of strategy use could be using multiple fingers to remember the previous 

positions.  

 

 Model Comparison and Neurocognitive Compensation 

7.4.1 Introduction 

In the previous sections we analysed the different performance of younger and older 

participants in the WCST and BRX tasks, and then we calculated sets of parameters that 

produce a good fit for this data from younger and older participants. Looking to 

question whether aging produces changes in executive task performance that are 

amenable to computational modelling, we notice that a significant number of older 

people perform the task very accurately, and the opposite is sometimes true for younger 

individuals. In this section we focus on how to evaluate different models built on 

different arrangements of groups and on the subsequent interpretation of the results. 

  

We clustered performance with unsupervised learning techniques using performance 

scores as features, similarly to what we did in the previous chapters, and we then fitted 

parameter sets to those new groups to see how this relates to the original groups split by 

age. Our results show that the best model fit is obtained when there are only two groups 

divided by performance. These two groups have a variable proportion of younger and 

older individuals, with a sizeable proportion of older individuals achieving excellent 

performance and a sizable proportion of younger individual achieving poor 

performance. Since results from the BRX task do not highlight any significant 

difference between younger and older individuals (although this small difference is still 

captured by the model), in this section we will focus exclusively on the WCST. 

 

Wisconsin Card Sorting Test (WCST) 

In the previous chapters we clustered data according to the three performance errors 

(TE, PE, SL), and we evaluated the number of clusters using the elbow function, that 

identifies the point where increasing the number of groups does not significantly 

decrease the average sum of square within the groups. This heuristic technique can be 

better formalised in the form of ‘gap values’ (see Fig. 7.9 for the application of this 

technique to determining cluster size for the WCST data). The gap value is calculating 
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by subtracting the observed within-cluster sum of square (the same value that appears in 

the elbow function y-axis) with an expected value under a null model (Tibshirani, 

Walther, & Hastie, 2001). With sk being the standard error calculated by bootstrapping 

the distribution of within-cluster sum of square, and gk being the actual gap statistics, a 

cluster size can be choosen for the minimum value of k that satisfies this inequality:  

 

𝑔𝑘 > 𝑔𝑘+1 − 𝑠𝑘 

 

 

Fig. 7.9 Gap Value Plot for the WCST with the variables TE, PE, and SL 

While a loose interpretation of the elbow function alone suggests that data points for 

WCST performance can be grouped into three clusters or less, the gap value plot 

suggests that participants’ performance naturally groups into exactly three clusters. 

 

In line with the loose interpretation, participants are then clustered in two and three 

group, and data are fitted to those groups using a different number of parameters. Each 

group of empirical data (see Table 7.7 for means and sample sizes) is generated by a 

model with a k number of parameters (Table 7.8). The first model, ALL, containing all 

datapoints, and Y&O containing the two groups split by age (younger and older) 

simulated with the two parameters εstr and εpfc have been already analysed in the 

previous sections. 2G.1 is a new model that fits two groups with the same two 

parameters, while 2G.2 is identical to 2G.1 but besides εstr and εpfc it features a further 

free parameter oext. The 3G model has an additional group, for a total of 3 groups and 3 

parameters, εstr , εpfc, oext.  
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Table 7.7 Group means and sample size for all the compared clusters (empirical data) 

Model 
Sample 

size 
TE PE SL 

ALL 50 19.0 12.2 1.1 

Y&O 

25 

 

Y: 17.0 

 

 

Y: 11.3 

 

 

Y: 0.64 

 

25 O: 20.9 O:13.3 

 

O: 1.48 

 

2G.1 

and 

2G.2 

14 

 

1: 29.4 

 

 

1: 19.6 

 

 

1: 2.36 

 

36 2: 14.9 2: 9.3 2: 0.56 

3G 

14 

 

1: 21.8 

 

 

1: 12.7 

 

 

1: 1.14 

 

27 

 

2: 13.1 

 

 

2: 8.7 

 

 

2: 0.59 

 

9 

 

3: 32.1 

 

 

3: 22.0 

 

 

3: 2.3 

 

 

 

The model fit is calculated with the Bayesian Index Criterion (BIC). A lower BIC 

indicates a better fit. The BIC is calculated as follows: 

 

𝐵𝐼𝐶 = 𝑛 + 𝑛 ∙ 𝑙𝑛(2𝜋) + 𝑛 ∙ 𝑙𝑛 (
𝑆𝑆𝑒
𝑛
) + (𝑘 + 1) ∙ 𝑙𝑛 (𝑛) 

 

where the sum of squares error is calculated in relation to the maximum of all the 

dependent variables (i) across groups (g), for the median value obtained from the model 

(m) and the median values obtained from the data (e): 
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𝑆𝑆𝑒 = ∑max
𝑔
(𝑚𝑖 − 𝑒𝑖)

2

𝑖

 

 

This ensures that the SSe is not dependent on the number of groups, and therefore the n 

in the BIC formula is always equal to 3 conditions, for the three dependent variables. 

 

The BIC is a useful index of model fitting, because it is not only sensitive to the 

discrepancy between the experimental and the simulated data, but also to the number of 

parameters used to fit the data. Essentially, the BIC evaluates the model fit and subtracts 

away a penalty which accounts for the model complexity. The BIC is also a function of 

the number of analysed conditions which are, in this case, the number of fitted 

dependent variables (3 in all the instances, here). This ensures that the model is not 

overfitting, and that the increase in the number of parameters and dependent variables is 

justified by a substantial decrease in the model-data discrepancy. Goodness of fit alone 

is insufficient to take into account these aspects and it can yield misleading results (Pitt 

& Myung, 2002).  

 

The confidence intervals (CI) and the BIC for all models and all groups within each 

model are shown in Table 7.8. These figures were calculated for each model over the 

difference between the medians of the experimental and simulated groups using a 

bootstrapping technique. A complete random sample with replacement was iteratively 

drawn from the experimental and the simulated dataset, for each of the three outcome 

variables (Total Errors, Perseverative Errors, and Set Loss Errors). The medians of each 

of these two datasets were then calculated and subtracted, and a very small amount of 

normal noise (with amplitude 0.01) was added. This procedure was repeated 200,000 

times. The noise was used to achieve a smoother bootstrap distribution and it did not 

affect the final result. In order to create a 95% bootstrap confidence interval for the 

difference of the true medians, the 2.5-percentile was subtracted from the 95.5-

percentile. A good fit is indicated if the obtained interval contains zero. 
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Table 7.8 Comparison of different models. The star (*) indicates those intervals that do 

not contain 0 and indicate a bad fit. 

 

Model G k SSe BIC CI 95% TE CI 95% PE CI 95% SL 

ALL 1 - - - [-5.00, 2.01] [-.01, 2.01] [.98, 2.01]* 

Y&O 2 2 43.7 19.2 
Y: [-2.00, 4.01] 

O: [-12.00, 3.02] 

Y: [1.01, 4.00]* 

O: [-4.00, 5.02] 

Y: [-.01, 2.02] 

O: [-.01, 2.01]  

2G.1 2 2 46.5 19.4 
1: [1.49, 10.01]* 

2: [-1.51, 1.49] 

1: [-4.99 7.00] 

2: [-2.01, 0.02] 

1: [-1.00, 2.48] 

2: [-2.01, -0.01] 

2G.2 2 3 82.0 22.4 
1: [3.48, 12.98]* 

2: [-1.51, 1.01] 

1: [-4.01, 8.51] 

2: [-2.01, 1.00] 

1: [-1.50, 2.51] 

2: [-2.02, -1.00] 

3G 3 3 94.0 22.0 

 

1: [-7.01, -1.50] 

 2: [-1.02, 1.01] 

3: [-12.00 5.00] 

 

 

1: [-3.00, 3.01] 

2: [-2.01, 0.99] 

3: [-11.02, 2.02] 

 

 

1: [-.98 2.00] 

2: [.99, 2.99]* 

3: [-3.98, 2.99] 

 

 

Compared to the groups obtained dividing by age (older and younger), dividing all 

participants in two groups by performance outcome with only two free parameters 

(model 2G.1) achieves a similarly good fit, as indicated by the BIC index shown in 

Table 7.8. In this model the first group (2G.1-1) is the one with the poorer performance 

(higher TE, PE and SL). It also has a greater proportion of older participants (0.72). The 

second group (2G.1-2) has better performance with a slightly greater proportion of 

younger participants (0.58).  

 

The other two models 2G.2 and 3G use 3 parameters (εstr, εpfc, oext) and split the data in 

two and three groups, respectively. Guidelines to deal with changes in BIC suggest that 

a change in three units is only marginally significant (Kaft & Raftery, 1995). Thus, 

models 2G.2 and 3G can be, in principle, considered almost as good fits as the previous 

ones.  

 

Fig. 7.10 shows a summary of the findings with diagram of the parameter space 

including only εstr and εpfc. Independent and uncorrected for multiple comparisons t-tests 

show that the difference in the mean PE in the two groups (2G.1-2 and Y) is the only 
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variable difference that achieve significance, t(59) = 2.45, p = .0173. While the 

difference in PE between group O and group 2G1.2 can be partially explained by the 

difference in εstr, we can still claim that a proportion of older participants (0.42) achieve 

a performance as accurate as the one of the younger adults, and this can be captured by 

a different sets of parameters.  

 

 

 

 

Fig. 7.10 The scatter plot shows the εstr, εpfc parameter space for the different 

models/groups described above. A bigger circle represent a better fit (smaller BIC). For 

the 2G.2 and 3G models, the value of the other parameter is not shown, but it is 

displayed in Table 7.9. 
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Table 7.9 Parameter sets (εstr, εctx, oext) for all the model compared 

 εstr εctx oext 

Y 0.1129 0.3042 1.338 

O 0.1028 0.4531 1.338 

2G.1-1 0.0181 0.4463 1.338 

2G.1-2 0.1981 0.2912 1.338 

2G.2-1 0.0494 0.1828 0.842 

2G.2-2 0.2011 0.2037 0.933 

3G-1 0.1385 0.0418 0.975 

3G-2 0.2713 0.9335 1.107 

3G-3 0.0077 0.1479 0.773 

 

 

7.4.2 Discussion 

In this work, comparing different models and introducing the BIC index has been 

proven helpful to evaluate whether clustering or adding parameters improve model fits. 

Results suggest that εstr and εctx alone are sufficient to produce adequate fits but adding 

parameter oext yields a modest (yet statistically significant) increase  in BIC. One might 

be tempted therefore to prefer the more parsimonious model (2G.1) over the one with an 

extra parameter (2G.2, 3G). However, if we consider 2G.1 and 2G.2 as two equally 

good models, we see that the parameter space has two different local minima, and the 

difference in εstr between the respective groups (2G1.1 – 2G2.1 and 2G1.2 – 2G2.2) is 

minimal. Instead, εctx and oext change substantially for each pair. In both the ‘worst’ 

(2G1.1 – 2G2.1) and ‘best’ (2G1.2 – 2G2.2) performance groups a decrease in oext 
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corresponds to a decrease in εctx, although this occurs to a greater extent in the worst 

performance group. 

 

What is the relationship between cognitive and neural processes and these two 

parameters? First and foremost, it is important to appreciate that, εctx and oext modulate 

extremely different operations in the model. The first modulates the slope of the transfer 

function dynamically, as a function of the activation of the schemas. The second is a 

static parameter that applies to all higher-order schemas equally. Hence, they cannot be 

functionally identical to each other. 

 

Additional simulations (not shown here) reveal the absence of any significant trend in 

TE and PE when varying oext, although U-shaped form in the mean values can be 

observed together with a general decrease in variability for SL for higher values of oext. 

Also, the model stops producing responses when the value of this parameter falls below 

a threshold. Importantly, these properties of oext do not seem to be stable across values 

of εstr and εctx. Ultimately, this suggests that, in this context, oext acts as a buffer for 

excessive mean and variability in set loss errors, probably because of the absence of a 

strong action from the striatal units. Since both 2G1.1 – 2G2.1 on one side and 2G1.2 – 

2G2.2 on the other can then be considered legitimate solutions for the system, it is 

possible to interpret these approximate solutions as different sets of neurophysiological 

states that map onto the same behavioural outcome. In other words, the same 

performance can be obtained by two different sets of values for εstr, εctx, and oext.  

 

The similarity with dynamical systems is striking in terms of appearance, but this is 

misleading. In a dynamical system one can compute equilibrium states that might or 

might not be stable. Here, parameters sets do not evolve through time towards a set of 

stable states. The solutions for the three parameters simply minimise the discrepancy 

between empirical and model data, and makes those parameter values valid model fits. 

The presence of multiple solutions is instead due to how εstr and εctx alter the activation 

function according to the current or prior activation values of those schemas. This 

feature is what makes the model ‘dynamic’. The implication for the relationship 

between empirical and computational modelling are analysed in the next section. 
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 General Discussion 

In the present chapter we reported the results of a study in which we tested twenty-five 

young adults and twenty-five adults over the age of 60 who completed a variation of the 

Wisconsin Card Sorting Test (WCST) and a variation of the Brixton Task (BRX) in the 

same session. We predicted that in the WCST we would observe an increase in Set Loss 

errors in older adults, without a significant change in Perseverative Errors. We also 

predicted that in both WCST and BRX we would observe an increase in response time 

in older participants, and this would be magnified after incorrect responses. All the 

analyses confirmed these predictions. Since the feedback in BRX is not explicit but 

must be inferred by the previous response and the overall time of completion are 

smaller than in the WCST, these result add weight to the hypothesis that older 

individuals process rewards more slowly regardless of the nature of the feedback (and 

by extension, this should be true for other executive tasks). This also provides support, 

albeit weak support, to the presence of a domain-general underlying mechanism in these 

two executive tasks.  

 

Another important hypothesis was that people committing more perseverative errors 

(PE) in the WCST would also commit more perseverative rules errors (PRE) in the 

BRX task. This hypothesis was not supported. Further analysis revealed that the concept 

of ‘perseveration’ (often conceptualised as ‘cognitive inflexibility’) is unlikely to be a 

unitary concept and can exist at different levels in the cognitive hierarchy, consistently 

with the theoretical work of Robbins et al. (2012). 

 

In the following paragraphs we used the models developed earlier in this work and we 

searched through the parameter space to find the best fitting models. We then performed 

a comparison among those models. Evaluation of model fits with the BIC index 

suggested that models with two or three parameters and two or three groups are equally 

good. If the assumption behind the model are correct and parameters represent 

neurophysiological states accurately, our results indicate that at least two different sets 

of physiological states can produce the same behavioural data. In the case of the aging 

brain this can be understood as a product of compensatory mechanisms. Our results are, 

for instance, partially compatible with the CRUNCH hypothesis, which posits that the 

engagement of neural circuits in cortical structures is higher for older adults when the 
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task load is lower, either because resources are not efficiently deployed, or alternatively 

because the input in the prefrontal cortex is degraded (perhaps because of 

neurotransmitter depletion) (Reuter-Lorenz & Cappell, 2008). Given that in our model 

fit with older adults we reinterpreted the εctx as a parameter reflecting task difficulty or 

downstream activation due to alternative strategy selection, the oext parameter may be 

conceived as a neural efficiency indicator. 

 

An important and quite puzzling limitation of this model is in the way it does not handle 

response time as expected. Prior work with a simple set of corticothalamic loops (see 

the third chapter) showed that response time are consistent with ex-Gaussian curves. 

Instead, here we see very little variation in response time distribution and, consequently 

we could not simulate the difference in response time across age groups and positive 

and negative feedback. A possible explanation has to do with the addition of external 

signals to the lower-order schemas from both the environment and the higher-order 

schemas. This may override the natural variation seen in the 'free' loops by pushing 

values towards the extremes. This limitation can be addressed by introducing a new 

fixed parameter that introduces variability in the area-threshold and it will be 

implemented in the next chapter. 

 

While the conclusion that can be drawn are generally limited by time taken to simulate 

all the processes and consequently to search a large parameter space (which in turn 

limits the number of groups that it is possible to simulate), it is possible to make a 

general point about this methodology, which can be applied to any model of higher-

order cognition. This method consists in creating a theoretically motivated model of a 

specific neuropsychological task using schemas that have an associated activation value 

and that represent an action or thought. These schemas are embedded in one or more 

feedback loops that biases them in a continuous fashion. This does not necessarily have 

to be limited to the basal ganglia, but depending on the questions the theoretical model 

is asking, different structures with different operations and learning curves can alter 

schemas’ activations. Two important candidates for this line of work are the cerebellar 

circuit (Ohyama et al., 2003) and the amygdala (Morén & Balkenius, 2000).  Parameters 

should reflect specific the computational operation in specific areas of the brain that 

previous research has shown to be plausible. Prior to parameter fitting, a hypothesis is 

made about differences, or correlations between groups. In this chapter we analysed the 

difference between younger and older participants, but any clinically defined group is 
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also suitable. After the fitting, one would proceed to cluster participants by 

performance. At this point, decisions over within-group variability and interpretability 

of results have to be made, bearing in mind this is a delicate trade-off. Model 

comparison provides then a method to eliminate bad fitting models, but also to discover 

different parametrisation of the same behavioural results. Assuming that the operation 

regulated by parameters are at least partially correct, computational models offer a 

valuable solution to the problem of underspecification of behavioural data. Neural data 

would not supersede behavioural data, but would help specify what adaptive cognitive 

processes give rise to a specific behavioural dataset. More concretely, our model 

predicts that there are (at least) two models that fit well the ‘poorer’ performance 

dataset and two other models that fit well the ‘better’ performance dataset, and there are 

little difference in the basal ganglia operation between the two in each dataset. 

Cognitive operations regulated by the other two parameters compensate for each other’s 

activity, more so in the ‘poorer performance’ case and aid the formulation of a theory of 

neurocognitive compensation. Neural data can then help differentiate between two 

identical behavioural sets using computationally defined operations as a proxy. While 

searching through a parameter space is a recognised technique in cognitive modelling 

(Stewart, 2005), here we outlined a novel application of this methodology to a 

theoretical model that incorporates neural operations and schema theory. In the next 

chapter we explore how the same paradigm can be applied to clinical population with 

frontostriatal disorders. 
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Wisconsin Card Sorting Test performance 

in ADHD traits: an experiment and a 

computational model of response times 

 

 Abstract 

Attention Deficit and Hyperactivity Disorder (ADHD) is a neuropsychiatric condition 

with a neurodevelopmental course, but it often persists in adulthood. Broadly speaking, 

it is thought to arise from a dysfunction of the frontostriatal circuits that regulate 

attention and self-control. Although it is conceptualised as a categorical disorder 

divided into three categories (inattentive, hyperactive, combined), ADHD traits are 

present in the general population. ADHD is diagnosed with subjective reports but, in 

research settings, examination of neuropsychological performance has provided 

valuable information regarding the etiological pathways that lead to ADHD symptoms. 

