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For Hazel.

“What would it have looked like,” he said, “if this TV set projected all

channels onto the cathode ray screen at the same time? Could we have

distinguished anything, in the mixture?”

“I don’t think so.”

“Maybe we could learn to. Learn to be selective; do our own job of

perceiving what we wanted to and what we didn’t. Think of the pos-

sibilities, if our brain could handle twenty images at once; think of the

amount of knowledge which could be stored during a given period. I

wonder if the brain, the human brain —” He broke o�. “The human

brain couldn’t do it,” he said, presently, re�ecting to himself.

(Dick, 1969)
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Abstract

Task switching is a behavioural paradigm within cognitive psychology that has been

claimed to re�ect the activity of high-level cognitive control processes. However, clas-

sic behavioural markers such as the (n-1) switch cost have also been shown to re�ect a

multitude of other cognitive processes. The n-2 repetition paradigm has proven more

successful, with a behavioural measure (the n-2 repetition cost) agreed to be re�ec-

tive of a cognitive inhibition mechanism (‘backward inhibition’). The present thesis

develops computational models of task switching, including a backward inhibition

model. The models are developed within the interactive-activation and competition

(IAC) framework, as a development of an existing task switching model. Modelling is

constrained by the general computational principles of the IAC framework and default

parameter settings where these are shared with earlier models. The e�ect of speci�c

novel parameter settings on behaviour is explored systematically. The backward inhi-

bition model predicts a range of empirically observed behavioural phenomena includ-

ing both n-1 switch and n-2 repetition costs, and the modulation of the n-2 repetition

cost under certain circumstances, including the manipulation of intertrial intervals.

A speci�c prediction of the model, the modulation of n-2 repetition costs according to

switch direction when tasks are of di�erent di�culties, is tested empirically, with re-

sults con�rming and providing validation of the model. Finally, consideration is given

to how such a backward inhibition model could be adapted to maximise performance

bene�ts in di�erent task switching contexts, via a process of parameter tuning.
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Chapter 1

Overview

This chapter introduces the notion of task switching and the key the-

oretical constructs of switch costs, n-2 repetition costs, and backward

inhibition. The chapter ends with an overview of the computational

methodology and the structure of the thesis as a whole.

1.1 Introduction

In everyday situations, people frequently switch between two or more tasks. For

example, when preparing a manuscript on a computer, a researcher might switch

between manipulating features of the word processor (e.g., formatting text) and

typing. Additional goal-directed diversions may present themselves, such as en-

gaging in conversation or checking e-mail. One component of this ubiquitous

‘multitasking’ is the ability to switch between tasks. It is frequently assumed that

cognitive control processes are required to manage cognitive resources in order to

ensure that current behaviour is appropriate to the task at hand.

Within cognitive psychology, it has long been known that alternating between

two di�erent tasks is slower than when performing the same tasks in single-task

blocks (Jersild, 1927). More recently, task-switching paradigms have been devel-

oped which compare reaction times when a given task is a repetition of the pre-

15



vious task, to when it is a switch from the previous task (e.g., Allport, Styles, &

Hsieh, 1994; Rogers & Monsell, 1995; Meiran, 1996). Such experimental procedures

robustly reveal ‘switch costs’ — a slower reaction time and/or increased error rate

for switch trials than repeat trials. In the last two decades, a wealth of empiri-

cal data has been collected suggesting that switch costs are a�ected by a range

of task parameters. For example, preparation time, task cues, experience on the

task, response selection and execution processes, etc. (see Kiesel et al., 2010, for

a review). However, the theoretical interpretation of switch costs has been con-

troversial, and the extent to which switch costs directly re�ect cognitive control

processes remains unclear.

While task switching is in itself a theoretically interesting domain of research,

with potential applications such as in assessing inhibitory function in clinical neu-

ropsychology (e.g., Mayr, Diedrichsen, Ivry, & Keele, 2006, but see Grange, Juvina,

& Houghton, 2013), this thesis regards task switching as a vehicle for the more gen-

eral study of cognitive control in complex cognition. Within the executive function

literature, task switching is commonly cited as one, of many, computationally het-

erogeneous executive functions in a fractionated model (Cooper, 2010). One strand

of evidence comes from individual di�erences studies that have suggested that

multiple candidate executive functions, such as task switching, working memory

updating, and response inhibition, have a common basis, while remaining compu-

tationally distinct (Miyake et al., 2000; Miyake & Friedman, 2012). These studies

have identi�ed executive functions as dimensions of individual di�erence, based

on factor analysis of a wide range of putative executive tasks, including various

task switching procedures.

A limitation of this approach is the absence of a comprehensive account of the

cognitive processes involved. While computational models of putative executive

tasks or mechanisms exist (see Cooper, 2010, for a review), typically these remain

poorly integrated. For example, models of task switching (Gilbert & Shallice, 2002)

16



and con�ict monitoring (Botvinick, Braver, Barch, Carter, & Cohen, 2001) explain

di�erent control processes using the same computational mechanism, namely at-

tentional biasing of processing pathways (cf. Cohen, Dunbar, & McClelland, 1990;

Cohen & Huston, 1994). This thesis extends existing computational approaches to

task switching in a theoretically and empirically grounded fashion by incorporat-

ing a con�ict monitoring mechanism.

1.2 Theoretical overview

It has frequently been assumed that switch costs primarily re�ect the duration of

cognitive control processes which are speci�c to task switching (Rogers & Monsell,

1995) or time required to recon�gure the cognitive system appropriately to per-

form the alternative task (e.g., Vandierendonck, Liefooghe, & Verbruggen, 2010)

(henceforth, ‘recon�guration’ accounts, e.g., Rogers & Monsell, 1995; Monsell,

2003). However, some have argued that switch costs primarily re�ect interference

caused by competing tasks (‘interference’ accounts, e.g., Allport et al., 1994; All-

port & Wylie, 2000; Gilbert & Shallice, 2002). Importantly, interference accounts

are agnostic on the subject of extra cognitive processes speci�c to switching task

or recon�guring the cognitive system. Thus, theoretically, the interference and

recon�guration hypotheses are not incompatible. Indeed, integrative theories at-

tempt to combine both hypotheses, suggesting that task switching involves both

overcoming interference from a previously performed task, and recon�guring the

cognitive system (Monsell, 2003; Vandierendonck et al., 2010). However, recon-

�guration and interference accounts give con�icting accounts on the source of

switch costs. Recon�guration accounts implicitly assume that cognitive process-

ing occurs in linear, sequential stages, and thus suggest that switch costs can be

partitioned into components which directly re�ect components of cognitive pro-

cessing. In contrast, interference accounts argue that residual activation of a previ-
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ously performed task interacts with nascent activation of the current task, and that

the resulting interference is su�cient to produce the empirically observed pattern

of switch costs. These accounts suggest that the reaction time of processing is not

additive; reaction times of repeat trials cannot simply be subtracted from those

of switch trials to give a meaningful index of a speci�c cognitive process. Thus,

while recon�guration accounts accept that a component of switch costs may be

attributable to interference, the interference view holds that inferences cannot be

drawn about cognitive control processes directly on the basis of switch costs. It

is therefore important to establish what quantitative predictions the interference

view makes about behaviour in task switching experiments. Indeed, a compu-

tational model of the interference account, implemented in a parallel distributed

processing (PDP) framework, was able to simulate a range of empirical task switch-

ing e�ects that had previously been taken as primary evidence for discrete stages

of cognitive processing proposed by the recon�guration account (Gilbert & Shal-

lice, 2002). Empirical and computational work on task switching is reviewed and

evaluated in chapter 2.

Given the limitations of paradigms involving switches between two tasks to

provide insight into cognitive control processes, instead this thesis turns to phe-

nomena within a related paradigm. In a paradigm involving three tasks, (A, B

and C), Mayr and Keele (2000) established that ‘n-2 repetitions’ (A-B-A) are both

slower, and more error prone, than ‘n-2 repeats’ (C-B-A). It has been argued that

this re�ects ‘backward inhibition’, or the operation of a process of cognitive inhi-

bition, acting on the representation of the n-2 task-set. To-date, the phenomenon

has proven robust to non-inhibitory explanations. The extant literature on the

backward inhibition hypothesis is reviewed in chapter 3.

Given the similarity between the two- and three-task switching paradigms,

psychological theories and computational models of task switching should readily

generalise between them. Thus, additional insight in the cognitive processes un-
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derlying task switching may be obtained by applying models from one paradigm

to the other. To date, only Grange and colleagues (Grange et al., 2013; Grange

& Juvina, 2015) have developed computational model of the three-task switch-

ing paradigm, in this case, based within the ACT-R architecture. However, it is a

limitation that their model does not generalise between the two- and three-task

paradigms without signi�cant modi�cation, or additional theoretical assumptions

(e.g., the strategic adaptation hypothesis, explored in chapter 10).

This thesis therefore explores the computational cognitive mechanisms re-

quired by the phenomenon of backward inhibition, additional to the processes of

cross-task interference that give a good account of empirical phenomena within

the two-task switching literature.

1.3 Methodology and thesis structure

Theory development within cognitive psychology inevitably involves speci�ca-

tion of numerous entities, including processes (e.g., inhibition, active maintenance,

selection, etc.) resources (e.g., stores or bu�ers) representations (e.g., schemas,

stimulus-response pairings), and their relationships. Verbal (or ‘box-and-arrow’)

models have usefully been used to specify theories, and o�er a ready means of

conceptualising cognitive processes. However, the scope of this utility is limited

in a number of ways. Firstly, such models may not specify cognitive entities in

precise enough terms to ensure a theory fully explains a phenomenon. Secondly,

it is not clear from such models whether a theory is both necessary and su�cient

to explain the phenomenon. Finally, such theories have limited ability to make

detailed quantitative predictions that can be empirically falsi�ed.

The use of computational cognitive models, therefore, provides a means of

specifying a theory in a detailed way. By having to specify all of the aspects of

a model, in a way that can be fully implemented in a computer program, the pro-
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cess can draw attention to aspects of the theory that had not been fully worked out

in verbal models (as an example, Grange et al., 2013, established that the lack of

a ‘backward inhibition’ e�ect did not imply the absence of cognitive inhibition, as

had been assumed in the empirical literature, but merely reduced inhibition). The

need to fully specify all aspects of a working computational model may include

additional details which are not fully contained within the theory, or on which

the theory is agnostic. For example, the speci�c choice activation function for the

units in connectionist networks is not generally regarded as an important part of a

psychological theory. The amount of implementational detail may be considerable

for a computational model of any great complexity. If modeling is to contribute to

psychological theory, it is therefore important the predictions of models are shown

to be independent of any speci�c implementational details that are not a part of

the theory (Cooper, Fox, Farringdon, & Shallice, 1996). Alternatively, for those de-

tails that are important to the behaviour of a model, the theory must be expanded.

In the present thesis, the potential role of the extra-theoretical concept of ‘neg-

ative con�ict’ in the simulation of the empirically observed behaviour pattern is

explored by presenting three alternative versions of the model (chapters 4 and 6).

A related issue is the degree of freedom a�orded to the modeler. With a poten-

tially vast array of implementational details that are left unspeci�ed by psycholog-

ical theory, the speci�cation of models may potentially be left unconstrained, giv-

ing modelers great scope for simulating arbitrary patterns of behaviour. One ap-

proach to constraining the range of implementational detail available to the mod-

eler working within a speci�c domain is to create their model within a cognitive ar-

chitecture (Newell, 1990). The architecture itself, by providing the general-purpose

cognitive aspects of the model common to all tasks (e.g., inputs and outputs, such

as sensory and motor systems; generalised cognitive processing characteristics

such as activation functions) reduces the details that must be speci�ed in a par-

ticular model to those speci�c to the theory in question. While the most proli�c
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example of this approach has been the ACT-R architecture (Anderson, 2007), it has

been argued that an alternative is the development of interactive-activation and

competition (IAC) networks, under the constraints of certain common principles

(McClelland, 1993). This is the approach adopted by this thesis, in the continued

development of speci�c IAC models (i.e., Cohen et al., 1990; Cohen & Huston, 1994;

Gilbert & Shallice, 2002).

A �nal methodological issue concerns the falsi�ability of computational mod-

els. As the implementation of a speci�c psychological theory, it is important that

a model can be potentially falsi�ed. While it is important that a putative model

of a cognitive process �ts the available empirical data, at least equally important

is the range of data (that is, behavioural patterns) that the model does not �t, or

excludes (Roberts & Pashler, 2000). Thus, if model �tting is used exclusively as a

criterion for the success of a model, a careful approach to �tting is essential, as

is exploring the dependence of a particular behaviour pattern on speci�c param-

eter settings. One alternative approach to model validation is to use the model to

generate speci�c, testable behavioural hypotheses and to show that these predic-

tions hold over a broad range of theoretically justi�ed parameter values. If a model

makes a clear, falsi�able prediction in a novel behavioural paradigm, and this pre-

diction is empirically veri�ed, support for the model is provided in a similar way

to non-computational theories. This approach is adopted in this thesis. Chapters

4 and 5 describe a model of three-task switching and present initial simulations,

while chapter 6 conducts systematic studies of the model’s behaviour across pa-

rameter space and chapter 7 generates empirical predictions on manipulation of

the n-2 repetition cost when switching between three-tasks of asymmetric di�-

culty. These predictions are subsequently tested in chapter 8. Further simulation of

empirical e�ects are reported in chapter 9, while chapter 10 addresses the compu-

tational mechanisms underlying participants’ strategic adaptation to their current

task context. Finally, chapter 11 presents a general discussion and questions for
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future research.
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Chapter 2

Task Switching: A Review of

Empirical and Computational

Evidence

This chapter presents an overview of the main procedural paradigms

used in task switching experiments and the main empirical e�ects.

This is followed by discussion of the implications of these results for

theoretical accounts of task switching. Within the �eld of task switch-

ing, one strand of research has focused on switching between tasks of

unequal di�culty. This sub-paradigm presents a range of its own em-

pirical e�ects, such as asymmetric switch costs. The second half of the

chapter reports a re-implementation of two computational models of

task switching between tasks of unequal di�culty.

2.1 Empirical paradigms and e�ects

Within cognitive psychology, the domain of task switching aims to study the cog-

nitive processes underlying the human ability to switch between di�erent tasks.

Nearly two decades of research has revealed a large range of empirical e�ects,

23



of which the most well known is the switch cost — performing a new task is both

slower and more error prone than when repeating that task. A number of di�erent

empirical procedures have been used to examine di�erent aspects of task switching

behaviour, and a number of the empirical e�ects are therefore procedure-speci�c.

This section presents a non-exhaustive overview of the main empirical procedures

that have been used historically, and the typically observed empirical e�ects (see

Kiesel et al., 2010, for a full review).

A further major division in empirical task switching research has been be-

tween studies using tasks which are relatively equally well-learned tasks, and those

which use tasks with di�erent levels of practice. The former studies include classi-

�cation tasks, such as classifying letters as consonants or vowels, or digits as odd

or even (e.g., Rogers & Monsell, 1995). The latter include tasks such as word read-

ing and colour naming of incongruent Stroop stimuli (e.g., Allport & Wylie, 2000).

Importantly, a body of empirical e�ects are speci�c to switching between tasks of

di�erent di�culties, such as asymmetric switch costs.

2.1.1 The list procedure

In laboratory situations, it has long been known that alternating between two dif-

ferent tasks is associated with a performance cost (‘switch costs’, usually measured

in terms of a slower response time, but also, frequently, response accuracy) when

compared with performing the same tasks in single-task blocks. For example, com-

pleting a list comprised of two simple arithmetic tasks, such as adding and subtract-

ing 3, is slower when participants must complete a mixed list, alternating between

addition and subtraction, than a list consisting of two single task blocks, complet-

ing all the addition tasks followed by all the subtraction tasks (Jersild, 1927). While

similar list-based paradigms are still used to assess task switching (e.g., Miyake

et al., 2000, used a list procedure alongside other switching tasks) and remain at-

tractive for their simplicity, they have a number of limitations. The time-cost of
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switching is attributable to the overall di�erence between blocks of trials, and is

di�cult to attribute to any speci�c components of behaviour. For this reason, they

are usually referred to as ‘global’ switch costs or ‘mixing costs’, Additionally, such

procedures may be confounded by the additional requirement to hold two tasks

in memory when completing the mixed list, whereas single-task blocks may be

completed holding only a single task in memory for most of the procedure.

2.1.2 The alternating runs paradigm

To address the limitations of the list procedure, Rogers and Monsell (1995) devel-

oped a procedure in which participants complete alternating runs of tasks. While

the run length is variable, it is typically �xed such that the task sequence is en-

tirely predictable. For example, two tasks A and B, might be sequenced in runs of

length 2, resulting in the task sequence AABBAA etc., (Rogers & Monsell, 1995),

although studies with longer sequences have been conducted (Monsell, Sumner, &

Waters, 2003). Typically, the stimuli appear in a rotating sequence around a four-

quadrant grid. Participants are instructed to perform task A when stimuli appear

in one half of the grid, and task B in the other half. Thus, ‘switch’ and ‘repeat’

trials regularly alternate within the same block of trials, and the task to perform

is implicitly visually cued, removing the requirement to maintain the current task

in working memory.

Switch costs

The main emprical e�ect in this paradigm is robust switch costs, calculated as

the average RT di�erence between ‘switch’ and ‘repeat’ instances of each task.

Assessed in this way, switch costs re�ect the additional time required to complete

a task switch.

The theoretical interpretation of switch costs has been controversial. One fre-

quent suggestion has been that switch costs re�ect the operation of cognitive con-
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trol processes required by switch trials but not by repeat trials (Rogers & Monsell,

1995), or the time to recon�gure the cognitive system and set task parameters ap-

propriately for a new task (Vandierendonck et al., 2010). Alternatively, it has been

argued that switch costs primarily re�ect an interference e�ect of having recently

performed an alternative, competing task. This concept has been expressed intu-

itively in terms of ‘task-set inertia’ (Allport et al., 1994; Allport & Wylie, 2000) and

expressed formally as residual activation of the competing task in an interactive

activation model.

However, the utility of the alternating runs paradigm for assessing the costs of

a task switch was called into question by Altmann (2007a). Within this paradigm,

every task switch is also the �rst trial in a run. This measure of switch costs,

therefore, is fundamentally confounded with any e�ects of trial position. Indeed,

Altmann’s experiments provide evidence for such run-position e�ects on RT when

runs are separated by a longer RSI (see restart costs, section 2.1.2) but also when

the RSI is uniform within and between runs. This criticism provides a rationale

for the inclusion of runs with no switch of task (i.e., repeat runs) to separate the

e�ects of a task-switch from those of run position, as in what Vandierendonck et al.

(2010) refer to as the “intermittent instruction procedure”. Additionally, it implies

caution when comparing switch costs between alternating runs and explicit cueing

paradigms. As each trial in the latter paradigm is cued separately, it is e�ectively

a series of runs of length 1, implying switch costs may be confounded with restart

costs.

Task serial position e�ect

A frequently reported property is that an elevated RT following a switch of task is

restricted to the �rst trial after a task switch (henceforth, the ‘switch trial’), while

RTs are usually approximately equal for subsequent trials in which the task repeats

(‘repeat trials’) (e.g., Rogers & Monsell, 1995; Allport & Wylie, 2000; Rubinstein,
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Meyer, & Evans, 2001). While it has been argued that this e�ect is not consistent

with interference accounts of switch costs (e.g., Rogers & Monsell, 1995; Rubin-

stein et al., 2001), the computational model of interference in task switching of

Gilbert and Shallice (2002) reproduced this e�ect, suggesting that the presence

of this e�ect alone does not discriminate between competing theories. While it

has been debated whether this e�ect constitutes evidence against an interference-

based account of switch costs (Rogers & Monsell, 1995; Rubinstein et al., 2001, but

see Gilbert & Shallice, 2002), direct comparison with the explicit cueing paradigm

suggests that this e�ect may be speci�c to switching procedures with predictable

runs (see section 2.1.4).

Preparation e�ects

The e�ect of preparation on switch costs has been of major interest. According to

the logic of the recon�guration account, when the task required on the next trial is

predictable and/or explicitly cued, a greater interval in which to prepare for the up-

coming task should allow participants to complete any control processes required

by the task switch, and thus should reduce switch costs (e.g., Rogers & Monsell,

1995). A number of studies have shown that in the alternating runs paradigm,

switch costs are indeed reduced by an increased response-stimulus interval (RSI)

(e.g., Meiran, 1996; Rogers & Monsell, 1995, experiment 3).

This robust �nding has often been taken as primary evidence for a recon�gu-

ration account of task switching. According to this perspective, participants use

preparation intervals to complete ‘advance recon�guration’, leading to a reduction

in the recon�guration required after stimulus onset. As this paradigm typically

involves predictable sequences and obvious indication of the participant’s current

position in the sequence, the preparation interval (i.e., the time interval between

knowing which task will be required next and the stimulus required to actually

initiate performing the task) cannot be directly manipulated. As a result, it is dif-
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�cult to de�nitively demonstrate using this paradigm whether preparation e�ects

re�ect factors relating to the task switch (i.e., recon�guration) or factors relating to

the previous trial (i.e., passive task-set decay). Thus, most studies on preparation

in task switching have preferred the explicit cueing paradigm, which allows these

two variables to be manipulated independently.

Residual switch costs

While switch costs are reduced with preparation, a number of studies have shown

that they have a residual component which is not entirely eliminated by prepara-

tion, even for preparation intervals as long as 8s (Kimberg, Aguirre, & D’Esposito,

2000), while others do not show such a residual e�ect (Meiran, 1996; Meiran,

Chorev, & Sapir, 2000; Tornay & Milán, 2001; De Jong, 2000). Within recon�g-

uration accounts of the preparation e�ect, some theorists have argued that prepa-

ration for a task consists of two stages, only the �rst of which may be completed

in advance of the target stimulus (so-called two stage models, e.g., Rogers & Mon-

sell, 1995; Meiran et al., 2000). According to these models, it is the second stage of

recon�guration that requires a target stimulus, and this is the cause of the residual

switch cost. This claim will be discussed further in section 2.2, below.

Alternative accounts of the residual switch cost propose that it does not re-

�ect recon�guration processes but is the result of interference. These accounts

may attribute the entirety of the switch cost to interference (e.g., Allport & Wylie,

2000). Alternatively, ‘hybrid’ accounts of switching assume an active recon�gura-

tion process, but that the residual switch cost re�ects an interference component

(Monsell, 2003).

Restart costs

In procedures in which runs are separated by a longer intertrial interval (RSI), the

�rst trial of the next run typically has a longer RT than subsequent trials, even
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when the task does not switch (e.g., Allport & Wylie, 2000; Waszak, Hommel, &

Allport, 2003). This e�ect is further discussed in section 2.1.3, below.

Asymmetric task di�culties in the alternating runs paradigm

A range of studies in the alternating runs paradigm have been conducted on switch-

ing between pairs of trials with asymmetric di�culties. Most typically, in a mod-

i�ed task-switching version of the Stroop paradigm, participants switch between

word reading and colour naming of Stroop stimuli (Allport et al., 1994; Allport

& Wylie, 2000; Bryck & Mayr, 2008; Rogers & Monsell, 1995; Yeung & Monsell,

2003), although similar e�ects have been found with simple congruent or incon-

gruent spatial compatibility rules (Bryck & Mayr, 2008), picture naming and word

reading tasks (Waszak et al., 2003), arithmetic tasks (Schneider & Anderson, 2010),

and switching between languages (Meuter & Allport, 1999; Philipp, Gade, & Koch,

2007)1.

However, the �ndings discussed in this section are not universal. Some studies

have failed to �nd asymmetric switch costs (e.g., Monsell, Yeung, & Azuma, 2000),

and switch cost asymmetries have successfully been reversed by experimental ma-

nipulations, such as by introducing a stimulus onset asynchrony between the word

and colour elements of Stroop stimuli (Yeung & Monsell, 2003).

Asymmetric switch costs Empirically, it has been found that when completing

two tasks with unequal levels of practice, in response to stimuli which a�ord both

tasks — such as word reading and colour naming in response to Stroop stimuli

— that switch costs are highly asymmetric. Counter-intuitively, switch-costs are

higher for switching to themore practiced task (i.e., word reading), than for switch-

ing to the less practiced task. Given that reaction times are generally slower for

the less practiced tasks, this e�ect has been described as ‘paradoxical’ (Allport et
1Additionally, similar e�ects have been found when switching between pro-saccades and anti-

saccades, although generalising from these studies may be problematic due to inhibition mecha-
nisms speci�c to the oculomotor system. See Kiesel et al. (2010) for a review.
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al., 1994). Switch cost asymmetries have been demonstrated using Stroop stimuli

(Allport et al., 1994) and �rst and second language reading in bilinguals (e.g., Costa

& Santesteban, 2004; Meuter & Allport, 1999; Philipp, Gade, & Koch, 2007). While

the switch cost asymmetry is a robust �nding, some studies have shown that the

asymmetry may be eliminated or even reversed under some circumstances (e.g.,

Yeung & Monsell, 2003).

Reverse Stroop interference It has been observed that when participants switch

between word reading and colour naming of Stroop stimuli, the RT of word read-

ing trials is more a�ected by switching than colour naming trials (Allport et al.,

1994; Allport & Wylie, 2000). Word reading is slower for incongruent than neutral

stimuli on switch trials, but not repeat trials; this e�ect is referred to as a ‘reverse-

Stroop’ e�ect. In contrast, colour naming is slower for incongruent stimuli in both

switch and repeat trials. This e�ect has been interpreted as evidence in favour of

interference-based accounts of switching.

Limitations of the alternating runs paradigm

The alternating runs paradigm has a number of limitations. Firstly, the procedure

only investigates switching where task sequences are predictable. The procedure

tends not to be used to study the e�ect of predictability on task switch e�ects

(although, see Monsell et al., 2003). Secondly, studies using this procedure have

typically used short run lengths, of two or four. According to the recon�guration

account, it is typically assumed that once switching processes have taken place,

there should be no residual e�ects of a task switch on subsequent repeat trials.

This is reasonable, given that switch costs are typically restricted only to the �rst

trial in a run. However, Allport and Wylie (2000) reported experiments in which

persisting e�ects of interference were found after 24 trials, and even after several

blocks of exclusively performing repeat trials. These �ndings are reviewed in sec-
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tion 2.1.3, below. Thirdly, while preparation e�ects suggest that longer intertrial

intervals may reduce switch costs, the paradigm does not o�er a means of distin-

guishing the passive decay of residual activation from the previous trial (Meiran et

al., 2000), from active processes which prepare for the upcoming task (e.g., Rogers

& Monsell, 1995; Rubinstein et al., 2001). This limitation is addressed by the ex-

plicit cueing paradigm, discussed in section 2.1.4. Finally, in most instances of the

alternating runs paradigm, there are no runs in which the task repeats – each run

is a switch run. Thus, Altmann (2007a) persuasively argued that the alternating

runs paradigm structurally con�ates switch costs with �rst-trial e�ects.

2.1.3 The before-and-after paradigmofAllport andWylie (2000)

Allport and Wylie (2000) used a variation of the blocked, predictable switching

paradigm to examine the longer-lasting e�ects of prior performance of a con�ict-

ing task. In a series of experiments using colour naming and word reading tasks in

response to Stroop stimuli, participants either performed 30 colour naming trials,

or rested, in between baseline and ‘postcolour’ phases of exclusively word read-

ing blocks, each consisting of 10 trials and alternating between neutral and Stroop

stimuli. Each block of trials was separated by a longer intertrial interval, and the

task was explicitly cued.

Typically, switch costs and a characteristic asymmetry (i.e., greater for switches

into the dominant task than the non-dominant task) are observed in this paradigm.

Additional e�ects are reviewed below.

Restart costs

Following a short break the �rst trial in a block is typically slower than subse-

quent trials, even with no switch of task. For example, Allport and Wylie (2000,

experiment 3) report restart costs following a 2s break between blocks of 10 trials.

Restart e�ects on the �rst trial of each block were observed for all participants,
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including control participants who performed no colour naming, but rested be-

tween baseline and ‘postcolour’ phases. This e�ect robustly appears in blocked

paradigms (Allport & Wylie, 2000; Bryck & Mayr, 2008) and the intermittent in-

structions paradigm (Altmann, 2007a).

Rebound e�ects

Allport and Wylie (2000) report a striking interaction between switching and restart

costs. In their experiments 3–5, participants performed consecutive blocks of word

reading (termed ‘postcolour’ blocks), with no further task switches, after either an

unrelated RT task (control condition) or a block of colour naming (colour naming

condition). On the �rst trial of postcolour block 2, control participants were slower

than on subsequent trials (a standard restart e�ect), while those who performed

colour naming showed an additional RT cost above that of the control participants.

Additionally, participants who performed colour naming showed a large increase

in RT (i.e., a switch cost) on the �rst postcolour word reading block, but also a

smaller, but statistically signi�cant, increase in RT on the �rst trial of the second

block. Allport and Wylie (2000) interpreted this e�ect as suggesting that, not only

was interference persistent over a large number of trials, but that it interacts with

restart costs (‘rebounds’) on the �rst trial of a run.

While this e�ect has been relatively overlooked, Bryck and Mayr (2008) repli-

cated the �nding, in both simple congruent or incongruent spatial compatibility

tasks, and Stroop colour naming and word reading. In a modi�ed alternating runs

paradigm with runs of 4 trials, interrupted by a longer RSI between trials 2 and

3 (i.e., AA – AA – BB – BB – AA. . . ) the restart trial (i.e., trial 3) exhibited

the RT asymmetry characteristic of switch costs (i.e., a greater switch cost when

switching to the dominant task) even with no switch of task.

Rebound e�ects are problematic for a number of reasons. Firstly, they assume

that switch costs directly re�ect switch-related control processes (although, they
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do not, in themselves, preclude an additional time cost of such control processes.)

Secondly, they assume that repeat trials re�ect a stable, fully con�gured cognitive

system. Thirdly, they assume that interference is restricted to switch trials, and

is overcome or eliminated on repeat trials. Fourthly, it suggests that interference

is latent, and may persist during repeat trials despite their stable RT. Rebound

e�ects are challenging for recon�guration accounts of task switching to explain,

and provide compelling evidence that switch costs are a problematic measure of

any cognitive recon�guration processes. While they are more consistent with an

interference account of task switching, interference resulting from the carryover

of activation from the previous trial does not provide a su�cient explanation.

Instead, both Allport and Wylie (2000) and Bryck and Mayr (2008) interpret

these �ndings as suggesting an associative-learning mechanism whereby task sets

become associated with speci�c stimulus items. Additionally, Bryck and Mayr

(2008) propose that associative learning is further modulated by cognitive control:

the higher level of control required to perform the non-dominant task facilitates as-

sociative learning, thereby strengthening associations between the stimulus item

and the non-dominant task, more than the dominant task. Such long-term e�ects

of interference were not addressed by Gilbert and Shallice (2002) in their compu-

tational model of the interference account, and without further tests it is unclear

whether the model can simulate such e�ects.

Item-speci�c switch costs

Allport and Wylie (2000, experiment 5) reported compelling evidence that a com-

ponent of switch costs could be attributed to negative priming. Speci�cally, stim-

uli which had previously appeared in a colour-naming block of trials resulted in

slower RTs when they appeared on word reading trials, than when they had not

appeared for a colour-naming task. This e�ect was greater for switch than for

repeat trials.
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Neutral stimuli in the destination (WR) task

Firstly, when neutral stimuli are used to perform the dominant task, costs of a

switch into this task are typically reduced, although not eliminated. For example,

Allport and Wylie (2000, in experiment 4), the e�ects of switching from colour

naming of incongruent stimuli to word reading, contrasted incongruent against

neutral word reading stimuli. The cost of switching to word reading was signif-

icantly reduced for neutral stimuli, although the switch cost was still substantial

(see also Rogers & Monsell, 1995, experiment 1).

Neutral stimuli in the prior (CN) task

Allport and Wylie (2000, experiment 1) examined the e�ect of varying the degree

of interference between colour naming and word reading tasks, by using neutral

stimuli only on colour naming trials, compared to the typical incongruent stimuli.

The cost of switching to word reading was much greater when incongruent stimuli

were used in the colour-naming task, rather than neutral stimuli, even though all

word-reading stimuli were incongruent. This was interpreted as suggesting that

switch costs depend primarily on characteristics of the previous, rather than the

current trial, and is key evidence that interference is a key cause of the switch cost.

2.1.4 The explicit cueing paradigm

We recall that the reduction of switch costs with greater time to prepare for the

forthcoming trial is taken as primary evidence of recon�guration accounts of task

switching. However, within the alternating runs paradigm, where only the inter-

trial interval (the response-stimulus interval, or RSI) is manipulated, it is di�cult

to discriminate between e�ects of preparation from what might be passive decay-

e�ects of the previous trial. For this purpose, the explicit cueing paradigm o�ers

better control of task timing parameters.

In an explicitly cued switching task, the order of tasks is randomised, hence
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both the task sequence and the need to switch tasks are unpredictable. Participants

are instructed which task to perform by an on-screen cue, which appears before

the task stimulus. The RSI in the alternating runs paradigm is partitioned into

response-cue interval (RCI) and cue-stimulus interval (CSI).

Within this paradigm, the RSI and CSI parameters may be varied indepen-

dently, and are assumed to primarily in�uence the residual e�ects of the previous

trial and preparation for the forthcoming trial, respectively.

Preparation e�ects

1. Preparation e�ects from variable foreperiod (CSI) Typically, the e�ect of

preparation for an upcoming trial is assessed by varying the CSI between

trials. In this manipulation, longer CSI’s robustly reduce switch costs, and

also reaction times generally (e.g., Meiran, 1996). However, some caution is

required in interpreting this �nding, and two main lines of research suggest

that preparation may not be speci�c to task switching, making question-

able theoretical accounts taking preparation e�ects as primary evidence for

recon�guration (see Kiesel et al., 2010, pp. 856-858, for a detailed review).

Firstly, when CSI was varied between-subjects, longer CSIs produced a gen-

eral reduction in RTs, but no signi�cant reduction in switch costs (Koch,

2005; Koch & Allport, 2006), and two studies which speci�cally compared

within-subjects and between-subjects manipulations of CSI found that switch

costs were only signi�cantly a�ected in the within-subjects design (Koch,

2001; Altmann, 2004). Altmann and Gray (2008) present a computational

model accounting for these preparation e�ects, although the model may not

be compatible with evidence from Monsell and Mizon (2006). This model is

reviewed in section ??.

2. Preparation e�ects from sequence predictability The second line of evi-

dence comes from studies which used a constant CSI, but manipulated the
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predictability of the task sequence. For example, presentation of an addi-

tional cue on each trial, indicating the probability of a task repeat or a switch,

produced faster overall reaction times for high compared to low probability

cues, but did not produce a signi�cant di�erence in switch costs, with prepa-

ration bene�ts due to predictability seeming to a�ect both switch and repeat

trials (Dreisbach, Haider, & Kluwe, 2002). Similarly, in a procedure in which

the sequence was explicitly cued, but the predictability of the sequence it-

self was manipulated (varying between the AABB design used in the alter-

nating runs paradigm, and an unpredictable sequence), RTs were generally

slower for an unpredictable sequence but switch costs did not di�er between

predictable and unpredictable sequences (Koch, 2005).

Summary - preparation e�ects Taken together, the previous two e�ects sug-

gest that the bene�ts of preparation resulting, �rstly, from a preparation

foreperiod after a task cue (i.e., CSI) and secondly, from sequence predictabil-

ity, may not speci�cally bene�t task switching. Thus, it cannot be assumed

that preparation e�ects necessarily re�ect advance recon�guration, as is

sometimes assumed by discrete stage-based recon�guration accounts (e.g.,

Schmitz & Voss, 2012). The computational model of Gilbert and Shallice

(2002) may also be theoretically under-speci�ed with respect to preparation

e�ects. The simulation of preparation by the prior activation of task demand

units assumes that preparation also makes the above assumption, and prob-

ably is not su�cient to account for a wider range of empirical e�ects.

In response, alternative theoretical proposals have been made that cogni-

tive processes such as task-updating (cf. Rubinstein et al., 2001) need to be

performed on both switch and repeat trials, or that participants may switch

between task-speci�c or generic preparation strategies, depending on low-

or high-stress contexts (Steinhauser, Maier, & Hübner, 2007).
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Task serial position e�ects

In contrast to the alternating runs paradigm, RTs on the trials consequent to a

switch of task do not tend to show a sharp discontinuity between the �rst (switch)

trial, and subsequent (repeat) trials. Instead, in EC procedures with longer runs and

less frequent switches, a graded reduction in reaction times is typically observed

(e.g., Tornay & Milán, 2001; Monsell, 2003; Milán, Sanabria, Tornay, & González,

2005; Koch, 2005). This di�erence has been attributed to the di�erences in pro-

cessing predictable and unpredictable sequences (see Altmann, 2007a, for a review

and one theoretical account).

2.1.5 E�ects of cue switching

The interpretation of explicitly cued task switching has recently been challenged

by a line of research which argues that apparent switch costs actually re�ect the ef-

fects of cue-encoding processes, rather than switches of task-set (see Jost, De Baene,

Koch, & Brass, 2013; Kiesel et al., 2010, for recent reviews). Logan and Bundesen

(2003) and Mayr and Kliegl (2003) both argued that a major limitation of the ex-

plicit cueing paradigm is that in the usual procedure task cues indicate tasks with

a 1:1 mapping, meaning that every task switch also implies a cue switch. Hence,

the e�ects of a task switch are confounded with those of a cue switch. Both sets

of researchers independently devised a procedure which partially deconfounded

these factors by using a 2:1 cue:task mapping. For example, in a procedure involv-

ing colour naming and shape classi�cation tasks, the colour task may be identi�ed

by the cues “colour” or “hue”, while the shape classi�cation task may be identi-

�ed by either “shape” or “form” (Logan & Bundesen, 2003). Thus, transitions are

possible in which both the cue and task switch, the cue switches but the task re-

peats, or where both repeat. These experiments, typically, have found an RT cost

(‘cue-switch cost’) on trials where the cue switches but the task does not. Based

on subtracting the cue-switch cost from the overall switch cost, a ‘corrected task-
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switch cost’ may be derived, putatively fractionating the cost of the switch into

cue-switch and task-switch components (Altmann, 2006; Logan & Bundesen, 2004;

Mayr & Kliegl, 2003; Monsell & Mizon, 2006).

Problematically, Logan and Bundesen (2003) found only a small remaining cor-

rected task-switch cost, and argued that the main cause of the switch cost was the

switch of cue, rather than of the task (see also Mayr & Kliegl, 2003). However,

other studies have reported a larger corrected task-switch cost in some circum-

stances, suggesting that cue-switch costs cannot entirely account for switch costs

(Logan & Bundesen, 2004; Monsell & Mizon, 2006)

Cue-switch costs may therefore re�ect the bene�ts of priming to cue-encoding

when the cue repeats (Logan & Bundesen, 2003; Logan, Schneider, & Bundesen,

2007). Logan and colleagues used mathematical modelling to test three compet-

ing models of cue-switch costs (cue priming, recon�guration, and priming-and-

recon�guration) by �tting them to empirical data (see also Logan & Bundesen,

2004; Schneider & Logan, 2005). The priming model was found to be su�cient to

account for the empirical data, and was preferred as the most parsimonious the-

ory (although, see Altmann, 2006, for a less adequate �t of the model). Schneider

and Logan (2005) argued that participants may perform the explicitly cued task

switch task switching paradigm without any actual switches of task. According

to this view, by using a stimulus-compound strategy in which the combination of

cue and stimulus may be used to uniquely identify a single correct response, par-

ticipants may appear to perform switching between two, two-choice tasks, but

actually be performing a single four-choice stimulus-response mapping task. Cor-

rected switch costs, according to this view, are actually due to cues mapping onto

the same task priming each other either directly, or indirectly via a common task

representation.
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2.1.6 Switch costs and�rst-trial e�ects in the alternating runs

and explicit cueing paradigms

While �rst-trial e�ects (restart costs) are frequently reported by a number of stud-

ies in which runs are separated by a longer RSI (Waszak et al., 2003; Allport &

Wylie, 2000), Altmann (2007a) reported an elegant experiment which found �rst-

trial e�ects even with a uniform RSI between and within runs. In a variant of the

alternating runs paradigm, participants performed runs of 2 trials, however as the

task was randomised for each run, runs were either switch or repeat. Thus, the

factors of run position, and task type (switch vs. repeat) could be separated.

Altmann reasoned that certain simple e�ects provided an analog of switch

costs as assessed in both the alternating runs, and explicit cueing paradigms. Thus,

the simple e�ect of position (1st vs. 2nd trial) on switch runs only is an analog of the

alternating runs switch cost, and the simple e�ect of run type (switch vs. repeat)

on position 1 only is an analog of the explicit cueing switch cost. Furthermore,

the design allowed an assessment of the relative contribution of �rst-trial e�ects

to switch costs — the simple e�ect of position (1st vs. 2nd trial) on repeat runs

only. The results supported the suggestion that the alternating runs switch cost

con�ates e�ects of switching and trial position; in this experiment, the �rst-trial

cost was almost exactly the di�erence between the analogs of the alternating runs

and explicit cueing switch costs.

2.2 Theoretical accounts of task switching 1: Re-

con�guration models

Recon�guration accounts of task switching propose that the source of the switch

cost is the additional time required to recon�gure the cognitive system appropri-

ately to perform an upcoming task, which is longer for switch trials than for repeat
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trials. A number of recon�guration-based cognitive models of task switching have

been proposed, and various distinctions between them will be discussed in the fol-

lowing section.

2.2.1 Two-stage models

Two-stage models, in order to explain the preparatory reduction in switch costs

and the residual switch cost, typically distinguish between endogenous cognitive

operations, which may be performed as part of preparation for the forthcoming

task, prior to stimulus onset, and exogenous processes, which can only be per-

formed after the stimulus has been presented (Rogers & Monsell, 1995). According

to this distinction, advance endogenous recon�guration of the task sets during a

preparation interval results in the observed reduction in switch costs, while ex-

ogenous recon�guration processes cannot take place until after stimulus onset,

accounting for the residual switch cost (Rogers & Monsell, 1995).

Various subsequent authors have accommodated this distinction within a wider

theory of executive processing. For example, Mayr and Kliegl (2003) propose two

discrete serial stages. The retrieval stage is a memory retrieval operation of task

rules from long term memory (LTM) into working memory (WM). This stage may

be triggered either by an externally provided cue, or through an internal act of

preparation. The second stage, the application stage, involves a relatively auto-

matic processing of the stimulus according to the task rules in WM, and requires

the presentation of the stimulus in order to be carried out. Critically, this model

assumes that only a single set of task rules may be contained in WM at any time.

Therefore, a LTM retrieval operation is essential for every switch of task, even for

the simple choice tasks typically used in task-switching experiments. This shared

use of a limited resource is also the source for interference between the tasks (also

see Meiran et al., 2000, for a similar two-process model).

Similarly, Rubinstein et al. (2001) proposed that task switching involves a goal
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shifting (executive) process, which loads a new abstract goal — to complete the

speci�ed task — into declarative memory. This process may be either endogenous,

or exogenous, depending on knowledge of the forthcoming task and an appropri-

ate preparation interval. Following stimulus onset, a chain of cognitive processes

are executed, including stimulus identi�cation, rule activation, response selection,

and movement production. The executive process of rule activation involves acti-

vating the correct rule (conceptualised as a production rule) in procedural memory,

to correspond with the current goal. According to this formulation, it is necessary

to keep the rules for only a single task activated in procedural memory at a time,

to minimise con�ict during response selection. Rubinstein et al. (2001) explain the

e�ects of previous-trial interference in terms of next-trial stimulus features par-

tially activating previous-trial rules, before rule activation has been completed for

the next trial, thus making them harder to deactivate, although this explanation of

interference appears to violate the principle of strictly successive stages.

2.2.2 Extra process models

Somewhat orthogonally to the previous distinction, ‘extra process’ models assume

that additional cognitive processes are required for a task switch, which are not

required on a repeat trial. Once a task-set has been activated, it is usually assumed

that it remains active to some extent, until an alternative task-set is activated.

Recon�guration models which do not share this assumption, in contrast, sug-

gest that the same processes take place in switch and repeat trials, but proceed

faster on a task repeat due to mechanisms such as repetition priming (see Vandierendonck

et al., 2010, p. 605, for a review).

Various cognitive operations have been proposed as part of the recon�gura-

tion process, including the activation/chaining of task-set parameters (Logan &

Gordon, 2001; Monsell & Mizon, 2006; Rogers & Monsell, 1995), or retrieval of

the task-set from memory (Altmann & Gray, 2008; Rubinstein et al., 2001; Sohn &
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Anderson, 2001).

2.2.3 Discrete processing stage models, and the assumption

of additivity

A majority of recon�guration models share the strong assumption that cognitive

processing takes place in discrete, sequential stages (Mayr & Kliegl, 2003; Rubin-

stein et al., 2001; Altmann & Gray, 2008). According to these models, task switch-

ing comprises a chain of discrete subprocesses. For example, Rubinstein et al.

(2001) proposes that task switching involves executive processing stages (goal shif-

ing, rule activation) and task execution stages (stimulus identi�cation, response

selection, and movement production), which must be completed in a speci�c or-

der.

Rubinstein et al. (2001) formalise these assumptions using an additive factors

logic (Sternberg, 1969, 1998). According to this logic, it is assumed that the overall

RT of a cognitive process is a simple sum of processing times for each stage of

processing. Each stage of processing is strictly successive. That is, processing may

only begin once preceding processes have been completed. Given such an arrange-

ment of cognitive processing, multiple factors may a�ect each stage of processing,

and some factors may a�ect multiple stages. However, some factors may be selec-

tive. That is, given two stages of processing, it should be possible to �nd factors

that a�ect one but not the other, and vice versa. The operational assumption is

that if two factors each have a main e�ect on the overall RT, but with no interac-

tion, they a�ect di�erent stages of processing; if they interact, they a�ect the same

stage of processing. On this basis, it is reasoned that the structure of processing

stages may be ascertained through �nding a set of factors whose e�ects are purely

additive.

The additive factors method has been in�uential in cognitive psychology, ac-

counting for a wide range of RT data (Sternberg, 1969, 1998). Assuming discrete
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stage-based cognitive processing is, therefore, methodologically convenient, al-

lowing the decomposition of RT di�erences between experimental conditions in

a theoretically meaningful way. However, the assumptions of the approach are

questionable, especially from the perspective of connectionist models of human

cognition, which propose that rather than information processing being separated

into strictly successive, discrete stages, processing instead takes place in parallel

and may be interactive. Indeed, connectionist models have been shown to produce

RTs which closely approximate factor additivity observed in human data (Ashby,

1982).

In summary, while stages-of-processing models of task-set recon�guration and

task execution processes remain in�uential (e.g., Schmitz & Voss, 2012), the demon-

stration of factor additivity alone cannot be taken as evidence for a discrete sepa-

ration of stages, as connectionist models have demonstrated that processing with

a di�erent architecture can, in principle, approximate the same behavioural data.

Empirical veri�cation is therefore required to conclusively demonstrate that pro-

cessing takes place in discrete stages. In addition, as Allport and Wylie (2000,

p. 65) argued, models based on discrete, strictly successive stages in which recon-

�guration must occur prior to stimulus processing cannot account for interference

e�ects such as item-speci�c priming of stimuli. Thus, such models must be incom-

plete.

2.2.4 Dopreparatory e�ects imply recon�gurationprocesses?

A number of explanations for preparatory reductions in switch costs which do not

assume advance recon�guration are possible. These are brie�y reviewed here. (See

Kiesel et al., 2010, pp. 854–855, for a more complete review.)

The �rst possibility is that performance on a trial is facilitated by a non-speci�c

readiness to respond at a particular time (‘temporal preparation’). For example,

studies using single tasks have shown that temporal preparation (e.g., a�orded
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by an uninformative warning signal) may speed reaction times (see Kiesel et al.,

2010, p. 854). However, the use of warning signals in predictable (Rogers & Mon-

sell, 1995) or unpredictable (Meiran et al., 2000) task-switching has e�ects which

are weak and not speci�c to switch trials. Hence, temporal preparation is not a

satisfactory explanation for preparatory reduction in switch costs.

A second possibility is that task-set activation is subject to passive decay with

longer preparation intervals. (Note this is essentially the explanation for restart

costs in the model of Gilbert & Shallice, 2002.) According to this ‘passive task-set

decay’ hypothesis, preparatory reduction in switch costs may be, to some extent,

attributable to the passive decay of activation relating to the previous trial.2 Ad-

dressing this possibility, Rogers and Monsell (1995) reported �ndings that varying

RSI randomly within-blocks (experiment 2) did not produce the reduction in switch

costs that was observed when RSI varied only from block-to-block (experiment 3).

They argued that a passive task-set decay process should be independent of such

experimental manipulations, and found it more plausible to assume that reduction

in switch costs with longer RSI in a blocked design resulted from an advance recon-

�guration process, which was disturbed when the RSI varied randomly between

trials.

Most empirical studies of preparation e�ects have used the explicit cuing paradigm.

