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Abstract

fNIRS is an established research tool used to investigate typical and atypical brain de-

velopment. Primarily, it provides measures of haemodynamic changes that are used to

indirectly infer neural activity. Broadband NIRS provides a more direct marker of neu-

ronal activation through measurement of changes in cytochrome-c-oxidase (CCO). As a

cellular measure, CCO can be used as a bridge to improve our understanding of the link

between neural and haemodynamic activity or “neurovascular coupling”.

Study 1 demonstrated that changes in mitochondrial activity could be measured along-

side haemodynamics during functional activation, over the temporal cortex, using a minia-

ture system in four-to-six-month-old infants. In order to investigate the spatial specificity

of CCO, its relation to haemodynamics and to build upon our understanding of neurovas-

cular coupling mechanisms, multi-channel broadband NIRS was used alongside EEG in

Study 2 where responses were measured over the visual cortex. Study 2 was performed in

adults as the development of a concurrent NIRS and EEG protocol was methodologically

challenging. Following this, Study 3 extended on experimental paradigms from Studies 1

and 2 to measure changes in metabolic activity and haemodynamics over the temporal and

visual cortices, in four-to-seven-month-old infants. This study demonstrated simultaneous

broadband NIRS and EEG use in infants for the first time. The results provided evidence

of underdeveloped coupling of cerebral blood flow changes and mitochondrial activity in

early infancy. Finally, Study 4 extended the protocol to investigate underlying biological

mechanisms that may be altered in neurovascular coupling in autism, by studying infants

at high familial risk for the disorder. The findings demonstrated that the combined pro-

tocol was not only feasible for use to study atypical brain development but also provided

preliminary evidence of altered coupling between cerebral energy metabolism and haemo-

dynamics.

Taken together, this work illuminates hitherto undocumented evidence of neurovascu-

lar coupling during brain development and highlights the potential of using broadband

NIRS with EEG for future neurodevelopmental research in typical and atypical popula-

tions.
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Chapter 1

INTRODUCTION

1.1 Motivations and objectives

Over the past twenty years, there has been an increase in the use of Functional Near-

Infrared Spectroscopy (fNIRS) in the field of neurodevelopmental research to investigate

human infant brain development; from language processing (Minagawa-Kawai et al., 2008;

Homae et al., 2006; Abboub et al., 2016; Issard and Gervain, 2017; Minagawa-Kawai et al.,

2007) to social perception (Wilcox et al., 2013; Ichikawa et al., 2013; Grossmann et al., 2008;

Hyde et al., 2010; Lloyd-Fox et al., 2009) and object processing (Wilcox et al., 2005a), to

understanding the development of visual pathways in early infancy (Taga et al., 2004;

Meek et al., 1998; Watanabe et al., 2008). fNIRS has also been employed more recently to

study atypical brain development in neurodevelopmental disorders such as autism spec-

trum disorders (ASD) (Lloyd-Fox et al., 2013, 2018; Braukmann et al., 2018). While these

studies yield invaluable insight into human brain development, less work has focused

on understanding underlying metabolic pathways in early infancy. This is primarily due

to the lack of available techniques to investigate these processes in awake infants non-

invasively. Broadband near-infrared spectroscopy (NIRS), is a technique that allows mea-

surement of cellular oxygen consumption and energy metabolism non-invasively through

measurement of changes in the oxidation state of mitochondrial respiratory chain enzyme

cytochrome-c-oxidase (CCO), which has been shown to be a unique marker of brain ac-

tivity (de Roever et al., 2016; Bainbridge et al., 2014) and may be more closely linked to

neural activity as it informs on cellular changes that occur within the neurovascular cou-
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pling pathway in comparison to measures of blood oxygenation which primarily inform

on the oxygen delivery component. The motivation underlying the work presented in

this thesis therefore, was to use broadband NIRS simultaneously with electroencephalog-

raphy (EEG) in order to investigate neurovascular related metabolic pathways in human

brain development in infants at low and high risk of autism. At the onset of this PhD

work, there was only one published developmental neuroimaging study utilising broad-

band NIRS to measure cellular changes (Zaramella et al., 2001b) and only one study em-

ploying the use of fNIRS simultaneously with EEG during functional activation in infants

(Telkemeyer et al., 2011). Moreover, as evidence emerges of potential neurophysiological

differences between ASD individuals and controls (Belger et al., 2011a; Harris et al., 2011;

Chauhan et al., 2011; Gu et al., 2013), as well as atypical processing of social stimuli in in-

fants at high familial risk for autism (Lloyd-Fox et al., 2013; Braukmann et al., 2018; Jones

et al., 2016a; Lloyd-Fox et al., 2018), broadband NIRS (in particular simultaneously with

EEG) presents a unique opportunity to non-invasively explore irregularities in metabolic

pathways in atypical brain development. Therefore, broadband NIRS and EEG were used

to also investigate brain activity in infants at high-risk for autism. The thesis aimed to

address the following questions:

• Can broadband NIRS be used to measure changes in cellular oxygen consumption and energy

metabolism during functional activation in infancy?

• Can multi-channel broadband NIRS be used in conjunction with EEG successfully to improve

our understanding of the status of neurovascular coupling in the infant brain?

• If this is possible, then can the technique be used to help explore the relationship between

neuronal activity and cerebral blood oxygenation changes and how does measuring changes

in CCO shed a light on this relationship?

• Can differences in regional cortical development be inferred?

• Can this method be applied to understand atypical brain development?

At the onset of this PhD work, we were at the advent of two novel applications to inves-

tigate human brain development. First, the application of broadband NIRS to infant and
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second, its use simultaneously with EEG. There were several methodological challenges to

be overcome, one of the major ones being the development of appropriate headgear that al-

lowed integration of NIRS optodes with EEG electrodes on the head. Therefore, the work

in this thesis also involved a methodological component that aimed to develop suitable

headgear for multi-channel broadband NIRS as well as headgear for simultaneous NIRS

and EEG studies.

The remainder of this chapter first provides a background on neuronal processes that

occur in the brain and details neurovascular coupling, the vascular part of which is inter-

rogated using fNIRS and the neural activity component is studied using using EEG. Then,

evidence of development of cerebral vasculature and neural circuitry is reviewed in both

typical and atypical brain development and limitations from previous infant work that

motivated the current research are discussed. Lastly, studies that have thus far utilised

broadband NIRS to investigate brain function are reviewed.

1.2 Neuronal processes

1.2.1 Neuronal structure

The brain is a complex organ in the human body that constantly requires energy. There

are several mechanisms in place that fulfill the metabolic demands of the brain by supply-

ing oxygen and nutrients via blood. These were first described by Roy and Sherrington

(1890) and are referred to as (i) cerebral autoregulation and (ii) neurovascular coupling.

Autoregulation is the mechanism that is responsible for maintaining constant blood flow

to the brain (Iadecola, 1993) while neurovascular coupling, also referred to as functional

hyperemia, is the process that occurs only during functional activation. Functional activa-

tion is defined as the neuronal activation of specific cortical areas of the brain in response

to stimuli. During functional activation, neural activity in specific regions of the brain

increases (Kim and Filosa, 2012) and due to this, there is an increase in oxygen demand.

The increase in neuronal demand of oxygen and nutrients causes a group vascular and

neural cells, referred to as the neurovascular unit (NVU), to act on blood vessels in the

brain by either increasing their intraluminal diameter (vasodilation) or decreasing their
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intraluminal diameter (vasoconstriction) (Peppiatt et al., 2006a). Vasodilation leads to an

overcompensatory increase in oxygen supply to the specific brain region which then allows

the measurement of haemodynamic changes. This action is performed mainly due to the

production of vasoactive mediators and metabolites (Iadecola et al., 1995). The following

section describes the NVU in detail.

1.2.1.1 Neurovascular unit

The neurovascular unit has been described previously as the coupling between neural ac-

tivity and cerebral blood flow. The NVU is composed of neurons, astrocytes, endothelial

cells, myocytes, pericytes and extracellular matrix components. It is the anatomical and

chemical relationship between these cells that detects the metabolic demands of nearby

neurons and then triggers the required responses in order to meet these demands. On

one end, neurons and astrocytes facilitate synaptic transmission while at the other end as-

trocytes work closely with endothelial cells at the blood-brain barrier (BBB), which is a

selective barrier formed by the endothelial cells that line cerebral microvessels to regulate

movement of molecules (Abbott et al., 2006). Figure 1.1 shows a simplified illustration of

the NVU.

Figure 1.1: Simplified illustration of the NVU, this image was reproduced from (Heye
et al., 2014) with permission.

48



Chapter 1

Neurons The basic structure of a neuron is composed of a cell body, dendrites and an

axon. Neurons communicate with other neurons, glial cells (which are cells that surround

neurons) and muscle cells by means of electrochemical processes. Dendrites are thin struc-

tures arising from the cell body that receive signals from the axons of other neurons via

synapses and an axon is the extension of the cell body that transmits the electrical signal.

Neurons form the basic building block of the NVU as they are able to detect small varia-

tions in the availability of oxygen, energy and nutrients and communicate with other cells

in in order to meet metabolic requirements (Figley and Stroman, 2011). There a number

of different types of neurons which include sensory neurons, motor neurons and interneu-

rons (which are neurons that act as relay neurons). Figure 1.2 shows the basic structure of

a neuron.

Figure 1.2: Illustration of the basic structure of a neuron, this image was adapted from
(Arizona Board of Regents, 2012)

Astrocytes Astrocytes are a type of glial cell that mediate the coupling between neuronal

activity and the subsequent change in cerebral blood flow thereby providing the link be-

tween neurons and vasculature. They have end-feet that are in close connection with walls

of cerebral microvessels and support the endothelial cells in forming the BBB and are there-

fore deemed an important part of the NVU.
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Endothelial cells Endothelial cells are another important component of the NVU that

form the BBB between the blood stream and brain tissue. They are squamous cells that

line blood vessels and form tight junctions to strictly regulate the movement of substances

to brain tissue. Endothelial cells also aid neurovascular coupling by being in constant

communication with astrocytes in order to regulate cerebral blood flow via the release of

vasoactive mediators which act on the blood vessels by causing vasoconstriction or vasodi-

lation, thereby leading to an increase or decrease in cerebral blood flow.

Pericytes Pericytes are contractile cells that are located at intervals along capillary walls

and are important for the maintenance of the BBB. Recent studies have demonstrated that

they are important regulators of blood flow and can dilate capillaries (Attwell et al., 2016;

Hall et al., 2014).

Astrocytes, pericytes and endothelial cells are all indicated in Figure 1.1.

1.2.2 Cellular mechanisms

Electrical signals are propagated from one neuron to another by means of action potentials

and synaptic transmission, also referred to as neurotransmission. Both of these processes

are strongly interlinked and are described in the following section.

1.2.2.1 Action potentials and synapses

As mentioned previously, neurons have dendrites and axons; dendrites receive electrical

impulses from other neurons while axons transmit them. The point where the axon ter-

minal of the transmitting neuron meets the dendrites of the receiving neuron is referred

to as the synaptic cleft or synapse. An electrical impulse can be classed either as excita-

tory or inhibitory, with an excitatory impulse causing the neuron to fire/be in an excitable

state while an inhibitory impulse prevents the neuron from firing. A neuron is connected

to numerous other neighbouring neurons and electrical impulses and constantly receives

electrical impulses that are summated at the axon hillock. This means that if a neuron

receives many excitatory impulses which, when summated, exceed the resting potential

of the cell (-70mV), an action potential is generated which is then propagated along the
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axon to the axon terminal for transmission to another neuron by means of a synapse. If the

neuron receives multiple excitatory and inhibitory impulses, then these may cancel each

other out and no action potential is generated. When an excitatory action potential is prop-

agated to the axon terminal, it causes the membrane to become depolarised which leads

to the influx of Ca2+ from voltage gated calcium channels. This causes synaptic vessels in

the presynaptic terminal to release neurotransmitters which travel across the synaptic cleft

and bind to receptor proteins in the postsynaptic terminal causing the membrane either

become depolarised (as a result of an excitatory potential) or hyperpolarised (asa result of

an inhibitory potential). Depolarisation of the postsynaptic terminal causes an influx of

Ca2+ and Na+ ions from ion channels, leading to a localised change in the membrane po-

tential and thereby causing the neuron to generate its own action potential, which is then

propagated to the axon terminal. Figure 1.3 depicts the process of a synapse.

At the synaptic cleft, the chemical neurotransmitter is rapidly removed in anticipation

of the arrival other action potentials and this can be achieved in a number of ways: (i)

enzymatic degradation, (ii) re-uptake by the presynaptic neuron, (iii) diffusing away from

the synapse or (iv) removal by nearby glial cells.
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Figure 1.3: (Top) Illustration of the synaptic cleft and pre- and postsynaptic cells (this figure
was reproduced from (Biology, 2016)) (Bottom) Illustration of the generation of a excitatory
postsynaptic potential (EPSP) as a result of the summation of all presynaptic inputs

Synapses Synapses may be broadly classes into two types:

1. An electrical synapse whereby the impulse is transmitted directly from the presynap-

tic to the postsynaptic neuron without neurotransmitters, by means of a gap junction.

This allows the direct flow of ions from one neuron to the other.

2. A chemical synapse which employs the use of neurotransmitters and voltage gated

channels for the transmission of the synapse from the presynaptic to postsynaptic
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neuron.

There are a number of different types of neurotransmitters and each neurotransmitter has a

specific receptor protein that it can act on. Broadly, there are two types of receptor proteins:

1. Ligand-activated ion channels known as ionotropic receptors. These are large protein

complexes that act as (a) binding sites for neurotransmitters and (b) undergo a con-

formational change once the neurotransmitter has bound, in order to act as channels

to allow ions to pass through.

2. Metabotropic receptors which use do not act as channels but upon binding of the neu-

rotransmitter, employ the use of a secondary signaling pathway that causes the sub-

sequent opening and closing of nearby ion channels to allow influx of ions.

There are a number of different types of neurotransmitters which can be classified accord-

ing to their composition. These include glutamate, gamma amino butyric acid (GABA)

and glycine, which are all small molecule neurotransmitters made up of amino acids.

Dopamine, norepinephrine, serotonin and histamine, which are all biogenic amines made

of amino acid precursors. Adenosine triphosphate and adenosine, which are nucleotides

and nucleosides and lastly acetylcholine. The list of neurotransmitters is non-exhaustive

and there are many others which I have not mentioned. The two main ones that I am

interested in discussing are glutamate and GABA.

Glutamate is one of the primary excitatory neurotransmitters and has both ionotropic

and metabotropic receptors. The ionotropic receptors are α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA) and kainic acid. The metabotropic

receptors are referred to as metabotropic glutamate receptors (mGluRs).

GABA is an inhibitory neurotransmitter that causes hyperpolarisation of the membrane

of postsynaptic neuron by causing an influx of Cl- ions. It also has both ionotropic and

metabotropic receptors which are referred to as GABAA and GABAB respectively.

1.2.2.2 Energy metabolism

One component of the neurovascular coupling mechanism is neural and synaptic activity,

which was just described in the previous section. Another important component is the
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uptake of oxygen and glucose in order to meet the metabolic demands of the neurons.

Here, the processes involved in energy generation are described.

Glycolysis Glycolysis is the first step in the generation of energy and takes place in the

cytoplasm. This process converts glucose into two pyruvate molecules and generates two

ATP and two nicotinamide adenine dinucleotide (NADH).

Krebs Cycle Pyruvate molecules that are generated in glycolysis enter the Krebs Cycle or

tricarboxylic acid (TCA) cycle which further generates ATP and NADH and flavin adenine

dinucleotide (FADH2). These act as electron donors to the electron transport chain (ETC)

which is the final stage of energy generation.

Oxidative phosphorylation The ETC or the process of oxidative phosphorylation occurs

in the inner mitochondrial membrane and accounts for most of the ATP production in cells.

The ETC consists of a number of protein complexes (Complex I, Complex II, Co-enzyme Q,

Complex III, Cytochrome-c and Complex IV also known as Cytochrome-c-oxidase or CCO)

that are embedded in the inner mitochondrial membrane. Energy is generated in a series of

oxidation and reduction (or redox) reactions whereby electrons are transferred from elec-

tron donors NADH and FADH2 to electron acceptors. Coupled with this process is the

transfer of H+ ions across the mitochondrial membrane in order to generate an electro-

chemical proton gradient which leads to the synthesis of ATP through the activity of ATP

synthase. Figure 1.4 shows the ETC (along with the other stages of energy metabolism)

and the complexes involved and the arrows indicate the flow of electrons. The terminal

electron acceptor is CCO which is responsible for 95% of oxygen metabolism.
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Figure 1.4: Illustration of the stages involved in energy generation which include glyco-
lysis, the TCA cycle and the electron transport chain (ETC). This figure is my own.

The basic biological processes involved in different parts of the neurovascular coupling

pathway have been discussed, providing the background to understanding the actual cou-

pling mechanisms in play that lead to an increase in cerebral blood flow as a result of neu-

ronal activation. While these coupling mechanisms are highly complex and not entirely

understood, recent findings provide evidence implicating the roles of different compo-

nents of the NVU in the process (Attwell et al., 2010a; Iadecola, 2017; Attwell and Iadecola,

2002; Cauli and Hamel, 2010a; Hamel, 2006) and the general consensus is discussed in the

next section.
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1.2.3 Neurovascular coupling

Traditionally, the negative feedback hypothesis was held in popular opinion to explain

how neural activity controlled the vascular supply of oxygen, glucose and nutrients. This

hypothesis proposes that neurons generate a metabolic signal when there is either a de-

crease in oxygen levels, a decrease in the concentration of glucose or an increase in the

concentration of carbon dioxide which leads to an increase in blood flow. This implied

that cerebral blood flow was mediated by energy demand. Recent research however, have

provided evidence of a feed-forward mechanism of neurovascular coupling which pro-

poses that cerebral blood flow is largely controlled by neurotransmitter-mediated signaling

where glutamate has a major role and neurons, astrocytes and pericytes all play important

roles. The feed-forward mechanism is discussed here in further detail.

Feed-forward mechanisms involve two modes of signaling:

1. Neuronal signaling to blood vessels: Neuronal signaling involves the release of glu-

tamate which causes activation of the NMDA receptor site and leads to the influx of

Ca2+ ions and the activation of the enzyme that synthesises nitric oxide (nNOS). This

triggers the release of vasoactive mediator nitric oxide (NO) which acts on blood ves-

sels causing vasodilation and leading to an increase in vascular flow (Busija et al.,

2008; Attwell et al., 2010a; Lindauer et al., 1999). Another mechanism by which

neurons are thought to signal to blood vessels is through neurotransmitter GABA

whereby the ionotropic receptor GABAA becomes activated which mediates a com-

ponent of vasodilation however its effects are not entirely understood (Kocharyan

et al., 2008).

2. Astrocyte signaling to blood vessels: Astrocytes are conveniently located close to

neurons and can therefore be influenced by neural activity and their end-foot pro-

cesses envelop blood vessels which are able to control the diameter of blood vessels

through the use of two mechanisms. The first of these are K+ mechanisms, studies

have suggested that when glutamate is released at a synapse, some of it travels from

the synaptic cleft to the mGluR receptors that are positioned on astrocytes, thereby

leading to an increase in Ca2+ in the astrocytes (Porter and McCarthy, 1996; Attwell
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et al., 2010a). The increase in Ca2+ has been reported (Filosa et al., 2006) to trigger the

opening of Ca2+ activated K+ channels by the astrocyte end-feet, leading to a release

of K+ ions which can dilate vessels through the hyperpolarisation of smooth mus-

cle cells that line blood vessels. Another mechanism that astrocytes may potentially

employ is by the influx of Ca2+ that is caused by the activation of mGluR receptors

on astrocytes activates a compound known as phospholipase A2 (PLA2) which leads

to the production of arachidonic acid (AA) by membrane phospholipids. The build

up of AA triggers the production of different types of metabolites - prostaglandins

(PGs) and epoxyeicosatrienoic acids (EETs) which cause dilation of nearby arterioles

(Metea, 2006; Gordon et al., 2008; Peng et al., 2004, 2002; Zonta et al., 2003).

These processes are summarised in Figure 1.5.
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Figure 1.5: Illustration of the signalling pathways that mediate neurovascular coupling.
This figure was adapted from (Harris et al., 2011). When neurons are active they release
the excitatory neurotransmitter glutamate some of which binds to N-methyl-D-aspartate
(NMDA) receptors in interneurons that contain neuronal nitric oxide synthase (nNOS).
This causes an influx of Ca2+ which in turn leads to the release of nitric oxide (NO) which
dilates arterioles to increase blood flow. Glutamate can also bind to metabotropic glutam-
ate receptors (mGluR) in astrocytes which also leads to an influx of Ca2+ in astrocytes and
causes the activation of Ca2+ activated K+ channels, referred to as KCa channels. This
in turn releases K+ ions that dilate local arterioles, through hyperpolarisation of smooth
muscle cells by means of inward rectifier K+ channels (Kir). The influx of Ca2+ ions in
astrocytes can also lead to the activation of phospholipase A2 (PLA2) which causes the
production of arachidonic acid (AA). AA can directly control vascular tone but its build up
also leads to the release of a number of different metabolites which cause dilation of local
arterioles; prostaglandins (PGs) and epoxyeicosatrienoic acids (EETs).

The feed-forward mechanism also implicates the roles of pericytes in neurovascular

coupling, which has been a recent discovery. To recap, pericytes are cells that line the

capillaries at regular intervals and it has been suggested that they are affected by the release

of neurotransmitters which can cause local constriction or dilation of capillaries thereby

regulating vascular supply at the capillary level .
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Lastly, the feed-forward mechanism also implicates the role of pericytes in neurovascu-

lar coupling which has been a recent discovery. Pericytes are cells that line the capillaries

at regular intervals and it has been suggested that they are affected by the release of neu-

rotransmitters, thereby leading to local constriction or dilation of capillaries and hence can

control/regulate vascular supply at the capillary level (Shepro and Morel, 1993; Puro, 2007;

Peppiatt et al., 2006b).

1.3 Functional Near-Infrared Spectroscopy

Functional Magnetic Resonance Imaging (fMRI) and fNIRS are two neuroimaging tech-

niques that measure the oxygen delivery component of functional hyperemia. fMRI mea-

sures changes in blood oxygenation levels while fNIRS is a non-invasive technique that

uses light in the near-infrared region (NIR) of the electromagnetic spectrum to measure

changes in cerebral blood oxygenation levels occurring in response to neuronal activation.

Typically, the technique provides measures of oxygenated haemoglobin (HbO2) and de-

oxygenated haemoglobin (HHb). Figure 1.6 shows the “classical” haemodynamic response

to functional hyperemia in an adult brain where an increase in the concentration of HbO2

(∆[HbO2]) and a decrease in the concentration of deoxygenated haemoglobin (∆[HHb]) is

observed in response to stimulation. Simply put, this can be understood as if a stimulus

leads to the activation of specific cortical areas of the brain which leads to an increase in

oxygen demand by the neurons, thereby causing an increase in regional cerebral blood flow

whereby deoxygenated blood is rapidly replaced by oxygenated blood from which oxygen

and glucose are extracted for energy generation. The increase in metabolic demand leads

to an overcompensatory increase in oxygenated blood and this large increase is what is

then measured by fNIRS and provides a measure of the oxygen delivery component of

neurovascular coupling.
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Figure 1.6: The classical haemodynamic response to stimulation as measured by fNIRS,
displaying an increase the concentration of oxygenated haemoglobin (red trace), a decrease
in the concentration of deoxygenated haemoglobin (blue trace) and an increase in the con-
centration of total haemoglobin (black trace). This figure was reproduced from (Phan, 2018)
with permission.

Broadband NIRS is a type of NIRS that may be used to obtain measurements of cellular

oxygen consumption and energy metabolism through the measurement of the oxidation

status of mitochondrial ETC enzyme cytochrome-c-oxidase (∆[oxCCO]), alongside mea-

suring changes in ∆[HbO2] and ∆[HHb]. This can provide a more direct marker of neu-

ral activity as it informs on cellular changes occurring within the neurovascular coupling

pathway as opposed to changes in oxygen delivery. CCO measurements using NIRS will

be described in later sections.

1.3.1 The haemodynamic response in the developing brain

More work has been done to understand the functional hyperemia response in adults than

in infants. In adults the observed changes in ∆[HbO2] and ∆[HHb] are immediate as both

vasculature and neurovascular coupling mechanisms are fully developed and extensive
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neuronal networks have already formed for information processing. In infants however,

many of these processing are under rapid development. Further, neurovascular coupling,

where a number of different biological pathways are at a complex interplay, may be differ-

ent in the developing brain. There is evidence from developmental studies indicating that

both neural circuitry and cerebral vasculature are under ongoing maturation during de-

velopment. Moreover, neuronal networks involved in the processing of various stimuli are

also under development, for example Watanabe et al (2012a) used NIRS in an infant study

and reported activation (i.e. an increase in ∆[HbO2] and a decrease in ∆[HHb]) to black

and white checkerboard stimuli and a deactivation to unpatterned luminance stimuli (i.e.

a decrease in ∆[HbO2] and an increase in ∆[HHb]). This led the authors to postulate that

the brain networks involved in the processing of the unpatterned stimuli were underdevel-

oped. A combination of these factors is likely to lead to variability in the haemodynamic

response function (HRF) which has been reported in many studies, with some studies de-

scribing an observed increase in ∆[HbO2] and a decrease ∆[HHb] in response to the stimuli

while others report the opposite pattern. This makes it challenging to interpret results and

forms part of the motivation for this PhD thesis. In the following sections an overview is

provided of the different studies that have reported variability in the HRF in infancy, cate-

gorised by brain region which include occipital, temporal and posterior temporo-parietal.

1.3.1.1 Occipital Lobe

Meek et al (1998) measured changes in ∆[HbO2] and ∆[HHb] over the occipital cortex in

response to visual stimulation which consisted of a black and white inverting checker-

board, in infants aged between 2 days to 3-months-old. Heterogeneity was observed in the

haemodynamic response with half the infants displaying an increase in ∆[HHb] and a de-

crease in ∆[HbO2] while half of the infants displayed the classical response (i.e. an increase

in ∆[HbO2] and a decrease in ∆[HHb] in response to the stimulus), regardless of the age

of the infants. Another study also measured NIRS responses over the occipital and frontal

areas in response to a reversing checkerboard and to a face-like pattern with blinking eyes,

in infants aged between 2-4-months-old (Taga et al., 2003). While the checkerboard pattern

elicited the classical response, a decrease in ∆[HbO2] and an increase in ∆[HHb] was ob-
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served in response to the face-like pattern in the occipital lobe. Furthermore, Watanabe et

al (2012a) also demonstrated differences in the occipital region in the response to a black

and white reversing checkerboard in comparison to a high luminance unpatterned stimu-

lus which led to a decrease in ∆[HbO2] and in increase in ∆[HHb], in 6-month-old infants

using a high density NIRS system. Moreover, a NIRS study measured responses over the

occipital cortex to faces and visual noise in 4-month-old infants and adults and reported

that the face stimuli produced a decrease in ∆[HbO2] in the infants (Csibra et al., 2004).

The results from these studies are in contrast with previous work where visual stimuli

with varying features (included colour, shape, movement and orientation) demonstrated

the classical haemodynamic response (Bortfeld et al., 2007; Wilcox et al., 2005b; Taga et al.,

2004; Watanabe et al., 2008; Wilcox et al., 2008; Watanabe et al., 2010). In addition to fNIRS

studies, a number of fMRI studies have also reported inverted BOLD responses to visual

stimulation in infants (Yamada et al., 1997; Born et al., 2002; Yamada et al., 2000; Born et al.,

2000; Martin et al., 1999a).

1.3.1.2 Temporal and Parietal Lobes

A study measuring NIRS responses to auditory stimulation (music) in newborns over the

temporal and frontal cortical regions demonstrated heterogeneity of the haemodynamic

response with 60% of the infants displaying an increase in ∆[HHb] and the remainder

displaying a decrease in ∆[HHb] (Sakatani et al., 1999a). Wagner et al (2011) conducted

an investigation with two groups (aged 7 and 9-months) and measured NIRS responses

over the left and right lateral regions of the brain, in response to complex speech stim-

uli. The stimuli elicited both the classical response as well as inverted responses. More

specifically, a developmental shift was observed with the 7-month-old infants displaying

a decrease in ∆[HHb] and an increase in ∆[HbO2] while the 9-month-old infants showed

the opposite pattern of responses to the same stimuli. Other studies involving neonates

investigating language processing (Abboub et al., 2016; Issard and Gervain, 2017) and the

processing of auditory stimuli (Telkemeyer et al., 2009) reported differences in responses

between conditions as well as across participants. A study of 5-to-8-month-old infants re-

ported both classical and inverted responses (i.e. an increase in ∆[HHb] and a decrease
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in ∆[HbO2] in response to the stimulus) to visual stimuli consisting of faces and vegeta-

bles (Kobayashi et al., 2011). Despite the diversity in responses observed in these studies,

the classical haemodynamic response is observed in the temporal cortex increasingly often

from 3 months onwards (Lloyd-Fox et al., 2009), even in infants born preterm (Emberson

et al., 2017). In fact, Lloyd-Fox et al (2017) demonstrated, with the use of auditory and

visual stimuli to measure responses over the posterior temporo-parietal region in infants

from birth till 24-months of age, in a cohort of Gambian infants, that the classical haemo-

dynamic response was present in early infancy (although delayed) and that the response

became faster across development, these responses are shown in Figure 1.7 charting the

haemodynamic responses from birth to 24-months-old.

Figure 1.7: Changes in the haemodynamic response to visual social and non-social stimuli
from birth till 24 months of age. This figure was reproduced from (Lloyd-Fox et al., 2017)
with permission. The solid lines indicate ∆[HbO2] and the dotted lines indicate ∆[HHb]
over time which is in seconds.
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More invasive work has been performed in rats1 using optical imaging methods to

measure changes in ∆[HbO2] and ∆[HHb] during somatosensory stimulation by Kozberg

and colleagues (2013a). This work charts the development of the haemodynamic response

across development from birth to adulthood and has shown that at P12-13 (equivalent

to the human newborn) the rats displayed an inverted response to the stimulus. Figure

1.8 shows the development of the haemodynamic response from days P12-13 to adult-

hood, from this study, There is a clear transition of the response from increasing ∆[HHb]

to increasing ∆[HbO2] as the rats age. Further work by the same group using a different

type of imaging method (wide-field optical imaging of both neural activity and haemody-

namics) again using somatosensory stimulation in mice from birth to adulthood (Kozberg

and Hillman, 2016b) demonstrated that in P7 mice strong localised neural activity was

present while functional hyperemia developed more gradually. They further showed that

this development occurred alongside the development of neural circuitry. Moreover, Ze-

hendner et al (2013) used somatosensory stimulation in postnatal mice P7 and P30, using

laser-Doppler-flowmetry to measure changes in regional cerebral blood flow (rCBF) along-

side multi-electrode recordings to record neural activity. They demonstrated a decrease in

rCBF in P7 mice which was associated with neural fatigue while an increase in rCBF was

observed in the adult mice. The responses are not charted across development however.

Additionally, it must be noted, as the authors have stated, that brain development in mice

is yet to be extensively mapped to human brain development and the observation of strong

inverted responses particularly in P7 mice, may be the human equivalent of the fetal brain

with early human infancy falling in between the transition from inverted responses to clas-

sical responses leading to the observed variability in the haemodynamic response.

1The approximate correspondence between stages of human and rodent brain development may be taken
as follows; rats and mice postnatal day 7 (P7) to P35 corresponds to from birth to approximately 18 years of
age (Lenroot and Giedd, 2006; Pujol et al., 1993), P30 - P42 maps onto human adolescence (Spear and Brake,
1983) and the rodent brain is considered as adult by P60.
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Figure 1.8: Changes in the haemodynamic response from P12-13 to adulthood in rats. This
figure was reproduced from (Kozberg et al., 2013a) with permission.

While many infant studies report the presence of an increase in ∆[HbO2] and a de-

crease in ∆[HHb] to various stimuli during functional activation starting from early in-

fancy (Wilcox et al., 2013; Ichikawa et al., 2013; Grossmann et al., 2008; Hyde et al., 2010;

Minagawa-Kawai et al., 2007, 2008; Homae et al., 2006; Wilcox et al., 2005a; Lloyd-Fox et al.,

2009) indicating that neurovascular coupling is intact in the developing brain, the results

from the studies discussed here demonstrate that variability is present in the observed re-

sponses across development and cortical regions. In particular, the human infant studies

suggest that the occipital cortex displays the most variability while the temporal cortex

starts to display the classical haemodynamic response earlier and shows a clearer develop-

mental trajectory. There may be multi-factorial reasons leading to the observed heterogene-

ity in the HRF (Issard and Gervain, 2018). These may well include developmental vascular

and structural changes occurring within the brain but the effect of stimulus complexity and

experimental design may also play an important role. The studies presented in this thesis

(particularly in the latter half) explore these factors but a particular emphasis is placed on

exploring changes occurring at a neurobiological level through the use of broadband NIRS

to measure changes in cellular energy metabolism alongside haemodynamic changes, si-

multaneously with EEG. This allows the measurement of three different components of

the neurovascular coupling mechanism and the exploration of their relationship in the de-

veloping human brain. These three components include; (i) neural activity (occurring as a

result of the presentation of an experimental stimulus and measured by EEG), (ii) cerebral

oxygen utilisation and energy metabolism (caused by increased neural activity and measured
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by ∆[oxCCO]) and (iii) cerebral haemodynamic changes (that occur as a consequence of in-

creased neuronal activity and measured by ∆[HbO2] and ∆[HHb]).

The use of broadband NIRS simultaneously with EEG can also allow investigation of

early differences in neurovascular related metabolic pathways in atypical brain develop-

ment. Recent work in the field of autism has demonstrated differences in neural processing

in the ASD brain (Jung et al., 2016; Kita et al., 2011; Zhu et al., 2014; Chien et al., 2015) and

evidence of neurophysiological differences in the ASD brain are emerging (Belger et al.,

2011b; Chauhan et al., 2011; Gu et al., 2013; Anitha et al., 2012). In particular, in the search

for precursory biomarkers that associate to the onset of ASD symptoms later in life (John-

son et al., 2015), recent longitudinal studies of infants at high-risk for autism have reported

early differences in neural processing (Lloyd-Fox et al., 2013; Blasi et al., 2015; Braukmann

et al., 2018; Jones et al., 2014a; Zwaigenbaum et al., 2007a; Szatmari et al., 2016; Lloyd-Fox

et al., 2009). Therefore another motivation of this PhD is to explore these differences.

The following section provides an overview of neurovascular coupling mechanisms in

the developing brain and a review of the evidence of ongoing maturation of vasculature

and neural circuitry is provided; both in typical an atypical brain development.

1.3.1.3 Neurovascular coupling in the developing brain

1.3.1.3.1 Development of neural vasculature and the NVU

1.3.1.3.1.1 Cerebral blood flow Previous studies provide evidence of differences in

rCBF, regional cerebral metabolic rate of oxygen consumption (rCMRO2) and the regional

oxygen extraction fraction (rOEF) using single-photon emission computed tomography

(SPECT) (Chiron et al., 1992) and positron-emission tomography (PET) (Takahashi et al.,

1999). The studies demonstrated that rCBF and rCMRO2 were significantly lower in early

infancy in comparison to adults and increased over development until the age of 7 and

then declined to adult values, a pattern that is similar to that of neural synapse formation

and elimination (Kozberg and Hillman, 2016a).
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1.3.1.3.1.2 Capillaries and Arteries Only recently has the role of capillaries been

implicated in neurovascular coupling, with studies hypothesising a potential mechanism

involving capillaries. This hypothesis postulates that neurovascular coupling is initiated

in the capillary bed (Hall et al., 2014; Hamilton, 2010; Hill et al., 2015) and that in fact cap-

illaries are able to regulate blood flow through the actions of pericytes and smooth muscle

cells on the capillary wall (Hill et al., 2015; Iadecola, 2017). Once initiated in the capil-

laries, functional hyperemia is thought to then spread to arterioles (Tian et al., 2010) and

finally reaches larger pial arteries that are located on the surface of the brain (Chen et al.,

2011, 2014). These studies indicate that capillaries play a critical role in the generation of

a response to stimulation and work investigating the development of cerebral microvas-

culature in rats (Rowan and Maxwell, 1981) and humans (Norman and O’Kusky, 1986)

has demonstrated extensive postnatal structural changes that occur within cerebral vascu-

lature which includes the growth, extension and proliferation of new blood vessels and

blood vessel density. Further, the results from the rat study (Rowan and Maxwell, 1981)

additionally exhibited a relationship between development of vasculature and an increase

in cerebral metabolic activity. Moreover, work in mice by (Kozberg et al., 2013b) (which I

have discussed previously) showed that initial local functional hyperemia was present in

P15-18 mice only at the capillary and arteriole level and further exploration revealed that

this early increase in oxygenation was predominantly in veins. In adults however, the ini-

tial hyperemia is strongly observed in pial arteries. This suggests that the recruitment of

pial arteries during neurovascular coupling is also a developmental mechanism.

Moreover, the work by Rowan and Maxwell (1981) also demonstrated that it is only

postnatally that arteries start to acquire unique characteristics. This may imply that vascu-

lar reactivity (i.e. change in vascular tone; vasoconstriction and vasodilation) may change

over development. It was discussed previously that NO is synthesised by NOS. NOS has

many isoforms one of which is endothelial NOS (eNOS) primarily responsible for the gen-

eration of NO in vascular endothelium. In a study of rats by Bustamante et al (2008) eNOS

expression was shown to be 85% lower in the 1-month-old brain in comparison to the 14-

month-old brain and Chen et al (2014) showed that an intact endothelium was required

in order to back propagate the neurovascular response from capillary bed to pial arteries.
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Previous studies have also shown an underdevelopment of endothelium and arteries in

the developing brain (Zehendner et al., 2013). This work would be in line with the evi-

dence provided by previously discussed work (Kozberg et al., 2013a) where the functional

hyperemia was restricted to the capillary bed and arterioles (or brain parenchyma).

These studies highlight that the underdeveloped state of cerebral vasculature can have

a significant effect on the neurovascular coupling mechanism in the developing brain.

1.3.1.3.1.3 Pericytes The role of pericytes in neurovascular coupling has only re-

cently been reported and they have been shown to be important regulators of blood flow

by being able to have a direct effect on capillaries (Hall et al., 2014; Armulik, 2005; At-

twell et al., 2016). Previous work suggests that pericytes are underdeveloped postnatally

(Kozberg and Hillman, 2016a; Fujimoto, 1995).

1.3.1.3.1.4 Astrocytes The importance of astrocytes in neurovascular coupling has

already been discussed in previous sections. Similarly to pericytes, astrocytes have been

shown to be undergoing maturation in P21 rats and do not reach adult levels until P50, this

includes the size, number, connectivity and branching of the astrocytes (Seregi et al., 1987;

Stichel et al., 1991; Kozberg and Hillman, 2016b). Furthermore, the pathways involving

astrocytes may be altered in development particularly as mGluR5 receptor has been shown

to be differentially expressed regionally (Van Den Pol et al., 1995) and across development

(Romano et al., 1995). More specifically, it is up-regulated early in life, decreases by the first

postnatal week and by postnatal week 3 it is undetectable (Sun et al., 2013) while mGluR3

is expressed in astrocytes across all developmental stages and is known to be employed

in adult signaling pathways. Therefore, in comparison to the adult brain, neuron-glial

signaling may be performed in a different manner during brain development.

1.3.1.3.2 Development of neural structures and circuitry

1.3.1.3.2.1 Synaptogenesis and synapse pruning The importance of synapses has

been discussed in previous sections. Synaptogenesis refers to the process through which

synapses form between neurons. It is well known that synapse formation begins during
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gestation (Huttenlocher and Dabholkar, 1997; Bianchi et al., 2013) and synaptic density

continues to increase rapidly reaching its peak in the first year of life (Tierney and Nel-

son, 2009). Regional differences in peaking of synaptogenesis have been reported with

areas such as the visual cortex peaking around the 4-8 months postnatally (Garey and

de Courten, 1983) while the prefrontal cortex continues to peak until around 15 months

(Tierney and Nelson, 2009). Following the overproduction of synapses, synaptic prun-

ing takes place in order to decrease synaptic density and is largely driven by experience.

Pruning has also been shown to occur at different times in different cortical regions (Hut-

tenlocher and Dabholkar, 1997; Tierney and Nelson, 2009; Garey and de Courten, 1983;

Harris et al., 2011).

1.3.1.3.2.2 GABAergic neurons, synapses and inhibition Another important compo-

nent in the development of neural circuitry is the refinement and maturation of the GABAer-

gic system, which has been shown to undergo development from birth until adulthood

(Harris et al., 2011; Ben-Ari, 2002a) and occurs at different times across different brain

regions (Le Magueresse and Monyer, 2013). The inhibition of GABAergic interneurons,

which are known to have an important role in neurovascular coupling mechanisms (Iadecola,

2017; Cauli, 2004), is particularly important as it has been suggested to modulate neural

firing in contrast to glutamatergic neurons that provide a mode of fast communication of

neural information through excitation (Andersen et al., 1963; Buhl et al., 1994; Miles and

Wong, 1984). The balance between excitation and inhibition (E/I) therefore, is particularly

critical for the development of neural circuitry and networks in the brain (Akerman and

Cline, 2007). Moreover, it has been hypothesised that the E/I balance in the developing

brain is different to that in adults with GABAergic neurons in early infancy being excita-

tory rather than inhibitory (Ben-Ari, 2002b; Yamada et al., 2004; Rivera et al., 1999; Ganguly

et al., 2001) which is thought to be due to the effect of a potassium chloride co-transporter

not being fully active, preventing the influx of Cl- ions when necessary. Therefore, this

leads GABAergic neurons to cause depolarisation rather than hyperpolarisation and there-

fore being excitatory rather than inhibitory. Previous work in mice has shown that GABA

undergoes a transition from being excitatory to inhibitory after the first week postnatally
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(which would be the equivalent of early infancy in humans), thereby affecting the E/I bal-

ance in the developing brain which would in turn affect neurovascular coupling.

1.3.1.3.2.3 Neuronal migration Neuronal migration is the process by which neurons

locomote from their place of birth in deeper layers of the brain to their intended locations.

There a number of mechanisms through which this cell migration takes place which in-

clude radial migration (Nadarajah et al., 2001), tangential migration (Rourke et al., 1995)

and multipolar migration (Tabata and Nakajima, 2003). Recent work on infant postmortem

brain tissue has demonstrated that this process continues to occur for at least a few months

postnatally in the frontal lobe where the neurons then continue to proliferate, differenti-

ate and eventually integrate into neural circuitry (Paredes et al., 2016). The study further

found that the migrating cells were specifically inhibitory neurons, an increase of which

postnatally would affect the excitation/inhibition balance of the brain. Other studies have

further demonstrated that neuronal migration of certain cell types continues into adult-

hood (Spalding et al., 2013).

1.3.1.3.2.4 Amine system development As discussed previously, a specific class of

neurotransmitters are composed of amino acid precursors. The importance of these neu-

rotransmitters in cognitive development (attention in particular) has emerged (Frederick

and Stanwood, 2009; Harris et al., 2011; Ansorge et al., 2004; Rebello et al., 2014; Page et al.,

2009) and previous studies have shown postnatal increase in the development of these neu-

rotransmitter systems (Lambe et al., 2000; Murrin et al., 2007) which vary across different

brain regions thereby influencing functional development across cortical regions (Levitt

et al., 1997).

1.3.1.3.3 Development of metabolic environment PET work in infants has shown lower

cerebral metabolic rate of oxygen consumption (CMRO2) which progressively increases

until late childhood (Chugani et al., 1987). Moreover, work in rats (Kozberg and Hillman,

2016b) has demonstrated that although large neural responses were present in response to

somatosensory stimulation, there was an absence in functional hyperemia until P23 and

additionally that there was a lower rate of oxygen metabolism, in comparison to adults,

70



Chapter 1

which gradually increases with age. This work might suggest that oxidative metabolism

in the developing brain also undergoes maturational changes and some studies hypothesis

that there may be a mechanism of anaerobic energy generation in place during develop-

ment (Kozberg and Hillman, 2016b; Bilger and Nehlig, 1991; Bonavita et al., 1962; Booth

et al., 1980).

Figure 1.9 summarises the developmental vascular and neural circuitry changes that

were discussed here, occurring from childhood to adulthood.

Figure 1.9: Summary of the developmental vascular and neural circuitry changes that
occur from childhood to adulthood. This figure was adapted from (Harris et al., 2011).
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1.3.1.4 Neurovascular coupling in autism

ASD is classified by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)

(2013) as a group of neurodevelopment disorders which include Asperger’s syndrome,

autistic disorder, childhood disintegrative disorder and pervasive developmental disorder

ASD is diagnosed based on behavioural observations which include repetitive behaviours,

diminished verbal and non-verbal communication and impaired social interaction which

are thought to be a result of atypical brain development. Much work has been done to ex-

plore differences in neuronal activity between ASD and non-ASD groups and while these

studies explore differences in neural processing (typically measured through techniques

such as EEG, fNIRS and fMRI). More specifically, recent work by Lloyd-Fox et al (Lloyd-

Fox et al., 2018, 2013) which was replicated by others (Braukmann et al., 2018) demon-

strated significant differences between infants (aged 6-months-old) with low familial risk

of autism and high familial risk of autism in the processing of social stimuli in the tem-

poral cortex using fNIRS, particularly in infants that later went on to receive an autism

diagnosis at 3 years of age. These results indicate that the NIRS can be a useful tool in

investigating atypical brain development and in potentially identifying early markers of

autism. Less work has been done to investigate how alterations in oxygen consumption,

energy metabolism and the neurovascular coupling mechanisms may lead to apparent dif-

ferences in neural processing. It is clear that neurovascular coupling is a highly complex

mechanism involving numerous neuronal and glial pathways that may not necessarily

have linear relationships. Small alterations in any of these pathways may therefore result

in observed differences in neural activity. Broadband NIRS provides the opportunity to in-

vestigate any potential differences in the neurovascular coupling that may be occurring in

atypical brain development through measurement of oxygen consumption. In this section,

a review of the existing evidence on neurovascular coupling in autism is provided.

1.3.1.4.1 Neural vasculature

1.3.1.4.1.1 Vasoactive mediators NO is a key vasoactive mediator that is responsible

for vasoconstriction and vasodilation of blood vessels and has previously been implicated

72



Chapter 1

in ASD (Sogut et al., 2003; Sweeten et al., 2004; Chauhan and Chauhan, 2006; Akyol et al.,

2004). Previous work measuring nitrate levels in plasma of children with autism (Zoroglu

et al., 2003) has reported an up-regulation of NOS in the group with autism, in compari-

son to controls. Furthermore, work by Fatemi and colleagues (2000) used a mouse model

of autism to demonstrate that there was an increased expression of NOS in anterior brain

regions. Given that NO plays an important role in neurovascular coupling, any abnormal-

ities in the production or activity of it may affect neurovascular coupling mechanisms.

1.3.1.4.1.2 Astrocytes While in the typical population mGluR5 receptors have in-

creased expression in astrocytes during infancy which reduces in adulthood (Sun et al.,

2013), previous studies have demonstrated that children with autism display an even

larger increase in expression of astrocytic mGluR5 in comparison to controls (Fatemi and

Folsom, 2011; Fatemi et al., 2011; Zoghbi and Bear, 2012). To recap, mGluR5 receptors are

activated by glutamate that is released during synaptic signaling and causes the produc-

tion of vasoactive messengers leading to vasoconstriction or dilation thereby regulating

blood flow (Attwell et al., 2010b). Differences in the expression of mGluR5 may therefore

affect the relationship between synaptic activity and the observed haemodynamic response

in children (Harris et al., 2011).

1.3.1.4.2 Neural circuitry

1.3.1.4.2.1 GABAergic function There is evidence that there is an increased expres-

sion of enzymes that synthesise GABA while the GABAA and GABAB receptors are down-

regulated in the ASD brain (Fatemi et al., 2002a, 2009, 2010). This would imply that in

autism, there would be an overall reduction in the basal activity of GABA receptors while

excess GABA was being synthesised, thereby leading to an overall decrease in inhibition

and an increase in neuronal excitation and hence neural activity. Increased neural activity

may (i) lead to increased cerebral metabolic demand (Weiss et al., 2008) and (ii) cause in-

creased glutamate release thereby triggering vasodilators and increasing blood flow. Both

of these factors could potentially lead to observed differences in haemodynamic changes
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measured through fNIRS or fMRI. It would also affect the E/I balance of the brain, an im-

balance of which has been postulated in autism (Lee et al., 2017; Rubenstein and Merzenich,

2003; Snijders et al., 2013; Selten et al., 2018; Gogolla et al., 2009) and includes many signal-

ing pathways in the brain. This discussion is beyond the scope of this chapter.

1.3.1.4.2.2 Amine system One of the more important amine system neurotransmit-

ters is serotonin which, as I described previously, has an important role in cognitive de-

velopment but also in neural developmental processes such as cell proliferation, differen-

tiation and migration (Riccio et al., 2009; Muller et al., 2016; Fujimiya et al., 1986). Cohen

et al (1997) have hypothesised that serotonin may also play a role in regulating cerebral

microcirculation through vasoconstriction. In studies of children with autism using PET,

reduced serotonin synthesis has been demonstrated in comparison to controls (Chugani

et al., 1999a; Nakamura et al., 2010), meanwhile studies using SPECT have shown that there

may potentially be a reduced re-uptake of serotonin after synaptic transmission (Makko-

nen et al., 2008). An increase or decrease in serotonergic activity could therefore affect

brain responses. The reader is referred to a review by Muller et al (Muller et al., 2016) for a

detailed review on serotonin signaling abnormalities in ASD.

1.3.1.4.3 Metabolism

1.3.1.4.3.1 Mitochondrial dysfunction In 1985, Coleman and Blass hypothesised that

mitochondrial dysfunction was an underlying comorbidity of autism (Coleman and Blass,

1985). Recent work in post-mortem brain tissue of children with ASD has demonstrated

reduced expression of ETC genes (Ginsberg et al., 2012; Anitha et al., 2012; Gu et al., 2013)

in the autism group in comparison to controls, in addition to regional differences (i.e. an

increase in some regions and a decrease in others) in ETC complexes (Chauhan et al., 2011;

Tang et al., 2013; Goldenthal et al., 2015). Whole genome gene expression analysis studies

have also reported differences in ETC complex gene expression in ASD individuals (Anitha

et al., 2012; Chen et al., 2015). These studies provide evidence of altered oxidative phos-

phorylation in the ASD brain which may imply that greater levels of oxygen and glucose

may be required in order to meet the metabolic demands of the brain.
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1.3.1.4.3.2 Oxygen consumption and glucose utilisation Following on from mito-

chondrial dysfunction, previous studies in adults with autism (Rumsey et al., 1985) have

provided evidence of increased glucose uptake while others have suggested altered en-

ergy metabolism (Chugani et al., 1999b; Friedman et al., 2003). Weiss and colleagues in

studies of Eker rats (rat model of autism) (2007; 2008; 2012) have demonstrated an increase

in the basal consumption of oxygen in the rats with autism in comparison to controls. In

line with the idea of impaired energy metabolism in ASD, increased oxygen and glucose

consumption would make sense if the process of cerebral energy metabolism was unable

to meet the metabolic demands of the brain. An imbalance between metabolic demand

and supply would result in alterations in neurovascular coupling and could potentially be

observed in the responses measured by fNIRS. As discussed earlier, previous studies have

suggested that an increase in energy demand in autism may be due to reduced activity of

GABA receptors leading to an overall increase in excitation and therefore neural activity

leading to an increase in energy demand.

Table 1.1 shows a summary of the evidences of altered neurovascular coupling in autism.

1.3.2 Metabolic marker of brain activity

1.3.2.1 Broadband NIRS

As described previously, NIRS is a non-invasive technique that allows measurement of

changes occurring within biological tissue. Typically NIRS systems use dual-wavelength

systems in order to provide information about cerebral blood oxygenation, i.e. changes in

∆[HbO2] and ∆[HHb]. However, measures of changes in cerebral cellular oxygen metabolism

can also be obtained using a different type of NIRS, referred to as broadband NIRS, through

measurement of changes in ∆[oxCCO]. Broadband NIRS uses multiple wavelengths of

light in order to obtain changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO]. Previously, commer-

cial systems with narrow bandwiths have been developed (Brazy et al., 1985; Zaramella

et al., 2001a). Recently, the Biomedical Optics Research Laboratory (BORL) at University

College London (UCL) and other research groups (Nosrati et al., 2016a; Rajaram et al., 2018;

Wang et al., 2016) have recently been developing novel broadband NIRS systems in order
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to measure changes in oxCCO. To date, there has been significant interest in obtaining these

measurements primarily in a clinical setting and there are only a few reports of functional

activation studies. This section provides an overview of the studies that have so far used

NIRS to measure changes in oxCCO.

1.3.2.2 Clinical studies

Over recent years, there has been an increase in interest to measure oxCCO in order to ob-

tain a new marker for metabolic function for use as a non-invasive, bedside, clinical mon-

itoring technique. oxCCO has been shown to be more brain specific than haemoglobins

(de Roever et al., 2016) and has shown to correlate more strongly with Phosphorus Mag-

netic Resonance Spectroscopy (31P MRS) markers of mitochondrial function (Bainbridge

et al., 2014). It is therefore appealing as a unique biomarker of cerebral metabolic activity

particularly in conditions such as hypoxia, stroke and brain injury where energy failure

may take place or there might be mitochondrial impairment. In particular, the alternative

to using NIRS is either MRI or MRS both of which require the use of a scanner and are not

only expensive, but cannot be used as early as the first day of life in some clinical popula-

tions. NIRS on the other hand is an inexpensive, portable and non-invasive alternative.

1.3.2.2.1 Neonates/Infants Over the years there have been a number of studies using

oxCCO in the hospital to monitor neonates. One of the earliest reports used NIRS to mon-

itor preterm neonates was in 1985 by Jöbsis’s group (Brazy et al., 1985) using a three-

wavelength system where a decrease in ∆[oxCCO] was reported in response to sponta-

neous oxygen desaturations in three preterm infants. It is worth noting that the original

target for Jöbsis’s work in 1977 (Jobsis, 1977) was oxCCO. Neurological deficits can lead to

mortality after cardiac procedures and it has been suggested that they could be caused by

cerebral hypoxia, which is the condition during which brain tissue is deprived of oxygen,

occurring during the surgery (Nollert et al., 1998). A previous study by Plessis et al (1995)

used a commercial system to monitor cerebral hypoxia or brain injury that may occur dur-

ing infant cardiac surgery and reported a decrease in ∆[oxCCO] during the part of the

surgery where deep hypothermic circulatory arrest was administered. This is a technique
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used during surgery that involves cooling the body in order to suspend blood circulation

and brain function for up to 30 minutes. Many adult studies have used NIRS in a simi-

lar context as a neuro-monitoring technique during cardiac surgery (Kakihana et al., 2002;

Nollert et al., 1998) and brain injury (Tisdall et al., 2008; Highton et al., 2014) however for

the purposes of keeping this overview relevant these are not discussed here. Moreover,

a recent study involving investigation of neonatal stroke using broadband NIRS found

asymmetrical cerebral metabolic function as early as the first day of life (Mitra et al., 2016),

demonstrating that not only does oxCCO provide a measure of cerebral metabolic func-

tion but predictive assessment using NIRS can be done earlier than MRI. Recent interest

has gathered in investigating neonatal brain injury and hypoxia ischaemia encephalopathy

(HIE), which is defined as a class of brain injury occurring when the neonate’s brain tissue

does not receive adequate oxygen supply. A study investigated neonatal encephalopathy

(NE; brain damage) using a broadband NIRS system over the frontal lobe and left and right

hemispheres (Bale et al., 2014) in conjunction with Proton MRS (1H MRS) and found that

oxCCO was significantly correlated with the 1H MRS biomarkers of NE. Further studies

have been performed by the same group with larger sample sizes in new borns with acute

brain injury and demonstrated that oxCCO along with systemic measurements could be

used to predict severity of injury while haemodynamic responses could not (Bale et al.,

2016b). The most recent study using the same system in HIE neonates also showed the ox-

CCO correlated with the outcome and it was possible to perform this measurement prior

to the use of an MRS scanner which is the gold standard marker for outcome of HIE (Bale

et al., 2018).