Within the context of this thesis, ADHD constitute an important paradigm because its 

aetiology is related to both frontal and striatal circuits, and it is unclear what localised 

operations could be at fault when ADHD symptoms arise. In the first part of this chapter 

we present an overview of neuropsychological frameworks employed by ADHD 

researchers. In the second part we present a study where 50 adults, of which 14 have a 

diagnosis of ADHD, perform a new variation of the WCST (WCSTt). In this variant, 

participants are asked to perform the WCST outlined in the previous chapter in one 

block, and to complete the same task within a time limit on another block. The time 

limit is based on the performance on the non-timed task, but how time limits are 

established is unknown to the subjects. Participants are also asked to complete a set of 

questionnaires that probe into their ADHD symptoms, depression and anxiety 

symptoms, and everyday memory performances. Results indicate that performance 

errors are not different between groups, but that the regulation of speed-accuracy trade-

off is impaired in some participants and associated with higher impulsivity traits. In the 

last part of the chapter we upgrade the WCST model presented in chapter 5 in order to 

characterise how the response time seen in participants is produced. Specifically, we 
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focus on characterising the construct of impulsivity in neurocomputational terms. We 

then discuss how our qualitative results fit in relation to the previously outlined theories 

and how theory-driven computational modelling can help understand the interaction 

among neuropsychological domains. 

 

 Neuropsychology of ADHD 

8.2.1 Introduction 

Attention Deficit and Hyperactivity Disorder (ADHD) is characterised by inattention, 

hyperactivity, and impulsivity. Although it is thought to be a neurodevelopmental 

disorder whose onset occurs in childhood, persistence of this condition in adulthood is 

documented. Prevalence is adulthood is difficult to quantify, on the account of the 

different diagnostic criteria used across different settings and the inaccuracy of 

retrospective diagnosis, that relies mainly on self-reports (Wender, Wolf, & 

Wasserstein, 2001). Approximately half of children with ADHD will experience 

symptoms in adulthood. It is thought that while hyperactive symptoms tend to subdue, 

inattentive symptoms still persist and dramatically affect patients’ lives. 

 

Psychiatric, educational, and neuropsychological literature on ADHD is extensive, but 

in terms of demographics it tends to disproportionately focus on childhood ADHD, 

because of the impact on educational attainment and the controversies surrounding 

diagnosis and drug treatments. Neuropsychological tests do not accurately distinguish 

between ADHD and non-ADHD diagnosed according to DSM-IV and DSM-V 

definitions and they are hence not recommended as a substitute of apposite 

neuropsychiatric inventories (Barkley, 2014). Subtype diagnoses are also uncorrelated 

with neuropsychological profiles, especially those that measure executive functioning 

(Geurts, 2005). Neuropsychological assessment can however be useful to evaluate the 

extent of other comorbidities (e.g. dyslexia, intellectual impairments, etc.), to draw a 

plan with strength and weakness, and to monitor psychosocial and pharmacological 

treatments. In research settings, neuropsychological tasks have been also proven useful 

to elucidate different cognitive endophenotypes (Sonuga-Barke, 2010). One of the most 

reliable paradigms in this respect is the Continuous Performance Test (CPT; Rosvold et 

al., 1956). The most common version of this test requires subjects to pay attention to a 

screen where individual numbers or letters are shown one after the other with a short 

inter-stimulus interval. Participants have to respond by pressing a button when a 

previously shown stimulus (e.g. the letter A) or sequence of stimuli (e.g. the letter A 
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followed by the number 5) appears. Performance scores obtained are the number of 

correct responses, omission errors (subject does not press when they should), and 

commission errors (subject presses the button when they should not). The first two 

measurements are thought to relate to attentional processes, while commission errors 

are believed to assess impulsivity (Sostek, Buchsbaum, & Rapoport, 1980). Effect size 

comparing ADHD children with controls obtained by this paradigm are the highest 

observed in meta-analysis for neuropsychological tests (up to 1.00) (Frazier, Demaree & 

Youngstrom, 2004).  

 

Below, we provide an overview of the most common neuropsychological frameworks 

that are used to frame research in ADHD.  

 

8.2.2 Executive Functioning  

The most studied deficit in ADHD is in Executive Functioning (Sonuga-Barke, 2002). 

The limited reliability of executive function assessments and the diverse comorbidities 

in adult population make this link difficult to study. Nigg et al. (2005) partially 

overcame these difficulties by running a confirmatory factor analysis on a wide range of 

executive function neuropsychological batteries performed by a sample of unmedicated 

(or tested after a minimum drug wash-out time of 24 hours) adults with ADHD for a 

total of 195 participants. They identified two subsets (EF and speed) and observed the 

relationship with inattention and impulsivity scores, as measured by DSM-IV structured 

interviews. Data suggested that EF impairments are related to symptoms of inattention 

and disorganisation, which were uniquely related to the EF factor. Participants with 

faster responses were also more likely to belong to the impulsive cluster, while those 

with slower responses were more likely to belong to the inattentive cluster.  

 

8.2.3 Reaction Time Studies 

Another important thread of inquiry in ADHD is reaction times. Adult and children with 

ADHD display a greater reaction time variability (RTV) compared to healthy age-

equivalent controls. RTV is primarily measured with the standard deviation of reaction 

times, and it is observed across a variety of tasks that require fast responses. RTV 

measurement of this type is very strongly correlated with the mean RTs, which suggests 

a more latent construct that measures intra-subject variability.  
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More sophisticated (but not always employed) measurements for RTV include fitting to 

an ex-Gaussian distribution, which merges normal and exponential distributions, and 

which is described by parameters μ, σ, and τ (Hervey et al., 2006). Parameters μ is the 

mean of the normal component, parameter σ is the equivalent of standard deviation of 

the normal component of the distribution, whereas τ accounts for the exponential part of 

the distribution and ultimately accounts for the skewness of reaction times. In children, 

reaction times seem to be affected by psychostimulants, but not by other kinds of 

pharmacological treatment (Kofler, et al., 2013). This provides some evidence for the 

exclusive role of prefrontal circuits in processing speed, but more evidence with 

difference measures of variation is required. Lastly, RTV is not specific to ADHD, but a 

cognitive feature across psychopathology.   

 

8.2.4 Reward Sensitivity 

An aspect that has received considerable attention during recent years in ADHD 

research is reward sensitivity. This construct is more difficult to measure when 

compared to reaction times, for a lack of clear operationalisation across tasks. Many 

theories at different levels of biological and behavioural detail have been outlined. As it 

often happens, all present a certain trade-off between the two levels. The Dopamine 

Transfer Hypothesis (DTD) offers a neurobiological explanation of ADHD deficits, 

positing that ADHD is produced by a dysfunction in the midbrain dopamine phasic 

signalling to the striatum and the prefrontal structures (Tripp & Wickens, 2008). 

Consequently, patients with ADHD fail to transfer dopaminergic neuron signals from 

the reward to the predictor, impairing learning of secondary reinforcers. This altered 

firing across developmental times impairs prediction of reward and leads to poorer 

behavioural control that manifests in either impulsivity or inattention, depending on 

contextual cues. Another similar neurobiological theory is the Dynamic Developmental 

Theory (DDT), that posits a lower level of tonic dopamine in the fronto-striatal circuit 

that is responsible for the loss of value of reinforcement following delays.  

 

The neurobiological evidence for these theories comes mainly from animal studies 

(Schultz et al., 1997) but functional neuroimaging in humans show that BOLD signals 

also correlate with prediction errors (Murray et al., 2008). Both theories explain how 

inattention and impulsivity emerges in childhood, but also how individuals with ADHD 

learn more slowly from rewards and therefore need a tighter reinforcement schedule to 



 200 

optimise learning, and how learning new reinforcement contingencies is impaired, 

resulting in perseverative behaviours. 

 

While these theories elegantly combine the reinforcement learning computational 

paradigm with neurobiological data, the division of roles between basal ganglia and 

prefrontal cortex and the role of different neurotransmitters is not addressed, despite the 

fact that different medications used in ADHD target different neurotransmitters in 

different brain areas. 

 

8.2.5 Cognitive Energetics 

While reward sensitivity has close neurobiological correlates it is not necessarily 

directly mappable to cognitive tasks. On the other hand, executive function deficits 

seem too broad to adequately characterise ADHD and become difficult to model. 

Halfway through these two paradigms is the cognitive-energetic model (Sergeant et al., 

2003). This model incorporate a top-down evaluation mechanism that is responsive to 

rewards, a middle level consisting of effortful arousal and activation mechanisms, and a 

bottom-up level that comprises all the cognitive operations necessary to encode stimuli 

and act upon them. This paradigm attempts to break down the cognitive operations that 

might be affected in ADHD, without using the too generic ‘executive function’, and 

allowing neurotransmitter action to differentially affect evaluation and arousal/ 

activation mechanisms. Although the model appears to be underspecified it 

distinguishes between selective attention, error monitoring and performance adjustment. 

There is some evidence that selective attention may not be impaired in adults with 

ADHD (Salomone et al., 2016). 

 

 Experiment 

8.3.1 Introduction 

The purpose of this study is two-fold. The first is to examine whether and to what extent 

a set of experimental predictions obtained from both child and adult experimental 

literature hold. Secondly, we want to examine our results against the computational 

model we built and described in the previous chapters, in order to evaluate whether our 

model is consistent with any of the theories of ADHD, or even suggest other ways to 

think about this disorder. This will occur in the computational part of this chapter 

(Section 8.4). Now, we present a study in which 50 participants recruited through the 
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SONA database and through ADHD charities perform a variation of the Wisconsin 

Card Sorting test (WCSTt) illustrated in detail in the Procedure section. The task is 

composed of two similar subtasks. The main goal is to compare performance on the two 

subtasks to study how ADHD traits affect the regulation of the speed-accuracy trade-off 

in this task. Research literature has examined speed-accuracy regulation in many types 

of processes, but it mostly focuses on ADHD diagnosis alone and on simple perceptual 

processes that require rapid responses. Very often, participants are chosen among young 

children, instead of young and older adults. Here, we focus instead on more deliberate 

processes (like those deployed in performing the WCST) and on an adult sample. 

 

Above we noted that the Continuous Performance Test (CTP) was one of the most 

reliable paradigms for investigating ADHD, with effect sizes in the order of 1.00. The 

standard Wisconsin Card Sorting Test, on the contrary, does not fare well in terms of 

predictive power, capturing an effect size of approximately 0.35 for perseverative 

errors. However, in the experiment reported here we employed the variation of WCST 

described in the previous chapters, where cards disappear briefly after they have been 

sorted below the right pile. In addition, in two blocks participants are asked to sort cards 

within a time frame. This variation on the main paradigm requires a somewhat greater 

challenge for the subject compared to the classic WCST, and it adds a speed-accuracy 

regulation component to it. Further details of the task are given in the procedure 

paragraph below. 

 

Throughout the experimental section we analyse ADHD traits, but we will occasionally 

show how statistics compare between those who have a diagnosis and those who do not. 

 

Hypotheses 

One experimental hypothesis is that the speed-accuracy trade-off regulation correlates 

with ADHD severity as measured by the Conners Adult ADHD Rating Scale (CAARS), 

and with difficulties in everyday life activities measured by the Attention-Related 

Cognitive Errors Scale (ARCES) and the Everyday Memory Failures Questionnaire 

(ARCES/EMFQ) score. Since the ability to adjust the speed-accuracy trade-off in 

children is altered even in perceptual tasks (Mulder et al., 2010), we expect to see 

problems in adjusting this trade-off in adults in decision-making tasks where there is a 

limited amount of time and not many explicit strategies that can be employed. There are 

three ways to examine speed-accuracy trade-off regulation in this context. The first one 
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is to count the number of missed responses in the timed part of the task (counted as 

MISS error). The second is to observe the properties of the distribution of the difference 

between the median response time in the untimed task and the median response time in 

the timed task (henceforth RTD). The median value of RTD may indicate that subjects 

either adapted very quickly to the timed task, or they were fast responders in the first 

place and they maintained their pace, and we predict that a lower RTD is associated with 

a higher CAARS scores. A further variable of interest is the RTD range (henceforth 

RTDR), calculated as the distance between the 5th-percentile and the 95th-percentile of 

the distribution obtained by bootstrapping the response time distributions for the 

untimed tasks and computing the difference of the median. The resulting index, RTDR, 

represents the variation of response time between the two types of tasks. We expect 

higher values of RTD associated with higher CAARS scores. These two indices are 

distribution-free alternatives to the use and calculation of ex-Gaussian parameters. We 

examine both approaches. 

 

Also, we hypothesise that the CAARS scores (especially the CAARS A subscale that 

measures Inattention and Memory Problems and the CAARS C subscale that measures 

Impulsivity) and the ARCES/EMFQ scores will correlate with the number of missed 

responses in the timed part of the task (MISS) and the difference between median 

response time (RTD). 

 

Another experimental hypothesis seeks to replicate findings of increased response 

variability in tasks that require fast reaction times observed in children (Buzy, Medoff, 

& Schweitzer, 2009) for tasks that require deliberate thought like the WCST. This is 

measured with the standard deviation (σ) parameter in the ex-Gaussian distribution.  

Also, we seek to examine whether ADHD traits and attentional lapses are correlated. 

Attentional lapses are instead measured by the exponential term of the ex-Gaussian 

distribution (τ), and they are also observed in the response time distribution for rapid 

tasks in children with ADHD (Hervey et al., 2016). 

 

A final experimental hypothesis has to do with how ADHD affects everyday life. 

Carriere, Cheyne, and Smilek (2008) show that memory lapses and general attentional 

failures in everyday life affect personal wellbeing negatively, as measured by the Beck's 

Depression Inventory (BDI-II).  We seek to see whether this pattern replicates with our 

general sample with both depression, anxiety and General Self-Efficacy (GSE) 
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measurements. In particular, self-efficacy has been shown to be negatively correlated 

with inattention and impulsivity in children (Gambin & Święcicka, 2015) and this might 

be expected in adults as well. 

 

8.3.2 Method 

Subjects 

The study included 21 females (ADHD = 8, non-ADHD = 13) and 29 males (ADHD = 

6, non-ADHD = 23) between the ages of 22 and 65 (ADHD: M = 38.6, SD = 12.9; Non-

ADHD: M = 35.7, SD = 11.0). Subjects had between 11 and 30 years of education 

(ADHD: M = 17.7, SD = 5.4; non-ADHD: M = 17.6, SD = 2.6). Demographics are 

reported in Table 8.1. Participants were recruited through the local university database 

and through various ADHD charities in London. 

 

Table 8.1 Participants' Age and Years of Education (YOE) 

 
Age YOE 

ADHD No Yes No Yes 

Valid 
  

36 
 

14 
 

33 
 

13 
 

Missing 
  

0 
 

0 
 

3 
 

1 
 

Mean 
  
35.72 

 
38.57 

 
17.58 

 
17.69 

 
Std. Deviation 

  
10.97 

 
12.87 

 
2.598 

 
5.453 

 
 

 

The majority of participants with ADHD took Methylphenidate-based medications. 

Frequencies are shown in Table 8.2. 

 

Table 8.2 Medications 

Medication Frequency   Percentage 

Unmedicated 
 

2 
 

4.0 
  

Methylphenidate 
 

7 
 

14.0 
  

Methamphetamines 
 

4 
 

8.0 
  

Mirtazapine 
 

1 
 

2.0 
  

Non-ADHD 
 

36 
 

72.0 
  

 

Finally, Table 8.3 shows the frequency of males and females with and without and 

ADHD diagnosis. A Bayesian Poisson Test shows that there is a credible independence 

of the attributes, BF = 1.41 (using a prior concentration λ = 1). 
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Table 8.3 Gender and ADHD Diagnosis contingency table 

 
ADHD  Diagnosis 

 
Gender No Yes Total 

Female 
 

13 
 

8 
 

21 
 

Male 
 

23 
 

6 
 

29 
 

Total 
 

36 
 

14 
 

50 
 

 

All participants reported normal or corrected-to-normal vision. 

 

Procedure and Measures 

 

Participants completed the WCST and then a series of questionnaires as described 

below. The study was approved by the Ethics Committee of Birkbeck's Department of 

Psychological Sciences (approval #171863).  

 

The WCST Task 

Before the beginning of the session participants were briefed on the task instructions 

and then they had a complete practice trial with fewer cards. During the practice trial 

they were allowed to ask questions to the researcher. A good understanding of the rules 

was reported by all participants after the practice trial. The researcher then left the room 

and participants completed the whole task. We described the classic version of WCST 

elsewhere, but the differences between the current task and the version that is normally 

administered in clinical settings (Heaton, 1975) are outlined. In the variation used in this 

study, the task is computerised, and the selected card is shown for only 1000 ms and 

then it disappears from the screen (unlike the original WCST where the card last card 

placed below one of the four piles is in sight until another card is placed above it). This 

ensures that participants cannot make use of cues when sorting other than the stimulus 

card presented at the bottom of the screen.  

 

The version presented to this cohort has four blocks. In the first and third block the 

screen background is green, and subjects can complete the task in their own time. In the 

second and fourth block the screen background turns red and subjects have to complete 

the each card sort in the allotted time. If they fail to sort a card in the given time, a voice 

and text on screen signal a ‘miss’, the program moves on to the following card and a 

MISS error is counted. The allotted time was set to the median of the time taken by the 

individual subject to sort each card in the first block, but this is unknown to participants, 
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who were told to perform the task at a ‘normal’ pace, without rushing or overthinking, 

when they see the green screen. If this time was less than 1 second and more than 10 

seconds, the allotted time was fixed to 1 second and 10 seconds, respectively. 

Participants could adjust their speed by looking at the countdown digits displayed 

between the stimulus card and the four decks. The digits were displayed only in the 

timed blocks, showing the number of seconds left before a missed trial. Each block 

includes 48 card for a total of 192 cards, 96 in the timed task and 96 in the timed task. 

 

Similarly to the WCST outlined in the previous chapter, a perseverative error (PE) was 

counted when a subject persisted sorting cards with the same rule despite negative 

feedback. A set loss (SL) errors was counted whenever the subject changed sorting rule 

despite immediately prior positive feedback after three unambiguous responses. The 

number of total errors (TE) is equivalent to the number of total negative feedbacks 

received by the subject. Response time, response time difference (RTD), and response 

time difference range (RTDR) were calculated as outlined below. All variables were 

calculated for both the two timed (T) and two untimed (UT) parts and values were 

averaged within those blocks (blocks 1 and 3 for the untimed part, blocks 2 and 4 for 

the timed part).  