Within this paradigm, participants are assumed to use the CSI to prepare for the

upcoming task, while the RCI a�ects passive decay of the previous task. Thus, if

the passive decay hypothesis is correct, longer RCIs should produce a reduction

in switch costs. This prediction has been con�rmed in a number of experimental

studies (e.g., Koch, 2001; Meiran et al., 2000). However, studies which varied the

CSI independently within-subjects have also found that switch costs are reduced

with longer CSIs, suggesting that switch costs are, indeed, reduced by an active
2In this respect, passive task-set decay sits more naturally with an interference-based account

of switch costs. From that perspective, passive task-set decay is one mechanism for the reduction
of previous-trial interference.
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preparation process (e.g., Koch, 2001, Logan & Bundesen, 2003, Logan & Schnei-

der, 2006, Meiran, 1996, Meiran et al., 2000; see Monsell, 2003, and Kiesel et al.,

2010, p. 855, for reviews).

In summary, empirical evidence suggest that passive task-set decay is one con-

tributor to a decrease in switch costs. However, separately to this e�ect, there is

also evidence that preparation for the forthcoming trial also reduces switch costs.

Behavioural evidence further suggests that preparation is not switch-speci�c. Both

preparation and sequence predictability facilitates RTs in both switch and repeat

trials. Preparation e�ects of switch costs can be explained by assuming that prepa-

ration has more of an e�ect on switch trials because switches are more a�ected by

interference.

2.3 Theoretical accounts of task switching 2: In-

terference models

Interference accounts of task switching propose that task performance is impaired

by the prior performance of an alternative, con�icting task. For example, in the

‘Task Set Inertia’ hypothesis, Allport et al. (1994) suggest that performance of a

task requires the activation of an appropriate task set, and the inhibition of com-

peting task sets. Once a task has been performed, activation and inhibition of task

sets (positive and negative priming) persists into the next trial. Repeat trials are

thus facilitated by the carryover of activation and inhibition from the previous

trial, while task switches are impaired. According to this account, interference is

caused by residual activation or inhibition at the level of the task-set. In the light

of evidence for some associative priming when speci�c stimulus items are exclu-

sively associated with a particular task set (Allport & Wylie, 2000, experiment 5),

in a modi�ed version of the theory, task-sets may be directly primed by individual

stimulus items with which they have become associated. According to this per-
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spective, then, positive and negative priming of task sets is su�cient to account

for switch costs. Slower RTs on switch trials are caused by prolonging of the same

cognitive processes which take place on repeat trials.

A number of computational models of interference in task switching have been

presented, demonstrating mechanistically how task switch phenomena such as the

switch cost can be caused by interference between competing task representations.

While these models are typically agnostic on the existence of recon�guration pro-

cesses, they present an argument that the switch cost is not, in itself, evidence

of such processes. Three models will be discussed, the models of Altmann and

Gray (2008), Gilbert and Shallice (2002), and Yeung and Monsell (2003). The model

of Brown et al. (2007), while relevant, deals with a slightly separate set of task

switching phenemona, and is a much more complex model incorporating a wider

range of cognitive mechanisms.

2.3.1 The model of Altmann and Gray (2008)

?? In the model of Altmann and Gray (2008), based on the ACT-R cognitive archi-

tecture, task switching is conceptualised as a memory retrieval process. Task cues

are encoded as an episodic memory trace, used as the basis for retrieving the rel-

evant stimulus dimension (e.g., odd/even), identifying the correct category (odd)

and making a response (left). As is standard in all ACT-R models, the time taken to

access representations (‘chunks’) from memory is based on their activation. ACT-

R’s base-level-learning (BLL) equation, which governs chunk activation, ensures

that the activation of a chunk is increased each time it is accessed, after which it

decays according to a power law. Given this formulation, task repeats are faster

than task switches because the relevant task representations have been accessed

more recently — a form of priming.

As with all ACT-R models, the activation of chunks in declarative memory

�ows associatively. Thus, activation of a task dimension (parity) spreads to as-
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sociated dimensions (odd/even), and then to the associated responses (left/right).

Conceptually, then, the explanation for switch costs in the model is similar to that

of the model of Gilbert and Shallice (2002), being due to residual activation/priming

of recently performed tasks and the related representations, although in the Gilbert

and Shallice model there is a greater emphasis on between-task interference, oc-

curring due to lateral inhibition from residually active irrelevant representations.

2.3.2 The IAC model of Gilbert and Shallice (2002)

Gilbert and Shallice (2002) implemented the modi�ed Allport and Wylie (2000)

interference account, as a connectionist, interactive activation and competition

(IAC) model (McClelland & Rumelhart, 1981). In an IAC model, inputs, outputs,

and intermediate processing layers are represented as a network of simple pro-

cessing units, each with a bounded, real-valued activation value. Units may be

connected by excitatory or inhibitory connections. The strength of connections

between units are governed by weights, which are either hand-set or set via a

learning algorithm and training procedure. In this class of models, processing

takes place as a series of iterations, in which the activation values of each unit

are updated in parallel, based on the excitatory and inhibitory inputs to the unit

and its previous activation value.

The Gilbert and Shallice (2002) task-switching model was based on an earlier

IAC implementation of the Stroop task (Cohen et al., 1990). Common to both mod-

els, stimulus dimensions and possible responses are represented as single units for

simplicity (i.e., both the ‘ink colour’ and ‘word’ input layers consist of units rep-

resenting speci�c colours, such as red and green). The alternative tasks of word

reading and colour naming are implemented as segregated processing pathways.

Control of the current task is provided by a control ‘task demand’ layer. This

consists of two units, analogous with task-sets, and re�ects the currently active

task. Task demand units bias processing by facilitating activation in the process-
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ing pathway of the corresponding task. In the Gilbert and Shallice (2002) model,

this is implemented in terms of excitatory connections between task demand units

and the output units of the corresponding task, and inhibitory connections to the

output units of the competing task.

On a typical incongruent Stroop trial, di�erent input units are activated for

each processing pathway (e.g., the red colour unit and the green word unit) and

activation propagated to the outputs of both pathways. Simultaneously, a single

task-demand unit becomes active, biasing processing in favour of the current task,

while suppressing processing in the competing task. Crucially, the weights be-

tween input and output units are greater for the word reading pathway than the

colour naming pathway, assumed to re�ect the greater strength of the word read-

ing pathway.3 Additionally, the colour-naming task demand unit receives greater

top-down control activation than the word-reading unit, assumed to re�ect the

greater cognitive control required to carry out a non-dominant task. Activation

is updated iteratively in cycles, with each cycle corresponding to a unit of time,

simulating the temporal dynamics of cognitive processing. The model stops when

the activation of an output unit is greater than that of its nearest competitor unit

by more than a threshold value.

Processing in the model is interactive between bottom-up and top-down pro-

cesses, and occurs in parallel. The model has no stage-like recon�guration mech-

anisms. The e�ect of control processes is restricted to modulating the strength of

top-down input into the task-demand units.

The behaviour of the model is entirely dependent on this style of interactive,

parallel processing, and by the following two mechanisms of interference. First,

the residual activation and inhibition of task sets from the previous trial, is imple-

mented by carrying over a certain proportion of the �nal activation of task-demand
3While these weights were hand-set, Cohen et al. (1990) demonstrated that similar weights

could be learned via the delta-rule algorithm and a training set consisting of a large number of
word reading trials and a small number of colour naming trials.
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units at the end of the previous trial. Second, item-speci�c negative priming is im-

plemented by excitatory connections directly from stimulus inputs to task-demand

units. These connections are initialised with a weight of zero. However, long-

term associative priming is simulated by altering the weights after each trial us-

ing a Hebbian learning rule: if a task demand unit and a stimulus input unit are

both active, the weight is strengthened, while if one is active and the other inac-

tive, the weight is weakened.4 The model can therefore be seen as implementing

the interference-based account of task switching proposed by Allport and Wylie

(2000).

Simulation of empirical task switching e�ects

The model was used to simulate a number of variations of the alternating runs

paradigm, and succeeded in modeling a range of the empirical e�ects in the human

data. To the extent this is successful, it validates interference-based accounts of

switch costs, by demonstrating that principles of task interference are su�cient

to produce the empirical e�ects. However, the reason why the model produces

empirical e�ects are not always consistent with the theoretical explanation given

by Allport and colleagues. Additionally, there are a number of empirical e�ects

which the model does not simulate. This section evaluates the performance of the

model on simulating the empirical data.

Cost of switching restricted to the switch trial The model was used to simu-

late the alternating runs paradigm, with a run length of 4 (Rogers & Mon-

sell, 1995, experiment 6). Consistent with human participant behaviour, RTs

were generally slower for colour naming trials than for word reading. The

switch cost was also largely con�ned to the �rst trial in a run (i.e., elevated

RTs were restricted to the switch trial, apart from a negligible increase on
4Unless otherwise stated, weights were zeroed before recalculating weight changes, hence only

the e�ects of negative priming from the immediately preceding trial were modelled.
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the �rst repeat trial). The restriction of switch costs to the switch trial on

longer runs had previously been argued as evidence in favour of an expla-

nation based on additional cognitive processes which must be completed

on switch trials (e.g., Rogers & Monsell, 1995). In the model, however, this

was due to inappropriate residual task-demand activation; the current task

begins switch trials with negative residual activation, while the alternative

task begins the trial with positive residual activation. Switch costs thus re-

�ect the additional processing cycles required for the model to overcome

these inappropriate starting values. Thus, the model demonstrates that the

TSI hypothesis accounts for these basic �ndings of switch costs.

Switch cost asymmetry Switch costs also exhibited an asymmetry character-

istic of human participants — greater for switches into the dominant task

than the non-dominant task. However, there is a di�erence between previ-

ous interference-based theoretical explanations for this e�ect and the reason

why it occurs in the model. In the model, greater switch costs for switches

into the dominant task is due to weaker top-down control activation of the

dominant, compared to the non-dominant task (i.e., weaker for word read-

ing than colour-naming). In contrast, the TSI theory of Allport et al. (1994)

suggests that switch cost asymmetries occur because performance of the

non-dominant colour naming task requires greater suppression of the dom-

inant word-reading task than vice versa. The switch cost asymmetry in the

model is not rigid, however, but is sensitive to certain parameter manipu-

lations. For example, when the top-down control strength for both tasks is

the same, but the two tasks di�er in stimulus input strength, the switch cost

asymmetry is reversed — i.e., it is larger for switches to the weaker task.

Reverse Stroop interference When human participants perform task switching

for Stroop-like stimuli, an interaction is typically observed for reaction times
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between switch condition (switch vs. non-switch) and item congruence. On

switch trials, RTs for word reading are slower for incongruent than neu-

tral trials, whereas on repeat trials, RTs are una�ected by target congruence.

For colour naming, however, RTs are slower for incongruent trials for both

switch and repeat conditions. This e�ect is also an intrinsic property of the

model.5 In the model, the connection weights between input and output

units in the colour naming pathway are too weak to interfere much with

the word reading pathway. However, on switch trials, residual activation

in the colour-naming task demand unit boosts activation in this pathway

su�ciently to produce interference. On the other hand, the word reading

pathway is strong enough to interfere with colour naming, even in the ab-

sence of greater task-demand activation. Because of a non-linear activation

function, residual activation in the word-reading task demand unit has less

of an activation-boosting e�ect on an already active pathway. Thus, reverse

Stroop interference is explained as an e�ect of relatively stronger processing

for word reading than colour naming pathways, combined with a non-linear

activation function which ‘squashes’ activation, such that a given amount of

additional input produces a larger activation boost when a unit is in the mid-

dle of its activation range compared to an extreme (cf. Cohen et al., 1990).

An additional mechanism for reverse-Stroop e�ects was item-speci�c prim-

ing, discussed in detail below. As neutral stimuli cannot be repeated between

word-reading and colour-naming tasks, any e�ect of associative priming of

task-demand units would be absent. Indeed, this was demonstrated in an

additional simulation. When item-speci�c priming e�ects were removed,

reverse-Stroop e�ects persisted, but were reduced.
5However, it is dependent on the use of a non-linear activation function, and also speci�c pa-

rameters for word-reading and colour-naming input-output weights. Parameter studies conducted
by Gilbert and Shallice (2002) provide con�dence that the model is not overly dependent on speci�c
parameters.
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Item-speci�c switch costs Stroop stimuli result in slower RTs on word read-

ing trials when they have previously appeared in colour naming trials, then

when they have not appeared previously, and this e�ect is greater for switch

trials. Allport and Wylie (2000) interpreted this in terms of their interference

account, suggesting that a substantial component of interference was item-

speci�c and caused by the long-term priming of task-sets by stimuli which

they had been exclusively associated with. In the case of performing a con-

�icting task, this would imply negative priming, in which the competing

task-set is activated while the current task-set is inhibited.

In one simulation, Gilbert and Shallice (2002) implemented direct connec-

tions between stimulus input units and task demand units. These connec-

tions were initialised with a weight of zero, but at the end of each trial a Heb-

bian learning rule was used to update weights, such that when task demand

units and stimulus input units were both active, their weights were strength-

ened, but when one was active and the other inactive, their weights were

weakened. The model simulated the interaction between whether the task

switched or repeated, and whether the stimulus was primed or unprimed;

with the RT being more a�ected by primed stimuli on switch, compared

to repeat, trials. Primed stimuli directly activated the competing (colour-

naming) task demand unit, which in turn had an excitatory e�ect on the

competing, colour-naming pathway, and an inhibitory e�ect on the word

reading pathway. This activation was either counteracted by residual task-

demand activation from the previous trial (on repeat trials) or combined with

it (on switch trials), thus producing a disproportionate e�ect on switch com-

pared to repeat trials.

E�ects of neutral trials The model simulated two reported empirical e�ects of

responding to neutral rather than incongruent stimuli on switch costs. Firstly,

there is a reduction in switch costs when switching to a task using neutral

52



stimuli. Gilbert and Shallice (2002) explained this e�ect in terms of the previ-

ous explanation of reverse-Stroop interference. RTs for word reading switch

trials are slower for incongruent than neutral stimuli, while there is a smaller

di�erence between corresponding repeat trials.

Secondly, Allport and Wylie (2000, experiment 1) examined the e�ect of

stimulus congruity in the colour naming task on the cost of a switch into

the word reading task. Typically, much greater switch costs are observed

on the word reading (switch) trial when incongruent stimuli are used on the

preceding colour naming trials, than neutral stimuli. This is interpreted as

key evidence for an interference-based account of the switch cost. The ef-

fect was also produced by the model. In the model, two mechanisms explain

the reduction in switch costs. One is the absence of item-speci�c priming

e�ects with neutral stimuli, as discussed above. The second results from the

fact that responses to neutral trials tend to be generated quickly, and thus

task demand activation is substantially less at the end of a neutral trial than

an incongruent trial. As a result, less residual activation of the competing

task is carried over onto the next trial.

Restart costs The model produces restart costs observed in the before-and-after

paradigm, by assuming that residual task-demand unit activation dissipates

during a break between blocks. Thus, the absence of residual (facilitatory,

for repeat trials) activation from previous trials is su�cient to account for

restart costs.

Rebound e�ects In the before-and-after paradigm, Allport and Wylie (2000) re-

ported larger restart costs in participants who had previously performed a

con�icting colour-naming task than controls who had performed an unre-

lated task. Allport and Wylie (2000) interpreted these ‘rebound’ e�ects as

demonstrating a persistent, long-lasting form of interference. As this inter-
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ference appeared to be latent, producing e�ects only on the �rst trial of a

block, and not subsequent repeat trials, it cannot be explained in terms of

item-speci�c costs. While Gilbert and Shallice (2002) explain restart costs in

terms of the absence of residual task-demand activation, this does not ex-

plain why restart costs should interact with latent interference, to produce

rebound e�ects. Thus, rebound e�ects are not explained by the model, and

the latent characteristics of interference appear resistant to explanation in

terms of residual task demand activation.

Preparation e�ects/Residual switch costs A key strand of empirical evidence

is the e�ects of preparation on switch costs. According to recon�guration

accounts, a preparation interval should allow participants to complete task

recon�guration prior to stimulus onset, and thus should reduce switch costs.

While a reduction in switch costs is a robust �nding, a number of studies

have found a residual component of the switch cost that is not eliminated

even by very long preparation intervals.

In the model, task preparation is simulated by allowing the task-demand

units to become active for a number of cycles before the activation of input

units. In simulations, switch costs were indeed, reduced by such prepara-

tion; switch costs were entirely eliminated after 150 cycles, corresponding

to 1200 ms based on regressing model cycles on empirical data. Addition-

ally, preparation also speeded repeat trials, although to a lesser extent than

switch trials. Thus, while the model simulates the e�ect of preparation to an

extent, it does not produce residual switch costs as are sometimes reported

in the experimental literature.

In summary, the IAC task-switching model of Gilbert and Shallice (2002), in-

stantiating the interference account of switch costs, has parsimoniously accounted

for a wide variety of empirical �ndings, not all of which could be intuitively pre-
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dicted from an informal statement of the theory. Many of these empirical phe-

nomena, such as the restriction of switch costs to switch trials, have been taken as

evidence for the operation of cognitive control processes, yet the model suggests

that such processes are not necessary to account for many of the e�ects seen in the

empirical data. A number of phenomena, such as reverse-Stroop interference, are

intrinsic to the activation and competition-based parallel processing implemented

by the model.

Despite its success in accounting for a wide range of empirical phenomena, the

model has a number of limitations. Firstly, some robust empirical e�ects, includ-

ing residual switch costs, are not well simulated by the model without additional

assumptions or mechanisms. Thus, this instantiation of the interference account

does not provide a good explanation for why participants are unable to fully pre-

pare for a task switch given a long period of time. Secondly, the characterisation

of interference (as residual task-set activation), while successfully accounting for

a wide range of empirical phenomena, does not explain why interference appears

to be so persisting, or explain how interference can be latent, in order to cause

rebound e�ects. Thirdly, the model has not been extended to a range of more

recently discovered task switching phenomena, such as the e�ects of sequence

predictability or cue-switching phenomena.

Finally, in theoretical terms the model implements an interference-based ac-

count of switch cost phenomena. Residual interference from previous tasks is

modelled as residually active task demand units. However, some have argued that

the carryover of activation for top-level units, but not lower level input or output

units, could be seen as arbitrary (Grange & Houghton, 2014). It is true that with-

out simulating residual e�ects at an input or output level (i.e., priming), as a model

of the human cognitive system, it must be regarded as incomplete. In addition,

the model’s mechanism for e�ecting a switch of task, top-down-control units as

a source of activation to task demand units, arguably does implement a form of
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recon�guration. This process of recon�guration could be seen as merely being ex-

plained away by invoking higher level cognitive processes that are not addressed

by the model.

As Gilbert and Shallice (2002) argued, however, the model was published in

response to an ongoing debate at the time, regarding whether task switching was

a recon�guration-based process, or due to residual task activation. More deeply,

this debate re�ected deeper assumptions about whether cognitive processing was

stage-based, and could therefore be structurally decomposed through additive-

factors logic (i.e., Sternberg, 1969, see Rubinstein et al., 2001, as an example of this

approach) or whether parallel, interactive processing, of the type implemented by

arti�cial neural networks, poses challenges for this methodology — a debate which

is ongoing (e.g., Sta�ord & Gurney, 2011; Sternberg, 2013). Gilbert and Shallice

(2002) argued not that recon�guration models of task switching were wrong, but

that the extant data held to support recon�guration models were consistent with

interference between competing tasks. Rather than viewing top-down control in-

puts as an irreducible homunculus, Gilbert and Shallice (2002) advocated a research

strategy of trying to understand the action and structure of higher-level processes

by examining their output — that is, the top-down control input into this model

— and seeing the task-switching model as a form of �lter. For example, they de-

scribe a number of empirical dual-tasking studies where participants perform task

switching concurrently with another task designed to load a speci�c higher-level

cognitive resource, such as working memory, and modelling performance in terms

of a reduced top-down control input. In this context, the model should not be re-

garded as a complete ‘reference-model’ of a complete cognitive system, but as a

relatively simple tool for factoring the outputs of higher-level cognitive processes

into behaviour which can be observed empirically.
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2.3.3 The IAC model of Brown et al. (2007)

The model of Brown et al. (2007) is conceptually similar, although substantially

more complex, than that of Gilbert and Shallice (2002). It incorporates two addi-

tional mechanisms for managing cognitive con�ict within the model. Firstly, an

incongruency detector signals con�ict between co-active incompatible responses,

and in response sends additional excitation to the currently active task unit. Sec-

ondly, a change detector responds to trial-by-trial changes, in either the task units

or the response units, by removing a ‘tonic arousal signal’ — an e�ect which slows

all responses and lasts for a number of trials. Through slowing of responses,

this latter mechanism also leads to increased accuracy. Thus, the model reacts

to between-task interference (sequential con�ict) by slowing all responses, while

within-trial con�ict (between simultaneously active responses) is resolved by re-

inforcing the activation of the currently active task unit.

Importantly, this model integrates con�ict-monitoring mechanisms within a

task switching model, and is comparable to the proposal of Goschke (2000) that

the con�ict generated between incongruent responses is a trigger for inhibition at

the task level. While this proposal shares commonalities with certain accounts of

backward inhibition (e.g., Koch, Gade, Schuch, & Philipp, 2010), the authors do not

explore the model’s performance in the n-2 repetition paradigm, and instead focus

on sequential stimulus congruency and response repetition e�ects.

2.3.4 The mathematical model of Yeung and Monsell (2003)

Yeung and Monsell (2003) also implemented a model of task switching to explain

and predict empirical e�ects in asymmetric task switching (word reading and colour

naming). The authors explain the asymmetry of switch costs by proposing a math-

ematical model that describes the contribution of various component processes to

switch costs. The model is implemented as a set of equations that model the du-

ration of various aspects of cognitive processing in terms of a response time dis-
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tribution. These equations are presented in section 2.8. The activation of each

task set is calculated from the sum of task strength, priming (i.e., both interfer-

ence on switch trials and facilitation on repeat trials), endogenous control, and a

noise term. As in the model of Gilbert and Shallice (2002), the shape of the acti-

vation function ensures that the same incremental input resulting from priming

e�ects has a greater e�ect on weaker tasks than stronger tasks. Task strength is

greater for word reading than colour naming, while priming re�ects a positive,

transient increase in activation for the previously performed task (e.g., word read-

ing for a colour switch trial, or for a word repeat trial). It is assumed that exerting

endogenous control is e�ortful, and that participants minimise the level of en-

dogenous control required on a given task, in order to trade-o� processing speed

against accuracy. Implementing this assumption, a training phase is used to cali-

brate the strength of endogenous control input according to a staircase procedure,

in which the level of control is dynamically adjusted in response to correct or error

responses on preceding trials. In their simulations, Yeung and Monsell (2003) cal-

ibrated the control input separately for each of four conditions: switch and repeat

trials for word reading and colour naming tasks. Thus, their model assumes that

a di�erent level of endogenous control is applied for the same task, depending on

whether it is a switch or a repeat trial.

In the model, competing task-sets generate responses asynchronously but in

parallel, with the rate given by the ratio of the task-set’s activation to total task-

set activation. These responses then converge onto a single resolution stage, in

which the time to produce a response is modeled by scaling r, a variable randomly

drawn from an ex-Gaussian distribution, by a function of the di�erence in the

two generation rates, which varies between r (when interference is minimised,

such as for neutral trials or for competing tasks with non-overlapping response

sets), or when one task is much stronger than the other, such that the di�erence

in generation times is large (greater than or equal to r), and 1.5r for incongruent
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trials, when the di�erence between generation times approaches zero. The ex-

Gaussian distribution provides the characteristic distribution of human response

times.

Using their model, Yeung and Monsell (2003) simulated a number of empirical

e�ects.

Asymmetric Switch Costs Due to the non-linear activation function used by the

model, a priming input that is constant for both word-reading and colour-

naming tasks has a greater e�ect on the resulting activation of the weaker

task (i.e., colour naming). Therefore interference occurring on switch trials

has a greater e�ect on the colour naming task.

Reversal of asymmetric switch costs In an empirical study, Yeung and Mon-

sell (2003) were able to reverse the direction of the switch cost asymmetry by

de-synchronising aspects of stimulus presentation. Speci�cally, the names

of colours were presented over a coloured rectangle, where the colour names

and the colour of the rectangle were incongruent. However, the presentation

of the word could be either simultaneous with the stimulus onset (i.e., as in

the experiments of Allport et al., 1994), or delayed by 160 or 320 ms. While

the synchronous condition replicated previous �ndings by Allport and col-

leagues (i.e., greater switch costs when switching into the easier task), the

delayed conditions reversed the direction of the asymmetry, instead produc-

ing larger costs for switches into the harder task.

Yeung and Monsell (2003) simulated the delayed-stimulus onset manipula-

tion of asymmetric switching by re-setting the endogenous control inputs to

the same value (0.15) for both colour reading and word naming tasks, on the

assumption that less control was required for colour naming given the re-

duced interference. Due to the lowered control strength, colour switch trials

became harder to perform when the low control strength input to the colour
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task was combined with the constant priming input for the word task.

While the role of the model is descriptive, rather than explanatory, one weak-

ness is that the distribution of human response times is not modeled, merely repro-

duced by incorporating a random component drawn from a distribution selected

for its similarity to the desired empirical distribution.

2.3.5 Discussion

A number of di�erences exist between the models in their aims and theoretical in-

terpretation. One distinction may be drawn between mathematical models of the

computational level, which aim to describe the mathematical function being com-

puted, and process models, which aim to replicate within the model itself some-

thing of the nature of the cognitive processing which is occurring.

In these terms, while Gilbert and Shallice (2002) present a process model, Yeung

and Monsell (2003) is situated mid-way between a process model and a mathe-

matical model of the overall computation. The algorithmic content of the latter

model proposes that task-set activations are calculated in parallel, as a non-linear

function of their inputs. This function ‘squashes’ input activation, such that the

variable inputs (e.g., priming and endogenous control) change overall activation

more, when the level of other inputs is low. As in Gilbert and Shallice (2002), this

is why task priming has a greater e�ect on colour naming than on word reading.

Additionally, the model proposes that competing responses are prepared in par-

allel, according to equations describing the time-course of response generation.

Ultimately, competing responses converge on a response-resolution stage, where

they interact to either facilitate or interfere with processing. In these terms, the

model of Yeung and Monsell (2003) describes a cognitive process, conceived in lin-

ear, sequential stages in contrast to the parallel, interactive processing in Gilbert

and Shallice (2002). However, the equations governing response production and

response resolution are not clearly theoretically grounded. In particular, the �nal
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calculation of the time taken to resolve responses is deterministically calculated

as a di�erence between the activation value of task-sets, and scaled according to a

distribution speci�cally chosen to re�ect the RT distributions characteristic of hu-

man participants performing RT tasks. While such scaling is not methodologically

problematic, it limits the explanatory power of the model to explain why RTs on

switching tasks might have such a distribution.

To the extent that the model of Yeung and Monsell (2003) makes theoretical

claims about cognitive processes, there are points of both agreement and disagree-

ment with the model of Gilbert and Shallice (2002). Task-set priming in the Yeung

and Monsell (2003) model is conceived in terms of positive priming. In Gilbert and

Shallice (2002), the priming of task-sets may be both positive or negative. While

this issue has been the subject of theoretical debate, it remains to be seen whether

it produces substantial behavioural di�erences in the models, or is merely an im-

plementational detail. In particular, longer-lasting inhibitory e�ects (e.g., mech-

anisms responsible for n-2 inhibition e�ects) are not explicitly implemented by

either model, and are argued to not be responsible for asymmetric switch cost ef-

fects.

Nevertheless, the overall theoretical interpretation of the Yeung and Monsell

(2003) model is similar to that of Gilbert and Shallice (2002). The models agree

that processing on a given trial is a function of constant-valued top-down endoge-

nous control inputs, previous-trial task priming, and the asymmetric strengths of

the task-relevant processing pathways. However, while the top-down (endoge-

nous) control strengths do not change between switch and repeat trials in the

model of Gilbert and Shallice (2002), in the model of Yeung and Monsell (2003)

control strengths are calibrated separately for switch and repeat conditions, based

on a training phase. The latter model therefore assumes that practice on the task

switching paradigm is a key part of setting cognitive parameters appropriate to

performing the task, and that human participants are able to set cognitive param-
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eters in a near-optimal way. This assumption is also central to the simulation of

the reversed switch cost asymmetry due to delayed onset of the word dimension of

the stimulus. In this simulation, endogenous control strengths for each condition

are re-set on the basis of reduced interference in the colour naming condition.

In summary, both models simulate empirical e�ects of switching between asym-

metric tasks, characterising switch costs as an interaction between interference

from previous tasks, and endogenous control, although the model of Gilbert and

Shallice (2002) also incorporates a bottom-up source of interference — long term,

item-speci�c priming of task sets. Both models give an explanation of switch costs

in asymmetric switching, without recourse to time-consuming control processes.

However, both models also invoke an element of cognitive recon�guration — in

the model of Gilbert and Shallice (2002) this is implemented by the switching of

top-down control inputs according to the desired task, which is itself held to be the

output of a higher-level executive system. The model of Yeung and Monsell (2003)

involves calibrating control parameters during a training phase, and assumes that

the modelled agent is capable of setting appropriate levels of control for switch

and repeat instances of each task in a near-optimal way. The mechanistic detail of

this parameter setting, however, is left unspeci�ed.

2.4 ‘Hybrid models’ and the reconciliation of in-

terference and recon�guration accounts

Hybrid accounts (e.g., Monsell, 2003) attempt to reconcile recon�guration and

interference-based accounts of task switching, by suggesting that task switches

re�ect both task carryover and additional cognitive processes. However, they anal-

yse switch costs in terms of discrete components: interference and a component

attributable to control processes. According to this logic, the cost attributable to

interference can be subtracted from the overall switch cost.
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Importantly, with speci�c respect to switch costs, even hybrid accounts are not

compatible with interference-based accounts such as that of Allport and Wylie

(2000) or Gilbert and Shallice (2002). While these accounts do not deny the ex-

istence of control processes, they suggest that their e�ect on the chronometrics

of task performance is indirect, rather than direct. The computational model of

Gilbert and Shallice (2002) gives a good account of basic empirical �ndings on

switch costs, in terms of principles of interactive activation and competition be-

tween task-processing pathways and task demand units. The temporal dynamics

of processing in the model cast doubt on attempts to characterise control processes

underlying task switching in terms of discrete, linear stages with additive time

costs. From a connectionist perspective, control processes are likely to interact

dynamically with processing in the network, thus their e�ects on reaction times

are likely to be nonlinear, and interact with a range of other processing factors.

Therefore, attempting to separate out the e�ects of interference through a simple

subtractive logic is unlikely to be successful.

A more fruitful approach to unpicking the e�ects of control processes may

lie in further use of computational models. On the assumption that the model of

Gilbert and Shallice (2002) gives a good account of task-set interference, it may be

used as a baseline for comparison. Rather than seeking to subtract away the e�ects

of interference from empirical data, the model may be used as a basis for model-

ing putative control processes. An advantage of a model-based approach is that

it provides a means of deriving speci�c quantitative predictions from theoretical

hypotheses. If we accept the assumption that control processes and interference

both have e�ects on quantitative measures such as response time, one approach is

to systematically compare the predictions of a purely interference-based account

(i.e., the Gilbert & Shallice, 2002, model ‘out of the box’) and the model augmented

with putative control processes, and see which best �ts the empirical data.
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2.5 Interference and preparation in task switch-

ing: Interim summary

Much of the existing literature on switching has focused on the concept of switch

costs, either in terms of RT or error rate. However, much of the debate has con-

cerned the question of what the switch cost really re�ects, in cognitive terms. The

switch cost is often thought to re�ect some combination of between-task interfer-

ence and preparation (or recon�guration) for a new task. However, switch costs

themselves may be problematic for a number of reasons. Firstly, depending on the

precise experimental paradigm, switch costs may be di�cult to isolate and are po-

tentially con�ated with subsidiary task switching phenomena, such as restart costs

(e.g., Altmann, 2007a). Secondly, the costs attributable to switching interference

may be long-lasting and re-evoked in a non-switching context, such as rebound RT

e�ects (e.g, Allport & Wylie, 2000, experiments 3-5). Finally, and again, depending

on experimental paradigm, there are compelling arguments that so-called switch-

costs do not re�ect the cognitive components of switching task at all, but merely

re�ect the use of a compound cue-retrieval strategy (e.g., Logan & Schneider, 2010).

Kiesel et al. (2010), in her review, arranges the conceptual landscape of task

switching around the two key landmarks of preparation (recon�guration) and in-

terference. Of course, it is di�cult to clearly separate the two concepts. Vandierendonck

et al. (2010) suggests an ‘interplay of recon�guration and interference control’,

casting cognitive control processes in terms of proactive (i.e., preparatory) and

reactive control, with both potentially involving control of interference, such as

through the setting of appropriate attentional bias.

This somewhat complicated relationship between interference and putative

control processes makes their study through behavioural approaches alone com-

plex, if not problematic. The use of computational models has proven a fruitful

approach to specifying the e�ects of interference and its relationship with cogni-
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tive control processes in more quanti�able terms.

Two computational models of task switching explicitly deal with cross-task

interference in a comparable task switching paradigm, that of Gilbert and Shallice

(2002) and Yeung and Monsell (2003). The remainder of this chapter reports on the

replication of these two models, and in the case of the former, further simulations

conducted using the replicated model.

2.6 Re-implementation of the Gilbert and Shallice

(2002) model

The task-switching model of Gilbert and Shallice (2002) was successfully re-implemented,

using the published model description and default parameter settings. Program-

ming of the model did not re-use code from the original authors, but proceeded

from scratch, on the basis of the published description, equations, and parameter

settings. This provided some con�dence in the model’s reproducibility.

As discussed above, the model implements the theory of Allport and Wylie

(2000), whereby (n-1) switch costs are the result of residual, interfering activa-

tion from the competing task and associative (stimulus-task) priming e�ects. The

authors simulated a range of behavioural e�ects typically observed when human

participants switch between the two tasks of word reading and colour naming of

Stroop stimuli (i.e., tasks of asymmetric di�culty).

The re-implemented model successfully replicated a number of the most crit-

ical simulations of behavioural task switching e�ects, including simulations of

switch cost asymmetries (Rogers & Monsell, 1995), and item-speci�c priming (Allport

& Wylie, 2000, Experiment 5). This section details the results of this replication,

and compares them to the claims for the model of Gilbert and Shallice (2002).
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2.6.1 Model description

The architecture of the model used by Gilbert and Shallice (2002) is illustrated

in �gure 2.1. The main architecture of the model showing connections between

di�erent levels is illustrated in �gure 2.1a. For simplicity, only between-module

connections are shown. The model consists of two processing pathways, for the

colour and the word task respectively. For each pathway, individual units at input

level correspond with three available stimulus dimensions. For the colour task,

these represent the screen colours red, green and blue, while for the word task,

they represent the words red, green and blue. At output level, three units in each

pathway each correspond to one of the three possible responses (red, green or

blue).

On a simulated congruent trial, two corresponding input level units would be

activated, e.g., both ‘R’ units. For an incongruent trial, non-corresponding units

would be activated, e.g., one ‘R’ and one ‘G’ unit. Neutral trials are represented by

the activation of an input unit for one pathway only. On each trial, an additional

top-down control input is activated, indicating the desired task on the basis of

a task cue. This sends input to one of the two task demand units, which may

be thought of as a cognitive representation of the currently active task-set. Task

demand units have a general e�ect on the output level. The word task-demand

unit excites all word output units and inhibits all colour output units, while the

colour task-demand unit has the opposite e�ect. Task demand units also retain

a proportion (by default, 20%) of their activation at the end of the previous trial,

this represents a certain degree of task carryover, which both facilitates repeat

trials, and causes interference on switch trials. Although 20% of �nal activation

only represents a small value, in the early stages of a trial it is enough to bias

processing in the output units enough to substantially facilitate, or interfere with,

the competition process by which an output unit is selected.

Lateral connections between units at the same level are also present, as illus-
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Input unitsR G B

Colour

R G B

Word

Output unitsR G B R G B

Task Demand Units

Top Down Control
Colour Word

(a) Overall architecture of the model

Output unitsR G B R G B

Task Demand Units

(b) Detail of lateral inhibition between units at output and task demand level. For sim-
plicity, only the connections from the �rst unit in each layer are shown. For output
units, lateral connections to corresponding units are excitatory, and inhibitory to non-
corresponding units. Task demand lateral connections are mutually inhibitory.

Figure 2.1: The Task Switching model of Gilbert and Shallice (2002). Excitatory
connections are shown with black solid arrows, inhibitory connections with grey
dashed arrows. The model consists of two pathways, corresponding to the word
task and the colour task. Individual units at input and output level represent three
stimulus dimensions and the three available responses, respectively.
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trated in �gure 2.1b. For output units, corresponding units are mutually excitatory,

while non-corresponding units are inhibitory. Task demand units are mutually in-

hibitory.

Additionally, input units are directly connected to task-demand units. While

these connections initially have zero weight, following each trial a Hebbian learn-

ing mechanism modi�es the connection weight from the previously active input

and task demand units, to simulate a direct priming e�ect of task sets by the pre-

viously active stimulus dimension. These connection weights are reset after every

trial, so only a single bottom-up connection is active at any one time.

In the output layer of the model, corresponding to a response selection level

of processing, three available responses are each represented twice, for the colour

and word pathway, however it is assumed that the corresponding colour and word

output units both correspond to the same physical response, presumably imple-

mented by a response execution stage, which is not present in the model.

Activation in the model is therefore fully interactive, and propagates both bot-

tom up, from input units directly to output units — and top down, from the top-

down control inputs to the task demand units, which bias processing in the output

units, either exciting or inhibiting activation on the basis of task.

To take a concrete example, on an incongruent trial, activation propagates from

the input units (e.g., colour unit ‘R’ and word unit ‘G’) up to the output level,

directly activating colour output unit ‘R’ and word output unit ‘G’. However, due

to lateral connections, the colour unit ‘R’ sends an excitatory input to the word

unit ‘R’, and an inhibitory input to the word unit ‘G’, causing the activation of the

output units to compete. Eventually, one unit ‘wins’ this competition, its activation

becoming su�cient to suppress activation in the competing output units, and a

response is generated. The time taken for this to occur, in model cycles, is the

simulated reaction time.
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2.6.2 Simulations of empirical phenomena

Stroop interference and facilitation

Gilbert and Shallice (2002) demonstrated that their model accurately simulated the

facilitation and interference e�ects empirically observed when human participants

perform pure blocks of colour naming and word reading in response to Stroop

stimuli. While this property of the model is unsurprising, given its similarity with

previous Stroop models of Cohen et al. (1990) and Cohen and Huston (1994), it

was important to demonstrate, especially given the subsequent modi�cations to

the model. This simulation was illustrated in �gure 3 of the original paper (p. 311),

which is reproduced below as �gure 2.2a. The simulated RT in model cycles was

also converted to milliseconds using the regression equation:

RTms = 5.8RTcycles + 318

Error bars or an indication of model variability were not provided in the orig-

inal simulation, although the original authors performed an analysis on ‘50,000

simulated reaction times’. (It is unclear whether this refers to 50,000 trials per

condition, or a total of 50,000 trials, but given 50,000 does not divide exactly be-

tween six conditions, this interpretation seems unlikely.) In the replication error

bars represent bootstrapped 95% con�dence intervals. These suggest that the vari-

ability of model reaction time, especially in the colour naming condition where

there is more interference, is considerable, although it does not cast any doubt on

the validity of the original simulation. Speci�cally, the neutral, incongruent and

congruent conditions for colour naming all have means which lie outside the 95%

con�dence interval of the other conditions, suggesting statistically signi�cant dif-

ferences according to a conventional alpha of .05. For colour naming, incongruent

trials are signi�cantly slower than congruent or neutral trials, which do not di�er

from each other.
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(a) Figure 3 from Gilbert and Shallice (2002), showing performance of the Gilbert and Shal-
lice (2002) model in pure blocks of the standard Stroop task, with empirical data based on
Dunbar and MacLeod (1984, Experiment 1B). Reproduced with permission.

(b) The corresponding simulation in the replicated model. The secondary axis represents
response time (milliseconds) as simulated by Gilbert and Shallice (2002) using the equation
RTms = 5.8RTcycles + 318. Error bars represent bootstrapped 95% con�dence intervals.

Figure 2.2: Replication of Gilbert and Shallice (2002) �gure 3: Stroop interference
and facilitation in pure blocks.
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The size of the con�dence intervals is largely, although not entirely, depen-

dent on the number of trials in each condition, and may be reduced somewhat by

merely running more trials, therefore the previous observation of ‘signi�cant’ dif-

ferences between conditions is somewhat arbitrary. However, it should be noted

that even with only 100 trials per block, ‘signi�cant’ di�erences were observed

between incongruent and congruent/neutral conditions for word reading, which

were not observed in the empirical data (Dunbar & MacLeod, 1984).

As observed by Gilbert and Shallice (2002), errors in the model occurred ex-

tremely infrequently in pure blocks. When the model was run for 1000 trials in

each block, errors only occurred in the colour naming incongruent condition, at

around 0.6% (with a 95% con�dence interval of [0% - 1.5%]).

Task switching in mixed blocks

Next, Gilbert and Shallice (2002) adapted the model to blocked task switching of

predictable length runs. As an analog of the paradigm used by Rogers and Mon-

sell (1995, experiment 6), the model simulated three blocks, each consisting of four

trials of the same task, with switches between tasks occurring on the �rst trial

of each block. This simulation demonstrated three key e�ects of task switching.

Firstly, Rogers and Monsell (1995) found that the cost of a switch was con�ned to

the �rst trial following a switch of task, an e�ect previously described as the task

serial position e�ect (section 2.1.2). In early literature on task switching, this e�ect

was used to argue for a recon�guration model of task switching, where the switch

cost re�ected the time taken to ‘recon�gure’ the cognitive system appropriate to

each task. If the switch cost re�ected interference, it was argued, there should

be a graded reduction in switch cost for a number of trials following the switch.

Subsequent research, including the computational evidence of Gilbert and Shallice

(2002), implementing an interference-based account of switching, demonstrated

that the con�ning of the switch cost to switch-trials only is indeed consistent with
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interference based accounts. Thus, replication of this �nding is critical for the

model and interference-based theories. Secondly, in paradigms involving switch-

ing between two tasks of asymmetric di�culty, two characteristic behavioural ef-

fects are typically observed: asymmetric switch costs, and so-called reverse-Stroop

interference (see section 2.1.2 for a complete review). In the former e�ect, switches

from the weaker to the stronger task are associated with a greater cost, relative to

baseline repeat performance of that task, than switches from the stronger to the

weaker task, despite performance on repeat trials of the weaker task being slower

and more error prone. Thirdly, RTs are typically slower on the �rst trial of a run,

even when that trial does not involve a task switch, an e�ect known as ‘restart

costs’ (section 2.1.3).

These e�ects were demonstrated in a simulation, reproduced here as �gure

2.3a. A small elevation in RT is observed on the very �rst trial, compared to the

subsequent three trials; this re�ects the e�ect of restart costs. The switch cost

observed is much smaller for the switch to the more di�cult task, the di�erence in

RT and errors between trials 5 and 6, than that for the easier task, between trials

9 and 10, even though this asymmetry is reduced when item repetition does not

occur.

This simulation was replicated, with results presented in a similar format in

2.3b for RTs, and 2.3c for error rates. A comparison of the simulation of Gilbert and

Shallice (2002) and the corresponding replication shows a very close correspon-

dence. The key features of the simulation are all replicated. Speci�cally, switch

costs are largely con�ned to the switch trial, although as found by Gilbert and

Shallice (2002), RTs continue to decline a very small amount between the second

and third trials. The switch costs are asymmetric: that is, the cost of switching

from the harder to the easier task (trials 9-10) is much greater than the cost of

switching from the easier to harder task (trials 5-6). However, this is only the case

for reaction times: for error rates, the asymmetry is reversed, with a much larger
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(a) Figure 4 from Gilbert and Shallice (2002) demonstrating switch costs between
alternating-task blocks of 4 trials. Reproduced with permission.

(b) Corresponding simulated RTs in the replicated model. The complete run of 12 trials
was run 10,000 times. Error bars represent 95% con�dence intervals.

(c) Error rates in the replicated model. Error bars represent 95% con�dence intervals.

Figure 2.3: Replication of Gilbert and Shallice (2002) �gure 4: Switch costs in al-
ternating single-task blocks of trials.
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cost for switching from the easier to the harder task, than vice versa. This gives the

appearance of a speed/accuracy trade-o�, although it is purely due to the structure

of the task, as no mechanism for prioritising either speed or accuracy is present in

the model. While this feature is the same for both the original simulation and the

present replication, Gilbert and Shallice (2002) did not comment on this feature of

their results. Finally, a very small restart cost is observed for RTs only.

Item-speci�c switch costs

Empirical evidence has shown that for the stronger task of word reading, a cer-

tain component of the switch cost is related to the repetition of speci�c stimulus

items that have previously been associated with the alternative task. Word read-

ing switch trials are slower when the stimulus item has previously been associated

with colour naming (see section 2.1.3).

Gilbert and Shallice (2002) simulated this e�ect by employing a form of Heb-

bian learning, applied to the weights of connections between input units and task

demand units, strengthening connections between units which were both active

following each trial. Thus, input units which had previously evoked a particular

task-set on the previous trial had a small positive connection with that task-set on

the subsequent trial.

Speci�c stimulus sequences were used to model the e�ects of repeat or unre-

peated stimulus items, occurring either on switch or repeat trials. Let us represent

cued stimuli with a digit and a letter, such as W1 or C2, where the letter refers to

the task (word reading or colour naming) and the digit refers to a speci�c stimulus

item.

C1, C2,W3,W4 (2.1)

C1, C2,W2,W3 (2.2)

C1, C2,W3,W2 (2.3)
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Sequence (2.1) was used to obtain baseline RTs for non-repeating stimuli. As the

model only implemented three available stimuli, for the baseline measure, Hebbian

learning was only allowed to persist for one trial. After re-initialisation, Sequence

(2.2) was run; comparison between (2.1) and (2.2) contrasted primed and unprimed

switch trials, occurring on position 3 of sequences (2.1) and (2.2). Finally, compar-

ison of position 4 in sequences (2.2) and (2.3) gave a contrast between primed and

unprimed repeat trials. In their simulation, Gilbert and Shallice (2002) ran each

sequence 50,000 times.

The simulation of item-speci�c priming e�ects was replicated. The interaction

between priming and task transition (see Figure 2.4b), replicates the simulation

of item-speci�c switch costs (Gilbert & Shallice, 2002, p. 319), which in turn simu-

lated an empirical e�ect (Allport & Wylie, 2000, experiment 5). Thus, item-speci�c

priming e�ects were e�ectively simulated by direct connections from stimulus in-

put units to task demand units, using a Hebbian learning mechanism.

Preparation e�ects

Gilbert and Shallice (2002) also used their model to address the empirically ob-

served e�ects of a preparation interval. Typically, participants are presented with

a task cue for a speci�c interval, before stimuli are presented, and instructed to

use the interval to prepare for the forthcoming task (see section 2.3.2 for a review

of this paradigm). Typically, preparation intervals have an advantageous e�ect on

the size of switch costs, although in most studies it is not eliminated altogether,

leaving a reduced, residual switch cost (Rogers & Monsell, 1995, experiment 3;

Meiran, 1996; although, see De Jong, 2000). The e�ect of preparation, and the

residual switch cost, was originally a central plank of recon�guration accounts of

the switch cost. According to this view, while most of a task-switch recon�gura-

tion could occur in response to a task cue, a �nal stage could only take place in the

presence of a speci�c stimulus, accounting for the residual switch cost.
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(a) Figure 7 from Gilbert and Shallice (2002) demonstrating the e�ects of item-speci�c
priming on switch costs. Empirical data are based on Allport and Wylie (2000). Reproduced
with permission.

(b) The e�ects of item repetition for word reading switch and repeat trials in the reimple-
mentation of the Gilbert and Shallice (2002) model.

Figure 2.4: Replication of Gilbert and Shallice (2002) �gure 7: Item-speci�c priming
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Gilbert and Shallice (2002) argued that the e�ect of a preparation interval is en-

tirely consistent with an interference-based account of switching. In their model,

top-down control units are activated and allowed to cycle for a certain number of

cycles, prior to the activation of the input units that represent stimuli. It could

therefore be argued that the e�ect of top-down control and the processing that

takes place in the task-demand layer is, indeed, implementing a form of recon�g-

uration. However, a crucial di�erence is that this is not a stage-based recon�gu-

ration process, except to the extent that is imposed by an interval in which only

preparation is allowed to take place. Instead, any recon�guration is interactive

with activation in the rest of the model. However, the model of Gilbert and Shal-

lice (2002) did not simulate residual switch costs. In their model, with the longest

preparation interval (150 cycles) the switch cost was entirely eliminated for both

the simulated colour naming and word reading tasks.

In the replicated model, the simulation of preparation interval was accom-

plished as in the original paper, by allowing the task demand units to cycle based

on residual activation from previous trials, inputs from top-down control units,

and lateral inhibition between themselves, only. Here, four di�erent preparation

intervals were used: 0, 25, 60, and 149 cycles. Gilbert and Shallice (2002) do not

specify the exact task sequence used, but for simplicity the same sequence as for

the original demonstration of switch costs, in section 2.6.2, was used. The repli-

cated results, together with the original �gure, are presented below in �gure 2.5.

Gilbert and Shallice (2002) present only a simulation of reaction times (�gure

2.5a). The replication of the RT analysis corresponds very closely with the original

(�gure 2.5b), showing a reduction and eventual abolition of switch costs for the

longest preparation intervals. The analysis of error rates is also presented (�gure

2.5c). Interestingly, error rates do show a small residual switch cost for the colour

task only.
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(a) Figure 8 from Gilbert and Shallice (2002) demonstrating the e�ects of preparation on
switch costs. Reproduced with permission.