1.3.2.2.2 Piglets Studies have also been performed in piglets using 31P MRS and broad-

band NIRS where HI was induced in piglets by surgically isolating the carotid artery (Bain-

bridge et al., 2014). There, the authors reported that oxCCO correlated with MRS markers

of mitochondrial function and in addition to this, the outcome of the piglet at 48 hours was

related to the recovery of the ratios of oxCCO and MRS biomarkers after the HI insult.

These studies demonstrate that oxCCO is a useful marker of metabolic function that

can be obtained non-invasively using NIRS in the clinic. For a more detailed review of
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clinical applications, the reader is referred to a recent review by Bale et al (2016a).

1.3.2.3 Functional activation studies

1.3.2.3.1 Adults Broadband NIRS has been used in a number of different adult stud-

ies to measure changes in oxCCO alongside changes in HbO2 and HHb. Heekeren et al

used visual stimulation in the form of an inverting red/green checkerboard while mea-

suring responses over the visual cortex, using an in-house built broadband NIRS system

(Heekeren et al., 1999a). The authors reported an increase in ∆[oxCCO] in response to the

stimulus. An inverted checkerboard was also used in another study measuring ∆[oxCCO],

∆[HbO2] and ∆[HHb] over the occipital lobe (Phan et al., 2016a) which also reported in-

creases in ∆[oxCCO] and ∆[HbO2] in response to the stimulus and additionally demon-

strated distinct spatial localisation of each of the chromophores. Previous studies have

also used anagram solving tasks over the prefrontal region (Kolyva et al., 2012; de Roever

et al., 2017; Ghosh et al., 2012) reporting majority of the responses observed to be increases

in ∆[oxCCO] and ∆[HbO2] in response to the task however some heterogeneity was ob-

served in the oxCCO response. A study using a driving simulation task (Nosrati et al.,

2016b) measured responses over the prefrontal cortex using an in-house built broadband

NIRS system and demonstrated differences in task-related responses in ∆[oxCCO] which

were consistent with changes in ∆[HbO2].

1.3.2.3.2 Infants There is only one reported study of the use of NIRS to measure ∆[oxCCO]

in functional activation in infants. Zaramella et al (2001b) used a commercial NIRS system

and measured ∆[oxCCO], ∆[HbO2] and ∆[HHb] over the left and right temporal regions

in response to auditory stimulation in newborns. While the authors reported heterogene-

ity in the haemodynamic response (i.e. some infants displaying an increase in ∆[HbO2]

in response to the stimulus and some displaying a decrease), no changes were observed

in ∆[oxCCO]. The only other published use of this technique in infants during functional

activation is by the first study presented in this thesis, described in Chapter 4.

Table 1.2 provides a summary of the studies which were discussed in this section.
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Type of
study

Participants Methods Pathology Stimulus Reference

Clinical

Neonates NIRS Preterm neonates - Brazy 1985

Infants NIRS, Systemic measurements Cerebral hypoxia during cardiac surgery - Plessis 1995

Adults NIRS, Systemic measurements Cerebral hypoxia during cardiac surgery - Kakikhana 2002,
Nollert 1998

NIRS Brain injury - Tisdall

NIRS Brain haemorrhage - Highton, 2014

Neonates NIRS Stroke - Mitra, 2016

Neonates NIRS, 1H MRS NE - Bale, 2014

Neonates NIRS, Systemic measurements Acute brain injury - Bale, 2016

Neonates NIRS HIE - Bale, 2018

Piglets NIRS, 31P MRS HIE - Bainbridge, 2014

Functional
Activation

Adults NIRS - Visual stimulation Heerken, Phan
2016

Adults NIRS - Anagram solving task Kolyva, Roever,
Ghosh

Adults NIRS - Driving simulation task Nosrati, 2016

Infants NIRS - Auditory stimulation Zaramella et al

Infants NIRS - Visual and auditory stimulation Siddiqui et al,
2017

Table 1.2: Summary of studies measuring oxCCO in adults, neonates, infants and piglets.

1.3.2.4 oxCCO during functional activation - why measure it?

oxCCO provides a unique marker that, as previous studies have shown, correlates with

biomarkers of energy metabolism and mitochondrial function. Therefore in the context

of infants where neurovascular coupling mechanisms and neurometabolic pathways are

not very well understood, measuring oxCCO could potentially provide an intermediate

measure of metabolic activity which can further aid our understanding of human brain

development. It can also be useful in investigating neurodevelopmental disorders such

as autism where many components of the neurovascular coupling pathway including mi-

tochondrial function have been implicated. Not only this, but measuring oxCCO may be

particularly useful in atypical populations such as infants at high genetic risk of autism,

where studies have been performed to search for early biomarkers.

1.3.3 Summary

This thesis presents research on the application of broadband near-infrared spectroscopy

(NIRS), simultaneously with electroencephalography (EEG), in order to gain a better un-

derstand of neurovascular coupling mechanisms and metabolic pathways in typical and

80



Chapter 1

atypical brain development. This PhD pioneered the use of broadband NIRS to measure

changes in cellular energy metabolism in awake infants and therefore many methodologi-

cal challenges needed to be overcome.

Chapter 2 provides an overview of both NIRS and EEG techniques. It outlines the

basic principles of light propagation in tissue and discusses the different types of NIRS in-

strumentation in order to help the reader understand how broadband NIRS systems differ

from dual-wavelength commercial NIRS systems and how they can be used to obtain cellu-

lar measurements of the change in oxidation state of mitochondrial enzyme cytochrome-c-

oxidase (oxCCO). The chapter also details the neural basis of the EEG signal and provides

a description of the EEG equipment that is used in the studies presented in Chapters 4, 5

and 6. Finally, data processing streams for both NIRS and EEG are described in detail.

An important aspect of my research has been to develop 3-dimensionally (3-D) printed

headgear for use with broadband NIRS systems, particularly for use simultaneously with

EEG. Chapter 3 discusses the various designs that were developed and used during the

studies presented in this thesis.

Chapter 4 presents the first study of this PhD work that involved using only NIRS to

measure haemodynamic changes and changes in oxCCO during functional activation in

typically developing infants, using social dynamic auditory and visual stimuli that have

been used previously for many NIRS studies (Lloyd-Fox et al., 2014a, 2009). A single chan-

nel miniature broadband NIRS system was used for this study and while the results pro-

vided limited information about metabolic processes in the developing infant brain, it was

an important methodological milestone demonstrating that broadband NIRS could be used

to measure cellular changes resulting from brain activation in early infancy.

While the overall aim of my PhD has been to investigate neuronal functional in infants,

Chapter 5 presents the second study which used simultaneous multi-channel broadband

NIRS and EEG during a visual checkerboard paradigm, in adults. This was a necessary

step prior to carrying out this work in infants as a number of methodological developments

needed to be made. These included development of headgear, experimental paradigms

and data analysis methods. All of these are described in detail in this chapter and influ-

enced subsequent work presented in Chapters 6 and 7.
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Chapter 6 details the first part of the third study which involved simultaneous multi-

channel NIRS and EEG in typically developing infants. This study follows up from work

presented in Chapter 4, by measuring brain activity over the temporal cortex in response

to dynamic social and non-social auditory and visual stimuli. The results shed a light on

the status of neurovascular coupling in infants.

The study presented in Chapter 7 was performed in the same session as that of Chap-

ter 6 however this study follows on from work presented in Chapter 5 and measured brain

activity in response to visual stimuli over the occipital cortex. The study showed differ-

ences in neurovascular coupling in comparison to adults and regional differences between

temporal and occipital cortices were observed. The study was therefore extended to inves-

tigate neurovascular coupling in atypical brain development.

The final study of this PhD is described in Chapter 8 where the same experimental

procedures and paradigms were used to investigate neurovascular coupling in infants at-

risk for developing autism spectrum disorders. While the study was a preliminary one and

had very few subjects, potentially interesting patterns of atypical neurovascular coupling

mechanisms have emerged.

Chapter 9 presents a general discussion, conclusions from this thesis and future direc-

tions.
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TECHNIQUES FOR INFANT BRAIN

IMAGING: THEORY,

FUNDAMENTALS AND

INSTRUMENTATION

This chapter discusses the various techniques that are currently used for functional neu-

roimaging in infants. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG)

were the two modalities that were used for the studies presented in this thesis therefore the

fundamentals of NIRS, including light propagation in tissue are described in detail, and an

overview of different types of NIRS instrumentation is provided with a particular focus on

broadband NIRS. The principles of EEG are also discussed and a general overview of data

analysis of both NIRS and EEG data is provided.

2.1 Fundamentals of NIRS

Near-infrared spectroscopy is a non-invasive technique first described by Jobsis in 1977

(1977) and that takes advantage of the translucency of tissue to in the near-infrared (NIR)

region of the electromagnetic spectrum (650 - 1000 nm), in order to assess changes in
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haemodynamics and metabolism. Continuous-wave (CW) NIRS was used for the work

presented in this thesis which allows for monitoring of changes in the concentration of

at least three chromophores present in tissue; oxygenated haemoglobin (HbO2), deoxy-

genated haemoglobin (HHb) and the oxidation state of cytochrome-c-oxidase (oxCCO).

Compounds that absorb light in the spectral region of interest are known as chromophores.

The absorption of light by these chromophores depends upon whether they are carrying

oxygen and the propagation of light in tissue is affected by the scattering and absorption of

the illuminated tissue. In order to understand and interpret NIRS measures, light transport

in tissue needs to be discussed in detail.

2.1.1 Light Transport in Tissue

Light transport is dependent upon two phenomenon which attenuate light as it passes

through tissue - absorption and scattering and these are influenced by chromophores, the

wavelength of light used, absorbing compounds present in the tissue as well as the struc-

ture of the tissue. Both of these processes are described in detail in the following sections.

2.1.1.1 Absorption

The absorption of light traveling through a non-scattering, homogenous medium was de-

scribed by Bouger in 1729 as the fraction of the light intensity I, incident upon successive

layers of equivalent thickness in a non-scattering medium, being absorbed in equal mea-

sures. In 1760, Lambert transcribed this relationship into a mathematical equation:

δI
I
= −µa.δd (2.1)

where δd is the thickness of the absorbing medium, µa (cm−1) is referred to as its ab-

sorption coefficient and defined as the probability that a photon is absorbed in the medium

per unit length travelled. δI
I represents the fraction of incident light that gets absorbed by

the medium. Equation 2.1 can be alternatively expressed as:

I = I0e−µa.d (2.2)
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where I is the transmitted light intensity after the incident light intensity I0 travels

through a non-scattering medium of thickness d (cm) (alternatively referred to as the opti-

cal pathlength) that has absorption coefficient µa. In 1852, Beer expressed the relationship

between the absorption coefficient µa and the concentration of c, the absorbing compound

in a non-absorbing solution as the following:

µa = α.c (2.3)

where α is referred to as the specific absorption coefficient (molar−1.cm−1). The Lambert-

law and the Bouger-law can be combined to derive the Beer-Lambert law which describes

the absorption of light intensity in a non-scattering medium. The law states that the ab-

sorbance of a compound in a non-absorbing medium is proportional to its concentration

c in the solution, its specific absorption coefficient µa and the optical pathlength d. This

can be derived from combining equations 2.2 and 2.3 to form Equation 2.4 and is shown in

Figure 2.1:

I = I0e−α.c.d (2.4)

Figure 2.1: Model for Beer-Lambert Law in a non-absorbing medium with incident light
intensity I0, transmitted light intensity I and pathlength d.

A non-absorbing medium may contain multiple absorbing compounds therefore the

absorbance of the medium can be described as the sum of the contributions of each com-

pound, c1, c2,...,cn. Equation 2.4 can be further expanded to include this:
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I = I0e−(α.c1+α.c2+...+α.cn).d (2.5)

2.1.1.2 NIRS chromophores in biological tissue

Compounds that absorb light in the spectral region of interest are known as chromophores.

Biological tissue consists of several principal chromophores, each with an individual ab-

sorption spectrum (describing the level of absorption at each wavelength) and concen-

tration. Figure 2.2 shows the absorption spectra for different chromophores in biological

tissue from 100 to 10,000 nm. In near-infrared spectroscopy, the chromophores that are

of interest are those whose absorption spectra vary with their oxygenation status. These

chromophores are discussed in the following sections.

Figure 2.2: Absorption spectra of different chromophores in biological tissue shown be-
tween 100 to 10,000 nm. Figure reproduced from (Scholkmann et al., 2014) with permis-
sion.
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Water 60 - 90% of the adult human body is composed of water which is one of the major

chromophores found in biological tissue. As shown in Figure 2.2, the absorption of water

is relatively low in the region 200 - 900 nm, with a sharp increase beyond 900 nm which

continues to increase with increasing wavelength of light. The high concentration and ab-

sorption of water in tissue limits the tissue thickness that light can penetrate and therefore,

the window for spectroscopic work is defined based on the region where the absorption

of light by water is relatively low; 650 - 900 nm presents a window of transparency for

near-infrared spectroscopy measurements.

Lipids Lipids can be considered as a fixed constant absorber of light. While the absorp-

tion of light by is thought to be similar to that of water, the concentration of lipids in the

brain is relatively low. Therefore for brain functional activation measurements, lipids do

not contribute greatly to the attenuation of light.

Haemoglobin Haemoglobin is one of the most important absorbers of light in the near-

infrared region and therefore for NIRS measurements. Oxygen binds reversibly to haemoglobin

causing a conformational change in the molecular structure of haemoglobin resulting in

two species namely oxygenated haemoglobin (HbO2) and deoxygenated haemoglobin (HHb),

both of which have distinct absorption spectra in the NIR region, shown in Figure 2.3.

The differences in the spectra allow for quantification of the contribution of each of these

species to the attenuation of light.
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Figure 2.3: Specific extinction spectrum of oxygenated haemoglobin (HbO2) and deoxy-
genated haemoglobin (HHb) between 650 - 1000 nm.

Cytochrome-c-oxidase Cytochrome-c-oxidase (CCO) is a mitochondrial enzyme involved

in the electron transport chain and is responsible for 95% of oxygen metabolism in the cell.

The role of CCO in energy generation has already been discussed in detail in Chapter 1.

From a structural perspective, CCO has four redox centres - two copper centres CuA and

CuB and two haem groups - a and a3. CuA is the main absorber of NIR light in CCO.

CuB and haem a3 form a binuclear unit which forms the oxygen binding site of CCO. This

binuclear unit receives electrons from the CuA and haem a group and donates electrons

to oxygen to generate ATP. This transfer of electrons that occurs between redox centres

through a series of oxidation and reduction reactions (also referred to as redox reactions)

leads to changes in the optical property of CCO, with the enzyme having different absorp-

tion spectra in its oxidized and reduced forms. Figure 2.4 shows these spectra of CCO and

the distinct peak of CCO in its oxidized peak can be seen around 840 nm (Jobsis, 1977).

The difference between the two spectra can be used to obtain changes in the oxidation sta-

tus of CCO (oxCCO) which provides a measure of its redox state and reflects the balance

between energy supply and demand (Jobsis, 1977). Figure 2.4 also shows the oxidized mi-

nus reduced CCO spectrum, which is used for NIRS measurements. The oxidized minus
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reduced CCO spectrum is used because unlike the haemoglobin species, it is assumed that

the absolute concentration of CCO does not change during the measurement.

Figure 2.4: Specific extinction spectrum of CCO in its oxidized form (yellow), reduced form
(magenta) and the difference between the oxidized and reduced spectrum (green) between
650 - 1000 nm.

2.1.1.3 Scattering

Next to absorption, the other phenomenon that majorly effects the propagation of light

is called scattering and accounts for most of the light attenuation that occurs in biolog-

ical tissue (Elwell, 1995). Scattering is the process whereby the direction of the photons

(composing the incident light) is altered upon collision with matter but no energy loss oc-

curs, unlike in absorption. Similar to absorption however, scattering in a medium is also

influenced by the wavelength of the incident light. Figure 2.5 shows the model for this

occurring in a scattering medium and Equation 2.6 describes a relationship to estimate the

attenuation of light in a scattering medium due to scattering:

I = I0e−µs.d (2.6)

where I is the transmitted light, I0 is the incident light, −µs refers to the scattering

coefficient (mm−1 ) which represents the probability that per unit length travelled in a scat-
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tering medium, a photon will be scattered. This equation is valid for a scattering medium

containing only a single type of scattering particle and cannot be used to describe light at-

tenuation occurring due to multiple scattering events. However, given the complex nature

of the human brain multiple scattering does occur but is challenging to estimate. As a result

of this, it is difficult to obtain an estimate of the total attenuation of light that occurs due to

scattering and therefore the quantification of the absolute concentration of chromophores

in tissue is a complicated matter which is not discussed here. The next section discusses

how the attenuation of light in tissue can be quantified using the Modified Beer-Lambert

law, taking into account both absorption and scattering in tissue.

Figure 2.5: Model for light scattering in a scattering medium where I0 is the incident light,
I is the transmitted light and d is the optical pathlength. The red trajectories indicate the
path that the light takes in a scattering medium.

2.1.2 Light attenuation

As light travels through tissue, a loss in light intensity referred to as attenuation occurs

as a result of the phenomena described in the previous sections, namely absorption and

scattering. If the light attenuation needed to be estimated for an absorption-only medium,

Equation 2.7 (derived from Beer-Lambert Law) would be sufficient:
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A = log10

(
I0

I

)
= ε.c.d (2.7)

where A is the attenuation, ε is the specific extinction coefficient (molar−1.cm−1), c is the

concentration of the absorbing compound in the medium and d is the optical pathlength.

Given, however, the complex and highly scattering nature of biological tissue, scattering

effects need to be taken into account in order to accurately estimate the attenuation of light

in tissue. Delpy et. al (1988) developed the Modified Beer-Lambert Law (MBLL) which

takes into account loss of light intensity due to absorption and scattering as well as the

increased pathlength of the photons due to scattering and is expressed in the following

equation:

A = log10

(
I0

I

)
= (ε.c.d.B) + G (2.8)

where A is the attenuation, ε is the extinction coefficient of the absorbing compound, d

is the optical pathlength and B is the differential pathlength factor (DPF). The DPF refers to

the increased distance that the photons travel in the medium due to scattering. The prod-

uct d.B is the differential pathlength (cm) and G is the loss of light intensity occurring due

to scattering and other boundary losses. G is difficult to estimate, as mentioned previously

estimating total attenuation of light due to scattering is challenging matter. However, if this

factor remains constant throughout a measurement, the change attenuation can be used to

quantify the change in concentration of chromophores. This is sufficient for brain func-

tional activation studies and can be compared across different brain regions and stimuli.

2.1.2.1 Differential Pathlength Factor

The MBLL requires estimation of the DPF in order to estimate the attenuation of light. DPF

is strongly influenced by light scattering and absorption in tissue and somewhat by wave-

length of the incident light (Duncan et al., 1995) and it can be challenging to approximate,

particularly as it can be variable across participants. There are number of methods that

can be used to estimate DPF and Duncan et al. (1995) used an intensity modulated optical

spectrometer to estimate the DPF in adults and reported the approximate value in adult
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head to be 6.26 ± 14.1%. Previous studies of neonates and infants (Benaron et al., 1995)

and Duncan et al. (1995) showed that the DPF was effected by age, head size and wave-

lengths and emphasized the importance of the selection of the DPF which directly relates

to the quantification of change in the concentration of chromophores in tissue. An age-

dependent formula was later devised (Duncan et al., 1995) to estimate the DPF for an age

group. The infant work presented in this thesis uses an estimated DPF of 5.13 while the

adult work uses 6.26.

2.1.3 Differential spectroscopy

The modified Beer-Lambert law has been discussed in detail in the previous section and it

has been established that the total change in attenuation in a scattering medium is difficult

to estimate. Therefore, the change in concentration in chromophores can quantified using

the change in light attenuation in tissue, for a number of wavelengths. This forms the ba-

sis for differential spectroscopy and is important to discuss here as the main focus of this

PhD has been to use broadband near-infrared spectroscopy which is based on differential

spectroscopy, to estimate changes in concentrations of HbO2, HHb and oxCCO. Broadband

near-infrared spectroscopy instrumentation and the UCLn algorithm will be described in

the following sections. Here, I discuss how differential spectroscopy uses the MBLL to esti-

mate chromophore concentration changes using changes in attenuation of light at multiple

wavelengths.

Given that we are interested in observing the changes in concentration, consider a scat-

tering medium with only one chromophore with concentration c1 at time t1 and concentra-

tion c2 at time t2. Applying MBLL from Equation 2.8 we would obtain:

A1 = ε.c1.d.DPF + G (2.9)

A2 = ε.c2.d.DPF + G (2.10)

The change in the attenuation ∆A = A2 − A1 allows us to obtain
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∆A = ε.∆c.d.DPF (2.11)

where ∆c = (c2 − c1).

Equation 2.11 can be extended to obtain change in attenuation for n chromophores

∆A = ∑
n

εn.∆cn.d.DPF (2.12)

This can then be translated to obtain change in attenuation for i wavelengths λi, which

forms the basis of differential spectroscopy

∆Aλi = ∑
n,λi

εn,λi .∆cn.d.DPF (2.13)

Typically, most commercial CW NIRS systems use two wavelengths of light to resolve

for changes in concentrations of HbO2 and HHb and the change in attenuation for this

scenario with two wavelengths is given by:

[
∆Aλ1

∆Aλ2

]
=

[
εHbO2,λ1 εHHb,λ1

εHbO2,λ2 εHHb,λ2

][
∆cHbO2

∆cHHb

]
.d.DPF (2.14)

Solving Equation 2.14 for the change in concentration gives

[
∆cHbO2

∆cHHb

]
=

1
d.DPF

[
εHbO2,λ1 εHHb,λ1

εHbO2,λ2 εHHb,λ2

]−1[
∆Aλ1

∆Aλ2

]
(2.15)

2.1.3.1 UCLn algorithm

Broadband near-infrared spectroscopy uses a range of wavelengths in the NIR window,

for example the work presented in this thesis uses 120 wavelengths between 780 - 900 nm.

The instrumentation for this is described in the following section. The quantification of

the changes in the concentrations of HbO2, HHb and oxCCO using the UCLn algorithm is

discussed here.

The UCLn algorithm (Equation 2.16) is based on the principles of differential spec-

troscopy described in the previous section and can be used resolve for changes in the con-
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centration of HbO2, HHb and oxCCO, at n different wavelengths. This is given by:

[ ∆cHbO2

∆cHHb

∆coxCCO

]
=

1
d.DPF

[ εHbO2,λ1 εHHb,λ1 εoxCCO,λ1

εHbO2,λ2 εHHb,λ2 εoxCCO,λ2

...
...

...

εHbO2,λn εHHb,λn εoxCCO,λn

]−1[ ∆Aλ1

∆Aλ2

...

∆Aλn

]
(2.16)

From a theoretical perspective, the UCLn algorithm could be used with three wave-

lengths to resolve for changes in the three chromophores of interest. However, previous

work (Matcher et al., 1995) has shown that using several different wavelengths produces

more accurate measurements, minimizes residual errors from the algorithm and is es-

sential for CCO measurements as the absorption spectra of CCO is similar to that of the

haemoglobin species. The concentration of CCO is almost an order of magnitude less in

comparison to HbO2and HHb thereby making it more challenging to measure. This may

also lead to the question whether the observed CCO signal may be cross-talk (Uludag et al.,

2004; Cooper and Springett, 1997; Cooper et al., 1999; Uludag et al., 2002). Typically, there-

fore, the measurement of ∆[oxCCO] is obtained using a broadband spectroscopy system

which measures the changes in light attenuation over a continuous portion of the NIR

spectrum. The infant work presented in Chapter 3 uses residual analysis to explore the

possibility of the measured oxCCO signal being cross-talk and a more detailed discussion

is provided there.

2.1.4 NIRS instrumentation

There are a number of different types of NIRS instrumentation that use a variety of tech-

niques to measure either changes in light attenuation in tissue or total attenuation of light.

The most commonly employed are continuous wave (CW), frequency domain (FD) and

time-resolved (TR), these are illustrated in Figure 2.6. Briefly, CW NIRS uses light that is

emitted at a constant intensity and then the change in light intensity or the attenuation

change is measured once the light has passed through tissue. FD NIRS uses light at a mod-

ulated intensity and constant frequency and then measures the intensity of the detected

light along with a phase-shift. TD NIRS uses short pulses of light and measures the time
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taken for the photons to emerge from the tissue.

Figure 2.6: The different types of NIRS systems; (a) Continuous Wave (CW) NIRS (b)
Frequency Domain (FW) NIRS and (c) Time Domain (TD) NIRS. Image reproduced from
(Scholkmann et al., 2014) with permission.

2.1.4.1 Time domain and Frequency-domain

TR NIRS systems emit extremely short impulses of light (of the order of picoseconds) to

tissue and measure the time taken for photons to pass through tissue, also referred to as

time of flight. This allows the pathlength of the photons to be measured and therefore

provides the possibility of obtaining a measure of total attenuation of light and therefore

the quantification of the absolute values of haemoglobin. FD systems also provide the

opportunity of measuring the absolute concentration of chromophores in tissue using time

of flight, through a different principle. The system delivers light to tissue that is modulated

at a specific frequency and intensity and then measures the intensity of the detected light

and the phase-shift in the frequency which corresponds to the time of flight of the photons.
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2.1.4.2 Continuous-wave (CW)

CW systems are discussed in more detail here as they form the basis of the systems used

in the studies presented in this thesis. Infant functional activation studies most commonly

employ the use of CW NIRS as they are less complex and less expensive in comparison to

FD and TR systems. Many commercial CW systems have now been developed to measure

brain activity across multiple regions simultaneously (Scholkmann et al., 2014) and typi-

cally use two wavelengths of light generated either by laser diodes (LDs) or light emitting

diodes (LEDs) to resolve for changes in the concentrations of HbO2 and HHb. Arrays are

formed composing of specific orientations of sources and detectors which are placed on the

head, with sources emitting the light and detectors measuring the change in attenuation of

light as it passes through tissue, from neighboring light sources. This requires the identi-

fication of the source associated with a detected signal and this is done by encoding and

decoding the illuminated light sources while the detectors acquire data continuously. This

involves modulating the intensity of each individual light source at a specific frequency.

The light that is detected at the detector can then be analysed in the frequency domain in

order to determine the contribution of each light source to the detected light and therefore

identify the associated light source with the detected light signal.

One of the most challenging aspects of CW, particularly for use with infants, is design-

ing appropriate headgear to maintain source-detector coupling as well as coupling of the

array with the participant’s head as any CW systems are highly sensitive to any changes

in either of these. Different headgear designs were developed for each of the studies pre-

sented in this thesis and are discussed in Chapter 3. The following section discusses the

instrumentation of CW NIRS systems, including broadband systems which are also CW.

2.1.4.3 Instrumentation

There are three main components that form part of a CW NIRS system - light sources to

emit light, photodetectors to detect the light that has passed through tissue, optical fibres

to transport light from the source to the tissue and from tissue to the photodetector. The

components of a broadband NIRS system are briefly described here but as two different
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broadband systems were used in this thesis, the systems and their hardware are discussed

in more detail in Chapters 4, 5 and 6.

2.1.4.3.1 Light source CW systems use either LEDs or LDs as sources to emit light at

specific wavelengths and most commercial instruments typically use a combination of two

or three wavelengths to measure changes in the concentration of HbO2 and HHb. Table

2.1 provides a comparison of a variety of commercial NIRS devices and the different wave-

lengths they use. The selection of wavelengths is an important technical aspect of CW NIRS

instruments that can significantly impact the signal to noise ratio of the NIRS measurement

and a number different methods have been developed to select the optimum wavelengths,

a detailed discussion on this can be found in a review by Scholkmann et al. (Scholkmann

et al., 2014). Additionally, the type of light source used i.e. either LEDs or LDs also de-

termines the wavelength selection as LDs have a narrow spectral resolution with limited

choice of wavelengths while LEDs have a larger bandwidth of ~35 nm. Broadband NIRS

systems require a continuous spectrum between 695 - 900 nm which is achieved through

the use of a white light source that offers a wider bandwidth. For all the studies presented

in this thesis, chromophore concentration changes were calculated using the UCLn algo-

rithm using 120 wavelengths between 780 - 900 nm.

Device Manufacturer No. of
wave-

lengths

Wavelengths used (nm)

NTS Optical Imaging System Gowerlabs, UK 2 780, 850

FOIRE-3000 Shimadzu, Japan 3 780, 805, 830

NIRO-200NX Hamamatsu, Japan 3 735, 810, 850

ETG-4000 Hitachi, Japan 2 695, 830

ETG-7100 Hitachi, Japan 2 695, 830

WOTb Hitachi, Japan 2 705, 830

OxyMon Artinis, Netherlands 2 760, 850

PortaLite Artinis, Netherlands 2 760, 850

NIRSport NIRx, USA 2 760, 850

NIRScout NIRx, USA 2 or 4 LED: 760, 850 or Laser; 685, 780, 808, 830

Table 2.1: Comparison of different commercial NIRS systems and their choice of
wavelengths.
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2.1.4.3.2 Medium to transport light from the source to the tissue and from the tissue to

the detector In order to transport the light to the tissue and back from the tissue to the

detector, two methods may be employed. The first is by placing the sources and detectors

directly in contact the skin (Bozkurt et al., 2005; Muehlemann et al., 2008) and second, by

using a transporting medium such as optical fibres to transport the light. The latter is most

commonly used by commercial NIRS systems for brain measurements while the former is

used by fibreless wearable systems such as the PortaMon (Artinis, Netherlands) and the

UCL fibreless Diffuse Optical Tomography (DOT) system (University College London, UK)

(Chitnis et al., 2016). The broadband NIRS systems used in this PhD thesis use optical fibres

to transport the light from the source to tissue and tissue to photodetector. The studies

presented in Chapters 3, 4 and 5 each used a different set of optical fibres the specifications

of which are described within each chapter. Appropriate headgear needs to be designed

in order to affix the sources and detectors on a participants head. Headgear design is also

discussed in more detail in Chapters 3, 4 and 5.

2.1.4.3.3 Photodetector to detect the light that has passed through the tissue Photode-

tectors employ the use of the photoelectric effect (Scholkmann et al., 2014) which converts

light into an electrical signal and there are a number of different types photodetectors - pho-

todiodes (PDs), avalanche photodiodes (APTs), photomultiplier tubes (PMTs) and charge-

coupling devices (CCDs). Most commercial CW NIRS systems use PDs and APTs while

broadband systems require recording of continuous spectrum (Cope et al., 1988) which is

achieved through the use of a CCD, in combination with a spectrometer and a series of

lenses. The incoming light is detected at the spectrometer and directed to a diffraction

grating which disperses the light. The CCD is then able to spatially separate the spectral

components of light to obtain the continuous spectrum (Cope et al., 1988).

2.2 EEG

The neural origin of the EEG signal is discussed here and the specification of the system

used for studies in this thesis is described in more detail.
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2.2.1 Neural basis of EEG

EEG is a non-invasive technique that is used to record electrical activity of the brain. A

neuron propagates electrical signals to other neurons in a two step process which involves

transmitting an electrical signal along the cell by means of an action potential and between

cells by means of a synapse through chemical neurotransmitters. Both of these processes

have already been described in detail in Chapter 1. To recap, the chemical neurotrans-

mitter at the synapse between neurons can either excite or inhibit the postsynaptic neuron

resulting in either an excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic

potential (IPSP). Figure 2.7 depicts this process. The arrival of an EPSP at the postsynaptic

neuron causes it to become depolarized temporarily and this change in the postsynap-

tic membrane potential causes an influx of positively charged ions Na+ and Ca2+ causes

a change in the voltage deflection inside the neuron with respect to the outside, thereby

leading to the formation of extracellular sinks and sources. This causes a current to flow

referred to as a dipole, between the extracellular sink and source in order to balance out

the difference in voltage between sink and source. This process is shown in Figure 2.8.

The voltage potential of the dipole decreases with increasing distance (Buzsáki et al., 2012)

and is what can be detected by EEG electrodes placed on the scalp. More specifically, it

is thought that pyramidal neurons of the cortex generate the strongest EEG signals as the

neurons are spatially aligned and their activity is synchronized. Therefore, the measured

EEG signal results from the combined activity of a large number of similarly orientated

pyramidal neurons and reflects the summation of the postsynaptic potentials of large pop-

ulations of neurons which contribute to the local field potential (LFP) (Buzsáki et al., 2012)

which can be detected by EEG sensors that are placed on the scalp.
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Figure 2.7: Generation of a excitatory postsynaptic potential (EPSP) as a result of the sum-
mation of all presynaptic inputs

Figure 2.8: Ionic flow across the membrane leads to the flow of current from the extracellu-
lar source to the sink. A dipole is generated as a result of the difference in voltage between
the source and the sink and this difference is what can be measured using EEG.

2.2.2 Neuroelectrics Enobio EEG System

The first experimental study presented in this thesis (Chapter 3) did not involve acquiring

EEG data. However, the remaining chapters - Chapters 4, 5 and 6 involved simultaneous

acquisition of NIRS and EEG. Therefore, the EEG system is described here and is applicable
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to those chapters.

2.2.2.1 Hardware

The Enobio 32 wireless EEG system (Neuroelectrics, Spain) was used to acquire EEG data.

There are a number of components that form part of the EEG system and these include:

1. Electrodes that are referred to as “geltrodes” and are placed into the neoprene cap

on the subject’s head and are filled with a highly conductive gel - Signagel (Parker Labs,

USA) and are shown in Figure 2.9a.

2. The EEG wires which are clipped on top of the geltrodes and are shown in Figures

2.9b and 2.9c and are plugged into a wireless transmitter also referred to as the amplifier.

3. The wireless transmitter also known as the “necbox” is shown in Figure 2.9d. The

necbox amplifies the difference between the voltage at each individual electrode site and

the reference, which is placed on the mastoid behind the ear. Therefore, the voltage was

measured relative to the reference site and is amplified. The sampling rate of the system

was 500 Hz. The sampling bandwidth was 0 - 125 Hz.
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Figure 2.9: Enobio EEG components formed by (a) Geltrodes used inside the EEG headcap
(b) EEG wires clipped on top of geltrodes (c) EEG wires plugged into the wireless amplifier,
also referred to as the necbox and (d) the wireless amplifier or necbox.

The Enobio System allows measurement from 32 electrode sites located on the head

according to the standard International 10/20 system. The electrodes were placed in dif-

ferent orientations on the head in each of the studies presented and the exact EEG montage

used will be discussed in each of the relevant chapters.

2.2.2.2 Software

The necbox uses wireless technology to connect to Neuroelectrics Instrument Controller

(NIC) Software via Bluetooth. Figure 2.10 shows the front panel of the NIC Software where

the EEG signal from each of the electrode sites can be visualised.
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Figure 2.10: NIC software front panel displaying quality of EEG signals from each electrode

2.3 Data Analysis

2.3.1 NIRS

All NIRS data were analysed in Matlab 2014a (Mathworks, USA). The conversion to con-

centration changes from attenuation data was performed using a program that was written

by Dr Ilias Tachtsidis and Dr Phong Phan and all subsequent analyses that were performed

were using scripts that I wrote.

2.3.1.1 Preprocessing

In general, the pipeline to process the NIRS data presented in this thesis was the same in

each chapter, with some steps not being applicable to the adult data presented in Chapter

5. Figure 2.11 shows main steps involved and each of them are detailed in the following

sections.
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Figure 2.11: NIRS general data analysis pipeline. Trial rejection based on looking-time is
only applicable to the infant data presented in Chapters 4, 6, 7 and 8 and is introduced and
discussed in Chapter 4.

2.3.1.1.1 Wavelet-based Motion Correction Wavelet-based motion correction (Molavi

and Dumont, 2012) was used to remove artifacts in the data due to movement. This step

is particularly important for infant data as the infants are relatively free to move in their

parent’s lap and therefore, they are more likely to move or make sharp head movements,

especially younger infants who don’t have strong neck control. The algorithm was applied

to the attenuation signal of each participant across all wavelengths between 780 - 900 nm.

It calculates wavelet coefficients for the attenuation data using the discrete wavelet trans-

form and the coefficients that are identified as outliers are marked as movement artifacts

and corrected. The tuning parameter alpha controls the trade-off between the intensity of

the artifact attenuation and the level of distortion introduced into the NIRS signal. Whilst

a high tuning parameter can effectively remove artifacts, it may change the shape of the

haemodynamic response and cause the signal to become dampened. Conversely, a low

tuning parameter retains the true shape of the haemodynamic response but may not re-

move artifacts effectively. Different tuning parameters were used in the different studies
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and will be discussed in each relevant chapter. Figure 2.12 shows an example of the atten-

uation signal from a single participant at wavelength equal to 830 nm and how the motion

correction algorithm acts to correct portions of the data where motion artifacts are present.

Recent work (unpublished, in preparation) by colleagues at the Centre for Brain and Cog-

nitive Development (CBCD) and in the Netherlands have verified that this technique is

most successful in correcting motion artifacts present in infant data.

Figure 2.12: Attenuation data from a single participant at wavelength = 830 nm. The
wavelet-based motion correction algorithm detects motion artifacts in the attenuation sig-
nal and these are highlighted in red and visible as spikes in the signal where the algorithm
has not been applied.

2.3.1.1.2 Calculation of chromophore concentration changes Once the motion correc-

tion had been applied to the attenuation data, the chromophore concentration changes

were calculated using the UCLn algorithm which has been discussed earlier. A wavelength-

dependent DPF of 5.13 was used for the infant studies presented in Chapters 3, 5 and 6

which is suitable for infants of the age range and 6.26 was used for the adult studies (Dun-

can et al., 1995).

2.3.1.1.3 Filtering Following the conversion from attenuation data to concentration changes,

the data was filtered using a order Butterworth bandpass filter. The filters used for each of

the studies were different and will be discussed in each chapter.

2.3.1.1.4 Data segmentation After filtering, the data were segmented into epochs around

the onset of the stimulus and typically included around 4 seconds of the baseline prior
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to the onset of the experimental condition, the experimental condition and the entire fol-

lowing baseline period. The lengths of experimental stimuli in each of the studies were

different, therefore data segmentation will be discussed in more detail in each chapter.

2.3.1.1.5 Baseline correction The segmentation procedure yielded blocks of data and

baseline correction was applied in order to ensure that the HRF reflected a response to the

experimental condition versus background activity. This step does not alter the signal but

shifts the waveform such that the pre-stimulus activity is reduced to zero. Different meth-

ods of baseline correction were used in each of the studies, therefore baseline correction

will discussed in more detail in each chapter.

2.3.1.1.6 Rejection criteria Data can be removed from the study due to various rejection

criteria which can include poor signal-to-noise ratio as well as behaviour of the participant.

For infant data, trials were rejected based on looking-time and as this only applies to the

studies presented in Chapters 4, 6, 7 and 8 it is introduced and discussed in Chapter 4. The

rejection criteria for each study differed and more information about the exact criteria can

be found in the relevant chapter.

2.3.1.1.7 Averaging Procedures The ∆[HbO2], ∆[HHb] and ∆[oxCCO] responses for each

participant were averaged across valid blocks to obtain an average response for an exper-

imental condition, for each of the chromophores, for each participant. The average re-

sponses for each participant were then averaged together to obtain a grand mean time

course for each of the chromophores. The averaging procedure for the adult study pre-

sented in Chapter 5 was slightly different and this will be discussed there.

2.3.1.2 Further Analyses

2.3.1.2.1 Cross-correlations Cross-correlations can be used to determine the similarities

between two time-series, particularly if one time-series may be related to past lags of the

other time-series. Typically it is used in functional connectivity to explore the relationship

between neural activity observed in one area of the brain in relation to activity in another
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area of the brain. Here, it was used to investigate the relationship between each of the NIRS

chromophores, particularly oxCCO and its relation to the haemoglobins as they represent

different components of the neurovascular coupling pathway which may not be correlated

exactly temporally.

The cross-correlation, for two time-series x(t) and y(t) where t = 0, 1, 2, ..., N − 1, is

given by the following formula with time-lag (or time delay) equal to d:

r =
Σt[(x(t)− x̄) x (y(t − d)− ȳ)]√
Σt(x(t)− x̄)2

√
Σi(y(t − d)− ȳ)2

(2.17)

where x̄ and ȳ are the means of each of the time-series.

Equation 2.17 can be used to obtain the cross-correlation at every time delay d =

0, 1, 2, ..., N − 1:

r(d) =
Σt[(x(t)− x̄) x (y(t − d)− ȳ)]√
Σt(x(t)− x̄)2

√
Σi(y(t − d)− ȳ)2

(2.18)

Essentially, the cross-correlation provides a measure of similarity between the time

series by determining cross-correlations between the time-series at every time-point and

identifying the time-delay at which the correlation is maximised. Here, it was calcu-

lated on a trial-by-trial basis for each participant and then averaged to obtain mean cross-

correlations between (1) HbO2 and HHb, (2) HHb and oxCCO and (3) oxCCO and HbO2,

for each participant. These were then averaged across the participants to obtain grand

averaged cross-correlations.

2.3.2 EEG

All EEG data were analysed in Matlab 2017a (Mathworks, USA) using the EEGLab Toolbox

(Schwartz Centre for Computational Neuroscience, UC San Diego, USA) and scripts that I

wrote.
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2.3.2.1 Preprocessing

The same pipeline was used for preprocessing all the EEG data presented in this thesis.

Figure 2.13 shows the main preprocessing steps and each of the stages shown is discussed

in more detail in the following sections.

Figure 2.13: EEG data analysis pipeline

2.3.2.1.1 Filtering EEG is sensitive to skin and movement potentials and may also be

effected by electrical noise from surrounding equipment. For the studies presented in this

thesis, a 5th order Butterworth filter of 0.1 - 100 Hz was applied to all EEG data offline to

remove skin and movement potentials (0.1 Hz) and to remove any other activity not con-

sidered to be brain activity (100 Hz) that may have arisen due to artifacts. Typically, studies

employ the use of a more narrow range for bandpass filtering, particularly if the objective

of the study was to investigate event-related potentials or oscillatory activity associated

with lower frequency bands such as theta and alpha. For the studies reported here, higher

frequency oscillatory activity (i.e. gamma activity) was of interest therefore the bandpass

filter was chosen to include a wide range of frequencies in the data.

2.3.2.1.2 Segmentation Once filtering was performed, the data were segmented around

the onset of the experimental stimulus. The adult data presented in Chapter 5 were seg-
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mented into epochs of 700 milliseconds consisting of 200 milliseconds of baseline preced-

ing the onset of the stimulus and 500 milliseconds after the stimulus onset. The infant

data presented in Chapters 6, 7 and 8 were segmented into epochs of 1 s consisting of 200

milliseconds of baseline preceding the stimulus and 800 milliseconds after the onset of the

stimulus. Segmenting the data in this way allows stimulus-evoked neural activity to be

isolated.

2.3.2.1.3 Baseline correction Segmented epochs were baseline corrected by taking the

average of the 200 milliseconds of baseline prior to the onset of the stimulus and subtract-

ing it from the entire epoch. This is done in order to ensure that the activity reflects a

response to the experimental stimulus and does not include any other activity occurring in

the brain.

2.3.2.1.4 Artifact detection and removal EEG data is particularly sensitive to artifacts

and there are few different types of artifacts which can affect the data. These include ocu-

lomotor motor activity, large movement potentials, electromyography (EMG) (or muscle

noise) and alpha activity. Figure 2.13 shows a few examples of these artifacts present in the

data. Alpha activity is commonly seen when participants are tired and occurs around 10

Hz in adults and around 7 Hz in infants and is characterized by its sine morphology. Steps

can be taken to reduce alpha contamination by ensuring that participants are well-rested

prior to the testing session. EMG or muscle noise typically occurs in bursts around 20 - 40

Hz and can affect the data particularly if the intention is to investigate oscillatory activity

above 15 Hz (Cohen, 2014). Oculomotor activity includes eye blinks and eye movements

which can be seen in frontal channels and is more prevalent in adult EEG data than in

infant data. To remove these artifacts, two levels of detection were performed. The first

involved using an automatic detection tool in EEGLab which identified and removed seg-

ments of the data where the signal amplitude exceeded a pre-determined threshold. For

the adult data presented in Chapter 5, the threshold was set to ±100 mV while for the

infant data presented in Chapters 6, 7 and 8 the threshold was set to ±200 mV, in accor-

dance with previous studies (Jones et al., 2015). This removed any large artifacts from the
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data due to movement, drifts or any other issues which causes large changes in the signal

(for example temporary loss of connection between the amplifier and software or move-

ment of the reference electrode). While the artifact detection tool was useful in identifying

large changes in the signal, it did not successfully remove EMG noise, alpha activity or eye

blinks. Therefore, the next level of artifact removal involved visually inspecting the signal

at each electrode on a trial by trial basis and segments that contained artifacts that were

not successfully detected in the previous step were identified and removed.

Figure 2.14: Different types of artifacts affecting EEG data. The data used here is from an
adult volunteer.

2.3.2.1.5 Bad channel interpolation When visually inspecting the data to remove arti-

facts, if the EEG signal at individual channels appeared to be noisy in comparison to other

surrounding electrodes, i.e. the noise was not due to an artifact, the channel was replaced

with an average voltage of the nearby channels. This is common practice in EEG studies

that use high density EEG (Cohen, 2014). Due to the fact that adults generally sit still when
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instructed to do so and more time can be taken to position the cap, gel the electrodes and

ensure a good signal was being obtained from all electrodes, the EEG signal quality for the

adult studies was better. As a result, bad channel interpolation was not required for any of

the datasets in the adult work presented in Chapter 5 and was limited to the infant studies

performed in Chapters 6, 7 and 8.

2.3.2.1.6 Rejection criteria In all the EEG studies presented in this thesis, a participant

was removed from the study if they did not have at least 5 valid epochs after the prepro-

cessing steps were performed.

2.3.2.2 Further Analyses

EEG activity can be analysed in two domains:

1. Time domain by means of computing event-related potentials

2. Time-Frequency domain by means of decomposing the EEG signal into underlying

oscillations

Both methods are discussed in the following section and are used to analyse the EEG data

presented in Chapters 4, 5 and 6.

2.3.2.2.1 Event-related potentials Event-related potentials (ERPs) are changes in the

EEG that are time-locked to sensory, motor or cognitive events and are small voltages gen-

erated in the brain in response to specific stimuli (Blackwood and Muir, 1990). ERPs are

obtained at each channel by averaging the segments of the EEG signal free from artifacts

and noise. Averaging is performed across epochs to obtain an average ERP for each par-

ticipant which represents the neural response that is time-locked to the presentation of the

stimulus. The averaging process reduces background EEG activity and isolates the neural

activity that is related to the stimulus. The number of valid trials required depends on the

experiment being conducted and typically depends on the expected size of effect (Luck,

2005). For adult ERP studies this can vary from 20 trials to 200 trials. Following averaging

across trials for each participant, averaging across participants is performed to obtain the
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grand average waveform. There are different components of an ERP, the most notable of

which are the P1 (or P100) and N1 (or N100) peaks which are defined as the positive (P)

or negative (N) voltage deflections occurring around 100 ms post-stimulus onset. Earlier

components such as the P1 and N1 are termed sensory as they depend on physical fea-

tures of the stimulus being presented while later components that occur between 300 - 600

ms are termed cognitive as they are deemed to reflect information processing. Figure 2.15

shows an example of an ERP with different components indicated.

Figure 2.15: Event-related potential with different visual-evoked components identified.

2.3.2.2.2 Time-Frequency analyses While ERPs have a very high temporal precision and

accuracy, they are limited to one dimension (time) and many of the neural dynamics con-

tained within EEG data cannot be represented in an ERP. Furthermore, the underlying

physiological mechanisms that produce an ERP are not as well understood as other repre-

sentations of EEG data such as oscillations (Buzsáki et al., 2012; Buzsáki and Wang, 2012)

which are in the time-frequency domain. EEG data encapsulates rhythmic activity which

reflects neural oscillations occurring due to fluctuations in electrical activity of large pop-

ulations of neurons that are synchronously active. An oscillation is formed by three key

pieces of information which include (a) frequency which is defined as the speed of the oscil-

lation with units hertz (Hz) (b) phase which is defined as the position at a specific time point

on a waveform (sine wave here) and is measured in radians or degrees (c) power which is
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the square amplitude of the oscillation and represents the amount of energy in a particu-

lar frequency band. Figure 2.16 shows the frequency, power and phase that compose the

oscillation at one particular electrode.

Figure 2.16: Components of an oscillation; phase, frequency and power identified on the
EEG signal from one electrode. The data used in this figure is my own and the idea for the
figure has been adapted from (Cohen, 2014).

Oscillations appear to reflect fundamental neural mechanisms (Cohen, 2014) and have

been linked to physiological events Buzsáki 2006; Engel et al. 2001; Herrmann et al. 2010;

Kistler et al. 2000; Klimesch et al. 2008. Neural oscillations are grouped into different fre-

quency bands which are defined as delta, theta, alpha, beta and gamma, each of which

have been associated with various cognitive functions. The bands are defined based on the

age of the participant and the borders differ between infants and adults. Table 2.2 shows

the different frequency bands in both adults and infants.

Frequency Band Adults Infants

Delta 1 - 4 Hz 1 - 3 Hz

Theta 4 - 8 Hz 3 - 6 Hz (Saby and Marshall, 2012)

Alpha 8 - 12 Hz 6 - 9 Hz (Jones et al., 2015)

Beta 13 - 30 Hz 10 - 25 Hz (Saby and Marshall, 2012)

Gamma 30 - 100 Hz 20 - 60 Hz (Saby and Marshall, 2012)

Table 2.2: Different frequency bands for adults and infants.

The phase and power of an oscillation are generally considered to be independent of

one another and capture different neural dynamics. For the work presented in this thesis,

I will be focusing on power-frequency analyses therefore phase is not discussed here. Ob-
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taining the time-frequency representation of the EEG data involves transforming it from

the time domain (one-dimensional) which involves transforming change in the voltage

across time into the time-frequency domain (three-dimensional) consisting of the power of

different frequencies being represented in time, frequency and space where space refers to

the spatial location of the electrodes. It is important to note that the time-frequency rep-

resentation produces many more dimensions but for the purposes of this PhD work we

consider only the 3-D representation. Figure 2.17 illustrates this representation as a “3-D

cube” and how different information measures reflecting neural dynamics can be obtained

from the time-frequency decomposition. These measures are:

1. Power-frequency (Figure 2.17A) which represents the power of each frequency in the

EEG signal. Note that time is not represented here.

2. Power-time (Figure 2.17B) which represents how the power of one frequency changes

over time. Note that multiple frequencies cannot be visualised simultaneously here.

3. Space (Figure 2.17C) which shows the data at one time-frequency point to visualise

the topographical distribution of the power.

4. Time-Frequency (Figure 2.17D) which represents how the power of a frequency changes

across time. Note that in general the time-frequency representation can reflect many

features of the EEG data such as power, phase clustering, connectivity or correlation

coefficient. For the purposes of this work, we are only interested in the representation

of power in the time-frequency domain.
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Figure 2.17: Different representations of the 3-D time-frequency “cube” and the measures
that can be extracted from it. This figure has been reproduced from (Cohen, 2014).

2.3.2.2.2.1 Discrete Fourier Transform The Fourier Transform (FT) is a power signal-

processing tool that can be used to transform the EEG data from the time domain to the

time-frequency domain. The principle of the FT is that all time-series signals can be de-

composed into the sum of sine and cosine waves (shown in Figure 2.18), both of which are

periodic functions with a difference in phase of π/2 (radians) or 90◦ and can be represented

mathematically as shown in Equations 2.17 and 2.18
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Figure 2.18: Sine (blue) and Cosine waves (orange)

A sin(2π f t + φ) (2.19)

A cos(2π f t + φ) (2.20)

where A is the amplitude of the sine wave, f is the frequency and t is the time and φ is

the offset of the phase which is related to the time point t = 0. The DFT involves computing

the dot product between a sine wave and the time-series data at a specific frequency at

each time point in the data. The dot product D is defined in Equation 2.19, between two

elements m and n where k is the number of elements in m (or n, both must have the same

number of elements):

Dmn =
k

∑
i=1

mini (2.21)

The sine wave is referred to as the kernel which is multiplied with the time-series signal.

Equations 2.17, 2.18 and 2.19 can be combined to transform the EEG signal from the time

domain to the frequency domain to obtain the formula for DFT which is given by Equation

2.20:
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X f =
n

∑
k=1

xke(−2πi f (k−1)n−1) (2.22)

where X is the “complex-valued” Fourier coefficient (computed at frequency f ) of the

time-series variable x where n is the number of data points and i is the imaginary operator.

An imaginary number (or “complex” number) refers to a number having the form a + ib,

where a is the real component and b is the imaginary component. The real and imaginary

components of the Fourier coefficients contain information about the amplitude, power

and phase of the EEG signal for different frequencies. The reader is referred to (Cohen,

2014) for the detailed mathematical derivation of Equation 2.20 and discussion of the DFT.

The signal in the frequency domain can be transformed into the time domain using the

Inverse Fourier Transform (IFT):

xk =
n

∑
k=1

X f e(2πi f (k−1)n−1) (2.23)

Conceptually, the DFT is useful to understand the principle behind the transformation

from time domain to frequency domain. Its practical implication however, is computa-

tionally expensive and slow. For this purpose the Fast Fourier Transform (FFT) is used

in all toolboxes for the time-frequency transformation. The FFT is used to estimate the

Power Spectral Density (PSD) which is one of the measures used to estimate the power

of the EEG data in the studies presented in this thesis. It is discussed in the next section.

An important assumption of the FT is that the time-series signal in question is stationary

over time (i.e. there is no change in mean, variance and frequency of the signal). This

is an assumption that is likely to be violated in real data as neurophysiological activity is

non-stationary and changes over time particularly in response to different stimuli or tasks.