 

Conners Adult ADHD Rating Scales (CAARS) 

After completing the WCST task, the researcher was called back into the room and 

asked participants to fill in seven questionnaires. The first was the Conners Adult 

ADHD Rating Scales (CAARS), that measure the presence of ADHD as well as its 

severity and impact on daily life for adults over 18 years old. The version used in this 

study is the self-reported long one which has 66 questions that are rated from 0 to 3. 

Since the CAARS can quantify symptoms across different domains it is possible to 

distinguish between the subtypes of ADHD (inattentive, impulsive, combined). There 

are 8 subscales in total: Domains are Inattention/Memory Problems (CAARS-A 

subscale), Hyperactivity/Restlessness (CAARS-B subscale), Impulsivity/Emotional 

Lability (CAARS-C subscale), and Problems with Self-concept (CAARS-D subscale). 

CAARS-E and CAARS-F subscales provide the scoring according to the DSM-IV 

Inattentive and Hyperactive subtypes, respectively. CAARS-G is the total score simply 

calculated by adding CAARS-E and CAARS-F scores. Finally, CAARS-G is a general 

ADHD index.  
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Internal consistency, measured with Cronbach's alpha, ranges from .86 to .92 and the 

median test-retest reliability has been evaluated as .89. The CAARS has been also 

validated against a semi-structured interview developed by Barkley (1990).  

 

Participants were instructed to answer the questions in this questionnaire thinking of 

themselves when medicated with the medication they have been prescribed and taken 

during the last week, including the day of the of the test.  

 

Beck’s Anxiety Inventory (BAI) and Beck’s Depression Inventory (BDI) 

The second questionnaire was the Beck’s Anxiety Inventory (BAI). This consists of 21 

questions probing anxiety symptoms from the day of the study back to one week before. 

The third questionnaire was the Beck’s Depression Inventory (BDI). This consists of 21 

questions probing depression symptoms from the day of the study back to one week 

before. Although both scales seem to be valid and reliable it is likely that self-report 

measures are not able to differentiate between anxiety and depression and they tend to 

load onto a more general ‘mood’ factor (Fydrich, Dowdall, & Chambless, 1992).  

 

The Wender Utah Rating Scale (WURS) 

The Wender Utah Rating Scale (WURS; Wender, 1998) contains 61 questions rated 

from 0 to 4, but only 25 of them are relevant to ADHD behaviour and we administered 

only those. Given that ADHD is believed to have only childhood onset, this scale is 

useful for a retrospective evaluation of childhood symptoms. Although self-reported 

retrospective diagnoses alone are by their very nature less reliable this helps confirm 

any likely ADHD diagnosis, and can possibly mitigate the false positive rate of 13% 

attributed to the CAARS scale and possibly exacerbated by self-reporting (Erhardt et 

al., 1999). 

 

Attention-Related Cognitive Errors Scale (ARCES) and the Everyday Memory Failures 

Questionnaire (EMFQ) 

Two other questionnaires that probe into daily life activities in the past month were 

included: the Attention-Related Cognitive Errors Scale (ARCES) and the Everyday 

Memory Failures Questionnaire (EMFQ), with 12 and 15 questions, respectively, rated 

from 1 to 5. To our knowledge, there is no research on how the ARCES relates to the 

classic WCST. This is probably because of the different foundation of this executive 

task.  ARCES has been instead associated with errors in the Sustained Attention to 
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Response Task (SART). This neuropsychological task requires participants to withhold 

their response to stimuli that are presented infrequently on a screen and to respond to 

frequent stimuli by pressing a button. The purpose of the task is to lead subjects to 

habituate and to distract them from the less frequent stimuli (Robertson et al., 1997, p. 

747). The correlation between SART and ARCES is quite modest (around .3) but 

robust, since it holds across diverse clinical and non-clinical populations (Smilek, 

Carriere, & Cheyne, 2010), and this indicates that the ARCES questionnaire may detect 

some underlying aspects of sustained attention. The WCST is not generally considered 

to involve sustained attention, so these questionnaires were mainly included because of 

their adequate ecological validity, in order to explore the relationship between real-life 

challenges faced by individuals with ADHD and specific neuropsychological 

constructs.  

 

GSE 

The General Self-Efficacy (GSE) scale is a 10-item scale that probes into the beliefs of 

personal competence and accomplishing things that are relevant to individuals, with a 

score ranging from 1 to 4. The scale has excellent internal reliability (.76 - .90) and it 

appears to measure a cross-cultural construct (Schwarzer & Jerusalem, 2010). In the 

literature a good amount of work on self-efficacy and ADHD can be found, but there is 

scarcity of studies that examine the relationship between self-efficacy and 

neuropsychological abilities in ADHD, hence the choice to include the scale in the set 

of questionnaires.  

 

Demographics 

Lastly, sociodemographic information was acquired via a questionnaire consisting of 

years of education and highest level of qualification obtained, employment status (Y/N), 

Salary, ADHD diagnosis and medications taken (with dosage). 

 

8.3.3 Results 

Data analysis  

Because of the nature of the data that we collected we analysed the data mainly with 

Bayesian correlational analyses, using non-parametric statistics such as the Kendall’s 

tau. Since this methodology moves away from the methods we have employed so far in 

this thesis, an explanation for the reader is warranted. The choice of this kind of analysis 

allows us to operate now in a distribution-free environment, and to evaluate the strength 
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of evidence for the alternative hypothesis relative to the null hypothesis, rather than 

relying on a dichotomous result (null hypothesis significance testing, NHST).  

Methodologically, Bayesian statistics differ from the more commonly used frequentist 

statistics because the final output is essentially a distribution of the parameter in 

question.  

 

Thus, instead of calculating statistical significance as in the frequentist fashion, a Bayes 

Factor (BF) will be reported both numerically and in terms of interpretation according 

to Jeffreys’ descriptions (1961). The Bayes Factor is effectively the ratio between the 

likelihoods of observing the given data under the alternative hypothesis and the null 

hypothesis. Sometimes this ratio is inverted and indicated with BF01 but here we 

reported the BF10 simply as BF. In other words, the reported value will be the one that 

compares the odds in favour of the alternative hypothesis. The higher the value of the 

BF, the more confident we can be regarding the truth of the alternative hypothesis.  For 

instance, a BF of 20 indicates that the data are 20 times more likely to occur in a model 

where the alternative hypothesis is true than in the null model. A BF smaller than 1 

indicates that the null hypothesis is instead more likely to be supported. Since BF are 

essentially ratios of probabilities, two identical BF represent the same amount of 

evidence for the alternative hypothesis, irrespective of sample size. A relationship 

between p-values and BF does exist, but is strongly contingent on sample size, number 

of parameters, and it is usually computable for the minimum BF (Held & Ott, 2018). 

For this reason, we will not report any p values in this section. Ultimately, this 

framework allow us to compare the strength of evidence among different hypotheses 

rather than focusing on binary decisions on whether a correlation or a difference is 

present or not. 

 

The BF is calculated by using the JSZ algorithm (Jarosz & Wiley, 2014) which is quite 

conservative and works better for smaller samples. Unless otherwise specified, the prior 

for the null hypothesis is always a uniform distribution. A directional prediction that 

excludes half of the prior probability distribution will be used only if there is prior work 

that justifies this choice. This will be indicated by stating that the correlation is 

consistent/inconsistent with prior work or one the hypotheses outlined earlier in this 

section (e.g. Depression and Anxiety are known to be positively correlated in clinical 

samples; Beck et al., 1988). Otherwise, the directionality of the prior will be explicitly 

stated at the beginning of a section. Essentially, the prior incorporate pre-existing 
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knowledge only with respect to the directionality of the correlation. Therefore, the prior 

for the null hypothesis is a uniform distribution ranging between the negative and 

positive side of the parameter’s domain if no directionality is specified, or in the 

negative or positive side if directionality is specified. This makes all ranges of 

parameters equally likely, within their domain. 

 

To indicate correlations between variable we will report non-parametric Kendall’s tau 

instead of the more common non-parametric Spearman's rho and the parametric 

Pearson's correlation coefficient. Kendall’s tau is computed in the following manner. 

First, the two datasets are ranked. Data from one of the sets are then sorted in ascending 

order. One by one, concordant and discordant number of ranks are calculated for each 

data point in the second dataset. Concordant ranks are the number of values underneath 

the data point that are greater than each data point. Discordant ranks are the number of 

values underneath the data point that are lower than each data point.  Concordant ranks 

are then added together and so are the discordant ranks. The Kendall’s tau is the ratio of 

the difference between these two values and their sum. Kendall’s tau (τb) and the better 

known Spearman’s rank correlation coefficient (ρs) both evaluate statistical associations 

based on the ranks of the data, but Kendall’s Tau is usually more accurate with smaller 

sample size. More importantly, it is also much less sensitive to isolated differences in 

ranking because, unlike the Spearman’s coefficient, it does not rely on rank differences 

(Gibbons, 1993). This is understandable given that the Spearman's coefficient is 

computed by calculating differences between ranks while the Kendall's tau is not. This 

property can turn out to be useful when considering the heterogeneity in our sample and 

in ADHD research in general (Mostert, 2015). Kendall’s tau symbol will be indicated as 

τb in order to avoid confusion with the τ parameter of the ex-Gaussian distribution. 

 

As for testing the difference between two means we proceed using a non-parametric 

statistic for the reason outlined earlier. The prior is always chosen as a Cauchy 

distribution centred on 0 and with γ = 2. With this prior, a Bayesian t-test computes a 

posterior parameter distribution where the point estimate (the median) is very close to 

the Cohen's d. We instead compute the more conservative Mann-Whitney test and the 

calculated posterior parameter is the effect size δ. We then report the median of the 

posterior distribution, indicated with δm. 
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In all the above mentioned tests, robustness is regularly checked. For a result to be 

robust we expect the BF to vary in a small range when the prior variance ranges within 

a large range. Robustness checks will be mentioned only if the result is deemed to be 

not robust enough. Credible intervals will be also always reported at 95% level as CI. 

 

CAARS scales and ADHD construct 

The first four CAARS subscales measure domains such Inattention/Memory Problems, 

Impulsivity/Emotional Lability, Hyperactivity/ Restlessness, and Problems with Self-

concepts. Unlike the other four subscales these domain are not themselves diagnostic 

and they are scored relatively independently. Our sample has a high inter-item 

correlation, r = .78, and a very high internal consistency, Cronbach's α = .933, 95% CI 

[.87, .95]5 , which is consistent with the population values. Although throughout the 

chapter we are interested primarily in ADHD traits, the difference in all the CAARS 

subscores between those who had  a diagnosis of ADHD, including the medicated 

subjects and those who were not, was always very strong, BF > 34. The lowest median 

of the posterior effect size among the subscales is for the CAARS B subscale 

(Impulsivity), δm = 1.03, while the highest value is recorded for the CAARS D subscale 

(Problems with self concept), δm = 1.69. 

 

ADHD scores all correlate very well with the WURS retrospective diagnostic 

questionnaire, with τb ≥ .488 for all the CAARS scores, with BFs that exceed 1000, in 

accord with Ward (1993). 

 

Correlates with Memory Questionnaires 

The ARCES and EMFQ questionnaires are very similar, although the EMFQ focuses 

more on everyday activities and ARCES is more associated with forgetfulness. Their 

correlation across the whole sample is very high, τb = .724, and with a BF > 1000, CI 

[.495, .844], which indicates decisive support for the alternative hypothesis. Equally, all 

the CAARS questionnaires are moderately to very highly correlated with ARCES and 

EMFQ scores, with τb ≥ .404, and BF ≥ 1000, which indicates decisive evidence for the 

alternative hypothesis.  

 

 

 

                                                 
5 This is a confidence interval, not a credible interval. 
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Depression, Anxiety and General Self-Efficacy Scale 

Ten BDI questionnaires were not collected due to experimenter error, but the correlation 

between BAI and BDI scales in our sample is still consistent with the well-known 

correlation between BAI and BDI in clinical samples (Beck et al., 1988), τb = .599, and 

there is decisive support for the alternative hypothesis, BF > 1000, CI [.37, .78]. Muris 

(2002) reports that Self-Efficacy measurements correlated with both depression and 

anxiety in general adolescent population, but in our adult sample this does not appear to 

be true, as BAI and GSE and BDI and GSE display a very weak correlation and there is 

no support for the alternative hypothesis, BF << 1. 

 

There is a difference in depression (BDI) scores between ADHD and non-ADHD 

subjects, δm = 1.76, and decisive support for the alternative hypothesis, BF > 1000.  

However, with regard to anxiety (BAI) and general self-efficacy scores (GSE) there is 

no support for the alternative hypothesis, BF < 1. 

 

Correlates of Speed-Accuracy measurements  

Priors for the parameters across this section are uniform distributions between 0 and +1, 

because we assume a positive relationship between CAARS scores and speed-accuracy 

regulation measures. Prior research that supports this is highlighted in the discussion. 

Pair correlations between all the CAARS scale and the number of missed responses 

(MISS) in the timed part of the task were run. Participants with a higher score in the 

Impulsivity/Emotional Lability (CAARS C) subscale committed a higher number of 

errors, τb = .274, and with a BF = 12.2, CI [.08, .44], which indicated a moderate 

correlation and strong support for the alternative hypothesis. Importantly, this is in 

contrast with our initial hypothesis, where we expected the Inattention/Memory 

Problems (CAARS A) subscale to measure the number of missed responses more 

accurately. In fact, the CAARS A correlates only weakly with the MISS scores, τb = 

.178, and with only anecdotal support for the alternative hypothesis, BF = 1.2, CI [.02, 

.36]. Thus, despite the large correlations between all the CAARS scales, the Impulsivity 

subscales seem to yield by far the best correlation with the MISS error score.  

 

The data suggest that CAARS C and the difference in median response time between 

timed and untimed task (RTD) are unlikely to be correlated, as τb = .117, and BF = .43 

CI [.01, .31], which indicated very weak support for the alternative hypothesis. 
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However, if we consider the response time range between timed and untimed responses 

(RTDR) instead of the RTD, we find a mild correlation between RTDR and the CAARS C 

scores, τb = .237, with moderate support for the alternative hypothesis, BF = 4.5, CI 

[.05, .40]. Missed response errors and RTDR are weakly negatively correlated, τb = -

.116, and there is, in this case, strong support for the null hypothesis, BF < 1.  

 

In addition, ARCES/EMFQ do not seem to be convincingly correlated with any of the 

measures of speed-accuracy trade-off (MISS, RTD, RTDR), τb ≤ .153, BF ≤ 1.2 

 

In summary, impulsivity traits in adults modulate the speed-accuracy regulation in two 

ways. First, by increasing the number of missed responses in the timed task and, to a 

lesser extent, by increasing the variability in difference of responses between the two 

tasks. Importantly, all the other questionnaires, including the CAARS A that measures 

inattention, do not correlate with these two objective measures as strongly as the 

CAARS C does. Table 8.4 summarises these results. 

 

Table 8.4 CAARS Inattention and Impulsivity scores and measures  

of speed-accuracy regulation 

 
95% Credible interval 

   
τb BF L U 

CAARS Inattention 
 
- 
 
MISS 

 
.178 

 
1.2 

 
0.024 

 
0.359 

 
CAARS Impulsivity 

 
- 
 
MISS 

 
.274 

 
12.2 

 
0.082 

 
0.449 

 
CAARS Inattention 

 
- 
 
RTD 

 
.112 

 
0.4 

 
0.010 

 
0.303 

 
CAARS Impulsivity 

 
- 
 
RTD 

 
.117 

 
0.4 

 
0.010 

 
0.305 

 
CAARS Inattention 

 
- 
 
RTDR 

 
.205 

 
2.1 

 
0.036 

 
0.383 

 
CAARS Impulsivity 

 
- 
 
RTDR 

 
.237 

 
4.5 

 
0.054 

 
0.413 

 
 

Figure 8.1 and 8.2 show the correlation plots for the CAARS Impulsivity scores and the 

number of missed responses (MISS) and the response time difference range (RTDR), 

respectively. 
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Fig. 8.1 CAARS Impulsivity scores and missed responses in the timed part (MISS) 

linear relationship plot. Shaded areas represent 95% confidence intervals (computed by 

bootstrapping) 

 

 

Fig. 8.2 CAARS Impulsivity scores and response time difference range (RTDR), linear 

relationship plot. Shaded areas represent 95% confidence interval (computed by 

bootstrapping) 

 

Fitting ex-Gaussian parameters 

In chapter 3 we made use of the Exponential Gaussian distribution, also known as ex-

Gaussian, to fit data from simulated reaction times. The distribution is described by 

three parameters, the mean μ, the standard deviation σ, and τ, commonly associated to 

the shape of the tail. In this experimental section, fits with real data have also been 

evaluated with a MATLAB™ function as outlined in Lacouture and Cousineau (2008), 

using an ordinary maximum likelihood method (MLE). For more details on the fitting 

process refer to chapter 3. Unlike the simpler processes simulated in chapter 3, real data 

from participants performing the WCST in both untimed and timed conditions 

presented several challenges. We had to make sure that the ex-Gaussian distribution was 
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an effective way to summarise the response time distributions. Cursory inspection 

showed that the majority of distribution in the untimed task resemble an ex-Gaussian. 

The timed task distribution had a much more heterogeneous profile. Then, we 

calculated the best fit for a variety of distributions6 and picked the distribution with the 

lowest negative log-likelihood value. The value of the negative log-likelihood of this 

distribution was then compared to the one of the ex-Gaussian for all participants, by 

simply subtracting the latter from the former. The bigger the value, the better the fit of 

the ex-Gaussian distribution compared to the others. The resulting values for the 

untimed task show that that ex-Gaussian can be used with caution, median = -.44, IQR 

= 2.75. Attempting to fit the distributions in the timed part of the task proved to be 

more challenging, because no clear pattern emerged, even using a wide range of 

different distributions. This suggests that, in general, the best fitting distribution is 

comparable with the ex-Gaussian, but the advantage to have a psychologically 

interpretable distribution can be exploited for the untimed task only. 

In summary, the ex-Gaussian becomes useful to describe the distribution of responses 

whenever subject are not pressurised to answer, while the two response time 

measurement RTD and RTDR are two valuable distribution-free indices to assess speed-

accuracy adjustment and its variability. As drawback, these two measures cannot be 

directly compared to other research on perceptual or cognitive tasks. 