(b) Replication of the e�ects of variable preparation interval on simulated reaction times

(c) E�ects of preparation on error rates

Figure 2.5: Replication of Gilbert and Shallice (2002) �gure 8: The e�ects of prepa-
ration. As in the original article, simulated RTs were estimated using the same
regression equation used in the replication of �gure 3 (reproduced here as �g-
ure 2.2a).
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2.7 Further simulations using theGilbert and Shal-

lice (2002) model

The model of Gilbert and Shallice (2002) e�ectively implements task-set interfer-

ence within a two-task switching paradigm. As the authors demonstrated with

their account of asymmetric switch costs, interference e�ects have often proven

counter-intuitive. This section reports two novel simulations in which the model

was used as a vehicle to explore what may prove to be similarly counter-intuitive

e�ects of interference in a wider range of task-switching scenarios.

2.7.1 Simulation 1: IndividualDi�erences in Executive Func-

tions

This simulation addresses reported correlations in individual di�erences studies,

on what Miyake et al. (2000) argued are basic executive tasks. ‘Response inhibi-

tion’, putatively required in the Stroop task, was operationalised as RT di�erences

between Stroop colour naming and word reading. ‘Task switching’ tasks included

the list procedure Jersild (1927), measuring performance as the di�erence in total

time to complete two sets of tasks, when tasks alternated, compared to occurring

in single-task blocks; and the alternating runs procedure of Rogers and Monsell

(1995). The correlation coe�cients reported by Miyake et al. (2000) for the execu-

tive tasks pertinent to this simulation are presented in table 2.1.

Table 2.1: Pearson correlations between dependent measures on executive tasks
Miyake et al. (2000)

Stroop Switch cost
Switch cost .09

Global switch cost .07 0.32*
* signi�cant at 0.05 level

Miyake and colleagues reasoned that performance correlations on tasks pu-

tatively requiring di�erent executive functions (the ‘unity’ of executive function)
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may be due to a shared executive resource (Friedman et al., 2008; Miyake & Fried-

man, 2012), while individual executive functions also had a function-speci�c com-

ponent (the ‘diversity’ of executive function). However, it remains to be explored

whether both unity and diversity can be accounted for by variation of a single fac-

tor, or parameter, in a cognitive model which can perform both tasks (see Cooper

& Davelaar, 2010, for an example of this approach). In the model of Gilbert and

Shallice (2002), one candidate parameter was the weight of connections between

task-demand units and task-speci�c processing pathways, controlling attentional

biasing in the model. Simulation 1 was exploratory, examining the e�ects of vary-

ing the parameter on both ‘response inhibition’ and ‘task switching’ performance.

The simulation varied this parameter randomly between 0 and -8 (compared to a

default value of -2.5).

Scatter plots of simulated individual di�erences in model performance are pre-

sented in �gure 2.6. Panels 2.6a, 2.6b and 2.6c show the relationship between

weights of inhibitory connections between task demand and output units (i.e., the

strength of inhibitory attentional biasing) and dependent measures on executive

tasks: Stroop interference, a measure of ‘inhibition’ (2.6a), and two measures of

task switch cost (2.6b, 2.6c). Panels 2.6d and 2.6e show the resulting relation-

ships between dependent ‘executive’ measures. Table 2.2 presents the resulting

Pearson correlation coe�cients, which were all highly signi�cant for a population

of 500 models. The magnitudinal di�erence in correlations suggests that while

both Stroop and switch cost performance are modulated by a single parameter (re-

�ected by a strong correlation between these dependent measures and inhibitory

bias weight) the intercorrelation between the two dependent measures is some-

what weaker. This �nding implies that strong correlations between tasks puta-

tively requiring the same executive function, and weak correlations between tasks

requiring di�erent executive functions, might in principle be explained in terms

of a single parameter or factor.
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(a) (b)

(c)

(d) (e)

Figure 2.6: Scatter plots showing simulated individual di�erences in model per-
formance. (2.6a) Inhibitory bias weight vs. ‘Response inhibition’; (2.6b) Inhibitory
bias weight vs. ‘Task Switching’ (colour naming); (2.6c) Inhibitory bias weight vs.
‘Task Switching’ (word reading); (2.6d) ‘Response inhibition’ vs. ‘Task Switching’
(colour naming); and (2.6e) ‘Response inhibition’ vs. ‘Task Switching’ (word read-
ing). Correct trials (red) and errors (blue) have been plotted separately, although
on some trials (e.g., Stroop word reading) no errors were made.81



Table 2.2: Stimulated individual di�erences in executive functions. Pearson cor-
relation coe�cients for performance on Stroop (‘response inhibition’) and Switch
costs

Stroop Switch cost (colour) Switch cost (word)
Inhibitory bias weight 0.51*** 0.51*** 0.47***

Stroop 0.23*** 0.24***
Switch cost (colour) 0.23***

*** signi�cant at 0.001 level

While these �ndings are interesting, caution is required in the comparison

of simulated correlations with published individual di�erences data. The speci�c

‘task switching’ tasks used by Miyake et al. (2000) did not involve switching be-

tween Stroop stimuli, as in Allport and Wylie (2000) and the model, and this ren-

ders direct comparison problematic. Future systematic studies of individual di�er-

ences must either simulate performance on a wider range of switching paradigms

using a more developed model of task switching, or obtain empirical individual

di�erences data including switching between asymmetric tasks.

The proposal that variation of attentional bias parameters might produce a

speci�c pattern of correlations in di�erent dependent measures was largely ex-

ploratory. However, the simulation of individual di�erences in various executive

tasks remains an important methodology for future simulations, which may adopt

a more theoretically motivated approach. Speci�cally, the modelling of theoretical

proposals such as task inhibition, goal encoding and con�ict monitoring, provides

scope for simulating individual di�erences in putative executive functions.

2.7.2 Simulation 2: ‘Rebound e�ects’ in task switching

In switching between two tasks of asymmetric di�culty (colour-naming and word-

reading in response to Stroop stimuli), Allport and Wylie (2000, experiments 3, 4)

found e�ects of interference which persisted beyond the subsequent trial. Speci�-

cally, following a block of colour-naming trials, task-set interference was re-evoked

on the �rst trial after a break, with no switch of task (a restart trial). This e�ect was
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Figure 2.7: Asymmetric restart costs: Results from experiments 1 and 2 of Bryck
and Mayr (2008). Restart costs, although lower than switch costs, exhibited the
same pattern of asymmetry, i.e., greater in switching from the non-dominant to
the dominant task. Reproduced with permission.

larger for word reading than colour naming trials, even though RTs were generally

faster for word reading, mirroring the pattern of switch cost for asymmetric tasks

(replicated in Bryck & Mayr, 2008, see �gure 2.7).

Recent authors have argued that longer-term interference e�ects such as this

cannot readily be accounted for in terms of residual task activation, and instead

favoured explanations in terms of variable memory encoding of item-speci�c as-

sociations (Bryck & Mayr, 2008) or task di�culty e�ects (Schneider & Anderson,

2010). However, although Gilbert and Shallice (2002) did not extend their model

to account for longer-term interference, certain e�ects may be produced in in-

teractive activation models as the dynamic interaction between di�erent levels of

83



processing, such as item-speci�c priming e�ects (i.e., a�ecting stimulus encoding

stage) and task preparation (a�ecting task recon�guration). Importantly, this dis-

tinguishes interactive models (Allport & Wylie, 2000; Gilbert & Shallice, 2002) from

discrete-stage models of task processing (Rubinstein et al., 2001; Mayr & Kliegl,

2003) in which sequential stages, such as stimulus encoding and response selec-

tion, do not interact. Hence, if this e�ect can be parsimoniously accounted for by

existing mechanisms in an interactive model, it would present problems for dis-

crete stage-based accounts of task switching, which must invoke additional mech-

anisms.

Simulation 2 takes as point of departure the simulation of item-speci�c priming

e�ects using the replicated model of Gilbert and Shallice (2002), presented previ-

ously (section 2.6.2). In this model, item-speci�c priming was implemented with

weights acquired through Hebbian learning, which persist onto the subsequent

trial. Thus, we already have available an implementation of item-speci�c priming

with some empirical validation. To test the hypothesis that rebound e�ects (asym-

metric restart costs) are caused by an interaction between item-speci�c priming

and residual task-demand activation, the simulation varied two factors: the inter-

trial interval (RSI) and whether the stimulus was primed or unprimed (i.e., primed

stimuli directly activated the colour-naming task-demand unit). It was predicted

that longer RSIs would produce restart costs (i.e., longer RTs on restart trials) and

that this e�ect would be greater for word reading than colour naming. For this sim-

ulation, two parameters were adjusted from their default settings in Gilbert and

Shallice (2002). Firstly, the learning rate was increased from 1.0 to 1.5 to increase

the size of the priming e�ect in the model. (In the model, prior task performance

is based on only a single trial, compared to multiple blocks for human participants

(Allport & Wylie, 2000), hence the exact learning rate used in the model to simu-

late participant data is arbitrary.) Secondly, two values of word reading top-down

control strength were tested, the default of 8.0, and a lower value of 4.5. In the
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model, more automatised tasks are re�ected by greater bottom-up activation, and

thus a lower level of control. Although these strengths were hand-set by Gilbert

and Shallice (2002), in a related model Cohen et al. (1990) demonstrated that asym-

metric control strengths for two tasks could be learned through di�erent numbers

of training runs.

These results are presented in �gures 2.8a and 2.8b. Analysis of the results

suggested that intertrial intervals could interact with priming to cause additional

interference (an item-speci�c component of restart costs), but that this only oc-

curred for one task. Importantly, which pathway was a�ected by item-speci�c

restart costs depended on the top-down control strength of the word reading path-

way. This parameter was adjusted as a means of controlling interference between

colour naming and word reading: lower top-down control strength should pro-

duce greater interference on word reading trials. When the word reading con-

trol strength was high (i.e., a default value of 8.0) the item-speci�c restart cost

(an interaction between priming and intertrial interval) was highly signi�cant

for word reading, F (1, 3956) = 7.74, p < .01, but not colour naming trials,

F (1, 3866) = 0.02, �gure 2.8a. When word reading control strength was low (4.5)

the item-speci�c restart cost was not signi�cant for word-reading, but approached

signi�cance for colour-naming F (1, 3852) = 2.46, p = .12, �gure 2.8b.

These �ndings do not support the hypothesis that asymmetric restart costs

re�ect an interaction between item-speci�c priming and the decay of residual ac-

tivation during an intertrial interval — the predicted 3-way interaction between in-

tertrial interval, priming and task did not approach signi�cance. However, the data

suggests that the model may produce a task-speci�c interaction between priming

and interval, modulated by top-down control strength.

In the model of Gilbert and Shallice (2002), top-down control strength was

�xed. However, in the original model of Cohen et al. (1990), top-down control

strengths were learned, such that the top down control in the two pathways was
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(a) Item-speci�c restart costs with word reading control
strength of 8.0

(b) Item-speci�c restart costs with word reading control
strength of 4.5

Figure 2.8: Item-speci�c restart costs.
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variable. Although not predicted, this observation �ts with �ndings from Bryck

and Mayr (2008) that restart cost asymmetries are a�ected by the relative strengths

of the two tasks. This observation may warrant further systematic study. In addi-

tion to theoretical interest in applying the task-switching model to empirical phe-

nomena for which no computational explanation exists, this simulation touches

on a wider theoretical issue of whether discrete stage-based models or interactive

models of cognitive processing are compatible, or make diverging behavioural pre-

dictions.

2.8 Themathematical task-switchingmodel of Yeung

and Monsell (2003)

In this section, we report an attempt to replicate the model of Yeung and Monsell

(2003), described above in section 2.3.4.

2.8.1 Model description

The model consists as a series of equations describing the inputs, and the resulting

activation, of two task-sets. For each task, i:

inputi = strengthi + primingi + controli + noise (2.4)

Strength re�ects relative di�erences in the of tasks as a result of di�erent levels of

practice. In the reported simulations, this was set to 0.1 for colour reading and 0.5

for word naming. Priming is modelled as an additional input to the most recently

activated task-set, taking a constant value of 0.3 for both tasks. Control re�ects en-

dogenous control input. It is assumed that this input is e�ortful, and is minimised

in order to regulate performance to an arbitrary error threshold. In the model, the

values for control inputs were determined during a training phase to keep the er-
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ror rates below 5% in each condition.6 The �nal values used were reported as 0.20

for word switch, 0.15 for word repeat, 0.97 for colour switch, and 0.38 for colour

repeat trials. Finally, a noise term is drawn from a Gaussian distribution with a

mean of 0 and standard deviation of 0.1.

The activation of the task-set is given as a function of its input, by the following

activation equation:

activationi = 1− e(−c×inputi) (2.5)

where c is a constant equal to 1.5 in the reported simulations. Importantly, due

to the shape of the activation function, a constant priming input has a greater

e�ect on the task-set’s activation when the input is relatively small, such as for

the colour-naming task, than when the input is larger, as for the word reading

task.

Once the activation of the two task-sets is determined by the above equations,

response times are calculated through the following equations describing a re-

sponse selection process. Firstly, it is assumed that the duration of a response

selection process is a�ected by the activation of each task-set, and that similar

activation levels produce greater response times due to interference.

generation ratei =
activationi
Σactivation

(2.6)

generation timei =
threshold

generation ratei
(2.7)

where threshold is a time constant with a value of 100. Secondly, it is assumed

that response codes are generated for each task-set individually, and that resolving

these competing responses requires a duration given by the following equation:

resolution time = r + f [r − (generation timej − generation timei)] (2.8)
6In the training phase, control inputs for each task were initialized at 0.15, and ‘several trials’

were performed. Control inputs were incremented by 0.05 following erroneous responses and 0.001
following correct responses.
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where r is a term drawn on each trial from an ex-Gaussian distribution, generated

by convolving a normal distribution (mean of 140, standard deviation of 10) and an

exponential distribution (mean of 40). This equation implements the assumption

that the magnitude of interference or facilitation depends on the proximity in time

with which competing responses are generated — competing responses generated

within a short space of time will produce a large amount of interference. The

coe�cient of this time di�erence, f, takes a value of 0 for neutral stimuli and 0.5

for incongruent stimuli. Thus for neutral stimuli response interference does not

contribute to the resolution time.

Finally, the output of the model gives the simulated RT in milliseconds accord-

ing to the following equation:

RT = P + generation time+ resolution time+R (2.9)

where P and R represent the time taken by perceptual and response processes

respectively, and take a combined value of 150 in the reported simulations. Yeung

and Monsell (2003) report conducting 50 simulations of 600 trials each.

2.8.2 Model replication

Unfortunately, the model could not be fully implemented based on the description

in Yeung and Monsell (2003). Some additional assumptions were required in order

for the model to produce the described results. These are detailed below:

Negative generation rates as a result of equation 2.6 Because a noise term is

added to the input for each task pathway (equation 1), with mean 0 and SD

0.1 (parameters speci�ed in the paper) it was possible, on occasion, for the

net input to be negative, especially with low levels of control (e.g., the 160

ms SOA condition). A small, negative activation produces a small, nega-

tively signed generation rate. In equation 2.7, this produces a large, nega-
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tively signed generation time. The end result is a large, negative RT for that

particular task. Additionally, a zero activation value is problematic, as it pro-

duces a generation rate of 0 (equation 2.6) which leads to division by zero in

calculating generation time (equation 2.7). In order to prevent these results

from occurring, in the present replication a lower bound of 0.0001 was used

for activation values.

Implementation of delayed onset of stimulus dimensions The paper is vague

on what was varied in the model to simulate delayed onset of stimulus di-

mensions. The authors write:

To implement the second critical assumption — that top down

control is e�ortful and, hence, minimised where possible — con-

trol inputs are determined by iteration during a training phase to

be at the minimum level required to keep error rates low in each

condition (5%). In this training phase, control input to each task

set was initialized at a minimum value (0.15), and then the perfor-

mance of the model was assessed over several trials for each task

and trial type (nonswitch and switch). The control input for the

relevant task set and trial type was incremented by 0.05 units each

time the model made an error and was reduced slightly (by 0.001

units) for each correct response. In this way, control input was set

to the minimum level required to produced (sic) generally accu-

rate performance, capturing our assumption that levels of control

input re�ect a trade-o� between accuracy and e�ort. Performance

quickly stabilized to a level at which responding was accurate on

most trials, and the output of the model was assessed once this

stable level of performance was reached.

(Yeung & Monsell, 2003, p. 465)
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Our [empirical] data show that introducing a delay reduced Stroop

interference without creating any reverse Stroop e�ect. The model

naturally reproduces this basic �nding, as interference depends

on the relative rate at which response tendencies are generated.

Of interest is the impact of these changes on simulated switch

costs, and this is shown in Table 5 and Figure 6 (simulation of

160-ms delay condition). Evidently, the primary e�ect of delay-

ing word onset is to increase the cost of switching to the color

naming task.

[. . . ]

The model behaves in this way because the reduced interference

from the delayed word stimulus means that a reduced level of con-

trol input is required to perform the color naming task. [. . . ] The

model therefore explains the results of Experiment 1 through the

e�ect of delaying word onset on the control inputs required to

perform color naming: As control input is decreased, task prim-

ing e�ects come to have a large e�ect on color naming perfor-

mance. . .

(Yeung & Monsell, 2003, pp. 466-467)

The above quotations clearly imply that the independent variable in the

model was the introduction of a delay into some aspect of model processing,

with the changes in control levels dependent on this. However, the paper

does not specify implementation details. The tabulated settings (Table 5 in

the quotation above, reproduced here as Table 2.3) is inconsistent with this

interpretation, however, suggesting that a �xed value of 0.15 is used as the

control strength for all trial types, consistent with the presentation of con-

trol parameters used for the no delay condition, presented in their Table 4. In

the re-implementation of the model, the �xed value of 0.15 was input as the
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Tabulated RTs
Trial type and task set Strength Control Priming Total input Activation

Word Switch
Color 0.10 0.00 0.30 0.40 0.45
Word 0.50 0.15 0.00 0.70 [sic] 0.60

Word nonswitch
Color 0.10 0.00 0.00 0.10 0.14
Word 0.50 0.15 0.30 0.95 0.76

Color Switch
Color 0.10 0.15 0.00 0.25 0.31
Word 0.50 0.00 0.30 0.80 0.70

Color nonswitch
Color 0.10 0.15 0.30 0.55 0.56
Word 0.50 0.00 0.00 0.50 0.53

Table 2.3: Simulation of the 160ms delay condition, Yeung and Monsell (2003) Table
5.

control parameter for all trials. However, while the pattern of RTs produced

by the model did �t the description and the qualitative pattern in the text

(and presented in their Figure 7), the exact values were not accurate, and the

model produced extremely high error rates (above 95%) in the colour-switch

condition. This was taken to suggest that the values printed in Table 2.3

were only the starting values, before the training phase in the model. Thus,

the training regime was also replicated.

Implementation of the training regime The training regime was also vaguely

described. No details were provided of how many trials the model was

trained for, only that ’Performance quickly stabilized to a level at which re-

sponding was accurate on most trials’. However, in the replication, control

weights did not stabilize, and with the given parameter settings, continued

to increase even after a relatively large number of trials. Training simula-

tions for up to 10,000 trials revealed that control strength for colour naming

on switch trials continued to increase to over 30, while control strength for

word reading on nonswitch conditions became negative.
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Use of trial-and-improvement found that 50 trials with the stated training

parameters produced approximately the right control strengths for the con-

trol (synchronous) condition. This number of trials also produced control

strength settings which stabilised in the delayed onset condition: Word switch

= 0.10; Word Nonswitch = 0.10; Colour Switch = 0.56; Colour nonswitch =

0.15. While these control settings control the error rate of trials, the model

produces the same direction of switch cost asymmetry observed in the con-

trol condition.

Implementation of delayed stimulus-onset in the model In the model, sequen-

tial stages of cognitive processing are modelled using equations. As a result,

the state of the model at each stage of processing is represented as some

psychological quantity, such as (task) activation, generation rates, response

times, etc. Time, in the model, is calculated proportionately (in ms) for each

stage of processing. This may be regarded as a strength of the model, and is

in contrast to models (e.g., IAC models) where the state of a model at a par-

ticular stage of processing is somewhat opaque in comparison. Given this,

then, the implementation of the di�erent experimental conditions is unin-

tuitive. For example, the e�ect of delaying the onset of the word aspects of

the stimulus by 160ms (in human participants) is modelled by lowering the

control strength required to perform the colour naming task. Model control

strengths are then re-established through a training phase, with the result

that control values of 0.15 are used for both word reading and colour nam-

ing. While this produces the desired reversed-asymmetry RT switch cost

(i.e., greater switch cost for colour naming than word reading) the model

also produces extremely high error rates (over 90%) in one condition (colour

naming switches).

Consider, however, that, if the two stimulus dimensions are initially pro-

cessed in parallel, as the model assumes, one might equally choose to model
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the e�ects of SOA by adding the SOA (160ms) to the generation time for

the irrelevant stimulus, based on the assumption that both dimensions are

processed as before, but with di�erent start times. However, under this

manipulation, the model does not produce the main empirical e�ect (in-

verted switch cost asymmetries).7 Therefore, the production of reversed-

asymmetry switch costs in the model is dependent on speci�c settings for

control input.

In summary, replication of the model faced certain issues which required ad-

ditional assumptions to duplicate the results as published. In particular, the key

model prediction of reversed-asymmetry switch costs was dependent on some-

what arbitrary setting of control values, and not the adjustment of some other pa-

rameter (SOA) that might reasonably be expected to correspond to the behavioural

condition in question. In the light of the limited replicability of the model, no ad-

ditional simulations were attempted, and subsequent simulation work focused on

developing the model of Gilbert and Shallice (2002).

2.9 Summary

In the past two decades since its emergence as a domain of cognitive psychology,

the task switching paradigm has matured and diversi�ed, and now encompasses

a wide range of empirical phenomena, cognitive theorising, and methodological

approaches (Koch & Brass, 2013). The switch cost, as a putative indicator of task

switching ability (Miyake et al., 2000) has proven particularly problematic. On a

theoretical level, there has been extensive debate over whether the switch cost

primarily re�ects the recon�guration of the cognitive system appropriate to a new

task, or to interference from competing task representations. It has been argued
7Of note, when both manipulations are combined (i.e., equal low control settings for both tasks

and introducing SOA into the resolution time equation (equation 2.8), the reversal of the switch
cost asymmetry is more pronounced. However, it seems it is the lower control settings that are
both necessary and su�cient for the e�ect.
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that of these two alternatives, switch costs may more plausibly be understood in

terms of interference models, rather than recon�guration-based models. However,

certain alternative behavioural paradigms have raised the question of whether the

switch cost really re�ects a switch of task at all, with compound-cue retrieval mod-

els (e.g., Logan & Schneider, 2010) providing a good �t to behavioural data, and

parsimoniously suggesting that switch costs merely re�ect a switch of cue, rather

than a task-switch per se. In the light of this development, the prospect of the task-

switching paradigms discussed here o�ering insight into executive processes has

become increasingly distant. Meanwhile, a number of theoretical accounts o�er

accounts of interference-based processes and the cognitive challenges facing any

executive recon�guration process.

The following chapter discusses an alternative task switching paradigm to the

two-task switching ones presented in this chapter. It will be argued that in contrast

to the phenomena discussed in this chapter, the n-2 repetition paradigm provides

good evidence for at least one cognitive task switching mechanism, the inhibition

of task-sets.
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Chapter 3

Task-Set Inhibition: The n-2

Repetition Paradigm

Classic e�ects of task switching, such as switch costs, have proven to

be of limited empirical value in revealing the action of cognitive con-

trol processes. Instead, the n-2 repetition cost, observed in switching

paradigms with three tasks, may re�ect a cognitive inhibition process.

This chapter reviews the evidence for the n-2 repetition cost as an index

for the inhibition of task-sets (‘Backward Inhibition’). In particular,

n-2 repetition costs appear resistant to manipulations of preparation

intervals or cueing, that reduce the observed e�ects of switch costs

in two-task switching, although the magnitude of n-2 repetition costs

may be reduced (but not eliminated) by controlling for episodic prim-

ing. N-2 repetition costs also appear to be driven by con�ict between

competing task representations, although there is ambiguity in the lit-

erature as to whether they depend on con�ict at the level of cue-task

retrieval or of response processes, or both. This chapter also reviews

mechanistic and computational accounts of task-set inhibition.
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3.1 Introduction

A number of the theoretical accounts of task-switching phenomena propose a cen-

tral role for inhibitory mechanisms in task switching. For example, in their task-

set interference (TSI) account of switch costs, Allport and colleagues proposed that

interference was composed of “continued priming of the previous task (competi-

tor priming), and suppression (negative priming) of the currently intended task”

(Allport & Wylie, 1999). According to this view, active suppression or inhibition of

task-sets is a central mechanism in the control of task-sets, and the persistence of

such inhibition over time is a contributor to the empirical phenomenon of switch

costs (Allport et al., 1994). Similarly, in the computational model of Gilbert and

Shallice (2002), lateral inhibition between units at the same level ensures that only

a single unit is active at any time. Current task-sets are therefore mutually in-

hibitory, and inhibition at the end of each trial persists into the next trial, produc-

ing switch costs. Lateral inhibition between task-set units is similarly implemented

in the model of Brown et al. (2007). Numerous theories proposing similar roles for

inhibition in task switching have been proposed (e.g., Arbuthnott, 2005 Goschke,

2000, Mayr & Keele, 2000, Schuch & Koch, 2003, see Koch et al., 2010 for a review).

For example, Goschke (2000) proposed that inhibition directed at task sets is dy-

namically adjusted based on the level of response con�ict evoked by incongruent

stimuli.

It has been argued, however, that many cognitive phenomena which have been

explained in terms of inhibition may more parsimoniously be explained without

invoking speci�c inhibitory mechanisms (MacLeod, Dodd, Sheard, Wilson, & Bibi,

2003). For example, task-switching accounts exist which explain switch costs in

terms of persisting activation (Altmann & Gray, 2008). In general, without direct

empirical evidence, theories based on the competing activation of task-sets could

equally propose that control operates via either excitatory or inhibitory mecha-

nisms (e.g., Yeung & Monsell, 2003). It is now generally accepted that evidence
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from procedures in which participants switch between two tasks fails to conclu-

sively demonstrate the existence of inhibitory mechanisms in task switching Koch

et al. (2010). Instead, the most compelling evidence is provided by a di�erent mea-

sure, n-2 repetition costs.

In the n-2 repetition procedure (e.g., Mayr & Keele, 2000), participants switch

between three tasks. In most versions of this procedure, tasks do not repeat, hence

each trial (n) represents a switch compared to the previous (n-1) trial. The main

dependent measure in such a procedure is the contrast between ‘n-2 repeats’ —

trials in which the participant returns to a task after a single intervening trial (i.e.,

given switching between three tasks, A, B and C , the third trial in the task se-

quence ABA) — and ‘n-2 switches’, in which the task has not been performed for

two or more trials (such as the third trial in CBA sequences). Based on the as-

sumption that persisting activation and inhibition decay over time, such that the

residual e�ect on trial n of trial n-2 is greater than that of trial n-3+, it has been

reasoned that the persisting-activation and persisting-inhibition hypotheses make

opposite predictions for this contrast (Koch et al., 2010). In the event of persisting

activation of task sets, n-2 repeats should be facilitated by having performed the

task more recently compared to n-2 switches, and therefore reaction times should

be shorter. In contrast, the persisting inhibition of task sets hypothesis suggests

that n-2 repeats should be slowed compared to n-2 switches (see Mayr & Keele,

2000, for a one-tailed statement of this hypothesis).

Typically, studies using an n-2 repetition procedure �nd a robust n-2 repetition

cost, that is, n-2 repeats are signi�cantly slower than n-2 switches. This e�ect has

been observed for a range of di�erent tasks (see section 3.2.5).1

1In the literature on the n-2 repetition procedure, various terms (‘backward inhibition’,
‘task/task-set inhibition’, ‘alternating switch cost’) have been used somewhat interchangeably.
Here, I adopt the practice of Koch et al. (2010) of using the theoretically neutral term ‘n-2 repeti-
tion costs’ to refer to the empirical phenomenon, while the terms ‘backward inhibition’ or ‘task-set
inhibition’ are reserved for putative theoretical mechanisms.
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3.2 Empirical and theoretical issues

3.2.1 N-2 repetition costs as task-set inhibition

It has frequently been suggested that n-2 repetition costs re�ect the operation of

a mechanism for sequential task control. In situations that a�ord a number of

competing tasks, rapidly transitioning from one task to another would require the

suppression of a highly active task-set in favour of a less active task-set. Mayr

and Keele (2000) proposed that a speci�c cognitive mechanism which they termed

‘backward inhibition’ facilitates task selection by inhibiting no-longer relevant

task-sets.

Assuming such an inhibitory mechanism raises a theoretical question — at

what level of the cognitive system is it situated? One possibility is that it is a

high-level executive process, perhaps belonging to a supervisory attentional sys-

tem (SAS; Norman & Shallice, 1986). However, Mayr and Keele (2000) discounted

this possibility based on evidence that the n-2 repetition cost is resistant even to

long preparation intervals (reviewed in section 3.2.9) and when participants know

that the inhibited task is likely to be useful in the immediate future, such as when

sequences are fully predictable (see section 3.2.2). Mayr and Keele (2000) preferred

an account in which task-set inhibition is a relatively automatic process, resistant

to high-level intervention. According to this view, “inhibition may be contributed

by a process that is insensitive to to the current context, but instead, once triggered,

obeys its own temporal dynamics. To be more speci�c, disengagement from a task

set [. . . ] may turn on an inhibitory node associated with the task-set representa-

tion. Once initiated, inhibition is fed into the task-set node until activity of the

inhibitory node has waned according to its inherent decay function. As long as

the inhibitory node is active, selection of the associated task-set node will be im-

paired” (Mayr & Keele, 2000, p. 23). Subsequent research on this point has not been

de�nitive, and the question remains open (see section 3.2.9).
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3.2.2 Non-inhibitory accounts of n-2 repetition costs

A number of possible explanations for the n-2 repetition cost are possible which

do not involve inhibitory mechanisms. While these accounts fail to provide a com-

plete account of the data, they are considered brie�y below.

N-2 repetition costs due to violation of sequential expectancies

N-2 repetition costs observed inABA compared toCBA sequences may be due to

violations of an implicit expectation that tasks are equally distributed in short runs.

However, it has been argued that this explanation is ruled out by the evidence. For

example, n-2 repetition costs remain even when sequences are fully predictable

(Koch, Philipp, & Gade, 2006; Mayr & Keele, 2000; Mayr, 2009; Schneider, 2007).

See Koch et al. (2010) and Mayr and Keele (2000, p. 5-6) for additional arguments.

N-2 repetition costs due to cue switching

Within the two-task-switching literature, extensive research has been conducted

to determine whether the (n-1) switch cost on explicitly cued tasks can be at-

tributed to cue-related processing, rather than control of task-sets. Such studies

have used procedures in which two alternative cues are used to indicate each task,

such that the e�ects of a cue switch can be partially separated from those of a task

switch (e.g., Logan & Bundesen, 2003; Mayr & Kliegl, 2003). In a recent review of

the two-task switching literature, Jost et al. (2013) concluded that some, but not all,

of the switch cost in the explicit cueing procedure was attributable to cue switches,

rather than task switches (see section 2.1.5 for a review).

Importantly, using a similar 2:1 cue:task mappings procedure in the n-2 repe-

tition procedure produces a dissociation between (n-1) switch costs and n-2 rep-

etition costs; while the former were a�ected by cue switches, the latter were not

(Altmann, 2007b; Gade & Koch, 2008; Mayr & Kliegl, 2003). Based on this evidence,

it has been argued that task switching cannot be reduced down to cue switching
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(e.g., Jost et al., 2013; Koch et al., 2010). Mayr and Kliegl (2003) reasoned that this

pattern of �ndings supports a two-stage model of task switching. According to

this model, a �rst stage involves cue-driven retrieval of task rules from long-term

memory into working memory, and is a�ected by cue-switching. A second stage

is assumed to re�ect task-set recon�guration, which involves using active task

rules to produce a task-appropriate attentional con�guration, and is indicated by

‘pure task-switch costs’ (i.e., the di�erence between the overall switch costs and

the cue switch cost). Whether this second ‘application’ stage can be a�ected by

preparation is considered by Jost et al. (2013, p. 8). It was proposed that the ap-

plication stage could only take place after stimulus presentation (Mayr & Keele,

2000). However, later studies revealed that true task-switch costs were a�ected by

manipulations of the preparation interval (Monsell & Mizon, 2006; Jost, Mayr, &

Roesler, 2008).

Set-speci�c episodic priming

Mayr and Keele (2000, p. 20) suggested that n-2 repetition costs may alternatively

be explained in terms of associative priming of the task-set and response, a sim-

ilar explanation to that of item-speci�c priming e�ects in the two-task switching

literature (Allport & Wylie, 2000). For example, in a visual search task, a previous

instance of the target dimension (‘colour’) may form an association with a speci�c

response (‘upper right’). Such a mechanism would lead to both bene�ts and costs,

depending on whether the current target was congruent or incongruent with the

associated response, respectively. If incongruencies occurred with a higher prob-

ability than congruencies (e.g., the visual search procedure requires identifying a

target among four possibilities) or if the RT cost of incongruencies was quantita-

tively greater than the RT bene�t of congruencies, then the net e�ect might appear

as an n-2 repetition cost.

Mayr and Keele (2000) ruled this possibility out on the basis that it makes spe-
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ci�c predictions for the e�ect of similarity between instances of the same task-set,

which were not supported by their data. The set-speci�c episodic priming account

would predict that highly similar trials should produce RT bene�ts, while low sim-

ilarity trials should produce repetition costs. In contrast, a task-set inhibition ac-

count would predict similar repetition costs for both high and low similarity trials.

In �ve out of six experiments, n-2 feature repetitions produced greater RT costs

than non-repetitions, the opposite of what would be predicted by a set-speci�c

priming account. However, n-2 repetition costs were reduced slightly for n-2 re-

sponse repetitions than n-2 response switches, indicating a small subsidiary e�ect

of episodic priming. However, the fact that n-2 repetition costs were persistent in

such trials strongly indicates that set-speci�c episodic priming is inadequate as an

overall explanation for n-2 repetition costs.

Because the procedure used by Mayr and Keele (2000) randomised the gen-

eration of task parameters trial-by-trial, n-2 response repetitions very rarely also

coincided with cue and stimulus repetitions. These experiments therefore cannot

rule out the possibility of an episodic priming component to the n-2 repetition cost.

Mayr (2002) tested this possibility more directly, developing a paradigm in which

stimuli (a dot appearing in one of four possible locations) had to be translated along

one of three dimensions: vertically, horizontally, or diagonally, according to a rule

given by the task cue. For an n-2 repetition, therefore, the stimulus and correct

response either matched or mismatched those that appeared on the correspond-

ing n-2 trial. Mayr (2002) reasoned that according to an inhibition-based account,

n-2 repetition costs should be associated with both n-2 response repetitions and

non-repetitions. If n-2 response repetitions were associated with a smaller n-2 rep-

etition cost than n-2 response non-repetitions, however, this would be suggestive

of a response priming e�ect, implying that at least a component of the n-2 reptition

cost could be ascribed to an episodic priming e�ect. Mayr (2002) reported an ex-

periment in which 39 participants completed 3 blocks of 120 trials. While both n-2
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repetition costs and n-2 response-repetition facilitation were observed, crucially

there was no signi�cant interaction between the two factors. It was therefore con-

cluded that while episodic priming a�ected reaction times on n-2 task alternations,

it was inadequate as a sole explanation for the n-2 repetition cost.

More recently, however, Grange, Kowalczyk, and O’Loughlin (2017) replicated

the earlier experiment of Mayr (2002) in 3 separate experiments with a large num-

ber of participants (76, 66, and 25) each performing 4 blocks of 120 trials. On this

occasion, in addition to a signi�cant n-2 repetition cost and n-2 response repetition

facilitation, a signi�cant interaction between these two factors was observed for

reaction times. Although the e�ect could not fully account for the n-2 repetition

cost, Grange et al. (2017) argued that the n-2 repetition cost is potentially contam-

inated with episodic priming e�ects, and cannot be viewed as a ‘pure’ measure

of inhibition. Analysing data from all three of their experiments, they found evi-

dence for a small ‘residual n-2 repetition cost’ which may be attributable to inhibi-

tion. The authors acknowledged that the extent to which n-2 response-repetition

produces a facilitation, and n-2 response-nonrepetition produces interference, is

di�cult to ascertain experimentally, and therefore the residual n-2 repetition cost

may be underestimated in their data.

3.2.3 The role of con�ict

In an alternative account of task switching in general, Goschke (2000) proposed

that task inhibition was dynamically regulated in response to the degree of con-

�ict (cf. Botvinick et al., 2001) occurring during task. More recently, the concept

of con�ict has been applied as a speci�c mechanism for the recruitment of task-

set inhibition. In a review of the n-2 repetition paradigm, Koch et al. (2010) ar-

gued that a wide range of evidence suggests that task-set inhibition is a somewhat

�exible mechanism, which is directed toward any elements of a task-set that pro-

duce intertrial con�ict (e.g., Arbuthnott, 2009; Gade & Koch, 2005, 2007; Houghton,
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Pritchard, & Grange, 2009; Koch et al., 2010; Schuch & Koch, 2003). Speci�c evi-

dence supporting this view is discussed throughout this chapter.

3.2.4 Direct evidence for task-set inhibition: The n-1 �anker

facilitation e�ect

The n-2 repetition cost is usually interpreted as an indirect measure of the residual

inhibition of the task on trial n (Koch et al., 2010; Mayr & Keele, 2000). Accord-

ing to theoretical accounts, task-set inhibition is a means of facilitating the per-

formance of the current task by reducing the interference of previously performed

tasks (Mayr & Keele, 2000, p. 4). While it has been proposed that task-set inhibition

facilitates task switching, the n-2 repetition cost does not provide direct evidence

of such facilitation. Instead it measures the residual interference when resuming

a task which was previously switched-away from. Thus, it is important to demon-

strate that a task-set inhibition mechanism actually facilitates switching perfor-

mance. Hübner, Dreisbach, Haider, and Kluwe (2003) provided some evidence us-

ing a di�erent procedure. In their experiments, participants switched between

three univalent tasks (i.e., stimuli were associated with only a single task-set), with

‘�ankers’ (distractors) presented either side of the target stimulus. The distractors

were target stimuli incongruent with the current task. Hence each �anker pro-

duced task interference, uniquely a�ording the previous n-1 or n-2 tasks. Hübner

et al. (2003) reasoned that if, when switching to the current (n) task, a task-set in-

hibition mechanism was applied to the n-1 task, acting to reduce the interference

from the previous task, then interference from n-1 �ankers should be lower than

n-2 �ankers, when measured as an increase in reaction time or error rates. It was

further hypothesised that if task-set inhibition was a top-down, endogenous mech-

anism, such an e�ect of task-set inhibition should only be observed in conditions

where each trial was cued in advance.

The authors found that this was in fact the case for reaction times: trials with
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Figure 3.1: Geometric means of reaction times (RTs) as a function of cue condition
(not precued or precued) and �anking conditon (no �ankers, �ankers from the
preceding task, or �ankers from the control task) for Experiments 1 (left) and 2
(right) from Hübner et al. (2003). Error bars represent standard errors of the means.
Reproduced with permission from Hübner et al. (2003).

n-1 �ankers had shorter RTs than trials with n-2 �ankers in the pre-cued condition,

while trials with n-1 �ankers had longer RTs than those with n-2 �ankers in the

non-cued condition (�g. 3.1 left panel). This pattern of results was found to depend

on advance cues which speci�ed the identity of the upcoming task. Thus, in a sec-

ond experiment, advance cues which only indicated when the task would occur

did not achieve the same reduction in interference for n− 1 �ankers (�g. 3.1 right

panel). Importantly, no repeat trials occurred during this procedure, implying that

although participants were aware that the n − 1 task was to be abandoned when

preparing for trial n, knowledge of which task was next to be performed was essen-

tial for producing the n− 1 �anker facilitation e�ect. Taken together, this pattern

of results was interpreted as supporting the proposal that task-set inhibition acts

to facilitate processing on the current task by inhibiting task-sets associated with

a previous task. Additionally, it provides evidence that task-set inhibition is an

endogenously-triggered mechanism that depends on advance preparation speci�c

to the forthcoming task.
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However, the study has a number of limitations. Based on the studies of Mayr

and Keele (2000), one might expect to observe an n-2 repetition cost in addition to

the �anker n-1 facilitation e�ect. However, this was not observed. Kuhns, Lien,

and Ruthru� (2007), in an attempt to directly replicate the �ndings of Hübner et

al. (2003) using a slightly simpli�ed procedure, did �nd n-2 repetition costs, but

not the n-1 �anker facilitation e�ect. In a second experiment, in which the pro-

cedure was modi�ed to maximise con�ict between tasks, Kuhns et al. (2007) did

�nd both both behavioural e�ects of interest. Kuhns et al. (2007) speculated that

task-set inhibition may be modulated by task di�culty, with greater inhibition re-

cruited in more di�cult conditions. However, this proposal awaits experimental

investigation.

In summary, the experiments of Hübner et al. (2003) and Kuhns et al. (2007)

provide an important additional behavioural measure of task-set inhibition, inde-

pendent from the n-2 repetition costs observable in the procedure of Mayr and

Keele (2000). However, the results they produce appear somewhat brittle. Addi-

tional studies are required to determine whether the e�ects of task-set inhibition

are robust, and if so, to establish their boundary conditions.

3.2.5 The target of task-set inhibition

The n-2 repetition cost has been observed in a range of di�erent tasks. For example,

Mayr and Keele (2000) used a visual search paradigm, in which participants were

required to identify which of four stimuli di�ered from the others, on a speci�ed

visual dimension, out of colour, orientation and movement. For this type of task,

the task-set must presumably specify the visual dimension on which to maintain

visual attention. Thus in this case task-set inhibition comprises inhibition of target

stimulus dimensions. (See also Arbuthnott, 2005; Arbuthnott & Frank, 2000; Ar-

buthnott & Woodward, 2002; Mayr & Kliegl, 2003, in which participants switched

between attending digits, letters and symbols which were combined in a display.)
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More frequently, symbolic classi�cation tasks have been used. For example,

Schuch and Koch (2003) had participants classify single digits as greater or less

than 5, even or odd, or located centrally (i.e., 3, 4, 6, 7) or peripherally (i.e., 1, 2,

8, 9) (see also Arbuthnott & Frank, 2000; Arbuthnott & Woodward, 2002; Gade &

Koch, 2005, 2007, 2008; Hübner et al., 2003; Kuhns et al., 2007; Philipp & Koch,

2006; Sdoia & Ferlazzo, 2008). In this task domain, task-sets must include abstract

symbolic categories as a target for inhibition.

Additionally, n-2 repetition costs have been observed in trilingual language

switching (Philipp, Gade, & Koch, 2007; Philipp & Koch, 2009), and switching be-

tween response modalities (Philipp & Koch, 2005). In this latter procedure, partic-

ipants performed a single symbolic classi�cation task but switched between dif-

ferent response modes. In these examples, task-sets must include representations

of the response modality, which may also be the target of inhibition. This is high-

lighted in a study by Koch, Gade, and Philipp (2004), in which one of the three

tasks was a simple response, requiring participants to simply press both response

keys. N-2 repetition costs were observed even for this simple response task, sug-

gesting that task-set inhibition could be speci�cally directed within-modality at a

particular means of using responses.

In summary, it appears that task-set inhibition may be applied to multiple dif-

ferent aspects of the task-set: including visual stimulus dimensions, abstract stim-

ulus categories, and response modalities.

3.2.6 N-2 repetition costs and cue-encoding

N-2 repetition costs are a�ected by certain experimental manipulations of task

cueing. Firstly, there is evidence for an in�uence of spatial position on task cues.

Arbuthnott and Woodward (2002) found signi�cantly smaller n-2 repetition costs

when task cues were presented in di�erent spatial locations, compared to when

locations of task cues spatially overlapped. (See also Arbuthnott, 2005, 2008b, 2009;
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Druey & Hübner, 2007, for replications.) Arbuthnott (2009) suggested that such

non-overlapping cues are encoded as ‘location-task representations’, which do not

interfere with each other su�ciently during response generation to recruit task-set

inhibition. According to this view, task inhibition is a �exible mechanism that is

sensitive to the degree of overlap in task-set components, which Koch et al. (2010)

argue is consistent with a dynamic task-set inhibition mechanism recruited by task

con�ict (an argument discussed in detail in section 3.3.3).

Secondly, cue transparency has been found to a�ect n-2 repetition costs. In a

series of experiments using a visual search procedure, Houghton et al. (2009) re-

ported larger n-2 repetition costs when the cue for the target stimulus dimension

was more abstract. Speci�cally, cues that were identical with the stimulus target

produced no n-2 repetition costs. Iconic cues that directly represented the relevant

dimension produced small costs, verbal cues produced an intermediate cost and

arbitrary cues, either verbal or iconic, produced the largest costs. Additional evi-

dence that cue-encoding processes may be the target of backward inhibition was

reported by Grange and Houghton (2010b), who showed that n-2 repetition costs

were increased by switching cue-task assignments after several blocks of trials.

Houghton et al. (2009) interpreted their �ndings in the context of the two-process

model of Mayr and Keele (2000), as a�ecting the �rst stage whereby cues are used

to retrieve task-sets from long-term memory. According to their account, this �rst

stage (cue-target translation) is more di�cult for less transparent cues. Addition-

ally, the cue-target translation process may generate con�ict with recently per-

formed translations (i.e., on the n-1 trial). In this experimental context, then, task-

set inhibition a�ects the cue encoding stage, rather than the later response stage.

Houghton et al. (2009) suggest that this account of task-set inhibition is consistent

with the proposal that its functional role is as a means of clearing working mem-

ory, and thereby facilitating the establishment of a new task-set on the following

trial (Mayr & Keele, 2000). While the verbal speci�cation of this model is lacking in
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detail, the same authors have more recently implemented similar ideas as a com-

putational model (see section 3.3.4). However, this account of task-set inhibition

would not appear to explain evidence that task-set inhibition depends on response

processes (section 3.2.7).

A further cue-releated in�uence on n-2 repetition costs that has been suggested

is temporal cue-target overlap. Druey and Hübner (2007) reported signi�cantly

smaller n-2 repetition costs when task cues disappeared before the stimulus was

presented. However, Grange and Houghton (2009) failed to replicate this e�ect in

three experiments. Therefore, while there is evidence that cue characteristics (spa-

tial relationships and cue-task transparency) in�uence n-2 repetition costs, there

is no clear evidence for an in�uence of the temporal relation between cues and

stimulus targets.

More recent support for the involvement of cue encoding processes to the n-2

repetition cost comes from a study by Scheil (2016). In two experiments on the

e�ects of practice on n-2 repetition costs, one changed stimulus-response asso-

ciations of one task halfway through the procedure, while the other changed the

cue-task association of one task. In the �rst, n-2 repetition costs gradually declined

as a result of practice. Switching the stimulus-response associations had no e�ect

on n-2 repetition costs for that task. In the second, however, switching cue-task as-

sociations increased n-2 repetition costs substantially for the switched task, while

n-2 repetition costs decreased for the other two tasks where cue-task associations

remained constant. While these results do not rule out response-related processes

as a source of the n-2 repetition cost, they do provide additional weight to the

involvement of cue-task associations.

Recently, Grange et al. (2017) found that the n-2 repetition cost was modulated

by n-2 response repetitions, thought to re�ect an e�ect of episodic priming (see

section 3.2.2). In addition to varying task sequence (n-2 repetition vs. n-2 switch)

and episodic prime response (n-2 response repetition vs. non-repetition) one of
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their experiments also varied cue type, from fully transparent (arrows indicating

the direction of the required spatial translation) to non-transparent (polygons ar-

bitrarily indicating which translation to perform). A signi�cant 3-way interaction

was found between cue type, n-2 task repetition and n-2 response repetition. The

modulation of the n-2 repetition cost by n-2 response repetition was larger for non-

transparent cues than transparent ones. The authors argued that this was likely

due to the additional working memory demands of non-transparent cues, and that

it localised the episodic retrieval e�ect on n-2 repetition costs to a stage of cue-

based task retrieval. This �nding led Grange et al. (2017) to question the �ndings

of recent studies on cue-encoding and the n-2 repetition cost. They argued that pu-

tative modulation of the n-2 repetition cost by cue-encoding processes may in fact

be an episodic priming e�ect. This might equally apply to modulations of the n-2

repetition cost associated with response-led processes (section 3.2.7), a possibility

which remains to be explored.

3.2.7 N-2 repetition costs and response processes

A range of empirical evidence suggests n-2 repetition costs are modulated through

the manipulation of response processes. The main empirical �ndings are discussed

below, in terms of manipulations of response set overlap and response execution.