Therefore the FT may be a more suitable choice for resting state or sleep studies. Addition-

ally, the FT does not provide any temporal representation of the frequencies. Alternative

methods may therefore be employed to obtain the time-frequency decomposition such as

the wavelet-based decomposition which is used in this PhD work and is discussed in the

following section.
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2.3.2.2.2.2 Power Spectral Density If the temporal representation of the frequen-

cies is not of interest, then the short-time Fourier Transform (STFT) may be used when seg-

ments are shorter, during which the signal is likely to remain stationary (Cohen, 2014). This

can then be used to calculate the PSD which is obtained by squaring the Fourier coefficient

to obtain the distribution of the power of the different frequencies. It can be represented

topographically as well.

2.3.2.2.2.3 Wavelet Convolution Wavelet-based decomposition or wavelet convo-

lution can be used alternatively to the FT if the stationarity assumption is likely to be

violated. It has the added advantage of providing temporal information about the sig-

nal thereby allowing visualisation of changes in power of frequencies over time, although

it must be noted that the time-frequency representation provides a trade-off between the

temporal and frequency precision. The reason why the FT is unable to provide any tem-

poral representation is because the kernel used for the dot product is a sine wave which

continuously fluctuates over time and in order to obtain temporal characteristics of the

frequencies, the dot product between the sine wave and the time-series signal needs to

be computed at specific time windows. This can be done by convolving (taking the dot

product) between the sine wave with a Gaussian window which is given by Equation 2.22

G = ae−(t)2/(2σ2) (2.24)

where G is the Gaussian window, a is the amplitude of the Gaussian curve, t is the time

and σ is the width (or standard deviation) of the Gaussian and σ is given by

σ =
n

2π f
(2.25)

where f is the frequency and n is the number of wavelet cycles. n is a non-trivial param-

eter that determines the trade-off between frequency and temporal precision and needs

to be selected carefully based on the data. For the data presented in Chapters 4, 5 and 6

where wavelet convolution is used, n = 3 was used. The convolution of sine wave with the

Gaussian window provides the Morlet Wavelet (Cohen, 2014) and Figure 2.19 shows an ex-
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ample of a sine wave and a Gaussian wave and the resulting convolution. Morlet wavelets

are useful in evaluating the temporal features of the frequency structure of the EEG signal.

Additionally, wavelet convolution requires the signal to be stationary only during the time

window in which the wavelet resembles the sine wave (Cohen, 2014), thereby providing

a more reasonable assumption that is less likely to be violated (Cohen, 2014; Florian and

Pfurtscheller, 1995; Jaeseung Jeong et al., 2002).

Figure 2.19: Example of how a Gaussian window can be convolved with a sine way to
obtain the Morlet wavelet.

As I mentioned earlier, in analysing the EEG data presented in this thesis, obtaining the

power of the underlying frequencies in the EEG data is of particular interest. In order to

extract the power, complex Morlet wavelets need to be used. Similar to the DFT or FFT,

the EEG signal is convolved using the dot product with the complex Morlet wavelet and

the resulting complex-valued function can be used to extract information about the time,

power and phase. The reader is referred to (Cohen, 2014) for a more detailed discussion

and fuller mathematical description of complex Morlet wavelets.

2.3.2.2.2.4 Event-related spectral pertubation In the analyses presented in this the-

sis, wavelet convolution was used to obtain the time-frequency representation of the EEG

119



Chapter 2

signal. This representation is referred to as the event-related spectral pertubation (Makeig,

1993) which is computed by obtaining the spectral information on a trial-by-trial basis for

each participant which is then averaged to obtain an average ERSP for each participant.

This can then be averaged across participants to obtain a grand ERSP.

2.3.3 Summary

In this chapter, the fundamentals of NIRS and EEG techniques were described in detail

which included theory as well as instrumentation. The data processing pipelines for each

technique were also discussed in detail, which will be used to analyse the data presented

in Chapters 4 - 8. While Chapter 4 describes a study that used only broadband NIRS, all

subsequent chapters (5 - 8) utilised NIRS simultaneously with EEG.

The following chapter discusses the process of developing headgear for the various

studies presented in this thesis.
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DEVELOPMENT OF HEADGEAR

FOR INFANT STUDIES

3.1 Introduction

As outlined in Chapter 1, the purpose of the work presented in this thesis was to utilise

broadband NIRS for the non-invasive measurement of cerebral energy metabolism during

brain development and further, to use this measure to investigate neurometabolic path-

ways in the developing infant brain. Specifically for the latter aim, broadband NIRS was

required to be used simultaneously with EEG. While extensive work has been carried out

by Dr Sarah Lloyd-Fox at the Centre for Brain and Cognitive Development (CBCD) to suc-

cessfully develop handcrafted headgear for NIRS infant studies, particularly for the work

presented in the latter half of this thesis, more adaptable designs were required for use with

EEG. Additionally, each of the studies that I carried out during this PhD work had a range

of different requirements which are discussed in the following sections. 3-dimensional

(3-D) printing presents a good option to prototype more complex designs of the optode

holder. This chapter therefore, details the development of 3-D printed headgear for each

of the studies presented in this thesis.
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3.2 Development of 3-D printed headgear for infant studies

This section discusses the translation from handcrafted arrays to 3-D printed headgear

which was used for the first infant study presented in Chapter 4, that utilised a single

channel broadband NIRS system referred to as the mini-CYRIL. The system was composed

of a single light source and detector.

3.2.1 Optical fibres

It is important to understand the shape of the optical fibre as this greatly influences the

design of the headgear. For the first infant study, identical optical fibres were used for both

light source and spectrometer and were made of glass, manufactured by Loptek (Loptek,

Germany). Each fibre had an inner core diameter of 2.3 mm. The subject-end of the fibres

was flat-ended with the optode head at right angles to the optical fibre as shown in Figure

3.1a. Right-angled fibres are commonly used for infant studies as they lie flush against the

head and can easily be secured into place without needing to apply extra pressure, thereby

making them more comfortable. Additionally, there is no added gravitational pull causing

the fibres to lift off the head, as is common in some adult fibres. This is discussed further

in Section 3.3. Figure 3.1b shows the subject-end of the optical fibres.

Figure 3.1: Optical fibres forming part of the mini-CYRIL system.
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3.2.2 Probe design

3.2.2.1 Existing headgear designs

An extensive amount of work has been done by Dr Sarah Lloyd-Fox at the CBCD, to de-

sign infant NIRS headgear that is now used by neurodevelopmental research groups using

functional NIRS (fNIRS). The existing NIRS headgear consists of two components:

1. Optode holder which is formed of

(a) Plastic washers to hold individual fibres

(b) Pad to hold all the fibres

2. Silicone headband which is used to keep the optode holder in place on the infant’s

head.

Figures 3.2a, b and c show the optode holder and headband respectively and Figure 3.2d

shows the headgear on an infant.
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Figure 3.2: Existing NIRS headgear components individually with (a) and (b) showing the
optode holder composed of plastic washers and foam pad to hold individual fibres, (c) the
silicone headband used to hold the optode holder in place on the infant’s head and (d)
the headgear positioned on an infant. The images used in (a), (b) and (c) were reproduced
from http://cbcd.bbk.ac.uk/node/165 and the image used in (d) is courtesy the Bill and
Melinda Gates Foundation.

As I discussed previously, the existing handcrafted headgear works well for infant

studies. However, more adaptable designs were required for the studies presented in

Chapters 5 - 8 which could be easily designed and tested through 3-D printing. For the

study presented in Chapter 4, a simple 3-D printed optode holder was designed for use in

conjunction with the NIRS headband developed by Dr Sarah Lloyd-Fox which could then

be adapted and modified for use in later studies.

3.2.2.2 3-D printed designs

A number of 3-D printed designs were created and trialed for use in infant NIRS studies.

The first design involved reproducing the current handcrafted optode holder design in 3-
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D space using AutoCAD; a commercial computer aided design software (Autodesk, USA).

The second design was similar to the first with a few varying features and was used for

this study. The third design was used for subsequent NIRS studies and will discussed in

more detail in Chapter 5.

Design 1

The first design developed is shown in Figure 3.3. It was 3-D printed in three layers; 1)

Rigid washers 2) Medium soft rubber material to support washers and 3) Soft rubber pad.

The base material used for each of the components was TangoBlack (Stratasys, USA) which

is a soft rubber that can be have varying rigidity from the most rigid version used for the

washers to the least rigid version used for the soft rubber pad. A PolyJet Objet Connex 500

(Stratasys, USA) printer was used to print the design in layers. During the first attempt

to translate the infant optode holder into a 3-D printed model (Design 1), a number of

problems were encountered which included:

1. The material for the washers was too rigid and caused the washers to snap when

fibres were clipped in and out.

2. The difference in the density of the materials (between the rigid washers and the

flexible rubber pad) caused breakages at different points along the optode holder.

For this reason, a second design was developed to improve upon on these problems and

this was used for the study presented in Chapter 4.

Figure 3.3: Optode holder design 1, with different components indicated.
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Design 2

The second design that was developed was printed in two layers; 1) Rigid washers embed-

ded inside the soft rubber 2) Soft rubber pad, as shown in Figure 3.4. These were made of

the same material as for Design 1. A shorter version of this design, which is shown in Fig-

ure 3.5, was used in conjunction with the silicon headband for this study. The short version

of Design 2 was satisfactory and did not break as easily as the washers were embedded but

did have some apparent cracks after approximately 30 uses. Additionally, this design was

challenging to create as embedding the washers into the rubber pad required advanced

AutoCAD skills. Therefore, it was not easy to adapt the optode holder for different array

designs and would not work well for future studies. For this purpose, further designs were

developed which are discussed in Section 3.4.

Figure 3.4: Optode holder design 2, with different components indicated.
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Figure 3.5: Shorter version of Optode holder design 2 which was used for the study pre-
sented in this chapter, with fibres clipped in. The fibres are clipped in for the purposes
of the image, the spacing between source and detector was maintained at 2.8 cm for all
participants, during the study.

3.3 Development of combined NIRS-EEG headgear for use with

adults

While the focus of this PhD work was on infant brain development, the second study

in thesis (presented in Chapter 5) utilised multi-channel broadband NIRS simultaneously

with EEG in adults. This is because prior to using a combined NIRS and EEG protocol in

infants, a number of methodological aspects needed to be developed which could only be

done through first performing the studies in adult. The study used visual stimulation and

NIRS responses were measured over the occipital cortex. One of the main challenges of

simultaneous NIRS and EEG is the design and development of appropriate headgear to

accommodate both NIRS optodes and EEG electrodes on the head. This section discusses

how the combined NIRS-EEG headgear was created for the adult study prior to extension

for use with infants. The work presented here was carried out in collaboration with Mr

Andrew Levy of the Wellcome Trust Centre for Neuroimaging, Functional Imaging Labo-

ratory, UCL.

3.3.1 Optical fibres

The system is described in detail in Chapter 5 and was composed of four light sources and

10 detectors which provided a total of 16 measurement channels. The optical fibres used

in this study were made of glass and were custom-builty by Loptek (Loptek, Germany).
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The diameter of the light source of each individual light source fibre at the subject-end was

3.2 mm. These fibres are shown in Figure 3.6a. Each bundle of the detector fibres had a

diameter of 1.5mm and each individual detector fibre within the bundle had a diameter of

70µm. The detector fibre bundle is shown in Figure 3.6b. The system had two detectors for

tissue oxygenation index (TOI) measurements which were not used in this study.

Figure 3.6: Optical fibres forming the source fibres and detector fibres with (a) the sys-
tem and subject ends of the light source fibres and (b) the system and subject ends of the
detector fibres. All photos were reproduced from (Phan, 2018) with permission.

3.3.2 EEG

As this study was performed concurrently with EEG, the EEG montage is described here.

The system has already been described in detail in Chapter 2. Twenty-six EEG channels

were used with five channels positioned over the occipital lobe (Oz, O1, O2, O9 and O10)

and twenty-one channels were distributed over the rest of the participant’s head (AF3,

AF4, Fz, F3, F4, FC1, FC2, FC5, FC6, Cz, C3, C4, CP1, CP2, Pz, P3, P4, P7, P8, PO3 and

PO4). Figure 3.7 shows the EEG montage with all the channels indicated in purple circles.
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Figure 3.7: EEG montage showing the locations of the 26 channels.

3.3.3 NIRS Probe Design

The orientation of the sources and detectors was kept the same as in previous studies (Phan

et al., 2016a) that also used visual stimulation and measured responses over the occipital

cortex. While their study used a number of different source-detector separation distances

for the purpose of performing image reconstruction, the separation in this study was main-

tained at 3 cm for all source-detector pairs which has been previously shown to be ideal for

adult functional activation studies measuring changes in oxCCO (Phan et al., 2016b). Fig-

ure 3.8 shows the schematic for the array which was centred around Oz of the International

10/20 system.
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Figure 3.8: A schematic diagram of the NIRS array showing the positions of the sources and
detectors and EEG electrodes, with blue squares indicating detectors, red stars indicating
sources and cyan circles indicating EEG channels over the occipital cortex. The black lines
represent channels that are formed between sources and detectors.

3.3.3.1 Challenges

Although visual stimuli produce strong functional changes and previous work has demon-

strated that the cytochrome signal is more localised than haemoglobin (Phan et al., 2016a),

designing the headgear for a visual paradigm can be challenging particularly for use si-

multaneously with EEG. While the temporal resolution of EEG is much better than NIRS,

its spatial resolution is poor. In contrast, NIRS provides good spatial resolution and the

measured signals are more sensitive to the location of the optodes on the head. Therefore,

well-designed headgear design is particularly important for NIRS measurements in order

to ensure that the optodes lie over the region of interest and additionally to achieve good

coupling between the optical fibres and the head which greatly influences the signal-to-

noise ratio. There were a number of factors that needed to be kept in mind when designing

the headgear, these included:

1. The occipital cortex is the area of the head where the scalp is the thickest and also
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most variable among participants, therefore a solution needed to be devised that

would work for all participants.

2. The fibres forming part of the multi-channel broadband system were straight-end

fibres that were prone to lifting off the scalp (due to gravitational pull) and therefore

failing to maintain good coupling with the head.

3. The EEG necbox and wires added weight to the headgear leading to an additional

downward force causing the fibres to further lift off the head. Therefore, a solution

was required that would counteract the downward pull on the fibres and allow them

to be tightened on the head independently.

The initial focus of this study therefore was to develop appropriate headgear for simul-

taneous NIRS and EEG measurements over the occipital cortex. The first iteration of the

headgear involved using 3-D printed designs by Dr Phong Phan, with some variations.

The NIRS headband and EEG cap were developed separately to allow meet the individual

requirements of each technique independently.

3.3.3.2 Iteration 1

The NIRS headgear involves a number of components:

1. 3-D printed holders for the source fibres, shown in Figures 3.9a and 3.9b. Figure

3.9a is a conceptual drawing in AutoCAD showing the design in 3-D space prior to

printing and Figure 3.9b shows the printed holders with the source fibres plugged in.

2. 3-D printed holders for the detector fibres, shown in Figures 3.9c and 3.9d. Figure

3.9c is a conceptual drawing in AutoCAD and Figure 3.9d shows the printed holders

with the detector fibres plugged in.

3. 3-D printed optode couplers (also referred to as washers) that would allow the hold-

ers to be secured into the cap, shown in Figure 3.9e, which is a conceptual drawing

in AutoCAD.

4. Headband to position holders and couplers on the head.
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5. Neoprene fasteners to allow tightening of the headband to the head.

Figure 3.9: Components required to hold optical fibres in place for visual cortex measure-
ments. (a) conceptual design of 3-D printed holder for the source fibres and (b) source fibres
shown plugged into the 3-D printed holder, photo courtesy Dr Phong Phan (c) conceptual
design of 3-D printed holder for the detector fibres (d) detector fibres shown plugged into
the 3-D printed detector holders, photo courtesy Dr Phong Phan and (e) conceptual design
of 3-D printed optode coupler to hold optical fibres on the head

The first iteration of the headgear involved creating a headband made of neoprene

material, shown in Figure 3.10. This headband was made by creating holes for the optode

couplers in the neoprene material. The couplers were then glued into the material using

silicone, in order to fix them into place to ensure that the source - detector separation was

maintained. The back of the neoprene material was coated with silicon to provide friction

and ensure that the headband did not slip down during measurements. Finally, neoprene

fasteners were stitched on in order to tighten the headband on the head.
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Figure 3.10: The iteration of the NIRS headband for measurements over the occipital cortex,
on a participant. The headgear consisted of a neoprene headband, with the washers for the
optical fibres glued in to the band. Neoprene fasteners were stitched on to allow tightening
of the headband to the front of the head.

3.3.3.2.1 Problems The first iteration of the headband proved to be unsuccessful and

a number of issues were encountered, particularly in ensuring that all optical fibres main-

tained good contact with the head. These included:

1. The silicone used to line the neoprene headband was too thick and not only did it

cause the headband to become heavy but also made it stiff. This meant that the head-

band did not mould very well to the shape of the head and caused rifts where certain

parts of the array would make good contact with the head while other parts would

lift off. In particular, the most important channels centered around the primary visual

cortex were most affected.

2. The neoprene fasteners allowed tightening of the headband but this led to headaches

and pulsating sensations at the front of the participant’s head. Additionally as the

fasteners were made of a thicker type of neoprene they tended to lift off the head

rather than provide the tightening effect required at the back of the head.
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3. The optode couplers glued into the headband using silicone led to decreased flexibil-

ity of the headgear.

4. The neoprene material used for the headband was a rectangular piece of material that

was not designed with the shape of the average adult head in mind and therefore did

not mould to the participant’s head.

Figure 3.11 illustrates the various issues encountered with the first iteration of the head-

gear. A second iteration of the headband was developed in order to overcome these issues.

Figure 3.11: Iteration 1 of the headband on a participant indicating some of the issues that
arose with this headgear.
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3.3.3.3 Iteration 2

For the second iteration, it was necessary to re-design most aspects of the headgear. There

were two main issues with first iteration:

1. Inability to mould to the head shape of the average adult.

2. Failure provide enough support and tightness to ensure good optical coupling be-

tween the fibres and the head.

These issues were addressed in a two-step improvement process.

3.3.3.3.1 Issue #1

• Headband

Neoprene was used again to create the headband, however a softer type of neoprene was

used. A model head was used for pattern cutting to ensure that the headband had curva-

ture built-in to mould to the shape of an adult head. Figure 3.12 shows an image of the

second iteration of the headband.

Figure 3.12: Second iteration of the NIRS headband which was specifically developed to
mould to the shape of an adult head.

• 3-D printed flexible grid
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In the previous version of the headgear, the couplers were glued in which led to decreased

flexibility of the headgear. Therefore, in this iteration the couplers were not glued in and

a different method of ensuring source - detector separation was devised. A flexible grid,

shown in Figure 3.13a was designed and 3-D printed using plasticized copolyamide ther-

moplastic elastomer (PCTPE) (Taulman3D, USA) which is a type of nylon. Due to the flexi-

bility of this material, when attached to the underside of the neoprene headband shown in

Figure 3.13b and positioned on the head, the grid gained curvature which aided the overall

ability of the headgear to mould to the shape of the head.
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(a) The underside of the headband with the flexible
3-D printed grid indicated.

(b) The underside of the headband with the flexible 3-D printed grid indicated.

Figure 3.13: Flexible grid 3-D printed grid to maintain source - detector separation of 3cm.

3.3.3.3.2 Issue #2

• Optode couplers

The previous design of the 3-D printed optode couplers worked well for NIRS functional

activation studies. However, when used in conjunction with EEG, where added weight

(due to the electrodes and the wireless transmitter), led to additional downward forces on
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the optical fibres. Due to this, the current couplers were unable to satisfactorily support

the fibres, often leading to poor coupling with the scalp. The couplers were therefore re-

designed in AutoCAD to include additional components to allow further tightening of the

fibres on the scalp. The holders for the source and detector fibres were kept the same as

in the previous design. Figure 3.14 shows a picture of the new 3-D printed couplers. The

couplers were altered in the following ways:

1. Loop holes were added to the top of the coupler in order to feed string through to

attach to a buckle pulley system at the front of the head.

2. The bottom half of the coupler was modified to have an upward conical shape in

order to ensure that the flexible grid and neoprene did not slip out.

Figure 3.14: Optode couplers re-designed to optimise tighter coupling of optical fibres and
the head.

• Buckle pulley system

The string that was fed through the loops on top of the optode couplers would be attached

to ribbon forming part of a buckle pulley system, shown in Figure 3.15. This allowed
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the opportunity to further tighten the fibres on the head, independent of tightening the

headband.

Figure 3.15: Buckle pulley system used to tighten the fibres on the head.

Final Headband

Figures 3.16a-c show the front, side and back views of the headband positioned on a

participant.
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Figure 3.16: (a) Front, (b) side and (c) back views of the headband on a participant. Permis-
sion was obtained from the participant for their image to be included here.

3.3.3.4 Combined NIRS-EEG headgear

Preliminary testing showed that the new headband fulfilled all the previously discussed re-

quirements of a functional and comfortable NIRS headband. In order to create a combined

NIRS-EEG headgear, the NIRS headband was used in conjunction with the Neuroelectrics

Neoprene Headcap (Neuroelectrics, Spain), shown in Figure 3.17. A window was cut out

from the back of headcap where the NIRS array could be placed. The two independent

systems were then attached with velcro strips which is shown in Figure 3.18.
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Figure 3.17: Neuroelectrics Neoprene Headcap used for EEG, image reproduced from
www.neuroelectrics.com.

Figure 3.18: Image showing how the NIRS headband and EEG headcap were attached (a)
side view and (b) back view, on a participant.

3.4 Development of combined NIRS-EEG headgear for use with

infants

The third study in this thesis (presented in Chapter 6 & 7) extended on work from the

single channel infant study from Chapter 4 as well as the multi-channel broadband NIRS
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and EEG study from Chapter 5. The study used the same multi-channel broadband NIRS

system simultaneously with EEG and measured activity over the right temporal cortex

and occipital cortex. This section details how the knowledge and processes from the adult

headgear development were extended to create the combined NIRS and EEG headgear for

use with infants.

3.4.1 Optical fibres

The optical fibres for the infant study differed from those used for the adult study. While

the NIRS system used was the same, the infant modification allowed for the incorporation

of four extra detectors forming a total of 4 light sources and 14 detectors which provided

19 measurement channels. The optical fibres were similar to those used in the first infant

study and the subject-end of the fibres were right-angled. The fibres were made of glass

and were custom-built by Loptek (Loptek, Germany), each with a diameter of 30µm. The

diameter of each of the individual light source fibres at the subject-end was 5 mm while

each detector had a diameter of 1 mm. The subject-end of the detector fibres are shown in

Figure 3.19a and b and the light source fibres are shown in Figure 3.19c and d.
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Figure 3.19: Subject end of the source and detector fibres with (a) the top view of the detec-
tor fibres (b) side view of the detector fibres (c) top view of the source fibres and (d) side
view of the source fibres

3.4.2 EEG

The same EEG system was used as for the adult work. For this study, thirty-two EEG chan-

nels were used and these are indicated in purple circles in Figure 3.20 and were distributed

equally over the participant’s head (FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC6, T7, C3, Cz, C2,

C4, T8, TP7, CP5, CP6, P9, P7, P3, Pz, P4, P8, P10, PO7, PO3, PO4, O1, Oz, O2).
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Figure 3.20: EEG Montage for infant study showing the locations of the 32 channels

3.4.3 Headgear Design

The requirements for the headgear for this infant study differed from the adult study in a

number of ways:

1. The optical fibres used for the study presented here were flat-ended with a simi-

lar design to that described in Section 3.1 and had a gap for a clipping mechanism.

Therefore, the headgear did not require 3-D printed holders for source and detector

fibres and the optode coupler needed to have a design similar to that presented in

Section 3.1.

2. When performing adult studies, there were not as many constraints as with infants.

For example, adults can be instructed to sit still while the headgear is being posi-

tioned and time can be taken to ensure that a good coupling is achieved between

the optical fibres and the head of the participant. On the other hand, infant studies

require headgear that is easy to position and tighten within the space of a few min-

utes. Therefore, while adult studies could have a separate NIRS headband and an

EEG headcap, such a solution would not be feasible for infant studies and a single

headgear item was required that simultaneously incorporated both NIRS optodes
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and EEG electrodes.

The Enobio EEG headcap for infants was used (shown in Figure 3.21a and b) for combined

NIRS-EEG measurements. While the EEG electrodes could be plugged straight into the

cap, a more sophisticated NIRS array design was required which would also fit into the

cap. The next section details the development of the NIRS array for combined NIRS-EEG

measurements in infants.

Figure 3.21: Enobio EEG headcap

3.4.3.1 NIRS array design

In Section 3.1, I described how the hand-crafted NIRS arrays (or optode holders) were

translated into 3-D printed designs that were used for the first study presented in this the-

sis. The requirement of the optode holder for this infant study presented remains mostly

the same with one additional specification - the washers that held the NIRS fibres in place

needed to have a groove similar to that of the EEG geltrodes so that they could be held

in place in the headcap. To recap, an optode holder needed to have 1) washers to hold

individual fibres and 2) a pad to hold the washers and the fibres. Here, I will be resuming

the discussion on how the designs presented in Section 3.1 were improved upon to create

the final design used for the combined NIRS-EEG infant studies. Figure 3.22 shows the

schematic for the arrays used for this study. The array for the occipital channels was cen-
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tred around Oz while that for the temporal channels was centred around CP6. The source

- detector separation for all channels here was 2.5 cm, except occipital channels 3 and 6

which had a longer source - detector separation of 2.90 cm.

Figure 3.22: Schematic diagram of the NIRS occipital and temporal arrays showing the
positions sources, detectors and EEG electrodes. The red and yellow circles represent the
sources and detectors respectively while the blue circle indicate nearby EEG electrodes.
The black lines represent channels that are formed between sources and detectors.

3.4.3.1.1 Washers

3.4.3.1.1.1 New design for NIRS-only studies Washers are also referred to as op-

tode couplers and both terms are used interchangeably here. Design 2, used for the studies

in Chapter 4, failed to fulfill the requirements of the NIRS headgear for long-term and more

demanding infant studies. A multi-method approach was required to create 3-D printed

designs that were more durable and long-lasting. The primary problem encountered was

with the washers, which were printed using an FDM printer which only allows printing

in different strengths of the same material - a type of rubber referred to as TangoBlack.

Therefore to create stronger washers, an integrated approach utilising different 3-D print-
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ing techniques and materials was adopted in order to redesign the optode holder. Addi-

tionally, once the array had been used for an extended period of time, the fibres were not

held in place in the optode as strongly anymore. The design of the washer was therefore

also altered. The following changes were incorporated:

1. The washer design was adapted to have a sliding mechanism rather than a clipping

mechanism. Additionally, “pins” were included at the bottom of the washer. The

sliding design was created by Mr Simon Scott of the Department of Medical Physics

and Biomedical Engineering, University College London.

2. A Selective Laser Sintering (SLS) printer was used to print the washers (indepen-

dently of the pad) using a tough nylon material.

3. The optode holder pad was printed in three layers on the FDM printer; a) Soft pad at

the bottom b) Medium soft portion in the middle c) Rigid rings at the top where the

independently printed washers would be glued. The rings had receiving “holes” for

the “pins” at the bottom of the washers for ease when gluing.

The washers and the pad were therefore printed separately and glued together after print-

ing. Figure 3.23a shows a conceptual image (in AutoCAD) of the new washer design with

the sliding mechanism and the “pins” included at the bottom are also indicated. Figure

3.23b conceptualises the slotting mechanism where. Figure 3.24a and b provide an illus-

tration of the final pad with one washer slotted into place and 3.25 shows the 3-D printed

version of the design. This design has been successfully used by longitudinal studies run-

ning in Cambridge and the Gambia indicating that this design is durable and can be used

for long-term studies as a possible alternative to the hand-crafted NIRS arrays.
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(a) Top and bottom (rotated) conceptual views of the new sliding washer made of nylon, with pins
at the bottom.

(b) Image conceptualising the slotting mechanism of the washer into the receiving holes in the rigid
rings. Top right corner shows a clearer view of the slotting mechanism.

Figure 3.23: Conceptual images in AutoCAD showing the new design of the washer.
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(a) Conceptual image after the washer has slotted into the right position on the rigid rings.

(b) Top view of a conceptual image of the final 3-D pad, with one washer attached.

Figure 3.24: Conceptual images in AutoCAD showing the new design of the array.

Figure 3.25: 3-D printed version

3.4.3.1.1.2 NIRS-EEG washers While the design presented in the previous section

worked well for NIRS-only infant studies, the washer needed to be modified to include a

groove in order to be used for the combined NIRS-EEG study presented here. The multi-
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method approach used to create the pad was kept the same.

Design 1 A number of different designs were developed, the simplest one is shown in

Figure 3.26. A drawback of using an SLS printer was that in comparison to the FDM printer,

the 3-D printed object could not have very fine detail. Therefore, designing the clipping

space accurately in the washer was a challenging task (often being too tight) which caused

difficulty in retrieving the fibre once it had been clipped in.

Figure 3.26: NIRS-EEG optode coupler design 1

Designs 2, 3 and 4 Designs 2, 3 and 4 were developed to include “appendages” which

held the fibre in place without relying on a clipping space for the fibre. Figure 3.27a shows

the conceptual images of these designs in AutoCAD, each design had a slightly different

shape and size of the appendage. Figure 3.27b shows the 3-D printed version of Design 3

and while this worked well and held the fibres in place firmly, it resulted in a bulky washer

that stuck out approximately 1 - 2 cm outside of the headcap and was not ideal for use with

infants as the appendages were slightly pointed.
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Figure 3.27: NIRS-EEG optode coupler designs 2, 3 and 4 with (a) conceptual images in
shown in AutoCAD and (b) 3-D printed version with fibre clipped in.

Final Design Given that the previous designs with appendages did not work well, I

reverted back to designing a washer with the clipping mechanism for the fibres. In this

iteration however, I created a large opening for the fibre as well as a flat flexible appendage

with gaps and a groove which, because the nylon was tough but flexible, allowed the fibres

to be retrieved easily in comparison to Design 1. Figure 3.28 illustrates the final design in

AutoCAD and Figure 3.29 shows the 3-D printed version of the washer and an image of
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the washer glued onto the optode holder pad.

Figure 3.28: Conceptual image of final NIRS-EEG optode coupler, in AutoCAD

Figure 3.29: 3-D printed version of the final optode coupler design (top left) with fibre
clipped in top (right) and glued on top of the flexible pad (bottom)
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3.4.3.2 Optode holder pad

As there were two areas of interest for NIRS-EEG measurements (the occipital lobe and

the right temporal lobe), therefore two separate optode holder pads were designed for

each region. These were 3-D printed in the same way as described previously with a layer

of soft flexible rubber at the bottom and medium soft rings on top onto which the nylon

washers were glued. Figure 3.30 shows both the conceptual and 3-D printed versions of

the temporal and occipital pads with the image on the bottom left showing the temporal

pad with the washers glued on top. Figure 3.31 shows both temporal and occipital pads

positioned in the headcap on an infant.

Figure 3.30: (Top) conceptual images of the flexible temporal and occipital pads with me-
dium soft rings to glue the nylon washers (Bottom) 3-D printed versions of the temporal
and occipital pads with temporal
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Figure 3.31: NIRS occipital and temporal pads positioned in their respective locations in
the headcap. The groove in the optode couplers allowed them to be held in place, the
flexible pad is on the underside of the cap and not visible.

3.4.3.3 Combined NIRS-EEG headgear

Once the NIRS arrays had been designed and could positioned into the headcap, there was

only one extra component that was required to complete the combined NIRS-EEG head-

gear, which was the silicone headband. Figure 3.32 and 3.33 show the full headgear and

set-up with the silicone headband (which was discussed in Chapter 3) being fed through

the NIRS optodes and EEG electrodes. This was tightened at the front of the head and

prevented the cap from slipping backwards during the experiment and additionally held

the NIRS arrays firmly against the infant’s head.
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Figure 3.32: Side-view of the full NIRS-EEG set-up on an infant with the NIRS optodes and
EEG necbox and electrodes indicated

Figure 3.33: Front and back-view of the full NIRS-EEG set-up on an infant with the NIRS
optodes and EEG necbox and electrodes indicated
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3.5 Summary

Table 3.1 provides a summary of the headgear specifications for each of the studies pre-

sented in this thesis.

Study mini-CYRIL
(Study 1)

NIRS-EEG
Adults (Study 2)

NIRS-EEG
Infants (Study 3)

(Study 3)

Publication Siddiqui et al.,
(2017)

- - -

System Single channel
broadband NIRS

Multi-channel
broadband NIRS

Multi-channel
broadband NIRS

Multi-channel
broadband NIRS

No. of sources 1 4 4 4

No. of detectors 1 10 15 15

No. of channels 1 16 19 19

Type of fibres Flat-ended
(Right-angled

fibres)

Straight-ended
fibres

Flat-ended
(Right-angled

fibres)

Flat-ended
(Right-angled

fibres)

Cortical region of interest Temporal Occipital Occipital &
Temporal

Occipital &
Temporal

No. of conditions 1 4 6 6

No. of valid participants 24 5

Proportion of excluded participants (%) 27% 61% 23% 33%

Table 3.1: A summary of the headgear specifications for each study and the proportions of
valid participants.

The following chapter will intrude the first experimental study utilising broadband

NIRS during functional activation in infants.
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NON-INVASIVE METABOLIC

MARKER OF INFANT BRAIN

ACTIVITY

4.1 Introduction

NIRS based haemodynamic measures provide useful markers of brain function and previ-

ous work (Lloyd-Fox et al., 2009) illustrates the usefulness of NIRS as a neurodevelopmen-

tal research tool that can be used to tease apart differences in typical and atypical brain de-

velopment occurring early in life. However, the underlying physiological processes giving

rise to the haemodynamic response function (HRF) and neurovascular coupling in partic-

ular, are not fully understood in the developing human brain. The HRF in infants does

not always follow a standard profile and can often differ across brain regions and the time

taken to reach the maximum amplitude of the HRF has been shown to change across de-

velopment, with increasing age (Yamada et al., 2000; Martin et al., 1999a). Furthermore,

previous infant NIRS (Kusaka et al., 2004; Telkemeyer et al., 2009; Sakatani et al., 1999b; Is-

sard and Gervain, 2018), fMRI studies (Yamada et al., 2000; Martin et al., 1999a) and work

in mice (Kozberg and Hillman, 2016b) report observing an “inverted” response, displaying

a decrease in activation in response to an experimental stimulus. It has been hypothesised
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that the variability in the HRF may be due to ongoing neuronal development alongside

brain blood flow maturation as well as maturation of the neurovascular coupling process

itself (Arichi et al., 2012; Kozberg and Hillman, 2016a,b; Cauli and Hamel, 2010b; Har-

ris et al., 2011). In particular, cerebral blood flow (CBF) and the cerebral metabolic rate

of oxygen consumption (CMRO2) are known to affect the HRF (Arichi et al., 2012; Chen

and Pike, 2009; Roche-Labarbe et al., 2012) and previous work exploring developmental

changes in CBF and CMRO2 show that CMRO2 in newborns is well below the threshold

in comparison with adults and increases significantly up until early childhood (Takahashi

et al., 1999). These multi-factorial physiological reasons can lead to the observed variabil-

ity in the haemodynamic response in infants thereby making it difficult to interpret results.

Furthermore, they highlight the need to further investigate the neurovascular coupling

pathway in infants and to improve on the current understanding of the physiological pro-

cesses that give rise to the HRF. Moreover, it should be remembered that oxygenated and

deoxygenated haemoglobin measures are surrogate markers of brain activity informing

on the oxygen delivery component of the neurovascular coupling pathway. A more di-

rect measure of the metabolic consequences of neural activity may elucidate mechanisms

underlying typical and atypical function.

Broadband NIRS provides the opportunity to obtain a cellular measure by measuring

changes in the oxidation state of a mitochondrial enzyme cytochrome-c-oxidaseΔ[oxCCO].

A study by Bainbridge et al. (Bainbridge et al., 2014) used phosphorus magnetic reso-

nance spectroscopy (31P MRS) in conjunction with NIRS and found a significant correlation

between 31P MRS biomarkers of cerebral energy metabolism and NIRS oxCCO measure,

thereby demonstrating its use as a marker of intracellular oxygen metabolism and conse-

quently providing insight into cellular oxygen utilization and oxygen metabolism. Kolyva

et al. (Kolyva et al., 2014) have demonstrated in adults that oxCCO is a more brain-specific

signal than haemoglobin. Therefore, being a more direct marker of neuronal activity, mea-

surements of changes in the oxidation state of cytochrome have the potential to help further

our understanding of neurovascular coupling and to understand the relationship between

the NIRS measures and the underlying neural mechanisms.

Previous work by Adolphs et al (2009) has identified a network of brain regions that

158



Chapter 4

are involved in the processing of social information that are collectively referred to as the

“social brain”. These brain regions include a number of areas such as the inferior frontal

gyrus (IFG), the amygdala, the orbitofrontal cortex and the anterior and posterior temporal

lobes. Many experimental paradigms have been developed to explore social processing

during brain development and a number of NIRS studies have utilised social/non-social

paradigms to measure responses over the temporal cortex in typically developing infants

(Lloyd-Fox et al., 2014a, 2017, 2009; Grossmann et al., 2008).

The aim of the study presented in this chapter, therefore, was to use a broadband NIRS

system to measure changes in oxygenated haemoglobin, deoxygenated haemoglobin and

cytochrome-c-oxidase over the temporal cortex in response to functional activation, in in-

fants. As this study was one of the first to measure cytochrome-c-oxidase changes during

functional activation, a miniature single channel broadband NIRS system was used. The

single channel system was feasible as the use of a social/non-social paradigm was em-

ployed and the NIRS haemodynamic response over the temporal cortex using this paradigm

has been well documented.

4.2 Methods

4.2.1 Participants

Thirty-three 4-to-6-month-old healthy infants participated in the study (14 males, 19 fe-

males mean age: 159 days SD: 25). All parents volunteered to participate and provided

informed, written consent prior to the study. The Birkbeck Psychology Ethics Committee

approved the study protocol and all procedures performed were within the regulations of

the Ethics Committee. Participating infants were from varied ethnic backgrounds and had

varying skin and hair colour, but neither of these was used as exclusion criteria to screen

participants. All infants who participated were healthy with no known developmental

disorders and were born at term (37-40 weeks gestation).
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4.2.2 Stimuli design

The experimental stimuli were designed using Psychtoolbox in Matlab (Mathworks, USA).

A social/non-social experimental paradigm, which has been demonstrated to produce

stimulus-selective haemodynamic response (increase in oxygenated haemoglobin and de-

crease in deoxygenated haemoglobin) in previous infant NIRS studies (Grossmann et al.,

2008; Lloyd-Fox et al., 2009) was chosen. For this study, an experimental stimulus was re-

quired that would induce a maximal haemodynamic response allowing the identification

of the presence or absence of an accompanying response in oxCC. Hence, an enhanced

social stimulus was developed which consisted of a social visual component and a social

auditory component. The visual component was composed of a variety of dynamic so-

cial movies which consisted of video clips involving biological motion where women per-

formed “peek-a-boo” and “incy-wincy”. The video clips also had an auditory component

consisting of human vocal sounds such as laughter, crying and coughing. The auditory

component of the stimulus was presented at a range between 20-55dB. The social condi-

tion was presented for a duration varying between 9 - 12s and was followed by a baseline

condition which consisted of full-colour static transport images, for example cars, trucks

and helicopters. The images were presented randomly for a pseudorandom duration of 1

- 3s each, for a total of 9 - 12s. Figure 4.1 shows the experimental and baseline conditions

and the order in which they were presented.

Figure 4.1: Order of stimulus presentation
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4.2.3 Data acquisition

4.2.3.1 Mini-CYRIL

The Miniature-Cytochrome Research Instrument and appLicaton or Mini-CYRIL is a sin-

gle channel multi-wavelength broadband NIRS system developed at UCL Department of

Medical Physics and Biomedical Engineering by Dr Pardis Kaynezhad and Dr Ilias Tacht-

sidis and was used to collect the data presented in this chapter. The system consists of a

single white light source, a single miniature spectrometer, two optical fibres and a laptop to

run the software (Kaynezhad et al., 2016). These components are described in more detail

in the following sections.

4.2.3.1.1 Hardware

4.2.3.1.1.1 Light source and spectrometer The mini-CYRIL system is composed of

a white light source and a spectrometer. The light source (HL-2000-HP) uses an Ocean

Optics 20 W Tungsten Halogen lamp. It produces light between 360 nm - 2400 nm and has

an integrated filter in order to remove UV exposure and heating effects. The light source

is operated independently by an external on/off switch and is shown in Figure 4.2a. The

spectrometer that forms part of the system is a miniature Ventana VIS-NIR spectrometer by

Ocean Optics (USA) and is shown in Figure 4.2b. The spectrometer is internally attached to

a Hamamatsu S10420-1006 Black-thinned charged coupled device (CCD) and has a spectral

range of 430 nm to 1100 nm. The acquisition rate of the system is 1s. Both light source and

spectrometer have a SubMiniature version A (SMA) connector for attachment of the optical

fibre. The optical fibres used for this study are described in the next section.
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Figure 4.2: Components that comprise the mini-CYRIL system; (a) light source and (b)
spectrometer

4.2.3.1.1.2 Optical fibres Both light source and spectrometer have an identical opti-

cal fibre each made of glass that are manufactured by Loptek (Loptek, Germany) and have

an inner core diameter of 2.3 mm. The system-end of the fibres have an SMA connector

while the subject-end is flat-ended with the optode head at right angles to the optical fibre,

as shown in Figure 4.3a. Right-angled fibres are commonly used for infant studies as they

lie flush against the head and can easily be secured into place without needing to apply

extra pressure, thereby making them more comfortable. Additionally, there is no added

gravitational pull causing the fibres to lift off the head, as is common in some adult fibres.

This is discussed further in Chapter 6. Figure 4.3b shows the subject-end of the optical

fibres. Figure 4.4 shows the set-up on a doll with fibres attached to the spectrometer and

the light source.
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Figure 4.3: Optical fibres forming part of the mini-CYRIL system.

Figure 4.4: Mini-CYRIL set-up with spectrometer and light source connected to optical
fibres on a doll head, taken from (Kaynezhad et al., 2016)
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4.2.3.1.2 Software The spectrometer connects to a laptop via USB connection and its op-

eration is controlled through a program written by Dr Pardis Kaynezhad in Matlab 2013

(Mathworks, USA), which uses the Matlab Instrument Control Toolbox. Figure 4.5 shows

the full set-up on a phantom with spectrometer connected to the laptop. The software pro-

gram is used to start acquiring intensity spectra at wavelengths between 780 - 900 nm from

the detector fibre. The software converts intensity spectra to chromophore concentration

changes using the UCLn algorithm (Bale et al., 2016a) and a differential pathlength factor

of 5.13 (Matcher et al., 1995). The bottom figure in Figure 4.5 shows the panel where chro-

mophore concentration changes are displayed during data acquisition. The UCLn algo-

rithm was used to convert the attenuation change signal to the chromophore concentration

changes and this has been discussed previously in Section 2.1.3.1 of Chapter 2.
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Figure 4.5: (Top) Mini-CYRIL set-up with computer (Bottom) Output from the software
during acquisition. The top panel displays the intensity counts of each wavelength be-
tween 780 - 900nm. The middle panel displays ∆[HbO2] in red, ∆[HHb] in blue and ∆[HbT]
= ∆[HbO2] + ∆[HHb] in black while the bottom panel displays ∆[oxCCO] in green, occur-
ring over time across the testing session.

4.2.3.2 Probe design

The headgear design for this study has already been discussed in detail in Chapter 3. Fig-

ure 4.6 shows the optode holder that was developed and used for the study presented in

this chapter.
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Figure 4.6: Optode holder that was used for the study presented in this chapter, with fibres
clipped in. The fibres are clipped in for the purposes of the image, the spacing between
source and detector was maintained at 2.8 cm for all participants, during the study.

4.2.3.3 Preliminary testing - Cuff Occlusion

Prior to use with infants, preliminary testing was performed on one adult using the mini-

CYRIL. This was done to assess mini-CYRIL’s capability for measuring in-vivo changes

occurring in chromophore concentrations, particularly to resolve changes in the oxidation

state of cytochrome. While it is not performed on the head and does not interrogate brain

tissue, forearm ischaemia or the cuff-occlusion test was used and is a common validation

experiment carried out to assess the performance of NIRS systems (Shadgan et al., 2009;

Matcher et al., 1995; Lange et al., 2017; Haensse et al., 2005). During this test, the arter-

ies in the forearm of a volunteer are occluded using a pneumatic blood pressure cuff and

chromophore concentration changes are monitored in real-time. The occlusion causes the

the total blood volume to remain relatively constant, but arterial blood flow to cease. Dur-

ing the ischaemia, desaturation occurs causing a sharp increase in ∆[HHb] and an almost

equivalent decrease in ∆[HbO2] (Matcher et al., 1995). If ∆[oxCCO] is also being measured,

then only a small delayed reduction in oxCCO is seen as there is a large oxygen reserve

bound to muscle myoglobin and low oxygen consumption is expected in resting muscle

(Matcher et al., 1995; Honig et al., 1992). During this preliminary testing, the pneumatic

blood pressure cuff was positioned loosely around the left arm of the volunteer while the

forearm was laid on the table. The optical fibres were placed on the forearm muscle with

a source - detector separation of 4 cm and baseline was recorded while a black cloth was

wrapped around the arm and fibres to eliminate light pollution. Baseline was recorded for

one minute and the blood pressure cuff was rapidly inflated to 200 - 220 mmHg to prevent
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venous blood back flow and to stop arterial blood inflow to the forearm for around 3 - 4

minutes, while ensuring that the volunteer was not experiencing any discomfort. After

3.5 minutes, the blood pressure cuff was deflated and the arm was kept still for a resting

state measurement post-ischaemia. Figure 4.7 demonstrates the changes that occurred in

∆ [HbO2], ∆ [HHb] and ∆ [oxCCO] during this study. During the period of ischaemia,

∆ [HbO2] decreased to a minimum of -6.4μM while ∆ [HHb] increased to a maximum of

+8.4 μM. The ∆ [oxCCO] changes were much smaller in comparison to oxy-haemoglobin

and deoxy-haemoglobin, indicating a gradual decrease to -0.5μM just before the pressure

cuff was deflated, which is in accordance with previous studies (Lange et al., 2017). The

results from this experiment demonstrate mini-CYRIL’s capability to successfully measure

haemodynamic changes as well as changes in the oxidation state of cytochrome in the fore-

arm muscle and this indicates that the system should be able to resolve for these changes

in the human brain tissue as well.

Figure 4.7: Chromophore concentration changes in the forearm in response to cuff occlu-
sion
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4.2.4 Infant Study

4.2.4.1 Experimental Procedure

Once written consent was obtained from the parent, the infant’s head measurements were

taken. These included measuring the head circumference, the central semi-circumference

from ear-vertex-ear and the lateral semi-circumference from ear-nasion-ear. Following this,

the parent was seated in front of a 46-inch plasma screen at approximately 1m viewing

distance with the infant in their lap. The headgear was then positioned on their head as

shown in Figure 4.8. Due to the fact that there was only one channel, the array had to be

positioned carefully in order to ensure the correct brain region for the stimuli being pre-

sented was being targeted. The array was positioned over the right hemisphere. Previous

studies involving similar social/non-social stimuli and co-registration work by Lloyd-Fox

and colleagues (Lloyd-Fox et al., 2014a) have identified the maximal response to the social

stimuli occurring in the superior temporal sulcus - temporo-parietal region (STS - TPJ).

The standardised scalp map generated by this co-registration work was used to identify

the optimal location of the single source-detector pair headgear developed for this study.

This indicated that the yellow marking on the headband (see Figure 4.8) would need to be

aligned with the the right pre-auricular point which is defined as “a point of the posterior

root of the zygomatic arch lying immediately in front of the upper end of the tragus”, for

the channel formed between the source and detector to lie over the STS - TPJ region.
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Figure 4.8: Image of a participant wearing the NIRS headgear.

Previous studies (Taga et al., 2007; Gervain et al., 2011) have explored varying source -

detector separation distances, between 2 - 4 cm, in order to identify the ideal separation for

infant studies. However, most infant functional activation studies typically use a separa-

tion of 2 cm (Wilcox et al., 2005a; Lloyd-Fox et al., 2009). Previous adult work undertaken

by Phan et al. (Phan et al., 2016b) compared the changes in concentration of cytochrome-c-

oxidase using varying source - detector separations between 2 cm - 4 cm. The results from

the work indicate 3 cm as being the ideal source - detector separation distance to functional

activation driven changes in cytochrome, in adults. Therefore, for this infant study a source

- detector separation of 2.8 cm was chosen.

The study began with a rest period (20 s minimum) to draw the infant’s attention to-

wards the screen, during which the infant was shown shapes in four corners of the screen.

Following this, the baseline and experimental trials (each 9 - 12 s long) were alternated for

a pseudorandom duration until the infants became bored or fussy. The order of the stim-

ulus presentation has been shown previously in Figure 4.1. Occasionally, alerting sounds

were played during the baseline stimulus to draw the infant’s attention back to the screen.
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4.2.5 Data analysis

The data were analysed in Matlab 2014a (Mathworks, USA) and the data analysis pipeline

has already been described in detail in Section 2.3.1.1 of Chapter 2. At the end of each

recording session the mini-CYRIL software provided the concentration changes for each

chromophore, calculated from change in attenuation, using the UCLn algorithm. How-

ever as described previously, the wavelet-based motion correction had to be applied to the

attenuation signal of each infant rather than the concentration changes, to correct for mo-

tion artifacts in the data occurring due to motion. Therefore, first, motion correction was

applied to the attenuation data and then the UCLn algorithm was used to calculate the

chromophore concentration changes.

4.2.5.1 Motion correction

Wavelet-based motion correction, developed by Molavi et al. (Molavi and Dumont, 2012)

was used to remove artifacts in the data due to infant movement. This step is critical for

infant data as the infants are relatively free to move in their parent’s lap, therefore, they are

likely to move or make sharp head movements, particularly younger infants who don’t

have strong neck control. The algorithm has been discussed in detail in Section 2.3.1.1. of

Chapter 2. A tuning parameter α of 1.5 was used for this study.

4.2.5.2 Calculation of concentration changes

Once motion correction had been applied, the concentration changes were re-calculated

using the UCLn algorithm with a wavelength-dependent DPF of 5.13 - suitable for infants

of this age range (Matcher et al., 1995). Following this, the concentration changes for each

chromophore were filtered using a 5th order Butterworth filter between 0.01 - 0.45 Hz. The

concentration changes were segmented into blocks consisting of 4 seconds of the baseline

period prior to the onset of the experimental condition, the experimental condition (9 -

12 s) and the entire following baseline period (9 - 12 s). The average block length was 24

s. Baseline correction was applied to each block of data by subtracting the concentration

change value of the chromophore at the start of the experimental condition (i.e. at t = 0)
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from the entire signal, for each chromophore.

4.2.5.3 Looking-time coding

Once the other pre-processing steps were complete and the epochs of the data were created,

trials were rejected based on looking time. During the study, each infant was recorded for

the entire duration of the study in order to code for looking-time offline. The videos from

each infant were studied offline and any trials were removed where the infants had been

looking away from the screen for more than 6 seconds (approximately 50%) during the

baseline condition or had looked away from the screen more than 40% of the experimental

condition.

4.2.5.4 Rejection criteria

An infant was included in the study if they had a minimum of six valid trials after cod-

ing for looking-time and was also only included in the study if they exhibited the ex-

pected “typical” haemodynamic response which is defined as being an increase in oxy-

haemoglobin and a decrease or no change in deoxy-haemoglobin, in response to the stimu-

lus. This was done through visual inspection and although not a common practice, for this

first study of measuring changes in cytochrome in response to functional activation, it was

decided that cytochrome responses would be looked at only in the presence of the “typical”

haemodynamic response as defined earlier. “Inverted” responses or an increase in deoxy-

haemoglobin and decrease in oxy-haemoglobin are sometimes reported in infant research

and are not fully understood with some studies suggesting that an inverted response rep-

resents a deactivation to the experimental stimulus (Watanabe et al., 2012a) while others

have hypothesised that it is due to underdeveloped cerebral vasculature (Kozberg et al.,

2013a). For this first study of cytochrome, it was better to observe cytochrome responses

in the context of a response that is more commonly investigated and is better understood.

However, investigation of inverted responses is of interest in future studies.

Following these criteria, the valid blocks for each infant were averaged together and

time courses of mean Δ[HbO2], Δ[HHb] and Δ[oxCCO] obtained and data from twenty-

four out of the thirty-three participants were included. Three infants were excluded for
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failing to look at the required minimum number of trials, one infant was excluded due to

incorrect placement of the array on the infant’s head and five infants were excluded as they

showed an increase inΔ[HHb] and a decrease inΔ[HbO2] in response to the stimulus, i.e.

an “inverted” response. The averaged haemodynamic response for each of the twenty-four

infants was then averaged to obtain a grand average for the the group.

4.2.5.5 Statistical analysis

Statistical analysis was performed on the grand averaged response, at the group level. A

time window was selected between 10 and 18 s post-experimental stimulus onset, which

has been previously demonstrated to be sufficient to include the range of maximum con-

centration changes across infants (Lloyd-Fox et al., 2009). A one-sample Students t-test was

then performed during this window to statistically compare the maximum concentration

change of each chromophore, in response to the experimental stimulus versus the baseline.

A normality test was performed on the data to ensure that the data were normally dis-

tributed and met the normality assumption. An equivalent non-parametric t-test was also

performed - Wilcoxons signed rank test was conducted on the group data. A paired sample

t-test was conducted to compare if there was a significant difference between the maximum

change in concentration of oxCCO and HbO2. For this, the maximum concentration change

for both chromophores was normalized prior to performing the pairwise t-test. Addition-

ally, time-to-peak analysis was performed to assess whether there was a difference in the

time taken for oxCCO and HbO2 to reach the maximum change in concentration. This in-

volved comparing the time taken for both oxy-haemoglobin and cytochrome to reach their

maximum values in response the experimental stimulus.

4.2.5.6 Residual analysis

Due to the concentration of CCO in the brain being much lower than that of oxygenated

and deoxygenated haemoglobin, measuring changes in the oxidation state of CCO can be

challenging. This leads to the possibility that the measurement of Δ[oxCCO] could be the

result of cross-talk. Cross-talk is defined as a genuine change in the concentration of one

chromophore inducing spurious change in concentration of another chromophore (Bale
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et al., 2016a). Therefore, it is important to analyse residual errors produced when convert-

ing the attenuation data into chromophore concentration changes in order to determine

whether Δ[oxCCO] are accounted for in the attenuation change spectrum. The UCLn al-

gorithm was used here to perform residual analysis which involved using the algorithm

in order to back-calculate the attenuation change spectra for HHb, HbO2 and oxCCO from

the calculated concentration changes and comparing these to the measured change in at-

tenuation occurring within a trial in different participants. First, the 2-component fit was

calculated where only HbO2 and HHb attenuation change spectra are calculated and fol-

lowed by the 3-component fit where the HbO2, HHb and oxCCO attenuation change spec-

tra were calculated. The residuals from these two fits were compared to the oxidized-minus

reduced CCO spectrum, using the relevant specific extinction coefficient.