 

Correlates of ex-Gaussian parameters 

Looking at the correlations between the CAARS scores and the ex-Gaussian parameters 

for the untimed task (μu, σu, τu) shows mostly very weak correlations, with very weak 

support for the null hypothesis, with two exceptions. CAARS A (Inattention) 

moderately correlates with the τu, as τb = .235, and BF = 2.1, CI [.038, .403], which 

indicates anecdotal-to-moderate support for the alternative hypothesis. CAARS C 

(Impulsivity) more strongly correlates with the τu, as τb = .312, and BF = 19.5, CI [.12, 

.49], which indicates strong support for the alternative hypothesis. Again, the 

Impulsivity score seems to be a better predictor of neuropsychological performance than 

the Inattention score, for just the tail parameter of the ex-Gaussian.  

 

 

 

                                                 
6 The distributions fitted are Beta, Birnbaum-Saunders, Exponential, Extreme Value, Gamma, 

Generalised Extreme Value, Generalised Pareto, Inverse Gaussian, Logistic, Log-logistic, Log-normal, 

Nakagami, Normal, Rayleigh, Rician, Weibull 
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Performance errors 

Priors for the parameter across this sections are between -1 and +1, because there were 

no hypotheses made. Across all participants, Total Errors between timed and untimed 

tasks are moderately correlated, τb = .415, with decisive support for the alternative 

hypothesis, BF > 100, CI [.21, .59]. Perseverative Errors between timed and untimed 

conditions are also moderately correlated, τb = .411, again with decisive support for the 

alternative hypothesis, BF > 100, CI [.21, .58]. Conversely, Set Loss errors are weakly 

correlated, τb = .170 across conditions, and there is essentially no support for the 

alternative hypothesis, BF < 1. The correlations between Perseverative Errors and Set 

Loss errors in the untimed and in the timed task are also negligible, τb < .01 and with no 

support for the alternative hypothesis, BF < 1.  

 

Running a Mann-Whitney test to observe whether any of the performance errors were 

related to an ADHD diagnosis showed negligible differences between groups with 

almost no support for the alternative hypothesis, BF < 1. 

 

In summary, perseverative and set loss errors are dissociated. This is in line with what 

we would expect to see in the general population given the findings in the previous 

chapters. However, there is no convincing evidence regarding differences in 

performance measures between the ADHD and the non-ADHD group.  

 

8.3.4 Discussion 

 

Summary 

In this study we asked 50 participants, 14 of whom with an ADHD diagnosis, to 

perform two blocks of the WCST in two different conditions: timed and untimed. The 

time limit for the timed condition was computed based on individual subject 

performance on the timed condition, and this was unknown to the subjects. We posited 

that this simple paradigm allowed us to measure how participants regulate their speed-

accuracy trade-off in a type of executive task that sits between pure perceptual tasks and 

the long deliberative decision-making processes required to take important decisions.  

 

Analysing performance variables such as the number of errors committed reaffirms that 

perseveration and set loss errors are dissociable, as we observed in the previous 

experiment. Whereas children seem to display an increased number of perseverative 
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errors on the WCST even when correcting for IQ and Age, results on adults are mixed 

and they fail to converge (Woods et al., 2002). It is possible that, in adults, 

perseveration is sometimes observed because of confounding comorbid conditions. The 

absence of group differences in this type of errors in our sample is in line with this 

hypothesis. 

 

In terms of consequences of inattention and impulsivity in life, our sample does not 

seem to reflect what has been found in the literature regarding measures of 

forgetfulness, depression, and general self-efficacy (Carriere et al., 2008; Gambin & 

Święcicka, 2015). While there is an important association between all the combinations 

between ARCEQ/EMFQ and BDI/BAI, this does not seem to transfer to the GSE 

questionnaires, contrary to what we expected to see. This may be due to the joint effect 

of medication and the convenience sample. Forgetfulness in everyday life activities may 

trigger or worsen mood problems, but this would not necessary translate to a 

diminishing self-belief in the ability to succeed in life. 

 

Speed-Accuracy trade-off regulation 

Now we turn to the most important set of hypotheses that we examined. We 

hypothesised that ADHD traits (especially Inattention), as measured by the CAARS, 

would be correlated with the ability to regulate the speed-accuracy trade-off in the two 

different WCST subtasks. Results show that inattention (as measured by the CAARS A 

subscale) plays a much smaller part in affecting performance indices than Impulsivity 

does. Effects are moderate in magnitude for the correlation between the number of 

missed cards and Impulsivity scores and, albeit with less strength of evidence, there is a 

similar pattern for the RTDR, the range of the timed-untimed difference distribution.  

This is somewhat consistent with what Vallesi et al. (2013) found, for instance, in drug-

naive children performing a task where they had to regulate their speed-accuracy trade-

off. They asked participants to perform a simple binary decision-making task in the 

absence of instruction (baseline condition), after being instructed to ‘try to be as fast as 

they could’ (speed condition), and after being instructed to ‘try to avoid errors’ 

(accuracy conditions).  Hyperactivity/Impulsivity scores in the Conners’ (Teachers) 

scale were negatively correlated with accuracy in both types of switch trial (accuracy to 

speed, speed to accuracy) in ADHD children, whereas the same switching deficit was 

not associated with the Inattention scale. While hyperactivity and impulsivity were not 

differentiated, it is nonetheless possible to appreciate the dissociation between the 
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combined construct and inattention symptoms. Similarly, Mulder et al. (2010) report 

that ADHD impulsivity symptoms, but not inattention ones, predict parameters 

generated by a drift diffusion model fitted over the data from a perceptual task similar to 

the random-dot motion task. Taken together, this suggest that findings from prior 

research in children may generalise to adults with ADHD completing a more 

demanding task. 

 

Analysis of ex-Gaussian fits shows that responses for the timed part of the task exhibit a 

large heterogeneity, as there seems to be no distribution that fit this data coherently. 

These results may be disappointing, but it probably suggest that many cognitive 

processes are in play and were not factored in when designing the experiment. For 

instance, it is possible that giving participants the opportunity to see the countdown 

timer on screen might have affected their decision time in a way that is highly 

individualised and represent another layer of complexity in cognitive control. These 

nuances in the experimental design could be potentially addressed in future versions of 

the study. Also, an alternative procedure to fit truncated data using an ex-Gaussian 

could be used (Ulrich & Miller, 1994). Alternatively, we showed that distribution-free 

measures such as the RTD and the RTDR can be useful tools in assessing speed-accuracy 

trade-offs in higher-order cognitive tasks. Conversely, an ex-Gaussian curve can 

comfortably fit responses in the untimed part of the task. Correlational analysis reveals 

that there is a very reliable correlation between the tail parameter (τu) and the 

Impulsivity scores: higher impulsivity scores correspond to a thicker tail on the 

response time distribution for the untimed part.  

 

Interpreting these sets of results can be challenging, as it requires a mechanistic 

understanding of impulsivity, and the research on the exact nature of this construct is 

still in its infancy. Impulsivity does not have, in fact, a uniform definition across 

studies, but recent progress shows that it can be broken down into different constituents. 

Two of the most studied are rapid-response impulsivity and reward-delay impulsivity 

(Evenden, 1999). The first one is operationalised with speed-accuracy trade-off 

measurements, which can be timed or untimed. The second one is defined as pattern of 

choice that favours small reward in the immediate future over larger rewards in the far 

future. Both types of impulsivity have been associated with ADHD in children (Scheres 

et al., 2010). 
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Other frameworks employed to analysed impulsivity are the UPPS model (Whiteside 

and Lynam, 2001) which identifies four dimensions of impulsivity in a multifactorial 

model: urgency (U), lack of premeditation (P), lack of perseverance (P), sensation 

seeking (S). Although the model is strongly tied with personality research, 

neuropsychology and, more recently, neuroscience, have weighed in on the topic. Lack 

of perseverance is the dimension that seems most relevant to our work and it is defined 

as the ability to remain focused on a task. Neuropsychologically, this would be 

characterised by the inability to resist interference from irrelevant thoughts. In this 

framework the similarity with the inattention construct is evident. However, none of the 

proposed definitions provides a fully satisfactory explanation of these findings. A 

plausible solution consists in considering that the construct of impulsivity in the daily 

life of adults is produced by a quick initial accumulation of evidence before corrective 

mechanisms intervene in response to the evaluation of evidence. This may explain the 

increased number of missed responses and the increased variability. The inattentional 

mechanism could be driven by similar processes, and/or by information decay. 

 

Effects of ADHD drugs 

In this study we did not address the potential confound of these drugs in detail, due to 

the limited number of participants with ADHD in our sample and the different types of 

drugs used, but we did rather focus on the correlates between reported symptoms and 

neuropsychological performances. The effects of medications on neuropsychological 

task performance in adults is still largely unclear. There is some evidence that sustained 

attention might be enhanced by stimulant medication but, most importantly, set-shifting 

and cognitive flexibility may be even impaired in the form of perseveration behaviour 

(see Advokat, 2010 for a review).  

 

 Simulations 

8.4.1 Introduction 

We saw that inattention and impulsivity appear to be conflated in the 

neuropsychological literature, and in particular in studies of ADHD. We now examine 

whether our model can shed a light on the nature of impulsivity, through a set of 

simulations without necessarily performing quantitative fits. 
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8.4.2 Model description 

As we observed in previous chapters, the model reproduces performance errors well, 

but one of its major shortcomings was the lack of variability in response times. While 

the model of three simple corticostriatal channels described in chapter 3 clearly 

produced a distribution of response times that could be related to the ex-Gaussian 

distribution, the model of the two complete tasks (WCST and BRX) described in 

chapter 7 did not. We speculated that this was due to the additional signals coming from 

both the environment (external stimuli) and the top-down signal (rules). 

 

In order to increase variability among response times we introduce an additional 

parameter to the model of WCST. Thus, the area-threshold θA is no longer fixed to a 

value (previously 5000), but becomes a random variable described by a normal 

distribution with mean of 5000 and standard deviation σθ : 

   

θ𝐴 ~ 𝒩(5000, σθ)  

 

For all the simulations reported in this section the total number of trials is increased 

from 64 to 192 so as to improve curve fitting reliability. Fig. 8.3 shows an instance of a 

response time distribution obtained with this technique. The use of this technique is 

motivated by the use of a collapsing threshold in Drift Diffusion Models (Ditterich, 

2006), that model an increase in urgency as the subject needs to collect increasingly less 

evidence as time passes. Similarly, the state of urgency changes from response to 

response, but its mean remains fixed.  

 

 

Fig. 8.3 Histogram of the time distribution from a task.  

The solid red line is a fitted ex-Gaussian. 
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In order to simulate time limits in response we set a time limit at Tlim = 480 time units. 

Whenever the simulation exceeds this time, a missed response (MISS) is counted and 

all values are then reset to zero. Barring these two changes, the rest of the WCST model 

is essentially unaltered. In the untimed task, this limit is fixed to infinity and therefore 

missed responses do not occur. 

 

8.4.3 Simulation in the untimed task 

Analysis of behaviour in the simulated untimed task σθ does not seem to have any effect 

on any performance errors and importantly it does not affect any parameter of the ex-

Gaussian. The change in parameter oext also does not affect the mean parameter (μ) of 

the ex-Gaussian and has a modest effect on both σ and τ (Fig. 8.4).  

 

 

Fig. 8.4  Plot of the ex-Gaussian parameters σ and τ against oext. Values are max-

normalised, in order to show the percentage change. Each value of the independent 

variable is averaged across 5 trials. 

 

Analysis of εstr is more informative. The change in εstr has the same effect on 

performance variables that was shown in chapter 5. As εstr increases, perseverative 

errors decrease (more flexible control) but set loss errors increase (less stable control), 

though they can be modulated by εctx. The ex-Gaussian standard deviation σ is modestly 

affected by εstr, but τ has a clear linear characteristic (Fig. 8.5). 
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Fig. 8.5 Plot of the ex-Gaussian parameters σ and τ against εstr, Values are max-

normalised, in order to show the percentage change. Each value of the independent 

variable is averaged across 5 trials 

 

This single result is important because εstr mimics what has been observed for in 

individuals with higher impulsivity scores for the tail parameter of the ex-Gaussian (τu) 

in the untimed trials. 

 

8.4.4 Simulation in the timed task 

Now we turn to the analysis of the timed version of the task. As we said, we set a time 

limit for an answer (Tlim = 480), and if the model has not computed an answer by that 

time, a missed response is counted. It is important to stress that when pressurised, a 

subject might increase their overall attentional focus, and this could be reflected in the 

model by an increase in oext.  

 

Before each simulation, a trial of one task is simulated with no time limits, and RTDR is 

calculated by using that single distribution as a reference. In order to understand 

whether any parameter mimics the effect of impulsivity in real subjects, the alteration of 

this putative parameter has to produce a change in both missed responses and RTDR in 

the same direction. Alternatively, different parameters can produce these differences. 

Equally, the difference in performance errors must remain unaltered. First we analysed 

how the threshold variability σθ affects performance.  

 

The change in σθ does not seem to have any effect on performance variables (not 

shown) and this speaks to the possibility of implementing variability in response times 

and changes in performance in the model without affecting each other. There is also 

very little effect on the variables that are correlated with impulsivity (MISS and RTDR) 

(Fig 8.6 and Fig. 8.7). In other words, the only role that σθ has is to generate a range of 
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different response times. This is an attribute we were looking for when we introduced 

this parameter, as we wanted to introduce a new property in the system without 

affecting performances in any of the subtasks. 

 

 

 

Fig. 8.6 Plot of the number of missed responses (MISS) against σθ. Values are max-

normalised, in order to show the percentage change. Each value of the independent 

variable is averaged across 5 trials 

 

 

 

Fig. 8.7 Plot of RTDR against σθ. Values are max-normalised, in order to show the 

percentage change. Each value of the independent variable is averaged across 5 trials 

 

Alteration of oext, which is the constant signal fed to the higher-order units, has an effect 

on performance similar to what we observed in chapter 5, with a general increase in 

non-perseverative and set loss errors, but the changes occur only after a substantial drop 

in oext. In this timed performance model, decreasing oext increases the number of missed 

responses linearly (Fig. 8.8) and the RTDR follows an inverted U-shaped function only 

for low values of εpfc, but is otherwise insensitive to oext manipulation (Fig. 8.9). RTD 

also decreases steadily with oext (Fig. 8.10), and its values are all negative. This is not 

visible because the curve is normalised so as the reader can appreciate the significant 
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percentage change compared to the other variables, but this essentially indicates that the 

median response becomes increasingly faster than responses in the untimed model.  

Also, εpfc appears to lessen the impact of the dropping values of oext. 

 

 

Fig. 8.8 Plot of missed responses (MISS) against oext. Values are max-normalised, in 

order to show the percentage change. Each value of the independent variable is 

averaged across 5 trials. 

 

 

Fig. 8.9 Plot of RTDR against oext. Values are max-normalised, in order to show the 

percentage change. Each value of the independent variable is averaged across 5 trials. 

 

 
Fig. 8.10 Plot of RTD against oext. Values are max normalised. Values below 1 are in 

this case negative, that is to say that the median RT in the timed task becomes 
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increasingly greater than the untimed task. Each value of the independent variable is 

averaged across 5 trials 

 

The most interesting profile is seen with εstr. In the untimed task this parameter was tied 

to the impulsivity scores seen in the empirical data more than any other parameter, since 

a higher value would yield a thicker tail of responses (with no time limits). We can see 

that a linear relationship between the number of missed responses and εstr also exists 

(Fig. 8.11). A modest change in RTDR occurs after εstr exceeds 0.5 (Fig. 8.12). This 

speaks to an important, albeit not unique, role of the basal ganglia in the genesis of 

impulsive traits, as values are also modestly affected by εpfc, which appears to lessen the 

impact of εstr, as was previously shown with oext. When εstr exceeds 0.5 a decrease in 

RTD is also seen (Fig. 8.13). Since RTD values become then all negative (again, this is 

not visible because the curve is normalised) this indicates that the model tends to 

increase in speed, at the expense of lower accuracy (i.e., increased MISS responses). 

 

 

 

Fig. 8.11 Plot of missed responses (MISS) against εstr. Values are max-normalised, in 

order to show the percentage change and averaged across 5 trials. 
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Fig. 8.12 Plot of RTDR against εstr. Values are max-normalised in order to show the 

percentage change and averaged across 5 trials. 

 

 
Fig. 8.13 Plot of RTDR against εstr. Values are max-normalised. Values below 1 are in 

this case negative, that is to say that the median RT in the timed task becomes 

increasingly greater than the untimed task. Values are averaged across 5 trials. 

 

8.4.5 Discussion 

Behaviour in the untimed task is generally well predicted by εstr, the basal ganglia 

learning rate. Increasing this parameter makes the ex-Gaussian tail thicker by increasing 

τu, without an important change in the standard deviation. However, modest changes 

also occur with changes in oext, the constant input to all the higher-order units. 

Importantly, both εstr and oext have an effect on performance values, although the model 

has a ‘offset system’ that counteracts oext so that a drop in this parameter begins having 

a gradual effect on performance only after falling below a threshold (approximately 

0.8).   

 

Behaviour in the timed task also shows that both εstr and oext have a similar effect, 

although going in opposite directions, on the variables that we observed to be correlated 

with impulsivity traits, namely the number of missed responses (MISS) and the range of 
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the distribution of the difference between timed and untimed responses (RTDR). We also 

see that both parameters have an important effect on the response time difference 

(RTD). Increasing the learning parameter εstr cause faster median responses compared to 

the untimed model. This is not observed in our experimental sample. 

  

Changes in εstr has the same effect on performance variables that it is expected to have 

by the analysis in chapter 5. More precisely, as εstr increases, perseverative errors 

decrease (indicating more flexible control) but set loss error increase (implying less 

stable control), and these changes can be modulated by εctx. Recalling that in our sample 

there is no correlation between ADHD impulsive traits and performance errors such as 

SL, we can see how attributing impulsivity traits to alterations of εstr alone, and therefore 

to basal ganglia activity, cannot be correct. We described how to tie existing 

neuropsychological models with our results in the general discussion. 

 

 General Discussion 

We have presented a study with 50 individuals, 14 of whom had an ADHD diagnosis, 

where subjects have to perform a version of the Wisconsin Card Sorting Test in a timed 

and an untimed setting. They have therefore to adjust their speed-accuracy trade-off. 

One of the main finding was that impulsivity correlates with the both the number of 

missed responses in the timed part and the variation in the distribution time across timed 

and untimed conditions. In the computational model of the same task (Section 8.4), we 

tried to explain how these changes in the outcome variables could occur. The model is 

identical to the one we presented in the previous chapter, but with the addition of a 

moving threshold to produce an ex-Gaussian distribution in the response times, similar 

to the observation in the experimental group. 