However, the sensitivity of the n-2 repetition cost to response processes is by no

means universal. For example, in the study by Scheil (2016) examining the e�ects

of practice on n-2 repetition costs, in which n-2 repetition costs were observed to

gradually decline with practice, switching response mappings mid-way through

the procedure did not disrupt the general trend. Switching cue-task mappings, on

the other hand, temporarily caused a large increase in n-2 repetition costs. This

was interpreted by the author as suggesting that the cue-based process of retriev-

ing the task from working memory was an important cause of backward inhibition.
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Response set overlap

Gade and Koch (2007) operationalised the con�ict between di�erent tasks as the

degree of overlap between di�erent response sets. Their participants performed

four symbol classi�cation tasks in response to trivalent stimuli, responding to each

task with a vocal response (cf. manipulations of response modality, see section

3.2.5). For three tasks (classifying according to shape, colour and size), responses

were mapped to overlapping responses (“left”’ and “right”). The fourth task (re-

sponding whether the stimulus was �lled or empty) was univalent. Across three

experiments, N-2 repetition costs were found for the trivalent, overlapping tasks.

In contrast, n-2 repetition costs were not reported when the “�ll” task occurred

on trial n-1, and the responses (“up” and “down”) did not overlap with the other

tasks. N-2 repetition costs did occur, however, when responses to the “�ll” task

were mapped to overlap with the other tasks “left” and “right”. These �ndings

were interpreted as supporting the suggestion that task-inhibition is recruited by

response con�ict, and that task-set inhibition acts on the level of response map-

pings (Gade & Koch, 2007; Koch et al., 2010; see also Schneider & Verbruggen,

2008).

Response execution

If the function of task-set inhibition is to facilitate task processing by inhibiting

recently abandoned task-sets, one question is when this process takes place and

how it is triggered. While a number of studies have examined the role that actu-

ally producing a response has on task switching (see Koch et al., 2010, p. 10 for a

review), to date only two have focused on n-2 repetition costs (Philipp, Jolicoeur,

Falkenstein, & Koch, 2007; Schuch & Koch, 2003).

Schuch and Koch (2003) devised a task which combined switching between

three digit classi�cation tasks, with an auditory go/no-go signal presented simul-

taneously with stimulus onset. 25% of all trials were no-go trials. Tasks were cued

111



in advance, and the preparation interval (CSI) was manipulated. A main e�ect of

CSI indicated that participants indeed prepared for the upcoming task. Although

n-2 repetition costs were reported when trial n-1 was a go trial, they were signi�-

cantly reduced or eliminated following no-go trials. This �nding suggests that the

process of generating a response, in addition to preparing for the task (i.e., encod-

ing of cues and encoding task rules), is necessary for triggering task-set inhibition.

One potential criticism of this interpretation is that the act of withholding a re-

sponse is not the same as simply not generating a response. For example, it might

be argued that stopping a response on no-go trials involves the use of a dedicated

response inhibition mechanism (Verbruggen & Logan, 2009) which interferes with

any task-set inhibition processes. However, the e�ect was replicated when the

correct response to a no-go trial was to press both response keys (Koch & Philipp,

2005; Schuch & Koch, 2003). Hence, the reduction of n-2 repetition costs occurs

when the execution of a task-speci�c response is withheld (i.e., execution follow-

ing response selection), rather than merely occurring following non-speci�c motor

stopping. It thus appears that response selection is a critical trigger for task-set in-

hibition. In the study of Schuch and Koch (2003), the degree of response selection

which actually occurs on no-go trials is not controlled, as the no-go signal is pre-

sented at the same time as the stimulus.

This issue is addressed by Philipp, Jolicoeur, et al. (2007), who used a modi�ed

procedure, the “go-signal paradigm”, to separate response selection and response

execution processes. In this procedure, participants prepare a response after a

stimulus is presented, but do not execute it until an auditory go signal is presented,

after either a short or a long delay (go-signal delay, or GSD). In 25% of trials, a

no-go signal is presented instead, and the response must be withheld. The authors

reasoned that for no-go trials, a short GSD on trial nwould tend to produce neither

response selection nor response execution, while a long GSD on trial nwould tend

to produce response selection but not response execution. Go-trials with a long
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GSD on trial n would tend to produce both response selection and execution.

For trials with a short GSD on trial n, a similar pattern of results to Schuch

and Koch (2003) was reported, with signi�cantly reduced n-2 repetition costs fol-

lowing no-go trials compared to go-trials.2 To examine the e�ects of response

execution in trial n-1, sequences were compared in which go trials with short GSD

on trial n followed either no-go trials with long GSD (i.e., response selection but

not execution in trial n-1) or go-trials with long GSD (i.e., response selection and

execution in trial n). In this contrast, n-2 repetition costs were signi�cantly larger

in go-trials following go-trials than following no-go trials. This pattern of results

thus indicates that response execution, as well as response selection in trial n-1, is

important for the recruiting of task-set inhibition.

The �ndings from Schuch and Koch (2003) and Philipp, Jolicoeur, et al. (2007)

have been interpreted as consistent with the more general hypothesis that a task-

set inhibition mechanism is triggered by con�ict (Koch et al., 2010), speci�cally

response con�ict in this case. According to this view, response con�ict generated

from the simultaneous activation of con�icting responses (according to the current

task-set and an irrelevant task-set) signals the need for task-set inhibition (see

section 3.3.3).

However, such a model is di�cult to reconcile with evidence which suggests

that an earlier cue-encoding stage may be a�ected by task-set inhibition (Houghton

et al., 2009, see section 3.2.6). If, as Houghton et al. (2009) propose, task-set inhi-

bition occurs in response to con�ict generated at a cue-encoding stage, it is not

obvious why it should later be triggered or reset by go- or no-go trials, respec-

tively. Addressing this discrepancy, Houghton et al. (2009) argue that a complete

account of the cognitive processes involved in stopping a response in the con-

text of a task-switching trial has not yet been presented, and that such an account
2In contrast, on trials with a long GSD on trial n, n-2 repetition costs were substantially reduced,

and the interaction with trial type (go vs. no-go) in trial n-1 was not signi�cant, indicating that
with su�cient time to select a response on trial n, the e�ects of task-set inhibition were overcome.
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might include a general ‘cognitive resetting’ which disrupts ongoing WM pro-

cesses. Alternatively, no-go trials might be better characterised as interleaving an

additional (fourth) task, which involves its own memory (cue-target translation)

processes (Houghton et al., 2009, p. 475). To date, no empirical manipulation of

cue transparency in combination with a go- or a no-go signal has been conducted.

3.2.8 Dissipation of task-set inhibition: Manipulations of in-

tertrial intervals

A frequent assumption of the n-2 repetition paradigm is that task-set inhibition

dissipates over time. That is, the residual task-set inhibition for the �nal A trial

on the sequence ABA, when the A task was last performed two trials previously,

is greater than the persisting inhibition in the sequence CBA, where the A trial

has not repeated for at least three trials.3 In support of this assumption, it has fre-

quently been reported that n-2 repetition costs are smaller in conditions where the

intertrial interval, speci�cally the interval between the previous trial’s response

and the next cue (Response-Cue Interval, RCI), was long compared to when it was

short (e.g., Grange & Houghton, 2009; Koch et al., 2004; Mayr & Keele, 2000). This

�nding has been interpreted to suggest that task-set inhibition does indeed dissi-

pate over time.

One problem with the methodology used in these studies, however, is that RCI

was manipulated in a blocked design, such that the interval after trial n-1 was the

same as that after trial n-2, etc. However, blockwise manipulations of RCI con-

�ate potentially di�erent functional e�ects of RCI. In particular, Gade and Koch

(2005) reasoned that in a design where RCIs following trials n-2 and n-1 may be

varied independently, if task-set inhibition dissipates over time, then a reduction

in n-2 repetition costs should be observed for shorter RCIs following trial n-1. Or-
3However, Vandierendonck (2013) has questioned this assumption, challenging the empirical

evidence that backward inhibition declines with increasing numbers of intervening trials (e.g., ABA
vs. ABBA, ABBBA, etc.).

114



thogonal to this prediction, if task-set inhibition is recruited by response con�ict,

then the critical interval determining the size of the n-2 repetition cost should be

the RCI following trial n-2, as a shorter RCI would maximise con�ict. In fact, in

two experiments which used such a within-block manipulation of RCIs, the RCI

following trial n-1 had no systematic e�ect on n-2 repetition costs. In contrast,

RCI following trial n-2 did signi�cantly a�ect the size of n-2 repetition costs, with

larger n-2 repetition costs produced by a shorter RCI. This �nding was interpreted

to suggest that task-set inhibition was partly determined by the residual activation

of the n-2 task (i.e., the inhibited task) at the onset of trial n-1.

While these �ndings are, to date, based on a single study, if they prove robust,

they are important for a theory of task-set inhibition in two ways. Firstly, they

support a con�ict-driven account of task-set inhibition. Secondly, they provide

evidence that task-set inhibition does not passively dissipate with time,4 but is

instead relatively persistent (see also Mayr & Keele, 2000). This raises the question

of what, if not passive decay, causes task-set inhibition to dissipate?5 Koch et

al. (2010) suggest that inhibition is released as a result of processing new tasks.

For example, in performance of the sequence ABC , switching from task B to C

reactively releases the previous inhibition of task A, making it easier to switch

back to task A compared with task B. However, this account has not yet been

speci�ed in mechanistic terms.

3.2.9 Task-set inhibition as an endogenously triggered pro-

cess

One line of inquiry in the n-2 repetition literature is whether task-set inhibition op-

erates as a top-down or a bottom-up process. Within this paradigm, a “top-down”
4At least, over the RCIs used in the experiment, which were 1,400 ms and 1,900 ms in experi-

ments 1 and 2, respectively (Gade & Koch, 2005).
5The explanation favoured by Gade and Koch (2005), that inhibition was directly linked to resid-

ual task activation, seems functionally incomplete, although compatible with an account that re-
lates task-set inhibition to con�ict.
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process has been operationalised as one in which the identity of the task is revealed

by a speci�c task cue, while for a “bottom-up” process, the task is inferred from

the stimulus (Koch et al., 2010; Mayr & Keele, 2000). This distinction maps onto

that between endogenous/exogenous stages of processing in two-process mod-

els, proposed within the 2-task switching literature (e.g., Rogers & Monsell, 1995).

Top-down/endogenous processes, by de�nition, may take place in response to the

task cue, in the absence of the stimulus, whereas bottom-up/exogenous processes,

by de�nition, may only begin after onset of the target stimulus (Koch et al., 2010;

Mayr & Keele, 2000). On this basis, two lines of research have examined whether,

�rstly, task-set inhibition is dependent on advance cueing of the speci�c task, and

secondly, whether it is a�ected by variation of the preparation interval.

Does backward inhibition depend on advance, task-speci�c cueing?

In their model of task switching, Mayr and Keele (2000) argued that inhibition

only occurred during endogenous task-switches, and not during exogenous task-

switches triggered by the target stimulus. In their Experiment 2, Mayr and Keele

(2000) adapted their visual search paradigm such that distractors only di�ered from

the target on dimensions which were never used to identify targets. Thus, target

stimuli could be identi�ed purely from the stimulus display. The authors con-

trasted two conditions, a top-down condition in which a cue indicated the relevant

stimulus dimension, and a bottom-up condition, with no cue. They reported sig-

ni�cant n-2 repetition costs only in the top-down condition, supporting their hy-

pothesis that top-down task selection was necessary for the triggering of task-set

inhibition. However, they noted that in their experiment, a bottom-up approach

for identifying the target was always a viable strategy in both conditions. Indeed,

the n-2 repetition cost was only signi�cant for the fastest group of participants,

which was argued to re�ect those who had used the cue to initiate a task-switch.

It has been argued that the small n-2 repetition cost (7 ms), signi�cant for only
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this group, does not provide strong evidence that task-set inhibition is exclusively

a top-down process (Koch et al., 2010, p. 7).

Converging evidence that task-set inhibition is a top-down process is provided

from the �anker compatability procedure (Hübner et al., 2003; Kuhns et al., 2007,

see section 3.2.4 for a review of this procedure). Contrasting results from two ex-

periments, Hübner et al. (2003) found that the n-1 �anker facilitation e�ect was

only observed when the cues used were task-speci�c (i.e., they directly indicated

which task to perform next), and not when cues were non-speci�c (i.e., they merely

indicated a change of task, but did not specify the new task). This was interpreted

to suggest that not only was preparation required for the recruitment of task-set

inhibition, but preparation must be task-speci�c; unspeci�c preparation is not suf-

�cient.

While these interpretations are consistent with the hypothesis that task-set

inhibition only occurs with top-down task-speci�c preparation, a number of crit-

icisms have been raised. Firstly, Koch et al. (2010) highlighted that a �anker fa-

cilitation e�ect was indeed observed following task-unspeci�c cues in the error

rates, rather than the RTs, although Hübner et al. (2003) do not report a test for

signi�cance.6 Secondly, the strength of the evidence for task-set inhibition has

been questioned (e.g., by Kuhns et al., 2007, p. 978). While the n-1 �anker facili-

tation e�ect was signi�cant when the speci�c task was cued in advance, the n-2

repetition cost in this condition failed to reach signi�cance. Kuhns et al. (2007) rea-

soned, however, that procedural details used by Hübner et al. (2003) discouraged

participants from inhibiting tasks. Firstly, target stimuli were univalent, which fa-

cilitated bottom-up activation of the task (cf. Mayr & Keele, 2000). Secondly, non-

overlapping response sets were used, leading to a lower level of response con�ict,

and thus task-set inhibition, than might be expected from overlapping response

sets (Gade & Koch, 2007).
6Generally, this paradigm predominantly used RTs as dependent measures with relatively little

consideration given to error rates, or complications due to a speed/accuracy trade o�s.
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Kuhns et al. (2007) addressed these problems in an attempt to replicate the ear-

lier �ndings. Additionally, they reasoned that top-down or bottom-up accounts

of task-set inhibition (or, as they characterised it, proactive or reactive) could

directly be distinguished as they made di�erent predictions. They argued that

the crucial comparison was sequences in which the current �anker task matched

the preceding target task (e.g., Cb − Ac, with upper-case representing the tar-

get task, and lower-case, the �anker) compared with sequences where the cur-

rent �anker matched the preceding �anker (e.g., Bc − Ac). In this comparison,

Kuhns et al. (2007) reasoned that a proactive account of inhibition implies that the

most strongly inhibited task should be the preceding target task, hence �anker ef-

fects should be smaller for trials with �ankers matching the preceding target task

(Cb − Ac). In contrast, if inhibition is reactive, the most strongly inhibited task

should be the preceding �anker task, hence �anker e�ects should be smaller for

the trials with �ankers matching the preceding �anker task (Bc− Ac).

In fact, Kuhns et al. (2007) had mixed results replicating the original e�ects of

Hübner et al. (2003) (see section 3.2.4 for a detailed review). While signi�cant n-2

repetition costs were reported for their Experiment 1, no signi�cant n-1 �anker

facilitation e�ect was observed, while Experiment 2, which increased task con-

�ict, produced both a signi�cant n-2 repetition cost and n-1 �anker facilitation

e�ect. In Experiment 1, RTs were signi�cantly faster when the �anker on the cur-

rent trial matched the preceding �anker, a �nding argued to support the reactive

inhibition hypothesis. However, in Experiment 2, the �anker compatibility e�ect

was (nonsigni�cantly) smaller when the current �anker matched the immediately

preceding target, and larger when it matched the immediately preceding �anker.

This �nding was more consistent with the proactive inhibition hypothesis. To ac-

count for these seemingly incompatible �ndings, Kuhns et al. (2007) speculated

that inhibition may be either reactive or proactive, depending on task di�culty.

In their account of proactive (top-down) task-set inhibition, Kuhns et al. (2007)
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make two assumptions. Firstly, they assume that proactive inhibition is triggered

by endogenous task selection processes (consistent with Mayr & Keele, 2000). Sec-

ondly, they make the stronger assumption that proactive inhibition is necessarily

directed toward the previous (endogenously activated) target. By the same logic,

their reactive account of task-set inhibition assumes, �rstly, that inhibition occurs

equally when engaging in endogenous task preparation (i.e., for the current task)

as it does when preparation occurs exogenously. Secondly, reactive inhibition is as-

sumed to be directed toward the task activated exogenously on the preceding trial

(i.e., the task cued by the preceding �anker). This logic thus involves a somewhat

stronger set of assumptions than other characterisations of the top-down/bottom-

up distinction (e.g., Koch et al., 2010; Mayr & Keele, 2000). It is not clear whether

such assumptions necessarily follow from the basic assumption that task-set inhi-

bition is top-down (proactive) or bottom-up (reactive).

In summary, empirical evidence based on advance cueing only weakly sup-

ports the assertion that task-set inhibition is a top-down process. While the visual

search paradigm of Mayr and Keele (2000) is methodologically �awed for distin-

guishing whether a top-down or bottom-up task-selection strategy has been used,

the �anker-facilitation procedure of Hübner et al. (2003) and Kuhns et al. (2007) ap-

pears equivocal on the issue. The reasoning about empirical e�ects in task switch-

ing, in this instance, su�ers from vaguely speci�ed implicit models (e.g., Kuhns

et al., 2007). As a result, theoretical interpretations (i.e., whether n-2 inhibition is

reactive or proactive) remain open to question. This is one area which would be

clari�ed by the use of computational models, which make processing architectures

explicit, and allow quantitative predictions to be directly simulated and compared

with predictions obtained through verbal reasoning.
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Is backward inhibition a�ected by preparation?

A second group of studies have addressed whether task-set inhibition is a top-

down process by manipulating the cuing interval (CSI). According to this logic,

if task-set inhibition is a top-down process, longer preparation intervals should

produce more inhibition, thus producing larger n-2 repetition costs. Most studies

have found no e�ect of varied CSI on n-2 repetition costs (Bao, Li, Chen, & Zhang,

2006; Gade & Koch, 2008; Mayr & Keele, 2000; Schuch & Koch, 2003), although

some studies reported mixed results (Koch et al., 2004; Philipp, Gade, & Koch, 2007).

Following this pattern of �ndings, some have concluded that n-2 repetition costs

re�ect passive inhibition which decays over time, but is not a�ected by endogenous

preparation (e.g., Mayr, 2002).

However, two problems have been raised with respect to this reasoning (Koch

et al., 2010). Firstly, the reasoning that longer preparation intervals would produce

a greater amount of task-set inhibition is only valid if one conceptualises the in-

�uence of inhibition as constant or increasing over time. Koch et al. (2010) have

suggested that if, alternatively, inhibition is ‘ballistic’ — recruited over a short trig-

gering period but taking a longer length of time to take full e�ect — then longer

CSIs would not necessarily produce greater n-2 repetition costs. The second crit-

icism is methodological: similarly to the criticisms of blockwise manipulation of

intertrial intervals (section 3.2.8), generally CSIs have been manipulated blockwise.

This approach confounds processes which take place in preparation for trial n-1

(namely, inhibition of the n-2 task) and processes which take place during prepara-

tion for trial n (such as overcoming any residual task-set inhibition). Thus, e�ects

of task-set inhibition and task preparation may counteract each other (Koch et al.,

2010).

Addressing this latter issue, Scheil and Kleinsorge (2014) varied CSI trial-by-

trial, such that the preparation interval for trials n-2, n-1 and n could be either

short (200ms) or long (1000ms). In two experiments, the authors found that while
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n-2 repetition costs were independent of the CSI in the current trial (n), they were

indeed a�ected by CSIs in trials n-2 and n-1. Speci�cally, n-2 repetition costs were

signi�cantly larger when CSI was long in both trials n-2 and n-1. In three condi-

tions involving shorter CSIs, (short-short, short-long or long-short) n-2 repetition

costs were smaller, with no signi�cant di�erence between the three conditions.

Scheil and Kleinsorge (2014) argued that these �ndings were consistent with the

view that task-set inhibition is required when the activation of the previous task-

set is high (i.e., long n-2 CSI) and is recruited during the preparation period for the

switched-to task (n-1).

Although this interpretation is intuitively plausible, it assumes that the �nal

activation level of a task-set following response execution is related to the prepa-

ration interval. Yet it also seems possible that residual task-set activation may

actually be greater for exogenously cued tasks. For example, in the connectionist

model of task switching of Gilbert and Shallice (2002), an advantage in starting ac-

tivation of the relevant task-demand unit at the start of a trial, counterintuitively,

leads to lower absolute levels of activation at the moment of response execution, as

task-demand activation continues to increase over the duration of trials, which are

slower when starting activations are similar (i.e., on uncued trials). Thus, whether

the assumption that �nal task activation is related to the preparation interval is

consistent with extant models of task switching is an empirical question.

3.2.10 Distributional analyses of response times

While most analyses of RT data in the n-2 repetition paradigm have dealt exclu-

sively with mean RTs, an alternative approach looks at potential e�ects of interest

over the entire RT distribution for each participant. For example, if switch or n-2

repetition costs had di�erential e�ects on a participant’s faster responses com-

pared to their slower responses, this may provide insight that is not captured by

mean RTs. In two-task switching, De Jong (2000) argued that for each participant,
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faster responses re�ected a greater state of preparation than slower responses. A

number of authors have applied this logic to n-2 repetition costs: if n-2 repetition

costs were reduced by preparation, they should be smaller for faster trials than for

slower trials.

Schneider and Verbruggen (2008) assigned data for each particpant into quan-

tiles ordered by RT, with data for each quantile then being combined. N-2 repeti-

tion costs were then calculated separately for each quantile. These authors found

consistent n-2 repetition costs throughout the RT distribution. In contrast, Grange

and Houghton (2011), using the same approach, re-analysed data from two pre-

vious studies. The �rst was where arbitrary cue-task mappings were switched

mid-way through the procedure (Grange & Houghton, 2010b). In the original

paper, the authors argued that this cue reassignment would create con�ict dur-

ing the cue-target translation process and would therefore increase n-2 repeti-

tion costs, and this hypothesis was con�rmed. In the second study, the original

authors manipulated cue-task transparency, reasoning that less transparent cues

would again increase cue-target translation con�ict, producing greater n-2 repeti-

tion costs. Again, this hypothesis was con�rmed (Grange & Houghton, 2010a).

Grange and Houghton (2011) used the same procedure as Schneider and Ver-

bruggen (2008), constructing cumulative distributions by assigning RTs for each

participant into deciles from slowest to fastest. For data from Grange and Houghton

(2010b), n-2 repetition costs were found to gradually increase from faster to slower

trials, with the trend being signi�cantly elevated for switched cues (i.e., the larger

n-2 repetition cost condition). For data from Grange and Houghton (2010a), no n-2

repetition costs were detected throughout the distribution for the transparent cue

condition, while costs increased throughout the distribution for non-transparent

cues. Importantly, the absence of any increase in n-2 repetition costs throughout

the distribution in the transparent cue condition suggests that the distributional

e�ect is not just a general e�ect of slower trials, but is related to the condition that

122



causes n-2 repetition costs. Grange and Houghton (2011) argued that as faster RTs

quantiles represent trials where participants have completed relatively more cue-

based preparation than in slower quantiles, this distributional approach is sensitive

to experimental manipulations of cue-processing con�ict.

Subsequent studies have reported analogous �ndings. Thus, Grange and Juvina

(2015), in examining the e�ect of extensive practice on n-2 repetition costs, con-

ducted an ex-Gaussian analysis of RT distributions. In this approach, a bootstrap-

resampling method was used to �t ex-Gaussian parameters to RT distributions. In

this case, signi�cant n-2 repetition costs were reported only for the τ parameter —

representing the tail of the distribution (i.e., slower responses) — which decreased

over the course of the experiment. While Grange and Juvina (2015) interpreted

the reduction in n-2 repetition costs with practice in terms of increasing automa-

tisation in the cue-task translation process, cue-task translation con�ict was not

explicitly manipulated in other ways.

Overall, sophisticated analyses of response time distributions o�ers future ad-

ditional insights into the n-2 repetition cost. Although there is some evidence

that in some circumstances n-2 repetition costs are elevated for slower responses,

the theoretical grounding for this e�ect is currently weak. Grange and Houghton

(2011) link this �nding to an e�ect of preparation on n-2 repetition costs. How-

ever, this account rests on the assumptions, �rstly, that faster and slower responses

represent lesser and greater degrees of task preparedness respectively (and not a

more general alertness or readiness) and secondly, that the n-2 repetition cost is de-

creased by preparation. In terms of the second assumption, as has previously been

discussed (section 3.2.9), alternative evidence for an e�ect of preparation on the n-

2 repetition cost is currently equivocal. The suggestion of Grange and Houghton

(2011) that this e�ect is sensitive to cue-based con�ict and not response-based con-

�ict is plausible but has yet to receive solid empirical support. Distributional ef-

fects, at present, lack theoretical grounding.
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3.3 Mechanistic accounts of Backward Inhibition

As discussed above, theoretical accounts of task inhibition di�er on the source of

the inhibition. This section will discuss three mechanistic proposals: self-inhibition,

lateral inhibition, and inhibition triggered by con�ict.

3.3.1 Self inhibition

One suggestion is that tasks-sets are self-inhibiting, after they have been used to

generate a response. Similar mechanisms have frequently been used as a means of

counteracting residual activation in sequential behaviour, and thus preventing per-

severation. Such explanations have been proposed in task-switching, speci�cally

by Grange et al. (2013) and Mayr and Keele (2000), and the cognitive psychology

literature in general (reviewed in Grange et al., 2013).

However, Koch et al. (2010) have argued that a self-inhibition account of n-2

repetition costs is inadequate on emprical grounds. If task-inhibition was self-

directed, one would expect immediate task repetitions (e.g., repeat trials in 2-task

switching contexts) to be associated with a cost, rather than the bene�t that is

routinely observed (reviewed in Kiesel et al., 2010). In response, Grange et al.

(2013) suggested that the degree of self-inhibition exerted might be under the con-

trol of the participant, and adjusted strategically depending on the task context.

For example, in a 2-task switching paradigm with unpredictable but infrequent

task switches, self-inhibition would be counterproductive as task repetitions are

more common. However, in a 3-task switching paradigm with no task repetitions,

such as the n-2 repetition procedure, self-inhibition would be advantageous. In

support, Grange et al. (2013) argue that 2-task switching paradigms have been

successfully simulated using an activation-only model (Altmann & Gray, 2008),

whereas n-2 repetition paradigms appear to require an additional inhibitory mech-

anism (Grange et al., 2013). From this account, one might predict that n-2 repetition
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costs would not be observed in 3-task contexts where task repeats were possible. In

fact, using such a procedure, Arbuthnott (2005) did �nd n-2 repetition costs, as did

Philipp and Koch (2006), although in the latter study n-2 repetition costs were sig-

ni�cantly reduced compared to a condition with no immediate repetitions. Based

on this pattern of data, strategic modulation of self-inhibition based on task con-

text does not give an adequate account of n-2 repetition costs (but see chapter 10

for additional discussion).

Additionally, Koch et al. (2010) argued that if task inhibition was self-directed,

n-2 repetition costs should not be sensitive to characteristics of the n-1 trial. For

example, no-go trials (Schuch & Koch, 2003) or go-signal trials (Philipp, Jolicoeur,

et al., 2007) should not a�ect n-2 repetition costs. Once again, Grange et al. (2013)

argued that in task contexts where no-go trials were a possibility, self-inhibition

of tasks would not be an adaptive strategy, as performance would be impaired

speci�cally on trials where the n-1 task was a no-go trial (i.e., one experimental

condition in Schuch & Koch, 2003, for which no n-2 repetition costs were found).

However, if this is the case, it does not explain why n-2 repetition costs were found

in sequences in which the n-1 task was not a no-go trial. One possibility not con-

sidered by Grange et al. (2013), however, is that self-inhibition of task-sets may

only be triggered by response execution. This would be compatible with the ex-

periments of Schuch and Koch (2003) and Philipp, Jolicoeur, et al. (2007), which

found that response execution was required for the triggering of task inhibition.

Nevertheless, overall self-inhibition does not give a satisfactory account of the

range of behavioural �ndings on the n-2 repetition cost. Furthermore, suggesting

that self-inhibition might be strategically modulated, although plausible, is less

parsimonious than alternative explanations. Such accounts do not explain on what

basis self-inhibition is itself modulated, or what this mechanism might be, thus

reintroducing an homunculus into an overall account of task control.
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3.3.2 Lateral inhibition

Various authors have proposed lateral inhibition as a mechanism that implements

task inhibition (e.g., Koch et al., 2010; Mayr & Keele, 2000; Philipp & Koch, 2006).

However, Grange et al. (2013) argued that lateral inhibition is an insu�cient mech-

anism. Speci�cally, they suggested that according to a lateral inhibition account,

the �nal task A should be inhibited more in the sequence CBA than in the se-

quence ABA, as two of its competitor tasks are active. To support this argument,

they produced a simple simulation demonstrating activation levels in a simple con-

nectionist network architecture with lateral inhibition.

Figure 3.2: Activation in a simple connectionist model with lateral inhibition, as
simulated by Grange et al. (2013). According to this simulation, n-2 repetition costs
should be greater in sequences where a task has not been repeated for two or more
trials (CBA), than a single trial (ABA). Reproduced with permission from Grange
et al. (2013).

While this argument is plausible, their simulation Grange et al. (2013) calcu-

lated activation merely as the sum of a unit’s inputs hard clipped to a value between

-1 and 1 (see �g. 3.2). However, this does not accurately re�ect the way lateral in-

hibition is actually implemented in most connectionist networks (e.g., Gilbert &

Shallice, 2002; cf. McClelland, 1993). In such networks, a unit’s activation is usu-

ally calculated as some function of the sum of its inputs. Activation functions
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usually take the form of a logistic (sigmoid) function, which ‘squashes’ activation

such that a di�erence in one input to a unit has a much larger e�ect on its over-

all activation when the input to the other units is small, than when it is large. It

has been demonstrated that the use of such a function produces radically di�er-

ent overall behaviour from a network without a squashing function (McClelland,

1993)7. In the current instance, lateral inhibition may well produce much smaller

di�erences between inhibited units than the network of Grange et al. (2013). Thus,

while their argument that lateral inhibition alone is insu�cient to cause n-2 repeti-

tion costs is plausible, a more complete simulation using a network implementing

lateral inhibition and a squashing activation function would further support their

argument.

3.3.3 Inhibition triggered by con�ict

Koch et al. (2010) argued that the empirical phenomena attributed to task-set inhi-

bition, including sensitivity to intertrial intervals between trials n-2 and n-1 (dis-

cussed in section 3.2.8), dependencies on response selection/execution processes

in the preceding trial (section 3.2.7), and manipulations of response set overlap

(section 3.2.7), can all be parsimoniously explained in terms of a general task-set

inhibition mechanism. According to this view, task-set inhibition is a somewhat

general mechanism, which can be targeted at di�erent aspects of the task-set (e.g.,

stimulus dimensions or response processing: Koch et al., 2010) or even more gen-

erally, ‘wherever the locus of con�ict appears’ including cue-encoding processes

(Grange et al., 2017; Houghton et al., 2009; Scheil, 2016).

It has been proposed that the processing of con�ict occurs by way of a mech-

anism similar to that of Botvinick et al. (2001), proposed to explain con�ict mon-

itoring e�ects in a single-task context. This mechanism dynamically inhibits any

task-relevant representation (e.g., competing response alternatives, or task-sets)
7Indeed, in the model of Gilbert and Shallice (2002), this property is important to the simulation

of a number of empirical e�ects, cf. section 2.3.2.
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that generates con�ict during task-relevant processing. Koch et al. (2010, p. 11)

propose that this explains the role of response selection as a trigger for task inhi-

bition (Schuch & Koch, 2003). In the models of Botvinick et al., con�ict is typically

monitored at the response level (e.g., Botvinick et al., 2001; Botvinick, Cohen, &

Carter, 2004). In these implementations, con�ict is de�ned as simultaneous acti-

vation of competing response alternatives, and is calculated as the product of the

activation of response units. Koch et al. (2010) argue that the current empirical

evidence most strongly supports a critical role for con�ict at the response level for

the inhibition of task sets. Some data (e.g., Philipp, Jolicoeur, et al., 2007; Schuch &

Koch, 2003) implicates the role of response selection and execution processes in the

recruitment of task inhibition. However, a mechanistic account of these processes

has not been speci�ed. Two possibilities have been suggested (Koch et al., 2010).

Inhibition may be triggered by post-response evaluation (Botvinick et al., 2004).

Alternatively, performing the response could provide performance feedback, driv-

ing reinforcement learning (Holroyd & Coles, 2002) which assures a positive bias

toward the recently performed task, thus indirectly inhibiting the the competing

task.

Alternatively, task-set inhibition has been characterised as a �exible process

which can selectively be directed at di�erent elements of the task-set depending

on which elements cause con�ict in a given task context. Yet such characterisa-

tions leave many algorithmic details unspeci�ed. One possibility is that there are

multiple parallel con�ict monitoring/task-set inhibition loops each sensitive to dif-

ferent elements of the task-set. Another possibility is that there is a single task-set

inhibition mechanism which is triggered by detection of con�ict at multiple levels.

Computational models of con�ict monitoring mechanisms have, to date, been

somewhat ad-hoc, with di�erent models bearing a family resemblence rather than

any consensus emerging on a single reference implementation (e.g., Blais, Ro-

bidoux, Risko, & Besner, 2007; Botvinick et al., 2001; Botvinick, 2007; Yeung, Botvinick,

128



& Cohen, 2004). While there have been steps made toward integrating con�ict

monitoring and task switching, both empirically (e.g., evidence that committing

errors leads to strengthening of the wrong task: Steinhauser & Hübner, 2006, 2008)

and theoretically (e.g., the task-switching model of Brown et al., 2007), to date the

task-switching and con�ict monitoring paradigms remain somewhat separate.

3.3.4 The computational models of Grange and colleagues

Altmann and Gray (2008) present a model of cognitive control in which task-

switching is conceptualised as a serial memory retrieval process which proceeds

according to the following stages. Firstly, on presentation of a task cue, the cue

is used to encode a goal representation. Next, the goal representation is used to

retrieve a representation of the target from memory. Finally, the target represen-

tation is used as the basis for a visual search for a matching target in the stimulus

display. Thus, the model conceptualises task switching as goal-driven retrieval of

task-relevant representations from memory (see Mayr & Keele, 2000, for a sim-

ilar proposal). Memory representations (‘chunks’) have an associated activation

value, which determines the time taken to retrieve the chunk from memory. The

activation of a chunk is calculated according to a standard ACT-R equation (the

base-level learning equation, BLL (Anderson, 2007), by which the activation of a

chunk is increased when it is accessed, after which it decays according to a power

law. More recently accessed memory representations are therefore quicker to re-

trieve from memory, and this is indeed the case for task repeats, compared to task

switches.

Given the absence of inhibitory processes within the ACT-R architecture, Grange

et al. (2013) argued that the model of Altmann and Gray (2008) cannot account

for n-2 repetition costs, and would instead predict n-2 repetition facilitation, for

similar reasons as for n-1 repeats. Grange et al. (2013) therefore implemented a

model within ACT-R by modifying the BLL equation to include an early, inhibitory
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component (i.e., self-inhibition) which is large immediately after chunk retrieval,

making chunks harder to retrieve immediately, but dissipates passively over time,

leading to an inverted-U shaped activation curve (see �g. 3.3). In this model, then,

the locus of the n-2 repetition cost is the process of retrieving target representa-

tions from memory — for a certain period this process is slower for more recently

retrieved target representations, as in the n-2 repetition condition.

Figure 3.3: Inhibitory and default versions of the ACT-R Base Level Learning Equa-
tion, plotted in log-log space, hence BLL decay is linear. Reproduced with permis-
sion from Grange et al. (2013).

This conceptualisation of task-set inhibition is based on a number of implicit

assumptions. Firstly, it is assumed that inhibition decays passively over time.

While the rate is controlled by an inhibition-decay parameter, this is �xed for a

particular simulation. However, this assumption is challenged by empirical evi-

dence that suggests inhibition does not passively decay but is persistent (e.g., Gade

& Koch, 2005, reviewed in section 3.2.8), and is incompatible with theories propos-

ing that the release of inhibition is event-based (Koch et al., 2010).

Secondly, it is assumed that task-sets are self-inhibitory. Indeed, this is the

strong theoretical claim of Grange et al. (2013). This claim is discussed in detail

in section 3.3.1. In short, self-inhibitory models of task inhibition fail to give an

adequate account of a number of robust empirical �ndings in the n-2 repetition
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paradigm. It is therefore doubtful that such a model would generalise to a more

complete model, simulating a wider range of empirical e�ects. While modelling

task inhibition as a form of self-inhibition provides a good �t to the data, whether

it represents a viable theoretical proposal remains unresolved (see Grange et al.,

2013; Koch et al., 2010, for a full range of arguments).

Through the use of simulations, Grange et al. (2013) demonstrate that their

model cannot produce n-2 inhibition e�ects in the absence of inhibitory mecha-

nisms. Furthermore, while the absence of n-2 inhibition e�ects have, in the past,

been interpreted as the absence of inhibition (see Grange et al., 2013, for a review),

the absence of inhibitory mechanisms in their model actually predicts an oppo-

site e�ect, an n-2 repetition bene�t, rather than a cost. Their model also made

additional behavioural predictions: Speci�cally, in conditions with reduced n-2

repetition costs, RTs should be generally faster. This prediction is partially sup-

ported by the data (e.g., Arbuthnott, 2008b; Schneider & Verbruggen, 2008, but see

Arbuthnott, 2005). Thus, the absence of n-2 repetition costs was argued to imply

a reduced level of inhibition, rather than its absence.

Using their previous model, Grange and Juvina (2015) predicted that n-2 rep-

etition costs should be speci�c to relatively novel tasks: when tasks become rela-

tively automatised after a large amount of practice, n-2 repetition costs should be

reduced or eliminated, due to the increase in the base-level activation with learn-

ing for each task representation, making well-learned tasks easier to retrieve. In an

experiment with 10 participants completing 6100 trials over �ve days, the average

n-2 repetition cost indeed signi�cantly decreased with practice. While the model

of Grange et al. (2013) predicted a reduction in costs slower than was observed

empirically, the empirical data could be �t with the additional assumption that the

cue-target association also becomes stronger as a result of practice.

Despite these successes, the model has a number of limitations. Grange and col-

leagues themselves concede that a limitation of their model is that a single version
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cannot simultaneously account for both empirically observed n-1 and n-2 e�ects

of task switching; the model with the inhibitory version of the BLL would predict

n-1 repetition costs rather than switch costs. Dealing with this issue, Grange et

al. (2013) argued that the task self-inhibition may be strategically recruited by the

human participant in three-task switching paradigms, as it provides an advantage

in situations where task repeats are not possible. This view has some empirical

support. While some studies have shown that n-2 repetition costs occur when n-1

repeats are possible (Arbuthnott, 2005), others have shown that the n-2 repetition

cost is signi�cantly reduced in such circumstances (e.g., Philipp & Koch, 2006). Yet

other studies suggest that consistent n-1 switch and n-2 repetition costs tend not

to occur in the same block of trials (Philipp & Koch, 2006, for review). While this

is therefore an intriguing suggestion, the cognitive system responsible for such

strategic (re)con�guration remains to be speci�ed in theoretical terms.

Additionally, the model does not easily accommodate the range of behavioural

�ndings which demonstrate that the n-2 repetition cost is modulated by manipu-

lations of con�ict generated on the n-1 trial.

The model predictions and the assumption that practice strengthens cue-task

associations received further recent support from a study by Scheil (2016). Two

experiments were conducted to determine whether the reduction in the n-2 rep-

etition cost was due to practice on the paradigm overall, or whether the practice

was speci�c to a particular task. In each experiment, 24 participants completed 10

blocks, each of 120 trials. In the �rst experiment, the stimulus-response associa-

tions of one of the three tasks was reversed after six blocks. Similar to the overall

�ndings of Grange and Juvina (2015), n-2 repetition costs declined over the course

of 12 blocks, however while basic RTs were a�ected by the switch of stimulus-

response associations, n-2 repetition costs were not. In the second experiment,

the cue-task association changed after six blocks. For three blocks following the

change, n-2 repetition costs increased signi�cantly for the changed task, while n-2
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repetition costs were much reduced for the unchanged tasks. For the �nal three

blocks, n-2 repetition costs were unchanged compared to those prior to the change.

Scheil (2016) interpreted her results as consistent with the model of Grange and

Juvina (2015), but not Grange et al. (2013). That is, changing the cue-task associa-

tion could be implemented in the model as a decrease in base-level-learning, and

also a reset of the cue-task association parameter, which in turn would lead to an

increase in in�uence of the inhibitory component, temporarily increasing n-2 rep-

etition costs before cue-task associations and with base-level-learning activation

once again increasing with practice. However, changing the stimulus-response

mappings in experiment 1 would also be expected to a�ect base-level learning ac-

tivation, hence the di�erence between the two experiments could only be modelled

with the additional assumption in the model of Grange and Juvina (2015) — that

cue-task associations become stronger over time.

3.4 Summary

N-2 repetition costs are a widely replicated empirical phenomenon, thought to re-

�ect the inhibition of task-sets (i.e., backward inhibition). They represent a de�ni-

tive instance of an inhibitory cognitive phenomenon. Unlike the switch cost, ini-

tially thought to represent evidence of a cognitive recon�guration process but sub-

sequently partitioned into lower-level e�ects (e.g., interference, cue switching), the

n-2 repetition cost has to-date proven resistant to non-inhibitory explanations.

Nevertheless, substantial theoretical questions remain about the n-2 repetition

cost. What is inhibited? Is inhibition endogenously or exogenously triggered?

What is the mechanism for inhibition? The strongest empirical evidence links

backward inhibition strongly to both response-based processes and cue-based pro-

cesses. This division may re�ect two di�erent behavioural procedures which em-

phasise, respectively, response-based or cue-based di�culty for the participant.

133



The most complete theory is that of Koch and colleagues, suggesting that backward

inhibition is triggered by the con�ict between task representations that occurs on

the n-1 trial; and this may occur at multiple locations including cue-encoding and

response-generation processes.

Despite obvious theoretical interest in the phenomenon, computational ac-

counts have, to-date, been scarce. The models of Grange and colleagues explain

backward inhibition in terms of self-inhibition of task representations at the cue-

task encoding level, and these models have had successfully predicted the e�ect

of extensive practice. However, while this model was developed from a two-task

switching model, its modi�cations mean that it does not generalise to two-task

switching — in a two-task context, the backward inhibition model predicts switch

facilitation, rather than switch costs.

Clearly, for human participants, both switch costs and n-2 repetition costs

are robust behavioural e�ects, hence a complete model of human task switching

should be able to capture both e�ects with external modi�cation of its mechanisms

or parameters. However, this remains an open empirical question, with some sug-

gestion that in studies which permit both measures within the same block, switch

costs and n-2 repetition costs may not co-occur or may be signi�cantly reduced,

with the suggestion that participants may employ some form of strategic adapta-

tion to their current task context, leading to switch costs when task repeats occur

(such as in the two-task paradigms) or when they do not (typically, in the three-

task paradigms). If this is the case, the computational mechanisms driving such

adaptation are of theoretical interest and have yet to be speci�ed.

The remainder of this thesis develops a computational model of generalised

task switching e�ects, applicable to both two or three-task paradigms. The follow-

ing chapter begins this development by generalising the two-task switching model

of Gilbert and Shallice (2002) to three tasks, and exploring the model’s behaviour

in the n-2 paradigm. Critically, this model does not incorporate any inhibitory
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processes beyond lateral inhibition. The work therefore explores from a computa-

tional perspective whether a speci�c inhibitory mechanism is indeed required to

account for the empirical e�ects observed in three-task switching studies.
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Chapter 4

A Simple Model of Three-Task

Switching

This chapter moves toward a model of backward inhibition by adapt-

ing the two-task switching model of Gilbert and Shallice (2002) to the

three-task n-2 repetition paradigm. It is demonstrated (Simulations 3

and 4) that the mechanisms of the adapted model (i.e., lateral inhibi-

tion) are not su�cient to produce n-2 repetition costs, but instead yield

n-2 repetition facilitation. This facilitation is not a�ected by stim-

ulus congruency e�ects (Simulation 3) or asymmetric task di�culty

(Simulation 4). These simulations provide a baseline against which to

compare the performance of a backward inhibition model.

4.1 Introduction

As argued in the previous chapter, the n-2 repetition paradigm has been the most

theoretically productive area within the task switching paradigm in terms of ev-

idencing speci�c cognitive processes for the control or regulation of task sets,

speci�cally, backward inhibition. To-date, behavioural evidence suggests that task-

set inhibition may be �exibly directed toward relevant aspects of task-set. It has
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been proposed that this is achieved on the basis of con�ict (Koch et al., 2010).

However, this idea has not been formally speci�ed in a computational model. Ad-

ditionally, some theoretical predictions of this hypothesis (e.g., congruence e�ects:

Goschke, 2000; response repetition e�ects: Rogers & Monsell, 1995, Meiran et al.,

2000, Koch et al., 2010, p. 10) have not yet been empirically tested. Additionally,

some theoretical issues remain unresolved by the behavioural evidence. Firstly, it

is unclear whether task-set inhibition is a top-down (endogenous) mechanism, or

a more automatic process, with behavioural evidence remaining somewhat equiv-

ocal (Koch et al., 2010). Secondly, dissipation of inhibition is a key assumption of

the n-2 repetition paradigm — yet this issue remains unresolved. Some evidence

(Vandierendonck, 2013) suggests there may be problems with time-based decay

of inhibition. Koch et al. (2010) suggested event-related release of inhibition, but

this hypothesis remains theoretically under-speci�ed. Finally, there is debate over

whether backward inhibition takes place at the cue-encoding/retrieval stage, as

envisaged by Mayr and Keele (2000), the response selection stage, or even later in

the response execution stage (Philipp, Jolicoeur, et al., 2007). Alternatively, if back-

ward inhibition is �exible, as suggested by Koch et al. (2010), it may be directed at

any or all of these stages of processing. However, this proposal remains vague and

it is di�cult to see how it could easily be implemented computationally.

Of the existing models of task switching, none cover all stages of the response

process. For example, the ACT-R model of Altmann and Gray (2008) provides in-

teresting insights in cue encoding and the retrieval of task rules, in a similar man-

ner to the verbal model of Mayr and Keele (2000), but does not model response

processes. Therefore, accounting for the range of empirically e�ects implicat-

ing response processes within this approach remains problematic. Related to this

model, the models of Grange et al. (2013) and Grange and Juvina (2015) simulate

certain n-2 repetition cost e�ects within the four-choice visual search paradigm

in terms of cue-driven memory retrieval (cf. Mayr & Keele, 2000). However, these
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models require modifying the base-level learning equation governing the activa-

tion of items in working memory, which is core to the wider ACT-R architecture

(Anderson, 2007). This modi�cation incorporates an early inhibitory component

to the activation of recently accessed items — a form of self-inhibition, which is

not easily reconciled with empirical evidence that n-2 repetition costs are not a

self-inhibitory phenomenon. The model of Brown et al. (2007) incorporates se-

quential congruency and con�ict monitoring mechanisms, and is the closest to

a complete end-to-end model of task switching. However the complexity of the

model is a disadvantage. Due to the number of mechanisms present, its operation

is somewhat opaque, and it is unclear which mechanisms are responsible for its

success. The model of Gilbert and Shallice (2002) is somewhat abstract, and does

not model cue encoding or response generation processes. However, it is presented

within the GRAIN framework (McClelland, 1993), which has productively gener-

alised to a range of executive phenomena (cf. Cohen & Huston, 1994) and is thus

compatible with other related models, such as the con�ict monitoring model of

Botvinick et al. (2001). Additionally, the close relation of these models suggests

corresponding computational similarities between the concepts of task switching

and con�ict monitoring, which are likely to impinge on any con�ict-based model

of task switching phenomena. The simplicity of these models may prove a virtue,

in allowing easy modi�cation to incorporate additional theoretical mechanisms,

and allowing easy comparison. Finally, the model inherits additional theoretical

constraints from the GRAIN framework, in an analogous way to the inheritance of

constraints by models developed within a cognitive architecture (cf. Newell, 1990).

In basing a model of a backward inhibition mechanism on the task switch-

ing model of Gilbert and Shallice (2002), the �rst objective is to adapt the existing

model of switching between two tasks to the paradigm of three task switching.

While this change is relatively trivial in cognitive terms, it is important to estab-

lish the behaviour of the existing model in the new paradigm, in order to prop-
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erly assess the e�ects of any additional mechanisms. For example, Grange et al.

(2013) argued that lateral inhibition alone was insu�cient to produce lasting inhi-

bition e�ects such as n-2 repetition costs. While this argument was supported by

a simulation of lateral inhibition, that simulation di�ered from lateral inhibition as

implemented in most complete interactive activation models, in that it did not in-

corporate a non-linear activation (squashing) function (cf. section 3.3.2), which is

an important feature in the simulation of certain empirically observed behaviors

(e.g., ‘Reverse’ Stroop interference, or larger switch costs for the dominant task

when switching between tasks of asymmetric di�culty, cf. section 2.3.2). This was

because the harder task produced greater activation of the irrelevant task demand

unit. At the end of a colour naming trial, activation in both task demand units

was higher than following a word reading trial, which was carried over (and inter-

fered with) the subsequent trial. This e�ect is one potential mechanism by which

sequential RT e�ects may be produced from more con�icting trials, even with no

speci�c con�ict monitoring mechanisms.