4.3 Results

4.3.1 Single participant data

Figure 4.9a displays the changes in concentration of HbO2, HHb and oxCCO from a sin-

gle infant (chosen at random), across seven trials and Figure 4.9b displays the changes in

concentration of oxCCO from the same infant, across seven trials, with the y-axis rescaled.
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Figure 4.9: Observed chromophore concentration changes. (a) Changes in concentration in
HbO2, HHb and oxCCO from one participant, across 7 trials, after filtering and applying
motion correction. (b) Changes in concentration in oxCCO from the same participant, with
y-axis re-scaled.

4.3.2 Group data

Figure 4.10 shows the grand averaged concentration changes for each of the chromophores,

averaged across twenty-four participants. The one-sample t-test conducted on the group

data showed a significant increase from baseline in oxCCO and HbO2 but not HHb -

(toxCCO = 5.710 , poxCCO = 0.000008 , tHbO2 = 4.387 pHbO2 = 0.000174, tHHb = −0.892,

pHHb = 0.382, df = 23). An equivalent non-parametric t-test, Wilcoxons signed rank test

was additionally conducted on the group data. The results were consistent with the t-test in

showing that there was a significant increase in oxCCO and HbO2 in response to the stim-

ulus (zoxCCO = 3.80 , poxCCO = 0.000147, zHbO2 = 3.2286 pHbO2 = 0.0012, zHHb = −1.2086,

pHHb = 0.3037). The maximum change occurring in oxCCO was 0.238µMol, 0.61µMol in

HbO2 and 0.39µMol in HHb.
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Figure 4.10: Grand averaged time course of concentration changes in HbO2, HHb and
oxCCO, across 24 participants. (d) Grand averaged time course of concentration change in
oxCCO, with y-axis re-scaled. The error bars represent standard deviations.

4.3.2.1 Comparison of oxCCO and HbO2

The paired t-test that was conducted to assess whether there was a statistically significant

difference between oxCCO and HbO2 showed that there was no significant difference be-

tween the chromophores. The time to peak analysis showed that the time taken to reach

the maximum concentration change for both chromophores was similar (approximately 16

s post-stimulus onset) and no significant difference was observed.

4.3.3 Residual analysis

Figure 4.11 presents the results from the residual analysis for four participants, chosen at

random from the twenty-four included in the study. The residual analysis indicates that the

difference between the 2-component fit and the 3-component is approximately the shape

of the oxidized minus reduced spectrum of cytochrome-c-oxidase.
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Figure 4.11: Difference between the 3-component and 2-component fit from four partici-
pants chosen at random.

4.4 Discussion

In this chapter, a novel study was presented utilizing a miniature broadband NIRS system

to measure changes in cellular oxygen metabolism - through measurement of changes in

the oxidation state of the mitochondrial enzyme cytochrome-c-oxidase - in infants aged be-

tween four-to-six months during functional brain activation. A social visual plus auditory

paradigm was utilised which has previously been demonstrated to induce reliable func-

tional activation-related changes over the STS - TPJ region in this age of infants (Lloyd-Fox

et al., 2014a, 2009). Broadband NIRS instrumentation, which has shown to be appropriate

to measure changes in the redox state of CCO (Bale et al., 2014), was used to detect a signif-

icant increase in Δ[oxCCO], alongside concurrent significant changes in HbO2 and HHb.

A residual analysis demonstrated that the observed changes during functional activation

could not be solely attributed to HbO2 and HHb, therefore the observed oxCCO signal was

the result of true functional activation as opposed to the influence of cross-talk. These novel

findings are important as a previous study (Zaramella et al., 2001a), which used a different

multi-wavelength system to measure changes in the oxidation state of cytochrome in re-

sponse to an auditory stimulus in infants did not observe significant changes inΔ[oxCCO]

in the presence of significant Δ[HbO2] changes. It is possible that the choice of broader
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range of wavelengths of the current NIRS system allowed greater sensitivity to the oxCCO

signal in relation to the narrower resolution of the system that had previously been used

with infants. The current results demonstrate that by using broadband NIRS, it is possible

to measure Δ[oxCCO] in response to functional activation which could potentially yield

critical insights into cellular oxygen utilization and metabolism. The opportunity to non-

invasively detect changes at a cellular level associated with active neural tissue holds great

potential to further our understanding of physiological processes occurring in the devel-

oping human brain and particularly to investigate neurovascular coupling in typical and

atypical brain development.

The group data shows that the measured changes in Δ[HbO2] are in accordance with

previous infant functional activation studies (Meek et al., 1998; Wilcox et al., 2005a; Taga

and Asakawa, 2007; Lloyd-Fox et al., 2009) and the oxCCO response is strongly coupled

with HbO2. The time to peak analysis showed that both chromophores attained their

maximum change in concentration with a similar time to peak, approximately 16 s post-

experimental stimulus onset. Previous work in adults (Phan et al., 2016b; Kolyva et al.,

2014) has shown that the oxCCO response is a more direct marker of brain activation as it

is more spatially sensitive and while haemoglobin can be confounded by extra-cranial con-

tamination (Tachtsidis and Scholkmann, 2016), oxCCO is more depth resolved (de Roever

et al., 2016; Kolyva et al., 2014) and therefore a more brain specific signal. A prior study

of brain injured patients (Highton et al., 2016) suggests that an increase in oxygen con-

sumption is more localized than an increase in blood flow. While this single channel

study demonstrates that it is possible to obtain measures of changes in cellular oxygen

metabolism, the null results when comparing chromophores shows a limitation of this

study, namely that a single channel system was used and responses were measured over

one brain region. As such the oxCCO response measured here does not provide any clear

additional information to HbO2 and HHb. A multi-channel approach is required in or-

der to measure oxCCO across different brain regions to investigate the spatial specificity

of cytochrome in infants, its relation to the underlying neural activity and to improve our

understanding of neurovascular coupling.

To address this, the studies that followed this one (presented in Chapters 5, 6, 7 and
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8) employed the use of a multi-channel broadband NIRS system simultaneously with EEG

in order to investigate the relationship between blood flow changes, changes in cellular

oxygen consumption as well as the neural mechanisms that give rise to the HRF.
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ADULT NIRS STUDY OF

CYTOCHROME WITH EEG

5.1 Introduction

The study presented in the previous chapter was useful in validating whether broadband

NIRS could be used to measure functional activation driven changes in cellular energy

metabolism in infants, alongside haemodynamic changes. However, there is a limit to

what could be inferred regarding the relationship between cerebral metabolic activity and

haemodynamics using a single channel broadband NIRS system. In order to investigate

neurometabolic pathways in the brain, a multi-channel approach is required. This is be-

cause multi-channel system allows measurement of responses over multiple brain regions,

thereby allowing us to localise the brain area of activation. Furthermore, previous work in

adults (Phan et al., 2016b) has shown that measurement of CCO provides a more localised

measure of activation. The study presented in this chapter therefore, used multi-channel

channel broadband NIRS concurrently with EEG in order to better understand how neu-

ral activity relates to NIRS measures and whether CCO could provide a unique marker of

brain activity that further informs on this relationship. While the focus of my PhD was

to investigate infant brain development, the simultaneous NIRS and EEG work presented

in this chapter was first performed in adults before being extended to infants (presented

in subsequent chapters). This was due to a number of reasons. Firstly, to my knowledge,
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this was the first study using broadband NIRS alongside EEG and therefore a number

of methodological developments were required which included creating combined head-

gear to accommodate both NIRS optodes and EEG electrodes on the head, designing an

appropriate experimental paradigm which was sufficient for both techniques and testing

a data analysis pipeline in order to combine NIRS and EEG data. Infant studies using

a single modality, for example only NIRS or EEG, can be challenging to perform and it

would not have been possible to successfully address all methodological aspects that re-

quired development. Secondly, it was important to first explore the relationship between

neuronal activation related changes in cerebral energy metabolism and haemodynamics in

the developed adult brain prior to investigating this relation in the developing brain. As I

discussed previously, many studies report variability in the infant HRF during functional

activation which can be attributed to both stimulus complexity and the ongoing develop-

ment of cerebral vasculature and neural circuitry. The adult HRF has been more extensively

investigated and does not present with the same irregularities as infant data. Furthermore,

EEG is particularly affected by movement artifacts and as adults can be instructed to sit

still for longer periods of time, adult EEG data is of higher quality in comparison to infant

EEG data. Therefore, performing the concurrent NIRS and EEG work in adults first pro-

vided the opportunity to (1) to explore the fundamental processes underlying neurovascu-

lar coupling in a context where the data were less variable and noisy and (2) successfully

address all methodological aspects of a simultaneous NIRS and EEG study that required

development.

In humans, the anatomical structure and functions of the visual cortex have been exten-

sively mapped through invasive electrical and anatomical studies (Spalding, 1952; Hard-

ing et al., 1991) and in early fMRI and PET validation work, activations of the visual cortex

were used as brain mapping tools (Belliveau et al., 1991; Engel et al., 1997; Fox et al., 1986).

Previous work, in adults (Zeff et al., 2007) using high density diffuse optical tomography

has shown that visual stimuli can be used to detect changes in the concentration of HbO2

and HHb over the occipital cortex. A study conducted in adults by Heekeren at al. (1999b)

demonstrated that visual stimuli produce measurable changes in oxCCO in the visual cor-

tex, alongside changes in HbO2 and HHb. More recently, work by Phan et al. (2016a) using
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broadband NIRS in healthy adults indicated differences in the spatial localisation of ox-

CCO and the haemodynamic signals in response to visual stimulation in the occipital cor-

tex. Moreover, the primary visual cortex receives input from the lateral geniculate nucleus

(LGN) in the thalamus. In humans, the LGN has different layers of cells; magnocellular

and parvocellular cells which form the magnocellular and parvocellular pathways serving

the dorsal and ventral streams respectively. Previous work in cats (Wong-Riley, 1979) and

in humans (Wong-Riley et al., 1993) has demonstrated that there is a difference in the con-

centration of cytochrome-c-oxidase in these two pathways with the parvocellular pathway

having a greater concentration of CCO in comparison to the magnocellular. This may re-

flect differing metabolic demands of the pathways which activate to different aspects of

visual stimuli with the parvocellular pathway sensitising more to low contrast, colour and

form and the magnocellular pathway being more sensitive to high contrast, motion and

orientation (Shapley et al., 1981). Previous fMRI studies (Liu et al., 2006; Denison et al.,

2014) have reported differences in the BOLD response in the visual cortex using functional

stimuli targeting the two pathways. This may indicate that using visual stimulation that ac-

tivates either magnocellular or parvocellular pathways may produce differential changes

in oxCCO which can be measured using NIRS. The use of such stimuli should therefore

provide a good context to investigate how the different components of the neurovascular

coupling pathway being measured by NIRS and EEG relate to one another.

The study presented in this chapter therefore, uses a multi-channel broadband NIRS

system simultaneously with EEG to measure changes in ∆[HbO2], ∆[HHb], ∆[oxCCO]

as well as changes in the electrical activity of the brain in response to visual stimulation

differentially activating the magnocellular and parvocellular pathways of the visual cortex,

in adults. The process of developing the combined NIRS and EEG headgear was discussed

in Chapter 2.
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5.2 Methods

5.2.1 Participants

Thirteen healthy adults participated in the study (9 males and 4 females; aged between 23

to 40 years old). All participants volunteered and gave written, informed consent to take

part in the study. The study was approved by the UCL Ethics Committee and all proce-

dures performed were in accordance with the regulations of the Ethics Committee. The

participants were from varied ethnic backgrounds and therefore had varying skin and hair

colour. Skin colour was not used as an exclusion criteria for participants. One of the lim-

itations of NIRS is that small amounts of hair obstructing the light from the fibre can lead

to a poor signal to noise ratio, therefore prior to being recruited for the study, participants

were screened for hair colour, thickness and length. While this is not standard procedure

for NIRS studies in adults, given the type of developments that needed to be made to op-

timise simultaneous NIRS - EEG data collection, it was easier to perform the studies on

adults without thick, long hair, which added another level/source of poor signal-to-noise

ratio in the data. However, as the participants were of varying ethnicity and skin colour,

the sample was representative of the general population.

5.2.2 Data acquisition

5.2.2.1 Multi-channel broadband system

For this study and for the studies presented in Chapter 5 - 8, a multi-channel broadband

system was used which has been developed at the UCL Department of Medical Physics

and Biomedical Engineering by Dr Ilias Tachtsidis and Dr Phong Phan (Phan et al., 2016b).

The various components that compose the system are described in the following sections.

An overview of the system is shown in Figure 5.1.
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Figure 5.1: Schematic diagram providing an overview of the broadband NIRS system
which is composed of two light sources and two spectrographs that are controlled by an
electronic shutter. The light from the light sources is directed to the head of participant
by means of bifurcated optical fibres, forming four source fibres at the subject end. The
detected light from the head of the subject is collected using detector fibres which are con-
nected to two spectrographs and CCD cameras. LabVIEW software is used to control the
system from a PC. This picture was reproduced from (Phan, 2018) with permission from
the author.

5.2.2.1.1 Hardware

5.2.2.1.1.1 Light sources and spectrograph The system is composed of two light

sources and two charge-coupled devices (CCD) cameras which have been discussed in

Section 2.1.4 of Chapter 2. The light sources (shown in Figure 5.2) each have a 50 W halo-

gen light bulb (Phillips) with an axial filament which is needed to emit a broadband near-

infrared enhanced spectrum. The spectrum output by the light source is filtered in order

to reduce UV exposure and remove heating effects. The filter removes wavelengths below

504 nm and above 1068 nm. Light is directed to the subject from the light source through

a customised bifurcated optical fibre (Loptek, Germany). The bifurcation allows each light

source to split into two pairs of light sources. The opening and closing of light sources
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are controlled by shutters and a time multiplexing mechanism is used whereby one light

source from the pair of light sources is on every 1.4 s.

Figure 5.2: Light source forming part of the broadband NIRS system. It is composed of:
1) Ventilator 2) Gold-plated concave mirror 3) 50W halogen light bulb 4) Metal plate for
cooling 5) Lenses 6) Magnetic shutter 7) Entrance for source fibre and 8) Filter. This picture
was reproduced from (Gramer, 2007).

The light that travels through the tissue is then received by two customised lens-based

spectrographs that are connected to the CCD cameras. This is shown in Figure 5.3a. The

CCD camera (PIXIS: 512f, Princeton Instruments) detects the light spectrum and is shown

in Figure 5.3b. Each spectrograph is connected to a detector fibre bundle which divides

into six individual fibres. Only five of the six fibres were used for this study as one of the

fibres from each fibre bundle was for tissue oxygenation index measurements which were

not required for this work. Therefore in total, the instrument provided 4 light sources and

10 detectors in total to form 16 measurement channels. The following section discusses the

optical fibres in more detail.
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Figure 5.3: (a) Schematic drawing of a spectrograph and CCD camera forming part of
the broadband NIRS system. This picture was reproduced from (Gramer, 2007) (b) CCD
Camera by Pixis, Princeton Instruments. This picture was reproduced from (Phan, 2018)

5.2.2.1.1.2 Optical fibres The optical fibres are made of glass and were custom-built

by Loptek (Glasfasertechnik GmbH, Germany) and each fibre in the optical fibre bundle of

detectors has a diameter of 70µm. The system has two sets of light sources which further

split into two pairs at the subject end, these bifurcated fibres are shown in Figure 5.4a. The

diameter of the light source bundle at the system end is 4.5mm while the diameter of the

individual source fibre at the subject-end is 3.2mm. These fibres are shown in Figure 5.4b.

The system has six detector fibres at the subject-end which form one detector fibre bundle

at the spectrograph-end. The detector fibres are shown in Figure 5.4c and d.
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Figure 5.4: Optical fibres forming the source fibres and detector fibres with (a) the bifur-
cated light source fibres (b) the system and subject ends of the light source fibres (c) system
and subject ends of the detector fibres and (d) close-up of the system end of the detector
fibres with each of the circles representing a detector. All photos were reproduced from
(Phan, 2018) with permission.

5.2.2.1.2 Software The spectrographs are connected to a PC running LabVIEW software

which is used to control and operate the system. Figure 5.5a shows the front interface of

the software with the settings for CCD2 displayed. Figure 5.5b shows the raw spectrum

indicating the photon counts being received at each detector of CCD2. This panel is used

to identify the quality of the data when the headgear is positioned on a participant’s head.

The photon counts (or intensity counts) at each detector represent the number of photons

that have passed from the light source, through the tissue and arrived at each detector and

can provide an indication of the expected signal-to-noise ratio of the data. The minimum

number of counts for good signal-to-noise ratio is approximately 2000 counts as the noise

level of the system is around 500 counts and the intensity counts being received at the

detector must be at least 4 times above the noise level in order to obtain a good signal-to-

noise ratio. The noise level of the system refers to a combination of thermal noise from the
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CCD and dark noise which is measured by the closing the shutter of the spectrometer so

no light is being received at the spectrometer.

Figure 5.5: LabVIEW software that controls the system with (a) front panel in the LabVIEW
software showing settings for the system. Each CCD has an identical tab for settings. and
(b) Panel displaying the intensity counts, i.e. the number of photons at each detector. Each
coloured line represents a detector from one CCD camera. There are identical tabs for each
CCD camera.

5.2.2.2 Enobio EEG

The EEG system used for this study has already been described in Chapter 2, Section 2.3.2.

For this study, twenty-six EEG channels were used with five channels positioned over the

occipital lobe (Oz, O1, O2, O9 and O10) and twenty-one channels were distributed over the

rest of the participant’s head (AF3, AF4, Fz, F3, F4, FC1, FC2, FC5, FC6, Cz, C3, C4, CP1,

CP2, Pz, P3, P4, P7, P8, PO3 and PO4). Figure 5.6a shows the EEG montage with all the

channels indicated in purple circles. Figure 5.6b shows the front-panel of the NIC software

with the EEG activity being displayed from all the different channels in real-time.
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Figure 5.6: (a) EEG montage showing the locations of the 26 channels and (b) NIC software
front panel displaying quality of EEG signals from each electrode

5.2.3 NIRS Probe Design

Previous work by Phan et al (2016a) used the same multi-channel broadband system with

a visual stimulation experimental paradigm to demonstrate the spatial selectivity of the

cytochrome response in the visual cortex. Keeping in line with their work, the orientation

of the sources and detectors in this study was kept the same. While their study used vary-

ing source-detector separation distances to perform image reconstruction, the separation

in this study was maintained at 3 cm for all the source-detector pairs. This separation dis-

tance has previously been demonstrated to be ideal for adult functional activation studies

measuring changes in oxCCO (Phan et al., 2016b). Figure 5.7 shows the schematic for the

array which was centred around Oz of the International 10/20 system.

188



Chapter 5

Figure 5.7: A schematic diagram of the NIRS array showing the positions of the sources and
detectors and EEG electrodes, with blue squares indicating detectors, red stars indicating
sources and cyan circles indicating EEG channels over the occipital cortex. The black lines
represent channels that are formed between sources and detectors.

The procedure for designing the NIRS headband has already been described in detail

in Chapter 3 and Figures 5.8a-c show the front, side and back views of the headband posi-

tioned on a participant to remind the reader of how the NIRS headgear looks.
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Figure 5.8: (a) Front, (b) side and (c) back views of the headband on a participant. Permis-
sion was obtained from the participant for their image to be included here.

Figure 5.9 shows the combined NIRS-EEG headgear positioned on a participant.
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Figure 5.9: Image showing how the NIRS headband and EEG headcap were attached (a)
side view and (b) back view, on a participant.

5.2.4 Experimental Stimuli

As discussed in the introduction of this chapter, experimental stimuli were designed to

activate the magnocellular and parvocellular pathways of the visual cortex. Given the

difference in the concentration of CCO in the two pathways, these stimuli theoretically

provide a good context to study the relationship between haemodynamics, cytochrome

and the underlying neural activity as they should elicit a differential response in oxCCO.

The magnocellular pathway is thought to be activated by high contrast, motion and ori-

entation while the parvocellular pathway is deemed to be more sensitive to low contrast,

colour and form (Derrington and Lennie, 1984; Hicks et al., 1983; Shapley et al., 1981). The

stimuli used in this study were created by Mr Andrew Levy of the Wellcome Trust Centre

for Neuroimaging, Functional Imaging Laboratory, UCL. Circular hemifield checkerboards

were designed using Psychtoolbox (Matlab, USA) using the Retinotopy Toolbox developed

at the Vision Imaging Science and Technology Lab (Stanford University, USA). There were

two contrast conditions with varying colour, spatial and temporal frequency. The spatial

frequency of a checkerboard is defined as the number of squares subtended per degree of

visual angle on the retina and is indicated by checksize. Large, coarse stimuli with fewer
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number of squares are said to have a low spatial frequency whereas stimuli with a higher

number of squares are said to have a high spatial frequency. Temporal frequency is mea-

sured in Hertz refers to the speed at which the checkerboard alternates, a low temporal

frequency refers to a slower alternation while a high temporal frequency refers to a faster

alternation. There two conditions were:

1. A high contrast black and white circular checkerboard with low spatial frequency

(checksize 2◦ ) and high temporal frequency (15 Hz).

2. A high luminance red and green circular checkerboard with high spatial frequency

(checksize 0.25◦ ) and low temporal frequency (2 Hz).

Each of these stimuli were presented in the left and right hemifield followed by baseline

which was a blank grey screen. All stimuli had a central fixation point which the partici-

pants were instructed to look at throughout the experiment. Figure 5.10a and b show both

experimental stimuli.

Figure 5.10: Experimental stimuli with (a) High luminance red and green circular checker-
board and (b) High contrast black and white circular checkerboard.

These experimental stimuli worked well with adults as they could be instructed to look

at the fixation cross at the centre of the screen. However, hemifield checkerboards do not

work well with infants. Further, adults could watch the stimuli for a long time and block

design and event related design variations of the task could be used. Infants however,

have a shorter attention span and tire more quickly, therefore making it impractical to
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have two separate versions of the experiment. An infant-friendly version of this paradigm

was developed to explore if a block design format could be used for future studies. This

experiment is detailed in the appendix.

5.2.4.1 Experimental Procedure

The data collection was performed in collaboration with Mr Andrew Levy (Wellcome Trust

Centre for Neuroimaging, Functional Imaging Laboratory, UCL). Written, informed con-

sent was obtained from each participant following which head measurements were ob-

tained. The measurement from the nasion point (defined as the depressed area in between

the eyes, above the bridge of the nose) to the inion (defined as the bony structure at the

base of the skull) was obtained and other 10/20 locations along the midline such as Cz,

Pz and Oz were calculated using this measurement. The combined headgear was posi-

tioned on top of the participant’s head such that the NIRS headband was positioned first,

with the centre of the row of sources (marked as Oz in Figure 5.7) positioned over Oz.

Following this, the holes indicated on the EEG headcap were then carefully aligned with

the true Cz, Pz and Oz locations on the participant’s head and the headgear was secured.

Once the headgear was in place, the locations of the NIRS optodes and EEG electrodes

were digitised using the Polhemus (Polhemus, USA) and Brainstorm Software (University

of Southern California, USA) was used to visualise these locations on an averaged Colin

adult brain template (Collins et al., 1998) to ensure that the headgear was placed accurately,

with all optodes and electrodes in the intended locations. Next, the EEG electrodes inside

the headcap were filled with gel using a syringe and the wires were clipped on. The par-

ticipant was then positioned in front of the screen at an approximate viewing distance of

60 cm and the EEG wires were plugged into the necbox which was secured to an arm sup-

porting the NIRS fibres, above the top of the participant’s head. Figure 5.11 shows the full

set-up on a participant. Once all aspects of the EEG set up had been completed, additional

steps were performed to ensure that a good signal-to-noise ratio would be obtained from

the NIRS system. This involved clearing hair prior to the insertion of the optical fibres into

the optode couplers. Hair was moved out of the way of each optical fibre using plastic

cable ties in order to ensure that hair did not obstruct the light from the fibre and a good
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signal-to-noise-ratio was obtained. Following this, the buckle-pulley system was used to

further tighten the optical fibres to scalp. Occasionally, the optode couplers were rotated to

add an extra level of tightness of the fibres with the head. Each participant was then pre-

sented with two versions of the same stimuli; a block design version and an event-related

version.

Figure 5.11: NIRS-EEG set-up on a participant (a) side view and (b) back view with NIRS
optodes and EEG electrodes indicated.

One of the challenges of a simultaneous NIRS-EEG study is headgear development and

this has already been discussed in detail in Chapter 3. Another important aspect to con-

sider is developing a suitable experimental paradigm which is ideal for both techniques.

Typically, NIRS functional activation studies use experimental paradigms where the stim-

uli are presented in blocks of 10 - 20 s. This is because the haemodynamic response is slow

and block presentation allows the response to reach its maximum value and then return

to baseline before the presentation of the following experimental condition. On the other

hand, EEG studies use an event-related design where stimuli are presented many times

for a short duration (between 100 ms to 2000 ms) as neural activity is much faster than

the haemodynamic response and can be reliably detected 100 ms post-experimental stim-

ulus onset (Luck, 2005). As the purpose of this adult work was to develop all aspects of a
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simultaneous NIRS-EEG study to apply to the infant studies, it was necessary to explore

varying designs for an experimental paradigm that worked for both techniques. As a start-

ing point, both block design and event-related designs were used to collect simultaneous

NIRS-EEG data. In the block design variation, the stimuli were presented for 18 s each

followed by 18 s of baseline which consisted of a black grey screen and this was presented

eight times to each participant. This is in accordance with previous adult NIRS visual

functional activation studies have used similar presentation lengths (Phan et al., 2016b).

In the event-related variation, the stimuli were presented in short blocks such that each

block consisted of 4 presentations of the same stimulus (e.g. black/white checkerboard

presented in the left hemifield) for 2.5 s each with an inter-stimulus interval of 2 s followed

by a baseline period of 8 s which consisted of a blank grey screen. Each block was repeated

eight times for each participant, amounting to a total of 32 presentations of each condition.

As mentioned earlier, in event-related designs stimulus presentation is much shorter and a

presentation duration of 2.5 s was used in this study which is consistent with event-related

designs and provides sufficient time for a response to be detected (Luck, 2005).

5.2.5 Data analysis

5.2.5.1 NIRS

The NIRS data was analysed only from the block design task. The data was analysed in

Matlab 2014a (Mathworks, USA) using a program developed by Dr Ilias Tachtsidis and

Dr Phong Phan at UCL. The time multiplexing mechanism of the system allowed each

detector to receive two intensity spectra of light from source 1 at one cycle and source 2

in the next cycle. Therefore, the intensity spectra collected at each detector needed to be

separated into the corresponding channels. The distances between the channels resulted

in differences in the intensity spectra which were to be used to identify the operating light

source at each time point. Using these differences, the intensity spectra were then correctly

allocated to the appropriate channels. These were then used to calculate the change in at-

tenuation and consequently the changes in the concentrations of each of the chromophores

by using the Modified Beer Lambert Law using the UCLn algorithm (Bale et al., 2016a), at
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120 wavelengths of light between 780 - 900 nm. Once the concentration changes were calcu-

lated, the data were interpolated to 1s and bandpass filtered using a 5th order Butterworth

filter from 0.01 - 0.4 Hz, in accordance with previous studies (Phan et al., 2016b). The data

were then converted into blocks such that each block consisted of 9 s of the baseline period

preceding the experimental condition, the experimental condition and the entire following

baseline. The blocks for each condition were averaged to obtain an averaged response for

each participant. The averaged responses were then used to create contralateral and ip-

silateral conditions. This was done by averaging between channels positioned either side

of the midline, for example for the contralateral condition, for the black and white circular

checkerboard presented in the right hemifield, the channnels positioned over the left visual

cortex were averaged with channels over the right visual cortex when the black and white

circular checkerboard was presented in the left hemifield. The contralateral and ipsilateral

conditions were then averaged across participants to obtain grand averaged contralateral

and ipsilateral responses. Therefore for the contralateral and ipsilateral analysis, there are

8 channels formed by collapsing the 16 contralateral and ipsilateral channels. I chose to

analyse the data in this way as it allowed clearer distinction between the haemodynamic

responses to the two experimental stimuli.

From this point onwards, the condition referred to as “Magno” refers to the black and

white circular checkerboard whereas the condition referred to as “Parvo” refers to the red

and green circular checkerboard. Statistical comparisons were performed to compare the

maximum change in HbO2, HHb and oxCCO during a time window of 10 to 20 s post-

experimental stimulus onset, to include the range of responses across participants, between

contralateral vs ipsilateral responses for both Magno and Parvo conditions. Comparisons

were also performed between the contralateral Magno vs Parvo conditions and the ipsilat-

eral Magno vs Parvo. No correction for multiple comparisons was applied in this study.

Figure 5.12 shows how the original 16 channels were collapsed to form contralateral and

ipsilateral channels with the dashed lines showing the labels of the new channels.
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Figure 5.12: Contralateral and Ipsilateral channels created by collapsing over channels
across hemispheres. The dashed lines show the labels of the new channels formed.

5.2.5.2 EEG

The EEG data were analysed from both block and event-related tasks. However, due to

a small number of participants and trials in the EEG data of the block design task, the

combined NIRS-EEG analysis was performed on the NIRS data from the block design task

with the EEG data from event related task. All EEG data were analysed using the EEGLab

Toolbox (Schwartz Centre for Computational Neuroscience, UC San Diego, USA) in Mat-

lab2017a (Mathworks, USA). For both tasks, the data were bandpass filtered from 0.1-100

Hz and a notch filter of 50 Hz was applied to remove electrical noise and then segmented

into 800 ms epochs around the onset of the experimental stimulus. The epoched data were

cleaned manually to remove any trials that were contaminated with artifacts such as eye

blinks, muscle noise and movement. A similar approach to the NIRS data was followed in

order to obtain contralateral and ipsilateral conditions, Figure 5.13 shows how the channels

were collapsed to obtain contralateral and ipsilateral conditions. The solid lines between

channels show the new labels for the channels. A number of different analyses were per-

formed on the EEG data for contralateral and ipsilateral conditions for both Magno and

Parvo:
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1. Event related potentials (ERPs) waveforms were generated for the five channels over

the occipital cortex.

2. Wavelet-based decomposition was performed to obtain the evoked oscillations for

time-frequency analysis, for each channel.

3. Topographical maps of spectral power were generated at specific frequency bands

and latencies.

Similar to the NIRS data analysis, statistical comparisons were performed on the maximum

amplitude change of the P100 of the ERPs to compare contralateral and ipsilateral condi-

tions for both Magno and Parvo. This is in accordance with previous work investigating

the magnocellular and parvocellular pathways using visually evoked potentials (Benedek

et al., 2016). The contralateral condition for Magno was compared to Parvo and ipsilateral

condition for Magno was compared to Parvo.

Figure 5.13: Contralateral and Ipsilateral channels created by collapsing over channels
across hemispheres. The solid lines between channels show the new labels for the chan-
nels.

Figure 5.14 shows a topographical map of both EEG (left) and NIRS (right) channels

which were collapsed to create contralateral and ipsilateral channels.
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Figure 5.14: Contralateral and Ipsilateral channels for both (left) EEG indicated in blue and
(right) NIRS indicated in magenta.

5.2.5.3 Combined NIRS-EEG

For the combined NIRS-EEG analysis, EEG data from the event-related design task were

combined with the NIRS data from the block design task. As a result, the combined data

analysis was not performed on the concurrently recorded NIRS and EEG however, owing

to the small number of subjects and trials in the EEG data from the block design task,

it was not meaningful to perform this analysis on the block task. For the infant work

presented in Chapter 5 however, variations were made to the experimental stimuli so that

simultaneously recorded data could be analysed.

In order to combine the NIRS and EEG, two main types of analyses were performed:

1. The maximum amplitude of the P100 of the ERP was correlated with the maximum

change in concentration of HbO2 and oxCCO.

This was done for two contrasts:

(1) Contralateral vs ipsilateral (for Magno and Parvo conditions)
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(2) Magno vs Parvo (for contralateral and ipsilateral conditions)

For both contrasts, a subtraction was performed prior to the correlations which in-

volved subtracting the amplitudes of the P100 of the ERP and the maximum ampli-

tude of the HbO2 and oxCCO responses of one condition from the other. For example,

when comparing the contralateral versus the ipsilateral (i.e. contrast (1) above) the

P100 amplitude of the ERP and the maximum amplitude of the HbO2 and oxCCO re-

sponses of the ipsilateral condition were subtracted from the contralateral condition.

A similar subtraction was performed for contrast (2) but for this the P100 amplitude

of the ERP and the maximum amplitude of the HbO2 and oxCCO responses of the

Parvo condition were subtracted from the Magno. Following this, the data were

z−scored in order to obtain normalised measures. Pearson’s correlation was then

calculated between the P100 amplitude and the maximum change in ∆[HbO2] and

∆[oxCCO] for each of the five EEG channels over the occipital cortex and all eight of

the NIRS channels.

2. The power spectral density (PSD) was correlated with the maximum change in

concentration of HbO2 and oxCCO.

The PSD of different frequency bands (alpha, beta and gamma) were calculated. Fol-

lowing this, similarly to the analysis described in (1), subtractions were performed

for each contrast measure and the data were z−scored in order to obtain normalised

measures. Pearson’s correlation was then calculated between the power of each fre-

quency band and the maximum change in ∆[HbO2] and ∆[oxCCO] for each of the

five EEG channels over the occipital cortex and all eight of the NIRS channels.

As a first step EEG data was correlated only with measures of HbO2 and oxCCO and not

HHb.

200



Chapter 5

5.3 Results

5.3.1 NIRS

Out of 13 subjects, 5 were included in the final analysis. Subjects were excluded from

the study if they had a poor signal-to-noise ratio, which was determined by the intensity

counts of the photons returning at each detector. Low intensity counts were observed for

a number of subjects and there are various factors which can contribute to this including

hair, variability in the thickness of the scalp as well as anatomical differences.

5.3.1.1 Contralateral vs Ipsilateral

5.3.1.1.1 Magnocellular Figure 5.15 (upper panel) shows the changes in concentration

of HbO2, (red) HHb (blue) and oxCCO (green) for both contralateral (solid lines) and ipsi-

lateral conditions (dashed lines) for the Magno condition. The coloured boxes indicate

channels with a significant difference in the contralateral and ipsilateral conditions for

∆[HbO2] (red boxes), ∆[oxCCO] (green boxes) and ∆[HHb] (blue boxes). Figure 5.15 (bot-

tom panel) shows the oxCCO responses with y-axis rescaled.

The paired t-test conducted between contralateral and ipsilateral conditions indicated

significant differences in HbO2 in channels 5 (t = 7.158, p = 0.002), 6 (t = 2.980, p = 0.041),

7 (t = 3.040 , p = 0.038) and 8 (t = 3.473, p = 0.026), in HHb in channels 2 (t = −2.825,p =

0.048), 5 (t = 4.435, p = 0.011), 6 (t = 3.213, p = 0.033), 7 (t = 6.876, p = 0.015) and 8

(t = 6.876, p = 0.002) and in oxCCO in channels 5 (t = 4.853, p = 0.008), 6 (t = 5.692,

p = 0.005), 7 (t = 5.314, p = 0.006) and 8 (t = 5.559, p = 0.005). The table containing the

statistics for each of the chromophores for each channel can be found in the appendix. The

channels located over the primary visual cortex show greater responses to the contralateral

in comparison to the ipsilateral, as expected.
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Figure 5.15: Observed changes in concentration of ∆[HbO2] (red), ∆[HHb] (blue) and
∆[oxCCO] (green) with (upper panel) oxCCO magnified (x2.5) and (bottom panel) oxCCO
prior to magnification, for the Magno condition. Both contralateral (solid lines) and ipsilat-
eral (dashed lines) conditions are shown and channels with a significant difference between
contra and ipsi conditions are indicated with boxes (red for HbO2, green for oxCCO and
blue for HHb).

5.3.1.1.2 Parvocellular Figure 5.16 (upper panel) shows the changes in concentration of

HbO2, (red) HHb (blue) and oxCCO (green) for both contralateral (solid lines) and ipsilat-
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eral conditions (dashed lines) for the Parvo condition. The coloured boxes indicate chan-

nels with a significant difference in the contralateral and ipsilateral conditions for ∆[HbO2]

(red boxes), ∆[oxCCO] (green boxes) and ∆[HHb] (blue boxes). Figure 5.16 (bottom panel)

shows the oxCCO responses with y-axis rescaled.

The paired t-test conducted between contralateral and ipsilateral conditions indicated

significant differences in HbO2 in channels 4 (t = −2.949, p = 0.04), 6 (t = 3.004, p = 0.04),

7 (t = 3.992 , p = 0.016) and 8 (t = 3.374, p = 0.028), in HHb in channels 4 (t = −7.141,p =

0.002), 5 (t = 5.346, p = 0.006), 6 (t = 5.882, p = 0.004), and 7 (t = 8.181, p = 0.001) and

in oxCCO in all channels except channel 1 (the t and p values for oxCCO can be found in

the appendix). The table containing the statistics for each of the chromophores for each

channel can be found in the appendix. The channels located over the primary visual cortex

show greater responses to the contralateral in comparison to the ipsilateral, as expected.
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Figure 5.16: Observed changes in concentration of ∆[HbO2] (red), ∆[HHb] (blue) and
∆[oxCCO] (green) with (upper panel) oxCCO magnified (x2.5) and (bottom panel) oxCCO
prior to magnification, for the Parvo condition. Both contralateral (solid lines) and ipsilat-
eral (dashed lines) conditions are shown and channels with a significant difference between
contra and ipsi conditions are indicated with boxes (red for HbO2, green for oxCCO and
blue for HHB).
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5.3.1.2 Magno vs Parvo

5.3.1.2.1 Contralateral Pairwise t-tests between the Magno and Parvo conditions for the

contralateral condition indicated significant differences in HbO2 in channels 1 (t = 3.384,

p = 0.028) and 5 (t = 6.462, p = 0.003), HHb in channel 4 (t = 13.04, p < 0.001) and in

oxCCO channels 5 (t = 3.927, p = 0.017) and 8 (t = 3.741, p = 0.02). The table with the

statistics for each of the chromophores for each channel can be found in Appendix A.

Figure 5.17 shows, for oxCCO (green) and HbO2 (red), the difference between the max-

imum concentration change for Magno and Parvo (i.e. Magno minus Parvo) for each chan-

nel. Each circle indicates a subject and the channels indicated by the highlighted asterisk

show the channels with a significant difference between Magno and Parvo.

Figure 5.17: Difference between maximum concentration change for contralateral Parvo
minus Magno for oxCCO (green) and HbO2 (red). Channels with a significant difference
between contralateral Parvo and Magno conditions are indicated with an asterisk.

5.3.1.2.2 Ipsilateral There were no channels for any of the chromophores with signifi-

cant differences between Magno and Parvo for the ipsilateral condition.
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5.3.1.3 Cross correlations

Cross-correlations were calculated between each of the chromophores, i.e. between (i)

HbO2 and oxCCO (ii) HHb and oxCCO and (iii) HbO2 and oxCCO for the contralateral

Magno and Parvo conditions for all channels and then averaged across channels to obtain

the average cross-correlations. These can be seen in Figure 5.18. As ipsilateral displayed

the same pattern of results and can be found in Appendix A. Negative correlations were

observed between HbO2 and HHb (r = −0.78) and HHb and oxCCO (r = −0.95), as expec-

ted, and positive correlations were seen between HbO2 and oxCCO (r = 0.63), all around

zero time-lag.
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Figure 5.18: Average of the cross-correlation across all occipital channels for the contralat-
eral Magno condition (upper panel) and contralateral Parvo condition (bottom panel).

5.3.1.4 EEG (Event Related Design Task)

5.3.1.4.1 Event Related Potentials

5.3.1.4.1.1 Contralateral vs Ipsilateral
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Magno

Figure 5.19 shows the ERPs for both contralateral (solid lines) and ipsilateral conditions

(dashed lines) for Magno. Pairwise t-tests between the amplitude of the P100 of the con-

tralateral and ipsilateral conditions for Magno indicated a significant difference between

contralateral and ipsilateral at channels 1 (t = 5.098, p = 0.001), 2 (t = −1.76097, p = 0.005)

and 5 (t = 4.88552, p = 0.002). The table with the statistics from all channels can be found

in the appendix.

Figure 5.19: Contralateral (solid lines) and Ipsilateral (dashed) event related potentials for
Magno condition for channels over the occipital cortex

Parvo

Figure 5.20 shows the ERPs for both contralateral (solid lines) and ipsilateral conditions

(dashed lines) for Parvo. Pairwise t-tests between the maximum amplitude of the P100

of the contralateral and ipsilateral conditions for Parvo indicated a significant difference

between contralateral and ipsilateral at channels 1 (t = 5.325, p = 0.001), 2 (t = −3.911,

p = 0.004) and 5 (t = 3.016, p = 0.017). The table with the statistics from all channels can

be found in the appendix.
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Figure 5.20: Contralateral (solid lines) and Ipsilateral (dashed lines) event related poten-
tials for Parvo condition for channels over the occipital cortex

5.3.1.4.1.2 Magno vs Parvo Pairwise t-tests between the maximum amplitude of the

P100 for Magno vs Parvo did not show any significant difference in any of the channels

for either contralateral or ipsilateral condition. Figure 5.21 shows the contralateral (solid)

and ipsilateral (dashed) Magno (black) and Parvo (red) ERPs plotted on the same figure,

for each of the five channels over the occipital cortex. While no significant differences were

found between Magno and Parvo, there appears to be a difference in the latency of the

P100 amplitude for the contralateral Magno vs Parvo, with the Parvo P100 occurring later

than the Magno P100 in channels 1 and 5.
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Figure 5.21: Contralateral (solid lines) and Ipsilateral (dashed lines) event related poten-
tials for both Magno (black) and Parvo (red) conditions for channels over the occipital
cortex

5.3.1.4.2 Topographical Maps Topographical maps of the power of different frequency

bands at specified latencies were obtained. These were not for contralateral and ipsilat-

eral conditions but for the original hemifield checkerboards as contralateral and ipsilateral

conditions cannot be topographically represented. ML refers to Magno presented in the

left hemifield, MR refers to Magno presented in the right hemifield, PL refers to Parvo

presented in the left hemifield and PR refers to Parvo presented in the right hemifield.

The topographical maps are shown in Figures 5.22 - 5.24. The frequency bands specified

here were alpha (8-12 Hz), beta (15-22 Hz) and low gamma (30-40 Hz) and are shown at

latencies of 100 ms and 135 ms.

An increase in occipital oscillatory activity is seen in the alpha and beta frequency

bands in the contralateral hemisphere at 100 ms for both ML and MR and at 135 ms for

PL and PR and for the gamma band at 100 ms for both ML and MR and 122 ms for PL and

PR.
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Alpha

Figure 5.22: Topographical maps at latency of (upper panel) 100 ms and (bottom panel) 135
ms for the alpha band.

Beta

Figure 5.23: Topographical maps at latency of (upper panel) 100 ms and (bottom panel) 135
ms for the beta band.
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Gamma

Figure 5.24: Topographical maps at latency of (upper panel) 100 ms and (bottom panel) 122
ms for the gamma band.

5.3.1.4.3 Time-Frequency Wavelet-based decomposition, which has been described in

detail in Section 2.3.2.2 of Chapter 2, was used to obtain the evoked oscillations for the

contralateral condition for both Magno and Parvo conditions. The results of the time-

frequency decomposition are shown in Figures 5.25 for Magno condition in the upper panel

and the Parvo condition in the bottom panel. An increase in stimulus-evoked alpha band

activity can be seen in all channels, particularly in channels 1 and 5. Channels 1 and 5

additionally show an increase in beta band activity which appears to be stronger for the

Magno condition in comparison to the Parvo.
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Figure 5.25: Time-frequency plot of each of the five channels over the occipital cortex for
contralateral condition for both (upper panel) Magno and (bottom panel) Parvo conditions.

213



Chapter 5

5.3.1.5 EEG (Block Design Task)

5.3.1.5.1 Event Related Potentials

5.3.1.5.1.1 Contralateral vs Ipsilateral

Magno

Figure 5.26 shows the event related potentials (ERPs) for both contralateral and ipsilateral

conditions for Magno. Pairwise t-tests between the maximum amplitude of the P100 of

the contralateral and ipsilateral conditions for Magno indicated a significant difference

between contralateral and ipsilateral at channels 1 (t = 5.098, p = 0.001), 2 (t = −1.76097,

p = 0.005) and 5 (t = 4.88552, p = 0.002). The table with the statistics from all channels can

be found in the appendix. Similarly to the event-related design task, the contralateral ERP

is stronger in Channel 5 in comparison to the ipsilateral. Channel 1 was excluded from the

analysis for both conditions due to poor signal quality in majority of participants.

Figure 5.26: Contralateral (solid lines) and Ipsilateral (dashed lines) event related poten-
tials for Magno condition for channels over the occipital cortex
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Parvo

Figure 5.27 shows the event related potentials (ERPs) for both contralateral and ipsilateral

conditions for Parvo. Pairwise t-tests between the maximum amplitude of the P100 of the

contralateral and ipsilateral conditions for Parvo indicated a significant difference between

contralateral and ipsilateral at channels 1 (t = 5.325, p = 0.001), 2 (t = −3.911, p = 0.004)

and 5 (t = 3.016, p = 0.017). The table with the statistics from all channels can be found in

the appendix. Similarly to the event-related design task, the contralateral ERP is stronger

in Channel 5 in comparison to the ipsilateral.

Figure 5.27: Contralateral and Ipsilateral event related potentials for Parvo condition for
channels over the occipital cortex

Magno vs Parvo

Pairwise t-tests between the maximum amplitude of the P100 for Magno vs Parvo did not

show any significant difference in any of the channels for either contralateral or ipsilateral

condition. Figure 5.28 shows the contralateral and ipsilateral Magno and Parvo ERPs plot-

ted on the same figure, for each of the five channels over the occipital cortex. No significant

differences were found between Magno and Parvo.
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Figure 5.28: Contralateral (solid lines) and Ipsilateral (dashed lines) event related poten-
tials for both Magno (black) and Parvo (red) conditions for channels over the occipital
cortex

5.3.1.5.2 Time-Frequency Similar to the event-related task design, wavelet decompo-

sition was used to obtain the evoked oscillations for the contralateral condition for both

Magno and Parvo conditions. The results of the time-frequency decomposition are shown

in Figures 5.29 for Magno (upper panel) and Parvo (bottom panel). Similarly to the event-

related design task, an increase in stimulus-evoked alpha band activity was seen in all the

channels. Additionally, an increase in beta band activity was seen in Channel 5 which was

stronger for the Magno condition, similarly to the event-related design task. While the re-

sults show comparable results with event-related design task, the data is much noisier in

comparison due to small number of trials.
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Figure 5.29: Time-frequency plot of each of the five channels over the occipital cortex for
(upper panel) contralateral condition for Magno (bottom panel) contralateral condition for
Parvo.

5.3.1.6 Combined NIRS-EEG

Figure 5.30 shows the contralateral and ipsilateral channels for both EEG (left) and NIRS

(right) indicated by blue and magenta lines respectively, in order to remind the reader

of the topographical location of the channels. The channels of interest, lying above the
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primary visual cortex, are indicated in yellow.

Figure 5.30: Contralateral and Ipsilateral channels for both (left) EEG indicated in blue and
(right) NIRS indicated in magenta. The channels of interest are indicated in yellow.

For all conditions, the correlations between NIRS and EEG channels are shown in the

form of a heatmap with the colourbar indicating the strength of the correlation, with pos-

itive correlations being yellow or green and negative correlations being blue. Channels 4

and 5 of the EEG and Channels 5, 6, 7 and 8 (indicated in yellow in 5.30) correspond to

areas over the primary visual cortex and the correlations between them are focused on.

These are are indicated by means of red boxes in the figures in the following sections.

5.3.1.6.1 Correlation of P100 with NIRS maximum concentration change

5.3.1.6.1.1 Contralateral vs Ipsilateral Figure 5.31 shows a heatmap of the correla-

tions between the maximum P100 amplitude and maximum concentration change of HbO2

and oxCCO, for the five occipital EEG channels and eight NIRS channels, for the contralat-

eral vs ipsilateral comparison for both Magno (left) and Parvo (right) conditions. None of
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the correlations were significant due to a small sample size (n=5).

Figure 5.31: Heatmap of the correlations between P100 amplitude and NIRS chromophores
HbO2 and oxCCO for the contralateral versus ipsilateral comparison, for both Magno (left)
and Parvo (right) conditions. The colourbar indicates the strength of the correlation with
yellow indicating positive correlations and blue negative correlations.

Magno vs Parvo

Figure 5.32 shows a heatmap of the correlations between the maximum P100 amplitude

and maximum concentration change of HbO2 and oxCCO, for the five occipital EEG chan-

nels and eight NIRS channels, for the Magno versus Parvo comparison for both contralat-

eral (left) and ipsilateral (right) conditions. None of the correlations were significant due

to a small sample size (n=5). The colourbar represents the strength of the correlation with

positive correlations being yellow or green and negative correlations being blue.
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Figure 5.32: Heatmap of the correlations between P100 amplitude and NIRS chromophores
HbO2 and oxCCO for the Magno versus Parvo comparison, for both contralateral (left) and
ipsilateral (right) conditions. The colourbar indicates the strength of the correlation with
yellow indicating positive correlations and blue negative correlations.

5.3.1.6.2 Correlation of PSD with NIRS maximum concentration change

5.3.1.6.2.1 Contralateral vs Ipsilateral

1. Magno

Figure 5.33 shows heatmaps of the correlations between the PSD of each of the frequency

bands and the maximum concentration change in HbO2and oxCCO for each of the NIRS

and EEG channels, for the contralateral versus ipsilateral comparison, for the Magno con-

dition.
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Figure 5.33: Heatmap of the correlations between the PSD of alpha, beta and gamma fre-
quency bands and NIRS chromophores HbO2 and oxCCO for the contralateral versus ip-
silateral comparison, for the Magno condition. The colourbar indicates the strength of the
correlation with yellow indicating positive correlations and blue negative correlations.

2. Parvo

Figure 5.34 shows heatmaps of the correlations between the PSD of each of the frequency

bands and the maximum concentration change in HbO2and oxCCO for each of the NIRS

and EEG channels, for the contralateral versus ipsilateral comparison, for the Parvo condi-

tion.
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Figure 5.34: Heatmap of the correlations between the PSD of alpha, beta and gamma fre-
quency bands and NIRS chromophores HbO2 and oxCCO for the contralateral versus ip-
silateral comparison, for the Parvo condition. The colourbar indicates the strength of the
correlation with yellow indicating positive correlations and blue negative correlations.

Magno vs Parvo

1. Contralateral

Figure 5.35 shows heatmaps of the correlations between the PSD of each of the frequency

bands and the maximum concentration change in HbO2and oxCCO for each of the NIRS

and EEG channels, for the Magno versus Parvo comparison, for the contralateral condition.
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Figure 5.35: Heatmap of the correlations between the PSD of alpha, beta and gamma fre-
quency bands and NIRS chromophores HbO2 and oxCCO for the Magno versus Parvo
comparison, for the contralateral condition. The colourbar indicates the strength of the
correlation with yellow indicating positive correlations and blue negative correlations.

1. Ipsilateral

Figure 5.36 shows heatmaps of the correlations between the PSD of each of the frequency

bands and the maximum concentration change in HbO2and oxCCO for each of the NIRS

and EEG channels, for the Magno versus Parvo comparison, for the ipsilateral condition.
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Figure 5.36: Heatmap of the correlations between the PSD of alpha, beta and gamma fre-
quency bands and NIRS chromophores HbO2 and oxCCO for the Magno versus Parvo
comparison, for the ipsilateral condition. The colourbar indicates the strength of the cor-
relation with yellow indicating positive correlations and blue negative correlations.

5.4 Discussion

In this chapter, I used multi-channel broadband NIRS to simultaneously measure changes

in the concentrations of oxygenated and deoxygenated haemoglobin alongside changes

in cellular oxygen metabolism with EEG, in adults during visual stimulation. Two of the

main methodological challenges of this study included developing combined NIRS and

EEG headgear and designing an appropriate experimental paradigm for both techniques,

the former of these was discussed in Chapter 2 of this thesis. These methodological de-

velopments were particularly important as the purpose of the adult work was to optimise

concurrent NIRS and EEG data collection which could be extended to infants.

The NIRS changes in concentration of ∆[HbO2], ∆[HHb] and ∆[oxCCO] indicate a sig-

nificant difference between contralateral and ipsilateral for both Magno and Parvo con-

ditions for all three chromophores, in the channels located closest to the primary visual

cortex. For the Magno condition, all of the same channels showed a significant difference

between contralateral and ipsilateral for each of the chromophores while for the Parvocel-
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lular condition, oxCCO showed a significant difference in all channels except one. This

may perhaps be a reflection of the greater concentration of CCO in the parvocellular path-

way. Furthermore, a significant difference was also observed between contralateral Magno

and Parvo conditions for all three chromophores. Interestingly, oxCCO was the only chro-

mophore where a significant difference between contralateral Magno and Parvo could be

seen in a channel over the primary visual cortex. This may potentially provide evidence

of the higher spatial sensitivity of oxCCO in comparison to the haemoglobins, as previous

studies have reported (Phan et al., 2016a). Although it must be noted that the response

was greater for the Magno condition and not the Parvo, despite the high concentration of

CCO in the parvocellular pathway. This could perhaps be due to the fact that cells in the

magnocellular pathway are known to be larger and size and may therefore have a greater

number of mitochondria present inside the cells.

The ERP analysis from the event-related task demonstrated a strong contralateral P100

in response to both Magno and Parvo conditions, over the primary visual cortex which

appeared to be stronger for the Magno condition, although no statistically significant dif-

ferences could be found between the two conditions. This was perhaps due to the small

number of subjects and trials included in the analysis. Through visual inspection of the

ERPs and the topographical maps however, it is evident that the response for the Parvo

condition has a longer latency, around 130 ms, in comparison to the Magno condition

which has latency around 100 ms. The differences in the magnitude and latency of both

the NIRS responses and the ERPs may be the reflection of the histological differences be-

tween magnocellular and parvocellular pathways and such differences have been reported

in previous studies (Schmolesky et al., 1998; Mohamed et al., 2006; Liu et al., 2006). Sim-

ilar differences are also observed in the EEG time-frequency decomposition where, in the

channel located over the primary visual cortex, has an increase in stimulus-evoked alpha,

beta and low gamma band activity which is stronger for the Magno condition in compari-

son to the Parvo. In Parvo condition, the stimulus-evoked activity is contained to the alpha

frequency band (8 - 12 Hz) and low beta (13 - 20 Hz) which is in accordance with previ-

ous work (Fründ et al., 2007; Sewards and Sewards, 1999) which has demonstrated that

stimuli with high spatial frequency (Parvo condition) elicit stronger alpha activity while
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stimuli with low spatial frequency (Magno condition) produce stronger gamma activity.

Although, the gamma activity is not strongly visible and a higher number of trial and

participants might be required in order to observe this effect. This result is further high-

lighted in the combined NIRS and EEG analysis that was performed to correlate the PSD

of alpha, beta and gamma frequency bands with the maximum change in concentration of

HbO2 and oxCCO. That is, in comparing the contralateral Magno and Parvo conditions,

in the channels located closest to the primary visual cortex, a positive relationship was

observed between HbO2 and beta and gamma band oscillations for the Magno condition

and an inverse relationship between HbO2 and alpha band activity. The correlations be-

tween oxCCO and the frequency bands (gamma band in particular) were not as strong.