 

We conclude that there are two parameters, εstr and oext, that have a major effect in both 

the timed and untimed version of the WCST (WCSTt). This is not to say that εpfc (the 

learning parameter related to the entropic states of the cortical higher-order units) and σθ 

(the newly introduced parameter that regulates the standard deviation in the dynamic 

decision threshold) have no role in the generation of ‘impulsive-like’ performance in 

terms of response times, but it is minimal compared to the other two parameters.  

 

Both the basal ganglia learning rate εstr and the external signal oext have similar effects 

of the number of missed responses and on the RTD but only εstr has a more consistent 
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association with RTDR. In our sample, RTD does not seem to correlate with symptoms of 

impulsivity whereas RTDR and missed responses do. If we now look at how already 

established theories of impulsivity in ADHD tie in with our findings, we see that the 

role of εstr can somewhat be more associated with reward-delay impulsivity. Although 

reward is not directly involved because it is a fixed parameter by design, the learning 

rate εstr amplifies the effect of reward in biasing the higher-order schemas. One 

experimental prediction that validates this theory would be that an excessive level of 

dopamine in the striatum without normalising prefrontal circuits produces these kind of 

impulsive symptoms in healthy and individuals with ADHD (van Schouwenburg et al., 

2010). The role oext seems instead to be associated with a rapid-response type of 

impulsivity, and more directly relatable to prefrontal function.  

 

The two parameters model also ties well with some aspect of the Type 1/2 model (Dual-

process model) of impulsivity described by Nigg (2001). What is regulated by Type 1 

processes is automatic, stimulus-driven and rapid. This process would be activated, for 

instance, when behaviour is disrupted in response to an internal or external salient event 

such as an unexpected sound or an anxiety-provoking thought. This is generally thought 

to be linked with subcortical network activity. In our model εstr seems to be again be 

indirectly associated with this process, since it amplifies the effect of reward (in this 

case novelty) and disrupts the system working memory by weakening or deactivating 

higher-order schemas. Type 2 processes are instead characterised by effortful cognition 

and would be associated with oext. Notice that the Type 1/2 model, unlike that reward-

delay/rapid-response model, is hierarchical, in that Type 2 cognition controls Type 1 

processes. 

 

In summary, there is some level of congruency between our model and other strands of 

research. In this preliminary analysis the model has shown a capacity to simulate 

variability in response times and to produce qualitative results that provide a different 

framework to think about impulsivity in ADHD.  Given that in our sample we do not 

see any correlation between performance errors such as perseverative and set loss errors 

and any measure of ADHD behaviour, at a group or individual level, each set of 

performance must be generated by a combination of variation in εstr and oext, possibly 

adjusted by εpfc and σθ, albeit to a lesser extent. In practice, the next step for the 

development of the model is to go from a qualitative analysis to more precise model fits 

and model comparisons, along the lines of what we did in the previous chapter. This is 
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made more challenging because of the necessity to introduce a reasonable 

transformation between simulated and empirical response times, and slightly more 

computationally onerous because of the use of 192 cards (4 blocks of 48)  instead of the 

original 64. Once a quantitative analysis is complete, specific predictions on 

neurophysiological states can be done. If predictions are accurate, the computational 

model provide a useful bridge between psychological and neurophysiological data.  
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General Discussion and Conclusion 

 

 Summary of findings 

In the first chapter we overviewed the neurobiology of the frontostriatal loops in the 

brain, focusing on the basal ganglia nuclei. Several neurocomputational models of the 

basal ganglia and tasks based on the posited function of the nuclei were overviewed, 

too.  

 

In the second chapter we reported a reimplementation of the model of the basal ganglia 

developed by Gurney et al. (2001a,b), with a some variations, and we explored how the 

values of key parameters affect the channel output that would drive disinhibition. We 

concluded that the most important parameters that mimic dopamine presence in the 

basal ganglia are the threshold (βstr) and the slope (αstr) of the saturation function in the 

striatum. Several other parameters with neurobiological meaning turned out to be less 

important or simply redundant in explaining disinhibition behaviour.  

 

In the third chapter we embedded the basal ganglia units in a corticothalamic loop by 

adding a cortical unit and a thalamic unit in a feedback loop that contains the basal 

ganglia. We studied how parameters’ values affect the qualitative shape of the output 

given different types of inputs, and showed how reaction times and exploration of other 

states are produced by manipulating αstr and βstr.  

 

In the fourth chapter we presented an implementation of the extended schema theory 

that essentially uses two different corticothalamic loops to simulate the Wisconsin Card 

Sorting Test (WCST). The model has a rudimentary mechanism to handle external 

feedback, but it still produces results compatible with neurologically healthy controls 

and, when βstr is manipulated, with Parkinson’s disease patient’s performance. In the 

case of healthy young individuals, aggregate data are simulated with a good fit, but the 

inter-correlation between performance errors reveal major differences between the 

model’s behaviour and that of the controls. We showed that these discrepancies can be 



 230 

lessened by clustering participants into five groups, and simulated each group 

performance with different sets of parameter values.  

 

In the fifth chapter we undertook a major structure change in the model of the WCST by 

introducing two neurobiologically motivated learning parameters, εstr and εpfc, that act 

on the threshold of the striatal units and on the gain of the cortical units, respectively. 

Within this model, the change in βstr is no longer identical for all schemas, but varies 

depending on the previous value of an individual schema (i.e., it is history-dependent). 

Conversely, εpfc scales the effect of entropy and it is contingent only on the current state 

of the cortical units.  

 

The sixth chapter introduced a variation of the Brixton (BRX) Task, using the same 

computational paradigm. Qualitative studies of parameters ensured that the model 

produced empirically sound results. 

 

In the seventh chapter we presented a study with 25 individuals over 60 and 25 younger 

individuals performing the WCST and the BRX tasks. Aging produces cognitive 

changes in the performance of executive tasks, in addition to biological changes in 

neurotransmitter distribution in the brain, and computational modelling can potentially 

tease out how biological changes affect cortical and striatal processes differentially. In 

the experimental part, we showed that there is a dissociation between perseveration and 

set loss in the older population in the WCST and we showed that results for the BRX 

borders significance for just one dependent variable across age groups. In the 

computational part we took the models of the two tasks previously developed and, using 

a simulated annealing technique, we successfully fitted the data with the two main 

learning rate parameters. We then proceeded to cluster data into several groups for the 

WCST and fitting data with more parameters. Group comparisons revealed that two 

different sets of parameters simulate the same data set. It can be speculated that older 

participants compensate for weaker cortical modulation, corresponding to greater εctx, 

by increasing oext, corresponding to increasing attentional focus, which is consistent 

with findings in the cognitive neuroscience of aging. Here, the critical idea is that the 

same behavioural results can be realised by different sets of computational parameters 

which, in turn, can correspond to neural states.  

 

 



 231 

In the eighth chapter we presented another empirical study. In this case 50 participants, 

14 of whom had a diagnosis of ADHD, performed a variation of the WCST where 

subjects were asked to perform the same task under time pressure. If in the seventh 

chapter we validated the model against performance error data producing quantitative 

model fits, in this chapter we examined qualitative parameter behaviour to seek to 

explain the bases of impulsivity within our own computational framework. The most 

important experimental results revealed that impulsivity scores are associated with the 

number of missed cards in the timed part of the task and, to a lesser extent, subjects with 

higher impulsivity scores also show a higher variability in the response time distribution 

across the timed and untimed subtasks. ADHD is believed to arise from a dysfunction in 

the frontostriatal circuits and computational modelling can help generating theories of 

ADHD that distinguish between frontal and striatal contribution to the regulation of the 

speed-accuracy trade-off. We concluded that both striatal and frontal processes are 

responsible for this specific type of impulsive behaviour, and this is compatible with the 

interaction between Type1 and Type2 processes in impulsive behaviour (Nigg et al., 

2001).  

 

 Research Questions 

9.2.1 A neurobiological schema theory 

The main research question explored in this thesis was whether it is possible to merge a 

schema-based activation model with the functionality of the basal ganglia as a device 

that resolves competition between schemas. For this purpose, we adopted a bottom-up 

approach to the basal ganglia units and a top-down approach to two higher-order 

neuropsychological tasks – the Wisconsin Card Sorting Test (WCST) and the Brixton 

Task (BRX).  

 

The bottom-up approach is based on the work by Gurney et al. (2001). This assigns a 

role to the basal ganglia nuclei as a whole, as a device that implement an optimal 

algorithm for action selection, and each of the nuclei implement part of this algorithm. 

The top-down approach is instead based on the computational implementations of the 

schema-based theory by Cooper and Shallice (2000), in the form of the Contention 

Scheduling. The underlying cognitive theory is based on studies of disordered 

behaviours, such as Action Disorganisation Syndrome, Ideational Apraxia and, most 

importantly for the current work, Parkinson’s Disease. Results indicate that it is possible 

to combine these two approaches successfully. Although the objectives of this work are 
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modest, the model represent a step towards a more neurobiological schema theory. At 

this point, the only two main types of units that can be mapped into brain areas are the 

cortical schemas and the basal ganglia units with an anterior and a posterior subdivision 

for each set, but the model is structured to accommodate any expansion. 

 

9.2.2 The role of dopamine 

One ancillary research question was related to the role of dopamine in striatal and 

cortical circuits within the context of our models. Manipulation of saturation curves in 

the basal ganglia model (chapter 2), in the corticothalamic loops (chapter 3), in the 

model of WCST (chapter 4), and within the upgraded model of WCST with learning 

capabilities (chapter 5), suggest the existence of a few general principles. First, altering 

the threshold uniformly across units affect performance errors similarly to what is 

observed in Parkinson’s disease. However, this manipulation alone is not capable of 

reproducing correlations across errors. Introducing a learning parameter that alters the 

threshold of the basal ganglia units according to external feedback (εstr) improves model 

fitting. Quantitative fits of the simulation of older and younger participants (chapter 7) 

completing the WCST show that the learning parameter εstr  is again consistent with an 

expression of dopaminergic activity in the striatum, while the role of εctx as the 

expression of dopamine in the cortex does not fit this interpretation. In other words, we 

have two ways to express the effect of dopamine in the model, one with εstr, and the 

other with the baseline values of βstr. The value and sign of reward affect this baseline. 

There is evidence to believe that these roughly correspond to phasic and tonic 

dopamine, respectively, but this assumption is difficult to validate experimentally. In 

the chapter 8 we showed that the simulations ascribe a specific behaviour to εstr. If the 

model’s prediction are accurate, any dopaminergic agents affecting only the striatum in 

healthy control should have different effect on both performance errors and response 

time than the traditional dopaminergic drugs with a broader binding profile. This can in 

principle be verified experimentally. 

 

9.2.3 The role of dynamical controllers 

The explored models feature what can be described as a dynamic controller, or even a 

dynamic schema, as opposed as to a static one. This is realised with a mechanism that 

alters the gain of the cortical schemas as a function of a learning parameter (εctx) and the 

entropy of the activations. The entropy is simply calculated treating the cortical 

schemas’ activations as a random variable whose normalised activation values represent 
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probability of selection.  This type of controller is dynamic because the change in 

saturation function depends on its activation values that change across time and 

changing the saturation function, in turn, affects these values. This allows the system to 

remain stable or to destabilise whenever certain states in the parameter space are visited. 

More generally, a dynamic schema would manipulate the activation function of another 

schema that feed back into it. The operations of a dynamical controller could possibly 

fit within the supervisory attentional system (SAS) formulated by Shallice (2002). This 

system is in place to modulate non-routine situations, where an appropriate schema is 

not available, or complex sequencing behaviour is required to reach a goal, among other 

things. It seems in fact particularly difficult for the nervous system to be able to switch 

between “overall modes of behaviour” (Kilmer, McCulloch, & Blum, 1969) via schema 

cooperation and competition without a central executive.  

 

The operations of the supervisory system are not conceived in terms of schemas, but 

dynamical schemas may fit some of the necessary features. This would blur the 

difference between systems that have only representations (e.g. Contention Scheduling) 

and systems that apply computations over those representation (e.g. Supervisory 

Attentional System). Competition among dynamical controllers could happen similarly 

to the more static schemas, guided by the basal ganglia operation, and the neural 

localisation in the prefrontal cortex would be more appropriate.  

 

All of these extremely speculative hypotheses deserve to be examined more rigorously 

in the future. 

 

 Limitation and future research 

We have successfully begun to answer our research questions, but much work is left to 

do. We first examine the intrinsic limitations of the model, that is, those limitations that 

exist “by design”, and then address what can be done to improve and expand the scope 

of the model by virtue of the model’s successful achievements. 

 

The major intrinsic limitation is that the model requires a hard-wired schemas. Schemas 

can be defined essentially as cognitive structure that serve to organise experience when 

agents interact with their environment, but the way atomic meaning (meaning that 

cannot be further broken down into meaningful units) is organised can vary greatly, and 

biological plausibility can complicate the problem even further. Take for example the 
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problem of the Arbib’s “rana computatrix”, as a model of approach and avoidance in the 

frog (Arbib, 2003). The system consists in a set of two perceptual schemas (small and 

large moving object) and motor schemas (snap and avoid) (Fig.9.1a). This system is 

suitable for analysing behaviour and understanding how a cognitive system produces 

accurate responses and reaction times. 

 

 

 

Fig. 9.1 Approach-Avoidance behaviour model in schema-theory (a) purely cognitive, 

(b) biologically plausible, consistent with neural lesions  

 

However, lesion studies in the frog show that lesions in the pretectal area (just anterior 

to the superior colliculi) cause the frog to approach all animals without differentiating. 

Therefore, the set of schemas is biologically sound only if the two perceptual schemas 

are assigned to an “all moving objects” schema, and the “large moving objects” schema 

has additional inhibitory control over the approaching motor schema (Fig. 9.1b). In 

general, if a system is purely cognitive then one would only pay attention to the 

behavioural output, for example in terms of accuracy or reaction times. If, however, 

there is even a minimal degree of neural differentiation in the processes, it is difficult to 

understand how schemas should be organised. Here, in our work on the WCST we 

assigned to the higher-order units three meaningful rules (sort by colour, sort by shape, 

and sort by number). In the BRX we assigned sequential rules to the higher-order units 

(clockwise, anticlockwise, two-by-two clockwise, alternate). Each of those have a basal 

ganglia set of units. Even if we accept that that is the right way to assign content to 

schemas, some individuals may employ different strategies, especially when they 

become more aware of their mistakes. There are potential solutions available. The most 
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obvious is to establish systematic mutual feedback between theory and neuroimaging 

work. While this is already happening in many research centres, there is still widespread 

scepticism around the ability of computational modelling to affect the way experimental 

science works (Stafford, 2012). 

 

A less ambitious but probably useful idea is that participants should be encouraged to 

explain what part of the task they found more difficult at the end of the study, and what 

strategies they used when faced with these difficulties. Although the majority of mental 

processes cannot be probed by just asking participants, experimenters have perhaps 

forgotten that in higher-order cognition many subjects can explain why they do what 

they do. While this does not constitute scientific inquiry per se (we cannot be sure 

whether such reflections are not post hoc rationalisations), this qualitative investigations 

can often help the experimenter to design better studies, especially when the cognitive 

tasks require some deliberative processes. 

 

Besides these intrinsic limitations that require more time, effort, and collaboration to be 

overcome, there are many avenues for improvement that can be explored in a relatively 

shorter time. From a methodological point of view, several improvements can be made. 

Simultaneous use of continuous and discrete functions in the implementation may 

require unnecessary computational resources. Hence, a reasonable discretisation of all 

the functions in the system should be a goal for future models. Also, future 

implementation should make use of more rigorous free parameter limits, ideally from 0 

to 1 or -1 to +1 whenever necessary (e.g. rewards), and dependent variable limits (e.g. 

proportions instead of raw scores). This would limit the flexibility of the model to fit a 

greater range of datasets and would also facilitate the evaluation of precise flexibility 

metrics such as the Model Flexibility Analysis (Veksler, Myers, & Gluck, 2015). 

 

Computational modelling of higher-order neuropsychological tasks within the 

developed framework can and should be extended to other tasks, and reparametrisation 

should be used to set primary parameters to fixed or constant values, so that direct 

comparisons can be made across tasks. Neuropsychological tasks in healthy and 

diseased individuals are the ideal type of tasks to model, on account of the abundance of 

available literature. The Continuous Performance Task (CPT), the Sustained Attention 

to Response Task (SART), the Trail Making Task (TMT), and many others are all 

suitable for these purposes.  
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The model has ample room for extension with brain structures like the amygdala, 

cerebellum, and anterior cingulate, with each of them implementing different algorithms 

and cognitive functions at different timescales. The cerebellum is an ideal candidate as 

an additional module, because of the recent reappraisal of its role in higher-order 

cognition (Bellebaum & Daum, 2007). Take Hart et al.’s (2012) meta-analysis, for 

instance. Their work on neuroimaging studies on children with ADHD points to the 

involvement of cerebellar circuits in timing performance. A legitimate hypothesis would 

be that cerebellar circuits affect mostly the timing aspect of a series of tasks while 

leaving accuracy somewhat unaffected. In our WCST model the standard deviation of 

the dynamic threshold seems to have this property. If a cerebellar circuit could affect 

this parameter given its internal structure (Purkinje’s cells, mossy fibres, climbing 

fibres, etc.), this would count as a successful attempt at integrating cerebellar functions 

and schemas, similar to what has been achieved in this thesis with the basal ganglia. 

 

Finally, as we briefly pointed out earlier, another whole area of future research involves 

the relationship between dynamical schemas and supervisory control (Shallice, 2002). 

Here the question is how and when a dynamic schema might manipulate the activation 

function of another conceptually lower-level schema that feds back into it. 

 

 Conclusion 

We began with the goal of “understanding, at a neural level, the mechanisms involved 

in human action selection”. Action was conceptualised in schema-based terms, with 

selection involving choice among schemas. While some questions remain, the series of 

models developed throughout chapters 2 to 5, their application to two widely used 

executive function tasks in chapters 5 and 6, and the empirical work aimed at applying 

the model to understand aging effects and effects of ADHD in chapters 7 and 8, support 

a view of human action selection as reliant upon a hierarchical set of static and dynamic 

schemas that are neurally located in the cortical area and whose activation is centrally 

manipulated by subcortical structures such as the basal ganglia. 

  



 237 

 

  

References 

 

Aarsland, D., Perry, R., Brown, A., Larsen, J. P., & Ballard, C. (2005). Neuropathology 

of dementia in Parkinson's disease: a prospective, community‐based study. 

Annals of Neurology, 58(5), 773-776. 

Abramovitch, A., Abramowitz, J. S., & Mittelman, A. (2013). The neuropsychology of 

adult obsessive–compulsive disorder: a meta-analysis. Clinical Psychology 

review, 33(8), 1163-1171. 