Although the four-choice visual detection paradigm of Mayr and Keele (2000)

has has been popularly used in backward inhibition studies (such as by Grange and

colleagues, e.g., Grange & Houghton, 2009, Grange & Houghton, 2010a, Grange &

Juvina, 2015), a majority of studies of the n-2 repetition cost have used the sym-

bolic classi�cation paradigm (e.g., Arbuthnott & Frank, 2000; Arbuthnott & Wood-

ward, 2002; Gade & Koch, 2005, 2007, 2008; Hübner et al., 2003; Kuhns et al., 2007;

Philipp & Koch, 2006; Schuch & Koch, 2003; Sdoia & Ferlazzo, 2008). Symbolic clas-

si�cation also represents the paradigm modelled by Gilbert and Shallice (2002), of

which the colour naming and word reading tasks they simulated, represent a spe-

ci�c case. Therefore, the present model retains the cued-task two-choice reaction

time format.
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4.2 The lateral-inhibition-onlymodel: a 3-task vari-

ant of the Gilbert and Shallice (2002) model

We have already observed that the interactive activation model of Gilbert and Shal-

lice (2002) produces behaviour that is di�cult to anticipate purely from verbal de-

scriptions of a phenomenon. For these reasons, fully establishing behaviour of the

Gilbert and Shallice (2002) model in the three-task paradigm through simulation,

is an important �rst step.

The adapted model architecture is illustrated in �gure 4.1. The model is based

closely on the Gilbert and Shallice model of 2-task switching, for which the suc-

cessful re-implementation was described in section 2.6. That model was modi�ed

to include three task pathways, representing arbitrary classi�cation tasks, here

designated A, B and C. Following the original model, lateral inhibitory connec-

tions are also present at output and task demand level, with excitatory lateral con-

nections to congruent units at the response level, and inhibitory connections to

incongruent units at both the response and task demand levels (�gure 4.2)

4.2.1 Input/output units

The three-task switching model processes each stimulus dimension (A, B or C)

according to a di�erent pathway. These three pathways are each mapped to a

pair of output units (0, 1), which are assumed to re�ect two response keys (e.g.,

L and R). Incongruent output units are mutually inhibitory, such that activating

the 0 response according to dimension A inhibits the 1 response corresponding

with dimensions A, B and C. Thus, the digit ‘4’ (i.e., even, smaller, central) would

be encoded in the model as 1 on dimension A (odd vs. even), 0 on dimension B

(smaller vs. larger) and 0 on dimension C (central vs. peripheral).

Input units have feed-forward connections to the corresponding output units,

of which there are six, representing two possible responses to each of the three
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Input units0 1

A

0 1

B

0 1

C

Output units0 1 0 1 0 1

Task Demand Units

Top Down Control
A B C

Figure 4.1: 3-task switching variant of the model of Gilbert and Shallice (2002),
simulating three arbitrary classi�cation tasks (A, B, C). Each task has two possible
responses (0, 1). Solid black arrows represent excitatory connections, while grey
broken arrows represent inhibitory connections. Not shown are lateral inhibitory
connections, which are illustrated in �gure 4.2.

Output units0 1 0 1 0 1

Task Demand Units

Figure 4.2: 3-task switching version of the Gilbert and Shallice model, showing
detail of lateral inhibitory connections between units at output and task demand
level. For simplicity, only the connections from the �rst unit in each layer are
shown. For output units, lateral connections to corresponding units are excitatory
(black solid arrows), and inhibitory (grey, dashed arrows) to non-corresponding
units. Task demand lateral connections are all mutually inhibitory.
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tasks. Within the set of output units, units that correspond to the same response

are mutually excitatory, while units that correspond to alternative responses are

mutually inhibitory (�gure 4.2). The model therefore implements an experimental

procedure in which responses for all tasks are mapped to the same set of response

keys (cf. Gade & Koch, 2007).

4.2.2 Task demand units

As in the model of Gilbert and Shallice (2002), task processing is biased by task-

demand units — one per task — which have excitatory (i.e., positively weighted)

connections to their respective output units and inhibitory (i.e., negatively weighted)

connections to the output units associated with the other tasks. These connections

are bi-directional, so a response activated bottom-up by a strong input connection

will tend to activate the task with which the response is associated. The currently

relevant task unit also receives a ‘top-down control’ input, simulating the level of

deliberate control required to perform each task to a reasonable level.

As a simpli�cation, the model omits the modi�able connections from input to

task demand units, which Gilbert and Shallice (2002) used to simulate the in�uence

of item-speci�c priming.

4.2.3 Activation calculation

The equation for calculating unit activation is unchanged from the model of Gilbert

and Shallice (2002). For each unit i, the change in activation value on each model

cycle, ∆αi, is calculated as follows:

∆αi =


σIi(αmax − αi) + µ if Ii ≥ 0

σIi(αi − αmin) + µ if Ii < 0
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where αi is the unit’s current activation, Ii is its net input, and σ, αmax and αmin

are parameters a�ecting step size (0.0015 for all simulations reported here), and

maximum (1.0) and minimum (−1.0) unit activation values respectively. µ is a

noise term, drawn from a Gaussian distribution, with a mean of 0 and standard

deviation of 0.006.1

4.2.4 Processing within the model

On the �rst trial of each block, all units are initialised with zero activation. On

subsequent trials, Task Demand (TD) units, which carry over 20% of their activa-

tion from the �nal step of the previous trial (as in the original model of Gilbert &

Shallice, 2002), and con�ict units, which carry over a certain proportion of their

activation (set to 50% for all simulations), model the e�ects of residual task inhibi-

tion. All other units are initialised as for the �rst trial.

In a simulated trial, one input unit in each task pathway (representing a triva-

lent stimulus), and a top-down control unit (representing the currently cued task)

are set to 1. Activation then iteratively propagates throughout the model. As re-

sponse units suppress their non-congruent competitors via lateral inhibition, they

exhibit a ‘winner-takes-all’ property, in which small di�erences in activation be-

tween the ‘winning’ and ‘losing’ units become decisive as the losing units are ac-

tively suppressed. A response is therefore taken as the most active output unit,

when its activation exceeds that of the next most active, non-congruent output

unit by a response threshold of 0.15. The number of cycles taken for this to occur

is the simulated response time (RT).

4.2.5 Parameter settings

Where possible, parameter settings were kept identical to those used by Gilbert

and Shallice (2002), to maximise implementational consistency with that model.
1These parameter values were the defaults used by Gilbert and Shallice (2002).
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However, due to the presence of three task pathways, some changes were made to

stimulus input strength and top-down-control strength parameters to stabilise the

overall level of activation in the model. In the following simulations, for symmetric

tasks, a stimulus input strength of 2.0 and top-down control strength of 14.0 was

used for all tasks. Once again, trials ran for a maximum of 500 cycles.

4.3 Simulation 3: Response congruency in the sym-

bolic classi�cation paradigm

Primarily, this simulation aimed to determine the predictions of the lateral inhibition-

only model on n-2 repetition costs in a 3-task switching paradigm. While it has

been reasoned that lateral inhibition alone is an unlikely source for the n-2 repeti-

tion cost (Grange et al., 2013), as argued above it remains important to demonstrate

clearly the behaviour of the model with the lateral inhibitory connections that are

a standard part of the architecture of IAC models (Cohen & Huston, 1994). This

simulation additionally provided a baseline for understanding the behaviour of

any additional mechanisms.

Specifying the task sequence performed by the model necessitates specifying

the congruence or incongruence of the irrelevant stimulus dimensions. Given

three stimulus dimensions, for any given stimulus, one dimension would corre-

spond to the currently relevant task, with the other two being irrelevant. Those

two irrelevant dimensions could: both be congruent with the correct response to

the currently relevant task (fully congruent, or CC); be congruent and incongru-

ent (semi-congruent, IC); or both be incongruent (fully-incongruent, or II). In the

two-task switching literature, the stimulus congruency has been shown to a�ect

response times on the current trial (Meiran & Kessler, 2008; Rogers & Monsell,

1995). Additionally, response times are a�ected by stimulus congruence on the

preceding trial, known as the n-1 congruence e�ect (Brown et al., 2007; Goschke,
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2000; Monsell et al., 2003). This has been explained in terms of an increased level

of response con�ict on the previous trial, where con�ict is linked to the on-line re-

cruitment of cognitive control. This mechanism has been simulated in the model

of Brown et al. (2007). A secondary aim of this simulation, therefore, is to deter-

mine the predictions of the lateral-inhibition-only model for the e�ect of response

congruency on reaction times, n-1 switch costs, and n-2 repetition costs.

In the lateral inhibition model, response con�ict evoked by stimulus dimension

incongruence is simply operationalised as the simultaneous activation of compet-

ing target stimuli, each of which passively activates a task-demand node through

spreading activation. Unlike the model of Brown et al. (2007), there is no speci�c

con�ict detection mechanism in this model. Any sequential e�ects of stimulus

congruence on response times are therefore purely due to the carryover of task-

demand activation between subsequent trials.

4.3.1 Procedure

The procedure was simulated as a series of runs of three trials. Each run of trials

could be an n-2 repeat, (i.e., ABA) or an n-2 switch (i.e., CBA). As the task strengths

used in this simulation were identical (i.e., symmetrical tasks), no permutations of

tasks (e.g., BAB, CAB) were considered.

The congruence or incongruence of the irrelevant stimulus dimensions with

the correct response was considered when generating the task sequence performed

by the model. Irrelevant dimensions could possibly be congruent/congruent, in-

congruent/congruent or incongruent/incongruent. Even without considering fully

congruent trials (i.e., congruent/congruent), each of the three trials in a block could

be either semi-incongruent (IC) or fully incongruent (II), giving a total of eight

congruency conditions for each type of run2, which were fully counterbalanced.

Selection of stimuli and tasks was randomised for each task. Item-speci�c priming
2IC IC IC, IC IC II, IC II IC, II IC IC, II II IC, II IC II, IC II II, II II II.
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e�ects (i.e., the direct connections from input to task-demand units, with limited

Hebbian learning, as in the model of Gilbert and Shallice (2002), were disabled for

the purposes of this simulation. For each sequence type (ABA, CBA), each stimu-

lus congruency combination (II/II/II, II/II/IC, II/IC/IC etc.) was run 500 times, for a

total of 8,000 three-task blocks, or 24,000 trials.

4.3.2 Results

When collapsed across sequence congruency (�gure 4.3), the e�ect of sequence po-

sition was highly signi�cant, F (1, 23237) = 63.71, p < .001. Sequence alone was

not statistically signi�cant, F (1, 23237) = 1.09, p = .297, suggesting that overall,

ABA sequences did not di�er signi�cantly from CBA sequences. The n-2 repetition

cost is assessed speci�cally looking at the RT on the third trial, and is suggested by

the interaction between sequence type and trial position. As hypothesized, the lat-

eral inhibition-only model did not produce an n-2 repetition cost, with comparison

of means suggesting a slight n-2 repetition facilitation, although this e�ect was not

statistically signi�cant, F (1, 23237) = 1.96, p = .161. As the signi�cance of the

trial position × sequence type interaction is a�ected by the �rst two trials, which

would not be expected to di�er in RTs, the n-2 repetition cost (i.e., di�erence in RT

on the third trial alone) was also assessed with an independent samples t-test on

RT3. This was signi�cant, t(7732) = 2.39, p = .017, with n-2 switch trials being

slower (mean of 82.10 cycles) than n-2 repeats (80.03 cycles).

Next, we consider di�erences in the e�ects of stimulus congruency on reaction

times. This analysis was conducted as a 4-way ANOVA (Sequence×Congruency1×

Congruency2 × Congruency3) on the reaction time on trial 3, RT3 (�gure 4.4).

Firstly, we consider the main e�ects. The main e�ect of sequence was signi�cant,

F (1, 7719) = 6.10, p = .014, suggesting that residual activation from preced-

ing trials did a�ect RTs on the �nal trial (i.e., an n-2 e�ect). The main e�ects of

trial congruency were not signi�cant for Congruency1, F (1, 7719) = 0.16, p =
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Figure 4.3: Simulation 3: Basic simulation of the n-2 repetition procedure. When
collapsed across stimulus congruency, the model produces a small n-2 facilitation
e�ect, not n-2 costs as in the empirical literature. Error bars represent 95% con�-
dence intervals

.68; marginally signi�cant for Congruency2, F (1, 7719) = 3.82, p = .051, and

highly signi�cant for the current trial, Congruency3, F (1, 7719) = 505.21, p <

.001. Perhaps surprisingly, none of the interactions were signi�cant (F (1, 7719) <

1.21, p = .272) except the marginally signi�cant Congruency1 × Congruency2

interaction, F (1, 7719) = 3.27, p = .070.

4.3.3 Discussion

The results con�rm that while Sequence has no statistically signi�cant e�ect on

trial 3 RT (i.e., no reliable n-2 repetition cost or facilitation), when the error was

partitioned by including the three stimulus congruency factors in a 4-way ANOVA,

the e�ect of n-2 repetition became signi�cant, in this case an n-2 repetition facilita-

tion rather than a cost. This �nding con�rms recent arguments that in the absence

of backward inhibition, recent performance of a particular task (i.e., of the A task

147



Figure 4.4: Simulation 3: Basic simulation of the n-2 repetition procedure. Sequen-
tial congruency e�ects on trial 3 RT. TheCongruency3 factor is represented across
upper and lower panels, the combination of Congruency1 and Congruency2 is
represented across horizontal panels.

in ABA sequences) would lead to reduced RTs, as a result of residual activation of

the task — e�ectively, a form of priming (Grange et al., 2013).

The marginally signi�cant main e�ect of Congruency2 suggests the model

does predict an n-1 congruency e�ect, as found empirically by Goschke (2000) and

Monsell et al. (2003). In the absence of a speci�c incongruency detection mech-

anism, this e�ect is purely due to the residual activation in the model caused by

an incongruent trial. However, given the large number of trials in the simulation,

and the resulting marginally statistically signi�cant result, it is unlikely that this

simulated e�ect would be detected empirically, and so the mechanism within the

model is correspondingly unlikely to fully account for the observed behaviour.

The lack of higher-order interaction e�ects, especially interactions withSequence

suggests that while the congruency of trial 3 (and to a lesser extent trial 2) a�ected

�nal trial RTs, it did not a�ect n-2 repetition costs. Similarly, the lateral inhibition-

148



only model does not predict higher-order sequential congruency e�ects on the n-2

repetition cost.

4.4 Simulation 4: Asymmetric tasks in the n-2 rep-

etition paradigm

Most empirical three-task switching studies have used tasks of equal, or approxi-

mately equal di�culty. However, equal task di�culty is frequently an assumption:

to-date, most empirical studies have not compared the tasks in terms of systematic

RT or error rate di�erences. In one of the few studies that examined asymmetric

task di�culty systematically, Arbuthnott (2008a) combined three tasks of varying

di�culty. All three tasks involved classifying certain single digits (2, 3, 4, 6, 7, 9).

The easiest, magnitude task, involved stating whether a digit was high (6, 7, 9) or

low (2, 3, 4). The next most di�cult task, parity, involved classifying whether a

digit was odd (3, 7, 9) or even (2, 4, 6). Finally, the prime task, on which partici-

pants were slowest and most error prone, involved classifying whether a digit was

prime (2, 3, 7) or non-prime (4, 6, 9).3 Arbuthnott derived a directional hypothesis

for asymmetric n-2 repetition costs, reasoning from a verbal model of backward

inhibition that contrasted a residual-activation based explanation with a residual-

inhibition based explanation. She reasoned that if the n-2 repetition cost was pri-

marily due to residual inhibition (as compared to residual activation), conditions

with a larger switch cost (i.e., Easy-Hard-Easy sequences) should also exhibit larger

n-2 repetition costs than those with a smaller switch cost (i.e., Hard-Easy-Hard).

Alternatively, if the asymmetric switch cost was largely due to residual activation,

n-2 repetition costs should be equal across conditions.
3See section 8.1.1 for criticism of this paradigm.
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4.4.1 Target data

Arbuthnott (2008a) conducted two experiments. The �rst used non-overlapping

sets of response keys for the three tasks, enabling di�erentiation between errors

due to the participant performing the incorrect task, and those due to the correct

task but the incorrect response. The second used overlapping sets of response

keys.4 Experiment 2, therefore, corresponds with the current model, which im-

plements overlapping response sets in terms of lateral inhibition/excitation at the

output/response level (recall �gure 4.2).

Arbuthnott assessed relative task di�culties by comparing RTs and error rates

(wrong-task errors and decision-errors) in the no-switch condition. In experiment

1, these were as follows: Magnitude task: 663ms, 0.33%, 2.15%; Parity task: 764ms,

1.44%, 2.21%; Prime task: 821ms, 0.38%, 3.93%. For magnitude and prime switches

(i.e., easiest and hardest tasks), the direction of the typical switch cost asymmetry

was reversed, with greater costs for switches toward the harder, prime task. N-

2 repetition costs were signi�cantly di�erent for the two alternation directions,

with greater costs for the magnitude task (i.e., EHE) and a slight n-2 repetition

facilitation for the prime task (i.e., HEH). The analysis of error rates was marginally

signi�cant for decision errors, in the same direction as the RT analysis, but not

wrong-task errors. For parity and prime switches (i.e., intermediate and hardest

tasks), unlike for the magnitude/prime pairing, the typical switch cost asymmetry

was observed, with greater costs for switches to the parity task, for both RTs and

error rates. N-2 repetition costs were not signi�cantly di�erent for the two task

pairings, for RT, although mean n-2 repetition costs were higher for the easier

(EHE) task. Wrong-task error rate n-2 repetition costs were signi�cantly di�erent,

with more errors for the prime (HEH) task than the parity task.

In experiment 2, di�erent error types could not be distinguished due to the use
4The distinction between overlapping and non-overlapping responses is important, as there is

empirical suggestion that response set overlap is one parameter increasing the magnitude of the
n-2 repetition cost (Gade & Koch, 2007).
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of overlapping response keys. RTs and overall error rates were as follows: Mag-

nitude task: 635ms, 1.67%; Parity task: 741ms, 4.52%; Prime task: 759ms, 4.61%.

For magnitude and prime switches, the asymmetric switch cost was reversed (i.e.,

greater switch cost for switches to the harder, prime task) for RTs, but not error

rates. The di�erence in n-2 repetition cost did not approach signi�cance, although

the mean n-2 repetition cost was higher for the easier task (i.e., EHE) than the

harder task (HEH). For parity vs. prime switches, no signi�cant di�erence in dif-

�culty between these tasks was reported in experiment 2, and the di�erence in

switch costs and n-2 repetition costs was not analysed.

Although Arbuthnott (2008a) argued that the results supported her hypothesis,

one substantial empirical limitation is the lack of robustness of the reported e�ect.

Asymmetric n-2 repetition costs are only reported in experiment 1, and only for

one pair of tasks. For the other pairing, no signi�cant n-2 repetition costs occurred

for RTs, with a signi�cant e�ect in the opposite direction occurring for wrong-task

errors. In experiment 2 (overlapping response sets), only one pair of tasks had sig-

ni�cant di�erences in di�culty, and for these tasks, the n-2 repetition costs were

not signi�cantly di�erent between alternations. Switch cost asymmetries were

also unusually non-robust in this experiment, with a reversal in the typical di-

rection of the e�ect in one task pairing in experiment 1, and in experiment 2. In

neither experiment were the direction of switch or n-2 repetition costs compared

for the easy and intermediate task pairing. Additionally, deriving a directional

hypothesis by reasoning from poorly speci�ed verbal models of backward inhibi-

tion is clearly fraught with di�culty. An opposite directioned hypothesis, derived

from alternative reasoning from the same two verbal models, might be similarly

plausible.

In summary, although the empirical study of Arbuthnott (2008a) did not pro-

duce robust empirical results, or falsify a clearly stated hypothesis, the empirical

paradigm has subsequently proven under-utilised. The use of computational mod-
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els can readily be used to derive clear directional hypotheses through simulation,

rather than needing to derive them verbally. As in the previous simulation, prior

to simulating asymmetric switching in a backward inhibition model, it is �rst nec-

essary to establish the predictions of a lateral-inhibition-only model.

4.4.2 Procedure

The simulation consisted of multiple runs of 3-trial blocks. The model was re-

initialised before each block. Therefore, comparison of performance on the 3rd

trial in each task triplet gives the cleanest indication of the behaviour resulting

from the residual e�ects of the preceding two trials, only. As in the analysis con-

ducted by Arbuthnott (2008a), four di�erent types of block were de�ned by se-

quence type, as follows:

1. No switch (e.g., BAA, CBB, BCC etc)

2. One-switch (e.g., BBA, CCB)

3. Two-switch (e.g., ABC, CBA)

4. Alternating switch (e.g., ABA, BCB)

The simulation explicitly controlled for sequence congruency — fully incon-

gruent stimuli were used for all 3 trials in a block (e.g., II/II/II, as in section 4.3).

The simulated sequences consisted of all switch conditions, each repeated for all

permutations of three tasks (i.e., six possible sequence permutations), and each

occurring �ve hundred times, for a total of 12,000 blocks of 3 trials.

The model parameters governing the strength of tasks A, B and C respectively

were hand-set to 4.4, 3.5 and 2.2 for stimulus input strength, and 5.8, 9.0 and 13.0

for top-down control strength. The hand setting of parameters was done such

that the model produced asymmetric switch costs for all three task pairings, in the

typically observed direction (i.e., greater costs for switches to the easy task).
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4.4.3 Results

The basic results of the simulation are presented in tables 4.1, for basic RT data

(see also �gure 4.5), and 4.2, for n-1 switch and n-2 repetition costs.

Tasks Switch condition RT (easier) RT (harder)

Between easy (0) and hard (2)

No-switch 54.7 (18.8) 129.2 (124.9)
1-switch 106.2 (33.1) 145.5 (89.4)
2-switch 103.8 (32.0) 155.3 (89.3)

Alternating switch 93.6 (32.5) 170.4 (125.7)

Between intermediate (1) and hard (2)

No-switch 72.9 (41.3) 129.1 (124.9)
1-switch 122.3 (49.8) 143.2 (84.5)
2-switch 116.4 (38.5) 171.6 (115.4)

Alternating switch 111.7 (47.1) 158.9 (121.3)

Table 4.1: Simulation 4 - Simulated RTs resulting from switching between three
asymmetric tasks. Reported RTs are mean (SD) model cycles. cf. Arbuthnott
(2008a), tables 2 & 3

Tasks Switch Direction Switch cost n-2 repetition cost

Between easy (0) and hard (2) Easy to hard 16.3 15.1
Hard to easy 51.5 -10.2

Between intermediate (1) and hard (2) Intermed to hard 14.1 -12.7
Hard to intermed 49.4 -4.7

Table 4.2: Simulation 4 - Simulated RT switch costs and n-2 repetition costs result-
ing from switching between three asymmetric tasks. RTs are model cycles.

Switch costs

The analysis proceeded parallel to that of Arbuthnott (2008a). Switch cost and

switch cost asymmetry was assessed with a 2× 2 ANOVA, with factors of switch

condition (0-switch vs. 1-switch) and Task (i.e., Switch direction: Easy-Hard-Easy

vs. Hard-Easy-Hard). Anticipated e�ects were a main e�ect of switch condition

(re�ecting a general switch cost), a main e�ect of task (re�ecting relative task

di�culty) and a Task × SwitchCondition interaction (re�ecting di�erences in

switch costs for di�erent task direction — potentially, a switch cost asymmetry).5

5 This class of model has already been demonstrated to produce asymmetric switch costs for
two-task switching, for a variety of parameter settings (Gilbert & Shallice, 2002). Thus, it was
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Arbuthnott (2008a) compared each easier task (magnitude and parity judgments)

with the harder task (prime judgments). Here, each combination of two tasks was

tested against each other.

All expected e�ects and interactions reached signi�cance for chosen param-

eter settings. For tasks 0 (easiest) and 1 (intermediate), highly signi�cant main

e�ects were obtained for Sequence, F (1, 2883) = 1343.2, p < .001, and Task,

F (1, 2883) = 212.5, p < .001. The interaction was also signi�cant, F (1, 2883) =

4.21, p = .040. For tasks 0 (easiest) and 2 (hardest), highly signi�cant main e�ects

were obtained forSequence, F (1, 2094) = 108.3, p < .001, andTask, F (1, 2094) =

414.6, p < .001. The interaction was also highly signi�cant,F (1, 2094) = 19.7, p <

.001. For tasks 1 (intermediate) and 2 (hardest), highly signi�cant e�ects were

obtained for Sequence, F (1, 2084) = 92.0, p < .001, and Task, F (1, 2084) =

181.1, p < .001, with a highly signi�cant interaction, F (1, 2084) = 16.9, p <

.001. Comparison of overall switch cost (table 4.2) suggests the switch cost asym-

metry to be in the typical direction, rather than the reversal observed by Arbuthnott

(2008a).

N-2 repetition costs

As established previously (section 4.3), the lateral-inhibition only model did not

produce n-2 repetition costs, hence they are not anticipated here. Arbuthnott

(2008a), addressing the question of whether the asymmetric switch cost was due to

residual task inhibition, or residual task activation, reasoned that if it were primar-

ily due to residual inhibition, conditions with a larger switch cost (i.e., Easy-Hard-

Easy sequences) should also exhibit larger n-2 repetition costs than Hard-Easy-

Hard sequences. Alternatively, if the asymmetric switch cost were largely due

to residual inhibition, n-2 repetition costs would be equal across conditions. Al-

though the present model implements residual activation in terms of task-demand

assumed that the model should produce asymmetric switch costs for two out of three possible
tasks, and parameters were hand-set accordingly.
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unit activation, and residual inhibition via lateral inhibitory task-demand unit con-

nections, no directional e�ects are anticipated.

As with switch costs, a 2×2 ANOVA was used to assess the n-2 repetition cost,

with factors of Sequence (2SW vs. ALT) and Task (HEH vs. EHE).

For tasks 0 (easiest) and 1 (intermediate), Sequence was highly signi�cant,

F (1, 1766) = 10.5, p = .001, and Task was highly signi�cant, F (1, 1766) =

71.3, p < .001, but with no signi�cant interaction, F (1, 1766) = 0.003. The sig-

ni�cant main e�ect of Sequence re�ects an n-2 repetition facilitation, as in the

previous simulation (section 4.3).

For tasks 0 (easiest) and 2 (hardest), Sequencewas not signi�cant,F (1, 1218) =

0.40, p = .53, Task was highly signi�cant, F (1, 1218) = 253.7, p < .001, and the

interaction was highly signi�cant, F (1, 1218) = 9.13, p = .003. The signi�cant

interaction re�ects a di�erence in direction of the n-2 repetition e�ect: For 0-2-0

(EHE) switches it re�ects a facilitation, while for 2-0-2 (HEH) switches it re�ects

a cost. The signi�cance of these e�ects was tested individually using post-hoc t-

tests (Welch two-sample t-test). The n-2 repetition cost for 2-0-2 sequences was

marginally signi�cant, t(236.56) = −1.6, p = .01 (uncorrected). Note that this is

in the opposite direction to that predicted by Arbuthnott (2008a). The n-2 repeti-

tion facilitation for 0-2-0 sequences was also signi�cant, t(621.2) = 31.6, p < .001

(uncorrected).

For tasks 1 (intermediate) and 2 (hardest), Sequencewas not signi�cant,F (1, 1181) =

1.24, p = .27), Task was signi�cant, F (1, 1181) = 113.5, p < .001, while the

interaction was not signi�cant, F (1, 1181) = 0.67, p = .41.

4.4.4 Discussion

Asymmetric switch costs were obtained for all pairs of tasks after hand-setting of

parameters. Moreover, consistent with the simulation reported in section 4.3, this

simulation produces a small but statistically signi�cant n-2 repetition facilitation
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(a) (b)

(c)

Figure 4.5: RTs for each pair of tasks (4.5a) Simulation 4 - switches between tasks
0 (easy) and 1 (intermediate); (4.5b) Simulation 4 - switches between tasks 0 (easy)
and 2 (hard); (4.5c) Simulation 4 - switches between tasks 1 (intermediate) and 2
(hard).
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(i.e., a negative n-2 repetition cost) for all three combinations of tasks.

In the model, the topdown control strength (TDCS) parameter (or more specif-

ically, the balance between topdown control and stimulus input strength, SIS) reg-

ulates performance, e�ectively decreasing the dispersion of RTs. One �nding that

emerged from the process of hand-setting parameters was that the asymmetry of

the switch cost was somewhat sensitive to speci�c parameter settings for TDCS

and SIS. In a real cognitive system, however, determining the appropriate equiv-

alent of the TDCS parameter is a separate cognitive problem. Presumably, this

cannot purely be due to con�ict monitoring (e.g., Botvinick et al., 2001), as this is

not speci�c to the task about to be performed. Setting of the appropriate parame-

ter value would fall within the remit of a task recon�guration system, yet this was

intentionally outside the scope of the model of the model of Gilbert and Shallice

(2002). Thus, within the existing model, this problem is di�cult to resolve.

In her �rst experiment (i.e., non-overlapping response sets), Arbuthnott (2008a)

found that for one pair of tasks, the switch cost asymmetry was reversed (i.e.,

greater switch costs for switches into the harder task), which she did not explain

in theoretical terms. In the model presented here, while a variety of parameter

settings were tried (for stimulus input strength and top-down control strength),

a reversal of the switch cost asymmetry could not be obtained. However, this

issue cannot be approached more formally without a more systematic approach to

setting the parameters for stimulus input strength and top-down control strength,

and is therefore returned to in a later chapter.

It might be argued that Arbuthnott (2008a) found a reversal of the switch cost

asymmetry, thus potentially invalidating the assumption underlying the hand-

setting of task di�culty parameters. However, the reversal of the switch cost

asymmetry was not robustly demonstrated in Arbuthnott (2008a). The assump-

tion of switch cost asymmetry was made in order to maintain consistency with

previous �ndings from the two-task switching literature. It should be acknowl-
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edged, however, that when hand-setting model parameters, reversal of the switch

cost asymmetry for one of the three possible task pairings did occasionally oc-

cur. Therefore, it is possible that the introduction of a third task into the model

changes the behaviour of the model for two-task e�ects. One priority for future

simulations, therefore, is a more systematic exploration of the model behaviour

across varying parameters for task di�culty.

4.5 Summary

This chapter has demonstrated, through simulation, that a lateral-inhibition-only

model that predicts a wide range of two-task switching e�ects, does not predict n-

2 repetition costs. This �nding is not a�ected by the modulation of either response

congruency or variable task di�culty. This justi�es the need for introducing ad-

ditional cognitive mechanisms to explain these empirical phenomena. In the next

chapter, we consider a modi�cation of the task switching model where backward

inhibition is triggered by inter-task con�ict.
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Chapter 5

A Model of Backward Inhibition

This chapter extends the lateral-inhibition-only model of the previ-

ous chapter with the addition of a backward inhibition mechanism,

based on the empirical suggestion that backward inhibition is trig-

gered by con�ict (Koch et al., 2010) between aspects of task represen-

tations. In the model, backward inhibition is implemented by con�ict

units sensitive to co-activation of task demand units, with recurrent

inhibitory connections. The chapter presents a series of simulations

showing the e�ect of backward inhibition compared to the lateral in-

hibition only model (simulation 5, section 5.3), contrasts model per-

formance for symmetric and asymmetric task strengths (simulations

6a, section 5.4.1, & 6b, 5.4.2), examines the activation dynamics of the

model in the n-1 switch and n-2 repetition paradigms (section 5.4.1),

and �nally examines various treatments of an implementational is-

sue, negative con�ict (simulation 6c, section 5.5).
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5.1 Introduction: Task con�ict and backward in-

hibition

Based on a range of evidence linking backward inhibition to con�ict between com-

peting task representations, the model developed in this chapter is based on three

theoretical assumptions:

1. Task inhibition is invoked by a con�ict-monitoring mechanism (following

the suggestion of Koch et al., 2010)

2. Between-task con�ict causes active Backward Inhibition of the non-relevant

task

3. Backward Inhibition is persistent (across trials)

Within the cognitive control literature, con�ict is a related concept to interfer-

ence in task switching. In theoretical terms, Botvinick et al. (2001) posited con-

�ict as a means of signaling the need for (top-down) control within the cognitive

system. Computationally, Botvinick et al. (2001) implemented con�ict monitor-

ing units by taking as their input the product of the activations of two task de-

mand units (�gure 5.1), in a modi�cation of the Stroop model of Cohen and Hus-

ton (1994). The signal generated in con�ict monitoring units on each trial was

then used to adjust performance on subsequent trials, accounting for inter-trial

e�ects such as sequential adjustments in performance in the Eriksen �anker task,

the e�ects of manipulating trial-type frequency (i.e., the proportion of congruent,

incongruent and neutral trials) in the Stroop task, and within-run slowing e�ects

following errors.

Substantial commonalities exist between the models of Gilbert and Shallice

(2002) and Botvinick et al. (2001). Both represent modi�cations of the same IAC

architecture, and both use computational properties arising from the simultane-

ous activation of competing representations to simulate human performance. The
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Figure 5.1: A simpli�ed diagram of the con�ict monitoring model (Stroop task) of
Botvinick et al (2001). Output units are further connected to response units, and
an additional (neutral) unit is added at input and output level.

con�ict monitoring hypothesis of Botvinick et al. (2001) proposes, however, that

speci�c units (in computational models) or regions of cortex (anterior cingulate, in

humans) have the function of detecting such interference and using it as a signal

for triggering cognitive control.

The proposal of Koch et al. (2010), that con�ict signals the need for a form

of higher-level control, is therefore entirely consistent with the role of con�ict in

the con�ict monitoring hypothesis, and implementable within the current com-

putational framework by introducing con�ict monitoring units similar to those of

Botvinick et al. (2001) into the 3-task version of the task switching model, described

in the previous chapter.

Various possibilities were considered for adding con�ict monitoring units to

the model of Gilbert and Shallice (2002). For example, persistent inhibition might

be modelled as changes in weights (i.e., a form of Hebbian learning) of inhibitory
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connections between con�ict units and task-demand units. Alternatively, back-

ward inhibition might result from residual activation (carryover) of a con�ict signal

from previous trials. Both of these mechanisms, to an extent, feature in the model

of Gilbert and Shallice (2002). However, given that their model succeeded in ex-

plaining a range of switch-cost phenomena in terms of the dynamics of residual

activation of task-demand units, it seems reasonable to adopt the same approach

to explaining n-2 repetition costs, i.e., as a consequence of residual activation of

units at a higher level in the model.

The present theoretical perspective conceptualises backward inhibition as a

cognitive control mechanism that operates by biasing processing between mul-

tiple task pathways, on the basis of con�ict at the level of task representations.

The model extends the interactive activation model of Gilbert and Shallice (2002),

which in itself is analogous to a lower-level contention scheduling system (Norman

& Shallice, 1986; Cooper & Shallice, 2000), with an additional task inhibition mech-

anism.

5.2 Model description

5.2.1 Model architecture

The model architecture is illustrated in �gure 5.21. The portion of the �gure below

the dashed line is equivalent to the model of Gilbert and Shallice (2002) applied

to three tasks. Speci�cally, it is implemented as an interactive activation model in

which processing in each unit of the model is allowed to bias processing at other

levels (McClelland, 1993). The model has three sets of input and output units,

corresponding to each of three tasks (referred to in �gure 5.2 as tasks A, B and

C). For each task, two input units correspond to the two possible input values. For
1Unless otherwise speci�ed, the weights of connection are �xed and take the default values

used by Gilbert and Shallice (2002).
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example, the input stimulus ‘9’, a�ording the three tasks parity, magnitude and cen-

trality, might be represented as odd (left), high (right) and peripheral (right). Input

units have feed-forward connections to the corresponding output unit. There are

six output units, representing two possible responses to each of the three tasks.

Within the set of output units, units that correspond to the same response are mu-

tually excitatory, while units that correspond to alternative responses are mutually

inhibitory. The model therefore implements an experimental procedure in which

responses for all tasks are mapped to the same set of response keys (cf. Gade &

Koch, 2007).

The strength of the connection weights between input and output units repre-

sents the strength of ‘bottom-up’ processing in the model: a well-learned or pre-

potent task (e.g., word reading of Stroop stimuli) has stronger connection weights

than a weaker task (e.g., colour naming). While training of connection weights

in the model did not occur, previous work has demonstrated that a similar archi-

tecture can learn this arrangement of connection weights when presented with

training sets biased toward particular tasks (Cohen et al., 1990).

5.2.2 Task demand units

As in the model of Gilbert and Shallice (2002), task processing is biased by task-

demand units — one per task — which have excitatory (i.e., positively weighted)

connections to their respective output units and inhibitory (i.e., negatively weighted)

connections to the output units associated with the other tasks. These connections

are bi-directional, so a response activated bottom-up by a strong input connection

will tend to activate the task with which the response is associated. The currently

relevant task unit also receives a ‘top-down control’ input, from units represented

on the left of �gure 5.2, simulating the level of deliberate control required to per-

form each task to a reasonable level. As a simpli�cation, the model omits the mod-

i�able connections from input to task demand units, which Gilbert and Shallice
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Figure 5.2: Architecture of the model capable of switching between three tasks
(A, B & C). Excitatory connections are represented as lines in solid black with
sharp arrows, inhibitory connections are dashed grey lines with circular arrows.
Arrowheads show the direction of the connection. Not shown are within-module
connections (e.g., lateral inhibition).
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(2002) used to simulate the in�uence of item-speci�c priming.

5.2.3 Con�ict monitoring units

The current model extends previous models by introducing an upper level of con-

�ict monitoring units, operating similarly to those in the model of Botvinick et

al. (2001). The input (Ic) to these units is somewhat di�erent to elsewhere in the

model. Each monitors the con�ict (i.e., simultaneous activation) between two Task

Demand (TD) units, according to equation 5.1:

Ic = γc(
α1 + 1

2
)(
α2 + 1

2
) + βc (5.1)

First, the activations of each TD unit (α1, α2) are linearly rescaled from (-1,1) to

(0,1), to ensure the minimum activation value is zero. The input to con�ict units

(Ic) on each cycle is then calculated as the product of these values, multiplied by a

gain parameter (γc), and adding a constant negative bias (βc). Thus, in the absence

of con�ict, the con�ict units receive a constant negative baseline input ensuring

their activation decreases. If the rescaled activation values of two TD units are

both greater than zero, the mutually connected con�ict unit will receive an input

greater than this baseline.

Unlike the model of Botvinick et al. (2001), con�ict units bias model process-

ing interactively, via inhibitory connections to both respective task demand units

multiplied by a weight parameter (ω). In sum, the model instantiates a theoreti-

cal position related to the proposal by Koch et al. (2010), i.e., that task inhibition

is recruited by con�ict generated during task processing. The theoretical posi-

tion di�ers from that of Koch et al. (2010), in that those authors speculated that

task inhibition was recruited by response con�ict. In their account, incompatible

response alternatives generate response con�ict, which inhibit the task set respon-

sible for exciting the (irrelevant) con�icting response. Here, con�ict is generated at
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the task demand level, by simultaneous activation of two or more task units, which

feeds an inhibitory signal back to the input of the task demand units. This has the

advantage that the task con�ict monitoring units do not require any additional

information than that already available at the task level. Both tasks are inhibited,

although in the case of the currently active task, this inhibition is counteracted by

the top-down control signal.

5.2.4 Activation calculation

The calculation of activation in the model is unchanged from the 3-task version of

the Gilbert and Shallice (2002) model, described in the previous chapter. However,

while the overall behaviour of the model is not anticipated to be particularly de-

pendent on any one activation function, the speci�c function is not well suited to

modelling more complex activation dynamics, which introduce a number of im-

plementational issues. Speci�cally, the absence of any residual decay in the activa-

tion of units implies steady-state unit activation in the absence of input. Instead,

Gilbert and Shallice (2002) modelled decay in terms of bias units, which supply

a constant negative input to each layer of units. This means a somewhat linear

decay of activation in the model, with no level of rest activation.

Additionally, unit activations range from -1 to 1 (rather than, for example, 0 to

1). This, combined with the absence of a rest activation state, means that a unit

with an activation of 0 (i.e., starting state) is e�ectively half-active. One implication

of this is the possibility of ‘negative con�ict’, where a con�ict unit’s input is calcu-

lated as the product of activations of a negatively active task demand unit with a

positively active one. (This tends to occur in some longer trials, where the con�ict

signal decreases below zero.) In this situation, con�ict units e�ectively provide ex-

citatory input to TD units because of their negatively weighted connections (e.g.,

see �gure 5.6a). This phenomenon is not a part of the con�ict monitoring theory

proposed by Koch et al. (2010). Neither is it an issue in the model of Botvinick et
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al. (2001), who scale the activation of units between 0 and 1. Instead, it is an unan-

ticipated consequence of using a speci�c activation function and set of parameters

specifying maximum and minimum activations.

A number of approaches to eliminating negative con�ict from the model are

considered here. While negative con�ict is considered to be an undesirable prop-

erty of a particular activation function, it is important to demonstrate the per-

formance of the model is independent from a speci�c implementation, so three

alternatives are considered. First, ‘clipping’ the con�ict signal, by implementing

a threshold of zero, with only above-zero activation being passed to task-demand

units (as a negative input due to negative connection weights). Second, rescaling

the output of the con�ict monitoring units to 0 – 1 (similar to the rescaling of task

demand activation before calculation of the con�ict signal). Third, allowing nega-

tive con�ict to determine its behavioural consequences and compare with the �rst

two treatments.

Implementation of an alternative activation function with more desirable prop-

erties — such as squashing activation to between 0 and 1, with a resting activation

(e.g., 0.1) to which activation extremes will decay in the absence of further input

— would solve the negative con�ict issue and also eliminate the need to balance

input with static bias units. However, it would make a fundamental change to

the activation dynamics (and, potentially, the behaviour) of the model of Gilbert

and Shallice (2002), necessitating replication of previous simulations if the model

is to progress toward the status of a consistent task-switching architecture that

simulates a range of empirical behaviour across multiple paradigms.
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5.3 Simulation 5: Basic e�ects in the backward in-

hibition model

This simulation aimed to explore the qualitative e�ect of the proposed inhibitory

control mechanism. Two versions of the model were therefore compared: a no-

inhibition version, where the weight of inhibitory con�ict task-demand connec-

tions was zero (functionally, identical to the three-task lateral-inhibition only model

from the previous chapter) and a model where the value of the weight parameter

(ω) was -20.0. Con�ict unit gain (γ) and bias (βc) were 50.0 and -10.0, respectively,

for both models. Other model parameters were identical with the preceding simu-

lations (i.e., stimulus input strength of 3.0 and top-down control strength of 12.0).

5.3.1 Method

In order to evaluate model performance over a large block of consecutive trials,

paralleling a typical behavioural paradigm, each version of the model was run on

100 blocks consisting of 600 trials with re-initialisation of the model occurring

between blocks but not between trials. The sequence of tasks was generated ran-

domly, with all three tasks having an equal probability of occurring on any given

trial. As in previous empirical research, each trial was categorised according to the

task sequence formed by it and its two preceding trials as described above.

5.3.2 Results

Mean response times and error rates for each sequence of switches were calcu-

lated for each block. Figure 5.3 plots the mean and 95% con�dence intervals for

all blocks, for both versions of the model (without and with inhibition) and triplet

type. Con�dence intervals allow direct inference of statistically signi�cant di�er-

ences from the �gure.

Firstly, consider the no-inhibition version of the model. For mean reaction
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Figure 5.3: Simulation 5 results: RTs and error rates for sequences of task switches,
and derived costs. Error bars represent bootstrapped 95% con�dence intervals.

times, there is no statistically signi�cant di�erence between repeats where the

previous switch was recent (0SW) or more distant (BLK), inferred from 95% con�-

dence intervals for each condition which include the other condition’s mean. Simi-

larly, 1SW is signi�cantly slower than 0SW, an n-1 switch cost. These two �ndings

replicate the results of Gilbert and Shallice (2002). There is also little di�erence be-

tween 1SW and 2SW conditions, while the ALT condition is faster than 2SW, i.e.,

a slight n-2 repetition facilitation (or equivalently, a negative n-2 repetition cost).

Due to the stochastic nature of the data, more variance is present in the error rate

data, re�ected by larger con�dence intervals. Nevertheless, a similar pattern is

observed: No signi�cant di�erence between BLK or 0SW repeats, a signi�cant n-1

switch cost, but no signi�cant di�erence between any of the switching conditions

(1SW, 2SW or ALT).

Next, consider the backward inhibition model. For reaction times, again, no

signi�cant di�erences are observed between di�erent repeat conditions (BLK or

0SW). As in the no-inhibition model, 1SW sequences are slower than 0SW, pro-

ducing a signi�cant n-1 switch cost, however the switch cost is reduced, due to
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larger 0SW RTs and smaller 1SW RTs than the no-inhibition model: E�ectively,

switches are facilitated, at the cost of slower repeat trials. However, ALT switches

are signi�cantly slower than 2SW sequences — a positive n-2 repetition cost, com-

pared with n-2 facilitation in the no-inhibition model.

5.3.3 Discussion

Simulations 3 and 4 of the previous chapter demonstrate that the basic task switch-

ing model (analogous to the model of Gilbert & Shallice, 2002), which incorporates

lateral inhibition at the response and task demand level but no backward inhibi-

tion, predicts n-1 switch costs but negative n-2 repetition costs, for both reaction

times and error rates. As argued previously, this �nding strengthens the conclu-

sion of Grange et al. (2013), who argued against lateral inhibition as a plausible

mechanism for backward inhibition, on the basis that lateral inhibition alone was

incapable of producing lasting, residual inhibition of task demand units on the ba-

sis of activity on the n-2 trial. In contrast, the backward inhibition model, in the

present simulation, predicts both n-1 switch costs (albeit reduced in magnitude

compared with the no-inhibition model) and n-2 repetition costs for both RTs and

error rates.

Turning to the error rate data, although the pattern of results is similar to the

response time data, larger variability in the data leads to few statistically signi�cant

di�erences. In particular, the 95% con�dence interval for the n-2 repetition cost

overlaps zero, suggesting the model does not predict statistically signi�cant e�ect

for error rate data. Although the size of the con�dence intervals is somewhat

arbitrary, given the nature of simulation (i.e., a smaller CI could be obtained simply

by running more blocks, or increasing the size of each block), the point remains

that more statistical power is available for the response time data, paralleling the

empirical literature.

It is notable that one e�ect of backward inhibition is a general increase in the
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error rate, irrespective of triplet type. On the face of it, this may raise concerns

about the function of a backward inhibition mechanism: what bene�ts would such

an error-causing mechanism bring to a cognitive system? This question is deferred

until the general discussion. However, it is worth noting at this point that the

model’s error rate, even with backward inhibition, is generally below 1% — sub-

stantially below empirically observed error rates. Nevertheless, while the model

accounts well for the empirically observed pattern of reaction times, as a general

model of speeded response generation/execution it remains somewhat incomplete

in comparison with other models which account for a speed/accuracy tradeo� (e.g.,

Brown et al., 2007).

5.4 Asymmetric tasks with the backward inhibi-

tion model

This section returns to the question of asymmetric n-2 repetition cost e�ects using

the backward inhibition model. The remaining simulations in this chapter (6a, 6b,

6c) use the same procedure as simulation 4 (described in section 4.4). Two versions

of the model were tested, with symmetric and asymmetric tasks (simulations 6a,

section 5.4.1, and 6b, section 5.4.2, respectively).

5.4.1 Simulation 6a: Symmetric settings

This simulation served two purposes. The �rst was as a control simulation to test

correct model implementation. With fully symmetric tasks (i.e., equal stimulus in-

put strength and top-down control strength parameters) performance should be

identical across all three tasks. The second was to establish model performance

(especially n-2 repetition cost) with symmetric task di�culties, as a point of com-

parison for asymmetric tasks.
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Tasks Switch condition RT (easier)

Symmetric switching (all tasks aggregated)

No-switch 72.0 (30.5)
1-switch 78.2 (28.1)
2-switch 79.1 (27.7)

Alternating switch 87.3 (29.6)

Table 5.1: Simulation 6a - (Switching between three symmetric tasks, with con�ict
monitoring), RTs are mean (SD) cycles. cf. Arbuthnott (2008a), tables 2 & 3

Method

Stimulus input strength of 3.0 and top-down control strength of 12.0 was used for

each task. All other parameters were identical with the previous simulation (i.e.,

the weight parameter (ω) was -20.0, con�ict unit gain (γ) and bias (βc) were 50.0

and -10.0), with negative con�ict set to ‘clip’. Direct connections from input to

task demand units, with Hebbian learning of weights (Gilbert & Shallice, 2002)

were disabled. Each cell of the simulation (congruency condition × sequence ×

task permutation) was simulated 1000 times, for a total of 24,000 three-task blocks.

Results: Switch and repetition costs

The results are presented below, in �gure 5.4 and table 5.1 for RT data. As previ-

ous simulations (section 5.3) have shown, error rate data from the model provide

little additional information over RT data. These are not considered further in this

simulation.

The reliability of the switch cost, and n-2 repetition cost, were assessed by com-

paring 0SW with 1SW RTs, and 2SW with ALT RTs, respectively, using independent-

samples t-tests. The con�ict monitoring model with symmetric tasks produces a

switch cost of 6.2 cycles, t(11347) = 11.31, p < .0001, d = 0.21 95% CI [0.17, 0.25],

with an n-2 repetition cost of 8.1 cycles, t(11391) = 15.25, p < .0001, d = 0.28

95% CI [0.25, 0.32].
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(a) (b)

(c)

Figure 5.4: RTs for each pair of tasks, for fully symmetric tasks. Error bars rep-
resent 95% con�dence intervals. (5.4a) Switches between tasks 0 and 1; (5.4b)
switches between tasks 0 and 2; (5.4c) switches between tasks 1 and 2.
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Results: Activation dynamics

To explore how n-2 repetition costs arise as the result of di�erences in activa-

tion dynamics between di�erent task sequences, activation within each trial was

graphed, rather than merely considering �nal trial activation. Each cell of the

simulation (congruency condition× sequence× task permutation) was simulated

500 times, for a total of 12,000 three-task blocks. As previously, a stimulus input

strength of 3.0 and top-down control strength of 12.0 was used for each task. All

other parameters were identical with the previous simulation (i.e., the weight pa-

rameter (ω) was -14.0, con�ict unit gain (γ) and bias (βc) were 39.0 and -7.5, with

negative con�ict set to ‘clip’.