For the ipsilateral comparison between Magno and Parvo however, stronger correlations

were observed between oxCCO and beta and gamma frequency bands. This may be pro-

vide evidence in line with previous research that has demonstrated that extrastriate visual

regions contain representations of the entire visual field (Tootell et al., 1998).

Moreover, in the combined NIRS and EEG analysis comparing contralateral and ipsi-

lateral for both Magno and Parvo conditions showed stronger correlations between NIRS

and EEG channels over the primary visual cortex with a positive relationship between al-

pha band activity and oxCCO and an inverse relationship with beta and gamma band os-

cillations. This was an interesting pattern and previous studies have provided evidence of

differing neural mechanisms giving rise to low and high frequency oscillations and there-

fore relating to blood oxygenation levels differently (Scheeringa et al., 2011a, 2016).

The results from this study provide indication of differences in the magnocellular and

parvocellular pathways observed in both NIRS responses and neural activity measured

by EEG and the combined data analysis provides potential emerging evidence of the link

between neuronal activation, energy metabolism and haemodynamics. More importantly

however, the feasibility of concurrent broadband NIRS and EEG data collection was demon-

strated through the work presented in this chapter which is a milestone in itself. The com-

bined headgear was developed successfully allowing both NIRS optodes and EEG elec-

trodes to be positioned on the head and could be translated for use with infants. There

were however, a number of limitations to this study. Firstly, a small number of subjects
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were included which can severely impact results. Additionally, for EEG from both event-

related and block design tasks, the number of trials was quite small. The average number

of trials included in the event-related task was thirty which seems to be lower than what

is common for adult EEG studies (Luck, 2005; Cohen, 2014). This could be easily rectified

for future studies by decreasing the baseline line period of 8 s which is longer than what is

used for most studies and having a shorter baseline period would allow a higher number

of presentations of the stimulus, thereby yielding more trials. The small number of trials

in the block design task (due to a long stimulus presentation duration of 18 s) meant that

concurrently recorded NIRS and EEG data could not be analysed to obtain reliable and

meaningful results, thereby limiting the inferences that could be made when correlating

the NIRS and EEG data. Another limitation of this study was that no correction for mul-

tiple comparisons was applied. The work presented in the following chapter therefore,

details the simultaneous NIRS and EEG study in infants and how the current work was

improved upon by increasing the sample size and refining the experimental paradigm to

have one design that would work for both techniques.
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INFANT NIRS STUDY OF

CYTOCHROME WITH EEG -

TEMPORAL CORTEX

6.1 Introduction

The work presented in the previous chapter detailed the developments that were neces-

sary to use multi-channel broadband NIRS simultaneously with EEG in order explore the

relationship between neural activity, energy metabolism and haemodynamics. While the

study measured changes in the concentration of NIRS chromophores only over the occip-

ital cortex in response to visual stimuli, the results indicated that in adults, stimuli that

produced differential responses in haemodynamic and metabolic activity do relate differ-

ently to associated neural activity. Moreover, HbO2 and oxCCO related to neural activity

differently as well. Yet there were many limitations to the study, most notably the small

sample size and the small number of trials. Additionally, only two types of stimuli were

presented and the relationship between EEG and NIRS may need to be explored in the con-

text of many different types of stimuli in order to the establish the relationship between the

signals. Moreover, the purpose of performing the adult study was to first develop a pro-

tocol for simultaneous NIRS and EEG measurements as well as a data analysis pipeline.
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From the discussion in the introduction chapter, it is also clear that neurometabolic path-

ways in the infant brain are under ongoing maturation in comparison to the adult brain. It

was therefore important to perform this work first in adults where the neurovascular cou-

pling pathway is fully developed and it would hence be easier to discern the relationships

between neural activity and haemodynamic changes in a context where the data had less

variability and was better understood than infant data. Having successfully established a

protocol and an analysis pipeline, this chapter focuses on the description of the simulta-

neous NIRS and EEG study in infants. The adult study allowed me to improve a number

of aspects of the combined NIRS-EEG protocol. These included an increased sample size,

reduction in the length of stimulus durations thereby yielding higher number of individ-

ual trials and most importantly the addition of new stimuli to enable the relationship of

interest to be investigated in different contexts.

As discussed previously in Chapter 4, one of the limitations of using a single channel

broadband NIRS system was that it provided little spatial information and the purpose

of moving to a multi-channel broadband NIRS system was to measure spatially resolved

changes in ∆[oxCCO] and to observe whether the oxCCO signal was more spatially specific

than haemodynamic responses in HbO2 and HHb. The results from the study presented

in Chapter 4 demonstrated that the use of a social experimental stimulus over the STS -

TPJ region in the temporal cortex produced not only measurable changes in the concen-

tration of HbO2 and HHb, but also in oxCCO. Therefore, in the infant NIRS-EEG study, a

social/non-social experimental paradigm was developed in order to investigate the spatial

specificity of cytochrome and its relation to haemodynamic changes and neural activity.

As mentioned earlier, it was important to use different types of stimuli in order to inter-

rogate the relationship of interest in different contexts, especially to establish any regional

differences in the association between NIRS and EEG measures. Hence, visual stimuli sim-

ilar to those in Chapter 5 were also designed to measure responses over the occipital cortex.

All infants were therefore presented with the same combination of social and visual stim-

uli. This chapter details the use of multi-channel broadband NIRS system introduced in

Chapter 4 simultaneously with EEG to measure changes in ∆[HbO2], ∆[HHb], ∆[oxCCO]

as well as neuronal activity of the brain in response to social stimuli, in infants while the
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visual stimuli are discussed in Chapter 7.

6.2 Methods

6.2.1 Participants

Forty-two 4-to-7-month-old healthy infants participated in the study (22 males and 20 fe-

males, mean age: 179 ± 16 days). All parents volunteered to participate in the study and

provided written, informed consent. The study protocol was approved by the Birkbeck

Psychology Ethics Committee and all procedures were performed in accordance with the

regulations of the Ethics Committee. Infants from varying ethnic backgrounds partici-

pated in the study and neither hair color nor skin colour was used as an exclusion criteria

to screen participants. All infants who participated were healthy with no known develop-

mental disorders and were born at term between 37 - 40 weeks gestation.

6.2.2 Data acquisition

6.2.2.1 Multi-channel broadband system

The multi-channel broadband NIRS system described in the previous chapter was used to

acquire the infant NIRS data presented in this chapter. The hardware of the system was

the same as described previously consisting of two light sources and two spectrographs

connected to CCD cameras, with a change only in the optical fibres being used. The new

optical fibres that were used for the infant studies are described in the following section.

6.2.2.1.1 Optical fibres Similar to the adult set-up, there were two sets of light sources

each of which further split into two pairs at the subject end, forming bifurcated fibres.

The fibres were made of glass and were custom-built by Loptek (Glasfasertechnik GmbH,

Germany). The detector fibre bundle had detectors each with a diameter of 30µm. The

diameter of the light source bundle at the system end was 10mm while the diameter of the

individual source fibres at the subject-end was 5mm. The system-end of the light source

fibres are shown in Figure 6.1(a) and (b). While the adult set-up of the system had six
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detector fibres at the subject end, the infant modification allowed for seven detector fibres,

each with a diameter of 1mm forming a detector fibre bundle at the spectrograph-end. The

system-end of the fibres are shown in Figure 6.1(c) and (d).

Figure 6.1: System end of the source and detector fibres with (a) the system-end of the
bifurcated light source fibres (b) bifurcated light source fibres (c) the system-end of the
detector fibres and (d) spectrograph end of the detector fibres with the individual detectors
indicated

The subject end of the optical fibres are shown in Figure 6.2 with the top and side views

of the detector fibres being shown in Figure 6.2(a) and (c) while the source fibres are shown

in Figure 6.2(b) and (d).
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Figure 6.2: Subject end of the source and detector fibres with (a) the top view of the detector
fibres (b) side view of the detector fibres (c) top view of the source fibres and (d) side view
of the source fibres

6.2.2.1.2 Software Modification LabVIEW software was used again to control and op-

erate the system. Due to the fact that the number of detectors was changed from six to

seven, significant modifications were made to the software in order to incorporate and

collect data from the extra detector. The details of these modifications can be found in

Appendix B.

6.2.2.2 Enobio EEG

The Enobio EEG system used for this study has been described previously in Section 2.3.2

of Chapter 2. For this study, thirty-two EEG channels were used and these are indicated in

purple circles in Figure 6.3 and were distributed equally over the participant’s head (FP1,

FP2, F7, F3, Fz, F4, F8, FC5, FC6, T7, C3, Cz, C2, C4, T8, TP7, CP5, CP6, P9, P7, P3, Pz, P4,

P8, P10, PO7, PO3, PO4, O1, Oz, O2).
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Figure 6.3: EEG Montage for infant study showing the locations of the 32 channels

6.2.2.3 NIRS array design

The procedures for designing the NIRS arrays and the combined NIRS and EEG headgear

for this study have already been discussed in detail in Chapter 3. The schematic for the

arrays is shown again here in Figure 6.4. The array for the occipital channels was centred

around Oz while that for the temporal channels was centred around CP6. The source -

detector separation for all channels here was 2.5 cm, except occipital channels 3 and 6

which had a longer source - detector separation of 2.90 cm.
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Figure 6.4: Schematic diagram of the NIRS occipital and temporal arrays showing pos-
itions of the sources, detectors and EEG electrodes. The red and yellow circles represent
the sources and detectors respectively while the blue circle indicate nearby EEG electrodes.
The black lines represent channels that are formed between sources and detectors.

Figure 6.5 shows the full headgear and set-up with the silicone headband being fed

through the NIRS optodes and EEG electrodes. This was tightened at the front of the head

and prevented the cap from slipping backwards during the experiment and additionally

held the NIRS arrays firmly against the infant’s head.
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Figure 6.5: Full NIRS-EEG set-up on an infant with NIRS optodes and EEG electrodes
indicated; (Top left panel) Front view (Top right panel) Back view (Bottom panel) Side
view

6.2.3 Experimental Stimuli

All experimental stimuli were designed using Psychtoolbox in Matlab (Mathworks, USA).

As I discussed in the introduction of this chapter, there were three different sets of con-

ditions with two contrasts each that were presented to each of the infants. The first set

included social and non-social stimuli which will be discussed in the following section

while the other two sets were stimuli to target the visual cortex, consisting of checkerboard

patterns and gratings, which will be discussed in the next chapter. The social/non-social

stimuli are referred to as “block 1” , the checkerboard stimuli as “block 2” and the gratings
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stimuli as “block 3”. While the stimuli to target the visual cortex are not discussed in this

chapter, the order of their presentation is shown.

6.2.3.1 Social and Non-social Block

The social/non-social block (block 1) had two contrast conditions:

1. The social condition consisted of a variety of dynamic videos where women sang

different nursery rhymes such as “incy-wincy” and “wheels on the bus” which have

been used in previous EEG studies (Jones et al., 2015). In contrast to the stimulus

used in Chapter 4, the auditory component was matched to the visual component of

the video.

2. The non-social condition consisted dynamic videos of moving mechanical toys which

have been used in previous infant NIRS studies (Lloyd-Fox et al., 2009) and provide

a good contrast to biological motion.

Both social and non-social videos were presented for a varying duration between 8 - 12

s and were followed by a baseline condition consisting of full-colour transport images of

cars, trucks and helicopters (identical to the baseline used in the study in Chapter 4). The

images were presented randomly for a pseudorandom duration of 1 - 3 s each, for a total of

8 s following which a fixation cross in the shape of a ball or a flower appeared in the centre

of the screen to draw the infant’s attention back to the screen in case they had become bored

during the baseline period. I moved on to the next experimental condition only once the

infant was looking at the fixation cross. Figure 6.6 shows the order of stimulus presentation

for the social/non-social block. After one presentation of each of the social and non-social

condition (i.e. after one full presentation of block 1), the stimuli for block 2 were presented

followed by block 3. Stimuli from blocks 2 and 3 are discussed in the next chapter.
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Figure 6.6: Social/Non-social stimuli

6.2.4 Experimental Procedure

Prior to the family’s arrival, both the NIRS fibres and the EEG electrodes were clipped

into place at their relevant locations in the headcap. The EEG wires were plugged into

the necbox (wireless transmitter) which was attached to an arm holding the optical fibres,

in order to prevent the headgear from being excessively heavy for the infant. Once the

study and procedures had been explained to the parent, written consent was obtained fol-

lowing which the infant’s head measurements were obtained. These have been previously

described in Chapter 4. The inion (which is defined as the bony structure at the base of

the skull) was also identified. In the adult study, the geltrodes were filled with gel using a

syringe once the cap had been positioned on the participant’s head. For the infant studies

however, this was not possible. Instead, gel was inserted directly into the hollow space on

the underside of each geltrode (shown in Figure 2.9a in Chapter 2) from inside the head-

cap, prior to the placement of the cap on the infant’s head, while the infant sat in the par-

ent’s lap. The headcap had locations from the International 10/20 system marked and the

“FPz” location (which should be placed above the nasion as shown in the image on the left

in Figure 6.7) was used as the landmark to position the cap. Using one landmark position

to place the headgear was sufficient as the 10/20 locations are all marked relative to one

another. Once the cap was positioned, the electrodes to reference the EEG activity were

placed on the infant’s right mastoid (which is defined as the bony area behind the ear),

this is shown in the bottom panel in Figure 6.5. Previous NIRS studies measuring haemo-

dynamic responses over the temporal lobe have identified that the maximal responses to
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social stimuli occur in the superior temporal sulcus - temporo-parietal region (STS - TPJ)

(Lloyd-Fox et al., 2014a) and a map resulting from co-registration work (Lloyd-Fox et al.,

2014b) indicated that for this headgear, the optode circled in red in Figure 6.7 would need

to be aligned with the right pre-auricular point in order to target the STS-TPJ region. If the

infant was compliant, I checked if the NIRS optode that was immediately to the right of

the EEG electrode labelled “T8” (circled in red in the image shown on the right in Figure

6.7) was in line with the right pre-auricular point which is defined as “a point of the poste-

rior root of the zygomatic arch lying immediately in front of the upper end of the tragus”.

However this check was not possible in the majority of infants until the end of the study

as sometimes placing the headgear and attaching the reference electrodes behind the ear

resulted in the infants becoming bored or fussy and the study therefore had to be started

quickly.

Figure 6.7: Image of a participant wearing the NIRS headgear.

After the headgear was positioned, the infant and parent were seated at a viewing

distance of approximately 60 cm from the screen. The study began with a rest period (10 s

minimum) to draw the infant’s attention towards the screen, during which the infant was

shown shapes in the four corners of the screen. Following this, each of the blocks discussed
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in Section 6.2.3 were alternated as shown in Figure 6.8 until the infants became bored or

fussy. Alerting sounds were occasionally played during the baseline stimulus in order to

draw the infant’s attention back towards the screen.

Figure 6.8: Order of stimulus presentation

6.2.5 Data analysis

6.2.5.1 NIRS

6.2.5.1.1 Pre-processing A general overview of the processing pipeline has been given

in Chapter 2 and Figure 2.11 shows the steps that are involved. The NIRS data was anal-

ysed in Matlab 2014a (Mathworks, USA) using the same programs that were used to anal-

yse the adult data in the previous chapter. The details of how the concentration changes

were calculated from the attenuation change spectra have been provided in Section 4.2.5.1

of Chapter 4. Motion artifact detection has been described in detail in Section 2.3.1.1 of

Chapter 2 and prior to the conversion to concentration changes in HbO2, HHb and oxCCO,

was applied to the attenuation signal of each participant across all wavelengths between

780 - 900 nm, in order to remove motion artifacts from the data. Following motion correc-

tion, the UCLn algorithm was used with a DPF value of 5.13 to calculate ∆[HbO2], ∆[HHb],

∆[oxCCO] at 120 wavelengths between 780 - 900 nm. A 4th order Butterworth filter from

0.01 - 0.4 Hz was used to filter the data, following which the data were segmented to create

trials (or blocks) which consisted of 4 s of the baseline period prior to the start of the ex-

perimental stimulus, the entire duration of the experimental condition and the following

baseline. Video recordings of the testing session were used to code for looking-time offline.

This involves identifying periods of the study where the infant was not looking at the ex-

perimental stimulus for a sufficient amount of time and removing those segments from the

data. The criteria for this study was the same as described in Section 4.2.5.3 of Chapter

4 - that if an infant did not look at the stimulus for at least 60% of the experimental trial,

the trial was removed. An infant was removed from the study if they had fewer than two
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trials for any given experimental condition. Once looking-time coding and rejection had

been performed, baseline correction was applied to the segmented data. The procedure for

this has been described in Section 2.3.1.1 of Chapter 2.

6.2.5.1.1.1 Additional rejection criteria Figure 5.5b shown in Section 5.2.2.1.2 of

Chapter 5 shows the raw spectrum depicting the photon counts at each detector of the

CCD camera. The photon counts (or intensity counts) that can be seen at each individual

detector represent the number of photons that pass from the source fibre, through the tissue

and then are received at the detector and therefore provide an indication of the signal-to-

noise ratio of the data being collected. The intensity counts for each measurement at each

detector should be approximately above 2000 and below 60,000. This is because the noise

level of the system (consisting of thermal noise from the CCD and dark noise) is approx-

imately 500 counts and the intensity counts need to be roughly 4 times the noise level in

order to have a good signal-to-noise ratio, allowing the HRF to be detected. Counts above

60,000 indicate that the detectors are receiving too much light and have become saturated.

This is usually due to effects such as light piping where light from the source fibre reaches

the detector directly without passing through the tissue. This can occur due to poor cou-

pling between the fibres and the participant’s head. In the case of simultaneous NIRS-EEG

measurements, it can also occur if the EEG gel has seeped from the geltrodes and formed a

bridge between the source and detector fibre, providing a medium for light to pass directly

between the source and detector rather than through tissue. Light piping is obvious if very

high intensity counts are observed at any of the detectors but can also be identified offline

if after chromophore concentration changes have been calculated a strong positive corre-

lation is seen between ∆[HbO2] and ∆[HHb] where the time series of both chromophores

strongly mimic one another. For each infant, the intensity counts from each of the detectors

for each wavelength were plotted offline. If any detectors had counts lower than 2000 or

higher than 40,000, the corresponding channel was excluded. While 60,000 indicates that

a detector is saturated, counts upwards of 40,000 are also unlikely to be genuine therefore

40,000 was used as the threshold here. The Pearson correlation coefficient between the

oxy-haemoglobin and deoxy-haemoglobin for the whole time series was additionally cal-
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culated and any channels that had r value greater than 0.4 were also excluded. An infant

was removed from the study if they had more than 40% channels excluded. Some channels

were found to contain poor quality signal across the majority of infants and were therefore

removed entirely from the analysis. These included Channel 6 (rejected in 76% of babies),

Channel 8 (rejected in 62% of babies), Channel 10 (rejected in 57% of babies) and Channel

19 (rejected in 100% of babies). Channel 19 was most likely a broken fibre which resulted

in the corresponding detector always having very low counts (approximately 500 counts).

Following rejection of poor quality signal channels, for each experimental condition,

the concentration changes were averaged across valid trials, for each participant in order

to obtain an average time course response for each chromophore. The averaged responses

for valid participants were then averaged across participants to obtain a grand averaged

group time course for each chromophore.

6.2.5.1.2 Further analysis Analysis that is relevant only to the social and non-social con-

ditions is discussed here and the checkerboards and gratings will be discussed in the next

chapter.

6.2.5.1.2.1 Statistical analysis Two levels of statistical analyses were conducted for

each condition. Prior to determining whether there was a statistically significant difference

between conditions, the maximum response for each chromophore, for each condition was

compared to the baseline using t-tests. For HbO2 and oxCCO this was the maximum in-

crease and for HHb it was the maximum decrease or “dip” in response to the stimulus.

Following this, pairwise t-tests were used to establish whether there was a statistically sig-

nificant difference between conditions. A statistical time window of interest was defined

to identify the maximum response for each of the conditions and this was then used for

statistical analysis and subsequent analyses. For the social/non-social conditions, a time-

window of 10 - 18 s post-stimulus onset was selected (similar to the work presented in

Chapter 4 and that is frequently used for stimuli of this type (Siddiqui et al., 2017; Lloyd-

Fox et al., 2009). This time window includes the range of maximum changes observed

across infants for all three chromophores. The false discovery rate (FDR) procedure using
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the Benjamin and Hochberg method (Benjamini and Hochberg, 1995) was also performed

to correct for multiple comparisons. FDR corrected p values are also shown in each of the

tables.

6.2.5.1.2.2 Difference scores Difference scores were calculated for each block between

conditions by subtracting the maximum response for each chromophore (in the chosen

time window for statistical analysis) from one condition with the other. For example, dif-

ference scores for the social/non-social block involved subtracting the maximum response

of each chromophore of the non-social block from the social block. The differences were

then plotted in a topographical map and depicted in a bar chart to visualise the channels

that displayed a greater response to one of the two conditions.

6.2.5.1.2.3 Time to peak The time to peak (TTP) was calculated by determining the

time taken for each chromophore to reach the maximum change in concentration in re-

sponse to the experimental condition, in the time window chosen for statistical analysis.

6.2.5.1.2.4 Cross-correlations Cross-correlations can be used to determine the simi-

larities between two time-series, particularly if one time-series may be related to past lags

of the other time-series. Typically it is used in functional connectivity to explore the rela-

tionship between neural activity observed in one area of the brain in relation to activity in

another area of the brain. Here, it was used to investigate the relationship between each

of the NIRS chromophores, particularly oxCCO and its relation to the haemoglobins as

they represent different components of the neurovascular coupling pathway which may

not be correlated exactly temporally. Here, it was calculated on a trial-by-trial basis for

each infant and then averaged to obtain mean cross-correlations between chromophores

for each infant. These were then averaged across the infants to obtain grand averaged

cross-correlations. The method of calculating cross-correlations has already been described

in Chapter 2.
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6.2.5.2 EEG

6.2.5.2.1 Pre-processing All EEG data were analysed using Matlab 2017a (Mathworks,

USA) and the EEGLab Toolbox (Schwartz Centre for Computational Neuroscience, UC

San Diego, USA). Figure 2.13 in Section 2.3.2.1 of Chapter 2 shows the pipeline for pre-

processing the EEG data and the procedures have been discussed in detail there, except

segmentation which was performed differently for each of the experimental conditions and

the social/non-social conditions will be discussed in more detail in the following section

while segmentation of data from the visual conditions will be discussed in the next chapter.

Based on previous work (Jones et al., 2015), if an infant had fewer than 5 trials per condition

after artifact detection and removal, they were removed from the study.

6.2.5.2.1.1 Segmentation The EEG data from the social and non-social experimental

condition were segmented into 1 s segments such that each 8 - 12 s long social or nonsocial

trial resulted in 8 - 12 epochs. This method of segmentation is consistent with previous

work (Jones et al., 2015) exploring changes in induced power occurring in response to

social and nonsocial videos in infants aged 6 months and 12 months.

6.2.5.2.2 Further Analyses Topographical maps of spectral power were generated for

the theta (3 - 6 Hz) and alpha (7 - 9 Hz) frequency bands. These bands were of interest based

on previous work (Jones et al., 2015). No ERP analysis was performed on the infant data as

ERP analysis is more appropriate for experimental paradigms that have an event-related

design.

6.2.5.2.3 Statistical Analysis For the social/non-social conditions, pairwise t-tests were

used to determine whether there was a significant difference in the mean alpha and theta

power for both conditions, over temporal and frontal channels.

6.3 Results

Results from the social/non-social conditions are shown here and results from the visual

conditions are shown in the next chapter.
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6.3.1 NIRS

Out of forty-two subjects, thirty-two were included in the final analysis for NIRS. The

exclusion criteria for participants has been discussed previously in Section 6.2.6.1. 7 infants

were excluded due to having more than 40% of channels with poor data quality, 2 infants

were excluded due to poor signal-to-noise ratio and low intensity counts and 1 infant was

excluded due to an insufficient number of trials for any of the conditions.

6.3.1.1 Social

The upper panel of Figure 6.9 displays the grand averaged changes in concentration of

HbO2 (red), HHb (blue) and oxCCO (green) in all channels, across 32 participants, in re-

sponse to the social stimulus. oxCCO has been magnified (x2.5) and the bottom panel

shows the concentration changes in only oxCCO, prior to magnification. The experimental

stimuli were presented in a jittered design with the social stimulus varying between 8 - 12

s and this has been indicated in the grand average figures by means of the pink and purple

box. The pink box shows the minimum time period during which the stimulus was being

presented (8 s for the social stimulus) while the purple box extends up to maximum period

(12 s).

Prior to comparison between conditions i.e. social versus non-social, t-tests were per-

formed to assess whether there were statistically significant responses in ∆[HbO2], ∆[HHb]

and ∆[oxCCO] versus the baseline, in each channel. This was done in order to determine

whether there was response to the stimulus occurring in any of the channels. Tables 6.1

- 6.3 show the mean maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO] respectively

along with their t and p values and FDR-correct p values. A significant increase in ∆[HbO2]

and ∆[oxCCO] from baseline was seen in all channels, with temporal channels 14 and 15

displaying the largest responses for ∆[HbO2] and channels 11 and 14 for ∆[oxCCO]. Over

the visual cortex, channels 4, 7 and 9 also display large responses for ∆[HbO2] while ma-

jority of occipital channels display an increase for ∆[oxCCO]. ∆[HHb] shows statistically

significant responses in 9 out of 15 channels with channels 11, 14 and 15 displaying the

largest responses over the temporal cortex and channels 5 and 9 over the occipital cortex.
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Figure 6.9: Observed chromophore concentration changes in HbO2, HHb and oxCCO in
response to the social stimulus with oxCCO magnified x2.5 and oxCCO not magnified
(Bottom panel). The statistical time window of 10-18 s post-stimulus onset is indicated.
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Channel ∆[HbO2] Mean Maximum Change tHbO2 pHbO2 FDR corrected pHbO2

1 0.2873 3.2724 0.0028 0.0033*

2 0.2714 3.8381 p < 0.001 0.0011*

3 0.2748 3.5735 0.0019 0.0026*

4 0.4105 4.8306 p < 0.001 p < 0.001*

5 0.3211 3.9784 p < 0.001 p < 0.001*

7 0.2854 2.2423 0.0395 0.0395*

9 0.4681 3.9391 p < 0.001 0.0011*

11 0.3459 4.7805 p < 0.001 p < 0.001*

12 0.1912 3.2526 0.0029 0.0033*

13 0.2345 4.4642 p < 0.001 p < 0.001*

14 0.4601 6.0463 p < 0.001 p < 0.001*

15 0.3761 4.5972 p < 0.001 p < 0.001*

16 0.2936 4.4267 p < 0.001 p < 0.001*

17 0.2096 3.2012 0.0036 0.0038*

18 0.3534 4.1130 p < 0.001 p < 0.001*

Table 6.1: Mean maximum change and t and p values for the social condition versus
baseline for HbO2. Channels with a statistically significant increase in ∆[HbO2] from
baseline are marked with an asterisk.
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Channel ∆[HHb] Mean Maximum Change tHHb pHHb FDR corrected pHHb

1 -0.1838 -3.5183 0.0015 0.0054*

2 -0.1177 -2.1753 0.0389 0.0530

3 -0.1387 -2.0621 0.0524 0.0605

4 -0.1541 -2.6984 0.0115 0.0192*

5 -0.2634 -3.0807 0.0047 0.009*

7 -0.1825 -2.1242 0.0496 0.0605

9 -0.2372 -3.2531 0.0035 0.0088*

11 -0.1726 -3.6356 0.001 0.0051*

12 -0.0763 -1.9284 0.0636 0.0658

13 -0.1256 -3.0457 0.0048 0.009*

14 -0.1967 -4.6417 p < 0.001 p < 0.001*

15 -0.1372 -3.7293 0.00077 0.0051*

16 -0.1158 -2.1810 0.0374 0.053

17 0.0815 -1.9208 0.0658 0.0658

18 -0.1692 -3.3769 0.0022 0.0065*

Table 6.2: Mean maximum change and t and p values for the social condition versus
baseline for HHb. Channels with a statistically significant increase in ∆[HHb] from
baseline are marked with an asterisk.
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Channel ∆[oxCCO] Mean Maximum Change toxCCO poxCCO FDR corrected poxCCO

1 0.0566 4.2045 p < 0.001 0.0011*

2 0.0593 3.7617 p < 0.001 0.0026*

3 0.0786 2.5072 0.0209 0.0237*

4 0.0560 3.1359 0.0039 0.0084*

5 0.1005 4.0603 p < 0.001 0.0014*

7 0.0753 2.9288 0.0098 0.0164*

9 0.0723 2.9556 0.0071 0.0133*

11 0.0698 4.8696 p < 0.001 p < 0.001*

12 0.0224 1.9671 0.0588 0.0588

13 0.0316 2.5315 0.0168 0.0229*

14 0.0715 5.8091 p < 0.001 p < 0.001*

15 0.0330 3.4162 0.0018 0.0045*

16 0.0387 2.1480 0.0221 0.0237*

17 0.0401 2.5858 0.0157 0.0229*

18 0.0313 2.5055 0.0183 0.0229*

Table 6.3: Mean maximum change and t and p values for the social condition versus
baseline for oxCCO. Channels with a statistically significant increase in ∆[oxCCO] from
baseline are marked with an asterisk.

6.3.1.2 Non-social

The upper panel of Figure 6.10 displays the grand averaged changes in concentration of

HbO2(red), HHb (blue) and oxCCO (green) in all channels, across 32 participants, in re-

sponse to the non-social stimulus. oxCCO has been magnified (x2.5) and the bottom panel

displays the concentration changes in only oxCCO, not magnified. The pink box shows

the minimum time period during which the stimulus was being presented (8 s for the so-

cial stimulus) while the purple box extends up to maximum period (12 s). Similarly to the

social condition, t-tests were performed to establish whether there were statistically signif-

icant responses in ∆[HbO2], ∆[HHb] and ∆[oxCCO] versus the baseline, in each channel.

FDR was used again to correct for multiple comparisons. Tables 6.4 - 6.6 show the mean

maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO] respectively along with their the t
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and p values. The significant channels are marked with an asterisk. A significant increase

in ∆[HbO2] from baseline was seen in channels 12, 13 and 18 while a significant increase in

∆[HHb] was observed in many channels for example channels 5 and 9 over the occipital.

Strong responses were not observed for ∆[oxCCO].

Figure 6.10: Observed chromophore concentration changes in HbO2, HHb and oxCCO in
response to the non-social stimulus with oxCCO magnified x2.5 (Upper panel) and oxCCO
not magnified (Bottom panel). The statistical time window of 10-18 s post-stimulus onset
is indicated.
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Channel ∆[HbO2] Mean Maximum Change tHbO2 pHbO2 FDR corrected pHbO2

1 0.1133 1.5484 0.1324 0.3315

2 0.0689 1.1776 0.2496 0.3862

3 0.0403 0.6237 0.5398 0.6748

4 0.1198 1.3371 0.1916 0.3592

5 0.1693 1.5880 0.1239 0.3315

7 -0.0198 -0.2125 0.8344 0.9484

9 -0.0067 -0.0654 0.9484 0.9484

11 0.1026 1.4600 0.1547 0.3315

12 0.1770 3.08 0.0045 0.0225*

13 0.2052 3.3864 0.002 0.0150*

14 0.0069 0.0939 0.9258 0.9484

15 0.1009 1.4647 0.1531 0.3315

16 0.0743 1.1552 0.2574 0.3862

17 0.0672 1.0884 0.2864 0.3906

18 0.3217 4.4830 1.13e-04 0.0017*

Table 6.4: Mean maximum change and t and p values for the non-social condition versus
baseline for HbO2. Channels with a statistically significant increase in ∆[HbO2] from
baseline are marked with an asterisk.
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Channel ∆[HHb] Mean Maximum Change tHHb pHHb FDR corrected pHHb

1 -0.1546 -3.3390 0.0023 0.0039*

2 -0.1493 -3.8003 0.008 0.0017*

3 -0.1993 -3.1807 0.0047 0.0059*

4 -0.1078 -2.4378 0.0211 0.0227*

5 -0.0439 -0.6685 0.5095 0.5095

7 -0.1688 -3.3188 0.0043 0.0059*

9 -0.1846 -2.4951 0.0202 0.0227*

11 -0.1408 -4.0532 0.0003 p < 0.001*

12 -0.1907 -5.4270 p < 0.001 p < 0.001*

13 -0.2203 -4.6895 p < 0.001 p < 0.001*

14 -0.1052 -3.2610 0.0028 0.0041*

15 -0.1725 -4.9264 p < 0.001 0.0041*

16 -0.2212 -5.5518 p < 0.001 p < 0.001*

17 -0.1247 -3.4339 0.002 0.0038*

18 -0.3015 -5.7540 p < 0.001 p < 0.001*

Table 6.5: Mean maximum change and t and p values for the non-social condition versus
baseline for HHb. Channels with a statistically significant increase in ∆[HHb] from
baseline are marked with an asterisk.
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Channel ∆[oxCCO] Mean Maximum Change toxCCO poxCCO FDR corrected poxCCO

1 0.0395 2.8022 0.0089 0.0188*

2 0.0438 4.3190 p < 0.001 0.0027*

3 0.0739 3.3474 0.0032 0.0096*

4 0.0318 2.0717 0.0473 0.0645

5 0.0110 0.4211 0.6770 0.6770

7 0.0487 2.2879 0.0361 0.0541

9 0.0790 3.6406 0.0014 0.0051*

11 0.0169 1.2006 0.2393 0.2761

12 0.0466 4.0341 p < 0.001 0.0027*

13 0.0250 1.8386 0.0769 0.0949

14 0.0101 0.8647 0.3941 0.4222

15 0.0268 2.7434 0.01 0.0188*

16 0.0426 3.5996 0.0012 0.0051*

17 0.0350 2.4797 0.02 0.0333*

18 0.0345 2.7948 0.0093 0.0188*

Table 6.6: Mean maximum change and t and p values for the social condition versus
baseline for oxCCO. Channels with a statistically significant increase in ∆[oxCCO] from
baseline are marked with an asterisk.

6.3.1.2.1 Social versus Non-social Based on previous work (Lloyd-Fox et al., 2009), a

greater haemodynamic response was expected to the social condition in comparison to the

non-social. Pairwise t-tests were performed to determine whether there was a statistically

significant difference between responses for the social condition versus the non-social con-

dition. Significant differences were found between the social and non-social conditions

for HbO2 and oxCCO but not HHb with Channels 9 (t = 2.5432, p = 0.0182, mean dif-

ference = 0.4747µMol), 14 (t = 3.5049, p = 0.0015, mean difference = 0.4532µMol), and

15 (t = 2.1732, p = 0.0375, mean difference = 0.2752µMol), for HbO2 and Channels 5

(t = 2.0607, p = 0.0491, mean difference = 0.0895µMol), 11 (t = 2.5774, p = 0.0151, mean

difference = 0.0529µMol), and 14 (t = 2.8133, p = 0.0086, mean difference = 0.0613µMol),

252



Chapter 6

for oxCCO. The p values reported here are non-FDR corrected values. The tables includ-

ing the statistics (t and p values) for each channel and chromophore are included in the

appendix. Figure 6.11 indicates the channels where there was a statistically significant dif-

ference between social and non-social conditions for ∆[HbO2] (red) and ∆[oxCCO] (green)

on a topographical map.

Figure 6.11: Channels with a statistically significant difference between social and non-
social conditions indicated on a topographical map. Red circles represent channels with a
statistically significant difference in HbO2 responses and green circles represent channels
with a statistically significant difference in oxCCO responses.

Channel 14 showed a statistically significant difference between social and non-social

conditions for both HbO2 and oxCCO, therefore is likely to reflect a cortical region that was

involved in the processing of these stimuli. Hence, the observed changes in concentration

HbO2, HHb and oxCCO from this channel are shown in Figure 6.12, for both social and

non-social conditions and include the standard deviations.
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Figure 6.12: Observed changes in the concentration of (a) HbO2 (b) oxCCO and (c) HHb in
response to the social condition (left) and non-social condition (right) in Channel 14. The
statistical time window is indicated. The error bars represent standard deviations.

The mean and standard deviations of the maximum responses from each of the tempo-
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ral channels are shown in Figure 6.13 with HbO2in red, HHb in blue and oxCCO in green,

for both social and non-social conditions (labelled as “S” and “N” on the x-axis), HbO2 and

HHb are scaled to the y-axis on the left and oxCCO is scaled to the y-axis shown on the

right in the figure for each channel. For the social condition, Channels 11, 14, 15, 16 and 18

appear to have the strongest HbO2 responses while for oxCCO Channels 11 and 14 have

the strongest responses. For HHb the non-social condition appears to have the strongest

responses (i.e. a strong decrease in HHb) with the exception of Channel 14.

Figure 6.13: Mean and standard deviations of the maximum responses of HbO2(red), HHb
in (blue) and oxCCO (green), for both social and non-social conditions which are labelled
as “S” and “N” on the x-axis. The y-axis on the left is for HbO2 and HHb while the y-axis
on the right is for oxCCO.

6.3.1.2.1.1 Difference scores The differences in the maximum change in concentra-

tion between social and non-social conditions were calculated for each of the 8 channels

over the right temporal lobe. Figure 6.14 shows the difference in the maximal response

for each chromophore, with each bar in the graph representing a channel over the right

temporal lobe. A larger increase in concentration of ∆[HbO2] and ∆[oxCCO] was expected

in response to the social condition. Positive values indicate a stronger response to the so-

cial condition in comparison to the non-social, while negative values indicate a stronger

response to the non-social condition.
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Figure 6.14: Bar graph showing the difference in the mean maximum change, in each chro-
mophore, between social and non-social conditions for the channels over the right tem-
poral lobe. Positive values indicate a greater response to the social condition while negative
values indicate a greater response to the non-social condition. Channels with a significant
difference between social and non-social conditions are indicated with an asterisk.

6.3.1.2.1.2 Time to peak The TTP was calculated for each chromophore (for both con-

ditions) in the time window chosen for statistical analysis (10 - 18 s post-stimulus onset

here). No significant differences were found in the TTP for any of the chromophores and

the figures showing this for each of the chromophores and conditions can be found in the

appendix.

6.3.1.2.1.3 Cross-correlations Cross-correlations were performed between each of

the chromophores, for both social and non-social conditions correlations between (i) HbO2

and oxCCO (ii) HHb and oxCCO and (iii) HbO2 and oxCCO for all the channels. This was

important as, to my knowledge, this was the first reported use of multi-channel broadband

NIRS during functional activation in infants and it was therefore important to explore the

relationship between energy metabolism and haemodynamics during brain development.

Figure 6.15 shows the average cross-correlations across the temporal channels for both

conditions and the cross-correlations from each of individual channels can be found in the
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appendix. For oxCCO and HHb, a negative correlation was seen with r = −0.46 and zero

time-lag for both conditions. A negative correlation was also seen between HHb and HbO2

with rsocial = −0.23 and rnonsocial = −0.22 and a time-lag of -1 s. oxCCO and HbO2 showed

a weak positive correlation with rsocial = 0.16 and time-lag of -1s and rnonsocial = 0.13 with

zero time-lag for the non-social condition.

Figure 6.15: Average of the cross-correlation across all temporal channels for the social
condition (upper panel) and non-social condition (bottom panel). The error bars represent
standard deviations
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6.3.2 EEG

For the social condition thirty-nine out of forty-two infants were included in the study and

for the non-social condition thirty-six out forty-two infants were included in the study. All

of the infants that were excluded were due to poor data quality. Figure 6.16 shows the log

power spectral density for the theta and alpha frequency bands for both social and non-

social conditions. Based on previous work (Jones et al., 2016b), suppression of theta and

alpha activity were expected in response to both conditions. In both frequency bands and

stimulus conditions, an overall suppression of alpha and theta is seen which is stronger

over the left hemisphere. An increase in both alpha and theta occipital activity is seen in

both conditions with alpha frequency band additionally displaying an increase in right

temporo-parietal activity to both conditions.

Figure 6.16: Topographical maps of the log power spectral density for the theta and bands
for social and non-social conditions.

Figure 6.17 shows the difference in log power spectral density between the social and

non-social condition, for the theta and alpha frequency bands. Greater alpha activity is

seen in right frontal and temporal channels for the social condition in comparison to the
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non-social condition. The occipital channels show greater alpha activity to the non-social

condition in comparison to the social condition. Greater theta activity is seen in the oc-

cipital channels and frontal-central channels for the social condition in comparison to the

non-social condition.

Figure 6.17: Topographical maps of the difference in log power spectral density between
social and non-social, for the theta and alpha frequency bands.

6.3.2.1 Statistical analysis

Pairwise t-tests were performed to compare the mean log power of theta and alpha over

temporal and frontal channels of the social versus non-social condition revealed no signi-

ficant differences between the two conditions in either of the frequency bands.

6.3.3 Combined NIRS-EEG Analysis

For the combined analysis only those infants that had both EEG and NIRS data for an ex-

perimental condition were included. For the social condition, twenty-nine infants were in-

cluded and for the non-social condition twenty-eight infants were included (twenty-eight

of the same infants had data for both conditions). Correlations were performed for both

social and non-social conditions between the mean power spectral density of the alpha and

theta frequency bands with the maximum concentration change of ∆[HbO2], ∆[HHb] and

∆[oxCCO], across the NIRS temporal and EEG right parietal, temporal and frontal channels

as the strongest correlations between neural and haemodynamic activity were expected in

channels spatially located close to one another. The matrix of the correlations between

NIRS and EEG channels was converted into a heatmap which can be seen in Figure 6.19
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for the social condition and for the non-social condition in Figure 6.20. The colorbar indi-

cates the strength of the correlation between each channel and the statistically significant

correlations (p < 0.05) are indicated by red rectangles. No correction for multiple com-

parisons was applied for these correlations. Figure 6.18 has been included to show the

NIRS (blue circles) and EEG channels (orange squares) in order to remind the reader of the

spatial locations of each of the channels that are being correlated.

Figure 6.18: Topographical locations of the NIRS channels (blue) and EEG channels (orange
rectangles), both have been labelled with their channel labels respectively.

For the social condition, in the alpha band for HbO2 statistically significant positive

correlations are seen between Channel 17 and temporo-parietal EEG channels while mod-

erately significant correlations are observed between Channels 11, 14 and 15 with the

temporo-parietal EEG channels. Temporo-parietal EEG channels are where an increase

in alpha activity is seen in response to both social and non-social conditions. Channels

11, 14 and 15 are spatially located closest to these EEG channels and display the strongest

increase in ∆[HbO2] in response to the social condition. An increase in theta activity ap-

pears to be restricted to parieto-occipital EEG channels and the theta band shows a similar

pattern although fewer statistically significant correlations are observed. Channels 11, 12,

14 and 17 correlate positively with temporo-parietal EEG channels.

For the social condition, in the alpha band for oxCCO, statistically significant correla-

tions are seen between Channel 16 and majority of EEG channels and between Channel 17
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frontal and fronto-central channels. Channels 16 and 17 are spatially located close to the

fronto-central channels. In the theta band, statistically significant positive correlations are

seen between Channels 16 and 17 and specific EEG channels (parietal and frontal) while

Channel 15 shows negative correlations with EEG channels, where only a small increase in

∆[oxCCO] is observed. Other than Channels 16 and 17, most NIRS channels located in the

posterior temporal cortex correlate negatively in alpha and theta bands.

For the social condition, in the alpha band for HHb, statistically significant negative

correlations are observed between Channels 17 and EEG temporo-parietal channels, in the

opposite pattern to that of alpha-HbO2 correlations. In general, most NIRS and EEG chan-

nels correlate in the opposite direction to the HbO2 correlations, as expected.

For the non-social condition, fewer statistically significant correlations are observed

and the correlations are, in general, weaker in comparison to the social condition. For

HbO2 and alpha band, Channel 13 correlates positively with EEG Channel P4, which are

in close proximity to one another and where an increase in alpha activity is observed for

the non-social condition. Among the temporal NIRS channels, Channels 13 and 18 appear

to have the largest increase in ∆[HbO2] in response to the non-social condition but the

correlation with Channel 13 is stronger as Channel 18 is not located close to P4. Moreover,

in the theta band Channel 13 correlates with temporo-parietal EEG channels (TP8 and T8)

and central channels (C4 and FC6). No significant correlations are observed between NIRS

and EEG channels for alpha band and oxCCO for the non-social condition. Meanwhile in

the theta band, Channel 15 correlates negatively with nearby EEG channels TP8, T8 and

CP6.

For the non-social condition, in both theta and alpha bands, Channel 16 correlates neg-

atively with HHb and the same channels are positively correlated for HbO2. Channel 13

displays strong positive correlations for HbO2 in both frequency bands, that appear more

localised in the theta band. Theta band correlations for oxCCO are stronger with Chan-

nel 16 correlating positively with most EEG channels while Channels 14 and 15 correlate

negatively, most strongly with temporo-parietal channels.

The analysis was also performed on the difference between social and non-social condi-

tions such that correlations were performed between the difference in mean power spectral
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density (social minus non-social) and the difference in the maximum change in each of the

NIRS chromophores (social minus non-social). These results can be found in the appendix.

6.4 Discussion

Multi-channel broadband NIRS was used simultaneously with EEG in this study with 4-

to-7-month old infants to investigate the relationship between haemodynamics, metabolic

function and neuronal activation. The NIRS changes in concentration of ∆[HbO2] and

∆[oxCCO] indicate a significant difference in the responses between social and non-social

conditions, occurring over the superior temporal sulcus - temporo-parietal junction (STS -

TPJ) region, with a stronger response observed for the social condition. This was the first

study, to my knowledge, involving the use of multi-channel broadband NIRS during func-

tional activation in infants. Therefore, alongside investigating the relationship between

neural activity and subsequent blood oxygenation and metabolic changes, it was equally

important to examine how cerebral energy metabolism related to changes in haemody-

namics in the developing human brain. This is because, as I discussed previously, many

components of the neurovascular coupling pathway are under ongoing maturation in early

infancy. This includes development of cerebral vasculature and energy metabolism which

may impact the observed changes in concentrations of chromophores measured using

NIRS. Two types of analyses were therefore performed on the NIRS data to explore the

association between the chromophores. These included time to peak (TTP) analysis and

cross-correlation analysis. The TTP analysis showed heterogeneity in the results and no

definitive pattern could be established. This is perhaps due to the limitation of the acquisi-

tion rate of the broadband system. There may well be temporal differences in the responses

however, it might be difficult to discern them with a slow acquisition rate. Moreover, one

of the limitations of this analysis is that it only allows comparison of the time taken for

the maximum change in concentration across the chromophores as opposed to exploring

how the change in concentrations over time (i.e. the shape of the time courses) correlate.

Cross-correlations provide the opportunity to investigate this and while it was expected

that there would be a stronger coupling between HbO2 and oxCCO as cerebral blood flow
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and blood oxygenation levels have been shown to be correlated with metabolic activity.

Here however, stronger negative correlations between oxCCO and HHb were observed

in channels over the temporal cortex, in comparison to oxCCO and HbO2. In general,

in channels over the temporal cortex, there is less variability in the correlations between

oxCCO and HHb. These results are in contrast to those from the adult cross-correlation

analysis presented in Chapter 5, where equally strong correlations were observed between

HbO2 and oxCCO and HHb and oxCCO. This therefore suggests that a stronger relation-

ship exists between HHb and oxCCO while the brain is developing, which may indicate

that the coupling between cerebral blood flow and metabolic function may not be fully

established during brain development, as previous studies have suggested (Kozberg et al.,

2013a; Kozberg and Hillman, 2016b; Arichi et al., 2012). Work by Kozberg and colleagues

(2013a; 2016b) has demonstrated that in fact functional hyperemia develops postnatally

alongside cortical connectivity while cerebral vasculature undergoes development. For ex-

ample, they demonstrated that in postnatal rats, an increase in oxygenation in response to

somatosensory cortex stimulation was more prominent in veins while in adults the same

response is observed in pial arteries. Altered coupling mechanisms may therefore be in

place during development in order to meet the metabolic demands of the brain.

The EEG topographical maps of power spectral density show an overall decrease in

both alpha and theta activity for both social and non-social conditions which is in line with

previous results (Jones et al., 2015). Studies suggest that a reduction in the power of the

alpha frequency band is associated with higher cortical activation and greater attention to

the stimuli (Orekhova et al., 2006). However, an increase in theta and alpha power was

observed in the occipital regions, also in line with previous work and may reflect visual

processing (Jones et al., 2015). Alpha is thought to be a reflection of the brain “at rest”

or in an “idling” state and has been related to cortical inhibition with an increase in al-

pha power being observed in task-irrelevant areas and a decrease in task-relevant areas

(Klimesch et al., 2007). It has been hypothesised that via this inhibition mechanism alpha

oscillations play a role in visual attention and previous studies have demonstrated that

alpha power is related to attentional control (Jones et al., 2015). No significant differences

were found in either alpha or theta power between social and non-social conditions. A dif-
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ference between the results seen here and those by Jones et al (2015) is that their results had

a more widespread and stronger suppression of alpha power and a more localised increase

in alpha power over the occipital cortex. These differences may be due to the fact that they

used a high-density EEG system with 128 channels enabling better coverage while the sys-

tem used in this study had only 32 EEG channels. Additionally, the EEG system used in

this study referenced activity to the right mastoid while their system referenced activity to

the vertex or Cz. Moreover, their sample size was also much larger in comparison to that

of this study.

For the combined NIRS and EEG analysis performed to investigate how neuronal acti-

vation relates to cerebral oxygenation changes and changes in energy metabolism, overall,

stronger correlations were observed between NIRS and EEG channels for the social condi-

tion and in particular for the alpha band in comparison to the theta band. Significant pos-

itive correlations were seen between NIRS channels located over the posterior STS-TPJ re-

gion which exhibited the strongest responses in ∆[HbO2] and the nearby temporo-parietal

EEG channels, where an increase in alpha and theta activity was observed, for HbO2 while

the same channels displayed negative correlations for HHb, in both frequency bands. This

would imply that neural activity has a direct relationship with an increase in blood oxy-

genation, as studies have previously demonstrated (Logothetis et al., 2001a; Logothetis,

2002; Devor et al., 2008; Zehendner et al., 2013). However so far, there have been conflicting

results from simultaneous EEG-fMRI work with some studies reporting the observation of

an inverse relationship particularly between alpha activity and the BOLD response (Yuan

et al., 2010; Stern, 2002; Laufs et al., 2003a), which suggests that an increase in blood oxy-

genation or ∆[HbO2] would be related to a decrease in alpha power. This is not observed

here however, for either social or non-social conditions.

For the social condition, a NIRS channel located over the fronto-central region corre-

lated most strongly positively with HbO2 and oxCCO and negatively with HHb, in the

alpha frequency band across majority of EEG channels. As the strongest correlator, the

location of this channel may be important in linking neural and haemodynamic activity

occurring over the temporal cortex. Although the exact mechanism is unclear here as it

is not the channel where the largest changes in concentration of chromophores are ob-
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served. Further work involving non-linear analysis and computational modeling might be

required to fully comprehend the underlying mechanisms in play.

For oxCCO for this channel, in addition to one located in the central-parietal region,

correlated most strongly positively in both theta and alpha bands (stronger than HHb and

HbO2). An interesting observation is that between these two channels there was either a

significant correlation between NIRS and EEG channels for HbO2 (which was weaker for

oxCCO) or there was significant correlation for oxCCO (which was weaker for HbO2). Al-

though both chromophores correlated in the same direction which is in line with previous

studies investigating the relationship between neural and metabolic activity have reported

that an increase in the haemodynamic response in relation to stimulation correlates with

an increase in glucose uptake in response to neuronal activation (Devor et al., 2008). It is

unclear why the channels with stronger oxCCO responses did not correlate more strongly

with temporo-parietal EEG channels while those with weaker NIRS responses did and

the differences in the strength of correlations with oxCCO and HbO2 are also unclear. This

may perhaps be a physiological effect further highlighting the delicate state of neurovascu-

lar coupling mechanisms in the developing brain and the potential employment of altered

neural coupling mechanisms. It could also possibly reflect that neural activity is more

strongly coupled with metabolic activity. This result would be plausible as oxCCO should

be more closely linked to neural activity than haemodynamic changes, given its location in

the neurovascular coupling pathway.

Further work needs to be done in order to establish a more definitive pattern of re-

sults. While this analysis is useful in obtaining a first glance at the relationship between

different components of the neurovascular coupling pathway in the developing human

brain, it is limited in that it assumes that there is a linear relationship between neural ac-

tivity, haemodynamic and metabolic changes. In fact, as I discussed in the introduction,

the neurovascular coupling mechanism involves numerous metabolic pathways that are

at a complex interplay, particularly in early infancy as many of the pathways are under

development. Studies have shown that there is a non-linear relationship between elec-

trophysiological activity and the haemodynamic response (Devor et al., 2003) therefore a

more sophisticated form of non-linear analysis is required in order to understand the true
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relationship between oscillatory activity and NIRS measures. Cross-correlation analysis

would be useful in investigating how changes occurring in the time courses of both NIRS

chromophores and oscillatory activity relate.

Moreover one of the biggest limitations of this study was that the changes in concen-

tration of HbO2, HHb and oxCCO were measured only over the right temporal cortex.

Therefore, differences in activity occurring in the left and right hemispheres could not be

measured. Further studies employing the use of higher density NIRS array with channels

over the left and right temporal cortices could further elucidate coupling mechanisms in

place during development.
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INFANT NIRS STUDY OF

CYTOCHROME WITH EEG -

VISUAL CORTEX

7.1 Introduction

The study presented in the previous chapter used social and non-social stimuli to investi-

gate the relationship between neuronal activation, metabolic activity and subsequent blood

oxygenation in the temporal cortex. The results provided evidence of the unique metabolic

environment of the brain during development. Differences in correlations between chro-

mophores were observed and an interesting result that emerged was that oxCCO coupled

more strongly (negatively) with HHb rather than HbO2, providing evidence of underde-

veloped neurovascular coupling mechanisms in early infancy. Moreover, differences in the

relationship between neural oscillatory activity and haemodynamic changes and changes

in metabolic activity were also observed.

While the study presented in the previous chapter was a logical progression from the

work presented in Chapter 4, the study presented in this chapter is a follow-on from that

presented in Chapter 5. As I discussed in Chapter 5, the visual stimuli, particularly those

with specific characteristics such as colour and form, provide a useful context in which to
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investigate the relationship between neural activity and measured NIRS responses. This is

because the variation in visual stimuli have been shown to produce differential responses

in haemodynamics (Heekeren et al., 1999b) and neuronal activation (Hermes et al., 2017;

Jia et al., 2013; Self et al., 2016; Henrie, 2005). Visual stimulation was used in Chapter 5

to measure changes in concentrations of NIRS chromophores simultaneously with EEG,

over the occipital cortex. The results indicated that visual stimuli with differing temporal

and spatial frequencies and colour do produce differential responses in haemodynamics

and metabolic activity which then relate differently to underlying neuronal activity. The

stimuli that activated the magnocellular pathway and produced stronger ∆[HbO2] and

∆[oxCCO] responses correlated more strongly with an increase in beta and gamma power

in comparison to alpha power. Moreover, differences were also observed in the direction

of the correlations between beta and gamma power with oxCCO and HbO2 with HbO2

correlating positively and oxCCO correlating negatively. Therefore, the stimuli presented

in Chapter 5 were modified for the infant study presented here. Additionally, a second set

of visual stimuli were developed which including moving gratings.