Advokat, C. (2010). What are the cognitive effects of stimulant medications? Emphasis 

on adults with attention-deficit/hyperactivity disorder (ADHD). Neuroscience & 

Biobehavioral Reviews, 34(8), 1256-1266. 

Aizman, O., Brismar, H., Uhlén, P., Zettergren, E., Levey, A. I., Forssberg, H., ... & 

Aperia, A. (2000). Anatomical and physiological evidence for D1 and D2 

dopamine receptor colocalization in neostriatal neurons. Nature Neuroscience, 

3(3), 226-230. 

Alberico, S. L., Cassell, M. D., & Narayanan, N. S. (2015). The vulnerable ventral 

tegmental area in Parkinson’s disease. Basal ganglia, 5(2-3), 51-55. 

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of 

functionally segregated circuits linking basal ganglia and cortex. Annual review 

of neuroscience, 9(1), 357-381. 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental 

disorders (DSM-5®). American Psychiatric Pub. 

Amos, A. (2000). A computational model of information processing in the frontal 

cortex and basal ganglia. Journal of Cognitive Neuroscience, 12(3), 505-519. 



 238 

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American 

Psychologist, 51(4), 355. 

Arnsten, A. F. (2011). Catecholamine influences on dorsolateral prefrontal cortical 

networks. Biological psychiatry, 69(12), e89-e99. 

Aronson, J. P., Katnani, H. A., & Eskandar, E. N. (2014). Neuromodulation for 

obsessive-compulsive disorder. Neurosurgery Clinics of North America, 25(1), 

85-101. 

Asaad, W. F., Rainer, G., & Miller, E. K. (2000). Task-specific neural activity in the 

primate prefrontal cortex. Journal of Neurophysiology, 84(1), 451-459. 

Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neurobiological theory of 

automaticity in perceptual categorization. Psychological review, 114(3), 632. 

Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia 

contributions to habit learning and automaticity. Trends in cognitive sciences, 

14(5), 208-215. 

Badre, D., & D'Esposito, M. (2007). Functional magnetic resonance imaging evidence 

for a hierarchical organization of the prefrontal cortex. Journal of cognitive 

neuroscience, 19(12), 2082-2099. 

Badre, D., & Nee, D. E. (2017). Frontal cortex and the hierarchical control of behavior. 

Trends in cognitive sciences. 

Baker, A., Lewin, T. J., Bucci, S., & Loughland, C. (2011). Associations between 

substance use, neuropsychological functioning and treatment response in 

psychosis. Psychiatry research, 186(2), 190-196. 

Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions 

to human working memory. Cortex, 49(5), 1195-1205. 

Bar-Gad, I., & Bergman, H. (2001). Stepping out of the box: information processing in 

the neural networks of the basal ganglia. Current opinion in neurobiology, 

11(6), 689-695. 

Bar-Gad, I., Havazelet-Heimer, G., Goldberg, J.A., Ruppin, E., & Bergman, H. (2000). 

Reinforcement-driven dimensionality reduction--a model for information 



 239 

processing in the basal ganglia. Journal of basic and clinical physiology and 

pharmacology, 11 4, 305-320. 

Barkley, R. A. (Ed.). (2014). Attention-deficit hyperactivity disorder: A handbook for 

diagnosis and treatment. Guilford Publications. 

Bartlet, F. C. (1932). Remembering. A Study in Experimental and Social Psychology. 

Cambridge University Press, Cambridge. 

Barto, A. G. (1995). 1" 1 adaptive critics and the basal ganglia,”. Models of information 

processing in the basal ganglia, 215.  

Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, 

plasticity: emerging concepts in cognitive reserve. Trends in cognitive sciences, 

17(10), 502-509. 

Baston, C., & Ursino, M. (2015). A biologically inspired computational model of basal 

ganglia in action selection. Computational intelligence and neuroscience, 2015, 

93. 

Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring 

clinical anxiety: psychometric properties. Journal of consulting and clinical 

psychology, 56(6), 893. 

Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory-II. San 

Antonio, 78(2), 490-8. 

Beeler, J. A., Daw, N. D., Frazier, C. R., & Zhuang, X. (2010). Tonic dopamine 

modulates exploitation of reward learning. Frontiers in behavioral 

neuroscience, 4, 170. 

Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. The 

Cerebellum, 6(3), 184-192. 

Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental 

parkinsonism by lesions of the subthalamic nucleus. Science,249(4975), 1436-

1438. 

Berns, G. S., & Sejnowski, T. J. (1998). A computational model of how the basal 

ganglia produce sequences. Cognitive Neuroscience, Journal of, 10(1), 108-121. 



 240 

Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of 

reward:‘liking’,‘wanting’, and learning. Current opinion in pharmacology, 9(1), 

65-73. 

Bezard, E., Gross, C. E., & Brotchie, J. M. (2003). Presymptomatic compensation in 

Parkinson's disease is not dopamine-mediated. Trends in Neurosciences, 26(4), 

215-221. 

Bhatia, K. P., & Marsden, C. D. (1994). The behavioural and motor consequences of 

focal lesions of the basal ganglia in man. Brain, 117(4), 859-876. 

Bielak, A. A., Mansueti, L., Strauss, E., & Dixon, R. A. (2006). Performance on the 

Hayling and Brixton tests in older adults: Norms and correlates. Archives of 

Clinical Neuropsychology, 21(2), 141-149. 

Biundo, R., Weis, L., Facchini, S., Formento-Dojot, P., Vallelunga, A., Pilleri, M., & 

Antonini, A. (2014). Cognitive profiling of Parkinson disease patients with mild 

cognitive impairment and dementia. Parkinsonism & related disorders, 20(4), 

394-399. 

Bjursten, L. M., Norrsell, K., & Norrsell, U. (1976). Behavioural repertory of cats 

without cerebral cortex from infancy. Experimental brain research, 25(2), 115-

130. 

Bloch, M. H., & Leckman, J. F. (2009). Clinical course of Tourette syndrome. Journal 

of psychosomatic research, 67(6), 497-501. 

Bogacz, R. (2007). Optimal decision-making theories: linking neurobiology with 

behaviour. Trends in cognitive sciences, 11(3), 118-125. 

Bogacz, R., & Larsen, T. (2011). Integration of reinforcement learning and optimal 

decision-making theories of the basal ganglia. Neural computation, 23(4), 817-

851. 

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of 

optimal decision making: a formal analysis of models of performance in two-

alternative forced-choice tasks. Psychological review, 113(4), 700. 



 241 

Braver, T. S., & Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: 

the gating model. Progress in brain research, 121, 327-349. 

Brimblecombe, K. R., & Cragg, S. J. (2016). The striosome and matrix compartments 

of the striatum: a path through the labyrinth from neurochemistry toward 

function. ACS chemical neuroscience, 8(2), 235-242. 

Bronfeld, M., & Bar-Gad, I. (2011). Loss of specificity in basal ganglia related 

movement disorders. Frontiers in systems neuroscience, 5, 38. 

Brown, L. L., & Sharp, F. R. (1995). Metabolic mapping of rat striatum: somatotopic 

organization of sensorimotor activity. Brain research, 686(2), 207-222. 

Burgess, P. W., & Shallice, T. (1997). The Hayling and Brixton Tests. 

Burke, D. A., Rotstein, H. G., & Alvarez, V. A. (2017). Striatal local circuitry: a new 

framework for lateral inhibition. Neuron, 96(2), 267-284. 

Burton, C. L., Strauss, E., Hultsch, D. F., Moll, A., & Hunter, M. A. (2006). 

Intraindividual variability as a marker of neurological dysfunction: a comparison 

of Alzheimer's disease and Parkinson's disease. Journal of Clinical and 

Experimental Neuropsychology, 28(1), 67-83. 

Buzy, W. M., Medoff, D. R., & Schweitzer, J. B. (2009). Intra-individual variability 

among children with ADHD on a working memory task: an ex-Gaussian 

approach. Child Neuropsychology, 15(5), 441-459. 

Cahn-Weiner, D., Malloy, P., Boyle, P.,Marran, M., & Salloway, S. (2000). Prediction 

of functional status from neuropsychological tests in community-dwelling 

elderly individuals. Clinical Neuropsychology, 14, 187–195. 

Caltagirone, C., Carlesimo, A., Nocentini, U., & Vicari, S. (1989). Defective concept 

formation in parkinsonians is independent from mental deterioration.Journal of 

Neurology, Neurosurgery & Psychiatry, 52(3), 334-337. 

Carriere, J. S., Cheyne, J. A., & Smilek, D. (2008). Everyday attention lapses and 

memory failures: The affective consequences of mindlessness. Consciousness 

and cognition, 17(3), 835-847. 



 242 

Caso, A. & Cooper, R. P. (2017). A Model of Cognitive Control in the Wisconsin Card 

Sorting Test: Integrating Schema Theory and Basal Ganglia Function. In G. 

Gunzelmann, A. Howes, T. Tenbrink, & E. J. Davelaar (Eds.). Proceedings of 

the 39th Annual Conference of the Cognitive Science Society. Austin, TX: 

Cognitive Science Society. pp. 210-215. 

Cassimatis, N. L., Bello, P., & Langley, P. (2008). Ability, Breadth, and Parsimony in 

Computational Models of Higher Order Cognition. Cognitive Science, 32(8), 

1304-1322. 

Cham, R., Studenski, S. A., Perera, S., & Bohnen, N. I. (2008). Striatal dopaminergic 

denervation and gait in healthy adults. Experimental Brain Research, 185(3), 

391-398. 

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & 

Smith, E. E. (1997). Temporal dynamics of brain activation during a working 

memory task. Nature, 386(6625), 604. 

Collins, P., Roberts, A. C., Dias, R., Everitt, B. J., & Robbins, T. W. (1998). 

Perseveration and strategy in a novel spatial self-ordered sequencing task for 

nonhuman primates: effects of excitotoxic lesions and dopamine depletions of 

the prefrontal cortex. Journal of cognitive neuroscience, 10(3), 332-354. 

Comfrey, A. L., & Lee, H. B. A first course in factor analysis . 1992. 

Compton, R. J., Banich, M. T., Mohanty, A., Milham, M. P., Herrington, J., Miller, G. 

A., ... & Heller, W. (2003). Paying attention to emotion. Cognitive, Affective, & 

Behavioral Neuroscience, 3(2), 81-96. 

Cools, R., & D'Esposito, M. (2011). Inverted-U–shaped dopamine actions on human 

working memory and cognitive control. Biological psychiatry, 69(12), e113-

e125. 

Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Enhanced or 

impaired cognitive function in Parkinson's disease as a function of dopaminergic 

medication and task demands. Cerebral cortex, 11(12), 1136-1143. 

Cools, R., Frank, M. J., Gibbs, S. E., Miyakawa, A., Jagust, W., & D'Esposito, M. 

(2009). Striatal dopamine predicts outcome-specific reversal learning and its 



 243 

sensitivity to dopaminergic drug administration. Journal of Neuroscience, 29(5), 

1538-1543. 

Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007). Impulsive personality 

predicts dopamine-dependent changes in frontostriatal activity during 

component processes of working memory. Journal of Neuroscience, 27(20), 

5506-5514. 

Cools, R., Stefanova, E., Barker, R. A., Robbins, T. W., & Owen, A. M. (2002). 

Dopaminergic modulation of high‐level cognition in Parkinson’s disease: the 

role of the prefrontal cortex revealed by PET. Brain, 125(3), 584-594. 

Cooper, R. P., & Guest, O. (2014). Implementations are not specifications: 

Specification, replication and experimentation in computational cognitive 

modeling. Cognitive Systems Research, 27, 42-49. 

Cooper, R. P., & Peebles, D. (2015). Beyond single‐level accounts: The role of 

cognitive architectures in cognitive scientific explanation. Topics in cognitive 

science, 7(2), 243-258. 

Cooper, R. P., & Shallice, T. (2000). Contention scheduling and the control of routine 

activities. Cognitive Neuropsychology, 17(4), 297-338. 

Cooper, R. P., Wutke, K., & Davelaar, E. J. (2012). Differential contributions of set-

shifting and monitoring to dual-task interference. Quarterly Journal of 

Experimental Psychology, 65(3), 587-612. 

Crawford, S., & Channon, S. (2002). Dissociation between performance on abstract 

tests of executive function and problem solving in real-life-type situations in 

normal aging. Aging & mental health, 6(1), 12-21. 

Crofts, H. S., Dalley, J. W., Collins, P., Van Denderen, J. C. M., Everitt, B. J., Robbins, 

T. W., & Roberts, A. C. (2001). Differential effects of 6-OHDA lesions of the 

frontal cortex and caudate nucleus on the ability to acquire an attentional set. 

Cerebral Cortex, 11(11), 1015-1026. 

Cummings, D. M., Alaghband, Y., Hickey, M. A., Joshi, P. R., Hong, S. C., Zhu, C., ... 

& Levine, M. S. (2011). A critical window of CAG repeat-length correlates with 



 244 

phenotype severity in the R6/2 mouse model of Huntington's disease. Journal of 

neurophysiology, 107(2), 677-691. 

Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during 

working memory. Trends in cognitive sciences, 7(9), 415-423. 

Davelaar, E. J. (2011). Processes versus representations: cognitive control as emergent, 

yet componential. Topics in cognitive science, 3(2), 247-252. 

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience (Vol. 806). Cambridge, 

MA: MIT Press. 

Deep-Brain Stimulation for Parkinson's Disease Study Group. (2001). Deep-brain 

stimulation of the subthalamic nucleus or the pars interna of the globus pallidus 

in Parkinson's disease. The New England journal of medicine, 345(13), 956. 

DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. 

Trends in neurosciences, 13(7), 281-285. 

Dezfouli, A., & Balleine, B. W. (2013). Actions, action sequences and habits: evidence 

that goal-directed and habitual action control are hierarchically organized. PLoS 

Comput Biol, 9(12), e1003364. 

Ditterich, J. (2006). Evidence for time‐variant decision making. European Journal of 

Neuroscience, 24(12), 3628-3641. 

Dixon, R. A., Garrett, D. D., & Bäckman, L. (2008). Principles of compensation in 

cognitive neuroscience and neurorehabilitation. In D. T. Stuss, G. Winocur, & I. 

H. Robertson (Eds.), Cognitive neurorehabilitation: Evidence and application 

(pp. 22-38). New York, NY, US: Cambridge University Press. 

Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and 

the cerebral cortex?. Neural networks, 12(7), 961-974. 

Dragalin, V. P., Tartakovsky, A. G., & Veeravalli, V. V. (1999). Multihypothesis 

sequential probability ratio tests. I. Asymptotic optimality. IEEE Transactions 

on Information Theory, 45(7), 2448-2461. 



 245 

Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models 

of working memory. Nature neuroscience, 3(11s), 1184. 

Durston, S., van Belle, J., & de Zeeuw, P. (2011). Differentiating frontostriatal and 

fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biological 

psychiatry, 69(12), 1178-1184. 

Erhardt, D., Epstein, J. N., Conners, C. K., Parker, J. D. A., & Sitarenios, G. (1999). 

Self-ratings of ADHD symptomas in auts II: Reliability, validity, and diagnostic 

sensitivity. Journal of Attention Disorders, 3(3), 153-158. 

Ersche, K. D., Turton, A. J., Pradhan, S., Bullmore, E. T., & Robbins, T. W. (2010). 

Drug addiction endophenotypes: impulsive versus sensation-seeking personality 

traits. Biological psychiatry, 68(8), 770-773. 

Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving 

emotional conflict: a role for the rostral anterior cingulate cortex in modulating 

activity in the amygdala. Neuron, 51(6), 871-882. 

Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146(4), 348-361. 

Faraone, S. V., Spencer, T., Aleardi, M., Pagano, C., & Biederman, J. (2004). Meta-

analysis of the efficacy of methylphenidate for treating adult attention-

deficit/hyperactivity disorder. Journal of clinical psychopharmacology, 24(1), 

24-29. 

Féger, J., Robledo, P., & Renwart, N. (1991). The subthalamic nucleus: new data, new 

questions. In The basal ganglia III (pp. 99-108). Springer, Boston, MA. 

Feigin, A., Ghilardi, M. F., Huang, C., Ma, Y., Carbon, M., Guttman, M., ... & 

Eidelberg, D. (2006). Preclinical Huntington's disease: compensatory brain 

responses during learning. Annals of neurology, 59(1), 53-59. 

Fiebach, C. J., & Schubotz, R. I. (2006). Dynamic anticipatory processing of 

hierarchical sequential events: a common role for Broca's area and ventral 

premotor cortex across domains? Cortex, 42(4), 499-502. 



 246 

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling 

models in cognitive neuroscience: Advantages, applications, and 

extensions. Annual review of psychology, 67, 641-666. 

Forstmann, B. U., Wagenmakers, E. J., Eichele, T., Brown, S., & Serences, J. T. (2011). 

Reciprocal relations between cognitive neuroscience and formal cognitive 

models: opposites attract?. Trends in cognitive sciences, 15(6), 272-279. 

Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex 

and basal ganglia in working memory: a computational model. Cognitive, 

Affective, & Behavioral Neuroscience, 1(2), 137-160. 

Frank, M. J., Seeberger, L. C., & O'Reilly, R. C. (2004). By carrot or by stick: cognitive 

reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943. 

Frazier, T. W., Demaree, H. A., & Youngstrom, E. A. (2004). Meta-analysis of 

intellectual and neuropsychological test performance in attention-

deficit/hyperactivity disorder. Neuropsychology, 18(3), 543. 

Funderud, I., Løvstad, M., Lindgren, M., Endestad, T., Due-Tønnessen, P., Meling, T. 

R., ... & Solbakk, A. K. (2013). Preparatory attention after lesions to the lateral 

or orbital prefrontal cortex–an event-related potentials study. Brain research, 

1527, 174-188. 

Fydrich, T., Dowdall, D., & Chambless, D. L. (1992). Reliability and validity of the 

Beck Anxiety Inventory. Journal of anxiety disorders, 6(1), 55-61. 

Gambin, M., & Święcicka, M. (2015). Relationships of self-efficacy beliefs to executive 

functions, hyperactivity-impulsivity and inattention in school-aged 

children. Polish Journal of Applied Psychology, 13(1), 33-42. 

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., & Brea, J. (2018). Eligibility 

traces and plasticity on behavioral time scales: experimental support of 

neohebbian three-factor learning rules. Frontiers in neural circuits, 12. 

Gibbons, J. D., & Fielden, J. D. G. (1993). Nonparametric measures of association (No. 

91). Sage. 