For each successfully completed trial, activation, in each unit in the model was

averaged across trials for each cycle. This was done separately for each switch

condition (�gures 5.5 and 5.6) The activation of units at three di�erent levels of

output, task-demand, and con�ict units, is represented in the lower, middle, and

upper section of the plot respectively. Task demand units are colour-coded (red,

green, and blue, representing tasks A, B and C, respectively). Con�ict units are also

colour-coded, with colours representing the combination of two task demand units

(i.e., the AB con�ict unit is yellow (red + green), the BC con�ict unit is cyan (green

+ blue) and the AC con�ict unit is fuchsia (red + blue). These graphs visualise

activation for correct trials only, excluding the fastest and slowest decile of trials

for each combination of trial position and condition, in order to produce more

representative visualisation for the bulk of trials.2 The vertical lines on each plot

represent mean RT.

We begin by considering the n-1 switch cost in the three-task switching model

(�gure 5.5).

In the 0SW condition (i.e., BAA), the �nal trial (i.e., the right-most vertical
2Note that this is a di�erent �ltering criterion used elsewhere, such as that used for statistical

tests which excluded RTs outside 3SDs of the mean (as in Gilbert & Shallice, 2002).
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panels in �gure 5.5a) is a repeat of the previous task (here represented by the red

task demand unit). The unit has an initial advantage in starting activation over

the B/C (green/blue) task demand units, due to the residual activation from the

previous trial. Due to this residual activation, and the top-down control input, the

unit quickly becomes highly active, as it laterally inhibits the other competing task

demand units, in a competitive process.

In the 1SW condition (i.e., BBA), the �nal trial (‘2’ in �gure 5.5b) is a switch

trial. In this instance, the model must activate the relevant task demand unit to

perform each trial (here represented as green, red, red at the task demand level,

the horizontal central series of panels). On the middle trial, the B task demand

unit (green) has a higher starting activation than the A or C (red/blue) units, due

to residual activation from the previous trial. Therefore, the model must activate

the red task demand unit via the active top-down control units. However, lateral

inhibition at the task demand level means the A unit is simultaneously inhibited

by the residually active B unit.

Thus far, this explanation is essentially the same as that for switch costs in

Gilbert and Shallice (2002). However, the current model also includes a higher

level of con�ict units. As con�ict units are responsive to the product of two TD

units’ activations, when one TD unit is highly active, two con�ict units tend to

also be highly active, re�ecting the con�ict between the active TD unit and each

of the two, less active TD units.

In the 0SW example, on the �nal (i.e., repeat) trial, the highly active (A/red) TD

unit leads to a higher con�ict signal for the yellow (A/B) and fuchsia (A/C) con�ict

units, while a lower signal for the cyan con�ict unit re�ects the decreasing signal

from the two lower-activation B/C (green/blue) TD units. Here, the e�ect of the

backward inhibition mechanism is to mildly inhibit TD units A/B (yellow) and A/C

(fuchsia), with the e�ect that task A receives a greater level of backward inhibition

than either the B or C task. E�ectively, then, on repeat trials, backward inhibition
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has the e�ect of inhibiting the repeat task.

In the �nal trial of the 1SW example (�gure 5.5b), initially, the cyan (B/C) and

yellow (A/B) con�ict units are more active, re�ecting the residual activation of the

green (B) TD unit at the and of the previous trial. The resulting inhibition from

the con�ict units suppresses the activation of the green (B) TD unit, which rapidly

becomes even less active than the so-far unused blue (C) TD unit. As a result,

throughout the �nal trial, activation of the cyan (B/C) con�ict unit decreases, while

activation of the fuchsia (A/C) unit increases, due to the increasing activation of

the performed (red/A) task. An initial increase in yellow (A/B) con�ict re�ects the

initial con�ict between the residual activation of the B unit, and the activation of

the A unit, at the start of the switch trial. This is resolved over the course of the

trial. The e�ect, therefore, of the backward inhibition units on the switch trial is

to facilitate performance, by inhibiting the recently performed but now irrelevant

task representation.

To understand the role backward inhibition plays in the n-2 repetition cost,

let us now consider the 2SW and ALT trials (�gure 5.6). In the 2SW (CBA) se-

quence, activation on the middle trial proceeds similarly to the �nal trial of the

1SW sequence, discussed previously. By the end of the trial, the recently per-

formed (blue/C) task is the most suppressed, compared to the red/A (not recently

performed) or green/B (performed on this trial) tasks. As a result, the most active

con�ict units by the end of the middle trial are cyan (B/C) and yellow (A/B), which

actively facilitate switching at the start of the �nal, switch trial, where the high

level of inhibition of the green (B) TD unit helps to counteract its residual activa-

tion. This is why the �nal (switch) trial of the 2SW trial is slightly faster than the

middle (also switch) trial, and slightly faster than the corresponding trial in the

1SW condition.

In the ALT (ABA) condition (�gure 5.6b), activation proceeds similarly on the

�rst two trials of the 2SW trials. By the end of the middle trial, the red/A TD unit is
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more suppressed than the green/B or blue/C units, again, due to the inhibition from

the yellow (red/green, A/B) and fuchsia (red/blue, A/C) con�ict units throughout

the middle trial. Critically, at the start of the �nal trial, in contrast to the 2SW

condition, the yellow con�ict unit is more active than the cyan (B/C) unit, which

in turn is more active than the fuchsia (A/C) unit. This is due to red/green (A/B)

con�ict which occurred on the middle trial. Thus, on the �nal trial where the red/A

TD unit must become highly active, inhibition is being sent most strongly by the

yellow (A/B) con�ict unit, followed by the cyan (B/C) unit. While the strongest

combined e�ect of backward inhibition is to suppress activation of the no-longer-

relevant B unit, the A unit is also inhibited as a result.

Essentially, then, this model represents a con�ict-based theory of backward in-

hibition: Con�ict occurring on the middle trial of ABA sequences results in longer-

lasting suppression of the ‘A’ task. In the model, this is implemented by residual

activation of con�ict units, whose activation changes relatively slowly, provoked

by recent co-activation of pairs of task-demand units.

5.4.2 Simulation 6b: Asymmetric switching

In a companion to the previous simulation (section 5.4.1), this simulation tested the

backward inhibition model on asymmetric switching. The task control strengths

were identical with those used in simulation 4 (section 4.4), speci�cally, stimulus

input strengths of 4.4, 3.5 and 2.2, and top-down control strengths of 5.8, 9.0 and

13.0, for tasks A, B and C, respectively.

Method

Once again, associative learning between inputs and task demand units was dis-

abled. Negative con�ict treatment was ‘clip’. A larger number of trials was used,

with 1000 occurrences of all switch conditions, each repeated for all permutations

of three tasks (i.e., six possible sequence permutations), compared to 500 occur-
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(a)

(b)

Figure 5.5: Activation dynamics in 3-task switching with symmetric task strengths:
0-Switch (BAA, panel 5.5a) and 1-Switch (ABA, panel 5.5b) conditions. The 3rd
trial RT di�erence between conditions represents the switch cost. Vertical bars
represent lower quartile, median, and upper quartile RTs.
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(a)

(b)

Figure 5.6: Activation dynamics in 3-task switching with symmetric task strengths:
2-Switch (CBA, panel 5.6a) and Alt-Switch (ABA, panel 5.6b) conditions. The 3rd
trial RT di�erence between conditions represents the n-2 repetition cost. The ver-
tical bar represents the mean RT.
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(a) (b)

(c)

Figure 5.7: RTs for switching between each pair of tasks, for asymmetric task
strengths. (5.7a) Simulation 6b: Switches between tasks 0 (easy) and 1 (interme-
diate); (5.7b) Simulation 6b: Switches between tasks 0 (easy) and 2 (hard); (5.7c)
Simulation 6b: Switches between tasks 1 (intermediate) and 2 (hard).

rences in simulation 4. Thus, the simulation totaled 24,000 blocks of 3 trials.

Results

The RTs for switching between di�erent pairs of tasks are presented in �gure 5.7,

while the magnitude of n-1 switch costs and n-2 repetition costs is summarised in

table 5.2.
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Tasks 0 and 1

Switch costs: The main e�ect of task was signi�cant, F (1, 5499) = 2554.3, p <

.0001, η2p = .321, re�ecting the di�erent RT resulting from tasks of di�erent dif-

�culties. The e�ect of sequence condition (0SW vs. 1SW) was also signi�cant,

F (1, 5399) = 60.86, p < .0001, η2p = .006, indicating a switch cost, although

with a small e�ect size. The interaction between these two factors, indicating

a switch cost asymmetry, was also signi�cant, but with a very small e�ect size:

F (1, 5399) = 6.54, p = 0.01, η2p = 0.001. Planned t-test comparisons revealed

the switch cost was signi�cant for both switches from 1 to 0, t(2067) = 6.5, p <

.0001, d = 0.25 95% CI [0.18, 0.33] and switches from 0 to 1, t(1725.5) = 3.92, p <

.0001, d = 0.16 95% CI [ 0.08, 0.25].

N-2 repetition costs: As for n-1 switch costs, the main e�ect of task/switch di-

rection was signi�cant, F (1, 3694) = 1884.4, p < .0001, η2p = .338, indicating

an RT performance di�erence between tasks. The e�ect of sequence condition

(2SW vs. ALT) was signi�cant, F (1, 3694) = 18.22, p < .0001, η2p = .007, indicat-

ing an n-2 repetition cost, with e�ect size similar to that of the switch cost. The

interaction was also signi�cant, F (1, 3694) = 20.88, p < .0001, η2p = .006, indi-

cating an asymmetry in n-2 repetition costs depending on the direction of switch.

Planned t-tests revealed that the n-2 repetition cost was only marginally signif-

icant for switches from 1 to 0, t(1968) = 1.76, p = .07, d = 0.08 95% CI [0.01,

0.17], with magnitude of 1.3 cycles, but the e�ect was larger for switches from 0

to 1, t(1721.7) = 4.88, p < .0001, d = 0.24 95% CI [0.14, 0.33], with magnitude 9.4

cycles. Thus, a larger e�ect size for the n-2 repetition cost was observed on task 1

(i.e., HEH) than on task 0, where it only reached marginal statistical signi�cance.

Note that this pattern is in the opposite direction to that observed by Arbuthnott

(2008a).
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Tasks 1 and 2

Switch costs: The e�ect of task/switch direction (i.e., RT di�erence from tasks

of di�erent di�culty) was signi�cant, F (1, 3967) = 320.8, p < .0001, η2p = 0.075,

while the e�ect of sequence condition (i.e., n-1 switch cost) was also signi�cant,

F (1, 3967) = 11.96, p = .0005, η2p = .003. The interaction was not signi�cant,

F (1, 3967) = .09, p = .35, indicating no switch cost asymmetry. Planned t-

tests revealed the switch cost was signi�cant for switches from task 2 to task 1,

t(1749.1) = 3.0, p = .003, d = 0.12 95% CI [0.04, 0.21], and also for switches from

task 1 to task 2, t(1192) = 2.0, p = .05, d = 1.0 95% CI [0, 0.21].

N-2 repetition costs: The e�ect of task/switch direction was highly signi�cant,

F (1, 2965) = 233.5, p < .0001, η2p = .073, as was the e�ect of sequence condition

(2SW vs. ALT), F (1, 2965) = 6.86, p = .009, η2p = .003, indicating RT di�er-

ences based on task di�culty, and an n-2 repetition cost. The interaction was also

signi�cant, albeit with very small e�ect size, F (1, 2965) = 5.85, p = .016, η2p =

.002. Planned t-tests revealed no signi�cant n-2 repetition cost for from 2 to 1,

t(1807.9) = 0.95, p = .34. However, the cost for switches for 212 (i.e., HEH alter-

nations) was signi�cant, t(1118.2) = 2.66, p = .008, d = 0.16 95% CI [0.04, 0.27].

This �nding, an n-2 repetition cost for the HEH alternation, but no signi�cant cost

for the EHE alternation, was consistent with the results for tasks 0 and 1, and also

in the opposite direction to the e�ect observed by Arbuthnott (2008a).

Tasks 0 and 2

Switch costs: Once again, the e�ect of task was signi�cant,F (1, 4512) = 2204.66, p <

.0001, η2p = .328, as was the e�ect of sequence condition (0SW vs. 1SW),F (1, 4512) =

39.6, p < .0001, η2p = .003, indicating RT task asymmetry and switch costs, respec-

tively. The interaction was only marginally signi�cant, F (1, 4512) = 2.91, p =

.09, η2p < .001, indicating only a negligable switch cost asymmetry, if any. Planned
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t-tests revealed the switch cost was signi�cant for switches from task 2 to 0, t(1924.1) =

8.72, p < .0001, d = 0.34 95% CI [0.26, 0.42], and also for switches from 0 to 2,

t(1209.4) = 2.10, p = .04, d = 0.11 95% CI [0.01, 0.21].

N-2 repetition costs: The e�ect of task/switch direction was highly signi�cant,

F (1, 3084) = 1685.9, p < .0001, η2p = .353. The e�ect of sequence condition

(2SW vs. ALT) was also signi�cant, F (1, 3084) = 10.9, p = .0009. The interaction

was also highly signi�cant, F (1, 3084) = 23.7, p < .0001, η2p = .008. Planned

t-tests revealed the n-2 repetition cost was not signi�cant for switches from 2 to

0, t(1973) = 0.07, p = .94., but was signi�cant for switches from 0 to 2 (i.e.,

HEH), t(1091.4) = 3.69, p = .0002, d = .22 95% CI [0.10, 0.34]. Thus, as for the

previous two task pairings, the n-2 repetition cost was markedly asymmetric, with

signi�cant costs only obtained for HEH switches.

Tasks Relative Task Di�culty Switch cost n-2 repetition cost

0/1 H 10.0 14.5
E 3.9 1.3

0/2 H 13.7 27.2
E 5.6 n.s.

1/2 H 13.5 19.6
E 7.5 n.s.

Table 5.2: Simulation 6b: Switch costs and n-2 repetition costs. Switch costs are
calculated as the di�erence between 1-switch and no-switch mean RTs. N-2 repe-
tition costs are the di�erence between alternating switch and 2-switch mean RTs.
Only statistically signi�cant costs are shown.

Discussion

Signi�cant switch costs occurred for task pairings 0/1, 0/2, and were marginal for

1/2. Given the statistical power resulting from a very large number of trials, how-

ever, the switch cost is much less robust than in simulation 4.

Additionally, the asymmetry of the switch cost was reversed in this simulation.

For all three task pairings, the switch cost was greater for switches to the harder
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task. This �nding is of particular interest, as it contrasts substantially with the re-

sults of simulation 4, which found robust asymmetric switch cost in the typical di-

rection — indeed, switch cost asymmetries were a key assumption in hand-setting

parameters for task strengths. Taken together, these �ndings suggest that switch

costs have been substantially reduced by the backward inhibition mechanism, but

also that the switch cost asymmetry has been reversed.

Intriguingly, this reversal is consistent with Arbuthnott (2008a), who found

the direction of the switch cost asymmetry reversed for one task pairing in ex-

periment 1, and for experiment 2. Of course, the di�erence between the present

simulation and simulation 4 is the inclusion of a backward inhibition mechanism —

a manipulation with no obvious empirical analog. Additionally, it is unclear what

experimental manipulation present in the experiments of Arbuthnott (2008a) ac-

counts for the reduced asymmetric switch cost. It may be that the inclusion of a

third task, alone, is enough to account for this di�erence. However, it would seem

to predict that in situations where backward inhibition is reduced, such as may

be observed clinically, the typically observed switch cost asymmetry would be ex-

aggerated (Mayr et al., 2006, however also see Grange et al., 2013). In any event,

the asymmetry of the n-1 switch cost clearly continues to be of interest in the

three-task switching paradigm, and cannot be assumed in the backward inhibition

model.

We turn, next, to the n-2 repetition cost results from this simulation. N-2 repe-

tition costs were signi�cant for all three task pairings. Additionally, the interaction

between task and sequence type was signi�cant for all three task pairings, indi-

cating asymmetric n-2 repetition costs. Planned t-test comparisons revealed much

larger n-2 repetition costs for the hard task (i.e., HEH alternations), and for two of

the three task pairings (0/2, 1/2) n-2 repetition costs failed to reach signi�cance for

the easy task (EHE). Comparison with the n-2 repetition costs observed in simula-

tion 6a (e.g., �gure 5.4 section 5.4.1) suggests that asymmetric tasks both suppress
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the n-2 repetition cost for EHE alternations and enhance it for HEH alternations.

This �nding is in clear opposition to the results obtained by Arbuthnott (2008a).

However, the present simulation has tested results for only one set of parame-

ter settings that a�ect task di�culty. Furthermore, these parameter settings were

hand-set on the assumption that three-task switching should produce n-1 switch

cost asymmetries similar to those observed in two-task switching — a �nding

which the present simulation, and the empirical �ndings of Arbuthnott (2008a),

suggest may be untenable. Therefore, a priority for future simulations is to obtain

more general �ndings regarding both n-1 switch, and n-2 repetition cost asymme-

tries, independent of speci�c task strength parameter settings.

5.5 Simulation 6c: Approaches to negative con�ict

5.5.1 Rationale

This simulation concerns an issue arising from implementing the con�ict units in

the backward inhibition mechanism. Speci�cally, the activation equations used by

Gilbert and Shallice (2002), and inherited by the backward inhibition model, scale

the minimum/maximum activation of units between -1 and 1, rather than a more

typical 0 to 1 (e.g., Cohen & Huston, 1994). Additionally, unit activation does not

automatically decay to a ’rest’ state. Instead, units are connected to a bias input,

which supplies a constant negative input. Thus, in the absence of positive input,

net input is negative, leading the activation of units to decay.

This implementational characteristic has a number of implications. Firstly,

con�ict units take the product of two task demand unit activations as their in-

put. If both task demand units are positive, the con�ict unit receives a positive

input. If the activation of one task demand unit is negative, and the other positive,

the con�ict unit receives a negative input, while if both task demand units are neg-

ative, the con�ict unit once again receives a positive input. Given the activation of
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units is essentially linear, and arbitrarily scaled between -1 and 1, introducing such

a non-linear characteristic in the connections between task-demand and con�ict

units is theoretically unjusti�ed. In the simulations reported thus far, this prob-

lem was solved by gating the signal from each task demand unit to the con�ict

unit. Thus, the con�ict monitoring unit input was taken as the product of two task

demand unit activations only when both task demand units have activation greater

than zero, otherwise the con�ict monitoring input was zero. E�ectively, this intro-

duces a threshold for triggering con�ict monitoring units.

Secondly, and more problematically, activation of units is frequently negative.

For example, on a typical trial in the model of Gilbert and Shallice (2002), the ac-

tivation of output units starts at zero, and decreases over time, with the �nal re-

sponse eventually being made by the least negative response unit. As a result, the

activation of con�ict units can become negative, in the absence of positive con�ict

(i.e., if the two task demand units connected to a con�ict unit have near-zero ac-

tivation for a period of time). While negative activation of con�ict units does not

pose a conceptual problem, the inhibitory connections between con�ict units and

task-demand units imply that negative activation of con�ict units would lead to a

positive input from the inhibitory connections. In other words, minimally active

con�ict units would send excitatory inputs to task-demand units. Conceptually,

this mechanism is not consistent with the theory, and thus modi�cation of these

inhibitory connections becomes necessary.

Eliminating negative con�ict from the model may be resolved through a num-

ber of approaches. However, as the issue of negative con�ict is purely an im-

plementational issue, and not one which has been proposed in human cognition,

any speci�c mechanism for eliminating negative con�ict characteristics from the

model should not shape model behaviour in any other way. This raises the ques-

tion of how one might determine whether such a speci�c mechanism has shaped

model behaviour? Here, we consider two possible treatments of negative con�ict,
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alongside no-con�ict and a negative-con�ict-allowed conditions. The e�ects of

allowing negative con�ict, and the two di�erent treatments for resolving it, may

therefore be compared. If the two di�erent methods for resolving negative con�ict

produce equivalent behaviour, we may consider that the negative con�ict resolv-

ing mechanism is purely an implementational detail, with no particular e�ect on

the behaviour of the model.

5.5.2 Method

The possible treatments of negative con�ict considered here are, �rstly, allowing

negative con�ict (i.e., an identical model and tasks as used in simulation 6a in

section 5.4.1), clipping negative con�ict (i.e., only the above-zero part of con�ict

unit activation is allowed to inhibit task demand units), and rescaling negative

con�ict (i.e., the activation of con�ict monitoring units is linearly rescaled from 0

to 1 for the purposes of calculating the input to task-demand units). These three

conditions were compared with a no-con�ict condition where there is no input

from con�ict monitoring to task demand units. As in simulation 6a, the simulation

consisted of 24,000 triplets (i.e., 1000 of each switch condition and permutation of

tasks).

5.5.3 Results

The results are presented in �gure 5.8, and the results of t-tests on the n-1 switch

cost and n-2 repetition cost for each treatment are presented in table 5.3. As can

be assessed graphically, and in terms of the sizes of the e�ect for switch costs and

n-2 repetition costs, the results for the conditions where no biasing occurs (no-

con�ict) and where negative con�ict is allowed, are very similar. Speci�cally, both

produce a robust n-1 switch cost with large e�ect size (Cohen’s d of 0.59 – 0.63),

and a smaller n-2 repetition facilitation, with negligible e�ect size (d of -0.04 to

-0.06, with a con�dence interval that approaches zero). Similarly, the results for
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Treatment Switch cost N-2 repetition cost
Con�ict o� 28.4 -2.1

Negative con�ict allowed 28.2 -3.0
Negative con�ict clipped 21.1 7.7
Negative con�ict rescaled 22.68 7.8

Table 5.3: Simulation 6c: Approaches to treatment of negative con�ict

the two treatments of negative con�ict, where it is clipped and rescaled, are also

very similar. Both produce an n-1 switch cost, albeit with a reduced e�ect size (d of

0.40 – 0.42). Additionally, both produce a robust n-2 repetition cost, with a smaller

e�ect size (d of 0.14, with a con�dence interval that does not include 0).

5.5.4 Discussion

These results suggest that occurrence of switch costs is robust to di�erent treat-

ments of con�ict, albeit with varying magnitude. Consistent with simulation 6a

(section 5.4.1), the n-1 switch cost is suppressed in the backward inhibition version

of the model, compared to either no inhibition or the negative-con�ict-allowed ver-

sion. However, the n-2 repetition cost only occurs in the negative-con�ict-clipped

and negative-con�ict-rescaled conditions. While it appears that the theoretically

incoherent concept of negative con�ict must be excluded from the model, it also

seems that there is no di�erence between the two possible treatments of negative

con�ict.

5.6 Summary

This chapter has presented a computational model of a backward inhibition mech-

anism by extending an existing model task switching (Gilbert & Shallice, 2002).

Based on the empirical suggestion that backward inhibition is triggered by con-

�icting task representations, the model implements backward inhibition in terms

of con�ict units which are sensitive to the co-activation of task-demand units,
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Figure 5.8: Simulation 6c: Switch costs and n-2 repetition costs for various treat-
ments of negative con�ict (symmetric tasks). Comparison of no input from con�ict
monitoring to task demand units (no con�ict, i.e., same as simulations 3 and 4), the
default where con�ict activation ranges from -1 to 1, thus negative con�ict excites
task demand units (allow), a version where negative con�ict is clipped at 0, thus
(CM) input to task demand units only occurs when con�ict unit activation is above
zero, and a version where the activation of con�ict units is linearly rescaled be-
tween 0 and 1, thus input to task demand units is always inhibitory (with negative
weights). Error bars represent 95% con�dence intervals.

based on the con�ict-monitoring model of Botvinick et al. (2001). This model also

highlights the computational similarities between explanations of cognitive phe-

nomena in two relatively distinct empirical literatures. In the model of Gilbert and

Shallice (2002), switch cost phenomena are caused by simultaneous activation of

the currently relevant task representation and the residually active previous task

representation. In the model of Botvinick et al. (2001), con�ict is de�ned as simul-

taneous non-zero activation of competing representations. In the present model,

the con�ict units of Botvinick have interactive inhibitory connections with task
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representations, allowing the model to dynamically inhibit tasks where con�ict

occurs.

The simulations presented in this chapter have demonstrated that unlike the

lateral-inhibition-only model, the backward inhibition model produces n-2 repe-

tition costs, but also a slightly reduced n-1 switch cost (section 5.3). The model

also demonstrates that in a three-task paradigm with asymmetric task di�culties,

the model predicts asymmetric n-2 repetition costs: speci�cally, larger costs for

switches to the more di�cult task (i.e., HEH alternations) and reduced costs for

switches to the easier task (i.e., EHE, section 5.4.2). This prediction is in contrast

to the limited �ndings from the existing empirical literature (Arbuthnott, 2008a),

and would be falsi�ed if this empirical �nding were replicated. Finally, the imple-

mentational issue of negative con�ict was addressed, with results suggesting that

as long as negatively active con�ict units are not permitted to inhibit (i.e., excite)

task-demand units, the precise implementation does not a�ect model behaviour.

Thus far, all simulations have been based on hand-set parameters. The model

inherits most of its parameters from the previous task switching model of Gilbert

and Shallice (2002), where model behaviour was shown to be robust to a wide range

of parameter variation. Where possible, the present simulations have used the

same parameter settings as the previous model. However, additional parameters

are required by the backward inhibition mechanism, and parameters relating to

task strengths are required for the simulations of asymmetric tasks. If the model is

to demonstrate that the described behaviour is intrinsic to its architecture, and not

a speci�c set of parameters (and that an alternative, opposite pattern of behaviour

is not equally consistent with the model), a more systematic approach to parameter

setting is required. This approach is the subject of the next chapter.
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Chapter 6

Parameter Exploration

This chapter takes the backward inhibition model, which has pre-

viously been shown to produce both n-1 switch and n-2 repetition

costs as the results of a con�ict-driven backward inhibition system,

and generalises its performance across a wide range of parameter set-

tings. Speci�cally, three parameters concerning the con�ict system,

Bias (β), Gain (γ) and Weight (ω) were varied across a 3-dimensional

grid, with qualitative performance patterns (i.e., cost vs. facilitation

for n-1 and n-2 switches) mapped across this space. The simulation

demonstrates that the empirically observed pattern, the intersection

of both n-1 switch and n-2 repetition costs, is widely produced by the

model, accepting the parameter constraints that the activation of con-

�ict units must be sensitive to simultaneous activation of competing

task-demand units in the model. In the model, error rate costs closely

parallel RT costs. However, slower responses are more error-prone than

faster responses — an observation which diverges from the empirical

data and raises queries about the completeness of the model as an ana-

log of human cognition involved in the task. Additionally, the theoret-

ically meaningless concept of ‘negative con�ict’ is shown to interfere
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with model performance, thus versions of the model which prevent

any e�ect of it are considered.

6.1 Introduction

The previous chapter presented a model of backward inhibition which predicted

empirically observed behaviour in two- and three-task switching paradigms. Specif-

ically, the model reproduced the qualitative pattern of n-2 repetition costs and n-1

switch costs. These e�ects were demonstrated both in highly simpli�ed three-task

blocks, and in longer blocks containing multiple switch conditions which are more

representative of experiments encountered by human participants (section 5.3).

A major limitation of the simulations presented in the previous chapter is that

all were performed by a model using a single set of parameters. Further, the param-

eters were hand-set, rather than using a more objective or systematic approach.

While the architecture of the model was strongly theoretically motivated (draw-

ing from evidence of the role of con�ict, and existing con�ict-monitoring and task

switching models), psychological theory has little to say on the speci�c parameter

settings that form the implementational detail of the model.

Computational modelling in cognitive psychology o�ers a number of possible

approaches to evaluating model performance across a multi-dimensional parame-

ter space. One approach, for example, would be to adopt an algorithmic approach

to �nding the parameters which produce the best-�t for the model to the empir-

ically observed data. Using this approach, statistics for the �t of the model could

be produced, and the ability of di�erent models to �t the data could be compared.

One objection to this approach, in the current context, is the problem of select-

ing a de�nitive reference data set. The n-2 repetition cost literature comprises a

number of individual studies, which have used di�erent experimental procedures

(e.g., 4-choice visual search: Mayr & Keele, 2000; or item classi�cation: Schuch &
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Koch, 2003) and di�erent manipulations of the task. Across this range of studies,

the magnitude of the n-2 repetition cost varies. Therefore, any reference to empir-

ical behaviour would represent a generalisation across a range of studies, rather

than a single quantitative pattern. This makes a quantitative �tting approach prob-

lematic. A further objection is that �tting a model to an empirical data pattern does

not necessarily imply a good model, if the model could also �t any arbitrary pat-

tern of behaviour with alternative parameter settings (Roberts & Pashler, 2000).

Where a model has free parameters, e�ort should be made to determine how the

theoretical content of the model constrains model predictions, and whether there

would be any empirical data that would falsify the model (i.e., would be inconsis-

tent with the model’s predictions under any parameter settings). The simulations

in this chapter therefore pursues a strategy similar to that advocated by Pitt, Kim,

Navarro, and Myung (2006), whereby a large portion of the (three-dimensional)

parameter space de�ned by gain, bias, and weight was systematically scanned and

partitioned into regions that yielded qualitatively di�erent behaviours.1 The objec-

tive was to understand where in parameter space the behaviour of a model would

be qualitatively similar to human participants (i.e., RT costs for n-2 repetitions and

n-1 switches) and where it would produce alternative patterns (e.g., n-1 repetition

costs and n-2 switch costs, or costs for both n-1 and n-2 switches, or costs for both

n-1 and n-2 repetitions).

6.2 Simulation 6d: An exploration of parameter

space

The remainder of this chapter presents the analysis of parameter space for the

three key parameters that a�ect the con�ict-based backward inhibition system.
1Note that for simplicity, the con�ict squashing parameter was not varied in these simulations.

However, additional simulations revealed that the e�ect of varying this parameter was to change
the magnitude of the resulting e�ect sizes but not the qualitative pattern of results.
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Additionally, the previous chapter demonstrated that the implementational con-

cept of negative con�ict a�ected model performance. Eliminating this concept

from the model appears important for both theoretical reasons and in terms of

model behaviour. However the speci�c means of resolving negative con�ict is it-

self a parameter, and it is important to demonstrate that the speci�c resolution of

negative con�ict does not change the overall high-level predictions of the model.

The overall performance of the model in terms of RT is considered in section 6.2.2.

One advantage of this class of model is that each trial is simulated, producing both

a distribution of reaction times, but also occasional errors. Although previous sim-

ulations have thus far suggested similar patterns for error rates and reaction times,

it remains important to compare both error rates and RTs across parameter space.

Error rates are more fully considered in 6.2.3.

Finally, the role of noise within the activation calculations of the model is ex-

plored. Noise plays an essential role in the model, not merely in adding variability

to the model’s behaviour (e.g., producing occasional errors and reaction time dis-

tributions rather than simulations proceeding deterministically) but overcoming

residual activation in order to produce responses or resolve competition in the

model requires a noise component in the activation calculation. It is therefore rea-

sonable to query whether the level of noise a�ects the behaviour of the model.

For example, do higher levels of noise produce larger numbers of errors or slower

responses? Do di�erent levels of noise a�ect higher-level behavioural e�ects such

as switch costs or n-2 repetition costs? For this reason, two di�erent settings of

the noise parameter were tested. This section details simulations conducted using

a noise parameter of 0.004, while results using the higher noise parameter of 0.006,

as used in the model of Gilbert and Shallice (2002), are presented in appendix B.
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6.2.1 Method

The current simulation varied three parameters of the con�ict system: gain (γ,

0 to 100); bias (βc, -40 to 0); and weight (ω, -30 to 0). As described above, gain

and bias a�ect the rate at which con�ict unit activation builds up, and decays,

respectively. Weight a�ects the amount of biasing that con�ict units exert on Task

Demand (TD) units. A weight of zero is therefore functionally equivalent to a

model with no con�ict mechanism (and thus, only lateral inhibition between TD

units). The e�ect that the task inhibition/con�ict mechanism has on behaviour is

assessed by comparing stronger levels of weight with this baseline. For simplicity,

simulations were run on blocks of three trials, with the dependent measure being

RT in model cycles for the �nal trial in each triplet. The model was re-initialised

after each block. Thus, each block was de�ned by the sequence of task switches as

0SW, 1SW, 2SW or ALT. Mean RT switch costs and n-2 repetition costs, in model

cycles, were calculated from 3000 three-trial blocks of each switch condition, for

each point within parameter space.

6.2.2 Results: RT costs

Results for response time (RT) n-1 switch costs and n-2 repetition costs across

parameter space are plotted below for three variants of the model. First, where

negative con�ict is allowed (�g. 6.1), second, where negative con�ict is clipped

(�g. 6.2), and third, where negative con�ict is rescaled (�g. 6.3). For each set of

plots, the absolute magnitude of n-1 switch costs and n-2 repetition costs is repre-

sented by the left hand plots (upper and lower, respectively). The right-hand shows

the statistical signi�cance (p) for a Welch two-samples t-test for each respective

voxel (i.e., switch costs as the di�erence between 0SW and 1SW conditions, n-2

repetition costs as the di�erence between 2SW and ALT conditions). Dark grey

voxels represent no data, indicating that with this combination of parameter set-

tings, the model is unable to correctly complete any trials in at least one condition.
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In order to e�ectively visualise the results using a two-colour palette, the absolute

magnitude of the switch cost and n-2 repetition cost was transformed using the

logistic function: f(x)→ 2
1+e(−0.1x) − 1.

Switch costs

As demonstrated in previous chapters, switch costs are an intrinsic feature of the

model where backward inhibition plays no role. This is also apparent in these sim-

ulations: for all three treatments of negative con�ict (allowed, �g. 6.1a; clipped,

�g. 6.2a; rescaled, �g. 6.3a) where the ω (weight) parameter is zero, positive switch

costs are observed, visualised as blue-coloured voxels. For the model allowing neg-

ative con�ict, switch costs occur for weaker ω (weight) values (i.e., between 0 and

-6). For weight values stronger than -6, the model increasingly becomes unable

to complete trials in a region with strong β (bias) and weak γ (gain) values, indi-

cated by dark grey voxels. This is because the gain value is insu�cient to balance

a strong negative bias, leading to a negative saturation of con�ict unit activation.

This negative con�ict activation, which actually excites task demand units (via

negatively weighted connections) leads to unstable model behaviour. Aside from

increasingly large regions, at stronger ω values, where the model cannot complete

trials, parameter space also contains a large region with n-1 switch facilitation,

indicated by red voxels, as well as a region where switch costs are close to zero.

Clearly, in this treatment of negative con�ict, the occurrence of switch costs is

highly dependent on speci�c parameter settings.

For clipped and rescaled treatments, switch costs continue to be robustly pre-

dicted for stronger ω values, with two exceptions. For clipped negative con�ict, a

small region in the upper right of the plot re�ects weak β (bias) and high γ (gain)

parameter settings. For models with these parameter settings, con�ict units tend

to accumulate activation leading to a saturation, as a high gain is not in�uenced by

a strong negative bias. For rescaled con�ict, switch costs universally occur, except
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(a) (b)

(c) (d)

Figure 6.1: Model behaviour (n-1 switch and n-2 repetition costs for RTs) when
negative con�ict is allowed (noise parameter = .004). Dependent variables (switch
costs, 6.1a; n-2 repetition costs, 6.1c) are transformed with a logistic function:
f(x)→ 2

1+e(−0.1x) − 1.
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(a) (b)

(c) (d)

Figure 6.2: Model behaviour (n-1 switch and n-2 repetition costs for RTs) when
negative con�ict is clipped (noise parameter = .004). Dependent variables (switch
costs, 6.2a; n-2 repetition costs, 6.2c) are transformed with a logistic function:
f(x)→ 2

1+e(−0.1x) − 1.
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(a) (b)

(c) (d)

Figure 6.3: Model behaviour (n-1 switch and n-2 repetition costs for RTs) when
negative con�ict is rescaled (noise parameter = .004). Dependent variables (switch
costs, 6.3a; n-2 repetition costs, 6.3c) are transformed with a logistic function:
f(x)→ 2

1+e(−0.1x) − 1.

for stronger ω and weak β values, where the model cannot successfully complete

any trials (dark grey voxels). Thus, for both clipped and rescaled treatments, pos-

itive switch costs dominate the parameter space explored by these simulations,

except for certain regions where β values are insu�cient to balance con�ict unit
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inputs.

N-2 repetition costs

N-2 repetition costs are less robust than switch costs (�g. 6.1c; clipped, �g. 6.2c;

rescaled, �g. 6.3c). This is understandable, given that the di�erence in sequence

types occurs on the n-2 trial, and is thus more remote from the trial on which RT

is measured, than on an n-1 switch trial.

As previously observed, n-2 repetition costs do not occur when the ω (weight)

parameter is zero. As this parameter is increased, all three treatments of negative

con�ict produce n-2 repetition costs to an extent. When negative con�ict is al-

lowed, n-2 repetition costs occur in an initially di�use, but increasingly coherent

region as the weight parameter is increased. This is con�ned to the top-right re-

gion above a diagonal in which performance is unstable (both n-2 repetition costs

and repetition facilitation occur in contiguous voxels, producing a “noisy” region

of parameter space). Below this diagonal, the model does not complete any trials.

As for n-1 switch costs, this is due to the e�ect of negative con�ict on the model:

con�ict units with a strong β (bias) parameter, and lacking su�cient positive input,

become negative saturated, which leads to uniform excitation of the task-demand

units. For the clipped treatment of negative con�ict, n-2 repetition costs occur

in a coherent region only for higher ω values. Again, this region occurs above a

diagonal region in the top-right of each subplot, indicating γ (gain) and β (bias)

are balanced. As negative activation does not propagate to task-demand units, the

region below this diagonal is essentially identical for all values of ω (weight). For

the treatment where negative con�ict is rescaled, n-2 repetition costs do occasion-

ally occur, but only in sporadic voxels which do not form a coherent, contiguous

region.

In summary, although n-2 repetition costs are weaker and occupy a more re-

stricted region of parameter space than switch costs, systematic e�ects neverthe-
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less occur where negative con�ict is either allowed or clipped. For stronger weight

values, inhibition of TD units by the con�ict units produces the empirically ob-

served e�ect for a contiguous region of parameter space. Note also that, replicat-

ing the results of simulation 1, the model does not produce n-2 repetition costs for

near-zero weight values, demonstrating that lateral inhibition of task representa-

tions alone is insu�cient to produce n-2 repetition costs.

Intersection of switch costs and n-2 repetition costs in parameter space

From the parameter space maps presented in the preceding sections, both n-1

switch and n-2 repetition costs occur in at least some of the model variants. How-

ever, in human participants, the empirical literature suggests that normal behaviour

produces both n-1 switch and n-2 repetition costs. The extent to which these two

regions overlap is considered in this section. The overlap of n-1 switch and n-2

repetition costs is assessed quantitatively by taking the squared geometric mean

of the switch cost and n-2 repetition cost (i.e., the product of the two costs), where

these costs are above zero. The resulting measure was then transformed with the

same logistic function as in previous plots to a range of between 0 and 1. This is

plotted in �gure 6.4 for all treatments of negative con�ict. It is clear that for all

treatments, there exists some region of parameter space conforming to the empir-

ical pattern of data.

However, the parameter space for the model where negative con�ict is allowed

suggests that where negative con�ict saturation occurs, the model simply ceases

to produce correct responses. As negative con�ict is a property of the speci�c

implementation in the current model, rather than any theoretically grounded con-

cept, future simulations disregard the variant of the model in which it is allowed

to occur. Additionally, for the rescaled treatment of negative con�ict, although n-2

repetition costs do occur, the previous section suggests that few contiguous voxels

represent regions where the cost reaches anα = .05 level of statistical signi�cance.
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The empirical pattern of data — i.e., an overlap of n-2 repetition costs and n-1

switch costs — can to an extent be considered independent from the exact treat-

ment of con�ict. However, this simulation has demonstrated that the version of

the model which clips negative con�ict best predicts the empirical pattern in a co-

herent, contiguous region of parameter space. In this treatment of con�ict, there

also exists a region (below the diagonal) where the model produces positive switch

costs but negative n-2 repetition costs — that is, n-2 repetition facilitation. In terms

of the criticisms of Roberts and Pashler (2000), the model as it stands can be criti-

cised on the grounds that it does not uniquely predict the empirical pattern of data

— with appropriate parameter settings, it could just as easily produce switch costs

with n-2 repetition facilitation, although there are some constraints on parameter

settings: the empirical region roughly corresponds to a plane following a nega-

tive relationship between con�ict bias and con�ict gain. Informally, gain and bias

are required to be balanced in order for con�ict monitoring units to be e�ective.

As these two parameters (with this activation function) together control the sen-

sitivity of these units to input and the rate at which their activation decays, it is

important that they be appropriately balanced, in order to avoid the units settling

into a totally-o� (too much negative bias and too little gain) or totally-on (too much

gain and too little negative bias) state. The extension of this region across multiple

values of weights for con�ict to task demand units (except the weakest weights,

i.e., weights between zero and -3) suggests that the empirical e�ect is independent

of any speci�c weight value.

In summary, the two empirically observed phenomena, costs for n-1 switches

and n-2 repetitions (�g. 6.4) co-occur in a well-de�ned region for non-zero weight

values. Informally, this behavioural pattern is obtained with the constraints that

the activation of con�ict units must increase given con�ict and decrease given lack

of con�ict. Outside these regions, other behaviour (e.g., switch costs but n-2 repe-

tition facilitation) may be understood either in terms of implementational failure
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of the model (the parameter settings do not implement the theory of backward in-

hibition) or in terms consistent with theory (TD unit processing must be biased by

inhibitory connections from con�ict units). The empirical pattern is produced by

any set of parameters in which the model functions according to these theoretical

constraints.

Despite this success in matching the empirical pattern of human behaviour, it

remains to be demonstrated why this general architecture should be bene�cial in

task switching. Why should human processing of multiple tasks have a con�ict

monitoring system which e�ectively produces slower responses under certain cir-

cumstances, unless it provides bene�ts as well? One possibility is that the human

cognitive system adaptively seeks this region in order to minimise the resources, or

e�ort, required to perform the task. Another possibility is that con�ict monitoring

functions as an error-control system — i.e., it biases the task switching system into

a more stable region, more likely to produce correct responses. If either is the case,

we might expect this region to also correspond with lower RTs or error rates over-

all. The next sections address these possibilities by searching the same regions of

parameter space, looking at error rates and basic RTs (i.e., RTs on individual trials

rather than RT di�erences on n-1 switch or n-2 repetition trials).

6.2.3 Results: Error rates

The following section addresses error rate performance using the same grid search

of parameter space. Given the results of the previous section — that clipping ap-

peared to be the best way of resolving negative con�ict in the model — for sim-

plicity, only this treatment of negative con�ict is considered in this section. Given

the simulation consisted of blocks of 3 trials, error rates, were assessed in two

di�erent ways. In calculating error n-1 switch or n-2 repetition cost, only errors

which occur on the third trial, where trials 1 and 2 were correct, were considered.

This is referred to asErrors(3). Overall error rates (i.e., for assessing global model
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switch costs and n-2 repetition costs

(a) (b)

(c)

Figure 6.4: Graphs showing intersection of regions of parameter space producing
switch costs and n-2 repetition costs, for all 3 treatments of negative con�ict, based
on the above (low noise) simulations. The plotted variable is the product of the
positive part of the switch costs and n-2 repetition costs (i.e., negative costs are
substituted with zero). This value is then transformed with the logistic function:
f(x)→ 2

1+e(−0.1x) − 1.
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performance), on the other hand, should take into account errors irrespective of

where they occurred. However, as error trials may a�ect subsequent trials through

abnormal residual activation, only the �rst error in each triplet should be assessed.

Errors(1,2) therefore refers to the number of blocks where an error occurred on

either the �rst or second trial. Thus, Errors(1,2) and Errors(3) are cumulative.

Figure 6.5 shows overall error rates in trials 1 and 2 for all conditions. This

�gure gives an overall impression of error performance across parameter space

that is not related to a speci�c condition. Note, however, that this is not a pure

measure — the 0SW (ABB) condition is generally more error prone than the 1SW

(AAB) condition. This is because the switch in the 0SW condition occurs on the

second trial, whereas the switch occurs on the third trial in the 1SW condition, and

is thus not included in this measure. In this con�ict condition, errors are restricted

to the region at the ‘top’ of the parameter space (i.e., weak bias), for ω (weight)

values stronger than -5. Very low error rates (i.e., 1% or below, visualised in black)

occur in the region of parameter space below a weak bias/low gain to intermediate

bias/high gain diagonal. Error rates increase around this diagonal, and become

very high (i.e., exceeding 10%) at the top of the plot (corresponding with a weak

bias).

When compared to the corresponding plot (�gure 6.4b), ‘intermediate’ error

rates of around 5% occur in a similar region to the intersection of n-2 repetition

and n-1 switch costs. This is understandable in terms of the build up of con�ict in

the model: The gain and bias parameters balance activation in the con�ict units,

such that it builds up quickly in response to con�ict, and decays in the absence of

con�ict. Thus, if activation is allowed to accumulate in the con�ict units, perfor-

mance, in terms of global errors, deteriorates. Similarly, activation in the con�ict

units only a�ects performance if the weight of the connection from these units to

task demand units is su�ciently strong to bias performance, thus for weak con�ict-

task demand weights, there are no systematic di�erences in error rates across bias-
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gain space. Thus, for this treatment of con�ict, the di�erences between di�erent

patterns of global error behaviour can be understood in terms of implementational

details of the con�ict monitoring units. In the space informally described by a ‘bal-

ance of bias and gain’, the model tends to produce uniform error rates. However,

it remains to be seen why the empirically observed pattern of behaviour should

correspond with an intermediate level of error performance. If the model were op-

timised to absolutely minimise the number of errors, better performance would be

obtained with stronger β or zero ω parameters — i.e., parameters which ensure the

con�ict units do not bias model performance. As such, global error performance

of the model deteriorates with stronger backward inhibition.

Figure 6.6 shows error rates on trial 3, for triplets where there were no errors

on trials 1 or 2, for 2SW and ALT sequences. Graphical inspection suggests that

overall performance is broadly similar to errors occurring on trials 1 and 2 (�g. 6.5).

Systematic di�erences due to the task sequence (i.e., costs) were assessed by the

di�erence in error rates between corresponding voxels of parameter space. Error

rate switch costs and n-2 repetition costs are plotted in �gure 6.7, together with

the intersection of these costs, calculated in the same way as for reaction times,

above. This �gure suggests that for both n-1 switch and n-2 repetition costs, error

rates parallel the reaction time data. Positive error rate n-1 switch costs are ob-

served over the majority of parameter space, with n-1 switch facilitation occurring

only for very weak β and high γ at strong ω values, similar to reaction time n-1

switch facilitation. Similarly, error rate n-2 repetition facilitation is more preva-

lent below a diagonal region balancing β and γ parameters, with costs occurring

above this region, paralleling reaction time costs. Although error rate data is, by its

nature, more stochastic than reaction time data, and therefore these visualisations

are somewhat ‘noisier’ than for reaction times, the intersection of error rate switch

costs and n-2 repetition costs (�gure 6.7c) is recognisably similar to that for reac-

tion times (�gure 6.4c), with the overlaps between the two empirical phenomena
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occurring in the same region of parameter space.

6.2.4 Results: Basic RT

The previous section, concerning error rate data, suggests that the region of pa-

rameter space corresponding with both n-1 switch and n-2 repetition costs for

both error rates and RTs is also associated with an intermediate error rate (i.e., be-

tween 1% and 10%) rather than a very low or high rate. However, as yet, the model

does not suggest why this is the case. One possibility is that of a speed-accuracy

trade-o�. If faster responses were more error prone, with slower responses more

accurate, then selection of a region in parameter space where speed of responding

were balanced against accuracy would provide a reasonable explanation.

While the preceding sections have dealt with di�erences in RTs — costs — be-

tween conditions, this section considers basic RT (in processing cycles) across pa-

rameter space. Figure 6.8 plots RTs for 0SW and 1SW conditions. RTs are visualised

across a colour spectrum, with faster RTs plotted in blue, and slower RTs in red.

As we are not, here, concerned with RT di�erences between conditions, and basic

RTs are very similar for all four conditions, we shall take these two conditions as

representative.

Examination of the global RT data shows slowing in the upper right region of

the plot: the region associated with n-2 repetition costs. Thus, fastest responses

are obtained where either the ω (weight) parameter is very low, or the β bias pa-

rameter is low enough to ensure that backward inhibition does not occur. Slower

responses, in the model, also correspond with more error prone regions. Given

these results, there is no evidence for a speed-accuracy trade-o� across the region

of parameter space de�ned by β, γ and ω. Overall, best performance (in terms

of error rates and low RTs) occurs in sections with lower con�ict/task-demand

weights. The presence of con�ict units in these trials therefore leads to poorer

performance across all metrics, raising the question of what the functional bene�t
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of con�ict monitoring units might be.