Previous studies measuring local field potentials (LFPs) (Hermes et al., 2017) provide

evidence that differing characteristics of moving gratings elicit differential oscillatory ac-

tivity, particularly in the gamma band. Hence, gratings were developed to investigate how

differences in neuronal activity affect the haemodynamic response and metabolic function.

The data presented here was acquired in the same testing session as that of the previous

chapter. However here, only the results from the stimuli to target the visual cortex are

presented. The study presented in this chapter therefore discusses the stimuli that were

used to explore the relationship between NIRS and EEG measures over the visual cortex.

7.2 Methods

7.2.1 Participants

Forty-two 4-to-7-month-old healthy infants participated in the study (22 males and 20 fe-

males, mean age: 179 ± 16 days). All parents volunteered to participate in the study and

provided written, informed consent. The study protocol was approved by the Birkbeck
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Psychology Ethics Committee and all procedures were performed in accordance with the

regulations of the Ethics Committee. Infants from varying ethnic backgrounds partici-

pated in the study and neither hair color nor skin colour was used as an exclusion criteria

to screen participants. All infants who participated were healthy with no known develop-

mental disorders and were born at term between 37 - 40 weeks gestation.

As I mentioned in the introduction of this chapter, the study presented in this chapter

was carried out in the same testing session as that of the previous chapter. Therefore, the

infants were the same.

7.2.2 Data acquisition

7.2.2.1 Multi-channel broadband system

The multi-channel broadband NIRS system, with infant modifications described in the pre-

vious chapter, was used for the study here. The Enobio EEG system as used again with

thirty-two channels in the same configuration to acquire the EEG data.

7.2.2.2 Headgear

The headgear used for this study was the same as that described in the previous section

but for ease of the reader the upper panel of Figure 7.1 shows the NIRS array, consisting

of 19 channels with source - detector separation of 2.5 cm, with the exception of occipital

Channels 3 and 5 which had source - detector separation of 2.90 cm. The bottom panel of

Figure 7.1 shows the configuration of the EEG electrodes.
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Figure 7.1: (Upper panel) Schematic diagram of the NIRS occipital and temporal arrays
showing the positions sources, detectors and EEG electrodes. The red and yellow circles
represent the sources and detectors respectively while the blue circle indicate nearby EEG
electrodes. The black lines represent channels that are formed between sources and detect-
ors. (Bottom panel) EEG montage used for this study.

272



Chapter 7

7.2.3 Experimental Stimuli

All experimental stimuli were designed using Psychtoolbox in Matlab (Mathworks, USA).

After one presentation of the social and non-social condition (i.e. after one full presentation

of block 1 as described in the previous chapter), the stimuli for block 2 were presented

followed by block 3. These stimuli are described in the next section.

7.2.3.1 Checkerboards

The stimuli from the study in Chapter 5 were modified for the infant study presented here.

The modifications included (i) the checkerboards being presented full field rather than

hemifield, (ii) they were presented as squares rather than circular checkerboards and (iii)

the characteristic that differed between the two types was the colour while the temporal

and spatial frequency was kept constant.

The checkerboards (block 2) had two contrast conditions:

1. The black and white checkerboard which consisted of an alternating checkerboard of

black and white squares.

2. The red and green checkerboard which consisted of an alternating checkerboard of

red and green squares.

Figure 7.2 shows both of the checkerboards which had the same temporal frequency of

1.5 Hz and subtended a visual angle of approximately 3◦. Within block 2, the checker-

boards were presented pseudorandomly for a varying duration between 6 - 8 s and were

followed by the baseline condition which consisted of low contrast videos of animals walk-

ing around in a savannah. The baseline was presented for 8 s following which a fixa-

tion cross in the shape of a ball or flower appeared in the centre of the screen (identical

to the social/non-social block). The fixation cross was particularly important for the vi-

sual checkerboard condition and I needed to ensure that the infants were looking at the

screen when the next experimental condition was presented. Figure 7.2 shows the order

of stimulus presentation for the checkerboards block. After one presentation of each of the

black/white and the red/green checkerboards (i.e. after one full presentation of block 2),

the stimuli for block 3 were presented which are discussed in the next section.
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Figure 7.2: Checkerboards stimuli

7.2.3.2 Gratings

The gratings block (block 3) had two contrast conditions:

1. A low contrast grating with a low spatial frequency (1 - 2 cycles per degree).

2. A high contrast grating with medium spatial frequency (4 - 6 cycles per degree).

Figure 7.3 shows both of the gratings which drifted at the same temporal frequency of 3

Hz. Within block 3, the gratings were presented pseudorandomly for varying duration

between 6 - 8 s and were followed by the identical baseline condition used for the checker-

boards condition (block 2). Figure 7.3 shows the order of stimulus presentation for the

gratings block. After one presentation of each of the low contrast and high contrast grat-

ings (i.e. after one full presentation of block 3), block 1 was repeated. Figure 7.4 shows the

order in which the blocks were presented.
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Figure 7.3: Gratings stimuli

7.2.4 Experimental Procedure

As this study was carried out in the same testing session as that presented in the previous

chapter, the experimental procedure was the same and has already been described in Sec-

tion 6.2.4 of Chapter 6. Blocks 1, 2 and 3 were alternated until the infants became bored or

fussy and Figure 7.4 shows the order of the stimulus presentation.

Figure 7.4: Order of stimulus presentation

7.2.5 Data analysis

7.2.5.1 NIRS

7.2.5.1.1 Pre-processing The pre-processing steps have already been described in detail

in Section 6.2.5.1 of Chapter 6. The same rejection criteria described therein were used here

as well.

7.2.5.1.2 Further analysis

7.2.5.1.2.1 Statistical analysis The same statistical analyses, described previously,

were performed for each condition. This included using pairwise t-tests to establish whether
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there was (i) a statistically significant difference between the condition versus the baseline

and (ii) a statistically significant difference between conditions, for example black/white

checkerboard versus red/green checkerboard. The statistical time window that was used

to identify the maximum response in each chromophore for each condition differed here in

comparison to the previous chapter. While a time window of 10 - 18 s post-stimulus onset

was selected for the social/non-social conditions, a time window of 4 - 10 s post-stimulus

onset was selected here (equivalent to 9 - 15 s of the block). This is much earlier than

the window for social/non-social conditions because after visual inspection of the data, I

found the responses to the visual stimuli over the occipital cortex followed a different pat-

tern to those seen over the temporal cortex for the social/non-social conditions. The time

period of 4 - 10 s post-stimulus onset included the range of responses across infants for the

visual conditions. FDR correction was also performed.

7.2.5.1.2.2 Secondary analyses Difference scores, TTP analysis and cross-correlation

analysis was performed, using the same procedures described in the previous chapter.

7.2.5.2 EEG

7.2.5.2.1 Pre-processing All EEG data were analysed using Matlab 2017a (Mathworks,

USA) and the EEGLab Toolbox (Schwartz Centre for Computational Neuroscience, UC San

Diego, USA). The EEG pre-processing has already been described in detail previously and

the only step that differed here was the segmentation of the data from the visual conditions

which will be described in more detail in the following section.

7.2.5.2.1.1 Segmentation

Checkerboards Condition The EEG data from each of the checkerboard conditions

were segmented over every alternation of the checkerboard such that each 6 - 8 s checker-

board trial resulted in approximately 6 - 8 epochs.

Gratings Condition The EEG data from the gratings condition were segmented over

every change in direction of the drifting gratings such that each 6 - 8 s gratings trial resulted
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in 2 epochs.

7.2.5.2.2 Further Analyses

Checkerboards and Gratings Condition

1. Wavelet-based decomposition was performed for the channels over the occipital cor-

tex in order to obtain the evoked oscillations occurring in response to the stimuli.

2. Topographical maps of spectral power were generated at specific frequency bands.

7.2.5.2.3 Statistical Analysis A time-window of interest was selected; 100 - 300 ms post-

stimulus onset for the checkerboard conditions and 50 - 400 ms for the gratings conditions.

Within these time windows, the mean alpha, beta and gamma power were averaged and

pairwise t-tests were performed over occipital, parieto-occipital and parietal channels to

assess whether there was significant difference between conditions. The time-windows

were chosen after visual inspection of time-frequency results and were thought to include

the majority of the stimulus-evoked activity .

7.3 Results

7.3.1 NIRS

As described previously, thirty-two infants, out of forty-two, were included in the final

analysis for NIRS. 7 infants were excluded due to having more than 40% of channels with

poor data quality, 2 infants were excluded due to poor signal-to-noise ratio and low inten-

sity counts and 1 infant was excluded due to an insufficient number of trials.

7.3.1.1 Checkerboards Task

7.3.1.1.1 Black/white checkerboard The upper panel of Figure 7.5 displays the grand

averaged changes in concentration of HbO2 (red), HHb (blue) and oxCCO (green) in all

channels, across 32 participants, in response to the black/white checkerboard. oxCCO
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has been magnified (x2.5) and the bottom panel shows the changes in concentration of

oxCCO only, prior to magnification. As I explained previously, the experimental stimuli

were presented in a jittered design varying between 6 - 8 s and this has been indicated in

the grand average figures by means of the pink and purple boxes. The pink box indicates

the minimum time period for the stimulus presentation (6 s) while the purple box extends

to the maximum period (8 s).

Prior to comparison between conditions i.e. black/white checkerboard versus red/green,

t-tests were performed to assess whether there were statistically significant responses in

∆[HbO2], ∆[HHb] and ∆[oxCCO] versus the baseline, in each channel. Tables 7.1 - 7.3

show the mean maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO] respectively along

with their t and p values. After FDR-correction, no channels displayed a statistically sig-

nificant increase in ∆[HbO2] from baseline, except Channel 15. Majority of the channels

over the temporal cortex displayed a significant increase in ∆[oxCCO] versus the baseline.
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Figure 7.5: Observed chromophore concentration changes in HbO2, HHb and oxCCO in
response to the black/white checkerboard condition with oxCCO magnified x2.5 (Upper
panel) and oxCCO not magnified (Bottom panel). The statistical time window of 4 - 10 s
post-stimulus onset is indicated.
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Channel ∆[HbO2] Mean Maximum Change tHbO2 pHbO2 FDR corrected pHbO2

1 0.0890 1.53 0.1369 0.1633

2 0.1230 2.0117 0.0547 0.0939

3 0.1743 2.6195 0.0164 0.0616

4 0.1247 1.7447 0.0916 0.1323

5 0.1856 2.1574 0.04 0.0858

7 0.1717 3.0389 0.0078 0.0586

9 0.2365 2.7321 0.0119 0.0594

11 0.1234 2.3076 0.0281 0.0764

12 0.0594 1.1511 0.2591 0.2591

13 0.1175 1.7132 0.0970 0.1323

14 0.1458 2.27 0.0306 0.0764

15 0.2113 3.7024 p < 0.001 0.0124*

16 0.0839 1.9881 0.0563 0.0939

17 0.0690 1.5164 0.1415 0.1633

18 0.0990 1.4635 0.1545 0.1655

Table 7.1: Mean maximum change, t and p values for the black/white checkerboard condi-
tion versus baseline for HbO2. Channels with a significant response to the condition versus
the baseline are indicated with an asterisk, for the FDR corrected p values.
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Channel ∆[HHb] Mean Maximum Change tHHb pHHb FDR corrected pHHb

1 -0.0053 -0.1735 0.8635 0.9251

2 -0.0773 -1.5249 0.1394 0.3007

3 -0.1829 -3.6738 0.0015 0.0226*

4 -0.0393 -1.0556 0.2999 0.4998

5 -0.0851 -1.4943 0.1467 0.3007

7 -0.0565 -0.9914 0.3362 0.5044

9 -0.0671 -1.5828 0.1271 0.3007

11 -0.0029 -0.0525 0.9584 0.9584

12 -0.0476 -1.4913 0.1467 0.3007

13 -0.0525 -1.4394 0.1604 0.3007

14 -0.0137 -0.2790 0.7822 0.9025

15 -0.0218 -0.6232 0.5377 0.6721

16 -0.0646 -1.4806 0.1495 0.3007

17 -0.0211 -0.6595 0.5154 0.6721

18 -0.1283 -2.8082 0.009 0.0673

Table 7.2: Mean maximum change, t and p values for the black/white checkerboard condi-
tion versus baseline for HHb. Channels with a significant response to the condition versus
the baseline are indicated with an asterisk, for FDR corrected p values.
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Channel ∆[oxCCO] Mean Maximum Change toxCCO poxCCO FDR corrected poxCCO

1 0.0388 4.1070 p < 0.001 0.0045*

2 0.0477 3.1456 0.0041 0.0141*

3 0.0471 2.9721 0.0075 0.0141*

4 0.0242 2.1746 0.038 0.0474*

5 0.0530 2.9782 0.0061 0.0141*

7 0.0323 0.8814 0.3911 0.3911

9 0.0413 2.2639 0.0333 0.0454*

11 0.0305 1.9934 0.0554 0.0593

12 0.0382 2.5662 0.0157 0.0236*

13 0.0348 2.8925 0.0071 0.0141*

14 0.0324 3.2113 0.0031 0.0141*

15 0.0278 2.5876 0.0146 0.0236*

16 0.0232 2.1094 0.0437 0.0504

17 0.0408 3.3108 0.0027 0.0141*

18 0.0496 3.0349 0.0052 0.0141*

Table 7.3: Mean maximum change, t and p values for the black/white checkerboard con-
dition versus baseline for oxCCO. Channels with a significant response to the condition
versus the baseline are indicated with an asterisk, for the FDR corrected p values.

7.3.1.1.2 Red/green checkerboard The upper panel of Figure 7.6 displays the grand av-

eraged changes in concentration of HbO2 (red), HHb (blue) and oxCCO (green) in all chan-

nels, across 32 participants, in response to the black/white checkerboard. oxCCO has been

magnified (x2.5) and the bottom panel shows the changes in concentration of oxCCO only,

prior to magnification.

Prior to comparison between conditions i.e. black/white checkerboard versus red/green,

t-tests were performed to assess whether there were statistically significant responses in

∆[HbO2], ∆[HHb] and ∆[oxCCO] versus the baseline, in each channel. Tables 7.4 - 7.6

show the mean maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO] respectively along

with their t and p values. Strong decreases in ∆[HbO2] from baseline were seen in majority

of channels over the occipital cortex while an increase in ∆[HbO2] was seen in temporal
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Channels 14, 15 and 18. An increase in ∆[HHb] was observed in majority of the channels

while for ∆[oxCCO] an increase was observed in Channels 1, 4, 9 and 11.

Figure 7.6: Observed chromophore concentration changes in HbO2, HHb and oxCCO in re-
sponse to the red/green checkerboard stimulus with oxCCO magnified x2.5 (Upper panel)
and oxCCO not magnified (Bottom panel). The statistical time window of 4 - 10 s post-
stimulus onset is indicated.
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Channel ∆[HbO2] Mean Maximum Change tHbO2 pHbO2 FDR corrected pHbO2

1 -0.0327 -0.6932 0.4937 0.7405

2 -0.0115 -0.2274 0.8219 0.9299

3 0.0919 2.0340 0.0554 0.2020

4 0.0065 0.1569 0.8764 0.9299

5 0.2721 3.0120 0.0056 0.0418*

7 0.1338 1.9518 0.0687 0.2020

9 0.1165 1.1495 0.2621 0.4369

11 0.0955 1.5909 0.1221 0.2617

12 -0.0041 -0.0887 0.9299 0.9299

13 0.096 1.3485 0.1876 0.3517

14 0.1130 1.8069 0.0808 0.2020

15 0.1358 2.7125 0.0108 0.0540

16 0.0226 0.5391 0.5939 0.7424

17 0.0266 0.6129 0.5453 0.7424

18 0.2244 3.2893 0.0027 0.0407*

Table 7.4: Mean maximum change, t and p values for the red/green checkerboard condi-
tion versus baseline for HbO2. Channels with a significant response to the condition versus
the baseline are indicated with an asterisk, for the FDR corrected p values.

284



Chapter 7

Channel ∆[HHb] Mean Maximum Change tHHb pHHb FDR corrected pHHb

1 -0.0448 -0.7745 0.4449 0.5977

2 -0.0465 -0.9856 0.3334 0.5557

3 -0.0760 -1.0474 0.3074 0.5557

4 -0.1265 -2.5303 0.0171 0.1206

5 -0.0406 -0.7159 0.4802 0.5977

7 0.0085 -0.1679 0.8687 0.9308

9 -0.0590 -0.6565 0.5180 0.5977

11 -0.0947 -2.2672 0.0307 0.1206

12 -0.0004 -0.0108 0.9914 0.9914

13 -0.0415 -0.7118 0.4821 0.5977

14 -0.0879 -2.1664 0.0384 0.1206

15 -0.0837 -1.5992 0.1199 0.2998

16 -0.0731 -1.4128 0.1684 0.3608

17 -0.0666 -2.1596 0.0402 0.1206

18 -0.1574 -2.5219 0.0176 0.1206

Table 7.5: Mean maximum change, t and p values for the red/green checkerboard condi-
tion versus baseline for HHb. Channels with a significant response to the condition versus
the baseline are indicated with an asterisk, for the FDR corrected p values.
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Channel ∆[oxCCO] Mean Maximum Change toxCCO poxCCO FDR corrected poxCCO

1 0.0338 2.5196 0.0175 0.0438*

2 0.0198 1.3763 0.1805 0.2256

3 0.0567 2.4583 0.0232 0.0497*

4 0.0606 4.3608 p < 0.001 0.0022*

5 0.0650 2.6578 0.0131 0.0392*

7 0.0203 0.7559 0.4607 0.4936

9 0.636 3.6480 0.0013 0.0067*

11 0.0380 3.6155 0.0011 0.0067*

12 0.0049 0.3941 0.6964 0.6965

13 0.0262 2.1758 0.037 0.0626

14 0.0244 2.0557 0.0486 0.0729

15 0.0279 2.2240 0.0336 0.0626

16 0.0222 1.7721 0.0869 0.1185

17 0.0141 1.2290 0.2301 0.2655

18 0.0348 2.6994 0.0116 0.0392*

Table 7.6: Mean maximum change, t and p values for the red/green checkerboard con-
dition versus baseline for oxCCO. Channels with a significant response to the condition
versus the baseline are indicated with an asterisk, for the FDR corrected p values.

7.3.1.1.3 Black/white versus Red/green checkerboard Pairwise t-tests were performed

to assess whether there was a statistically significant difference between responses for

the black/white versus red/green checkerboards. Given that these stimuli were simi-

lar to those used in Chapter 5, in accordance with those results, I expected a greater re-

sponse to the black/white condition in comparison to the red/green. I was also expect-

ing a differential response in oxCCO given the different metabolic demands of the path-

ways involved in processing these stimuli, that is the parvocellular pathway (targeted by

the red/green checkerboard) is known to have a higher concentration of CCO. Signifi-

cant differences were found between the two conditions only for oxCCO in Channel 4

(t = −2.2109, p = 0.0358, mean difference = 0.0364 µMol) and no significant differences

were found in any of the channels for HHb and HbO2. The p values reported here are
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non-FDR corrected values. The tables including the statistics (t and p values) for each

channel and chromophore are included in the appendix. Figure 7.7 indicates the channels

where there was a statistically significant difference between black/white and red/green

conditions for ∆[oxCCO] (green) on a topographical map.

Figure 7.7: Topographical map of the difference in mean maximum change between the
two checkerboard conditions. The green circle represents the channel with a statistically
significant difference between conditions for oxCCO.

Channel 4 showed a statistically significant difference between the checkerboard con-

ditions for oxCCO. The observed changes in concentration HbO2, HHb and oxCCO from

this channel are shown in Figure 7.8, for both black/white and red/green checkerboards

and include the standard deviations.
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Figure 7.8: Observed changes in the concentration of (a) HbO2 (b) oxCCO and (c) HHb
in response to the black/white checkerboard (left) and red/green checkerboard (right) in
Channel 4. The statistical time window is indicated. The error bars represent standard
deviations.
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The mean and standard deviations (represented through error bars) of the maximum

responses from each of the occipital channels are shown in Figure 7.8 with HbO2in red,

HHb in blue and oxCCO in green, for both checkerboard conditions (labelled as “BW”

and “RG” on the x-axis), HbO2 and HHb are scaled to the y-axis on the left and oxCCO is

scaled to the y-axis shown on the right in the figure for each channel. The largest increases

in ∆[oxCCO] can be seen in Channels 5 and 9 for the black/white condition and Channels

3 and 9 for the red/green condition. Channels 5 and 9 also display the largest responses

for both conditions for HbO2.

Figure 7.9: Mean and standard deviations of the maximum responses of HbO2(red), HHb
in (blue) and oxCCO (green), for both black/white and red/green conditions which are
labelled as “BW” and “RG” respectively on the x-axis, for channels over the occipital cortex.
The y-axis on the left is for HbO2 and HHb while the y-axis on the right is for oxCCO. The
error bars represent standard deviations.

7.3.1.1.3.1 Difference scores The differences in the mean maximum change in con-

centration between the black/white and red/green checkerboard conditions were calcu-

lated for each of the channels over the occipital cortex. Figure 7.10 shows the difference

in the maximal response for each chromophore, with each bar in the graph representing

a channel over the occipital lobe. Positive values indicate a a stronger response to the
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black/white condition, while negative values indicate a stronger response to the red/green

condition. Channels 6, 8 and 10 appear empty as they were excluded from the analysis due

to reasons specified previously. As with the results presented in Chapter 5, a greater re-

sponse to the black/white condition was expected for HbO2 and oxCCO in comparison to

the red/green condition. Due to the differing metabolic demand of the pathways involved

in processing these stimuli, differences in the oxCCO response were expected. For HbO2

majority of the channels, with the exception of Channel 5, display greater responses to the

black/white condition while for oxCCO and HHb, many channels show a greater increase

in ∆[oxCCO] and decrease in ∆[HHb] in response to the red/green condition.

Figure 7.10: Bar graph showing the difference in the mean maximum change, in each chro-
mophore, between the two checkerboard conditions for the channels located over the oc-
cipital cortex. Positive values indicate a greater response to the red/green condition while
negative values indicate a greater response to the black/white condition. Channels with a
significant difference between conditions are indicated with an asterisk.

7.3.1.1.3.2 Time to peak The TTP for each chromophore in response to the checker-

board conditions was calculated, in the chosen time window for statistical analysis (4 - 10

s post-stimulus onset here). Heterogeneity in the TTP was observed. The results from this

can be found in the appendix.

7.3.1.1.3.3 Cross-correlations Cross-correlations were performed for both conditions

between chromophores in order to observe the relationship between changes in energy

metabolism and haemodynamics in occipital cortex. Given that the cross-correlation anal-
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ysis from Chapter 6 showed differences in coupling between oxCCO and HbO2 in the

adult and the infant brain, it was important to perform the cross-correlations in the occip-

ital cortex as well. Moreover, these correlations could be directly compared with the adult

correlations as they were performed over the same brain region.

The cross-correlations were performed between (i) HbO2 and oxCCO, (ii) HHb and

oxCCO and (iii) HbO2 and oxCCO for all the channels. Figure 7.11 shows the average cross-

correlations across occipital channels, for the black/white checkerboard (upper panel) and

red/green checkerboard (bottom panel). The error bars represent standard deviations. For

oxCCO and HHb, a strong negative correlation was seen with rBW = 0.44 and rRG = 0.48

and zero time-lag for both conditions. Weaker correlations were observed between HbO2

- HHb and HbO2 - oxCCO for both conditions. The correlations from individual channels

can be found in Appendix C.

291



Chapter 7

Figure 7.11: Average of the cross-correlation across the occipital channels for the
black/white condition (upper panel) and red/green condition (bottom panel). The error
bars represent standard deviations

7.3.1.2 Gratings Task

7.3.1.2.1 Low contrast gratings The upper panel of Figure 7.12 displays the grand aver-

aged changes in concentration of HbO2 (red), HHb (blue) and oxCCO (green) in all chan-

nels, across 32 participants, in response to the low contrast gratings. oxCCO has been
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magnified (x2.5) and the bottom panel shows the changes in concentration of oxCCO only,

prior to magnification.

Prior to comparison between conditions i.e. low contrast gratings versus high contrast,

t-tests were performed to assess whether there were statistically significant responses in

∆[HbO2], ∆[HHb] and ∆[oxCCO] versus the baseline, in each channel. Tables 7.7 - 7.9

show the mean maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO] respectively along

with their t and p values. A significant increase in Δ[HbO2] was observed in occipital

channels 2, 3 and 7 and in temporal channels 13, 14, 15 and 18. Channels 3, 4, 5 and 9

displayed a significant increase inΔ[HHb] in response to the stimulus versus the baseline.

An increase in Δ[oxCCO] was seen in occipital Channels 2 and 11 and temporal Channels

13, 16 and 18.
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Figure 7.12: Observed chromophore concentration changes in HbO2, HHb and oxCCO
in response to the low contrast gratings with oxCCO magnified x2.5 (Upper panel) and
oxCCO not magnified (Bottom panel). The statistical time window of 4 - 10 s post-stimulus
onset is indicated.
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Channel ∆[HbO2] Mean Maximum Change tHbO2 pHbO2 FDR corrected pHbO2

1 0.1210 1.9124 0.0657 0.0986

2 0.1213 1.9531 0.0616 0.0986

3 0.2466 3.4070 0.0028 0.0210*

4 0.1961 2.8313 0.0083 0.0404*

5 0.1878 2.0666 0.0485 0.0986

7 0.2425 2.7770 0.0135 0.0404*

9 0.2943 3.4637 0.0021 0.0210*

11 0.0835 1.4911 0.1464 0.1689

12 0.0794 1.7022 0.0994 0.1356

13 0.0368 0.6201 0.5399 0.5399

14 0.1082 1.5077 0.1421 0.1689

15 0.1322 1.9739 0.0574 0.0986

16 0.0867 1.4007 0.1719 0.1842

17 0.1335 2.7129 0.0117 0.0404*

18 0.1441 2.0966 0.0452 0.0986

Table 7.7: Mean maximum change, t and p values for the low contrast gratings condition
versus baseline for HbO2. Channels with a significant response to the condition versus the
baseline are indicated with an asterisk, for the FDR corrected corrected p values.
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Channel ∆[HHb] Mean Maximum Change tHHb pHHb FDR corrected pHHb

1 -0.0864 -1.9902 0.0561 0.1402

2 -0.0548 -1.5162 0.1415 0.2359

3 -0.1239 -3.1124 0.0055 0.0412*

4 -0.0855 -2.1228 0.0424 0.1273

5 -0.1068 -2.3988 0.0236 0.0886

7 0.0455 0.8686 0.3979 0.4974

9 -0.2406 -3.7588 0.001 0.0153

11 -0.0582 -1.4075 0.1696 0.2543

12 0.0616 1.7215 0.0957 0.2053

13 0.0078 0.2303 0.8195 0.8195

14 -0.0189 -0.7254 0.4738 0.5467

15 -0.0156 -0.4038 0.6892 0.7384

16 -0.0470 -1.0979 0.2813 0.3836

17 -0.0746 -1.6361 0.1139 0.2135

18 -0.1290 -2.7762 0.0097 0.0485*

Table 7.8: Mean maximum change, t and p values for the low contrast gratings condition
versus baseline for HHb. Channels with a significant response to the condition versus the
baseline are indicated with an asterisk, for the FDR corrected corrected p values.

296



Chapter 7

Channel ∆[oxCCO] Mean Maximum Change toxCCO poxCCO FDR corrected poxCCO

1 0.0361 2.6697 0.0123 0.0308*

2 0.0545 2.8396 0.0087 0.0260*

3 0.0604 2.2897 0.0330 0.0551

4 0.0301 2.4835 0.019 0.0408*

5 0.0736 3.4526 0.0018 0.0092*

7 0.0021 0.0710 0.9443 0.9443

9 0.0931 5.2934 p < 0.001 p < 0.001*

11 0.0614 4.0663 3.18e-04 0.0024

12 0.0008 0.0733 0.9420 0.9443

13 0.0301 2.9281 0.0065 0.0242*

14 0.0101 0.8852 0.3831 0.4420

15 0.0194 1.7514 0.0898 0.1224

16 0.0308 1.9986 0.0551 0.0827

17 0.0182 1.5070 0.1439 0.1798

18 0.0362 2.4161 0.0225 0.0421*

Table 7.9: Mean maximum change, t and p values for the low contrast gratings condition
versus baseline for oxCCO. Channels with a significant response to the condition versus
the baseline are indicated with an asterisk, for the FDR corrected corrected p values.

7.3.1.2.2 High contrast gratings The upper panel of Figure 7.13 displays the grand av-

eraged changes in concentration of HbO2 (red), HHb (blue) and oxCCO (green) in all chan-

nels, across 32 participants, in response to the black/white checkerboard. oxCCO has been

magnified (x2.5) and the bottom panel shows the changes in concentration of oxCCO only,

prior to magnification.

Prior to comparison between conditions, t-tests were performed to assess whether there

were statistically significant responses in ∆[HbO2], ∆[HHb] and ∆[oxCCO] versus the

baseline, in each channel. Tables 7.10 - 7.12 show the mean maximum changes in ∆[HbO2],

∆[HHb] and ∆[oxCCO] respectively along with their t and p values. An increase in ∆[HbO2]

in response to the stimulus compared to baseline was seen in Channels 5, 12, 13, 15 and

18 while an increase in ∆[HHb] was seen in Channels 4, 7 and 9. A significant increase in
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∆[oxCCO] was seen in occipital Channels 2, 3, 4 and temporal Channels 16 and 18.

Figure 7.13: Observed chromophore concentration changes in HbO2, HHb and oxCCO
in response to the high contrast gratings with oxCCO magnified x2.5 (Upper panel) and
oxCCO not magnified (Bottom panel). The statistical time window of 4 - 10 s post-stimulus
onset is indicated.
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Channel ∆[HbO2] Mean Maximum Change tHbO2 pHbO2 FDR corrected pHbO2

1 0.0038 0.07136 0.9436 0.9995

2 -0.027 -0.4123 0.6835 0.9320

3 0.0634 1.0594 0.3020 0.6472

4 0.1374 2.2655 0.0311 0.0934

5 0.2446 2.9145 0.0071 0.0354*

7 0.0137 0.1657 0.8704 0.9995

9 0.2594 3.8898 p < 0.001 0.0111*

11 0.0284 0.4342 0.6672 0.9320

12 -0.0001 -0.00061 0.9995 0.9995

13 0.0158 0.2470 0.8065 0.9995

14 0.0529 0.7152 0.48 0.7999

15 0.0868 1.5020 0.1432 0.3580

16 0.0357 0.8224 0.4175 0.7829

17 0.1565 2.445 0.0215 0.0808

18 0.2285 3.5015 0.0016 0.0118*

Table 7.10: Mean maximum change, t and p values for the high contrast gratings condition
versus baseline for HbO2. Channels with a significant response to the condition versus the
baseline are indicated with an asterisk, for the FDR corrected corrected p values.
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Channel ∆[HHb] Mean Maximum Change tHHb pHHb FDR corrected pHHb

1 -0.1205 -2.1875 0.0369 0.0791

2 -0.0701 -1.3064 0.2029 0.2938

3 -0.1645 -2.6252 0.0162 0.0606

4 -0.0858 -1.4979 0.1450 0.2417

5 -0.2112 -3.0376 0.0052 0.0262*

7 -0.0494 -0.8362 0.4154 0.4450

9 -0.1825 -3.4364 0.0023 0.0262*

11 -0.0493 -1.2655 0.2154 0.2938

12 -0.0742 -1.1721 0.2507 0.3030

13 -0.0713 -1.1418 0.2626 0.3030

14 -0.1001 -2.2772 0.0301 0.0752

15 -0.1499 -3.0992 0.0041 0.0262*

16 -0.0176 -0.4775 0.6366 0.6366

17 -0.0769 -1.9543 0.0615 0.1153

18 -0.1415 -2.4177 0.0224 0.0671

Table 7.11: Mean maximum change, t and p values for the high contrast gratings condition
versus baseline for HHb. Channels with a significant response to the condition versus the
baseline are indicated with an asterisk, for the FDR corrected corrected p values.
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Channel ∆[oxCCO] Mean Maximum Change toxCCO poxCCO FDR corrected poxCCO

1 0.0482 3.8216 6.48e-04 0.0032*

2 0.0386 2.6874 0.0124 0.0241*

3 0.0682 4.1297 5.19e-04 0.0032*

4 0.0610 3.1517 0.0038 0.0113*

5 0.0791 3.8690 6.25e-04 0.0032*

7 0.0264 0.8669 0.3988 0.4273

9 0.0710 3.6239 0.0014 0.0053*

11 0.0354 2.6934 0.0115 0.0241*

12 -0.0057 -0.4321 0.6689 0.6689

13 0.0257 2.1196 0.0424 0.0636

14 0.0132 1.2431 0.2235 0.2578

15 0.0245 2.0665 0.0472 0.0644

16 0.0301 2.1895 0.0368 0.0613

17 0.0225 2.0064 0.0553 0.0692

18 0.0439 2.6581 0.0128 0.0241*

Table 7.12: Mean maximum change, t and p values for the high contrast gratings condition
versus baseline for oxCCO. Channels with a significant response to the condition versus
the baseline are indicated with an asterisk, for the FDR corrected corrected p values.

7.3.1.2.3 Low contrast versus High contrast Pairwise t-tests were performed to assess

whether there was a statistically significant difference between responses for the two grat-

ings conditions. Based on previous fMRI studies in adults, I expected there to be a greater

HbO2 response to the high contrast condition in comparison to the low contrast (Heeger

et al., 2000; Henriksson et al., 2008). No significant differences between the conditions were

found between the two conditions in any of the chromophores. The tables including the

statistics for each channel and chromophore are included in the appendix.

The mean and standard deviations (represented through error bars) of the maximum

responses from each of the occipital are shown in Figure 7.14 with HbO2in red, HHb in

blue and oxCCO in green, for both checkerboard conditions (labelled as “HC” and “LC”

on the x-axis), for channels over the occipital cortex. HbO2 and HHb are scaled to the y-
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axis on the left and oxCCO is scaled to the y-axis shown on the right in the figure for each

channel. The largest increases in ∆[HbO2] can be seen in Channels 3, 7 and 9 for the low

contrast condition and Channels 5 and 9 for oxCCO.

Figure 7.14: Mean and standard deviations of the maximum responses of HbO2(red), HHb
in (blue) and oxCCO (green), for both low contrast and high contrast gratings which are
labelled as “LC” and “HC” respectively on the x-axis. The y-axis on the left is for HbO2
and HHb while the y-axis on the right is for oxCCO. The error bars represent standard
deviations.

7.3.1.2.3.1 Difference scores Figure 7.15 shows the difference in mean maximum

change for each chromophore, with each bar in the graph representing a channel over

the occipital lobe. Positive values indicate a stronger response to the low contrast con-

dition while negative values indicate a stronger response to the high contrast condition.

Channels 6, 8 and 10 appear empty as they were excluded from the analysis due to reasons

specified previously. As I mentioned previously, based on previous fMRI studies, a greater

HbO2 response was expected in response to the high contrast condition. Given that the

two stimuli differed in spatial frequency which can also differentially activate magnocel-

lular and parvocellular pathways, differences in the oxCCO response were also expected

which would reflect differences in metabolic demand in the two pathways. For HbO2 and

HHb, majority of channels display greater responses to the low contrast condition, with
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the exception of Channel 5 for HbO2 and Channel 9 for HHb. Meanwhile for oxCCO,

most channels show greater responses for the high contrast gratings with the exception of

Channels 2 and 9.

Figure 7.15: Bar graph showing the difference in the mean maximum change, in each chro-
mophore, between the low contrast and high contrast conditions for the channels over the
occipital lobe.

7.3.1.2.3.2 Time to peak The TTP for each chromophore in response to the checker-

board conditions was calculated, in the chosen time window for statistical analysis (4 - 10

s post-stimulus onset here). Heterogeneity in the TTP was observed. The results from this

can be found in the appendix.

7.3.1.2.3.3 Cross-correlations Cross-correlations were performed once again to ob-

serve the relationship between changes in energy metabolism and haemodynamics in oc-

cipital cortex. The cross-correlations were performed between (i) HbO2 and oxCCO, (ii)

HHb and oxCCO and (iii) HbO2 and HHb for all the channels. Figure 7.16 shows the aver-

age cross-correlations across occipital channels, for the low contrast gratings (upper panel)

and high contrast gratings (bottom panel). The error bars represent standard deviations.

For both high and low contrast conditions, HHb and oxCCO correlated negatively with

r = −0.45 and zero time-lag. Weaker correlations were observed between HbO2 - oxCCO
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and HbO2 - HHb. The correlations from individual channels can be found in the appendix.

Figure 7.16: Average of the cross-correlation across occipital channels for the low contrast
condition (upper panel) and high contrast condition (bottom panel). The error bars repres-
ent standard deviations.
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7.3.2 EEG

7.3.2.1 Checkerboards Task

For the checkerboards task, thirty-three infants were included in the study for the black/white

condition and thirty-four infants were included in the study for the red/green condition.

All the infants that were excluded were due to poor data quality.

7.3.2.1.1 Topoplots Figure 7.17 shows the log power spectral density for the alpha fre-

quency band for both red/green and black/white checkerboard conditions.

Figure 7.17: Topographical maps of the log power spectral density for the alpha band for
the red/green (labelled RG) and black/white (labelled BW) conditions.

Figure 7.18 shows the difference in log power spectral density between the two condi-

tions, for the alpha frequency band. Greater alpha activity was seen in frontal channels for

the black/white condition in comparison to the red/green condition while greater alpha

activity was seen over the occipital cortex channels for the red/green condition.

Figure 7.18: Topographical maps of the difference in log power spectral density between
the red/green and black/white conditions for the alpha frequency band.
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7.3.2.1.1.1 Statistical analysis

7.3.2.1.2 Time-Frequency Figure 7.19 shows the results from the wavelet time-frequency

decomposition from the channels located over the visual cortex, for both checkerboard con-

ditions. As with the adults and in accordance with previous studies (Hermes et al., 2017),

an increase in stimulus-evoked alpha, beta and gamma was expected in response to both

stimuli. For both conditions, alpha, beta and low gamma activity can be seen at Oz, O2

and PO8.

Figure 7.19: Time-frequency decomposition of the channels located over the visual cortex
for the black/white checkerboard (top) and red/green checkerboard (bottom)

Figure 7.20 shows the results from the time-frequency decomposition of the difference

between the black/white and red/green conditions.

306



Chapter 7

Figure 7.20: Difference between black/white and red/green checkerboard conditions. Red
indicates stronger activity for the black/white condition while blue indicates stronger ac-
tivity for the red/green condition.

7.3.2.1.2.1 Statistical analysis Pairwise t-tests were performed to compare the mean

power of alpha, beta and gamma in a 100 - 300 ms window (post-stimulus onset) between

the red/green and black/white checkerboard conditions for channels over the parietal and

occipital cortex (these included PO7, PO3, O1, Oz, O2, PO4, PO8 and Pz). No significant

differences were found between the two conditions for any of the frequency bands.

7.3.2.2 Gratings

For the gratings condition, twenty-six infants were included in the study for the low con-

trast condition and twenty-two for the high contrast condition. For the low contrast condi-

tion, 5 infants were excluded for not having the minimum number of trials and 11 infants

were excluded for having poor data quality. For the high contrast condition, 3 infants were

excluded for not having the minimum number of trials and the remainder due to poor data

quality.

7.3.2.2.1 Topoplots Figure 7.21 shows the log power spectral density for the alpha fre-

quency band for both high contrast and low contrast conditions. An increase in alpha

power can be seen in the occipital and right temporal channels for both low and high con-

trast conditions. Increased alpha power is seen in frontal cortex and a decrease in alpha

power around Cz, only for the low contrast condition.
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Figure 7.21: Topographical maps of the log power spectral density for the alpha band for
the low contrast (labelled LC) and high contrast (labelled HC) conditions.

Figure 7.22 shows the difference in log power spectral density between the two condi-

tions, for the alpha frequency band.

Figure 7.22: Topographical maps of the difference in log power spectral density between
the high contrast and low contrast conditions for the alpha frequency band.

7.3.2.2.2 Time-Frequency Figure 7.23 shows the results from the wavelet time-frequency

decomposition from the channels located over the visual cortex, for both gratings condi-

tions. Based on previous work (Jia et al., 2013; Self et al., 2016; Henrie, 2005), a greater

increase in stimulus-evoked gamma activity was expected in response to the high contrast

condition. An increase in alpha and beta power time-locked to the stimulus can be seen

at Oz for both high contrast and low contrast conditions. PO7, O1, O2 and PO8 display

gamma band activity for both conditions which appears to be stronger for the high con-

trast condition.

308



Chapter 7

Figure 7.23: Time-frequency decomposition of the channels located over the visual cortex
for the high contrast condition (top) and low contrast condition (bottom)

Figure 7.24 shows the results from the time-frequency decomposition of the difference

between the two conditions.

Figure 7.24: Difference between the high contrast and low contrast conditions. Red indi-
cates stronger activity for the high contrast condition while blue indicates stronger activity
for the low contrast condition.

7.3.2.2.2.1 Statistical analysis Pairwise t-tests were performed to compare the mean

power of alpha, beta and gamma in a 50 - 400 ms window (post-stimulus onset) between

the low contrast and high contrast conditions. No significant differences were found be-
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tween the two conditions for any of the three frequency bands.

7.3.3 Combined NIRS-EEG Analysis

7.3.3.1 Checkerboards Task

For the combined analysis, twenty-four infants were included for the black/white con-

dition and twenty-six infants were included for the red/green condition. Correlations

were performed for both checkerboard conditions between the mean power spectral den-

sity of the alpha, beta and gamma frequency bands with the maximum concentration

change of ∆[HbO2], ∆[HHb] and ∆[oxCCO], across the NIRS occipital and EEG parietal,

parieto-occipital and occipital channels. The matrix of the correlations between NIRS and

EEG channels was converted into a heatmap which can be seen in Figure 7.26 for the

black/white condition and the red/green condition. The colorbar indicates the strength

of the correlation between each channel and the map was thresholded to include only the

statistically significant correlations (p < 0.05) between NIRS and EEG channels. No cor-

rection for multiple comparisons was applied for these correlations. Figure 7.25 has been

included to show the NIRS (blue circles) and EEG channels (orange squares) in order to

remind the reader of the spatial locations of each of the channels that are being correlated.

Figure 7.25: Topographical locations of the NIRS channels (blue) and EEG channels (orange
rectangles), both have been labelled with their channel labels respectively.

For the black/white condition, many negative correlations were seen between NIRS
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and EEG channels for HbO2 and alpha power, specifically between NIRS Channels 1, 2, 4,

5 and 7 and a number of EEG channels, where an increase in alpha power was observed in

response to the black/white condition. Meanwhile, Channels 3 and 9 (where the largest in-

creases in ∆[HbO2] were observed) correlated positively with parietal and parieto-occipital

EEG channels, in both alpha and beta frequency bands. In the beta band fewer significant

correlations were observed in comparison to the alpha band with Channel 7 correlating

negatively with nearby parietal EEG channels. No significant correlations were seen be-

tween gamma power and HbO2.

For the black/white condition for oxCCO, NIRS Channel 4 correlated positively for

alpha power with many parietal and occipital EEG channels (where an increase in alpha

power was observed), while Channel 5 had a significant positive correlation with only

one parietal EEG channel. Statistically significant increases in ∆[oxCCO] were observed at

Channels 4 and 5. In the beta band, NIRS Channel 2, where a statistically significant in-

crease in ∆[oxCCO] was observed, correlated positively with nearby parietal EEG channels

P3, P9, PO7. Meanwhile, Channel 7 correlated negatively (as with HbO2) with parieto-

occipital and occipital EEG channels, where an increase in beta activity was observed in

response to the stimulus. Similar patterns were observed in the gamma band with Chan-

nel 7 once again correlating negatively with parieto-occipital and occipital EEG channels,

while Channels 2, 3 and 9 correlated positively (where there were significant increases in

∆[oxCCO] from the baseline).

Fewer correlations were observed between NIRS and EEG channels for HHb. In the al-

pha band, Channel 9 correlated negatively with EEG channels while Channel 3 (where the

largest change in ∆[HHb] was observed) correlated positively with a nearby parietal EEG

channel. In the beta band, significant correlations were found only for Channel 7 which

correlated positively with occipital channels O1 and O2, where an increase in beta power

was observed in response to the black/white checkerboard. A similar pattern is observed

in the gamma band with Channel 7 correlating positively with O1 and O2 where an in-

crease in (low) gamma power was observed. Meanwhile, Channels 2, 3 and 4 correlated

negatively with parietal EEG channels in the gamma band.

A “transition” in correlations was observed from alpha to gamma frequency bands
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between chromophores here. That is, for HHb the channels that correlated negatively in

the alpha band correlated positively in the beta and gamma frequency bands (and vice

versa, for example see Channels 3, 7 and 9 across frequency bands) while in oxCCO the

channels that correlated positively in the alpha band became weaker or negative in the beta

and gamma frequency bands (for example Channels 4 and 7 across the frequency bands).

A similar pattern is not observed for HbO2 although the correlations appear stronger in

the alpha band and become much weaker in the gamma band.

Fewer correlations are seen between NIRS and EEG channels for the red/green con-

dition. For HbO2, NIRS Channel 2 correlates positively with PO3, which is spatially lo-

cated next to Channel 2 and Channel 4 correlates positively with nearby EEG electrode P3.

While only the correlation between Channel 7 and O1 (where an increase in alpha power

in response to the red/green condition is seen) is significant, overall Channel 7 appears

to correlate positively with parieto-occipital and occipital EEG channels where an increase

in alpha power is observed. In the beta band only Channel 1 correlates positively with

P9 which is located nearby. No significant correlations are seen between NIRS and EEG

channels for HbO2 and gamma power.

No significant correlations between channels was observed for oxCCO and alpha power.

In the beta band, Channel 5 (with the largest increase in ∆[oxCCO]) correlated negatively

with parieto-occipital and occipital EEG channels, where an increase in beta power was ob-

served in response to the red/green condition. Meanwhile, Channels 3 and 4 (also where

the largest increases ∆[oxCCO] were observed) correlated positively with nearby pari-

etal EEG channels and in the gamma band, Channel 3 correlated positively with parieto-

occipital and occipital EEG channels where an increase in low gamma was observed.

Significant negative correlations were seen between Channels 3, 4 and 5 in the alpha

band for HHb and Channels 3 and 4 in the gamma band, with nearby EEG channels. Of

these, Channel 4 displayed a significant decrease in ∆[HHb] in response to the stimulus.

Figure 7.28 shows a heatmap of the difference between black/white and red/green con-

ditions such that the correlations were performed between the difference in mean power

spectral density (black/white minus red/green) and the difference in the maximum change

in each of the NIRS chromophores (black/white minus red/green). Overall, the correla-
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tions between NIRS and EEG channels across frequency bands for HbO2 and HHb are

stronger for the black/white condition while correlations appear to be stronger for the ox-

CCO for the red/green condition.

7.3.3.2 Gratings

For the gratings condition, twenty-one infants were included for the low contrast condition

and eighteen for the high contrast condition. Correlations were performed for both grat-

ings conditions between the mean power spectral density of the alpha, beta and gamma fre-

quency bands with the maximum concentration change of ∆[HbO2], ∆[HHb] and ∆[oxCCO],

across the NIRS occipital and EEG parietal, parieto-occipital and occipital channels. The

matrix of the correlations between NIRS and EEG channels was converted into a heatmap

which can be seen in Figure 7.29 for the high contrast condition and low contrast condition.

The colorbar indicates the strength of the correlation between each channel and the map

was thresholded to include only the statistically significant correlations (p < 0.05) between

NIRS and EEG channels.

For the high contrast condition, few positive correlations are seen between alpha and

beta power and HbO2, with Channel 7 correlating with parietal EEG channels. The corre-

lations between gamma power and HbO2 are the strongest with Channels 7 and 9 (with

the largest increases in ∆[HbO2] are seen) correlating positively, particularly with parieto-

occipital and occipital channels where an increase in gamma power is seen in response

to the high contrast gratings. Meanwhile Channels 2, 4 and 5 correlate negatively with

parietal and occipital EEG channels.

For the high contrast condition for oxCCO, significant positive correlations are seen

only between Channel 7 and parieto-occipital and occipital EEG channels where an in-

crease in alpha power was observed. The same channel correlates negatively in the gamma

band for oxCCO, across many EEG channels.

For the high contrast condition for HHb, Channels 1, 3 and 4 (of which Channels 1 and

3 show a significant decrease in ∆[HHb] in response to the stimulus) show significant neg-

ative correlations with nearby EEG channels. Fewer correlations are seen in the beta band

with Channels 2 and 7 correlating positively with parietal EEG channels. In the gamma
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band, Channel 7 once again correlates positively with the parietal and occipital EEG chan-

nels where an increase in gamma power is observed while Channel 3 correlates negatively

with nearby parietal EEG channels.

A similar pattern of “transitioning” of correlations as for the checkerboard conditions is

observed (for example see Channel 7 across frequency bands for HbO2, HHb and oxCCO.

For the low contrast condition, Channels 7 and 9 (where the largest increases in ∆[HbO2]

are observed) correlate specifically with parieto-occipital and occipital EEG channels lo-

cated over the right hemisphere for HbO2. No significant correlations are seen in the beta

and in the gamma band Channel 1 correlates negatively with nearby EEG electrode P3 and

occipital electrode Oz where an increase in low gamma is seen.

For oxCCO, Channel 7 correlates in both alpha and gamma but more strongly in the

gamma band with parietal and occipital EEG channels where an increase in gamma power

is observed. Channel 4 correlates significantly positively with parietal and occipital EEG

channels for both alpha and beta frequency bands.

Figure 7.31 shows a heatmap of the difference between low contrast and high contrast

such that the correlations were performed between the difference in mean power spectral

density (low contrast minus high contrast) and the difference in the maximum change in

each of the NIRS chromophores (low contrast minus high contrast). The strongest correla-

tions are seen between NIRS and EEG channels for beta power and HHb and oxCCO, with

HHb correlations being stronger for the low contrast condition while oxCCO correlations

are stronger for the high contrast condition.

7.4 Discussion

Multi-channel broadband NIRS was used simultaneously with EEG in 4-to-7-month-old

infants to investigate the relationship neurovascular coupling mechanisms, in the visual

cortex. Two different sets of visual stimuli which included alternating checkerboards and

drifting gratings were used and the results from each of these are discussed in the following

sections.
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7.4.1 Checkerboards

The checkerboard stimuli used in the study presented in this chapter were similar to those

used in the adult work in Chapter 5. The results from Chapter 5 indicated a statistically

significant difference between the black/white (Magno condition) and red/green checker-

boards (Parvo condition) with both ∆[oxCCO] and ∆[HbO2] displaying a stronger re-

sponse to the Magno condition. Therefore, a similar result was expected to be observed in

the infants. However, no significant differences were found in the NIRS responses between

the two conditions for either HbO2 or HHb. Although, from Figure 7.10 it is obvious, while

not statistically significant, that in the majority of channels over the visual cortex, there was

greater increase in ∆[HbO2] in response to the black/white condition in accordance with

the results from Chapter 5. Meanwhile, the changes in the concentration of ∆[oxCCO]

did indicate a significant difference over the primary visual cortex with a stronger re-

sponse for the red/green condition. This result is not surprising given that the red/green

checkerboard was designed to target the parvocellular pathway of the visual cortex which

has previously been demonstrated to have a high concentration of cytochrome-c-oxidase.

Therefore, a greater response to this condition in ∆[oxCCO] may be a reflection of activity

occurring in the parvocellular pathway. In fact, in many of the channels over the visual cor-

tex, as seen from Figure 7.10, a greater response to the red/green condition can be seen in

oxCCO. Furthermore, in the channel that exhibited a greater increase in ∆[oxCCO] for the

red/green checkerboard displays the opposite pattern of activation for HbO2 and HHb, as

seen in Figure 7.8 where an increase in ∆[HHb] and a decrease (or no response) in ∆[HbO2]

can be seen in response to the stimulus. This result could be interpreted as a “deactivation”

in response to the red/green condition which would support the results by Watanabe et

al (2012a) who similarly reported a deactivation to high luminance stimuli, although their

stimuli were unpatterned. fMRI work in macaques has demonstrated a hierarchal devel-

opment of pathways in the visual cortex (Van Grootel et al., 2017; Teller, 1997) which may

affect the processing of complex visual stimuli in the developing human brain. Further-

more, a study involving infants aged between 0 to 52 weeks using EEG investigated differ-

ences in the latencies of the visual evoked potentials and reported differential maturational
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changes between the magnocellular and parvocellular pathways with the former maturing

earlier (Hammarrenger et al., 2003). The authors further demonstrated that the time period

between 3 to 6 months appeared to be important for the maturation of these pathways, as

other previous previous studies have shown (Tremblay et al., 2014).

Cross-correlation analysis was performed once again in order to discern the relation-

ships between chromophores in the visual cortex which may reflect the status of neurovas-

cular coupling during development. As I already discussed in the introduction chapter,

there is a period of rapid development of neural circuitry in the visual cortex occurring

up until 8 months postnatally (Harris et al., 2011) and this may be reflected in the correla-

tions between chromophores. In strong contrast to the results from the cross-correlations

over the temporal cortex, the correlations between HbO2 and HHb and HbO2 and ox-

CCO are highly variable across infants, as seen in Figure 7.11. The correlations between

HHb and oxCCO however, are as consistent as they were in the temporal cortex. These

results can also be directly compared to the results from the cross-correlations performed

in Chapter 5 with the adult data set where equal correlations were observed between all

the chromophores. Moreover, the results provide further evidence that coupling mecha-

nisms between cerebral blood flow and metabolic function may not be fully developed in

early infancy and that additionally, these mechanisms undergo regional maturation at dif-

ferent rates, with temporal regions of the brain developing earlier than occipital. Chugani

et al (1987) reported differences in the cerebral metabolic rate of glucose (CMRG) uptake

in different brain regions and found that by 3 months of age the CMRG had increased

in the temporal cortex. However, the dorsolateral occipital cortex was slower, showing a

maturational increase around 6 - 8 months.

In the results presented in Chapter 5, an increase in stimulus-evoked alpha, beta and

gamma was seen in response to both Magno and Parvo conditions and was expected to

also be observed in the infants. In accordance with these results, the EEG time-frequency

analysis here showed stimulus-evoked increase in alpha, beta and low gamma, over the

primary visual cortex; specifically in channels located over the right hemisphere for both

conditions, as seen in Figure 7.19. No statistically significant difference was found be-

tween the two conditions. This may be due to the fact that the effect size is small and a

322



Chapter 7

larger sample size is needed to discern between these conditions. Furthermore, there was

a limitation in the experimental stimulus design particularly with respect to EEG. That is,

the segmentation of the EEG data was performed on every alternation of the checkerboard

which occurred roughly around every 1.5 s and occurred at least 6 times per presentation

of the block. This could result in the observed neural activity being dampened as there was

no baseline period prior to each alternation of the checkerboard.