 247 

Gibbs, S. E., & D'Esposito, M. (2005). A functional MRI study of the effects of 

bromocriptine, a dopamine receptor agonist, on component processes of working 

memory. Psychopharmacology, 180(4), 1-10. 

Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about 

sensory stimuli. Trends in cognitive sciences, 5(1), 10-16. 

Goldman-Rakic, P. S., Muly III, E. C., & Williams, G. V. (2000). D 1 receptors in 

prefrontal cells and circuits. Brain Research Reviews, 31(2), 295-301. 

Gonzalez, F. M., Prescott, T. J., Gurney, K., Humphries, M., & Redgrave, P. (2000). An 

embodied model of action selection mechanisms in the vertebrate brain. From 

animals to animats, 6, 157-166. 

Grillner, S., & Robertson, B. (2016). The basal ganglia over 500 million years. Current 

Biology, 26(20), R1088-R1100. 

Guest, O., Caso, A., & Cooper, R. (2019). On Simulating Neural Damage in 

Connectionist Networks. Manuscript submitted for publication. 

Gurney, K., Prescott, T. J., & Redgrave, P. (2001a). A computational model of action 

selection in the basal ganglia. I. A new functional anatomy. Biological 

cybernetics, 84(6), 401-410. 

Gurney, K., Prescott, T. J., & Redgrave, P. (2001b). A computational model of action 

selection in the basal ganglia. II. Analysis and simulation of behaviour. 

Biological Cybernetics, 84(6), 411-423. 

Hall, H., Sedvall, G., Magnusson, O., Kopp, J., Halldin, C., & Farde, L. (1994). 

Distribution of D1-and D2-dopamine receptors, and dopamine and its 

metabolites in the human brain. Neuropsychopharmacology, 11(4), 245-256. 

Hamid, A. A., Pettibone, J. R., Mabrouk, O. S., Hetrick, V. L., Schmidt, R., Vander 

Weele, C. M., ... & Berke, J. D. (2016). Mesolimbic dopamine signals the value 

of work. Nature neuroscience, 19(1), 117. 

Hart, H., Radua, J., Mataix-Cols, D., & Rubia, K. (2012). Meta-analysis of fMRI 

studies of timing in attention-deficit hyperactivity disorder (ADHD). 

Neuroscience & Biobehavioral Reviews, 36(10), 2248-2256. 



 248 

Hastie, T., Tibshirani, R.,, Friedman, J. (2001). The Elements of Statistical Learning. 

New York, NY, USA: Springer New York Inc.. 

Heaton, R. K. (1981). A manual for the Wisconsin Card Sorting Test. Western 

Psychological Services. 

Held, L., & Ott, M. (2018). On p-values and Bayes factors. Annual Review of Statistics 

and Its Application, 5, 393-419. 

Hervey, A. S., Epstein, J. N., Curry, J. F., Tonev, S., Eugene Arnold, L., Keith Conners, 

C., ... & Hechtman, L. (2006). Reaction time distribution analysis of 

neuropsychological performance in an ADHD sample. Child Neuropsychology, 

12(2), 125-140. 

Hughes, C., & Graham, A. (2002). Measuring executive functions in childhood: 

Problems and solutions. Child and Adolescent Mental Health, 7, 131–142. 

Humphries, M. D., Gurney, K., & Prescott, T. J. (2007). Is there a brainstem substrate 

for action selection?. Philosophical Transactions of the Royal Society of London 

B: Biological Sciences, 362(1485), 1627-1639. 

Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible 

model of action selection and oscillatory activity in the basal ganglia. The 

Journal of neuroscience, 26(50), 12921-12942. 

Jaeger, D. Kita, H. & Wilson, C. J. (1994). Surround inhibition among projection 

neurons is weak or nonexistent in the rat neostriatum. Journal of 

neurophysiology, 72(5), 2555-2558. 

Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing 

and reporting Bayes factors. The Journal of Problem Solving, 7(1), 2. 

Jeffreys, H. (1961). Theory of probability (3rd Ed.). Oxford. UK: Oxford University 

Press. 

Joel, D., & Weiner, I. (1994). The organization of the basal ganglia-thalamocortical 

circuits: open interconnected rather than closed segregated. Neuroscience, 63(2), 

363-379. 



 249 

Joel, D., Niv, Y., & Ruppin, E. (2002). Actor–critic models of the basal ganglia: New 

anatomical and computational perspectives. Neural networks, 15(4-6), 535-547. 

Kass, R.E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical 

Association 90 (430), 773-795  

Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and 

clinical heterogeneity of cognitive impairment and dementia in patients with 

Parkinson's disease. The Lancet Neurology, 9(12), 1200-1213. 

Kemp, J. M., & Powell, T. P. S. (1971). The connexions of the striatum and globus 

pallidus: synthesis and speculation. Phil. Trans. R. Soc. Lond. B, 262(845), 441-

457. 

Kilmer, W. L., McCulloch, W. S., & Blum, J. (1969). A model of the vertebrate central 

command system. International Journal of Man-Machine Studies, 1(3), 279-

309. 

Kimberg, D. Y., D'esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on 

human subjects depend on working memory capacity. Neuroreport, 8(16), 3581-

3585. 

Koechlin, E. (2014). An evolutionary computational theory of prefrontal executive 

function in decision-making. Phil. Trans. R. Soc. B, 369(1655), 20130474. 

Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. 

M., & Kolomeyer, E. G. (2013). Reaction time variability in ADHD: a meta-

analytic review of 319 studies. Clinical psychology review, 33(6), 795-811. 

Kudlicka, A., Clare, L., & Hindle, J. V. (2011). Executive functions in Parkinson's 

disease: Systematic review and meta‐analysis. Movement disorders, 26(13), 

2305-2315. 

Kuelz, A. K., Hohagen, F., & Voderholzer, U. (2004). Neuropsychological performance 

in obsessive-compulsive disorder: a critical review. Biological psychology, 

65(3), 185-236. 



 250 

Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian 

and other probability functions to a distribution of response times. Tutorials in 

quantitative methods for psychology, 4(1), 35-45. 

Lane, P. C., & Gobet, F. (2003). Developing reproducible and comprehensible 

computational models. Artificial Intelligence, 144(1-2), 251-263. 

Langbehn, D. R., Hayden, M. R., Paulsen, J. S., & PREDICT‐HD Investigators of the 

Huntington Study Group. (2010). CAG‐repeat length and the age of onset in 

Huntington disease (HD): a review and validation study of statistical 

approaches. American Journal of Medical Genetics Part B: Neuropsychiatric 

Genetics, 153(2), 397-408. 

Langbehn, D. R., Paulsen, J. S., & Huntington Study Group. (2007). Predictors of 

diagnosis in Huntington disease. Neurology, 68(20), 1710-1717. 

Laplane, D., Levasseur, M., Pillon, B., Dubois, B., Baulac, M., Mazoyer, B., ... & 

Baron, J. C. (1989). Obsessive-compulsive and other behavioural changes with 

bilateral basal ganglia lesions: a neuropsychological, magnetic resonance 

imaging and positron tomography study. Brain, 112(3), 699-725.  

Leh, S. E., Petrides, M., & Strafella, A. P. (2010). The neural circuitry of executive 

functions in healthy subjects and Parkinson's disease. 

Neuropsychopharmacology, 35(1), 70. 

Lehéricy, S., Benali, H., Van de Moortele, P. F., Pélégrini-Issac, M., Waechter, T., 

Ugurbil, K., & Doyon, J. (2005). Distinct basal ganglia territories are engaged in 

early and advanced motor sequence learning.Proceedings of the National 

Academy of Sciences of the United States of America, 102(35), 12566-12571. 

Li, K., Furr-Stimming, E., Paulsen, J. S., & Luo, S. (2017). Dynamic prediction of 

motor diagnosis in Huntington’s disease using a joint modeling approach. 

Journal of Huntington's disease, 6(2), 127-137. 

Li, S. C., & Sikström, S. (2002). Integrative neurocomputational perspectives on 

cognitive aging, neuromodulation, and representation. Neuroscience & 

Biobehavioral Reviews, 26(7), 795-808. 



 251 

Li, S. C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: from 

neuromodulation to representation. Trends in cognitive sciences, 5(11), 479-486. 

Lombroso, P. J., & Scahill, L. (2008). Tourette syndrome and obsessive–compulsive 

disorder. Brain and Development, 30(4), 231-237. 

Marco, R., Miranda, A., Schlotz, W., Melia, A., Mulligan, A., Müller, U., ... & Medad, 

S. (2009). Delay and reward choice in ADHD: an experimental test of the role of 

delay aversion. Neuropsychology, 23(3), 367. 

Marr, D. (1982). Vision: A computational investigation into the human representation 

and processing of visual information, Henry holt and co. Inc., New York, NY, 

2(4.2). 

Marsili, L., Rizzo, G., & Colosimo, C. (2018). Diagnostic Criteria for Parkinson’s 

Disease: From James Parkinson to the Concept of Prodromal Disease. Frontiers 

in neurology, 9, 156. 

Martino, D., Madhusudan, N., Zis, P., & Cavanna, A. E. (2013). An introduction to the 

clinical phenomenology of Tourette syndrome. In International review of 

neurobiology (Vol. 112, pp. 1-33). Academic Press. 

Mataix-Cols, D., Wooderson, S., Lawrence, N., Brammer, M. J., Speckens, A., & 

Phillips, M. L. (2004). Distinct neural correlates of washing, checking, and 

hoarding symptomdimensions in obsessive-compulsive disorder. Archives of 

general psychiatry, 61(6), 564-576. 

Matsui, H., Nishinaka, K., Oda, M., Niikawa, H., Komatsu, K., Kubori, T., & Udaka, F. 

(2007). Wisconsin Card Sorting Test in Parkinson's disease: diffusion tensor 

imaging. Acta Neurologica Scandinavica, 116(2), 108-112. 

Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-

Gaussian and shifted Wald parameters: A diffusion model analysis. 

Psychonomic bulletin & review, 16(5), 798-817. 

McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V., & Redgrave, P. (2005). 

Subcortical loops through the basal ganglia. Trends in neurosciences, 28(8), 

401-407. 



 252 

Melloni, M., Urbistondo, C., Sedeño, L., Gelormini, C., Kichic, R., & Ibanez, A. 

(2012). The extended fronto-striatal model of obsessive compulsive disorder: 

convergence from event-related potentials, neuropsychology and neuroimaging. 

Frontiers in human neuroscience, 6, 259. 

Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and 

cognitive circuits. Brain research reviews, 31(2), 236-250. 

Miller, E. K. (2000). The prefontral cortex and cognitive control. Nature reviews 

neuroscience, 1(1), 59-65. 

Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. 

Current opinion in neurobiology, 23(2), 216-222. 

Miller, R., & Wickens, J. R. (1991). Corticostriatal cell assemblies in selective attention 

and in representation of predictable and controllable events. Concepts in 

Neuroscience, 2(1), 65-95. 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. 

D. (2000). The unity and diversity of executive functions and their contributions 

to complex “frontal lobe” tasks: A latent variable analysis. Cognitive 

psychology, 41(1), 49-100. 

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic 

dopamine systems based on predictive Hebbian learning.The Journal of 

neuroscience, 16(5), 1936-1947. 

Mooney, C. F., Mooney, C. L., Mooney, C. Z., Duval, R. D., & Duvall, R. 

(1993). Bootstrapping: A nonparametric approach to statistical inference (No. 

95). Sage. 

Morén, J., & Balkenius, C. (2000). A computational model of emotional learning in the 

amygdala. From animals to animats, 6, 115-124. 

Morris, G., Nevet, A., & Bergman, H. (2003). Anatomical funneling, sparse 

connectivity and redundancy reduction in the neural networks of the basal 

ganglia. Journal of Physiology-Paris, 97(4-6), 581-589. 



 253 

Mostert, J. C., Onnink, A. M. H., Klein, M., Dammers, J., Harneit, A., Schulten, T., ... 

& Franke, B. (2015). Cognitive heterogeneity in adult attention 

deficit/hyperactivity disorder: a systematic analysis of neuropsychological 

measurements. European Neuropsychopharmacology, 25(11), 2062-2074. 

Mulder, M. J., Bos, D., Weusten, J. M., van Belle, J., van Dijk, S. C., Simen, P., ... & 

Durston, S. (2010). Basic impairments in regulating the speed-accuracy tradeoff 

predict symptoms of attention-deficit/hyperactivity disorder. Biological 

psychiatry, 68(12), 1114-1119. 

Mullane, J. C., & Corkum, P. V. (2007). The relationship between working memory, 

inhibition, and performance on the Wisconsin Card Sorting Test in children with 

and without ADHD. Journal of Psychoeducational Assessment, 25(3), 211-221. 

Muris, P. (2002). Relationships between self-efficacy and symptoms of anxiety 

disorders and depression in a normal adolescent sample. Personality and 

individual differences, 32(2), 337-348. 

Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., ... 

& Fletcher, P. C. (2008). Substantia nigra/ventral tegmental reward prediction 

error disruption in psychosis. Molecular psychiatry, 13(3), 267. 

Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–

subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience research, 43(2), 111-

117. 

Nana, A. L., Kim, E. H., Thu, D. C., Oorschot, D. E., Tippett, L. J., Hogg, V. M., ... & 

Faull, R. L. (2014). Widespread heterogeneous neuronal loss across the cerebral 

cortex in Huntington's disease. Journal of Huntington's disease, 3(1), 45-64. 

Nathan, J., Wilkinson, D., Stammers, S., & Low, L. (2001). The role of tests of frontal 

executive function in the detection of mild dementia. International Journal of 

Geriatric Psychiatry, 16, 18–26. 

Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. 

Cortex, 12(4), 313-324. 

Nigg, J. T. (2001). Is ADHD a disinhibitory disorder? Psychological bulletin, 127(5), 

571–598. 



 254 

Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: opportunity costs 

and the control of response vigor. Psychopharmacology, 191(3), 507-520. 

Norman, D. A., & Shallice, T. (1980). Attention to action: Willed and automatic control 

of behavior (UCSD CHIP Report No. 99). 

Norman, D. A., & Shallice, T. (1986). Attention to action. In Consciousness and self-

regulation (pp. 1-18). Springer US. 

Northway, M. L. (1940). The Concept of the Schema. Part II. British Journal of 

Psychology, 31(1), 22. 

Nutt, J. G., Carter, J. H., Van Houten, L., & Woodward, W. R. (1997). Short‐and long‐

duration responses to levodopa during the first year of levodopa therapy. Annals 

of neurology, 42(3), 349-355. 

Ohyama, T., Nores, W. L., Murphy, M., & Mauk, M. D. (2003). What the cerebellum 

computes. Trends in neurosciences, 26(4), 222-227. 

Oorschot, D. E. (1996). Total number of neurons in the neostriatal, pallidal, 

subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological 

study using the cavalieri and optical disector methods. Journal of Comparative 

Neurology, 366(4), 580-599. 

O'Reilly, R. C. (1998). Six principles for biologically based computational models of 

cortical cognition. Trends in cognitive sciences, 2(11), 455-462. 

O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational 

model of learning in the prefrontal cortex and basal ganglia. Neural 

computation, 18(2), 283-328. 

O'Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive 

neuroscience: Understanding the mind by simulating the brain. MIT press. 

Otani, S., Daniel, H., Roisin, M. P., & Crepel, F. (2003). Dopaminergic modulation of 

long-term synaptic plasticity in rat prefrontal neurons. Cerebral cortex, 13(11), 

1251-1256. 



 255 

Otmakhova, N. A., & Lisman, J. E. (1996). D1/D5 dopamine receptor activation 

increases the magnitude of early long-term potentiation at CA1 hippocampal 

synapses. Journal of Neuroscience, 16(23), 7478-7486. 

Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. A., 

... & Robbins, T. W. (1992). Fronto-striatal cognitive deficits at different stages 

of Parkinson's disease. Brain, 115(6), 1727-1751. 

Paolo, A. M., Tröster, A. I., Blackwell, K. T., Koller, W. C., & Axelrod, B. N. (1996). 

Utility of a Wisconsin Card Sorting Test short form in persons with Alzheimer's 

and 

Pariyadath, V., Plitt, M. H., Churchill, S. J., & Eagleman, D. M. (2012). Why 

overlearned sequences are special: distinct neural networks for ordinal 

sequences. Frontiers in human neuroscience, 6, 328. 

Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 18 (6), 

892-897. 

Parvizi, J. (2009). Corticocentric myopia: old bias in new cognitive sciences. Trends in 

cognitive sciences, 13(8), 354-359. 

Pearl, J. (1999). Simpson's Paradox: An Anatomy. UCLA Cognitive Systems 

Laboratory, Technical Report. 

Pennartz, C. M. (1995). The ascending neuromodulatory systems in learning by 

reinforcement: comparing computational conjectures with experimental 

findings. Brain Research Reviews, 21(3), 219-245. 

Pitt, M. A., & Myung, I. J. (2002). When a good fit can be bad. Trends in cognitive 

sciences, 6(10), 421-425. 

Poile, C., & Safayeni, F. (2016). Using computational modeling for building theory: A 

double edged sword. Journal of Artificial Societies and Social Simulation, 19(3). 

Poston, K. L., YorkWilliams, S., Zhang, K., Cai, W., Everling, D., Tayim, F. M., & 

Menon, V. (2016). Compensatory neural mechanisms in cognitively unimpaired 

P arkinson disease. Annals of neurology, 79(3), 448-463. 



 256 

Postuma, R. B., Aarsland, D., Barone, P., Burn, D. J., Hawkes, C. H., Oertel, W., & 

Ziemssen, T. (2012). Identifying prodromal Parkinson's disease: pre‐motor 

disorders in Parkinson's disease. Movement Disorders, 27(5), 617-626. 

Prescott, T. J., González, F. M. M., Gurney, K., Humphries, M. D., & Redgrave, P. 

(2006). A robot model of the basal ganglia: behavior and intrinsic processing. 

Neural Networks, 19(1), 31-61. 

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., McNamara, 

J. O., & White, L. E. Neuroscience, 2008. De Boeck, Sinauer, Sunderland, 

Mass. 

Rahman, S., Griffin, H. J., Quinn, N. P., & Jahanshahi, M. (2008). The factors that 

induce or overcome freezing of gait in Parkinson’s disease. Behavioural 

neurology, 19(3), 127-136. 

Ramakrishnan, A., Byun, Y. W., Rand, K., Pedersen, C. E., Lebedev, M. A., & 

Nicolelis, M. A. (2017). Cortical neurons multiplex reward-related signals along 

with sensory and motor information. Proceedings of the National Academy of 

Sciences, 114(24), E4841-E4850. 