(a) (b)

Figure 6.5: Gridsearch, showing model behaviour, assessed via error rates (occur-
ring on trials 1 or 2), for clipped con�ict, low noise (noise parameter = .004), in the
0SW (6.5a) and 1SW (6.5b) conditions.

(a) (b)

Figure 6.6: Gridsearch, showing model behaviour, assessed via error rates on trial
3, for clipped con�ict, low noise (noise parameter = .004), in the ALT and 2SW
conditions (6.6a) and 1SW (6.6b) conditions.
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(a) (b)

(c)

Figure 6.7: Model behaviour, assessed via error rates on trial 3, for clipped con�ict,
low noise (noise parameter = .004). Plots show di�erences between the 1SW and
0SW conditions (i.e., the error switch cost, panel 6.7a) and between the ALT and
2SW conditions (i.e., the error n-2 repetition cost, panel 6.7b). The di�erences are
plotted such that the empirical pattern of behaviour (i.e., 1SW> 0SW, ALT> 2SW)
is positive, while the alternative (i.e., 1SW< 0SW, etc.) is in green. The di�erences
in error rates are transformed with a logistic function, f(x)→ 2

1+e(−100x)−1, before
plotting, and the actual magnitude of the di�erences in error rates is very small.
The overlap between error rates is assessed as the product of the positive (i.e., red)
part of parameter space for SCs and n-2RCs, and is presented in panel 6.7c.
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(a) (b)

Figure 6.8: Gridsearch, showing RT perforamnce for 0SW (6.8a) and 1SW condi-
tions (6.8b). RTs have been plotted on a log scale.

6.3 Simulation 6e: The magnitude of noise

One further query concerns whether the reduced noise (.004 in the simulations

reported above rather than the default of .006 used by Gilbert & Shallice, 2002) had

any e�ect on qualitative model behaviour across parameter space — i.e., whether

it signi�cantly changed behaviour from a delineated region of space from error

switch costs to switch facilitation, or whether the shape of the plotted surface

was substantially di�erent to the low noise condition. In order to explore this

possibility, the simulations were re-run with noise at the previously used (default)

value of .006, and almost identical graphs were produced. Assessed graphically, the

main e�ect of the higher noise parameter was to increase response times, however

error plots were strikingly similar. These graphs are contained in appendix B.
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6.4 Discussion

In summary, six key �ndings from the preceding parameter space studies have clar-

i�ed our understanding of the model. Firstly, the presence of negative con�ict in

the model interferes with ‘proper’ operation, both in theoretical terms, and in prac-

tical terms of stopping the model from correctly completing trials at all, for certain

parameter settings. Secondly, the model nevertheless produces both n-2 repetition

costs and n-1 switch costs for all three treatments of con�ict. However, clipping

negative con�ict, rather than rescaling it, produces more coherent behaviour, in

terms of grouping similar patterns of performance into contiguous regions of pa-

rameter space. Therefore, this version of the model was preferred. Thirdly, for

this version of the model, regions of parameter space which did not correspond to

the empirical pattern, can be understood in terms of the model’s implementation.

Speci�cally, if the activation of con�ict units was allowed to saturate, due to very

negative bias or very positive gain parameter settings, con�ict units became in-

sensitive to the speci�cs of ongoing trial processing. In these cases, either model

performance broke down entirely, or the backward inhibition mechanism was in-

e�ective. However, accepting the constraints that the con�ict unit activation must

increase following co-activation of task-demand units, and decrease without co-

activation, the model produces the empirically observed pattern of behaviour. We

may therefore conclude that the empirical pattern is due to the model’s architec-

ture and theoretical constraints, rather than speci�c parameters. Fourthly, error

rate n-1 switch and n-2 repetition costs paralleled reaction time costs across pa-

rameter space. Fifthly, the ‘empirical’ region of parameter space was not associated

with the most e�cient model performance, in terms of the fastest or most accu-

rate responses. Instead, the fastest, most accurate responses were obtained when

the backward inhibition mechanism did not a�ect task processing, such as where

the weight parameter was zero. This leaves open the question of what functional

advantage is provided by backward inhibition, if it does not appear to improve
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performance. Sixthly, model performance does not appear to parallel human be-

haviour in terms of error commission. Speci�cally, for humans, faster responses

tend to be more error prone, while slower responses are more accurate, giving rise

to the concept of the speed/acccuracy trade-o�.

One striking feature of these results is that RT and error performance corre-

late across parameter space. That is, there is no evidence that variation of these

particular parameters produces a speed/accuracy tradeo�. This is not to suggest

the model is incompatible with the idea of a speed/accuracy tradeo�, merely that

manipulation of these three parameters does not produce such a tradeo� in itself.

If the model is regarded as representative of human backward inhibition, these

results also leave open the question of what functional advantage is provided by

backward inhibition. The region of parameter space corresponding with the em-

pirical behaviour pattern is both slower, and more error prone, than regions where

backward inhibition does not occur.

Overall, however, the model’s production of errors diverges from human be-

haviour: in the model, slower responses are also more error prone. In the empirical

literature, slower responses are more accurate (Gratton, Coles, Sirevaag, Eriksen,

& Donchin, 1988), with slowing occurring on trials that follow errors (Botvinick et

al., 2001). One possibility is that the response production mechanism in the present

model is too simpli�ed to account for phenomena such as a speed/accuracy trade-

o�. In the model, responses are assumed to be produced only when one response

node becomes clearly more active than the others. Without a further response

execution stage, in which representations of the response are turned into motor

representations that produce the physical action of responding, it is di�cult to

account for other backward inhibition phenomena, such as the in�uence of a go-

no-go signal (Philipp, Jolicoeur, et al., 2007; Schuch & Koch, 2003). An alternative

possibility is that the way in which con�ict units bias task demand units has been

oversimpli�ed — in this model, con�ict units inhibit both con�icting task demand
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units equally, relying on top-down control to provide an increased signal to the

selected task. In the model of Brown et al. (2007), intra-trial con�ict serves as a

signal for slowing the rate of response production. It is possible that con�ict, as

operationalised in the present model, is also the signal for adjusting some other

parameters governing response production, such as the threshold for producing a

response, or the monitoring of responses before they are produced. Without the-

oretical grounds for adding a more elaborate response mechanism to the model,

addressing these phenomena remains problematic within the present model.

One scenario in which con�ict might be expected to facilitate performance is

in over-riding of a prepotent task to perform another, weaker task, such as colour

naming of Stroop stimuli. Indeed, Stroop stimuli are routinely cited in the con�ict

monitoring literature as a source of response con�ict (e.g., Botvinick et al., 2001).

The triggering of con�ict and the subsequent suppression of the irrelevant (pre-

potent) task should facilitate performance, especially on trials with a high level of

con�ict (e.g., switch trials). This scenario is addressed in the next chapter.
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Chapter 7

Asymmetric Switching in the

Three-Task Paradigm: Model

Predictions

The parameter-space scanning approach to model performance used

in the previous chapter is employed to generate predictions for switch-

ing in three-task sequences of asymmetric di�culty. This chapter de-

scribes two parallel simulations, in which the two parameters a�ect-

ing task di�culty are varied together with the parameter a�ecting the

strength of backward inhibition. The two simulations concern an ad-

ditional modelling assumptions necessitated by the implementation of

asymmetric tasks; speci�cally, whether the strength of backward in-

hibition is identical for all tasks, or whether it varies depending on

the strength of the task. In the �rst simulation, the model is identical

with that used in the previous chapter, while in the second simula-

tion, backward inhibitory weights are scaled in proportion to the top-

down control strength of each task. The simulations demonstrated a

clear prediction that backward inhibition produces stronger n-2 repeti-
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tion costs for hard-easy-hard (HEH) alternations than easy-hard-easy

(EHE) alternations. This, and the general e�ects of backward inhibi-

tion, can be understood in terms of the con�ict generated on the n-1

trial.

7.1 Introduction

The previous chapters have demonstrated that that a con�ict mechanism is suf-

�cient for explaining n-2 repetition costs in human participants, assuming tasks

of identical di�culty. However, while they demonstrated that con�ict monitoring

units produced RT and error n-2 repetition costs in addition to switch costs, and

will be shown to predict other empirically observed e�ects, such as the dependency

on speci�c intertrial intervals (section 9.2), they did not demonstrate a functional

bene�t that such an architecture brings to task performance. That is, performance

typically deteriorated as the weights from con�ict to task demand units became

stronger, with the best (fastest, least error-prone) performance in the condition

where the weights were zero. From this simulation, then, while the con�ict units

provide a good �t to the empirical data, it is unclear what bene�t the con�ict units

provide to performance. Additionally, although the n-2 repetition literature has

predominantly assumed tasks of equal di�culty, in reality human performance

may di�er between tasks, either as a group, or with individual di�erences.

Therefore, using the model (of which a close relative has already been success-

fully applied to the domain of two-task asymmetric switching: Gilbert & Shallice,

2002) to simulate performance in asymmetric switching (i.e., whether n-2 repeti-

tion costs vary systematically for the easy or the hard tasks) would be a relatively

novel paradigm for validating model predictions against empirically observed hu-

man behaviour.

The remainder of this chapter concerns backward inhibition when switching
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between three tasks of asymmetric di�culty. The model of Gilbert and Shallice

(2002) demonstrated that asymmetric n-1 switch costs occur because a greater

amount of task demand activation is required to execute a harder task than an

easier task, and therefore a greater amount of this activation is carried over to

the next trial. This in turn causes greater cross-task interference (i.e., con�ict).

Consequently switch costs are greater for hard-easy switches than for easy-hard

switches. In the case of three-task switching, one might similarly anticipate a high

level of task con�ict, especially when switching toward the easier task. As back-

ward inhibition is sensitive to task con�ict, one might also expect di�erential lev-

els of backward inhibition to occur. Speci�cally, when alternating easy-hard-easy,

one might anticipate a lower level of con�ict would be produced on the middle

(n-1) trial, than when alternating hard-easy-hard, and therefore greater backward

inhibition would be observed in the latter case.

This chapter extends the asymmetric task paradigm to three task switching,

manipulating the between-trial con�ict by using two tasks of identical, �xed, in-

termediate di�culty, while varying the di�culty of the third task.

7.2 Empirical studies of asymmetric switching

To date, only one study has systematically examined n-2 repetition costs for asym-

metric tasks. Arbuthnott (2008a) used a digit classi�cation variant, in which the

three tasks were judgments about magnitude (low/high), parity (odd/even) and

whether the digit was prime (prime/multiple), in increasing order of di�culty as

assessed through RT and error rates. In her procedure, the order of tasks was fully

randomised for each participant, and each trial was classi�ed by the sequence of

switches in relation to previous tasks — possibilities were 0SW (e.g., BAA), 1SW

(e.g., BBA), 2SW (e.g., CBA) or ALT (e.g., ABA). Thus, a single procedure was ca-

pable of obtaining values for n-1 switch costs (the RT di�erence between 1SW
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and 0SW trials) and n-2 repetition costs (the RT di�erence between ALT and 2SW

trials). Arbuthnott reasoned that if the asymmetric n-1 switch cost was due to

residual inhibition on the switch trial (that is, greater for hard-easy (HE) switches

than easy-hard (EH) switches, because executing the H task requires greater inhi-

bition of the E task than vice versa, and this carries over to subsequent trials), and

if this same mechanism was responsible for backward inhibition, then it would

lead to greater n-2 repetition costs for EHE than HEH alternations. Alternatively,

if the asymmetric switch cost was due to residual priming of the harder task (i.e.,

greater priming for HE than EH switches), then this would have no di�erential

e�ect on n-2 repetition costs for EHE compared to HEH alternations1.

In two experiments, involving either separate or overlapping response sets

respectively, Arbuthnott (2008) observed asymmetric n-2 repetition costs, with

greater costs for EHE triplets than HEH triplets. That is, the n-2 task received

greater backward inhibition when it was easy than when it was hard. This was

consistent with Arbuthnott’s hypothesis that backward inhibition was caused by

the same mechanism as the n-1 switch cost, namely residual inhibition of the pre-

ceding task. However, the e�ect on RTs was not robust, and only reached statistical

signi�cance for one pairing of tasks (magnitude-prime switches, not parity-prime

switches), and then for non-overlapping response sets only. Additionally, unex-

pected e�ects occurred, such as the reversal of direction of the n-1 switch cost

asymmetry for magnitude-prime tasks; that is, switching to the prime (harder)

task incurred a greater n-1 switch cost than switching to the magnitude (easier)

task, a �nding inconsistent with the literature on two-task switch costs. It is di�-

cult to see why, if asymmetric backward inhibition is the same mechanism as re-

sponsible for asymmetric n-1 switch costs, the direction of the latter e�ect should

be reversed when the former e�ect is in the hypothesised direction. Moreover,
1Note that this reasoning assumes that asymmetric n-1 switch costs are exclusively due to either

inhibition or activation (priming) of task sets. In models of task switching incorporating inhibitory
connections (Brown et al., 2007; Gilbert & Shallice, 2002), activation and inhibition are dynamically
interactive, and thus not easily separated.
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this pattern of �ndings is di�cult to fully explain using only ‘inhibition’ as an ex-

planatory mechanism, without recognising the potential dynamic interaction of

excitatory and inhibitory processes.

Additionally, the procedure of Arbuthnott (2008a) contained a number of method-

ological concerns, which are addressed more fully in the following chapter (sec-

tion 8.1.1). Applying the model to this paradigm would therefore seem poten-

tially informative given the seemingly non-robust nature of these results, poten-

tial methodological issues which may a�ect the results, and the lack of subsequent

published replications.

Any model predictions may be compared with the results of Arbuthnott (2008a),

either corroborating them (providing a modelled, theoretical explanation alterna-

tive to the reasoning in that paper) or producing an alternative prediction. These

predictions may then be tested in a conceptual replication of the asymmetric 3-

task paradigm that addresses certain methodological concerns to obtain a result

which would either validate or falsify the present model.

7.3 Simulations 7 and 8: Methods

As in the model of Gilbert and Shallice (2002), task di�culty in the present model

is speci�ed by two parameters — stimulus input strength (SIS), representing the

automatic, bottom-up activation of a response by a stimulus (greater for stronger

tasks), and top-down control strength (TDCS), specifying the control needed to en-

sure the task is performed (greater for weaker tasks). The following simulations

varied the SIS and TDCS parameters of task B together with the weight parameter

of the con�ict layer to create a three-dimensional space. The bias and gain param-

eters of the con�ict layer were �xed at -10.0 and 75.0 respectively, while the task

parameters (TDCS, SIS) of tasks A and C were held at their default values.

For asymmetric tasks, each task sequence (e.g., 0SW) has various permutations
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— (e.g., ABB, BAA and BCC). Here, we considered only switches from task B (vari-

able SIS and TDCS) to task A (�xed). Hence, 0SW sequences are all BAA, 1SW are

BBA, 2SW are CBA and ALT are ABA, with only the n-1 task being of variable

di�culty (except for the 0SW condition). By varying the parameters of task B, the

following simulations therefore test the e�ect on behaviour for both hard-easy-

hard (HEH) and easy-hard-easy (EHE) switches.

Similarly to the simulations reported in the previous chapter, parameter space

was mapped in 3 dimensions. Top-down control strength, stimulus input strength

and con�ict inhibitory weight were mapped on the X, Y and Z axes respectively. By

systematically varying task parameters for one task, the ‘task strength’ (a compos-

ite of stimulus input and top down control that gives an optimal level of control)

was manipulated such that tasks A and B/C could be varied between easy-hard

and hard-easy. An intermediate level of input strength was therefore selected for

tasks B and C.

By varying SIS and TDCS factorially, such that for either variable, task A can be

greater or less than B, four quadrants are e�ectively created. SIS(A > B), TDC(A >

B) (i.e., the upper-right quadrant of the plots) is the region in which the both

the input and control strength are greater for task A. E�ectively, the task is over-

controlled, such as might occur in a particularly high-pressure situation or one

in which mistakes are very costly. SIS(A > B), TDC(A < B), the upper-left

of the plot, represents the region in which task A is stronger, but less controlled,

than task B, as is typical for a stronger task (e.g., word reading compared to colour

naming). SIS(A < B), TDC(A > B) is the region in which A is weaker, but

more controlled, than task B, as is typical for a weaker task (colour naming com-

pared to word reading). Finally, SIS(A < B), TDC(A < B) represents the

under-controlled region, where a weak task is coupled with weak control, such

as might correspond to an absent-minded or under-controlled task performance.

One might expect performance to deteriorate markedly in this quadrant. Given
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that error costs have been shown to parallel RT costs previously, for simplicity

RTs are the only dependent variable considered in these simulations.

The implementation of asymmetric tasks requires an additional modelling as-

sumption. Speci�cally, whether the weight of the con�ict unit-task demand unit

connection is independent of, or related to, the level of top-down control used to

perform a task. Two parallel simulations were therefore conducted. In simulation

7, a simplifying assumption is that the inhibitory weight parameter is identical for

all three tasks. This may be a problematic implementation, however. If con�ict

units are to facilitate performance by biasing task demand activation in response

to between-task con�ict, then it should bene�t performance most in situations

where more than one task demand unit is highly active. In the task switching

model, this occurs on switch trials, due to residual activation of the previously rel-

evant task, and especially on easy switch trials, compared to hard switch trials, due

the the longer time it takes the weaker TDCS for the easy task (e.g., word reading)

to overcome the residual activation, compared to the stronger TDCS for the harder

task (e.g., colour naming) (see Gilbert & Shallice, 2002, �gure 5). This feature of

the model’s activation dynamics is responsible for the characteristic asymmetry

in switch costs, with the cost for switches to word reading being greater than that

for switches to colour naming. Therefore, if con�ict units suppress task demand

activation when both tasks are active, one might expect switch costs to be smaller

for stronger con�ict-task demand strengths.

In the present implementation of the model, used in simulation 7, con�ict units

send an equal inhibitory signal to both con�icting task demand units, given that

the inhibitory signal sent to the currently relevant TD unit will be counteracted

by a top-down control input for the currently active task. In cases where tasks

are of asymmetric di�culty, the stronger task (i.e., weaker TDCS) will in e�ect be

inhibited more by a given con�ict signal than the stronger task. Thus, switching to

the weaker task may not bene�t as much from a con�ict signal (especially a strong
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con�ict signal) as would be anticipated if the inhibitory e�ect of con�ict on task

demand units was more selective.

To address this possible confounding e�ect, in simulation 8 the parameter con-

trolling the weight of the connection from con�ict to task demand units, rather

than being used directly as the weight for all connections, is instead multiplied by

the TDCS parameter to generate unique weights for each TD unit. Thus, an overall

con�ict weight of 1.5 to TD unit A (with a TD control strength of 12) would have

a weight of 18, while the same weight to TD unit B (with TD control strength of 7)

would be 10.5. E�ectively, this implementation normalises the strength of the in-

hibitory con�ict signal against TD control strength. In other respects, simulation

8 was identical to simulation 7. The results of both simulations are discussed in

parallel, below.

7.4 Simulations 7 and 8: Results and discussion

7.4.1 Basic RT

Firstly, let us consider the e�ect of the con�ict system, in interaction with varied

task asymmetry, on the absolute RT. In all four switch conditions (simulation 7,

�gure 7.1; simulation 8, �gure 7.7), TDCS has an e�ect on trial 3 RTs, producing

slower responses in general, particularly for 0SW trials. While the slowing has a

less pronounced e�ect on 2SW trials, it has a selective e�ect on the upper quadrants

of 1SW and ALT conditions (i.e., easy-easy-hard or hard-easy-hard sequences) —

that is, on an easy-hard switch, a situation in which less con�ict is observed on the

middle trial (i.e., producing smaller n-1 switch costs) than hard-easy switches.

Thus far, results have been comparable for both simulations 7 (�gure 7.1) and

8 (�gure 7.7). In contrast, the e�ect of the TDCS parameter has a di�ering e�ect

in the two simulations. As TDCS a�ects the level of activation of task-demand

units, and thus the ability of the model to overcome residually active tasks, one
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might expect a stronger TDCS on the n-1 trial to produce a slowing on trial n, by

producing a higher level of activation (and thus, residual activation) in the task

demand unit for task B, which becomes the irrelevant task on trial n. In simula-

tion 7, TDCS has a limited e�ect on RTs. (Recall, that this is the primary cause of

the asymmetric switch cost in the model of Gilbert & Shallice, 2002, .) Right-hand

quadrants, representing sequences where task B has greater TDCS than task A

(i.e., hard-easy switches) are not slower than left-hand quadrants. Simulation 8, in

contrast, shows faster RTs in right-hand quadrants. That is, hard-easy sequences,

that produce more con�ict, are faster than easy-hard sequences. This is because

the TDCS parameter also a�ects the strength of backward inhibition in this sim-

ulation. On the �nal trial of a sequence ending in a BA switch, activation of the

AB con�ict unit provides greater inhibition to tasks with a higher TDCS parame-

ter. Thus, if task B has greater TDCS than task A (i.e., right-hand quadrants) the

residually active B task-demand unit will receive greater backward inhibition from

the con�ict unit than the currently active A task demand unit. Conversely, if task

B has lower TDCS than task A, the residually active con�ict unit will receive less

backward inhibition than the currently active task demand unit.

It should be emphasised that these �ndings relate to absolute RTs, and not to

the relative slowing caused by the backward inhibition system, or costs associated

with contrasting particular sequences. We consider these e�ects next.

7.4.2 N-1 switch and n-2 repetition costs

To illustrate the e�ect of the con�ict/task-inhibition mechanism on performance,

�gures 7.2 (simulation 7) and 7.8 (simulation 8) (also see �gure 7.5, panels 3 to

6), plot the modulation of the trial 3 RTs, relative to a baseline where the weight

of con�ict-task demand connections is zero. That is, RTs equal to those obtained

when the weight parameter is zero are plotted in grey, with slower RTs plotted

in red, and faster RTs plotted in blue. The absolute magnitude of n-1 switch and
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(a) (b)

(c) (d)

Figure 7.1: Simulation 7: Parameter space for asymmetric tasks, plotting basic RTs
for varied task input strength and topdown control strength, for di�erent levels of
con�ict weight. The black lines on the plot correspond with the parameters for
task A, i.e., the centre of the cross represents symmetrical switching, with upper
left and lower right quadrants representing stronger, more controlled, and weaker,
less controlled, tasks, respectively.

n-2 repetition costs are presented in �gures 7.3 and 7.9, for simulations 7 and 8,

respectively, with positive costs represented in blue, and negative costs (i.e., facil-

itation) in red. The modulation of n-1 switch and n-2 repetition costs is plotted in
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(a) (b)

(c) (d)

Figure 7.2: Simulation 7: Relative e�ects of con�ict on basic RTs: di�erence against
baseline of con�ict-TD weight = 0.

�gures 7.4 and 7.10 (see also �gure 7.6).

The plots of relative switch costs (�gures 7.4 & 7.10, upper panels) show that

for both simulations 7 and 8, stronger weight values produce smaller switch costs,

especially for HEH switches (upper quadrants). The e�ect is qualitatively mod-

ulated by the strength of inhibitory biasing: for the weakest weight, the e�ect is

minimal, while for stronger weight values, the reduction in switch costs is greatest

where the n-1 task receives a high level of activation (top right quadrant) due to

both a high level of control and high input strength. This is because greater task-

demand activation on the n-1 task leads to more residual con�ict on the n (switch)
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(a) (b)

Figure 7.3: Simulation 7: Parameter space for asymmetric tasks, plotting RT costs
for n-1 switches (7.3a) and n-2 repetitions (7.3b). The black lines on the plot corre-
spond with the parameter settings for task A, i.e., the centre of the cross represents
symmetrical switching, with upper left and lower right quadrants representing
stronger, more controlled, and weaker, less controlled, tasks, respectively.

(a) (b)

Figure 7.4: Simulation 7: Relative e�ects of con�ict on n-1 switch and n-2 repeti-
tion costs: di�erence against baseline of con�ict-TD weight = 0.

trial, and the resulting task inhibition reduces interference, leading to a reduction

in relative switch cost. Interestingly, this selective reduction in switch costs ex-

aggerates the switch cost asymmetry (i.e., it reduces costs more for EH than HE
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Figure 7.5: Simulation 8: Modulation of RT for individual 0SW, 1SW, 2SW and ALT
conditions (from top to bottom), for successive values of weight, from strong (left)
to weak (right). All values are relative to a zero weight baseline. Black squares
represent no data, and the model’s failure to produce correct responses with these
parameter settings.
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Figure 7.6: Simulation 8: Modulation of n-1 switch costs (upper panel) and n-2
repetition costs (lower panel) for successive values of weight, from strong (left) to
weak (right). All values are relative to a zero weight baseline.

switches), suggesting that in a task-switching system with such a mechanism, a

component of the switch cost asymmetry may be attributable to task inhibition.

To understand the basis for this asymmetry, we next consider the e�ect of the

backward inhibition mechanism on 1SW and 0SW sequences individually. The

simplest case is the 1SW (e.g., BBA) condition (�gures 7.2b & 7.8b), where the

switch occurs on trial n. Here, lower weight levels produce RT facilitation, par-

ticularly for switches from highly controlled tasks (e.g., HE switches, right hand

quadrants). On the switch trial, more con�ict is generated in activating the A task

demand unit when B is harder than when it is easier, due to greater residual task-

demand activation when performing the harder task on trial n-1. This is the reason

for the asymmetric n-1 switch cost (i.e., larger costs for HE than EH switches) in the

model of Gilbert and Shallice (2002). Due to this asymmetry in con�ict, processing

on trial n is facilitated when task B is harder than task A. When B is easier than A,

more activation of task demand unit A is required to produce a response. However,

because task demand unit B is still residually active, task inhibition counteracts the

activation by top-down control of task demand unit A, leading to interference on

trial n, and slower responses.
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In the task-repeat 0SW condition (e.g., BAA, �gures 7.2a & �gures 7.8a), stronger

weight values produce longer RTs on the �nal trial, especially following switches

from easier tasks (left quadrants). As for the switch on trial n in the 1SW sequence,

con�ict occurs between the A and B task demand units on the switch trial, except-

ing that for 0SW sequences this occurs on the n-1 trial. Due to persistent con�ict,

the A/B con�ict unit is still residually active on trial n, inhibiting the A task. Thus,

slowing in 0SW trials is due to residual con�ict from previously occurring task

switches. At stronger weight values, there is greater slowing for EH (top left) than

for HE (bottom right) switches. Because 0SW is the baseline condition for estab-

lishing the n-1 switch cost, slower responses lead to a reduction in the EH switch

cost.

For both 0SW and 1SW switches, these e�ects of backward inhibition are quali-

tatively similar in both simulations 7 and 8. Taken together, the reduction in switch

cost, which is greater for EH switches, occurs for two reasons: �rstly, 1SW trial

facilitation, particularly for switches from more controlled tasks (including HE

switches); and secondly, 0SW trial interference, particularly for switches from less

controlled tasks (including EH switches). Overall, the switch cost is reduced for

both HE and EH switches, but the e�ect is greater for EH switches, exaggerating

the switch cost asymmetry.

In contrast to the e�ects on n-1 switch costs, stronger weight values produce

larger n-2 repetition costs in both simulation 7 (�gure 7.4b) and simulation 8 (�g-

ure 7.10b). This e�ect is modulated by input control strength, and is larger for

HEH alternations (i.e., upper quadrants) than EHE alternations. In the ALT con-

dition (�gures 7.2d & �gures 7.8d), the e�ect is modulated by n-1 task di�culty in

simulation 8, but not simulation 7.

While in both simulations 7 and 8, con�ict units generally facilitate perfor-

mance for low weight values, in simulation 8 they selectively impair HEH alter-

nations (top left quadrant), while for the strongest values they also begin to slow
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EHE alternations. The reason for this di�erence is twofold. Firstly, there is an ef-

fect of TDCS that occurs in simulation 8 but not in simulation 7. The reason for

this di�erence is that in simulation 8, the strength of backward inhibition is scaled

by TDCS, hence when task B is easier than task A (i.e., HEH) the A task receives

more inhibition than task B, and thus the RT is slower. Conversely, when task B is

harder than task A (i.e., EHE) the A task receives less inhibition than task B, and

thus RTs are faster. Secondly, there is an e�ect of SIS that occurs for both simula-

tions. Essentially, a greater SIS for the irrelevant task leads to more con�ict being

generated on the n-1 trial for HEH sequences than EHE sequences (for the same

reasons that HE switches generate more con�ict than EH switches in 1SW trials,

above). This results in slower responses for the lower quadrants, re�ecting harder

tasks, and can be observed in both simulations.

In the 2SW condition (�gures 7.2c & 7.8c), mild and intermediate weight values

produce generalised facilitation. Once again, for stronger weight values, the e�ect

on RTs is highly modulated by top-down control in simulation 8 but not simulation

7, with interference and facilitation caused by low-control and high-control n-1 tri-

als, respectively, and with most pronounced e�ects for under- and over-activated

trials (i.e., bottom left and top right quadrants). The fact that, in both simulations,

facilitation dominates irrespective of SIS or TDCS for all but the strongest weight

values, suggests that the mechanism bene�cially reduces the amount of control re-

quired to achieve good performance when frequently switching between multiple

tasks. In contrast to the e�ect on ALT trials, on a 2SW trial the di�culty of the

n-1 task has a much less pervasive e�ect on trial n performance, because the task

demand unit for trial n has not recently been inhibited by con�ict units.

Together, the 2SW and ALT results in both simulations 7 and 8 explain the

larger n-2 repetition costs observed in HEH alternations than in EHE alternations

— it is a composite of stronger facilitation for switches from easier/more controlled

tasks in the 2SW condition, and greater interference when switching from those
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same tasks in the ALT condition.

Interestingly, although the modi�cation to the model in simulation 8 (namely

normalising the weight of backward inhibitory connections by the TDCS param-

eter) has an e�ect on RTs, modulated by the TDCS, this does not have an e�ect

on the qualitative pattern of n-2 repetition costs. In other words, simulations 7

and 8 both exhibit clearly smaller n-2 repetition costs for EHE than HEH switches.

This is because the e�ect of TDCS appears to largely cancel out for ALT and 2SW

sequences. Thus, we may conclude that the exact weighting of the backward in-

hibitory connection is largely independent of the overall e�ect on n-2 repetition

costs.

7.5 Comparison of models in the present and pre-

vious chapters

Given the modi�cation to the con�ict-task demand connection weights in the sim-

ulation 8 (i.e., multiplying the weight parameter by the TDCS for each task demand

unit, to obtain individual weights for con�ict-task demand unit connections), it is

important to verify that the change to the architecture has not had a serious ef-

fect on parameter space. Simulation 6e, from the previous chapter, was therefore

replicated using the modi�ed model from the present chapter. These results are

presented in appendix C. Comparison of the parameter space partitioning graphs

with the equivalent simulation (appendix B) suggests no di�erences in the shape

of parameter space. The parameter settings used in the present chapter2 were still

in a region reasonably central for the intersection between RT switch costs and n-2

repetition costs (see �gure C.2). In conclusion, the change to the model architec-

ture in simulation 8 does not make a qualitative change to the shape of parameter
2Con�ict gain γ = 75.0, con�ict bias β = -10.0, con�ict/task-demand connection weight ω = [-2.5

0]
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(a) (b)

(c) (d)

Figure 7.7: Simulation 8: Parameter space for asymmetric tasks, plotting basic RTs
for varied task input strength and topdown control strength, for di�erent levels of
con�ict weight. In simulation 8, the con�ict weight parameter is multiplied by the
TD control strength for each task to obtain the weight from the con�ict to task
demand unit.

space.
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(a) (b)

(c) (d)

Figure 7.8: The e�ect of increasing con�ict on basic RTs: di�erence against base-
line of con�ict-TD weight=0.

7.6 Summary

In general, the e�ects of backward inhibition on all four types of trial can be under-

stood in terms of the con�ict generated on switch trials by simultaneously active

task demand units, and the asymmetry in activation dynamics between easy-hard

and hard-easy switches. Because the model regulates task inhibition on the basis
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(a) (b)

Figure 7.9: Simulation 8: Parameter space for asymmetric tasks, plotting RT and
error switch costs for varied task input strength and topdown control strength,
for di�erent levels of con�ict weight. Contrasted are task sequence AB (ie., AAB
vs. ABB) and BA (BBA vs. BAA). The black lines on the plot correspond with the
parameters for task B, ie. the centre of the cross represents symmetrical switching,
with upper left and lower right quadrants representing stronger, more controlled;
and weaker, less controlled, tasks, respectively.

(a) (b)

Figure 7.10: Di�erence in costs when con�ict-TD weights are zero, and greater
values.
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of detected con�ict, the model predicts an asymmetric e�ect on the size of the n-2

repetition cost, speci�cally, that it is larger for HEH than EHE alternations, and

that this is a residual e�ect from the additional con�ict generated by HE switches

than EH switches, occurring on the n-1 trial. This prediction is directly tested in

experiments reported in the next chapter.
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Chapter 8

Empirical Studies of Three-Task

Asymmetric Switching

Three experiments are reported which test the predictions of simula-

tions in the preceding chapter — that n-2 repetition costs are mod-

ulated by asymmetric task di�culties. Speci�cally, the experiments

test that the RT n-2 repetition cost is larger in the n-2 repetition con-

dition (i.e., ABA sequences) for hard-easy-hard (HEH) triplets than

for easy-hard-easy (EHE) triplets. This prediction runs counter to the

extant empirical literature, although previous studies may be com-

promised by methodological issues. Experiment 1 details a new n-2

repetition paradigm in which participants classify letters according to

three dimensions: colour, font and alphabetical position. The results

are inconclusive, with participants tending to maintain a consistent

RT across the three tasks, with varying error rate. Experiments 2 and

3 addressed this issue by encouraging participants to maintain a con-

sistent error rate through the use of performance feedback immedi-

ately following error trials, and at the end of each block. Experiment 2

tested the hypothesis using transparent task cues, while experiment 3
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used non-transparent task cues. Consistent with the predictions of the

model, the results of experiments 2 and 3 both showed signi�cantly

larger n-2 repetition cost for HEH than EHE triplets.

8.1 Methdological preliminaries

As discussed in the previous chapter, the only previous study that has systemat-

ically examined n-2 repetition costs for asymmetric tasks is that of Arbuthnott

(2008a). Given the di�culties previously identi�ed in interpreting her results,

this section discusses some issues in the design of an appropriate experimental

paradigm that is likely to yield clear empirical e�ects.

8.1.1 Methodological issueswith the study ofArbuthnott (2008a)

There are three methodological concerns regarding the procedure used by Arbuthnott

(2008a). Firstly, and most simply, at least one study suggests that procedures

which include immediate task repeats may reduce or eliminate n-2 repetition costs

(Philipp & Koch, 2006). In investigating modulations of the n-2 repetition cost,

therefore, it seems prudent to design task sequences to avoid immediate task rep-

etitions, at least in one condition.

The second issue relates to the possibility of graded response congruence ef-

fects in the digit classi�cation task, in which single digits are classi�ed according

to three di�erent criteria: In this case, parity (odd or even), magnitude (greater or

less than 5), or prime (prime or non-prime), with two possible responses signalled

by pressing left or right response keys. The mapping of stimuli to responses was

as follows: for magnitude, 2,3,4 / 6,7,9; for parity, 3,7,9 / 2,4,6; for prime, 2,3,7 /

4,6,9. Given six stimuli and three possible dimensions, the stimuli have di�erent

levels of congruence between the correct response, and the responses to the al-

ternative tasks a�orded by the stimulus. For example, for magnitude judgments,
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the stimulus 6 has a correct response (right) congruent with both the odd-even

task’s and the prime-nonprime task’s response (i.e, fully congruent), 7 is congru-

ent on only one of the irrelevant tasks (semi-congruent), while 4 is incongruent

with both irrelevant tasks (fully incongruent). Thus, speci�c stimulus items are

con�ated with the degree of response con�ict generated on each task. In fact, there

is recent empirical evidence that this type of graded response congruence indeed

a�ects reaction times (Longman, Lavric, Munteanu, & Monsell, 2014; Schneider,

2014) in three-task versions of the digit classi�cation task. While di�ering levels

of stimulus response congruence might be assumed to counterbalance for each

task for symmetric di�culties, when di�culty varies by task, stimulus response

congruence also varies per task, thus confounding stimulus congruence with task

di�culty. This issue could be overcome using a design that o�ers three possible

responses to each task, rather than the typical two. In this case, the confound may

be removed if the responses to all three stimulus dimensions are mutually incon-

gruent. However, to date, no backward inhibition study using classi�cation tasks

has taken this approach.

The �nal issue is the assumption that the task sets involved do not overlap. It

is questionable, however, whether prime number judgment is really independent

from the other two tasks. For example, if a digit is even it is guaranteed to be non-

prime unless it is 2, providing a heuristic method for determining prime/nonprime

status using an easier odd/even judgment. If responding to a prime trial involved

even partial activation of the parity task-set, then any task-set inhibition occur-

ring on the next trial may be applied to both prime and parity task-sets. In sum,

in three-task switching paradigms that incorporate only two possible responses to

each task, pairings of task di�culty may be confounded with response congruence

and response set overlap from the switched-away-from task. Avoiding these prob-

lems within a three-task switching paradigm requires tasks with (at least) three

possible responses.
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8.1.2 On cue transparency

It is known that cue characteristics, such as spatial cue location, can contribute

to task con�ict (Arbuthnott, 2008b). Arbuthnott argued that spatial cues formed

location-task representations, which increased cue con�ict when locations over-

lapped. Other cue characteristics also appear to contribute to task con�ict, includ-

ing cue type (i.e., spatial vs. verbal, Arbuthnott, 2005) or degree of transparency

(i.e., verbally related vs. arbitrary, Arbuthnott & Woodward, 2002).1 Houghton

et al. (2009) compared easy vs. hard cue-task translation conditions (e.g., iconic

cues vs. vebal cues), �nding that n-2 repetition costs were only signi�cant for ver-

bal cues. In their experiment 3, non-transparent cues (arbitrary geometric shapes)

identi�ed the target dimension. The n-2 repetition cost was greater for non-transparent

(arbitrary) cues than for verbal cues. In their experiment 4, verbal non-transparent

cues were contrasted against verbal transparent cues, again producing a greater

backward inhibition e�ect (with no n-2 repetition cost when the cue was identical

with the target). Overall, these studies suggest that iconic cues do not produce n-2

repetition costs: some degree of cue-target translation is necessary. However, the

task used by Houghton was the location of a deviant stimulus — in essence, the

task was identical on all trials, but the target dimension changed. This contrasts

with the present case of digit classi�cation, in which the task changes as well as

the target dimension. Given that the task used by Houghton was visual search,

it is possible there may be less ‘task’ related processing to occur after the target

dimension is identi�ed than when a classi�cation task is identi�ed by a verbal cue

(e.g., ‘CENTRAL/PERIPHERAL’)

To conclude, in order to obtain reliable n-2 repetition costs, iconic cues should

be avoided entirely. Some transparency (i.e., verbal cueing of the task) is regarded

as reasonable, where it refers to the name of the task rather than the response

options (i.e., ‘PARITY’ rather than ‘ODD/EVEN’, although, note that the latter type
1See the introduction of Houghton et al. (2009) for a good review.
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of cue has been used extensively, see Mayr, 2002; Mayr, 2006; Mayr & Keele, 2000;

Houghton et al., 2009).

8.2 Experiment 1

8.2.1 Introduction

Experiment 1 tested the hypotheses regarding the modulation of the n-2 repeti-

tion cost by asymmetric task di�culties, formulated in the previous chapter — n-2

repetition costs are larger for easy-hard-easy (EHE) triplets than for hard-easy-

hard (HEH) triplets. Bearing in mind the previously discussed shortcomings of the

extant empirical studies, experiment 1 used a new procedure based on the switch-

ing variant of the Stroop task. In a switching version of the task, participants

switch between reading the word (the word task) and naming the colour the word

is printed in (the colour task), with the colour task typically more di�cult (slower

and more error prone). This is the task used to obtain classic e�ects of switch cost

asymmetry (Allport et al., 1994; Allport & Wylie, 2000), hence it seems a suitable

basis for testing for task asymmetry e�ects in the 3-task paradigm. Thus a third

task was added to the procedure: participants named the colour of a frame which

appeared around the word.

8.2.2 Method

Procedure

On each trial, one of three possible cues (‘WORD’, ‘COLOUR’ or ‘FRAME’) ap-

peared 1000ms in advance of the target, transparently indicating which task to

perform. The target stimulus appeared in the centre of the screen, and consisted

of a coloured word (‘RED’, ‘GREEN’, or ‘BLUE’) enclosed by a coloured rectangular

frame.
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Participants responded to one of three tasks by pressing a key corresponding

to a colour. The correct response for each task was as follows: For the colour task,

the key corresponding to the colour the word appears in; for the word task, the

response matching the name of the word, and for the frame task, the colour of the

frame. For all three tasks, there were three possible responses (red, green or blue),

each of which was mapped to a single key for all tasks (left-arrow, down-arrow,

or right-arrow, respectively). Thus, this procedure involves an overlap of response

sets at the conceptual level, as well as overlapping response mappings, as is typical

in the digit classi�cation procedure.

The order of tasks was randomised, with the constraint that immediate task

repeats were not allowed (hence, on each trial both switch tasks appear with 50%

likelihood). The mapping of stimuli was also randomised, with two constraints.

Firstly, each possible response appeared exactly once in the stimulus (e.g., the word

‘GREEN’ appearing in red ink, inside a blue frame), controlling for irrelevant di-

mension congruency (each target dimension is accompanied by two incongruent

irrelevant dimensions). Secondly, response repetitions were disallowed. Hence, on

each trial, the correct response had a 50% likelihood of being either response that

was not the previous correct response.

The procedure was administered using PsychoPy version 1.82.01 (Peirce, 2009)

on a GNU/Linux PC. Stimuli were presented on 380mm × 300mm LED monitor,

placed approximately 750mm from the participant. With the exception of the tar-

get word, all text was displayed in white, against a grey background. Responses

were made using the bottom row of arrow keys on a standard PC keyboard, as

described above.

Participants were instructed to perform the task ‘as quickly and accurately as

possible’. To practice the tasks, participants performed 10 trials of each single task

with no switches, and feedback provided on incorrect responses (e.g., ‘Oops! the

correct response was: left. Press space to continue’). Participants then performed
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20 practice trials where the task switched, as in the main procedure. Participants

then performed four experimental blocks of 102 trials, each block followed by a

break, with the participant free to rest as long as desired. Feedback was not pro-

vided on incorrect responses in the experimental blocks.

Participants

35 participants were recruited through the Birkbeck psychology participant database,

of whom 19 were female. Informed consent was obtained from each participant.

The median participant age was 33 years, with a range of 39 years. Participants

took part in exchange for their choice of course credit or a cash sum of £6.

Data Analysis

Each trial was classi�ed as either 2SW (e.g., CBA) or ALT (e.g., ABA) depending on

the sequence of preceding trials. Additionally, each trial (n) was identi�ed by its

task (word, colour, or frame) and the previous (n-1) task. Given that task repeats

were excluded, the n× n-1 task factors give 6 possibilities. For example, where task

n is colour, the n-1 task may be either word or frame. Taking the combination of n

and n-1 tasks as a single factor therefore yields a 2× 6 within-subjects design, with

the other factor being the direction of the alternation (hard-easy vs. easy-hard).

8.2.3 Results

Of the 35 participants, 15 had error rates exceeding an a-priori threshold of 10%

on at least one of the three tasks, and were excluded from further analysis. The

RTs and error rates for each task for the remaining 20 participants are presented

in table 8.1.

The asymmetry in task di�culty between the three tasks was assessed using

a one-way, within-subjects ANOVA, with the three tasks as the only factor. The

e�ect of task was signi�cant, F (2, 34) = 13.37, p < .0001. Pairwise t-tests (Bon-
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Task RT Error rate
Frame 1254 (663) 2.77% (2.70%)

Colour Naming 1912 (1191) 5.70% (2.80%)
Word Reading 1910 (1320) 4.48% (2.70%)

Table 8.1: Mean (SD) of RTs (milliseconds) and error rates for each task

ferroni corrected) revealed the di�erence between colour and word was not signif-

icant (p = 1.00), but there were signi�cant di�erences between word and frame,

(p = .0052) and colour and frame (p = .0016). The e�ect of the task on error

rates was also signi�cant, F (2, 34) = 9.74, p < .0001. Pairwise comparisons re-

vealed signi�cant di�erences in error rate between colour-frame (p = .001) and

word-frame (p = .026) but not colour-word (p = .372).

The tests for task asymmetry indicated a statistically signi�cant di�erence

between the colour and frame tasks in both reaction times and error rates, and

for word and frame tasks, in reaction times only. Therefore, n-2 repetition costs

oberved in colour/frame and word/frame alternations were compared for di�er-

ent switch directions (i.e., CFC vs. FCF; WFW vs. FWF). Given that no signi�cant

di�erence was found between colour-word tasks in reaction time, colour-word

pairings were not tested for n-2 repetition cost asymmetry.

The model predicted a larger n-2 repetition cost for hard-easy-hard (HEH)

triplets than for easy-hard-easy (EHE) triplets. This was tested using a 2 × 2

ANOVA, with within-subjects factors of task pairing (colour/frame vs. word/frame)

and switch direction (easy-hard-easy vs. hard-easy-hard). Neither the main ef-

fect of task, F (1, 32) = 0.001, p = .958, nor the main e�ect of switch direction,

F (1, 32) = 2.00, p = .167, reached signi�cance. The task × switch direction in-

teraction was also not sigi�cant, F (1, 32) = .06, p = .804. The nonsigni�cant

di�erence in means between EHE and HEH n-2 repetition costs was in the oppo-

site direction to that hypothesized, with EHE n-2 repetition costs larger (mean =

138ms, sd = 744ms) than HEH n-2 repetition costs (mean = -27ms, sd = 497ms).

Mean N-2 repetition costs for the colour/frame task were calculated as sub-
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Task Pairing Easy-Hard-Easy Hard-Easy-Hard
Colour-Frame 134 (354) -44 (481)
Word-Frame 346 (1300) -82 (730)

Table 8.2: Mean (SD) n-2 repetition costs for di�erent switch directions of colour-
frame and word-frame pairings

tracting mean RTs on trial 3 for WFC trials from CFC trials; and WCF trials from

FCF trials, with the costs for word/frame tasks similarly obtained. These data are

presented in table 8.2. These were compared using Welch two-sample t-tests. The

di�erence in means was not statistically signi�cant for either the colour/frame

tasks, t(31.2) = 1.27, p = .214, or the word/frame tasks, t(26.8) = 1.22, p = .233.

Note that both di�erences in means, although nonsigni�cant, were counter to the

experimental hypothesis.

8.2.4 Discussion

The results did not support the hypothesis that n-2 repetition costs for HEH triplets

would be larger than for EHE triplets. The three tasks were selected to be relatively

easy, intermediate, or hard in terms of di�culty, and also to induce inter-task con-

�ict. The three tasks con�icted in that the set of possible responses for each task

were the same. However, while the colour naming and word reading tasks clearly

di�ered in terms of the task being performed, the colour naming and frame colour

identi�cation tasks, it could be argued, were insu�ciently di�erentiated — both

tasks involved naming a coloured stimulus, with the only switch being the target

stimulus. There are a number of potential issues with the selection of these three

tasks. Firstly, if the colour and frame task are su�ciently similar in terms of their

task-set (taken to be a cognitive representation of S-R bindings), then it could be

that the task-set is not as forcefully inhibited when abandoning the colour task-set

in a CF switch, than in a CW switch, which involves a more complete switch of

task-set. Secondly, Arbuthnott (2008b) found that target stimuli needed to spatially

overlap in order to generate n-2 repetition costs; here, the frame and target word
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stimuli always appeared in the same, non-overlapping locations.

Thirdly, there were not reliable di�erences in RTs between the three tasks.

While RTs di�ered between the frame-word and frame-colour, there was not a re-

liable RT di�erence between colour-word. However, there was a signi�cant pair-

wise di�erence in error rates between colour/frame and word/frame. This presents

a problem, as the present analysis takes RT as a proxy for task di�culty. It was as-

sumed that participants would regulate the amount of attention paid to each task,

appropriate to the di�culty of the task. However, these results suggest that partic-

ipants regulated their performance such that RT was relatively uniform and error

rates di�ered, rather than vice versa. As no feedback was given for error trials dur-

ing the experimental blocks, there was e�ectively nothing to stall performance. In

addition, it should be noted that this experimenter’s subjective experience of per-

forming the procedure was that the presentation of the cue and stimulus, with

uniform response-cue and cue-stimulus intervals, established a particular rhythm

of responding. This rhythm may have encouraged forced-time responding, result-

ing in too-quick responses to the harder tasks, leading to an elevated error rate but

a less elevated RT.

These problems were addressed in experiment 2. Speci�cally, the problem of

participants possibly regulating their speed/accuracy tradeo� to prioritise speed

was addressed in experiment 2 by providing error-feedback during the experi-

mental block, on a screen which introduced a pause in the procedure while the

feedback was displayed. The problems with the tasks (insu�cient di�erentiation

between colour and frame tasks) were addressed by using three di�erent tasks.
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8.3 Experiment 2

8.3.1 Introduction

Participants classi�ed letters according to the dimensions of colour (red, green

or blue), alphabetical position (beginning, middle, or end) and font (bold, regular,

italic). Importantly, each task has three possible responses to each stimulus, rather

than two. This has the advantages that, �rstly, response repetition e�ects can be

eliminated (even if response repetitions never occur, there are still two possible

responses to each task), and secondly, as the three stimulus dimensions (colour, al-

phabet, font) can be manipulated independently, irrelevant-dimension congruency

e�ects can be controlled such that all stimulus dimensions are always mutually in-

congruent.