The combined NIRS and EEG analysis showed an inverse relationship between neu-

ral activity in the alpha and beta frequency bands and oxygenated haemoglobin for the

black/white condition while for the red/green condition some of the same channels dis-

played a positive relationship. These results are in contrast to those over the tempo-

ral cortex where an increase in neural activity correlated with an increase in oxygenated

haemoglobin. Previous EEG-fMRI studies have also reported an inverse relationship be-

tween neural activity and the BOLD response, particularly in relation to the alpha band

(Yuan et al., 2010; Stern, 2002; Laufs et al., 2003a). Moreover, for both conditions, HbO2

did not correlate as strongly with gamma activity in comparison to oxCCO and HHb.

This would be in line with previous studies that have demonstrated that a decoupling

between the BOLD response and gamma-band oscillations occurs (Muthukumaraswamy

and Singh, 2009; Scheeringa et al., 2011b) and that mitochondrial function and gamma ac-

tivity are more strongly linked (Kann et al., 2011; Cunningham and Chinnery, 2011). An

interesting pattern of results was observed for oxCCO which may provide evidence of its

spatial specificity. In the channels located close to the primary visual cortex, a positive re-

lationship between oxCCO and gamma band activity was observed. Meanwhile, channels

in the extrastriate cortex displayed the opposite pattern of relationship. It is unclear why

this difference in relationship may be occurring but perhaps the neurons in the brain areas

involving in processing the visual stimuli (i.e. neurons in the primary visual cortex) have

increased oxygen consumption leaving less oxygen for neurons in extrastriate regions to

consume. More work is required in order to further investigate these pattern of relation-

ships.

Furthermore, another pattern of differences that emerges between correlations of differ-

ent frequency bands was the direction of the relationship of the NIRS chromophores with
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alpha and gamma oscillatory activity. That is, while oxCCO and HbO2 correlated nega-

tively with alpha and beta bands, they correlated in the opposite direction with gamma

band activity. Previous studies have postulated that different neural mechanisms lead to

high and low frequency oscillations (Cardin et al., 2009; Scheeringa et al., 2016, 2011b) and

these results may provide evidence of this.

Moreover, the differences in correlations between the red/green and black/white con-

ditions may be due to differences in the processing of stimuli between the magnocellu-

lar and parvocellular pathways. It may be that the two pathways develop at different

rates, therefore resulting in the observed differences in the correlation between neural ac-

tivity and blood oxygenation. oxCCO however, displays less heterogeneity, particularly

in the gamma band. This may be a consequence of stronger coupling between mitochon-

drial function and gamma band oscillations (Kann et al., 2011; Cunningham and Chinnery,

2011).

There are clear differences in the processing of these visual stimuli in the developing

human brain. However, it is difficult to establish the neural mechanisms that give rise to

the differences in the observed responses. As I mentioned in the discussion section of the

previous chapter, time-series analyses such as cross-correlations need to be performed in

order to understand the true relationship between these mechanisms.

7.4.2 Gratings

Previous fMRI work investigating the effect of a change in stimulus contrast from low to

high (Kay et al., 2013; Boynton et al., 1996; Heeger et al., 2000) and in spatial frequency

from low to middle spatial frequency (Henriksson et al., 2008; Singh et al., 2000) have re-

ported an increase in the BOLD response to high contrast and middle spatial frequency

conditions. Moreover, human studies have also demonstrated that extrastriate regions are

more sensitive to contrast in comparison to the primary visual cortex (Tootell et al., 1998).

Since the experimental conditions used here were a combination of change in contrast and

spatial frequency, I expected there to be stronger changes in ∆[oxCCO] and ∆[HbO2] in

response to the high contrast stimulus. No significant differences were seen between the

low and high contrast conditions over the primary visual cortex. Although, from Figure
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7.15, it can be seen that in the majority of channels over the visual cortex, there was a

greater response in ∆[HbO2] to the low contrast condition in comparison to the high con-

trast while the opposite pattern was observed for ∆[oxCCO]. This may be a reflection of

differing metabolic demands of the pathways that process these stimuli as changes in spa-

tial frequency can differentially activate the magnocellular and parvocellular pathways.

Probably a larger sample size of infants and more trials are required in order to observe

the true pattern of differences in the responses between these two conditions. Similarly to

the checkerboard conditions, the cross-correlation analysis revealed once more a stronger

negative correlation between HHb and oxCCO and weaker correlations between HbO2

and HHb and HbO2 and oxCCO which had a high degree of variability across the infants.

Therefore providing further evidence of underdeveloped coupling mechanisms between

blood flow and metabolic activity in early infancy.

Previous studies of local field potential and multi-unit activity in adults and macaques

(Jia et al., 2013; Self et al., 2016; Henrie, 2005) have demonstrated that the high contrast con-

dition leads to an increase in gamma power. Here, stimulus-evoked beta and gamma band

activity was observed in response to the high contrast condition which was particularly

strong in the channels over the right hemisphere, in accordance with previous studies as

seen in Figure 7.23. A similar pattern was observed for the low contrast condition although

the channels over the left hemisphere displayed suppression of low gamma activity. No

significant differences between conditions were observed for any of the frequency bands.

Once again there was a limitation of the experimental design whereby the EEG data seg-

mentation was performed on every reversal of the direction of the gratings, which occurred

twice within the presentation of each grating. This not only meant that there was an insuf-

ficient baseline but also that there were very few trials for each of the gratings conditions.

Moreover, many infants were excluded for poor data quality during these conditions and

the final number of infants included in the group data was quite small. A larger sample

size with higher number of trials is probably need to discern between oscillatory activity

occurring in response to both conditions.

From the combined NIRS-EEG analysis, the results demonstrated that HbO2 correlates

most positively with alpha activity for the low contrast condition and with gamma activity

325



Chapter 7

for the high contrast condition, suggesting that an increase in neural activity has a positive

relationship with blood oxygenation. Although the channels located over the primary vi-

sual cortex displayed the opposite pattern of relationship once again. Meanwhile oxCCO

was found to correlate negatively with gamma activity for both low and high contrast con-

ditions. A similar pattern of differences in the direction of correlations between alpha and

gamma frequency bands, as was seen in the checkerboards conditions, was observed here,

suggesting once again that different neural mechanisms may give rise to low and high

frequency oscillations (Cardin et al., 2009).

7.4.3 General Discussion

In general, the results from this study shed light on neurovascular coupling during brain

development. Most interestingly, regional differences were observed where coupling of

cerebral blood and metabolic activity appeared to be highly variable across infants in the

visual cortex but less so in the temporal cortex. This provides potential evidence of dif-

ference in regional cortical development. Differences in the relationship between haemo-

dynamics and low frequency and high frequency oscillatory activity were also observed

suggesting that high frequency activity such as gamma coupled in the opposite pattern

with blood oxygenation and metabolic activity in comparison to low frequency activity.

There were a number of limitations to this study, some of which I have already dis-

cussed. These included stimulus design, sample size and low number of trials particularly

for the gratings conditions. A different type of analysis also needs to be conducted to

explore the relationships between neural activity, haemodynamics and metabolic activity

further.
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NIRS STUDY OF CYTOCHROME

WITH EEG IN INFANTS AT-RISK

FOR AUTISM

8.1 Introduction

Multi-channel broadband NIRS was used simultaneously with EEG in the previous chap-

ter in order to investigate the relationship between metabolic function, haemodynamics

and neuronal activity in the typically developing infants. Changes in the concentration of

chromophores were correlated with the oscillatory activity underlying the observed neu-

ronal activity. Analyses were performed to understand the relationship between cerebral

blood oxygenation changes and energy metabolism in the infant brain, which was particu-

larly important as many previous studies have reported variability in the HRF in infancy.

The results from these analyses highlighted differences in coupling between oxygen deliv-

ery and energy metabolism (i.e. the neurovascular coupling pathway) during typical brain

development in the occipital and temporal cortices, particularly in comparison with the

adult brain.

Furthermore, from a methodological perspective, the study served in demonstrating

the feasibility of using broadband NIRS simultaneously with EEG to measure changes in
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metabolic activity across multiple brain regions in infants which, to my knowledge, is the

first such study in infants to obtain these measurements.

Moving away from the healthy brain, the aim of this chapter is to describe the use

of NIRS and EEG in atypical brain development by studying infants at-risk for autism

spectrum disorders (ASD).

Autism Spectrum Disorders (ASD) are classified by the Diagnostic and Statistical Man-

ual of Mental Disorders (DSM-5) as a group of neurodevelopmental disorders charac-

terised by the impairment of social communication and interaction, repetitive behaviours

as well as atypical sensory responses (2013). While ASD behaviours that are used to diag-

nose the disorder typically emerge later on in life, studies suggest that atypicalities in neu-

ral processing may appear in infancy, prior to the onset of the diagnostic phenotype (Jeste

et al., 2015; Jones et al., 2014b). These could be used to identify early biomarkers in order to

predict ASD outcome, the severity of symptoms (Johnson et al., 2015) as well as to under-

stand the neural mechanisms that might underlie ASD (Loth et al., 2015; Singh and Rose,

2009). Furthermore, this disorder is highly heritable and younger siblings of children who

have been diagnosed with autism are at high-risk (HR) of developing it; approximately

20% of HR infants receive an ASD diagnosis (Ozonoff et al., 2011). There is also evidence

from previous studies that suggests that HR infants represent the broader autism pheno-

type (Constantino et al., 2010; Ozonoff et al., 2011). Therefore combining all these factors,

recently, research groups have started investigating early developmental pathways under-

lying ASD by studying infants at high familial risk for the disorder (Zwaigenbaum et al.,

2007b; Jones et al., 2014b; Elsabbagh and Johnson, 2016) in order to identify early differ-

ences in brain development as well as to understand the broader autism phenotype.

Adolphs et al (2009) have identified a network of cortical regions that are involved in

the processing of social information, collectively termed the “social brain”. The brain re-

gions involved include the orbitofrontal cortex, the inferior frontal gyrus (IFG), the amyg-

dala and the anterior and posterior temporal lobes which include regions such as the poste-

rior STS-TPJ. In autism, one of the most common traits is the impairment of social commu-

nication and interaction and many of the studies that investigate differences between indi-

viduals with ASD and without, use a range of behavioural and neuroimaging techniques
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to explore the differences in processing of social stimuli. Moreover, from the perspective

of HR infants, there is a wealth of literature on typical development of social processing

which allows experimental paradigms to be easily applied to investigate atypical brain

development (Elsabbagh and Johnson, 2016).

Previous adult behavioural studies demonstrate (Jemel et al., 2006; Shah et al., 2016)

that overall, in individuals with ASD, there is a deficit in the processing of social stimuli

such as faces. Moreover, longitudinal studies involving HR-ASD infants report that infants

that have an autism diagnosis at 30-36-months-old have a lower inventory of gestures dur-

ing infancy (Landa et al., 2007; Talbott et al., 2015; Zwaigenbaum et al., 2005; Rozga et al.,

2011). Gestures indicate the initiation of social interaction (Jones et al., 2014b) and start

to be used by infants to initiate episodes of joint attention (Bates and Dick, 2002; Begus

and Southgate, 2012). Furthermore, many longitudinal studies also report that the HR in-

fants, in comparison to the low-risk (LR) infants, orient differently to social stimuli such

as faces. For example, (Chawarska et al., 2013) reported that 6-month-old infants with a

later diagnosis of autism focused less on faces in naturalistic videos. Consistent with these

findings, previous studies report that children who have been diagnosed with ASD orient

less towards social stimuli such as faces (Elsabbagh et al., 2013; Ozonoff et al., 2010). Stud-

ies have also reported reduced interested in faces in infants who have are later diagnosed

with autism (Feldman et al., 2012).

Moreover, similar evidence exists from EEG ERP studies, indicating atypical processing

of social stimuli consisting of faces, in both children (Dawson et al., 2004), adolescents and

adults (Bailey et al., 2005; McPartland et al., 2004; O’Connor et al., 2005) with autism as well

as HR infants (Jones et al., 2016b; Elsabbagh et al., 2009). Furthermore, studies have also

explored differences in EEG oscillatory activity which have reported that in children with

an autism diagnosis, differences in theta and beta band power exist between HR and LR

groups (Coben et al., 2008) as well as in the alpha band (Afifi et al., 2015). Studies involving

HR infants display greater variability and previous work by Orekhova et al (2014) found

no differences at 14-months in the alpha frequency band between groups.

fMRI has also been used to investigate differences in the social brain in autism. Gervais

et al (2004) reported atypical processing of social information in the individuals with ASD
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over the STS region. Further, work by Pelphrey et al (2005) showed differences in gaze

processing.

More recently, NIRS has been used to explore differences in the neural processing of dy-

namic social and non-stimuli between HR and LR infants (Braukmann et al., 2018; Lloyd-

Fox et al., 2013). These studies demonstrated diminished neural responses in the HR-ASD

infants at 5-months-old to the social stimuli in comparison to the LR infants. Further lon-

gitudinal work by Lloyd-Fox et al (2018) following up the same infants reported that those

infants who were later diagnosed with autism at 36-months showed significantly reduced

activation to the social stimuli in the posterior STS-TPJ and IFG regions, in comparison to

the infants LR and HR infants who did not receive an autism diagnosis.

The findings from all these behavioural and neuroimaging studies indicate that differ-

ences in the processing of social information can be seen in early infancy and it is therefore

important to investigate atypical brain development further. While many studies explore

differences in neuronal processes and haemodynamics (Goldberg et al., 2011; Pfeifer et al.,

2013; Watanabe et al., 2012b; Christakou et al., 2013; Urbain et al., 2016) little work has

been done to explore atypicalities that may be occurring within the neurovascular cou-

pling pathway and energy metabolism that may lead to the observed differences in neural

activity. Neurophysiological differences in autism may include differences in neural ac-

tivity which is what most studies characterise. However, it is entirely possible that other

biological processes that are associated with neuronal activity such as oxygen consumption

are altered (Reynell and Harris, 2013a).

In the introduction of this thesis, I discussed a number of aspects of neurovascular cou-

pling that have been evidenced to be impaired in autism. These can involve a number of

different neuronal and glial pathways that lead to the release of vasoactive mediators that

can alter the diameter of vessels and increase or restrict blood flow (Attwell et al., 2010b).

Any changes that occur in any of the mediators that are controlled by neural activity may

significantly impact the relationship between neural activity and haemodynamics. It is

therefore important to investigate neurovascular coupling in the atypical brain particularly

as recent studies have provided evidence of mitochondrial dysfunction and mitochondrial

ETC abnormalities in individuals with ASD (Rossignol and Frye, 2014; Anitha et al., 2012;
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Chauhan et al., 2011; Goldenthal et al., 2015; Gu et al., 2013). Many other components of the

neurovascular coupling pathway have also been implicated such as the vasodilator nitric

oxide in the pathogenesis of autism (Fatemi et al., 2000) and abnormal relationship be-

tween synaptic activity and the haemodynamic response in childhood (Fatemi et al., 2011;

Sun et al., 2013). There is also evidence of reduced expression of the inhibitory neurotrans-

mitter gamma-Aminobutryic acid (GABA) in ASD as well as the receptors on which GABA

acts (Fatemi et al., 2002a). This may lead to an overall decrease in inhibition observed in

individuals with ASD, which can be detected using techniques such as fNIRS and fMRI.

This is because impaired GABA function would cause more neuronal excitability and fir-

ing, leading to more glutamate release causing an increase in blood flow (Attwell et al.,

2010b) and thereby impacting the haemodynamic response (Reynell and Harris, 2013a).

Table 1.1 provided in the introduction summarises the evidence of altered components of

neurovascular coupling in autism.

Given the mounting evidence of many different components of the neurovascular cou-

pling pathway being affected in the ASD brain, it is important to use tools such as multi-

channel broadband NIRS which allow measurement of oxygen consumption and energy

metabolism non-invasively. Particularly when used simultaneously with EEG, it can greatly

aid our understanding of the neurovascular coupling pathway in atypical brain develop-

ment. Moreover, previous work which I discussed (Lloyd-Fox et al., 2018) demonstrates

the capability of NIRS to potentially identify early biomarkers of autism, prior to diagno-

sis. The study presented in this chapter therefore, uses NIRS and EEG simultaneously to

investigate brain function in infants at high-risk (HR) for autism. While only 20% of the

HR infants are diagnosed with ASD later on in life, studying HR infants allows the op-

portunity to investigate the broader autism phenotype and to identify early differences in

brain development that may occur before the emergence of an ASD diagnosis.
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8.2 Methods

8.2.1 Participants

Six infants at high-risk (HR) for autism (having at least one older sibling with a clinical

diagnosis in the autism spectrum) of varying ages between 5-to-14 months of age and four

low-risk (LR) age-matched controls (with no familial history of autism) participated in the

study. It should be noted that the infants studied here are at risk for autism and there is

approximately a 26% change that none of the high risk infants will receive a later diagno-

sis of autism. I recruited the infants by advertising for the study online, on social media

and at childrens play groups. Interested parents were then screened for the study and if

they were eligible to participate, provided written, informed consent. Birkbeck Psychol-

ogy Ethics Committee approved the study protocol and all procedures performed were

within the regulations of the Ethics Committee. In addition to the simultaneous NIRS and

EEG experiment, each infant was also assessed using the Mullen Scales of Early Learn-

ing (Mullen, 1995). The MSEL is a standardised measure which consists of five individual

scales which include fine motor (FM), expressive language (EL), visual reception (VR), re-

ceptive language (RL) and gross motor (GM). Each of these scales combined leads to an

Early Learning Composite (ELC) standard score which reflects the overall development of

the infant and is categorised as “below average” or “average” for their age range. Table 8.1

details the ages of each of the infants studied along with their ELC scores.
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Infant Group Age (Months and Days) ELC standard score

HR-Sib1 HR 6M, 2D 76 (Below Average)

HR-Sib2 HR 10M, 1D -

HR-Sib3 HR 12M, 29D -

HR-Sib4 HR 14M, 12D 84 (Below Average)

HR-Sib5 HR 5M, 0D 89 (Average)

HR-Sib6 HR 13M, 1D 83 (Below Average)

Control-Sib7 LR-Control 12M, 11D -

Control-Sib8 LR-Control 10M, 4D 97 (Average)

Control-Sib9 LR-Control 12M, 5D -

Control-Sib10 LR-Control 13M, 1 D 77 (Below Average)

Table 8.1: Ages of the LR and HR infants and their ELC standard scores, “-” indicates
missing data.

8.2.2 Data acquisition

The multi-channel broadband NIRS system that was described in the previous chapter was

used to acquire the data presented here. No further modifications were made to the system

prior to its use in this study of HR infants. The Enobio EEG system was used again with

thirty-two channels in the same configuration as in the previous chapter, to acquire the

EEG data.

8.2.3 Headgear Design

The headgear used for this study was the same as for the previous study and has been

described in Chapter 2. The only modification was that an additional NIRS array was

designed for use in the older infants (12-to-14-month-olds) as they required the use of a

larger sized EEG cap (46 cm) in comparison to the younger 5 and 6-month-old infants.
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8.2.4 Experimental Stimuli

The experimental stimuli used for this study were the same as those described in the previ-

ous chapter, with a modification in the order of presentation of the stimuli. This was done

to prioritize the social/non-social conditions as previous studies have shown atypical pat-

terns of neural activity in response to similar experimental stimuli; in 4-to-7-month-old

infants at high-risk for autism (Lloyd-Fox et al., 2013; Braukmann et al., 2018; Lloyd-Fox

et al., 2018), using NIRS and additionally in the atypical neural processing of social stimuli

such as faces, using EEG (Jones et al., 2016b). Furthermore, we did not have any specific

hypotheses about the processing of the occipital targeted visual stimuli during atypical

development therefore only the social and non-social conditions were focused on in the

present study. Figure 8.1 shows the new order of stimulus presentation which involved

“grouping” stimuli together such that the first four trials consisted only of the social/non-

social conditions followed by three trials of each of the visual conditions, followed by four

presentations of the social/non-social conditions and so on. This ensured that the mini-

mum number of trials were obtained for at least the social/non-social conditions, for each

infant.

Figure 8.1: Order of stimulus presentation

8.2.5 Experimental Procedure

The same experimental procedure was followed for the NIRS and EEG study as described

in the previous chapter. This part of the study was prioritized and once it was complete,

each infant was assessed using the Mullen Scales of Early Learning by a trained assessor.

334



Chapter 8

8.2.6 Data analysis

Due to time constraints, only data from the social and non-social conditions were analysed

for this study for both EEG and NIRS. Furthermore, as this was a pilot study and there

were only six HR infants of varying ages, it was not appropriate to group participants.

Therefore, the analysis was performed on an individual level and the results are presented

as case studies.

8.2.6.1 NIRS

8.2.6.1.1 Pre-processing The NIRS data was processed in the same way as described in

Section 5.2.6.1 of the previous chapter. To recap, these steps included:

1. Performing motion artifact detection and correction with α = 0.8

2. Conversion to changes in concentration of ∆[HbO2], ∆[HHb] and ∆[oxCCO] using

the UCLn algorithm with a DPF of 5.13 at 120 wavelengths between 780 - 900nm.

3. Filtering the data using a 4th order Butterworth filter from 0.01 - 0.4 Hz

4. Segmentation of the data into blocks consisting of 4 s of the baseline period prior

to the experimental condition, the experimental condition and the entire following

baseline period.

5. Rejection of trials based on looking-time coding

6. Rejection of bad channels based on visual inspection, photon counts and correlations

between the time courses of ∆[HbO2] and ∆[HHb].

7. Averaging of valid trials to obtain an average time course response for each chro-

mophore, for each infant.

Infants were removed from the study if they did not have a minimum of two trials per

experimental condition and/or if more than 40% of channels were bad.
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8.2.6.1.2 Further analysis Difference scores, time to peak and cross-correlations were

calculated for each HR infant and compared to their age-matched LR control. These calcu-

lations have been described previously in Chapters 2 and 6 respectively. Statistical analysis

was not performed here as individual infants were being compared.

8.2.6.2 EEG

8.2.6.2.1 Pre-processing All EEG data were pre-processed and analysed using Matlab

2017a (Mathworks, USA) and the EEGLab Toolbox (Schwartz Centre for Computational

Neuroscience, UC San Diego, USA), using the same procedures as those described previ-

ously in Section 2.3.2.1 of Chapter 2. The segmentation of the data was performed in the

same way as described in the previous chapter.

8.2.6.2.2 Further analysis Similarly to the work presented in the previous chapter, topo-

graphical maps of spectral power were generated for the theta and alpha frequency bands

for each infant.

8.3 Results

As discussed previously, the results from each HR infant are presented as case studies

and are compared to their age-matched controls. Out of the six HR infants, three were

included in both NIRS and EEG analysis. However, as the pre-processing steps and the

rejection criteria for NIRS and EEG are different, the infants included in the NIRS data

were not necessarily the same as those included for the EEG. This particularly highlights

the differences between the two modalities as the quality of the data from each can be

impacted by different factors. For the combined NIRS and EEG analysis, it is required

that only the infants with both good NIRS and EEG data be included. Table 8.2 shows

which infants were included (of both HR and LR controls) for NIRS, EEG and the combined

analysis respectively, along with the reason for exclusion if the infant was not included in

the study. For both NIRS and EEG, data from the 5-month-old HR infant was always

compared to the data from the previous chapter where the average age of the sample was
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5.5 months.

Figure 8.2 shows the NIRS temporal array to remind the reader of the locations of each

of the channels over the right temporal cortex and the channels likely to lie over the STS-

TPJ region, where the strongest activation to social and non-social stimuli was shown pre-

viously, are indicated by the yellow circle.

Figure 8.2: Locations of each of the NIRS channels over the right temporal cortex. The
channels likely to lie over the STS-TPJ region are indicated by the yellow circle.

8.3.1 NIRS

8.3.1.1 Social

Figures 8.3 - 8.6 display ∆[HbO2] (red), ∆[HHb] (blue) and ∆[oxCCO] (green) in the tempo-

ral channels for the 5-month-old, 10-month-old and 13-month-old HR infants for the social

condition, along with their age-matched controls. For ease of comparison of chromophores

here, the y-axis on the left is for HbO2 and HHb while the y-axis on the right is for oxCCO

therefore oxCCO has not been magnified as in the results presented in previous chapters.

The 5-month-old HR infant displays an increase in ∆[HHb] and ∆[oxCCO] and no re-

sponse (or a very small increase in ∆[HbO2]) in response to the social condition in most

channels except Channel 17, while the LR (which is the grand average of the 32 4-to-7-

month-old infants tested in the previous chapter) infants do not show the same pattern.
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Most notable is the difference in ∆[oxCCO] between the two with the HR infant display-

ing a much stronger oxCCO response. In general, the responses in the HR infants seem

to be larger and there is a difference in the scale as here data from an individual infant is

being compared to a group average. Figure 8.4 shows the data from 2 randomly selected

LR 5-month-old infants.
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Figure 8.3: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the social condition in the 5-month-old HR infant (Upper
panel) versus the average of thirty-two 4-to-7-month-old LR infants (Bottom panel). The
y-axis on the left is for HbO2 and HHb and the y-axis on the right is for oxCCO. Empty
figures represent missing data where channels were excluded due to poor signal quality.
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Figure 8.4: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the social condition in 2 randomly selected LR 5-month-
old infants The y-axis on the left is for HbO2 and HHb and the y-axis on the right is for
oxCCO. Empty figures represent missing data where channels were excluded due to poor
signal quality.

The 10-month-old HR infant displays an increase in ∆[HHb] and a decrease (or no

response) in ∆[HbO2] to the social condition in most channels. In comparison, the LR

control displays stronger ∆[HbO2] responses.
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Figure 8.5: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the social condition in the 10-month-old HR infant (Upper
panel) versus the 10-month-old LR control (Bottom panel). The y-axis on the left is for
HbO2 and HHb and the y-axis on the right is for oxCCO. Empty figures represent missing
data where channels were excluded due to poor signal quality.

The 13-month-old HR infant displays variable responses while the LR control displays

much stronger responses to the social condition. Most notable here is the difference in the

coupling between HbO2 and oxCCO i.e. there is a strong coupling in the LR infant while
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there appears to be a decoupling in the HR infant.

Figure 8.6: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the social condition in 13-month-old HR infant (Upper
panel) versus the 12-month-old LR control (Bottom panel). The y-axis on the left is for
HbO2 and HHb and the y-axis on the right is for oxCCO. Empty figures represent missing
data where channels were excluded due to poor signal quality.
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8.3.1.2 Non-social

Figures 8.7 - 8.10 display ∆[HbO2] (red), ∆[HHb] (blue) and ∆[oxCCO] (green) in the tem-

poral channels for the 5-month-old, 10-month-old and 13-month-old HR infants for the

non-social condition, along with their age-matched controls. For ease of comparison of

chromophores here, the y-axis on the left is for HbO2 and HHb while the y-axis on the

right is for oxCCO therefore oxCCO has not been magnified as in the results presented in

previous chapters.

The 5-month-old HR infant displays an increase in ∆[HbO2] in response to the non-

social condition most strongly seen in Channels 12, 15, 16 and 18, although the response

is very slow to reach its maximum in comparison to what is seen in typically developing

infants. Once again, there appears to be a decoupling between HbO2 and oxCCO in the

HR infants. The strong oxCCO response that was seen in response to the social condition

in the HR infant is not seen here. Figure 8.8 shows the data from 2 randomly selected LR

5-month-old infants.
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Figure 8.7: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the non-social condition in the 5-month-old HR infant
(Upper panel) versus the average of thirty-two 4-to-7-month-old LR infants (Bottom panel).
The y-axis on the left is for HbO2 and HHb and the y-axis on the right is for oxCCO. Empty
figures represent missing data where channels were excluded due to poor signal quality.
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Figure 8.8: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the non-social condition in 2 randomly selected LR 5-
month-old infants The y-axis on the left is for HbO2 and HHb and the y-axis on the right
is for oxCCO. Empty figures represent missing data where channels were excluded due to
poor signal quality.

The 10-month-old HR infant displays very small changes in all chromophores in re-

sponse to the non-social condition, except in Channels 12 and 15 where an increase in

∆[HbO2] and ∆[oxCCO] can be seen. The LR control displays stronger ∆[HbO2] responses
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showing an increase in most channels to the non-social condition.

Figure 8.9: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the non-social condition in 10-month-old HR infant (Up-
per panel) versus the 10-month-old LR control (Bottom panel). The y-axis on the left is for
HbO2 and HHb and the y-axis on the right is for oxCCO. Empty figures represent missing
data where channels were excluded due to poor signal quality.

The 13-month-old HR infant once again displays variable responses while the LR con-

trol displays stronger responses to the non-social condition.
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Figure 8.10: Observed changes in concentration of HbO2 (red), HHb (blue) and oxCCO
(green) in temporal channels for the non-social condition in 13-month-old HR infant (Up-
per panel) versus the 12-month-old LR control (Bottom panel). The y-axis on the left is for
HbO2 and HHb and the y-axis on the right is for oxCCO. Empty figures represent missing
data where channels were excluded due to poor signal quality.

8.3.1.2.1 Social versus Non-social
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8.3.1.2.1.1 Time to peak The TTP was calculated for each chromophore (for both con-

ditions) in the time window chosen for statistical analysis (10 - 18 s post-stimulus onset

here) and averaged across temporal channels, for each infant. Figure 8.11 shows the aver-

aged TTP for each chromophore for social and non-social conditions respectively, for the

HR infants and their age-matched controls. For the social condition the biggest difference

in the time to peak is between the 5-month-old and 13-month-old HR and LR infants for

HbO2 and oxCCO, with the LR infants displaying a longer time to attain their maximal

response while the HHb time to peak is faster in all the HR infants. In the non-social con-

dition, the oxCCO time to peak is faster in all of the HR infants while the 10-month-old

and 13-month-old HR infants display a shorter time to peak for HbO2.

Figure 8.11: The average of the TTP for each chromophore; HbO2 (red), HHb (blue) and
oxCCO (green) across temporal channels for the social condition (left) and non-social con-
dition (right) for the HR and LR infants. The error bars for the 5-month-old control infants
represent standard deviations.

8.3.1.2.1.2 Cross-correlations Cross-correlations were performed between each of

the chromophores, for both social and non-social conditions, across all temporal channels.

Figures 8.12 - 8.14 show the cross-correlations for each of the HR and LR infants for the

social condition. The correlations for the non-social condition followed a similar pattern
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and can be found in the appendix. While the correlations between HbO2 - HHb and HHb

- oxCCO are more consistent across HR infants and the controls, the 5-month-old and 13-

month-old HR infants display the opposite pattern between HbO2 and oxCCO in compar-

ison to their age-matched controls. The correlations shown are between (i) HbO2 and HHb

(ii) HHb and oxCCO and (iii) HbO2 and oxCCO and were averaged across all temporal

channels for the social condition. The social and non-social conditions showed a similar

pattern therefore the non-social correlations are not shown here and can be found in the

appendix.
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Figure 8.12: The cross-correlations between each of the chromophores, averaged across
temporal channels, for the 5-month-old HR infant (upper panel) and 5-month-old controls
(bottom panel) for the social condition. The error bars represent standard deviations.
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Figure 8.13: The cross-correlations between each of the chromophores, averaged across
temporal channels, for the 10-month-old HR infant (upper panel) and 10-month-old LR
infant (bottom panel) for the social condition.

352



Chapter 8

Figure 8.14: The cross-correlations between each of the chromophores, averaged across
temporal channels, for the 13-month-old HR infant (upper panel) and 12-month-old control
(bottom panel) for the social condition.
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8.3.2 EEG

8.3.2.1 Social

Figure 8.15 - 8.17 shows the log power spectral density for the theta and alpha frequency

bands for the social condition for the 6-month-old, 13-month-old and 14-month old HR

infants and their age matched controls respectively.

In the alpha band, the 6-month-old HR infant displays greater alpha activity over the

occipital and right central region. There is also greater alpha suppression in the frontal and

temporal regions, where the LR controls display an increase in alpha activity. A similar

pattern of theta band activity is seen between the HR and the LR infant, both displaying

an increase in alpha activity over the frontal channels and over the occipital channels al-

though, in the HR infant the increase in alpha activity extends from the occipital channels

to the occipito-parietal regions.

For the 13-month-old HR infant, in comparison to the LR control, an increase in alpha

activity is observed over the left central channels. Meanwhile, the LR 13-month-old infant

displays greater frontal alpha activity which is absent in the HR infant. A similar pattern

is observed in the theta band where stronger theta activity is seen in the frontal channels in

the LR infant while there is increased suppression in the theta band in the HR infant. The

theta activity observed in the occipital and left temporal regions is similar in both infants.

Similar patterns are observed when comparing the 14-month-old HR infant to the LR

13-month-old control. In both alpha and theta bands, alpha suppression is observed over

the frontal regions in the HR infants and an increase in alpha activity is observed over

frontal channels in the LR infant. While the LR infant displays decreased alpha activity

over the left temporal and occipital regions (a pattern that is observed in both the 5-month-

old LR controls and the 13-month-old control), the HR infant displays greater alpha activity

over the right temporal and central channels. In the theta band, an increase in theta activity

is observed in the central channels in the HR infant.
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Figure 8.15: Topographical maps of the log power spectral density for the theta and bands
for the 6-month-old HR infant and LR controls.

Figure 8.16: Topographical maps of the log power spectral density for the theta and bands
for the 13-month-old HR infant and LR control.
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Figure 8.17: Topographical maps of the log power spectral density for the theta and bands
for the 14-month-old HR infant and LR control.

8.3.2.2 Non-social

Figure 8.18 - 8.19 shows the log power spectral density for the theta and alpha frequency

bands for the non-social condition for the 6-month-old and 10-month-old HR infants and

their age matched controls respectively.

For the non-social condition, not many differences are seen in the alpha or theta band

between the HR 6-month-old infant and LR controls, with the exception of an increase in

alpha activity in the central channels in the HR infant and the absence of theta activity in

the frontal channels (which is observed in the LR controls).

For the 10-month-old HR infant an increase in alpha activity is observed in the left

central and temporal channels while the LR control infant displays a decrease in alpha ac-

tivity over the frontal region. In the theta band, differences between the HR and LR infants

are observed over the central and occipital channels with the HR displaying an overall

decrease in alpha activity over the central channels and the LR displaying an increase in

alpha activity in the occipital region which extends to central channels. Additionally, there

is an observed increase in frontal theta activity in the HR infant.
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Figure 8.18: Topographical maps of the log power spectral density for the theta and bands
for the 6-month-old HR infant and LR controls.

Figure 8.19: Topographical maps of the log power spectral density for the theta and bands
for the 10-month-old HR infant and LR control.
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8.3.2.3 Social vs Non-social

Figure 8.20 shows the difference in log power spectral density between the social and non-

social condition, for the theta and alpha frequency bands, for the 6-month-old HR infant.

Data from only one infant is shown as the 6-month-old HR infant was the only one that

had good data for both the social and non-social conditions. Both HR and LR infants

show greater frontal alpha activity in response to the social condition in comparison to

the non-social. The LR controls also show greater temporal alpha activity for the social

condition. Over the occipital area, the LR infants display stronger alpha activity for the

non-social condition while the opposite is seen in the HR infant where a greater occipital

alpha activity is seen for the social condition. Theta band activity between the HR and LR

infants is similar with greater frontal theta activity observed for the social condition for

both. However, there is greater right temporal (extending to occipital) theta activity for the

non-social condition in comparison to the social in the HR infant.
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Figure 8.20: Topographical maps of the difference in log power spectral density between
social and non-social, for the theta and alpha frequency bands, for the 6-month-old HR
infant the LR controls.

8.3.3 Combined NIRS-EEG Analysis

Combined NIRS-EEG analysis was performed by correlating the alpha and theta power to

the maximum concentration change occurring in HbO2, HHb and oxCCO, similar to that in

the previous chapter. However here, individual infants were being compared rather than

a group of infants and therefore only an overall correlation was obtained between NIRS

and EEG channels that were located spatially close to one another over the right temporal

cortex. Figure 8.21 shows NIRS and EEG channels to remind the reader of the locations of

each of the channels over the right temporal cortex.
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Figure 8.21: Locations of each of the NIRS channels over the right temporal cortex. The
channels likely to lie over the STS-TPJ region are indicated by the yellow circle.

Figure 8.22 shows the channels between which correlations were performed and Figure

8.23 represents the average of these channels for each of the infants that were included in

this analysis.
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Figure 8.22: Matrix representing the EEG ad NIRS channels between which the correlations
were performed (blue squares).

These correlations could only be performed for infants that had both NIRS and EEG

data and therefore it is important to note that there is no control infant to compare the

correlations for the social condition for 13-month-old HR infant. This is because while the

12-month-old LR control had good NIRS data, it was not included in the EEG analysis and

conversely while the 13-month-old LR control had good EEG data it was excluded from the

NIRS analysis. The correlations between NIRS and EEG channels seen in Figure 8.23 show,

in the 5-month-old HR infant versus the LR controls, the opposite pattern of relationship

between neural activity and the NIRS chromophores. That is, the 5-month-old HR infant

for the non-social for both theta and alpha power showed a positive relationship between

neural activity and HbO2 and oxCCO while the 5-month-old LR infants showed an inverse

relationship between neural activity and HbO2 and oxCCO. The 10-month-old HR and LR

infants displayed the same direction of correlation between alpha and theta power with
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HbO2 and HHb (inverse correlation) however a difference between oxCCO was observed

with there being a positive relationship between oxCCO and alpha and theta power for the

10-month-old controls and an inverse relationship for the 10-month-old HR infant.

Figure 8.23: Correlations between the mean power spectral density of alpha and theta
bands and the maximum change in ∆[HbO2], ∆[HHb] and ∆[oxCCO] for social (left) and
non-social conditions (right) between NIRS and EEG channels, for HR and LR infants.

8.4 Discussion

In this chapter, the combined NIRS and EEG protocol that was developed to study typically

developing infants in the previous chapter, was used to investigate brain function in infants

at-risk for autism. As I discussed in the introduction of this chapter, evidence exists from

many previous neuroimaging studies using a variety of techniques such as fMRI, EEG and

fNIRS, indicating atypical neural processing of social information in HR-ASD infants and

in children, adolescents and adults who have been diagnosed with autism. While much of

the work focuses on differences in the measured neural activity, less work has been done to

understand the underlying biological mechanisms in the neurovascular coupling pathway

that may lead to the observed differences. Broadband NIRS, particularly when used simul-

taneously with EEG, allows investigation of neurovascular coupling mechanisms but prior

to the combined NIRS-EEG protocol being used to establish altered pathways in atypical
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brain development, the feasibility of the combined protocol had be demonstrated. To this

end, I conducted a proof of principle preliminary study using the combined protocol in six

HR-ASD infants varying in age between five and fourteen months, which was presented in

this chapter. The feasibility of combining the two techniques to understand atypical brain

development was successfully demonstrated which is a milestone in itself and indicates

that this protocol can be used on a larger scale to understand biological pathways under-

lying autism. Further indicative of this that both HR and LR infants had an average of 6

trials per condition, showing that the HR infants tolerated the study just as well as the LR

infants. As a wealth of literature exists investigating the social brain in typical develop-

ment, the social and non-social stimuli were focused on. As the infants spanned a wide

age range, it was not appropriate to perform analysis on a group level and therefore the

results from each of the infants were presented individually.

The NIRS results indicated provisional differences in the HR and LR infants, particu-

larly in the 5-month-old infants where an increase in ∆[HHb] and a diminished response in

∆[HbO2] was observed to the social condition in the HR infant, which is in accordance with

previous studies (Lloyd-Fox et al., 2013; Braukmann et al., 2018). The opposite pattern was

seen in response to the non-social condition. Interestingly however, a decoupling between

HbO2 and oxCCO seemed to occur in many channels, particularly in the 5-month-old and

13-month-old HR infants. That is, while large changes in ∆[HbO2] were not present in

those channels, there was an increase in ∆[oxCCO] and often the responses were in op-

posite directions in the HR infants. Decoupling of the HbO2 and oxCCO response was

not seen previously in the typically developing infants, which may suggest impaired cou-

pling of cerebral blood flow and energy metabolism in atypical brain development which

is further supported by the results from the cross-correlation analysis. Impaired or under-

developed coupling may be due to a number of reasons. As I have discussed previously,

NO and nNOS have been shown to be upregulated in adults (Zoroglu et al., 2003) and in

mouse models of autism (Fatemi et al., 2000) which can directly affect the vasoconstric-

tion and dilation and therefore affect the oxygen supply to the brain, thereby affecting the

observed haemodynamic response.

Furthermore, the HR infants (particularly the 5-month-old HR in the social condition)
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showed a greater increase in ∆[oxCCO] in comparison to the LR controls, suggesting that

there may possibly be elevated oxygen utilisation and energy metabolism in the HR in-

fants. This would be in line with studies providing evidence of mitochondrial dysfunction

and abnormal mitochondrial electron transport chain complexes in individuals with ASD

(Rossignol and Frye, 2014; Chauhan et al., 2011; Chauhan and Chauhan, 2006; Gu et al.,

2013) which may indicate that oxidative phosphorylation may not be as effective and pos-

sibly require more oxygen to meet energy requirements. Furthermore, PET work in adults

(Rumsey et al., 1985) has shown increased glucose utilisation in adults with autism. Addi-

tionally, studies using an autism animal model in young rats showed an increase in cerebral

oxygen consumption (by 50%) in comparison to controls (Weiss et al., 2007). The authors

have hypothesised that this may be due to a loss of inhibitory effects of GABAA (a subclass

of GABA receptors) on cerebral metabolic function (Weiss et al., 2008), which are known to

have a major effect on cerebral metabolism (Michels and Moss, 2007) particularly in early

neuronal development (Jelitai and Madarasz, 2005).

The role of of theta and alpha oscillatory activity has been linked to cognition and mem-

ory (Klimesch, 1999) as well as sustained attention (Clayton et al., 2015; Xie et al., 2018) and

recent studies have demonstrated impaired theta band modulation in a working memory

task (Larrain-Valenzuela et al., 2017) and others have demonstrated impaired sustained

attention (Chien et al., 2015; Garretson et al., 1990; Christakou et al., 2013) linked to ASD.

Differences were observed in this study both in the theta and alpha bands between HR

and LR infants, particularly in the frontal theta activity in the older HR infants. Moreover,

differences in temporal and occipital lobe alpha activity were observed as well. However,

as I mentioned earlier, more infants are needed to establish a pattern and obtain sufficient

evidence of impaired theta and and alpha band modulation in the HR infants.

The combined NIRS and EEG analysis was severely limited as individual infants were

being compared and a definitive pattern between oscillatory activity and changes in the

concentration of NIRS chromophores over the temporal lobe could not be established. Ad-

ditionally, due to time constraints, it was only possible to study six infants spanning a wide

age range and therefore data could not be collated to obtain more meaningful results. De-

spite this, the study is a milestone in itself providing the first non-invasive measures of
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cerebral energy metabolism using functional neuroimaging, over multiple brain regions,

in atypical brain development. Moreover it provides evidence of the feasibility of using

combined modalities to investigate brain function in further work in a larger study of HR

infants.

Furthermore, there are general limitations to studying HR ASD infants. For example,

only on a subset of the infants will receive an autism diagnosis later on in life and therefore

many of the HR infants will have a typical developmental trajectory. This is highlighted

particularly in the cross-correlations between the 10-month-old HR and LR infants (Figure

8.13) where the HR infant displays the expected correlations between chromophores while

the LR infant does not.

Moreover it is also unclear whether those HR infants that are later diagnosed with

ASD are representative of the general ASD population and recent work involving sim-

plex (where one family member as autism) and multiplex families (where multiple family

members have autism) has suggested that there may be differences in genetic pathways

in simplex and multiplex families (Iossifov et al., 2012) and that certain behavioural phe-

notypes might be more severe in the multiplex families (Taylor et al., 2015). Therefore, it

is difficult to ascertain whether the results presented here, particularly the NIRS results,

are representative of individuals with ASD and whether they highlight early differences

before the emergence of ASD. Further work is required in a larger sample of HR infants

and this approach has been adopted by early studies of HR-ASD infants that I discussed

in the introduction of this chapter.
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GENERAL DISCUSSION AND

CONCLUSIONS

The aim of this PhD work was to use broadband near-infrared spectroscopy to investi-

gate neurometabolic coupling mechanisms during development through measurement of

changes in cellular energy metabolism. This thesis has presented many advances in the

field of NIRS both in terms of methodological advancements and in understanding typical

and atypical brain development. In the following section the experimental findings of this

thesis are discussed in relation to the aims that were outlined previously in Chapter 1:

1. Can broadband NIRS be used to measure changes in cellular oxygen consumption and energy

metabolism during functional activation in infancy?

2. Can multi-channel broadband NIRS be used in conjunction with EEG successfully to improve

our understanding of the status of neurovascular coupling in the infant brain?

3. If this is possible, then can the technique be used to help explore the relationship between

neuronal activity and cerebral blood oxygenation changes and how does measuring changes

in CCO shed a light on this relationship?

4. Can differences in regional cortical development be inferred?

5. Can this method be applied to understand atypical brain development?
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9.1 Summary of findings

The summary of the main findings from the studies presented in this thesis are presented

in Table 9.1.
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Chapter Study Method Main Findings (NIRS) Main Findings (NIRS-EEG) Methodological
advancements

Chapter
3 - - - -

• Development of 3-
dimensionally printed
NIRS headgear for use
with infant studies

• Development of head-
gear for simultaneous
NIRS and EEG data ac-
quisition in adults

• Development of head-
gear for simultaneous
NIRS and EEG data ac-
quisition in infants

Chapter
4 Non-invasive

metabolic marker
of infant brain

activity

Single channel
broadband NIRS in
6-month-old infants

(social stimuli)

NIRS
Increase in cellular metabolic

activity over the STS-TPJ region in
response to social stimuli

- -

Chapter
5 NIRS and EEG

study of
cytochrome in

adults

Multi-channel
broadband NIRS

and EEG in healthy
adults (visual

stimuli)

NIRS

• Activation over the visual
cortex greater to magnocellu-
lar stimuli than parvocellular

• CCO displaying highest spa-
tial sensitivity over the visual
cortex

EEG

• Greater alpha, beta and
gamma band activity and
ERPs in response to magno-
cellular stimuli

• Heterogeneity in rela-
tionship between alpha
activity and blood
oxygenation with some
channels displaying
an inverse relationship
and others positive

• Strong inverse relation-
ship between beta and
gamma oscillatory ac-
tivity and blood oxy-
genation and metabolic
activity for both stimuli

• Development of exper-
imental design for si-
multaneous NIRS and
EEG data acquisition in
adults

Table 9.1: Summary of findings from each of the studies presented in this thesis.
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Chapter Study Method Main Findings (NIRS) Main Findings (NIRS-EEG) Methodological
advancements

Chapter
6 NIRS and EEG

study of
cytochrome in
infants - Part I

Multi-channel
broadband NIRS
and EEG in TD

4-to-7-month-old
infants (social and
non-social stimuli)

NIRS
• Greater activation to social

stimuli than non-social stim-
uli

• Weaker coupling of cerebral
blood flow and metabolic ac-
tivity in comparison to adults

EEG

• Suppression of theta and al-
pha over left temporal and
central regions

• Increase in theta and alpha
activity over occipital and
right temporal cortex

• Positive relationship
between alpha oscilla-
tory activity and blood
oxygenation

• Inverse relationship
between alpha activity
and oxCCO in major-
ity of channels over
STS-TPJ region

• Significant modi-
fications to broad-
band NIRS sys-
tem for use with
infants

Chapter
7 NIRS and EEG

study of
cytochrome in
infants - Part II

Multi-channel
broadband NIRS
and EEG in TD

4-to-7-month-old
infants (visual

stimuli)

NIRS

• Significant difference in
metabolic activity between
achromatic and chromatic
stimuli with stronger re-
sponse for chromatic stimu-
lus

• CCO much more “active” in
the visual cortex

• Underdeveloped cerebral
blood flow and metabolism
coupling in the visual cortex

EEG

• Increase in stimulus-evoked
alpha, beta and low gamma
activity for both stimuli

• Strong inverse rela-
tionship between alpha
oscillations and blood
oxygenation for achro-
matic (black/white)
stimulus

• Heterogeneity of re-
lationship between
oscillatory activity
and NIRS measures
for all other visual
stimuli; channels over
visual cortex display
inverse relationship
between alpha and
blood oxygenation

• Gratings stimuli dis-
play strong correlations
for gamma oscillatory
activity and metabolic
activity

• CCO strongly corre-
lates with gamma band
activity, direction of
correlation variable
depending on location
of channels

• Low frequency and
high frequency oscilla-
tory activity relate to
blood oxygenation and
metabolic activity in
opposite directions

-

Chapter
8 NIRS and EEG

study of
cytochrome in

infants at-risk for
autism

Multi-channel
broadband NIRS

and EEG in infants
at high-risk for

autism (social and
non-social stimuli)

NIRS

• Decoupling between oxy-
genated haemoglobin and
CCO observed in some
infants

• “Inverted” responses to social
stimuli observed in some in-
fants

- -

Table 9.2: Summary of findings from each of the studies presented in this thesis.

Chapter 3 focused on the development of headgear for studies presented in this thesis.
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At the onset of this PhD work, handcrafted NIRS arrays were being used for functional

activation studies in infants. The studies that were presented in this thesis, particularly

simultaneous NIRS and EEG studies, required more adaptable designs that could be eas-

ily tailored. The handcrafted NIRS arrays were therefore translated into 3-dimensionally

printed arrays which were used in the study described in Chapter 4. The knowledge and

development process from this was applied to create the combined NIRS and EEG head-

gear for use in adults for the study presented in Chapter 5. The final design presented

in this chapter was adapted from the designs used in Chapters 4 and 5 to create a final

third design for simultaneous NIRS and EEG infant studies which was used in the studies

described in Chapters 6, 7 and 8.

At the start of this PhD, there was one reported use of multi-wavelength NIRS in

healthy newborns (Zaramella et al., 2001a) to measure changes in cellular energy metabolism

alongside haemodynamic changes, in response to auditory stimulation. The authors re-

ported changes in the concentrations of both haemoglobin species but found no changes

in the activity of CCO. The first aim of this thesis therefore, was to employ the use of a

single channel miniature broadband NIRS system to assess whether functional activation

related changes in cellular energy metabolism could be measured in healthy awake in-

fants. For this, an experimental paradigm consisting of social stimuli was designed, that

had previously been demonstrated to elicit a robust haemodynamic response to the stimuli

(Lloyd-Fox et al., 2017, 2009) over the STS-TPJ region. The results from the study presented

in this chapter showed that an increase in oxygenated haemoglobin was coupled with an

increase in metabolic activity in response to the experimental stimulus. Furthermore, that

the measured increase in metabolic activity was a signal of brain activation as opposed to

being the result of cross-talk between haemoglobin species. This motivated all the subse-

quent work presented in this thesis. The single channel system was useful in validating

whether changes in metabolic activity could be measured in the infant brain however, a

multi-channel approach measuring responses over multiple brain regions was required in

order to understand neurovascular coupling mechanisms and neurometabolic pathways

in the developing human brain. The subsequent aims of this thesis therefore were to assess

whether multi-channel broadband NIRS could be used in conjunction with EEG to un-
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derstand these underlying relationships and whether CCO was a unique marker of brain

activity that aided this understanding. Hence, the work presented in Chapter 5 used si-

multaneous NIRS and EEG in healthy adults during visual stimulation, the motivation for

which came from previous studies that demonstrated the robustness of visual paradigms

to measure haemodynamic changes in healthy adults (Heekeren et al., 1999b; Phan et al.,

2016a; Zeff et al., 2007). The study presented in this chapter had a strong methodological

component which enabled the studies presented in Chapters 6 - 8 to be carried out. The re-

sults from the study found CCO to be more spatially specific than the haemoglobin species

and differential responses were observed over the primary visual cortex, in response to

visual stimuli with differing characteristics, providing potential evidence of the different

visual processing streams in the visual cortex. These responses related differently to low

and high frequency oscillatory activity i.e. low frequency and high frequency activity cor-

related in opposite directions to haemodynamic and metabolic activity, which has been

shown by previous EEG-fMRI work (Scheeringa et al., 2011b, 2016).

Chapter 6 used a similar paradigm to that used in Chapter 4 to measure NIRS and

EEG simultaneously over the right temporal cortex in infants. The results from this study

were similar to previous results where an increase in oxygenated haemoglobin was ac-

companied by an increase in metabolic activity over the STS-TPJ region. Low frequency

oscillatory activity correlated positively with oxygenated haemoglobin, while CCO related

differently, with many channels displaying an inverse relationship between neuronal oscil-

latory activity and metabolic activity. Furthermore, the results provided potential evidence

of the gradual maturation of the relationship between cerebral blood flow and metabolic

activity, as shown by previous studies (Kozberg et al., 2013a; Kozberg and Hillman, 2016a).

This is because the relationships between chromophores in the temporal cortex were much

weaker than those observed in the occipital cortex in adults. With the fifth aim of the the-

sis in mind, a visual stimulation paradigm that was adapted from the study presented in

Chapter 5 was used for NIRS and EEG measurements in infants over the occipital cortex

in Chapter 7. Further differences in coupling between energy metabolism and blood flow

were observed, even more underdeveloped in the occipital cortex in comparison to the

temporal cortex. This therefore suggests differences in regional maturation. Overall, for all
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the stimuli, channels located over the primary visual cortex displayed an inverse relation-

ship between low frequency oscillatory activity and changes in oxygenated haemoglobin

and oxCCO while peripheral channels showed a different pattern. A similar pattern of de-

coupling between the relationship of low and high frequency activity with haemodynamic

and metabolic changes, as in the adults, was observed.

Having explored the relationship between changes in blood oxygenation and metabolic

activity with neural activity in adults and healthy infants, Chapter 8 aimed to explore these

relationships in the context of atypical brain development in infants at high-risk for autism.

While the results from this study could not provide conclusive evidence of differences be-

tween high-risk and low-risk ASD infants due to limited sample size and wide age ranges,

a potential emerging result was that a decoupling was occurring between oxygenated

haemoglobin and metabolic activity, which was not seen previously in the low-risk in-

fants or adults. This may provide possible evidence of altered mitochondrial function and

energy metabolism in the high-risk infants which has been previously implicated in autism

(Rossignol and Frye, 2014; Chauhan et al., 2011; Gu et al., 2013; Reynell and Harris, 2013b).

9.2 Theoretical implications

9.2.1 Does the temporal cortex mature more rapidly than the visual cortex?

Differential haemodynamic responses were observed over the temporal and occipital cor-

tices. In the temporal cortex the social stimuli elicited an initial decrease in oxygenated

haemoglobin and oxCCO which was followed by a large increase in the concentration of

both chromophores. Meanwhile over the visual cortex a different pattern was observed.

More specifically, in the responses over the visual cortex a large initial increase in deoxy-

genated haemoglobin was observed followed by either a small or non increase in oxy-

genated haemoglobin and oxCCO. While this could be a reflection of differing pathways

in place for processing various stimuli, it may also provide evidence of regional differ-

ences in the development of neurovascular coupling in early infancy. Particularly as the

EEG data suggests that all the stimuli do elicit an increase in stimulus-evoked oscillatory

activity. These results are further supported by the fact that there were regional differences
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observed in coupling between metabolic activity and blood flow with the temporal cortex

displaying a pattern of coupling similar to that observed in the adults while more variabil-

ity in this coupling was observed over the visual cortex. These results may suggest that

there are differences in regional cortical maturation particularly on the vascular side of the

neurovascular coupling pathway, thereby affecting the observed haemodynamic responses

over the two cortical regions.