Redgrave, P., Coizet, V., Comoli, E., McHaffie, J. G., Leriche Vazquez, M., Vautrelle, 

N., & Overton, P. G. (2010). Interactions between the midbrain superior 

colliculus and the basal ganglia. Frontiers in neuroanatomy, 4, 132. 

Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: a vertebrate 

solution to the selection problem?. Neuroscience, 89(4), 1009-1023. 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: 

Variations in the effectiveness of reinforcement and nonreinforcement. Classical 

conditioning II: Current research and theory, 2, 64-99. 

Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the 

compensation hypothesis. Current directions in psychological science, 17(3), 

177-182. 

Rhodes, S. M., Coghill, D. R., & Matthews, K. (2005). Neuropsychological functioning 

in stimulant-naive boys with hyperkinetic disorder. Psychological Medicine, 

35(8), 1109-1120. 



 257 

Robbins, T. W., & Cools, R. (2014). Cognitive deficits in Parkinson's disease: a 

cognitive neuroscience perspective. Movement Disorders, 29(5), 597-607. 

Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). 

Neurocognitive endophenotypes of impulsivity and compulsivity: towards 

dimensional psychiatry. Trends in cognitive sciences, 16(1), 81-91. 

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory 

testing. Psychological review, 107(2), 358. 

Robertson I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). Oops!: 

Performance correlates of everyday attentional failures in traumatic brain injured 

and normal subjects. Neuropsychologia, 35, 747– 758. 

Robertson, I. H., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1994). The test of 

everyday attention (TEA). Bury St Edmunds: Thames Valley Test Company. 

Rodgers, J. L., & Rowe, D. C. (2002). Theory development should begin (but not end) 

with good empirical fits: A comment on Roberts and Pashler (2000). 

Romine, C. B., Lee, D., Wolfe, M. E., Homack, S., George, C., & Riccio, C. A. (2004). 

Wisconsin Card Sorting Test with children: a meta-analytic study of sensitivity 

and specificity. Archives of Clinical Neuropsychology, 19(8), 1027-1041. 

Rorden, C., & Karnath, H. O. (2004). Using human brain lesions to infer function: a 

relic from a past era in the fMRI age? Nature Reviews Neuroscience, 5(10), 812. 

Rosas, H. D., Reuter, M., Doros, G., Lee, S. Y., Triggs, T., Malarick, K., & Hersch, S. 

M. (2011). A tale of two factors: what determines the rate of progression in 

Huntington's disease? A longitudinal MRI study. Movement Disorders, 26(9), 

1691-1697. 

Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome Jr, E. D., & Beck, L. H. (1956). A 

continuous performance test of brain damage. Journal of consulting psychology, 

20(5), 343. 

Salamone, J. D., Correa, M., Mingote, S. M., & Weber, S. M. (2005). Beyond the 

reward hypothesis: alternative functions of nucleus accumbens dopamine. 

Current opinion in pharmacology, 5(1), 34-41. 



 258 

Salomone, S., Fleming, G. R., Bramham, J., O’Connell, R. G., & Robertson, I. H. 

(2016). Neuropsychological deficits in adult ADHD: evidence for differential 

attentional impairments, deficient executive functions, and high self-reported 

functional impairments. Journal of attention disorders, 1087054715623045. 

Salthouse, T. (2012). Consequences of age-related cognitive declines. Annual review of 

psychology, 63, 201-226. 

Sano, H., Yasoshima, Y., Matsushita, N., Kaneko, T., Kohno, K., Pastan, I., & 

Kobayashi, K. (2003). Conditional ablation of striatal neuronal types containing 

dopamine D2 receptor disturbs coordination of basal ganglia function. The 

Journal of neuroscience, 23(27), 9078-9088. 

Saxena, S., Brody, A. L., Schwartz, J. M., & Baxter, L. R. (1998). Neuroimaging and 

frontal-subcortical circuitry in obsessive-compulsive disorder. The British 

Journal of Psychiatry, 173(S35), 26-37. 

Scheres, A., Tontsch, C., Thoeny, A. L., & Kaczkurkin, A. (2010). Temporal reward 

discounting in attention-deficit/hyperactivity disorder: the contribution of 

symptom domains, reward magnitude, and session length. Biological psychiatry, 

67(7), 641-648. 

Schmidt, R. A. (1976). The schema as a solution to some persistent problems in motor 

learning theory. Motor control: Issues and trends, 41-65. 

Schroll, H., & Hamker, F. H. (2013). Computational models of basal-ganglia pathway 

functions: focus on functional neuroanatomy. Frontiers in systems neuroscience, 

7, 122. 

van Schouwenburg, M., Aarts, E., & Cools, R. (2010). Dopaminergic modulation of 

cognitive control: distinct roles for the prefrontal cortex and the basal ganglia. 

Current pharmaceutical design, 16(18), 2026-2032. 

Schultz, W. (1997). Dopamine neurons and their role in reward mechanisms. Current 

opinion in neurobiology, 7(2), 191-197. 

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of 

neurophysiology, 80(1), 1-27. 



 259 

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241-263. 

Schultz, W. (2016). Dopamine reward prediction-error signalling: a two-component 

response. Nature Reviews Neuroscience, 17(3), 183. 

Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine 

neurons to reward and conditioned stimuli during successive steps of learning a 

delayed response task. Journal of neuroscience, 13(3), 900-913 

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and 

reward. Science, 275(5306), 1593-1599. 

Schultz, W., Preuschoff, K., Camerer, C., Hsu, M., Fiorillo, C. D., Tobler, P. N., & 

Bossaerts, P. (2008). Explicit neural signals reflecting reward uncertainty. 

Philosophical Transactions of the Royal Society of London B: Biological 

Sciences, 363(1511), 3801-3811. 

Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of 

dopamine modulation in the prefrontal cortex. Progress in neurobiology, 74(1), 

1-58. 

Sergeant, J. A., Geurts, H., Huijbregts, S., Scheres, A., & Oosterlaan, J. (2003). The top 

and the bottom of ADHD: a neuropsychological perspective. Neuroscience & 

Biobehavioral Reviews, 27(7), 583-592. 

Shallice, T. (1982). Specific impairments of planning. Phil. Trans. R. Soc. Lond. B, 

298(1089), 199-209. 

Shallice, T. (2002). Fractionation of the supervisory system. Principles of frontal lobe 

function, 261-277. 

Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal 

lobe damage in man. Brain, 114(2), 727-741. 

Shallice, T., Stuss, D. T., Picton, T. W., Alexander, M. P., & Gillingham, S. (2008). 

Mapping task switching in frontal cortex through neuropsychological group 

studies. Frontiers in Neuroscience, 2, 13. 

Shannon, C. E., & Weaver, W. (1948). A mathematical theory of communication. Bell 

system technical journal, 27(3), 379-423. 



 260 

Shine, J., Moustafa, A. A., Matar, E., Frank, M. J., & Lewis, S. J. (2013). The role of 

frontostriatal impairment in freezing of gait in Parkinson's disease. Frontiers in 

systems neuroscience, 7, 61. 

Smilek, D., Carriere, J. S., & Cheyne, J. A. (2010). Failures of sustained attention in 

life, lab, and brain: ecological validity of the SART. Neuropsychologia, 48(9), 

2564-2570. 

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. 

Trends in neurosciences, 27(3), 161-168. 

Sonuga-Barke, E., Bitsakou, P., & Thompson, M. (2010). Beyond the dual pathway 

model: evidence for the dissociation of timing, inhibitory, and delay-related 

impairments in attention-deficit/hyperactivity disorder. Journal of the American 

Academy of Child & Adolescent Psychiatry, 49(4), 345-355. 

Stafford, T. (2012). How do we use computational models of cognitive processes?. In 

Connectionist Models Of Neurocognition And Emergent Behavior: From Theory 

to Applications (pp. 326-342). 

Stafford, T., & Gurney, K. N. (2007). Biologically constrained action selection 

improves cognitive control in a model of the Stroop task. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 362(1485), 1671-

1684. 

Stewart, T. C. (2005). Notes for the Development of a Philosophy of Computational 

Modelling. Carleton University Cognitive Science, Tech. Rep. 

Stocco, A. (2018). A Biologically Plausible Action Selection System for Cognitive 

Architectures: Implications of Basal Ganglia Anatomy for Learning and 

Decision‐Making Models. Cognitive science, 42(2), 457-490. 

Stolyarova, A. (2018). Solving the Credit Assignment Problem With the Prefrontal 

Cortex. Frontiers in neuroscience, 12, 182. 

Stone, S. P., Patel, P., Greenwood, R. J., & Halligan, P. W. (1992). Measuring visual 

neglect in acute stroke and predicting its recovery: the visual neglect recovery 

index. Journal of Neurology, Neurosurgery & Psychiatry, 55(6), 431-436. 



 261 

Stout, J. C., Paulsen, J. S., Queller, S., Solomon, A. C., Whitlock, K. B., Campbell, J. 

C., & Johnson, S. A. (2011). Neurocognitive signs in prodromal Huntington 

disease. Neuropsychology, 25(1), 1. 

Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., ... & 

Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with 

focal frontal and posterior brain damage: effects of lesion location and test 

structure on separable cognitive processes. Neuropsychologia, 38(4), 388-402. 

Suryanarayana, S. M., Robertson, B., Wallén, P., & Grillner, S. (2017). The lamprey 

pallium provides a blueprint of the mammalian layered cortex. Current Biology, 

27(21), 3264-3277. 

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135). 

Cambridge: MIT Press. 

Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & 

Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients 

with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse 

effects of dopaminergic medication. Neuropsychologia, 38(5), 596-612. 

Szepesvari, C. (2010). Algorithms for reinforcement learning (synthesis lectures on 

artificial intelligence and machine learning). Morgan and Claypool. 

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a 

data set via the gap statistic. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), 63(2), 411-423. 

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a 

data set via the gap statistic. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), 63(2), 411-423. 

Trosset, M. W. (2001). What is simulated annealing?. Optimization and Engineering, 

2(2), 201-213.  

Tripp, G., & Wickens, J. R. (2008). Research review: dopamine transfer deficit: a 

neurobiological theory of altered reinforcement mechanisms in ADHD. Journal 

of child psychology and psychiatry, 49(7), 691-704. 



 262 

Tudor, M. E., Bertschinger, E., Piasecka, J., & Sukhodolsky, D. G. (2018). Cognitive 

Behavioral Therapy for Anger and Aggression in a Child With Tourette’s 

Syndrome. Clinical Case Studies, 17(4), 220-232. 

Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal 

of Experimental Psychology: General, 123(1), 34. 

Vallesi, A., D'Agati, E., Pasini, A., Pitzianti, M., & Curatolo, P. (2013). Impairment in 

flexible regulation of speed and accuracy in children with ADHD. Journal of the 

International Neuropsychological Society, 19(9), 1016-1020. 

Veksler, V. D., Myers, C. W., & Gluck, K. A. (2015). Model flexibility 

analysis. Psychological Review, 122(4), 755. 

Walker, F. O. (2007). Huntington's disease. The Lancet, 369(9557), 218-228. 

Wang, X. J. (2012). Neural dynamics and circuit mechanisms of decision-making. 

Current opinion in neurobiology, 22(6), 1039-1046. 

Wang, Z., Maia, T. V., Marsh, R., Colibazzi, T., Gerber, A., & Peterson, B. S. (2011). 

The neural circuits that generate tics in Tourette's syndrome. American journal 

of psychiatry, 168(12), 1326-1337. 

Ward, M. F. (1993). The Wender Utah Rating Scale: an aid in the retrospective 

diagnosis of childhood attention deficit hyperactivity disorder. American journal 

of Psychiatry, 150, 885-885. 

Wender, P. H. (1998). Attention-deficit hyperactivity disorder in adults. Psychiatric 

Clinics, 21(4), 761-774. 

Wender, P. H., Wolf, L. E., & Wasserstein, J. (2001). Adults with ADHD: An 

overview. Annals of the New York academy of sciences, 931(1), 1-16. 

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85. 

Wickens, J. (1993). A theory of the striatum. 

Wickens, J. R., Horvitz, J. C., Costa, R. M., & Killcross, S. (2007). Dopaminergic 

mechanisms in actions and habits. The Journal of neuroscience, 27(31), 8181-

8183. 



 263 

Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). 

Validity of the executive function theory of attention-deficit/hyperactivity 

disorder: a meta-analytic review. Biological psychiatry, 57(11), 1336-1346. 

Willcutt, E. G., Sonuga-Barke, E. J., Nigg, J. T., & Sergeant, J. A. (2008). Recent 

developments in neuropsychological models of childhood psychiatric disorders. 

In Biological child psychiatry (Vol. 24, pp. 195-226). Karger Publishers. 

Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of 

procedural knowledge. Journal of experimental psychology: learning, memory, 

and cognition, 15(6), 1047. 

Woods, S. P., Lovejoy, D. W., & Ball, J. D. (2002). Neuropsychological characteristics 

of adults with ADHD: A comprehensive review of initial studies. The Clinical 

Neuropsychologist, 16(1), 12-34. 

Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. 

Nature reviews. Neuroscience, 7(6), 464. 

de Zeeuw, P., Weusten, J., van Dijk, S., van Belle, J., & Durston, S. (2012). Deficits in 

cognitive control, timing and reward sensitivity appear to be dissociable in 

ADHD. PloS one, 7(12), e51416. 

 

 



 264 

  

  

Appendix 

 

  Simulations Details 

All the simulation code was run on Matlab 2018a, using Simulink, Curve Fitting 

Toolbox, Neural Network Toolbox, and Econometrics Toolbox. 

 

Simulation code and data are available at https://github.com/AndreaCaso/thesis. 

 

  Optimisations Details 

 

11.2.1 Genetic Algorithm (Chapter 4) 

In paragraph 4.3.4 we used a simplified Genetic Algorithm to fit our model. GA is a 

simple tool to solve optimisation problems (Whitley, 1994). The algorithm employed 

here consists of only two iterations to identify the best set of parameters. In the first run 

we vary 9 parameters (w'cog,w'env, αstr, αsma,αpfc, αstr, αstn, αgpi, αgpe) by simply randomising 

their value within a reasonable range of values (previous qualitative analysis turns out to 

be relevant) and observe how the total fitness changes. We then choose the best three 

values for the total fitness and, keeping the old parameters fixed, we vary four other 

parameters (wcog, wenv, βthal, bl). The set of parameters with the highest value of total 

fitness is the best one and it fits the empirical data better than the others. The total 

fitness value is calculated as the reciprocal of the product between the mean value and 

the standard deviation of the z values. In this way, when all z values are similar and/or 

approach zero, the total fitness value is the highest. Not including the standard deviation 

of the z values changes a few value but does not change the final choice for the best 

sets. This indicates a good degree of convergence. 

 

11.2.2 Neural Network for model fitting (Chapter 5) 

In Chapter 4 the simulated clusters are produced with a genetic algorithm by varying a 

large number of parameters. In Chapter 5, in order to fit the right set for each of the 

three clusters, a function that maps εstr and εpfc to the three dependent variables TE, PE, 
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and SL3 is constructed. For this purpose, we built a simple feedforward neural network 

with two 50-units hidden layers each and we fed it with all the data from the simulation 

run in the paragraph with three groups. With a goal of an MSE (mean squared error) 

lower than 0.05, the network showed a good mapping of the function without 

overfitting. The training-testing set ratio was fixed to 70/30. 

 

This result is interesting on its own, because it shows that the mapping between 

parameters and errors does not behave erratically but rather, a mathematically complex 

but continuous function can be somewhat descriptive of this relationship. The fit to each 

cluster was then calculated for a large selection of εstr and εpfc. The fitness value was 

calculated as the mean over the three performance errors of the difference between the 

simulated and the empirical data mean divided by the standard deviation of the 

empirical cluster (basically a simplel z-value). The model was then run a hundred times 

with the best sets of εstr and εpfc for each of the three cluster. This procedure is 

computationally quicker and more efficient than running a genetic algorithm over a 

larger number of parameters.  

 

11.2.3 Simulated Annealing (Chapter 7) 

In chapter 7 all the model fitting was performed using the Simulated Annealing (SA) 

technique, because of the high number of initial parameters and the likely presence of 

local minima in the parameter space. The name comes from the annealing technique in 

metallurgy, where a metal is heated and then slowly cooled so as to decrease the defect 

of the resulting micro-structure of the metal. The aim of SA is to approximate a global 

minimum of a function called the cost function. Here, we used a slight variant of the 

general SA, in that that the parameter update was a function of the previous set of 

parameters. Before running the algorithm, a set of parameters θ0 was initialised to a set 

of values that had been shown to work previously without producing any degenerate 

result (see Table 7.3). After each trial (t), the set of parameters was then updated 

according to the following function:  

 

𝜃𝑡+1 = (1 + 𝜉)𝜃𝑡  

 

where ξ is a random vector from a uniform distribution ranging between -v and +v, 

where v is set to 0.1, and the multiplication is component by component: 
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𝜉𝑖 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−𝑣,+𝑣) 

 

In practice, because v is set to 0.1, each parameters initially varies at most by ±10% of 

the immediately preceding value. The model was then run for the values of the 

parameter vector and results recorded.  A cost function (φ) was then calculated as the 

absolute distance between the produced output (η) and the target output (η0). Since there 

were more output variables, the cost function was a vector, too. 

 

𝜑 = |𝜂 − 𝜂𝑜|  

 

The norm of the cost function vector is equivalent to an ordinary sum of squared error 

function across conditions. A variation of the delta function between trials was then 

computed as the difference between the norms of the cost function between two 

consecutive trials: 

 

Δ𝜑 = ||𝜑𝑡|| − ||𝜑𝑡−1|| 

 

If this difference is less than 0, that means that the cost has decreased, and therefore the 

algorithm is moving towards a better solution. If this difference is more than 0, that 

means the cost function has increased and it is overall a worst fit. Crucially, the 

algorithm accepted this solution θt+1 with a probability proportional to the cost 

difference and a parameter called temperature (T): 

 

{
θ𝑡+1, 𝑖𝑓 𝑝 < 𝑒−Δ𝜑/𝑇

𝑡

θ𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Temperature is not a static parameter but can be decreased exponentially or linearly. 

Exponential ‘cooling’ was chosen for all the simulations (Kirkpatrick, 1983): 

 

𝑇𝑡 = 𝑇𝑜𝜏−𝑡 

 

where τ was fixed to 1.5 and the initial temperature is T0 was set in a more liberal 

fashion.  
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At the beginning of the process the algorithm is more likely to accept a poor solution, 

with a higher temperature. As the temperature decreases, the algorithm settles. 

Simulated Annealing leverages this apparent setback in order to escape from local 

minima and explore other minima, generally smaller than the previous ones.  