The circle of willis is a circulatory anastomosis (ring like arterial connection between

blood vessels) which supplies blood to the brain and its surrounding structures. The ante-

rior (ACA), middle (MCA) and posterior cerebral arteries (PCA) branch out from the circle

of willis and are responsible for supplying blood to different regions of the brain with the

MCA and PCA supplying temporal and occipital lobes respectively. A previous infant

study used morphological angiography in order to investigate anatomical differences in

the circle of willis in the developing brain (Leijser et al., 2006) and reported an incomplete

circle of willis in almost half of the term infants with the most common anatomical varia-

tion being in the posterior cerebral vessels in comparison to the anterior vessels. An adult

study using the same technique (Krabbe-Hartkamp et al., 1998) reported that 74% of sub-

jects had a complete anterior circle of willis while only 52% had a complete posterior part.

Mitchell et al (Mitchell et al., 1989) used color Doppler imaging on term infants to measure

blood flow and reported that normal flow in the ACA and MCA were found in all infants

but not in the PCA. These differences in regional blood supply to temporal and occipi-

tal cortices may play a role in the differences observed in the haemodynamic responses.

Furthermore, previous work in humans has reported a significant increase in angiogenesis

(the increase in the formation of new capillaries and vessels) during development (Norman

and O’Kusky, 1986). The authors from this study hypothesised that during developmental

increases in blood vessel density, and therefore the coupling between neuronal activity and

cerebral blood flow, may not be as efficient in comparison to when the vasculature is fully

developed.

Moreover, CBF and CMRO2 are known to affect the haemodynamic responses directly

and previous studies using SPECT (Chiron et al., 1992) and PET (Takahashi et al., 1999)

have demonstrated that both rCBF and rCMRO2 are significantly lower in early infancy
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and that CMRO2 continues to increase until late childhood (Chugani et al., 1987). The

work by Chugani et al (1987) has also demonstrated regional differences in the cerebral

metabolic rate of glucose uptake (CMRG) in the occipital and temporal cortices, with the

occipital cortex showing a slower maturational increase peaking around 6-8 months post-

natally. This is supported by previous rat work (Kozberg et al., 2013a) that demonstrated

an absence of functional hyperemia in the presence of large neural responses and a sig-

nificantly lower rate of oxygen metabolism that gradually increased postnatally. While

these results were from the somatosensory cortex, it may provide evidence that oxidative

metabolism itself undergoes maturational changes during development particularly when

coupled with the idea that CMRG and CMRO2 show regional differences. This may be an-

other reason why regional differences in the haemodynamic response are observed. Lin et

al (2013) used frequency-domain NIRS alongside diffuse correlation spectroscopy and ad-

ditionally demonstrated that CBF, cerebral blood volume (CBV), haemoglobin oxygenation

saturation (SO2) and CMRO2 were greater in temporal and parietal regions in comparison

to other regions in newborns.

Postnatal cortical expansion has also been shown to be non-uniform and a study com-

paring healthy infants and adults using MRI scans has demonstrated that lateral frontal,

temporal and parietal regions expand almost twice as much as the insula and medial oc-

cipital cortex (Hill et al., 2010). It has been hypothesised that these differences in corti-

cal expansion may reflect postnatal synaptic expansion which has been reported to occur

in a heterochronic manner with the visual cortex peaking around 4-8 months postnatally

(Garey and de Courten, 1983). Synaptogenesis is followed by a significant period of synap-

tic pruning which has also been shown to occur at differential rates regionally (Hutten-

locher and Dabholkar, 1997; Tierney and Nelson, 2009; Garey and de Courten, 1983; Harris

et al., 2011). Developmental changes in synaptic density will affect the observed haemo-

dynamic response, particularly an increase in synaptic density which leads to an increase

in metabolic demand (Martin et al., 1999b).

Furthermore, the role of stimulus complexity cannot be overlooked in understanding

differences in the observed haemodynamic responses. Previous infant studies using fNIRS

(Watanabe et al., 2012a; Taga et al., 2003, 2004; Liao and Tjong, 2010) have used a vari-
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ety of stimuli including black and white inverting checkerboards and reported a classical

haemodynamic response in the occipital cortex to the stimuli. However, there have also

been previous reports of “inverted” responses over the occipital cortex by fNIRS infant

studies (Meek et al., 1998; Karen et al., 2008) and a number of fMRI studies that have re-

ported a decrease in blood oxygenation level to visual stimulation (Born et al., 1998, 2000;

Martin et al., 1999b; Yamada et al., 1997) with many of the studies reporting “biphasic”

responses, i.e. classical responses in some infants and inverted responses in others. The

differences in haemodynamic responses in the visual and temporal cortices may provide

evidence of an “evolving” haemodynamic response which starts off being similar to the

responses observed over the occipital cortex and gradually matures to assume the shape

of that observed over the temporal cortex. Previous work in rats (Kozberg et al., 2013a) has

demonstrated that in postnatal rats between P15 and P23 the amplitude of the oxygenated

haemoglobin in the somatosensory cortex progressively increased with age. The authors

therefore hypothesised that intermediate age groups may exhibit a biphasic negative-to-

positive change in oxygenated haemoglobin. Infant fMRI work by Arichi et al (2012) have

also also postulated a similar hypothesis. Therefore it is possible that the differences ob-

served in the results here might be a representation of the biphasic responses that these au-

thors describe. It would be interesting to investigate individual differences in the data from

Chapters 6-8 to see if a pattern of regional differences emerges at that level and whether

differences in occipital and temporal responses could be used as a measure of individual

developmental trajectory. Deen et al (2017) used faces and naturalistic scenes as stimuli in

an infant fMRI study and found that in the visual cortex, the profile of the HRF and pattern

of activity varied across visual categories between infants.

Previous fMRI work in adults (Goodyear and Menon, 1998; Marcar et al., 2004b,a) has

shown that in the visual cortex, an increasing number of active neurons leads to an increase

in oxygen consumption that is not matched by an equal increase in blood flow, resulting

in no or a very small change in blood oxygenation levels, as is observed in my results.

This may imply that the observed haemodynamic response may critically depend on the

amount of neural activity that is evoked by the experimental stimulus (Harris et al., 2011).
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9.2.2 Neurovascular coupling in the developing brain

The previous section discussed the differences observed in haemodynamic differences over

temporal and visual cortices and the reasons why they might be occurring. Differences

were also observed in the coupling between blood flow and energy metabolism between

infants and adults with the infant cross-correlation analysis providing potential evidence

that coupling mechanisms in the infant brain are not fully developed, particularly in the

occipital lobe. Meanwhile, in the results from the adult study presented in Chapter 5 strong

relationships between all three chromophores were observed, indicative of fully developed

neurovascular coupling mechanisms. This suggests that functional hyperemia is still de-

veloping and that as neural circuitry, vasculature and networks expand and are pruned

over the first year of life, that the optimised mechanism of oxygen delivery may also be

developing. The previous section already discussed a number of factors that might lead

to the differences in the observed relationship between haemodynamic and metabolic ac-

tivity such as ongoing cerebral vascular development, angiogenesis and synaptogenesis.

There are also a number of different components of the NVU that are under development

that may also affect the observed responses. For instance, astrocytes and pericytes are

known to be under ongoing development early on in life (Hall et al., 2014; Seregi et al.,

1987; Stichel et al., 1991; Yang et al., 2013) and previous studies have suggested that they

undergo a dramatic maturation process (Yang et al., 2013). Moreover, previous work has

also demonstrated varying astrocytic density across different cortical regions (Roessmann

and Gambetti, 1986). Furthermore, other studies (Chen et al., 2014; Bustamante et al., 2008)

have reported a reduced expression of endothelial NOS which is important for cerebral

blood flow regulation as NO is an important regulator of vascular tone. Developmental

differences in the enzyme that synthesises NO will therefore affect NO-mediated pathways

thereby influencing the observed haemodynamic response. Lastly, amine neurotransmit-

ters, which are known to play an important role in cognition (Frederick and Stanwood,

2009; Harris et al., 2011; Ansorge et al., 2004; Rebello et al., 2014; Page et al., 2009) have

been shown to be under development and may significantly impact neurovascular cou-

pling (Lambe et al., 2000; Murrin et al., 2007) .
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9.2.3 Differences in the relationship of low and high frequency oscillations

with haemodynamics and metabolism

While many studies have focussed on exploring the relationship between haemodynamic

activity and neuronal oscillations in the gamma frequency band (Logothetis, 2008; Niessing

et al., 2005; Logothetis et al., 2001b) others have provided evidence that lower frequency

oscillations such as alpha and beta are correlates of the haemodynamic response and that

their role in the generation of haemodynamic activity cannot be ignored (Kilner et al., 2005;

Laufs et al., 2006; Rosa et al., 2010; Scheeringa et al., 2011b). The results presented in this

thesis also provide evidence of differential relationships between neuronal oscillations and

haemodynamics that vary depending on the experimental stimulus, the brain region and

the location of measurement within brain regions. It has been hypothesised that this may

be the result of the employment of different brain networks for different tasks (Mantini

et al., 2007; Sumiyoshi et al., 2012). It appeared that during social processing in channels

over the temporal cortex, haemodynamic activity was coupled with alpha band activity

while during the processing of visual stimuli, an inverse coupling was observed which

has been reported more consistently (Scheeringa et al., 2011b; Yuan et al., 2010; Goldman

et al., 2002). Although, previous studies (Logothetis, 2008; Niessing et al., 2005; Logothetis

et al., 2001b) have also showed a positive relationship between alpha activity and blood

oxygenation level. These differing results are not surprising though, given the regional

differences that were observed in the coupling between blood flow and energy metabolism

between temporal and occipital cortices.

Furthermore, while regional differences exist, the direction of the relationships between

low and high frequency bands and NIRS measures also differ. For example, during visual

stimulation, inverse relationships were observed between alpha and beta oscillations with

oxCCO and HbO2. Gamma oscillations however, correlated positively. A similar result

has been reported in work by Scheeringa et al (2011b) that used simultaneous EEG and

fMRI during a visual attention task in adults and reported that low and high frequency

oscillations correlated differentially with the BOLD response. Moreover, other studies

(Scheeringa et al., 2011a, 2016; Lachaux et al., 2007; Zaehle, 2009; Mulert et al., 2010; Gi-
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raud et al., 2007; Mantini et al., 2007) have specifically reported a stronger coupling be-

tween gamma oscillations and haemodynamic activity. Although many of the studies only

explore correlations in the high gamma frequency range (>60 Hz). It has been postulated

that the low and high frequency oscillations may potentially be generated through different

mechanisms or through the employment of different cell-types (Scheeringa et al., 2011a) or

different layers of the cortex (Scheeringa et al., 2016) during neural synchronisation. A pre-

vious study using cell-type-specific optogenetic activation in the somatosensory cortex of

adult mice demonstrated that fast-spiking GABAergic interneurons specifically increased

the LFP in the gamma band while the rhythmic driving of pyramidal neurons caused an

increase in LFP power in lower frequency bands (Cardin et al., 2009). This does not how-

ever, imply that these different types of neurons generate oscillations in different frequency

bands independently, but are involved in the generation of both low and high frequency

oscillations (Börgers and Kopell, 2005; Hasenstaub et al., 2005). While high frequency oscil-

lations correlate positively with haemodynamic and metabolic activity, a number of studies

have reported an inverse relationship with alpha and beta frequency bands in a number of

tasks over different brain areas (Feige et al., 2005; Laufs et al., 2003b,c; Meltzer et al., 2007;

Moosmann et al., 2003; Scheeringa et al., 2009; Yuan et al., 2010) which is in line with the

results from the visual stimuli but not the social/non-social stimuli.

Moreover, while coupling between HbO2 and gamma oscillations is seen in the results,

CCO appears to be more tightly coupled with gamma band oscillations. Previous research

(Kann et al., 2011; Attwell and Iadecola, 2002) has demonstrated that gamma oscillations

are associated with an increase in oxidative metabolism characterised by an increase in

oxygen consumption. This may be due to a number of reasons, Gulyas et al (2006) have

suggested that GABAergic interneurons which are involved in the generation of gamma

oscillations, contain a high number of mitochondria. Other studies suggest that the fast al-

ternating pairs of sources and sinks that are required to generate gamma oscillations may

require increased activity of the ETC to restore ionic gradients. Another pattern that is more

strongly observed between CCO and frequency bands is that correlations over the specific

area of interest (for example primary visual cortex) display a different pattern in compar-

ison to correlations over peripheral areas (for example extrastriate cortex). Specifically in
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the gamma band, positive correlations are observed over the primary visual cortex while

negative correlations are observed over the extrastriate regions. This might be indicative

of the fact that the areas involved in the processing of stimuli have increased consumption

in oxygen leading to decreased oxygen availability for the extrastriate regions. For infants,

this may be particularly true as there may be a limited influx of oxygenated blood flow and

past work in postnatal rats reported the presence of a global vasoconstrictive mechanism

in response to activation which the authors suggested might be the a protective mechanism

in place in the delicate developing brain in order to limit blood flow (Kozberg et al., 2013a).

9.3 Limitations and Future Directions

The combined NIRS and EEG data presented in this thesis represents one of the first series

of studies to utilise simultaneous NIRS and EEG during functional activation in infants and

the first to utilise broadband NIRS with EEG in infants. A number of methodological and

technical challenges needed to be overcome in order to carry out this work and due to time

restrictions only correlation analysis combining NIRS and EEG data were performed. This

is one of the major limitations of the combined NIRS and EEG results presented in Chapters

5 - 8. As I have mentioned previously, the correlation analysis performed assumed a linear

relationship between neural activity, haemodynamics and energy metabolism when in fact,

neurovascular coupling is highly complex involving a number of intermediate pathways.

At the first instance, a non-linear approach is required to investigate how the EEG and

NIRS time-series correlate with one another using cross-correlation or time-series analysis.

Wavelet coherence analysis (Tian et al., 2016) is a technique that can transform time-series

into the time-frequency domain using Morlet wavelets to obtain the cross-wavelet trans-

form of the two time-series. This can then yield the wavelet transfer function (similar to the

Fourier transform), the modulus of which provides the relative power (gain) between the

time-series and the complex argument provides the phase relationship. The cross-wavelet

coherence can be obtained using the square of the wavelet transfer function. This technique

has been used previously to investigate neurovascular coupling in neonatal encephalopa-

thy (Chalak et al., 2017) and in brain injured patients to assess the relationship between
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NIRS variables and physiological parameters (Highton et al., 2015).

A more far reaching aim could be to implement the use of computational modelling

in order to more appropriately integrate EEG and NIRS data, for which a number of dif-

ferent models have been proposed (Rosa et al., 2011). Of these, the most innovative is

dynamic causal modelling (DCM) proposed by Friston et al (2003) which has been used to

characterise functional connectivity in adults (Friston, 2011; Schuyler et al., 2010) and re-

cently in infants (Bulgarelli et al., 2018) and can also be used to integrate EEG and fMRI

data (Friston et al., 2017). Briefly, the basic idea behind DCM is to model causal interac-

tions either between brain regions or haemodynamic and electrophysiological responses

that are mediated by coupling parameters that can be estimated using Bayesian statistics.

Another approach may be to use a psycho-physiological interaction model (PPI) which esti-

mates interactions between variables (but does not provide directionality or causality) and

has been used previously in EEG-fMRI studies to explore the relationship between neu-

ronal oscillations and the BOLD response (Vaudano et al., 2013; Scheeringa et al., 2012;

Zotev et al., 2016) and more recently to investigate functional connectivity using fNIRS

(Piva et al., 2017). While both these techniques are promising, they require EEG and NIRS

data to be integrated into the Statistical Parametric Mapping (SPM) framework (Friston

et al., 2007; Tak et al., 2016) which is currently not widely used to process infant NIRS data.

This is because it uses general linear modelling (GLM) to model the haemodynamic re-

sponse based on a pre-specified HRF shape. This may be difficult to implement and to use

to accurately interpret results in infants, given the degree of variability that is observed

in the amplitude and latency of haemodynamic responses, as seen in particular with the

data presented in this thesis. Other models to integrate EEG and fMRI data have also been

proposed, which can be extended to fNIRS data, and include biophysical models (Sotero and

Trujillo-Barreto, 2008) and models of metabolism (Shulman et al., 2001; Aubert and Costalat,

2005). These include neural mass models (Babajani and Soltanian-Zadeh, 2006) which are

based on physiological principles of cortical microcolumns and their connections and local

electrovascular coupling models (Riera et al., 2006).

Furthermore, while interesting relationships between oxygenated haemoglobin and

cerebral energy metabolism emerged in the infant brain through the work presented in
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this thesis, further work is necessary to understand the physiological parameters that

may manifest in the observed underdeveloped coupling of cerebral blood flow and en-

ergy metabolism. The BrainSignals model is a biophysical model of cerebral physiology

developed to explore the relationships between measured NIRS responses and the key pa-

rameters that may give rise to them. This model has been developed for adults (Banaji

et al., 2008; Caldwell et al., 2015), neonates (Hapuarachchi, 2015) and piglets (Moroz et al.,

2012) and can be modified for infants. Sensitivity analysis can be performed to identify the

parameters that each of the measured chromophores would be most sensitive to, thereby

allowing a more in-depth investigation of physiological factors that are important during

infant brain development and may differ from adult physiology.

Another future direction could possibly be to use broadband NIRS over a range of

ages from newborn to 24-months-old in order to explore how the relationship between

metabolic and haemodynamic activity evolves across development and at which age it

starts to resemble that observed in adults. This methodology could then be further ex-

panded on to investigate developmental trajectories of other brain regions, specifically

those that are known to mature more slowly such as the prefrontal cortex (Deen et al., 2017;

Tierney and Nelson, 2009). This could potentially be useful in providing a non-invasive

method of providing measures of structural brain development.

Lastly, an important future direction is to acquire data in a larger sample of HR in-

fants over a range of ages in order to explore whether there truly is a decoupling that

occurs between haemodynamic and metabolic activity. If this is the case, then broadband

NIRS could be a promising tool for investigating atypical brain function and may pro-

vide a new avenue of non-invasive research in autism. Hitherto, fMRI and NIRS work

has provided measures of blood oxygenation levels and the use of broadband NIRS par-

ticularly with EEG, allows us to improve our understanding of basic cellular mechanisms

in disorders such as autism. Moreover, the studies that have demonstrated mitochondrial

dysfunction in children with autism have performed studies on post-mortem brain tissue.

Simultaneous broadband NIRS with EEG would allow us to obtain these measurements

non-invasively in awake infants relatively easily and would therefore be an invaluable

tool in this line of research. Furthermore, studies have reported reduced expression of mi-
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tochondrial ETC genes in children with ASD (Gu et al., 2013; Giulivi et al., 2010; Anitha

et al., 2012). Thus, it would be interesting to relate mitochondrial DNA expression with

observed changes in oxCCO in both low and high-risk infants. In particular, DNA methy-

lation studies may be an interesting future direction as recent evidence from an epigenetic

study has emerged implicating abnormal mitochondrial metabolism in autism (Stathopou-

los et al., 2018).

9.4 Concluding remarks

With this PhD work, the capability of the use of broadband NIRS in infants to understand

the neurometabolic pathways in both typical and atypical brain development has been

demonstrated. Through a number of pioneering studies utilising broadband NIRS simul-

taneously with EEG, made possible by extensive headgear development, I provided evi-

dence that broadband NIRS measures of cellular oxygen metabolism do provide a unique

marker of brain activation and can be used to further our understanding of neurovascu-

lar coupling mechanisms in the developing brain. Alongside developing methods to per-

form concurrent NIRS and EEG studies in infants aged between 4-to-14-months of age, I

also provided evidence of regional differences in neurovascular coupling and further eluci-

dated the relationships between neural activity, haemodynamics and oxidative metabolism

in infancy. Moreover, I showed how NIRS and EEG may be used simultaneously to inves-

tigate neurophysiological differences in high-risk ASD infants and while results from this

study were not conclusive, this study provides an exciting direction for future research.
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Appendix to Chapter 5

Experiment 2

An infant-friendly variation of the experimental paradigm presented in Chapter 5 was
developed to explore a block design format where the stimuli were presented for 10 s
followed by 10 s baseline. While it is clear from Experiment 1 that a block design format
does not work well for EEG as it yields too few trials, Experiment 2 was built such that
each change occurring within a block was considered an event for the EEG. For example,
each alternation of the checkerboard was averaged over during the data analysis rather
than just the start of the experimental condition. This yields many more trials for the EEG.

Stimuli

All stimuli were developed in Psychtoolbox (Matlab, USA) and consisted of three tasks
such that each task had two contrast conditions. Only Task 1 is discussed here, the other
tasks will be described in more detail in Chapter 5.

Task 1

The first task was designed to mimic the stimuli in Experiment 1, preferentially activating
the magnocellular or parvocellular pathway with

1. A full red and green alternating screen

2. Circular checkerboard

The alternating frequency of both stimuli was 4Hz. The stimuli are shown in Figure A.1.
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Figure A.1: Stimuli for Task 1, Experiment 2

Experimental Procedure

Due to the time constraints and limited availability of the broadband system, only EEG
was used in Experiment 2. As a validating procedure this was fine as Experiment 2 used a
block-design format which has been used extensively for NIRS studies so it was more im-
portant to investigate its compatibility as an experimental paradigm for EEG. Four adults
(4 females, aged between 23 - 28) participated in the study after providing written, in-
formed consent. Head measurements were taken for each participant and the nasion to
inion measurement was used to identify the location of Cz on the participant’s head. The
EEG headcap was positioned with the marked Cz position on the cap aligned with the
Cz of the participant. EEG electrodes were filled with gel using a syringe and the wires
clipped on top which were then connected to the necbox. The necbox was positioned at
the base of the participant’s neck. Participants were seated approximately 60cm from the
screen. Each stimulus was presented for 10 s followed by 10 s of baseline which consisted
of a blank grey screen with a fixation cross at the centre of the screen.

Data analysis

EEG

All EEG data were analysed using the EEGLab Toolbox (Schwartz Centre for Computa-
tional Neuroscience, UC San Diego, USA) in Matlab2017a (Mathworks, USA). The data
were bandpass filtered from 0.1 - 100 Hz and a notch filter of 50 Hz was applied to remove
electrical noise and then segmented into epochs of 800 ms around each event occurring
within a block. That is, for the checkerboard the data were segmented over every alter-
nation of the checkerboard and for the red and green condition, the data were segmented
over every alternation between red and green. The epoched data were cleaned manually
and trials were removed if they were contaminated with artifacts such as eye blinks, mus-
cle noise or movement. Epochs were averaged across trials and ERP waveforms were then
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generated for each channel as they provide a good indication of whether the experimental
stimulus is appropriate to measure neuronal activation.

Results

Data from only Task 1 was looked at and ERPs generated, as ERPs provide a good indica-
tion of whether the experimental condition induces a neural response (Luck, 2005). Figure
A.2 shows the ERPs from a single subject at Oz, with the red line corresponding to the
ERP generated by the red/green stimulus and the black line corresponding to the ERP
generated by the black/white radial checkerboard stimulus. A pairwise t-test indicated a
significant difference between the two conditions (t = 2.33, p = 0.019).

Figure A.2: ERP from one subject from Task 1 of Experiment 2 at Oz. The black and white
radial checkerboard ERP is shown in black while the red and green stimulus ERP is shown
in red.
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Statistical tables results (Experiment 1)

NIRS

Contralateral vs Ipsilateral

Magnocellular

Pair ∆[HbO2] Mean Maximum Change ∆[HbO2] Mean difference tHbO2 pHbO2

(Pair 1) Ch1 Contra - Ch1 Ipsi Contralateral - 0.2302 / Ipsilateral - 0.3180 -0.08785 -1.909 0.129

(Pair 2) Ch2 Contra - Ch2 Ipsi Contralateral - 0.2774 / Ipsilateral - 0.3635 -0.08611 -1.316 0.258

(Pair 3) Ch3 Contra - Ch3 Ipsi Contralateral - 0.2356 / Ipsilateral - 0.3389 -0.10325 -1.195 0.298

(Pair 4) Ch4 Contra - Ch4 Ipsi Contralateral - 0.3824 / Ipsilateral - 0.5613 -0.17892 -1.625 0.179

(Pair 5) Ch5 Contra - Ch5 Ipsi Contralateral - 0.5694 / Ipsilateral - 0.2705 0.29889 7.158 .002*

(Pair 6) Ch6 Contra - Ch6 Ipsi Contralateral - 0.4394 / Ipsilateral - 0.2706 0.16880 2.980 .041*

(Pair 7) Ch7 Contra - Ch7 Ipsi Contralateral - 0.6050 / Ipsilateral - 0.3487 0.25627 3.040 .038*

(Pair 8) Ch8 Contra - Ch8 Ipsi Contralateral - 0.4956 / Ipsilateral - 0.2193 0.27629 3.473 .026*

Pair ∆[HHb] Mean Maximum Change ∆[HHb] Mean difference tHHb pHHb

(Pair 1) Ch1 Contra - Ch1 Ipsi Contralateral - 0.0982 / Ipsilateral - 0.2165 -0.11837 -2.702 0.054

(Pair 2) Ch2 Contra - Ch2 Ipsi Contralateral - 0.1566 / Ipsilateral - 0.3002 -0.14361 -2.825 0.048*

(Pair 3) Ch3 Contra - Ch3 Ipsi Contralateral - 0.1318 / Ipsilateral - 0.1621 -0.03027 -1.988 0.118

(Pair 4) Ch4 Contra - Ch4 Ipsi Contralateral - 0.2334 / Ipsilateral - 0.2884 -0.05502 -2.249 0.088

(Pair 5) Ch5 Contra - Ch5 Ipsi Contralateral - 0.3211 / Ipsilateral - 0.1490 0.17216 4.435 0.011*

(Pair 6) Ch6 Contra - Ch6 Ipsi Contralateral - 0.2784 / Ipsilateral - 0.1076 0.17081 3.213 0.033*

(Pair 7) Ch7 Contra - Ch7 Ipsi Contralateral - 0.2840/ Ipsilateral - 0.2275 0.05643 4.093 0.015*

(Pair 8) Ch8 Contra - Ch8 Ipsi Contralateral - 0.2214 / Ipsilateral - 0.1521 0.06930 6.876 0.002*

Pair ∆[oxCCO] Mean Maximum Change ∆[oxCCO] Mean difference toxCCO poxCCO

(Pair 1) Ch1 Contra - Ch1 Ipsi Contralateral - 0.0380 / Ipsilateral - 0.0911 -0.05313 -1.899 .130

(Pair 2) Ch2 Contra - Ch2 Ipsi Contralateral - 0.0574 / Ipsilateral - 0.0915 -0.03404 -2.605 0.060

(Pair 3) Ch3 Contra - Ch3 Ipsi Contralateral - 0.0551 / Ipsilateral - 0.0818 -0.02670 -1.101 0.333

(Pair 4) Ch4 Contra - Ch4 Ipsi Contralateral - 0.0865 / Ipsilateral - 0.1057 -0.01915 -1.416 0.230

(Pair 5) Ch5 Contra - Ch5 Ipsi Contralateral - 0.1315 / Ipsilateral - 0.0527 0.07889 4.853 0.008*

(Pair 6) Ch6 Contra - Ch6 Ipsi Contralateral - 0.1123 / Ipsilateral - 0.0445 0.06785 5.692 0.005*

(Pair 7) Ch7 Contra - Ch7 Ipsi Contralateral - 0.1263 / Ipsilateral - 0.0830 0.04332 5.314 0.006*

(Pair 8) Ch8 Contra - Ch8 Ipsi Contralateral - 0.1235 / Ipsilateral - 0.0544 0.06914 5.559 0.005*

Table A.1: Mean maximum differences in contralateral and ipsilateral conditions for
Magno for HbO2, HHb and oxCCO. The significant p values are indicated with an asterisk.
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Parvocellular

Pair ∆[HbO2] Mean Maximum Change ∆[HbO2] Mean difference tHbO2 pHbO2

(Pair 1) Ch1 Contra - Ch1 Ipsi Contralateral - 0.1568 / Ipsilateral - 0.2757 -0.11890 -1.933 0.125

(Pair 2) Ch2 Contra - Ch2 Ipsi Contralateral - 0.2147 / Ipsilateral - 0.3172 -0.10242 -1.337 - 0.252

(Pair 3) Ch3 Contra - Ch3 Ipsi Contralateral - 0.2310 / Ipsilateral - 0.3304 -0.09940 1.816 0.144

(Pair 4) Ch4 Contra - Ch4 Ipsi Contralateral - 0.3175 / Ipsilateral - 0.5025 -0.18504 -2.949 0.042*

(Pair 5) Ch5 Contra - Ch5 Ipsi Contralateral - 0.4470 / Ipsilateral - 0.2533 0.19368 3.004 0.040*

(Pair 6) Ch6 Contra - Ch6 Ipsi Contralateral - 0.4166 / Ipsilateral - 0.2583 0.15826 3.349 0.029*

(Pair 7) Ch7 Contra - Ch7 Ipsi Contralateral - 0.5593 / Ipsilateral - 0.3019 0.25736 3.992 0.016*

(Pair 8) Ch8 Contra - Ch8 Ipsi Contralateral - 0.4288 / Ipsilateral - 0.1903 0.23848 3.374 0.028*

Pair ∆[HHb] Mean Maximum Change ∆[HHb] Mean difference tHHb pHHb

(Pair 1) Ch1 Contra - Ch1 Ipsi Contralateral - 0.1165 / Ipsilateral - 0.2306 -0.11409 -2.495 0.067

(Pair 2) Ch2 Contra - Ch2 Ipsi Contralateral - 0.1039 / Ipsilateral - 0.2273 -0.12337 -2.322 0.081

(Pair 3) Ch3 Contra - Ch3 Ipsi Contralateral - 0.1143 / Ipsilateral - 0.1548 -0.04049 -2.411 0.073

(Pair 4) Ch4 Contra - Ch4 Ipsi Contralateral - 0.1820 / Ipsilateral - 0.2886 -0.10660 -7.141 0.002*

(Pair 5) Ch5 Contra - Ch5 Ipsi Contralateral - 0.2983 / Ipsilateral - 0.1283 0.17003 5.346 0.006*

(Pair 6) Ch6 Contra - Ch6 Ipsi Contralateral - 0.2508 / Ipsilateral - 0.1151 0.13569 5.882 0.004*

(Pair 7) Ch7 Contra - Ch7 Ipsi Contralateral - 0.2738 / Ipsilateral - 0.1730 0.10081 8.181 0.001*

(Pair 8) Ch8 Contra - Ch8 Ipsi Contralateral - 0.1992 / Ipsilateral - 0.1518 0.04743 1.735 0.158

Pair ∆[oxCCO] Mean Maximum Change ∆[oxCCO] Mean difference toxCCO poxCCO

(Pair 1) Ch1 Contra - Ch1 Ipsi Contralateral - 0.0296 / Ipsilateral - 0.0695 -0.03996 -2.201 0.093

(Pair 2) Ch2 Contra - Ch2 Ipsi Contralateral - 0.0377 / Ipsilateral - 0.0817 -0.04396 -2.813 0.048*

(Pair 3) Ch3 Contra - Ch3 Ipsi Contralateral - 0.0404 / Ipsilateral - 0.0832 -0.04274 -2.929 0.043*

(Pair 4) Ch4 Contra - Ch4 Ipsi Contralateral - 0.0733 / Ipsilateral - 0.1146 -0.04129 -11.450 0.00033*

(Pair 5) Ch5 Contra - Ch5 Ipsi Contralateral - 0.1145 / Ipsilateral - 0.0521 0.06247 5.815 0.004*

(Pair 6) Ch6 Contra - Ch6 Ipsi Contralateral - 0.1130 / Ipsilateral - 0.0463 0.06671 4.419 0.012*

(Pair 7) Ch7 Contra - Ch7 Ipsi Contralateral - 0.1115 / Ipsilateral - 0.0745 0.03701 6.107 0.004*

(Pair 8) Ch8 Contra - Ch8 Ipsi Contralateral - 0.1033 / Ipsilateral - 0.0623 0.04099 2.784 0.0496*

Table A.2: Mean maximum differences in contralateral and ipsilateral conditions for Parvo
for HbO2, HHb and oxCCO. The significant p values are indicated with an asterisk.
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Magno vs Parvo

Contralateral

Pair ∆[HbO2] Mean Maximum Change ∆[HbO2] Mean difference tHbO2 pHbO2

(Pair 1) Ch1 Magno - Ch1 Parvo Magno - 0.2302 / Parvo 0.1568 0.07339 3.384 0.028*

(Pair 2) Ch2 Magno - Ch2 Parvo Magno - 0.2774 / Parvo 0.2147 0.06264 2.549 0.063

(Pair 3) Ch3 Magno - Ch3 Parvo Magno - 0.2356 / Parvo 0.2310 0.00465 0.309 0.773

(Pair 4) Ch4 Magno - Ch4 Parvo Magno - 0.3824 / Parvo 0.3175 0.06489 2.553 0.063

(Pair 5) Ch5 Magno - Ch5 Parvo Magno - 0.5694 / Parvo 0.4470 0.12246 6.462 0.003*

(Pair 6) Ch6 Magno - Ch6 Parvo Magno - 0.4394 / Parvo 0.4166 0.02286 0.757 0.491

(Pair 7) Ch7 Magno - Ch7 Parvo Magno - 0.6050 / Parvo 0.5593 0.04573 1.063 0.348

(Pair 8) Ch8 Magno - Ch8 Parvo Magno - 0.4956 / Parvo 0.4288 0.06684 1.623 0.180

Pair ∆[HHb] Mean Maximum Change ∆[HHb] Mean difference tHHb pHHb

(Pair 1) Ch1 Magno - Ch1 Parvo Magno - 0.0982 / Parvo 0.1165 -0.01832 -1.083 0.340

(Pair 2) Ch2 Magno - Ch2 Parvo Magno - 0.1566 / Parvo 0.1039 0.05265 2.004 0.116

(Pair 3) Ch3 Magno - Ch3 Parvo Magno - 0.1318 / Parvo 0.1143 0.01748 0.632 0.562

(Pair 4) Ch4 Magno - Ch4 Parvo Magno - 0.2334 / Parvo 0.1820 0.05135 13.046 0.000199*

(Pair 5) Ch5 Magno - Ch5 Parvo Magno - 0.3211 / Parvo 0.2983 0.02285 0.882 0.428

(Pair 6) Ch6 Magno - Ch6 Parvo Magno - 0.2784 / Parvo 0.2508 0.02757 0.746 0.497

(Pair 7) Ch7 Magno - Ch7 Parvo Magno - 0.2840 / Parvo 0.2738 0.01014 0.484 0.654

(Pair 8) Ch8 Magno - Ch8 Parvo Magno - 0.2214 / Parvo 0.1992 0.02216 0.870 0.433

Pair ∆[oxCCO] Mean Maximum Change ∆[oxCCO] Mean difference toxCCO poxCCO

(Pair 1) Ch1 Magno - Ch1 Parvo Magno - 0.0380 / Parvo 0.0296 0.00839 .960 0.392

(Pair 2) Ch2 Magno - Ch2 Parvo Magno - 0.0574 / Parvo 0.0377 0.01973 2.069 0.107

(Pair 3) Ch3 Magno - Ch3 Parvo Magno - 0.0551 / Parvo 0.0404 0.01467 1.746 0.156

(Pair 4) Ch4 Magno - Ch4 Parvo Magno - 0.0865 / Parvo 0.0733 0.01317 1.702 0.164

(Pair 5) Ch5 Magno - Ch5 Parvo Magno - 0.1315 / Parvo 0.1145 0.01702 3.927 0.017*

(Pair 6) Ch6 Magno - Ch6 Parvo Magno - 0.1123 / Parvo 0.1130 -0.00072 -.080 0.940

(Pair 7) Ch7 Magno - Ch7 Parvo Magno - 0.1263 / Parvo 0.1115 0.01484 2.099 0.104

(Pair 8) Ch8 Magno - Ch8 Parvo Magno - 0.1235 / Parvo 0.1033 0.02021 3.741 0.020*

Table A.3: Mean maximum differences in contralateral and ipsilateral conditions for Parvo
for HbO2, HHb and oxCCO. The significant p values are indicated with an asterisk.
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NIRS Cross-Correlations (Ipsilateral)

Figure A.3: Average of the cross-correlation across all occipital channels for the ipsilateral
Magno condition (upper panel) and ipsilateral Parvo condition (bottom panel).
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EEG - Event related design task

Event Related Potentials

Contralateral vs Ipsilateral

Magno

Pair Mean Maximum Change Mean difference t p

(Pair 1) Ch1 Contra - Ch1 Ipsi Contra - 6.2226 / Ipsi 1.9795 4.24315 5.098 0.001*

(Pair 2) Ch2 Contra - Ch2 Ipsi Contra - 3.4979 / Ipsi 5.2588 -1.76097 -3.800 0.005*

(Pair 3) Ch3 Contra - Ch3 Ipsi Contra - 2.2977 / Ipsi 1.4207 0.87697 1.703 0.127

(Pair 4) Ch4 Contra - Ch4 Ipsi Contra - 1.4257 / Ipsi 1.7775 -0.3518 -0.908 0.390

(Pair 5) Ch5 Contra- Ch5 Ipsi Contra - 9.5048 / Ipsi 1.8477 4.88552 4.554 0.002*

Table A.4: Mean maximum differences in contralateral and ipsilateral ERPs for Magno.
The significant p values are indicated with an asterisk.

Parvo

Pair Mean Maximum Change Mean difference t p

(Pair 1) Ch1 Contra - Ch1 Ipsi Contra - 6.8775 / Ipsi 2.1867 4.69076 5.325 0.001*

(Pair 2) Ch2 Contra - Ch2 Ipsi Contra - 2.5241 / Ipsi 4.5261 -2.00207 -3.911 0.004*

(Pair 3) Ch3 Contra - Ch3 Ipsi Contra - 3.2760 / Ipsi 2.4071 0.86887 1.666 0.134

(Pair 4) Ch4 Contra - Ch4 Ipsi Contra - 2.0008 / Ipsi 2.5822 -0.58139 -1.922 0.091

(Pair 5) Ch5 Contra- Ch5 Ipsi Contra - 6.2306 / Ipsi 3.0136 3.21702 3.016 0.017*

Table A.5: Mean maximum differences in contralateral and ipsilateral ERPs for Parvo. The
significant pvalues are indicated with an asterisk.
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EEG - Block design task

Event Related Potentials

Contralateral vs Ipsilateral

Magno

Pair Mean Maximum Change Mean difference t p

(Pair 1) Ch1 Contra - Ch1 Ipsi Contra - 6.2226 / Ipsi 1.9795 4.24315 5.098 0.001*

(Pair 2) Ch2 Contra - Ch2 Ipsi Contra - 3.4979 / Ipsi 5.2588 -1.76097 -3.800 0.005*

(Pair 3) Ch3 Contra - Ch3 Ipsi Contra - 2.2977 / Ipsi 1.4207 0.87697 1.703 0.127

(Pair 4) Ch4 Contra - Ch4 Ipsi Contra - 1.4257 / Ipsi 1.7775 -0.3518 -0.908 0.390

(Pair 5) Ch5 Contra- Ch5 Ipsi Contra - 9.5048 / Ipsi 1.8477 4.88552 4.554 0.002*

Table A.6: Mean maximum differences in contralateral and ipsilateral ERPs for Magno.
The significant p values are indicated with an asterisk.

Parvo

Pair Mean Maximum Change Mean difference t p

(Pair 1) Ch1 Contra - Ch1 Ipsi Contra - 6.8775 / Ipsi 2.1867 4.69076 5.325 0.001*

(Pair 2) Ch2 Contra - Ch2 Ipsi Contra - 2.5241 / Ipsi 4.5261 -2.00207 -3.911 0.004*

(Pair 3) Ch3 Contra - Ch3 Ipsi Contra - 3.2760 / Ipsi 2.4071 0.86887 1.666 0.134

(Pair 4) Ch4 Contra - Ch4 Ipsi Contra - 2.0008 / Ipsi 2.5822 -0.58139 -1.922 0.091

(Pair 5) Ch5 Contra- Ch5 Ipsi Contra - 6.2306 / Ipsi 3.0136 3.21702 3.016 0.017*

Table A.7: Mean maximum differences in contralateral and ipsilateral ERPs for Parvo. The
significant p values are indicated with an asterisk.
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Appendix to Chapter 6

NIRS Broadband System Modifications

The NIRS system that was used for the adult study described in Chapter 5 was used for
the studies presented in Chapters 6 - 8. The main modification for the system for use with
infants was to include one extra detector per CCD camera, providing a total of 7 detectors
per CCD. This required the binning of each CCD camera to be adjusted

This required modifications to be made to the system software in order to incorporate
intensity data from the two extra detectors.

LabVIEW software modification

Figure B.1 shows the settings tab for the adult system configuration as described in Chapter
5 in the upper panel and the modifications for the infant studies in the lower panel, for one
of the CCD cameras. An extra detector “Detector 7” has been added. As the CCD chip
had 512 pixels, the binning of each pixel needed to be adjusted so that each detector had
equal spacing on each CCD chip. The new pixel binning can be seen in the bottom panel
of Figure B.1. Figure B.2 shows the allocation of the pixels for each each of the detectors,
for one of the CCD cameras.
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Figure B.1: LabVIEW settings tab for (Upper panel) adult system configuration and (Bot-
tom panel) infant system modification.
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Figure B.2: LabVIEW settings tab for (Upper panel) adult system configuration and (Bot-
tom panel) infant system modification.

NIRS Results

Time to peak analysis

Figure B.3 shows the TTP for each chromophore for social and non-social conditions re-
spectively.

425



Appendix B

Figure B.3: Bar graph showing the time taken for each of the chromophores to reach their
maximal response to the social condition (top) and non-social (bottom) in the statistical
time window of 10 - 18 s post-stimulus onset.

Cross-correlation analysis

Figure B.4 shows the cross-correlations between (i) HbO2 and oxCCO (ii) HHb and oxCCO
and (iii) HbO2 and oxCCO for all the channels (including the channels over the occipital
cortex) for the social and non-social conditions.
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Figure B.4: Cross-correlations between HbO2 and oxCCO (left), HHb and oxCCO (mid-
dle) and HbO2 and oxCCO (right) for the social condition (top) and non-social condition
(bottom). The x-axis shows the time-lag between the time series while the y-axis shows the
correlation coefficient.

Social versus non-social statistical tables

Tables B.1 - B.3 show the mean maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO]
respectively with their the t and p values and FDR corrected p values. Significant channels
are marked with an asterisk, both for the uncorrected and corrected p values.

427



Appendix B

Channel ∆[HbO2] Mean Difference (soc - nonsoc) tHbO2 pHbO2 FDR corrected pHbO2

1 0.1740 1.1984 0.2405 0.3279

2 0.2025 2.0188 0.0539 0.1248

3 0.2346 1.9403 0.0666 0.1248

4 0.2980 2.0314 0.0515 0.1248

5 0.1518 0.9839 0.3339 0.4174

7 0.3051 1.618 0.1251 0.2085

9 0.4747 2.5432 0.0182* 0.1248

11 0.2433 1.9326 0.0628 0.1248

12 0.0143 0.1562 0.8770 0.8770

13 0.0293 0.3448 0.7327 0.8454

14 0.4532 3.5049 0.0015* 0.0219*

15 0.2752 2.1732 0.0375* 0.1248

16 0.2193 1.9528 0.0606 0.1248

17 0.1424 1.3403 0.1917 0.2876

18 0.0317 0.2530 0.8021 0.8594

Table B.1: Mean maximum differences and t and p values for the social versus non-social
for HbO2.
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Channel ∆[HHb] Mean Difference tHHb pHHb FDR corrected pHHb

1 -0.0293 -3.3390 0.7190 0.7704

2 0.0316 -3.8003 0.66570 0.7681

3 0.0605 -3.1807 0.5321 0.7681

4 -0.0463 -2.4378 0.5796 0.7681

5 -0.2195 -0.6685 0.1215 0.4280

7 -0.0137 -3.3188 0.9005 0.9005

9 -0.0526 -2.4951 0.6490 0.7681

11 -0.0318 -4.0532 0.5689 0.7681

12 0.1144 -5.4270 0.0658 0.4280

13 0.0947 -4.6895 0.1509 0.4280

14 -0.0915 -3.2610 0.1465 0.4280

15 0.0353 -4.9264 0.4599 0.7681

16 0.1054 -5.5518 0.1712 0.4280

17 0.0432 -3.4339 0.5118 0.7681

18 0.1323 -5.7540 0.08 0.4280

Table B.2: Mean maximum differences and t and p values for the social versus non-social
for HHb.
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Channel ∆[oxCCO] Mean Difference toxCCO poxCCO FDR corrected poxCCO

1 0.0171 0.7791 0.4422 0.8292

2 0.0155 0.9081 0.3721 0.8292

3 0.0047 0.1034 0.9187 0.9187

4 0.0242 1.0946 0.2827 0.8292

5 0.0895 2.0607 0.0491* 0.2454

7 0.0266 0.8185 0.4251 0.8292

9 -0.0067 -0.1932 0.8485 0.9187

11 0.0529 2.5774 0.0151* 0.1134

12 -0.0242 -1.6323 0.1134 0.4253

13 0.0066 0.3261 0.7466 0.9187

14 0.0613 2.8133 0.0086* 0.1134

15 0.0062 0.4078 0.6862 0.9187

16 -0.0039 -0.1654 0.8698 0.9187

17 0.0015 0.2305 0.8195 0.9187

18 -0.0032 -0.1545 0.8784 0.9187

Table B.3: Mean maximum differences and t and p values for the social versus non-social
for oxCCO.

Combined NIRS and EEG analysis for social minus non-social

Figure B.5 shows a heatmap of the difference between social and non-social conditions
such that the correlations were performed between the difference in mean power spectral
density (social minus non-social) and the difference in the maximum change in each of
the NIRS chromophores (social minus non-social). The significant correlations (p < 0.05)
are indicated by red rectangles. Theta band appears to correlate overall more strongly
with HHb for the social condition in comparison to the non-social, while more negative
correlations are observed between channels for HbO2. A similar pattern is observed for
the alpha band with alpha power and HbO2 correlating more strongly for social than non-
social. In both alpha and theta bands for oxCCO, stronger positive correlations were seen
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for the social condition in comparison to the non-social, particularly in Channels 16 and
17. Channel 11 also displayed stronger correlations with temporo-parietal channels for the
social condition in comparison to the non-social.
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Appendix to Chapter 7

NIRS Results - Checkerboard conditions

Time to peak analysis

Figure C.1 shows the TTP for each chromophore for black/white and red/green conditions
respectively.
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Figure C.1: Bar graph showing the time taken for the response in each of the chromophores
to reach its maximum value in response to the black/white (top) and red/green checker-
board (bottom).

Cross-correlation analysis

Figure C.2 shows the cross-correlations between (i) HbO2 and oxCCO (ii) HHb and oxCCO
and (iii) HbO2 and oxCCO for all the channels (including the channels over the occipital
cortex) for the black/white conditions and red/green conditions.
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Figure C.2: Cross-correlations between HbO2 and oxCCO (left), HHb and oxCCO (middle)
and HbO2 and oxCCO (right) for the black/white condition (top) and red/green condition
(bottom). The x-axis shows the time-lag between the time series while the y-axis shows the
correlation coefficient.

Black/white versus red/green statistical tables

Tables C.1 - C.3 show the mean maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO]
respectively with their the t and p values and FDR corrected p values. Significant channels
are marked with an asterisk, both for the uncorrected and corrected p values.

435



Appendix C

Channel ∆[HbO2] Mean Difference (b/w - r/g) tHbO2 pHbO2 FDR corrected pHbO2

1 0.1217 1.8068 0.0812 0.5635

2 0.1345 1.6949 0.1020 0.5635

3 0.0824 1.1042 0.2826 0.5635

4 0.1182 1.3249 0.1955 0.5635

5 -0.0865 -0.8707 0.3916 0.5874

7 0.0379 0.6261 0.5401 0.6751

9 0.12 1.0591 0.3005 0.5635

11 0.0279 0.3223 0.7494 0.7995

12 0.0635 0.9234 0.3634 0.5874

13 0.0216 0.2563 0.7995 0.7995

14 0.0329 0.3715 0.7129 0.7995

15 0.0755 1.1096 0.2757 0.5635

16 0.0613 1.1093 0.2764 0.7995

17 0.0424 0.6630 0.5131 0.6751

18 -0.1254 -1.3280 0.1949 0.5635

Table C.1: Mean maximum differences and t and p values for the black/white versus
red/green conditions for HbO2.
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Channel ∆[HHb] Mean Difference (b/w - r/g) tHHb pHHb FDR corrected pHHb

1 0.0395 0.6040 0.5505 0.8131

2 -0.0308 -0.4584 0.6505 0.8131

3 -0.1069 -1.1227 0.2749 0.7501

4 0.0871 1.2859 0.2086 0.7501

5 -0.0445 -0.6758 0.5049 0.8131

7 -0.0650 -1.0055 0.3296 0.7501

9 -0.008 -0.0827 0.9348 0.9348

11 0.0918 1.2051 0.2376 0.7501

12 -0.0472 -0.9206 0.3649 0.7501

13 -0.0110 -0.1457 0.8851 0.9348

14 0.0741 1.1003 0.2800 0.7501

15 0.0618 0.8533 0.4001 0.7501

16 0.0085 0.1156 0.9088 0.9348

17 0.0454 0.9005 0.3761 0.7501

18 0.0291 0.4739 0.6392 0.8131

Table C.2: Mean maximum differences and t and p values for the black/white versus
red/green conditions for HHb.
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Channel ∆[oxCCO] Mean Difference (b/w - r/g) toxCCO poxCCO FDR corrected poxCCO

1 0.005 0.3015 0.7652 0.9224

2 0.0279 1.3219 0.1977 0.7414

3 -0.0096 -0.3829 0.7058 0.9224

4 -0.0364 -2.2019 0.0358* 0.5367

5 -0.0120 -0.4045 0.6891 0.9224

7 0.0120 0.2584 0.7994 0.9224

9 -0.0222 -0.9392 0.3574 0.9224

11 -0.0075 -0.3998 0.6921 0.92240

12 0.0333 1.8525 0.0742 0.5562

13 0.0086 0.4423 0.6614 0.9224

14 0.008 0.4966 0.6231 0.9224

15 -0.0000087 -0.0048 0.9962 0.9962

16 0.0011 0.0722 0.9429 0.9962

17 0.0268 1.4544 0.1578 0.7414

18 0.0049 0.2571 0.7990 0.9224

Table C.3: Mean maximum differences and t and p values for the black/white versus
red/green conditions for oxCCO.

NIRS Results - Gratings conditions

Time to peak analysis

Figure C.3 shows the TTP for each chromophore for low contrast and high contrast condi-
tions respectively.
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Figure C.3: Bar graph showing the time taken for the response in each of the chromophores
to reach its maximum value in response to the low contrast gratings (top) and high contrast
gratings (bottom).

Cross-correlation analysis

Figure C.4 shows the cross-correlations between (i) HbO2 and oxCCO (ii) HHb and oxCCO
and (iii) HbO2 and oxCCO for all the channels (including the channels over the occipital
cortex) for the black/white conditions and red/green conditions.
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Figure C.4: Cross-correlations between HbO2 and oxCCO (left), HHb and oxCCO (mid-
dle) and HbO2 and oxCCO (right) for the low contrast condition (top) and high contrast
condition (bottom). The x-axis shows the time-lag between the time series while the y-axis
shows the correlation coefficient.

High contrast versus low contrast statistical tables

Tables C.4 - C.6 show the mean maximum changes in ∆[HbO2], ∆[HHb] and ∆[oxCCO]
respectively with their the t and p values and FDR corrected p values. Significant channels
are marked with an asterisk, both for the uncorrected and corrected p values.
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Channel ∆[HbO2] Mean Difference (hc - lc) tHbO2 pHbO2 FDR corrected pHbO2

1 0.1172 1.2830 0.2097 0.6290

2 0.1483 1.5945 0.1229 0.4609

3 0.1832 1.9706 0.0628 0.4609

4 0.0587 0.8901 0.3808 0.7573

5 -0.0569 -0.5196 0.6076 0.7573

7 0.2288 1.9159 0.0734 0.4609

9 0.0349 0.3865 0.7027 0.7573

11 0.0551 0.6852 0.4985 0.7573

12 0.0794 1.6731 0.1051 0.4609

13 0.0209 0.3118 0.7573 0.7573

14 0.0553 0.5564 0.5821 0.7573

15 0.0454 0.5037 0.6180 0.7573

16 0.0511 0.6981 0.4907 0.7573

17 -0.0231 -0.3715 0.7133 0.7573

18 -0.0844 -0.9417 0.3544 0.7573

Table C.4: Mean maximum differences and t and p values for the low contrast versus high
contrast conditions for HbO2.
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Channel ∆[HHb] Mean Difference (hc - lc) tHHb pHHb FDR corrected pHHb

1 0.0341 0.5168 0.6092 0.9419

2 0.0154 0.2288 0.8208 0.9954

3 0.0406 0.5002 0.6224 0.9419

4 0.00029 0.0059 0.9954 0.9954

5 0.1045 1.4346 0.1629 0.4886

7 0.0949 1.6646 0.1154 0.4329

9 -0.0582 -0.7935 0.4356 0.9334

11 -0.009 -0.1697 0.8664 0.9954

12 0.1358 1.8504 0.0745 0.4329

13 0.0791 1.1963 0.2409 0.6023

14 0.0812 1.6342 0.1127 0.4329

15 0.1343 2.1619 0.0385 0.4329

16 -0.0293 -0.4898 0.6279 0.9419

17 0.0023 0.0458 0.9638 0.9954

18 0.0125 0.2244 0.8241 0.9954

Table C.5: Mean maximum differences and t and p values for the the low contrast versus
high contrast conditions for HHb.

442



Appendix C

Channel ∆[oxCCO] Mean Difference (hc - lc) toxCCO poxCCO FDR corrected poxCCO

1 -0.0121 -0.6848 0.4989 0.9101

2 0.0159 0.7222 0.4766 0.9101

3 -0.0079 -0.3582 0.7240 0.9101

4 -0.0309 -1.4530 0.1570 0.9101

5 -0.0055 -0.3080 0.7604 0.9101

7 -0.0243 -0.5597 0.5834 0.9101

9 0.0221 0.8685 0.3941 0.9101

11 0.0260 1.2239 0.2305 0.9101

12 0.0065 0.3719 0.7127 0.9101

13 0.0044 0.3016 0.7650 0.9101

14 -0.0031 -0.1868 0.8531 0.9140

15 -0.0051 -0.3405 0.7358 0.9101

16 0.00074 0.0433 0.9658 0.9658

17 -0.0043 -0.2707 0.7888 0.9101

18 -0.0113 -0.5732 0.5711 0.9101

Table C.6: Mean maximum differences and t and p values for the low contrast versus high
contrast conditions for oxCCO.
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