8.3.2 Method

Participants

39 participants were recruited through the Birkbeck psychology participant database,

of whom 22 were female. Informed consent was obtained from each participant.

The median participant age was 28 years, with a range of 46 years. All participants

spoke English �uently, although nine reported a �rst language using a non-Roman

alphabet. Participants received their choice of either £7.50 cash or course credit.

Design

The experiment compared n-2 repetition costs for each of three possible pairings

of tasks. The relative ordering of task di�culty was determined by comparing re-

action times and error rates. For each task pairing, n-2 repetition costs could then

be determined independently for easy-hard-easy (EHE) or hard-easy-hard (HEH)

alternations. For example, n-2 repetition costs for the colour-alphabet pairing were
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calculated as the di�erence between colour-alphabet-colour and font-alphabet-

colour sequences (EHE), and alphabet-colour-alphabet and font-colour-alphabet

sequences (HEH). Thus, the experimental design had two factors: switch direction

(EHE vs. HEH) and task pairing (colour-font vs. colour-alphabet vs. alphabet-font).

Tasks

Participants performed one of three tasks in response to a target letter stimulus.

The target letter, rendered in the Latin Modern Roman font, appeared in the cen-

tre of the screen, approximately 20mm × 30mm in size. Simultaneously with the

target stimulus, a cue presented above the target, ‘colour’, ‘alphabet’ or ‘font’ in

lower case and approximately 7mm in height, indicated which task to perform.

The response to all three tasks was made by pressing one of the left, down, or

right cursor keys on a standard PC keyboard, thus the set of possible responses

was fully overlapping. The colour task was to identify the colour of the target, in-

dicating red, green, or blue, by pressing left, down or right respectively. The font

task was to indicate whether it was rendered in a bold (left), regular (down), or

italic (right) font. The alphabet task was to indicate whether the letter occurred

toward the beginning, (d, e, f, g, h; left), middle, (k, l, m, n, o; down) or end (s, t,

u, v, w; right) of the alphabet.

Procedure

The procedure was administered using PsychoPy version 1.82.01 (Peirce, 2009) on a

GNU/Linux PC. Stimuli were presented on a 380mm× 300mm LED monitor, placed

approximately 750mm from the participant. With the exception of the target letter,

unless otherwise stated, all text was displayed in white against a black background.

Participants were instructed to perform the tasks ‘as quickly and accurately as

possible’. Instructions for each task were worded as follows: ‘In the colour task,

press the key corresponding to whether the letter appears in red, green, or blue’;
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‘In the alphabet task, press the key corresponding to where the letter appears in

the alphabet: toward the beginning (d e f g h), middle (k l m n o), or end (s t u v

w)’; ‘In the font task, press the key corresponding to whether the font of the letter

is bold, regular, or italic’. Simultaneously with the instruction, the three response

mappings (red/green/blue, beginning/middle/end, bold/regular/italic) appeared in

the bottom left, bottom centre, and bottom right of the screen, to correspond with

the response key mappings.

After receiving instructions for each task, participants performed a practice

block of 10 trials. Participants then performed 20 practice trials where the task

switched, as in the main procedure. For all practice blocks, speci�c feedback was

provided on incorrect responses (e.g., ‘Oops! the correct response was: left. Press

space to continue’).

Following the practice blocks and a break screen, in which participants could

rest as long as desired, participants performed six blocks of 103 trials, with a break

screen between each block. The order of tasks was randomised, with the constraint

that immediate task repeats were not allowed (hence, given a speci�c preceding

task, the two other switch tasks may each occur with 50% likelihood). Stimulus

dimensions were randomised, subject to the constraint that all three possible re-

sponse keys were represented in each stimulus (e.g., a bold, green letter t) to avoid

stimulus congruency e�ects.

Given the concerns raised in interpreting the results of experiment 1, error

feedback throughout the experimental blocks was considered an important ele-

ment of the procedure, and was provided in the following ways. Firstly, immedi-

ate feedback was given following incorrect responses. This was in the format of

an additional message which appeared on screen (‘Oops!’) and a reminder of the

response mappings for all three tasks, appearing in the bottom left, bottom centre,

and bottom right, of the screen. This message remained on screen for 4,000ms,

before trials resumed. This additional pause following an incorrect response was
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Task RT Error rate
Colour 1544 (391) 3.74% (2.83%)
Font 1774 (411) 5.86% (3.61%)

Alphabet 1849 (500) 7.98% (5.99%)

Table 8.3: Mean (SD) of RTs (milliseconds) and error rates for each task

intended to break any rhythm in responding, as well as providing a mild penalty

for an incorrect response. Secondly, overall feedback was given following each

block on the accuracy rates for each task. This was in the format of e.g., ‘colour

accuracy: 95%’. This message appeared in white if accuracy was 90% or higher, but

in red if accuracy dropped below 90%. If the accuracy for any task was below 90%,

the message ‘Please take more care!’ also appeared on screen, while if all were

above 90%, the message read ‘Well done!’.

8.3.3 Results

A single participant with a mean RT more than 2.5 SDs above the group mean

was excluded from the analysis, for generally very slow responses (overall mean

RT 4131ms, compared to a group mean of 1782, SD 553ms). In addition, error

trials and the subsequent two trials, and trials with very slow RTs (over 20s) were

all excluded from the RT analysis. After trimming, the mean proportion of trials

retained for analysis was 83.2%. This proportion did not vary substantially across

cells of the experimental design, with the least trials retained for colour-alphabet

switches (81.4%) and the most for font-alphabet switches (84.9%). The means and

SDs for the remaining trials for each task are presented in table 8.3.

The asymmetry of the three tasks was established using a 1× 3 within-subjects

ANOVA. For RTs, the e�ect of task was signi�cant, F (1.66, 61.57) = 23.1, p <

.001 (Geenhouse-Geisser corrected for non-spherical data). Pairwise t-tests (Holm-

Bonferroni corrected for multiple comparisons) indicated signi�cant RT di�er-

ences between colour and font, t(37) = 5.39, p < .001, colour and alphabet,

t(37) = 5.43, p < .001, and a marginally signi�cant di�erence for font and alpha-
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bet, t(37) = 1.89, p = .067. Parallel tests for error rates revealed the same pattern:

the e�ect of task was signi�cant, F (1.73, 64.16) = 13.95, p < .001 (Greenhouse-

Geisser corrected), with signi�cant pairwise di�erences between colour and font,

t(37) = 3.38, p = .003, colour and alphabet, t(37) = 4.87, p < .001, and font and

alphabet, t(37) = 2.40, p = .022.

However, individual di�erences did exist in the ordinal di�culty of the three

tasks. In increasing di�culty, assessed by RTs/error rates, were colour-font-alphabet

(21 participants for RTs/20 for error rates) colour-alphabet-font (8/10), font-alphabet-

colour (2/2), font-colour-alphabet (2/2), alphabet-colour-font (4/4) and alphabet-font-

colour (2/2). Nevertheless, given the statistically signi�cant di�erences in task dif-

�culty, it was concluded that the three tasks were indeed of asymmetric di�culty,

with the colour task easier than the font task, which in turn was easier than the

alphabet task. The analysis then proceeded to test the main hypothesis.

Mean and standard deviations of n-2 repetition costs (for RTs and error rates),

for each task pairing and direction of alternation, are given in table 8.4. The analy-

sis of n-2 repetition costs consisted of a 3× 2 within-subjects ANOVA, with factors

of task pairing (colour-font vs. colour-alphabet vs. alphabet-font) and switch direc-

tion (EHE vs. HEH), to test the hypothesis that n-2 repetition costs for hard-easy-

hard triplets would be greater than for easy-hard-easy triplets. For RT, there was a

signi�cant main e�ect of switch direction, F (1, 37) = 4.441, p = .042, partial η2 =

0.022, consistent with the main hypothesis. The main e�ect of task pairing was

not signi�cant, F (2, 74) = 1.06, p = .353, and nor was the task × switch direc-

tion interaction (F (2, 74) = 0.218, n.s.). For error rates, the main e�ect of switch

direction failed to reach signi�cance (F (1, 37) = 2.815, p = .102). The main e�ect

of task pairing was also not signi�cant (F (2, 74) = 0.064, n.s.). However, the task

× switch direction interaction was signi�cant, F (1.98, 73.19) = 3.400, p = .039,

partial η2 = 0.034 (Greenhouse-Geisser corrected).

Given the statistically marginal nature of the results, the individual di�erences
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Task Pairing Easy-Hard-Easy Hard-Easy-Hard
RT (ms) Error rate (%) RT (ms) Error rate (%)

Colour-Font 7 (202) -0.95 (4.01) 98 (292) 1.82 (4.96)
Colour-Alphabet 16 (249) -0.45 (4.67) 100 (266) 0.82 (4.57)
Font-Alphabet -10 (211) -0.96 (4.23) 31 (263) -0.47 (5.51)

Table 8.4: Experiment 1: Mean (SD) n-2 repetition costs for RT and error rates by
task pairings and switch direction

in task di�culty present one area for potential concern. For example, the larger n-2

repetition costs observed for HEH alternations may have been partially driven by

the 18 participants for whom the average ordinal di�culty of tasks was reversed.

The results were therefore analysed again according to relative task di�culty, with

the three tasks for each participant ranked as primary, secondary, and tertiary

tasks on the basis of mean RTs, in ascending order of di�culty. For RT, there was

no statistically signi�cant main e�ect of task, F (2, 76) = 1.02, p = .36. However,

the main e�ect of switch direction was signi�cant, F (1, 38) = 4.58, p = .039, η2p =

0.030. The task × direction interaction was not signi�cant, F (2, 76) = 1.09, p =

.34. A parallel analysis of error rates revealed no statistically signi�cant e�ects

(main e�ect of task: F (1, 38) = 1.88, p = .16; main e�ect of direction: F (1, 38) =

0.00, p = .95; interaction: F (2, 76) = 1.10, p = .34).

8.3.4 Discussion

The results, a signi�cant main e�ect of switch direction for RTs, and a nonsignif-

icant trend for error rates, with greater n-2 repetition costs for HEH triplets than

EHE triplets, contrast with those of Arbuthnott (2008a), who reported greater in-

hibition of the easier task (larger n-2 repetition costs for EHE switches). They are,

however, consistent with the main hypothesis, and the prediction of the model.

How might one account for the di�erences in direction of e�ect between this

experiment, and the �ndings of Arbuthnott (2008a)? As discussed above, there are

a number of di�erences in task design. Speci�cally, the current procedure used
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tasks with three possible responses, allowing the procedure to remove stimulus

congruency and varying response set overlap as possible confounding variables.

Additionally, the three tasks (font, alphabet, and colour) were chosen to avoid po-

tential overlap in their task-sets.

One feature of the present results is that the magnitude of the n-2 repetition

costs observed are rather small. However, the tested hypothesis concerned the

modulation of the n-2 repetition cost, with no prediction as to the magnitude of

the n-2 repetition cost overall. One potential concern is that the absence of an n-2

repetition cost might suggest the absence of task inhibition, precluding its modula-

tion in the present experiment. While there is reason to believe n-2 repetition cost

of zero does not represent zero task inhibition, merely reduced task inhibition (cf.

Grange et al., 2013, and as also predicted by the present model, chapter 4), small

task inhibition e�ects may be one reason for the marginally signi�cant results, and

small e�ect size. It is therefore reassuring that the additional analysis conducted

for ordinal task di�culty, in which individual di�erences in task di�culty are ac-

counted for, produced a slightly larger e�ect size for reaction times than the �rst

analysis. If the procedure were modi�ed to produce larger n-2 repetition costs, it

is reasonable to expect a larger e�ect size for the modulation of this cost by task

di�culty. The next experiment therefore aimed to obtain stronger support for the

model by modifying the procedure to produce larger n-2 repetition costs overall.

8.4 Experiment 3

8.4.1 Introduction

One experimental factor known to produce larger n-2 repetition costs is the use

of non-transparent or abstract task cues, where the relationship between the cue

and the task is arbitrary rather than bearing a resemblance (e.g., using geometric

shapes to represent which task to perform next, as in Houghton et al., 2009). Ex-

252



periment 3 featured a modi�ed procedure with non-transparent cues with the aim

of obtaining larger overall n-2 repetition costs.

8.4.2 Method

Participants

As in the previous experiment, 40 participants were recruited through the Birkbeck

psychology participant database, of whom 28 were female. Participants received

£7.50 in cash.

Design

The design was identical to experiment 2.

Tasks

The tasks were identical to experiment 2, with the exception that tasks were cued

by a frame appearing simultaneously to, and enclosing the target letter. The frame

could take the shape of a circle, square or hexagon. The association between frame

shape and target task was randomised for each participant.

Procedure

As participants were required to learn cue-task associations, they received addi-

tional practice trials (compared to experiment 2), performing 15 trials for each task,

before completing a practice switching block of 20 trials. The main experiment

consisted of 8 blocks of 60 trials.

8.4.3 Results

Of the 40 participants, data was not analysed from two participants who failed to

complete the task, and �ve who exceeded an error rate of 20%, leaving data from
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Task RT Error rate
Colour 1866 (498) 5.49% (3.63%)
Font 2079 (446) 7.45% (4.43%)

Alphabet 2095 (490) 6.66% (5.31%)

Table 8.5: Mean (SD) of RTs (milliseconds) and error rates for each task

33 participants. The data were analysed as for experiment 2. For consistency with

the previous experiment, trials exceeding 20s were excluded from the reaction time

analysis. However, the pattern of data was robust to stricter RT thresholds of 10s

and 5s. Additionally, error trials and the two subsequent trials were also excluded

from the RT analysis. Mean RTs and error rates for the three tasks are presented

in table 8.5.

Unlike experiment 2, the di�erence in di�culty of the three tasks was equivo-

cal. For RT, ANOVA suggested signi�cant di�erences in task di�culty, F (2, 64) =

7.70, p = 0.010, however pairwise t-tests suggested signi�cant di�erences be-

tween colour and alphabet (t(32) = 3.27, p = 0.007) and colour and font (t(32) =

3.29, p = 0.007) pairings, but not alphabet and font (t(32) = 0.26, p = 0.796).

For error rates, ANOVA revealed overall signi�cant di�erences between tasks,

F (2, 64) = 4.44, p = 0.016, but pairwise t-tests suggested only signi�cant dif-

ferences between colour and alphabet (t(32) = 3.13, p = 0.011) but not colour

and font (t(32) = 1.52, p = 0.277) or alphabet and font (t(32) = 1.37, p = 0.277,

all Holm-Bonferroni corrected for multiple comparisons).

Further inspection of the data revealed substantial individual di�erences in task

di�culty. The ordinal ranking of task di�culty, in increasing di�culty, assessed

by RTs/error rates, were colour-alphabet-font (11 participants for RTs/6 for error

rates) and colour-font-alphabet (10/12), followed by font-alphabet-colour (5/6), font-

colour-alphabet (4/3), alphabet-colour-font (2/5) and alphabet-font-colour (1/1).

The remaining analysis therefore proceeded according to ordinal task di�culty,

as was also conducted for the previous experiment. On this basis, n-2 repetition

costs (RT and error rates) for the critical conditions are shown in table 8.6. The
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Task Pairing Easy-Hard-Easy Hard-Easy-Hard
RT (ms) Error rate (%) RT (ms) Error rate (%)

Primary-Secondary 112 (250) 0.50 (5.85) 184 (303) 0.40 (6.42)
Primary-Tertiary 79 (247) 1.30 (6.03) 255 (315) 2.31 (7.72)

Secondary-Tertiary 77 (387) 0.05 (5.31) 153 (308) 1.22 (6.81)

Table 8.6: Experiment 3: Mean (SD) n-2 repetition costs for RT and error rates by
task pairings and switch direction

mean proportion of trials retained was 81.3%. Like the previous experiment, this

proportion was consistent across individual cells, with the fewest trials retained

for tertiary-primary switches (79.9%) and the most for tertiary-secondary switches

(82.8%).

Once again, the analysis of n-2 repetition costs consisted of a 3 × 2 within-

subjects ANOVA, with factors of task pairing (primary-secondary vs. primary-

tertiary vs. tertiary-secondary) and switch direction (EHE vs. HEH), testing the

hypothesis that n-2 repetition costs for hard-easy-hard triplets would be greater

than for easy-hard-easy triplets. For RTs, the results revealed that the main e�ect

of task was not signi�cant (F (2, 64) = 0.59, p = 0.557), but the main e�ect of

direction was (F (1, 32) = 5.92, p = 0.021, η2p = 0.031). The interaction was not

signi�cant ( F (2, 64) = 0.64, p = 0.53). Pairwise t-tests revealed these di�erences

reached signi�cance for the primary-tertiary task pairing, t(60.49) = 2.52, p =

0.014 but not for primary-secondary, t(61.75) = 1.05, p = 0.298, or secondary-

tertiary, t(60.93) = 0.89, p = 0.379.

No signi�cant e�ects were found in the analysis of error rates (main e�ect of

task: F (2, 64) = 0.79, p = .46; main e�ect of direction: F (1, 32) = 0.81, p = .37;

interaction: F (2, 64) = 0.17, p = .85).

8.4.4 Discussion

Once again, as predicted, a signi�cant e�ect of switch direction, with a greater n-2

repetition cost for HEH than EHE triplets, was found. Although the �nding was
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only signi�cant for the task pairing with the greatest di�erences in di�culty for

each participant (the primary-tertiary pairing), the trend was observed for each of

the task pairings.

As anticipated, mean reaction times and error rates were greater for experi-

ment 3 than experiment 2, re�ecting the increased di�culty introduced by non-

transparent task cueing. Unexpectedly, non-transparent task cueing appeared to

modify the relative di�culty of each of the tasks, introducing substantial individual

di�erences. However, as our hypothesis concerns the relative di�culty of tasks,

rather than di�erences between speci�c tasks, the inferences from these results

remain valid.

8.5 General Discussion

Both experiments 2 and 3 were consistent with the prediction of the model, that

HEH alternations produce larger n-2 repetition costs than EHE alternations, al-

though this was inconsistent with the results of Arbuthnott (2008a). Experiment

2 did not produce large n-2 repetition costs overall, particularly for EHE alterna-

tions for which they were negligible. However, the prediction of the model was

that the n-2 repetition cost would be modulated by task di�culty. The model made

no prediction about the magnitude of the cost overall. Consistent with this, using

non-transparent cues, experiment 3 replicated these results with larger n-2 repe-

tition costs. These two results empirically con�rm the predictions of the model.

The model predicts that HEH switches should produce greater n-2 repetition

costs than EHE, for the same reason that the model of Gilbert and Shallice (2002)

predicts switch cost asymmetries when switching between two tasks. Firstly, ex-

ecuting a harder task against interference from easier, but irrelevant, stimulus di-

mensions requires a greater degree of biasing by task-demand units than executing

an easier task against interference from a harder task. Secondly, if the next trial is
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a switch, HE switches have a greater switch cost than EH switches because more

task demand activation is carried over (Gilbert & Shallice, 2002). Finally, in a sys-

tem with a backward inhibition mechanism, the simultaneous activation of task

demand units on the n-1 trial means more con�ict is detected on the n-1 trial for

HEH switches than EHE switches. As a result the n-2 task receives more inhibi-

tion. In contrast, on a two-switch trial, the di�culty of the n-1 task has a much

less pervasive e�ect on performance on trial n. This overall e�ect, greater n-2

repetition costs for HEH trials, is precisely what was observed.

These empirical results extend the growing literature on n-2 repetition costs by

showing that the e�ect is modulated by the relative di�culty of the tasks involved.

The typical size of the basic n-2 repetition cost (e.g., 31 – 35 msec, as reported by

Mayr & Keele, 2000) is smaller than the typical size of the n-1 switch cost (e.g., 200

msec, as reported by Rogers & Monsell, 1995), and consequently it is harder to ob-

tain positive evidence for the cost.2 The relative di�erence in size is not surprising

given that n-2 repetition costs relate to e�ects that persist across two switches (and

a longer temporal window), as opposed to one, but our �nding that the n-2 repe-

tition cost is also sensitive to task di�culty (albeit in the opposite direction to the

only previous study of asymmetric repetition costs; though see the earlier discus-

sion for potential reasons why) further suggests that considerable methodological

care is required to isolate such costs.

2There is evidence of substantial individual di�erences in n-2 repetition costs, with Grange and
Juvina (2015) recently reporting costs of up to 200ms for certain individuals.
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Chapter 9

Further Simulations of Backward

Inhibition

This chapter extends the range of behavioural predictions made by the

model with two sets of additional simulations. The �rst concerns the

e�ect of manipulating the response congruency of the target stimuli.

For tri-dimensional stimuli used in the three-task switching paradigm,

for any target dimension relevant to the current task, two irrelevant

dimensions a�ord responses that may be fully congruent, fully in-

congruent, or one-congruent and one-incongruent (semi-congruent).

These graded levels of congruency are assessed for their e�ects on re-

sponse times and n-2 repetition costs, when they occur on the �rst, sec-

ond and third trial of a triplet. In addition, the data is also analysed to

determine whether the model predicts the alternative empirically ob-

served inhibitory e�ect of dimension inhibition/competitor rule sup-

pression. The model predicts results consistent with empirically ob-

served data for trial n congruency, and o�ers a novel prediction of an

e�ect of trial n-1 congruency on n-2 repetition costs, albeit with very

small e�ect size. The second simulations concern themodulation of the
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n-2 repetition cost when the two intertrial intervals (RCIn−1 between

trials n-2 and n-1, and RCIn between n-1 and n) are varied system-

atically. Empirically, n-2 repetition costs are a�ected by RCIn−1 but

not RCIn, a �nding that has widely been interpreted as supporting

the theory that the n-2 repetition cost is related to con�ict occurring

on the n-1 trial. The simulations reveal that the backward inhibition

model does indeed predict this empirical pattern.

9.1 Simulation 9: Response congruency e�ects

9.1.1 Trial n graded response congruency e�ects

Response congruency refers to the congruence or incongruence between the cor-

rect responses to each task a�orded by a multidimensional stimulus. For example,

when categorising the digit ‘3’ according to the two categories of odd/even and

low/high, the responses are said to be congruent if the odd and low responses are

mapped to the same physical response, such as the same response key.

While a number of studies have examined the e�ect of varied levels of re-

sponse congruency on task switching, and some have even o�ered computational

accounts (e.g., Brown et al., 2007; Schneider & Logan, 2009), only a small number

have extended this line of research to the three-task paradigms. While the cor-

rect response to a bi-dimensional stimulus, with respect to a speci�c task, may be

congruent or incongruent, tri-dimensional stimuli have three possible congruency

states: congruent, semi-congruent, and incongruent. For example, given the three

possible digit classi�cation tasks odd/even, low/high and prime/nonprime mapped

to left and right response keys respectively, the stimulus 6 has a correct response

(right) congruent with both the odd-even task’s and the prime-nonprime task’s

response (i.e., fully congruent), 7 is congruent on only one of the irrelevant tasks

(semi-congruent), and 4 is incongruent with both irrelevant tasks (fully incongru-
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ent).

Behavioural studies have found that graded response congruence indeed af-

fects reaction times in three-task versions of the digit classi�cation task. Arbuthnott

(2005), using a three digit classi�cation tasks, analysed only fully- and semi-congruent

responses, �nding an e�ect of response congruence (fully congruent faster than

semi-congruent) that did not interact with n-2 repetition cost. Longman et al.

(2014) reported two experiments which used a three-task digit classi�cation paradigm,

in which three possible stimuli were presented simultaneously in di�erent loca-

tions, with a cue indicating both the relevant stimulus and the task to perform

(tasks were invariantly mapped to each location). Both experiments revealed an

e�ect of graded response congruence on RT and errors, with no reliable interac-

tion with switch costs. Signi�cant n-2 repetition costs were restricted to errors

only for experiment 1,1 although the unreliability of this e�ect may have been due

to parameters of the experiment known to reduce n-2 repetition costs, such as the

presence of immediate task repetitions (Philipp & Koch, 2006) and long RCIs (Gade

& Koch, 2005). Finally, Schneider (2014) reported similar �ndings, �nding signi�-

cant linear increases in RT from fully-incongruent, semi-congruent, to congruent

stimuli, and a corresponding linear decrease in error rate. While n-1 switches were

signi�cantly slower and more error prone than n-1 repeats, neither n-1 switch cost

was modulated by response congruency. In his experiment, Schneider did not �nd

a signi�cant n-2 repetition cost for RT or error rate.

In sum, the available behavioural evidence consistently suggests graded e�ects

of response congruence: fully incongruent stimuli evoke slower and more error

prone responses than semi-congruent stimuli, which in turn are slower and more

error prone than fully congruent stimuli.

One important implication of these �ndings concerns the design of three-task
1This �nding is in contrast to that of Arbuthnott (2009), who found n-2 repetition costs under

similar conditions, where the cue location was constant and overlapping and the location of the
target varied.
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switching studies. A large number of the studies in the empirical literature have

used three classi�cation tasks with two overlapping responses. Given the empiri-

cal and simulation results above, it is clear that in this case, speci�c stimulus items

are con�ated with di�erent levels of response con�ict. Eliminating these e�ects

requires a modi�ed procedure, such as tasks a�ording three possible responses,

where responses may be mapped such that response congruence e�ects are in-

dependent of speci�c stimuli. For example, through the use of composite stimuli

such as digit-letter combinations displayed in various colours.

9.1.2 Trial n-1 response congruency e�ects includingDimen-

sion Inhibition/Competitor Rule Suppression

The previously discussed response congruency e�ect is a intra-trial, or non-sequential

e�ect: that is, the e�ect on RT is due to the congruence status of the trial in ques-

tion. However, inter-trial sequential congruence e�ects may also a�ect reaction

time. The competitor rule suppression (CRS, Meiran, Hsieh, & Dimov, 2010) or

dimension inhibition (Goschke, 2000) e�ect is where slower RTs occur for a task

in which the response a�orded by that task was previously incongruent with the

correct response, compared to when the task’s response was congruent with the

correct response. This may be represented schematically as follows, given a multi-

dimensional stimulus a�ording tasks A and B, each with possible responses 1 and

2 (or, in general, ∗), with the cued task in bold .

The following two-trial sequence:

A1B2...A∗B∗

Produces slower RTs for all responses (indicated by B∗), than the following se-

quence:

A1B1...A∗B∗
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While this e�ect is well known in the two-task switching literature (e.g., Goschke,

2000), a few recent studies have examined the e�ect in three-task switching paradigms,

and thus related the inhibitory e�ect to backward inhibition Thus, Meiran et al.

(2010) suggested that this e�ect re�ected an inhibitory process occurring as a result

of incongruence on trial n-1, acting on the task-set of the irrelevant task (in this

case, task B) in order to suppress interference. This inhibition persists into trial n,

leading to slower responses for the now-relevant task B. In order to demonstrate

that this e�ect re�ects inhibition directed at a speci�c task-set, it is necessary to

rule out generalised e�ects of slowing following incongruent, rather than congru-

ent trials, such as have been attributed to con�ict (e.g., Botvinick et al., 2001; Brown

et al., 2007). In support of this view, Meiran et al. (2010) reported an experiment

utilising four tasks, �nding a signi�cant graded intra-task congruency e�ect (with

signi�cant pairwise di�erences between each congruency level, of which there

were four due to four tasks) for both RT and errors, a signi�cant CRS (inter-task

congruency) e�ect for both RT and errors, and a signi�cant n-2 repetition cost for

RT and errors. However, as there was no indication of any interaction between the

n-2 repetition cost and the CRS e�ect, the authors invoked the principle of additiv-

ity (Sternberg, 1969) to infer that backward inhibition and CRS a�ected di�erent

processing stages, and thus were independent inhibitory e�ects.

More persuasively, a number of studies have demonstrated that n-2 repetition

costs and CRS e�ects are variably a�ected by di�erent manipulations. Regev and

Meiran (2016) manipulated cue-type, which a�ected the di�culty of retrieving

task-response mappings. Dimension cues referred only to the speci�c task (i.e.,

‘colour’) while mapping cues referred to speci�c keys (‘red/green’ indicated left

or right keys respectively). Regev and colleagues found that while the n-2 rep-

etition cost was not a�ected by cue type, CRS was larger when dimension cues

were used, compared to mapping cues, both when cue-type varied by block, and

by trial. This �nding was interpreted to suggest that CRS and BI are two di�er-
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ent inhibitory phenomena, of which CRS (but not BI) is modulated by making the

retrieval of task-cue mappings from WM more di�cult. Given that earlier studies

suggest backward inhibition is modulated by making the cue-task retrieval more

di�cult (i.e., by manipulating transparent vs. non-transparent cues (e.g., Houghton

et al., 2009), this pattern of results together suggests that it is the cue-response

key-mapping aspect of the task-set that is crucial for CRS, while cue-task retrieval

a�ects BI. One test of this possibility might be to see whether a cue-transparency

manipulation such as that used by Houghton et al. (2009) a�ects CRS, or merely

BI. At present, no study using a cue-transparency manipulation appears to have

systematically examined both e�ects in the same experiment. If cue-mapping re-

trieval were entirely separate from cue-task retrieval, one might expect it to a�ect

CRS but not BI; if, however, task-set retrieval were hierarchically structured, in-

volving cue-task retrieval prior to cue-mapping retrieval, the manipulation could

conceivably in�uence both CRS and BI.

Similar behavioural dissociation of the two e�ects comes from Astle, Jackson,

and Swainson (2012), who conducted three experiments with varying task parame-

ters which dissociated putative dimension inhibition from backward inhibition ef-

fects. In a �rst experiment involving letter classi�cation, CTIs were predominantly

long (1200ms), with some short (200ms) to encourage early engagement (analysis

was only conducted on all-long sequences), with the cue disappearing with target

onset. This experiment found marginally signi�cant e�ects of dimension inhibi-

tion for error rates only, but no e�ect of backward inhibition. A second experiment,

involving classi�cation of a single item within a three-item (letter/digit/symbol)

compound stimulus, predominantly using short-CTI (100ms) trials, found the re-

verse e�ect: no evidence of dimension inhibition, but a signi�cant e�ect of back-

ward inhibition for error data only. A third experiment, which combined the task

from the �rst experiment with the design of the second, found similar results to the

�rst, namely a main e�ect of dimension inhibition for RT but not errors (although
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a signi�cant task × dimension inhibition interaction was observed for both RT

and errors, suggesting the e�ect was observed for some tasks but not others), but

no evidence for backward inhibition. While the observed e�ects were somewhat

marginal, with inconsistencies as to whether the e�ects were observed in the RT

or error rate data, the authors concluded that backward inhibition and dimension

inhibition were dependent on the di�erent tasks used, and not the other design

parameters. Backward inhibition required the task involving classi�cation of uni-

tary stimuli, and did not occur for compound stimuli. Dimension inhibition, on

the other hand, only occurred for compound stimuli. Thus, Astle et al. (2012) pro-

vided more direct evidence than Meiran et al. (2010) that backward inhibition and

dimension inhibition/CRS are separate inhibitory processes, however their empir-

ical results are relatively weak and would be strengthened by replication.

9.1.3 Simulation rationale

Tentative empirical evidence suggests that backward inhibition and dimension in-

hibition are two independent inhibitory e�ects observable from sequential analysis

of three-task switching paradigms. Nevertheless, response congruency presents

an issue for the computational model developed in this thesis. When conducting

simulations, it is necessary to specify the congruency between all stimulus dimen-

sions for each trial. Furthermore, as response congruency has a large e�ect on

model reaction times, it is necessary to carefully control congruency for all sim-

ulations. Except where speci�ed, simulations have been conducted by including

equal numbers of all permutations of response congruency (fully congruent, semi-

congruent and fully incongruent) for each position in a block of three trials. How-

ever, further systematic analysis is necessary to fully understand model behaviour

— averaging across di�erent congruency conditions may mask e�ects if they inter-

act with response congruency on a particular trial. Due to bottom-up activation

in the model, irrelevant stimulus dimensions that are incongruent or congruent
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with the currently relevant stimulus, activate output units, which in turn activate

task-demand units irrelevant task-demand units. Therefore, stimulus congruency

does in�uence the degree of con�ict at the task-demand level, and thus would con-

tribute to backward inhibition. The extent to which this takes place, and its e�ect

on model behaviour, requires further systematic simulation.

Furthermore, the model is ideally placed to generate predictions about the em-

pirical e�ects of sequential response congruency within a task switching model

with a backward inhibition mechanism of the type previously described. Of spe-

ci�c concern is whether model behaviour matches that described in the empirical

literature for n graded response congruency, n-1 response congruency (dimension

inhibition/CRS).

9.1.4 Method

The model was tested on 38,400 blocks of three trials, consisting of either ABA or

CBA sequences. For each trial in the block, stimulus congruency was either semi-

congruent (IC) or fully incongruent (II). For simplicity, fully congruent trials were

not considered, although it may be assumed that without any incongruent stimulus

dimensions, model processing will proceed more quickly than the semi-congruent

sequences. Thus, the simulation contained four possible factors: sequence type

(ABA vs. CBA), and a congruency factor for each of trials 1, 2 and 3 within the

block.

9.1.5 Results

Consistent with previous simulations, when considering only sequence type and

collapsing across the three congruency factors, the model produces clear n-2 rep-

etition costs, as illustrated in �gure 9.1. This n-2 repetition cost was tested using

a Welch two sample t-test. ABA sequences were signi�cantly slower than CBA

sequences (77.10 cycles vs. 71.28 cycles), t(37102.02) = 19.59, p < .0001.
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Figure 9.1: Simulation 9: n-2 repetition e�ects when collapsed across congruency
condition.

Next, we consider the e�ect of the three response congruency factors alongside

sequence type. Figure 9.2 plots the three congruency factors. The two levels of trial

3 congruency, the factor with the most direct in�uence on performance, may be

compared via the two vertical panels. Trial 2 congruency may be compared via

the �rst and second, and via the third and fourth horizontal panels, while trial

1 congruency may be compared via the �rst and third, and via the second and

fourth panels. Although this �gure graphically represents the complete data for

this simulation, due to its complexity, the e�ect of various sub-combinations of

factors is next considered by collapsing the other factors.

Trial n graded response congruency e�ects

The direct intra-trial e�ect of response congruency on model performance is re-

�ected by the trial 3 response congruency factor, by comparing the top and bottom

panels of �gure 9.2. As error bars represent 95% con�dence intervals, it is clear

graphically that trial 3 response congruency has a large e�ect on model reaction

time, with semi-congruent trials faster than fully-incongruent trials. This was as-

sessed via a 2×2 ANOVA (sequence type× trial 3 congruency) which found highly

signi�cant main e�ects of sequence, F (1, 37396) = 251.99, p < .0001, η2p = .007),
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3rd trial congruency, F (1, 37396) = 17236.19, p < .0001, η2p = .315), and also a

highly signi�cant sequence × 3rd trial congruency interaction, F (1, 37396) =

23.64, p < .0001, η2p < .001. Thus, both n-2 repetition costs and trial 3 congru-

ency e�ects were found to be signi�cant, although respective e�ect sizes suggest

the congruency e�ect is by far the larger e�ect. While trial 3 congruency did sig-

ni�cantly modulate the n-2 repetition cost in the simulation, the e�ect size was

relatively negligible.

Although only semi-congruent and fully-incongruent trials were represented

in the model (unlike Schneider, 2014, who modelled, and measured empirically, all

three possible levels of response congruency), the present model behaviour shows

signi�cant di�erences between the congruency conditions. Given that model RT

is dependent on competition between competing response units (and task-demand

units, via bottom-up activation), and fully congruent stimuli would evoke no bottom-

up competing activation whatsoever, we may reason that fully congruent stimuli

would be faster than semi-congruent stimuli in all cases.

Trial n-1 sequential congruency e�ects

Next, we turn to the sequential e�ects of congruency on trial n-1. Firstly, we con-

sider the e�ects of graded response congruency on trial n-1 (i.e., the overall e�ect of

fully vs. semi-congruent stimuli). As a test of all possible e�ects, a 4-way ANOVA

was conducted: sequence (S, ABA vs. CBA) × trial 1 congruency (Cn−2, IC vs.

II), × trial 2 congruency (Cn−1, IC vs. II) × trial 3 congruency (Cn, IC vs. II). The

results were as follows:

Main e�ects: Sequence, F (1, 37119) = 575.72, p < .0001, η2p = .0153, 1st

trial congruency, F (1, 37119) = 4.70, p < .030, η2p = .0001, 2nd trial congruency,

F (1, 37119) = 199.45, p < .0001, η2p = .0053, 3rd trial congruency,F (1, 37119) =

18055.73, p < .0001, η2p = .3272.

Two way interactions: The interactions between sequence and irrelevant
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Figure 9.2: Simulation 9: n-2 repetition e�ects by congruency condition.

stimulus congruency suggest a modulation of the n-2 repetition cost: S × Cn−2,

F (1, 37119) = 65.12, p < .0001, η2p = .0017; S×Cn−1, F (1, 37119) = 132.45, p <

.0001, η2p = .0035; S × Cn, F (1, 37119) = 40.68, p < .0001, η2p = .0011.

Interactions between trial congruency were not generally signi�cant, apart

from that between 2nd and 3rd trial congruency: Cn−2 × Cn−1, F (1, 37119) =

1.78, p = 0.18;Cn−1×Cn,F (1, 37119) = 0.45, p = 0.50;Cn−1×Cn,F (1, 37119) =

24.22, p < 0.0001, η2p = .0007.

The higher-order interactions between sequence and trial congruency were

not, generally, signi�cant: S × Cn−2 × Cn−1, F (1, 37119) = 0.08, p = 0.78; S ×

Cn−2×Cn, F (1, 37119) = 0.78, p = 0.38; S×Cn−1×Cn, F (1, 37119) = 5.60, p =

0.018, η2p = .0001; Cn−2 × Cn−1 × Cn, F (1, 37119) = 2.33, p = 0.13. Finally, the
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4 way interaction, S × Cn−2 × Cn−1 × Cn was not signi�cant, F (1, 37119) =

0.46, p = 0.49.

The trial n congruency e�ect, is therefore signi�cant, as were a basic n-1 and n-

2 congruency e�ect. However, the size of the trial n congruency e�ect was several

orders of magnitude larger (η2p = 0.327) than more remote e�ects of congruency

(η2p < .01), and detection of these latter e�ects empirically seems unlikely. Addi-

tionally, all three basic congruency e�ects interacted with the n-2 repetition cost,

albeit with empirically negligible e�ect sizes (η2p < 0.01). It is of interest that

the biggest e�ect on the n-2 repetition cost was n-1 congruency, which supports

the suggestion that the con�ict generated on the n-1 trial is critical to triggering

backward inhibition. The higher-order interactions, where signi�cant, were also

of negligible e�ect size so they will not be considered further.

Dimension Inhibition/Competitor Rule Suppression

We now turn to the so-called dimension inhibition e�ect. As described previously,

dimension inhibition is putatively represented by the contrast between the re-

sponse time on trial n, following two types of semi-congruent stimulus on trial

n-1, for example in a sequence involving a switch from task B to task A. In the

inhibited condition, the n-1 stimulus relevant to task A is incongruent with the

relevant stimulus (to task B). Thereafter, when switching to task A, responses are

slower. In the control condition, the n-1 stimulus relevant to task A is congruent

with the task B stimulus, leading to faster responses. Thus, the dimension inhibi-

tion e�ect may be observed on all sequences where trial n-1 is a semi-congruent

stimulus.

The trial 3 RT data was analysed with a 3-way ANOVA, with factors of se-

quence (ABA vs. CBA), Competitor rule suppression (CRS- vs. CRS+) and trial n

congruency (II vs. IC). As the CRS condition only occurs when trial 2 is semi-

congruent, all sequences with a fully-incongruent trial 2 were excluded from the
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analysis.

The analysis revealed a signi�cant main e�ect of sequence, F (1, 18738) =

122.37, p < .0001, η2p = 0.007, and a signi�cant main e�ect of trial n congru-

ency, F (1, 18738) = 8205.7, p < .0001, η2p = 0.305. The main e�ect of CRS

was not signi�cant, however, F (1, 18738) = 0.99, p = .321. Neither did CRS

interact with trial n congruency, F (1, 18738) = 1.30, p = .254, or sequence,

F (1, 18738) = 2.28, p = .131. There was, however, a sequence × trial n congru-

ency interaction, F (1, 18738) = 6.70, p = .009, η2p < .0001, which was discussed

previously. The three-way interaction was not signi�cant, F (1, 18738) = 0.13,

p = .717. These results are presented graphically in �gure 9.3.

9.1.6 Interim discussion

Overall, then, the simulation showed no evidence for a dimension inhibition e�ect,

despite other e�ects of trial n-1 congruency. This result would seem to support the

tentative empirical evidence from Meiran et al. (2010) and Astle et al. (2012) that

the source of the dimension inhibition e�ect is not backward inhibition, at least not

from the type implemented in the present model, nor can it be attributed merely

to a lateral inhibition e�ect.

However, the model predicted a somewhat di�erent trial n-1 congruency e�ect.

Instead of depending on whether the currently relevant stimulus (trial n) is con-

gruent with a previously irrelevant dimension, as in the CRS e�ect, it depends on

whether the currently congruent irrelevant dimension (on semi-congruent trials)

was performed on the previous task.

Consider the e�ect of whether the congruent irrelevant dimension on an IC

trial corresponds with the previously performed, or nonperformed, task. It is pos-

sible that this may have a direct e�ect on performance on that trial, and/or an

indirect (sequential) e�ect on subsequent trial. For example, if the congruent di-

mension matches the previously performed task, one might expect that if the task
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Figure 9.3: Analysis of competitor rule suppression e�ects in the model.

is inhibited when switching to a new task, the congruent dimension would evoke

less cross-task interference than if it corresponded with the previously nonper-

formed task. On the other hand, residual activation of the previously performed

task would also produce activation of that task’s response nodes, hence it might

amplify the facilitatory e�ect of the congruent irrelevant dimension. Given these

interactive components of the model, it is di�cult to arrive at a clear and unam-

biguous behavioural prediction, thus it is useful to examine the performance of the

model in these situations.
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9.1.7 Further analysis of sequential congruency e�ects

Given that this e�ect only applies to IC trials, and never (in the simulation) to the

�rst trial in a triplet, the design of the simulation a�ords four possible compar-

isons. If both trials 2 and 3 were IC, there would be four possible combinations

of whether the congruent trial corresponds with the previously performed task

(TRUE) or nonperformed task (FALSE): TRUE/TRUE, TRUE/FALSE, FALSE/TRUE

and FALSE/FALSE. However, if either or both of trials 2/3 is II, there are fewer con-

ditions. Here, we consider the e�ect of matching trial 2/3 congruent dimensions

to an immediately preceding task, on trial 3 RTs.

II/IC/IC, IC/IC/IC (i.e., trials 2 and 3 are both semi-congruent; upper far left,

upper mid right): A 3-way anova was conducted with factors sequence (ABA

vs. CBA), trial 2 previous task irrelevant-stimulus congruency, and trial 3

previous task irrelevant-stimulus congruency. There were highly signi�cant

main e�ects of sequence, F (1.9592) = 92.787, p < .0001, η2p = .0096, trial

3 previous task irrelevant-stimulus congruency, F (1.9592) = 387.20, p <

.0001, η2p = .0388, and trial 2 previous task irrelevant-stimulus congruency,

F (1.9592) = 4.33p = .038, η2p = .0005. Additionally, there was a signi�cant

sequence× trial 2 previous task irrelevant-stimulus congruency interaction,

F (1, 9592) = 4.52, p = .033, η2p = .0005. None of the other interactions

approached signi�cance. These results suggest that the n-2 repetition cost is

modulated by the previous task irrelevant-stimulus congruency on the �nal

trial only, and is thus a direct but not sequential e�ect, but with a very small

e�ect size.

IC/II/IC, II,II,IC (i.e., trial 3 only is semi-congruent; upper mid left, upper far

right): A 2-way ANOVA was conducted with factors sequence (ABA vs.

CBA) and trial 3 previous task irrelevant-stimulus congruency. There were

highly signi�cant main e�ects of sequence,F (1, 9592) = 74.29, p < .0001, η2p =
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.0077 and trial 3 previous-task irrelevant stimulus congruency, F (1, 9592) =

937.4, p < .0001, η2p = .0890. The sequence × trial 3 previous-task irrele-

vant stimulus congruency interaction approached signi�cance,F (1, 9592) =

2.87, p = .090.

IC/IC/II, II,IC,II (i.e., trial 2 only is semi-congruent; lower far left, lower mid

right): A 2-way ANOVA was conducted with factors sequence (ABA vs.

CBA) and trial 2 previous task irrelevant-stimulus congruency. The main ef-

fect of sequence was highly signi�cant, F (1, 9142) = 58.45, p < .0001, η2p =

.0064, while the main e�ect of trial 2 previous task irrelevant-stimulus con-

gruency and the interaction did not approach signi�cance.

Thus, in the model, for semi-congruent stimuli it matters which irrelevant stim-

ulus dimension is congruent and which incongruent, in that trials were performed

quicker when the dimension a�ording the previous task was congruent with the

currently task dimension, than trials where the congruent dimension was not per-

formed previously. However, this e�ect was largely independent of the n-2 repe-

tition cost.

The only detected e�ects in the simulation with η2p > .001 were the main e�ect

of sequence (i.e., n-2 repetition costs) and trial 3 previous task irrelevant stimu-

lus congruency (i.e., non-sequential e�ects). While trial 2 previous task irrelevant

stimulus congruency was statistically signi�cant for II/IC/IC sequences, indicat-

ing some sequential e�ect of congruency from the n-1 task, and some interactions

with n-2 repetition costs. These e�ects were of very small e�ect size and even if

the model predictions were correct, are unlikely to be detectable empirically.

9.1.8 Discussion

The model produces trial n response congruency e�ects consistent with the em-

pirical literature (e.g., Schneider, 2014; Longman et al., 2014). However, neither
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Figure 9.4: Simulation 9: n-2 repetition e�ects by congruency condition, split by
whether congruent dimension matches (TRUE) or does not match (FALSE) the task
dimension of the previous trial.

of those studies found a robust n-2 repetition cost, and nor did they explore the

potential interaction between the n-2 repetition cost and the response congruency

e�ect. While the model does predict such an interaction, the negligible e�ect size

makes detecting it empirically unlikely.

While congruency on any of the three trials a�ects the n-2 repetition cost, n-

1 congruency has the biggest e�ect on the n-2 repetition cost. This is consistent

with our intuitive understanding of the operation of the model: incongruency rep-

resents a source of con�ict, through a process of bottom-up activation, and greater

con�ict produces a larger backward inhibition e�ect. Importantly, in the model,

response congruency is mediated through the activation of output units and then

task demand units. At both output and task-demand unit level, incongruent pos-

sibilities are partly resolved through mutual lateral inhibition. However, con�ict

at the task-demand activation also triggers backward inhibition of task-sets.

There was no evidence for a dimension inhibition/CRS e�ect in the model.

Meiran et al. (2010) argued, on the basis of the non-interaction between their ob-
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served n-2 repetition cost and the CRS e�ect that the two re�ected di�erent in-

hibitory processes, and that conclusion is supported by these results. Meiran et al.

(2010) proposed that the target of the CRS e�ect is a speci�c task rule, while the

backward inhibition e�ect is the representation of the task more generally. In the

present model, task demand units represent sources of activation to all response

units for a particular task, and inhibition to all response units for competing tasks.

Thus, activating a single task demand unit both activates and inhibits mutually

congruent response units. Within the model, task demand units, conceptually,

seem closer to being an abstract representation of the task, rather than a speci�c

task implementation, which presumably would a�ect a speci�c response. While

the source of the CRS e�ect remains outside the model (i.e., it is unlikely to be due

to residual con�ict between task demand units, otherwise we might expect to see

evidence of the e�ect in the model) it is also unclear what type of representation is

the target of the CRS e�ect: whether it acts as another source of inhibition on the

task demand units (i.e., acting on task representations more generally) or a�ecting

speci�c task-demand response connections, such as by temporarily attenuating

connection weights. This remains an open theoretical question.

9.2 Simulation 10: Variable intertrial intervals

One of the key empirical �ndings suggesting that n-2 repetition costs are an in-

hibitory phenomenon, rather than merely re�ecting interference from a residually

active irrelevant task, comes from studies which manipulated the intertrial interval

(RCI, response-cue interval). When RCIs are manipulated blockwise, n-2 repeti-

tion costs tend to decrease with longer intervals (Koch et al., 2004; Meiran et al.,

2000). This �nding would be consistent with n-2 repetition costs being caused

either by residual activation (i.e., of the B task in an ABA sequence), or residual

inhibition (of the A task in the same sequence), which dissipates over time and is
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thus greater for shorter RCIs. Gade and Koch (2005), however, hypothesized that

if task inhibition is primarily a�ected by decay of the n-1 task, n-2 repetition costs

should mainly be a�ected by manipulation of the RCI preceding trial n (τ2)— that

is, task inhibition should decrease with longer intervals before the return to the

inhibited task. Alternatively, if task inhibition were mainly a�ected by con�ict

between co-active tasks, n-2 repetition costs should mainly be a�ected by the RCI

preceding trial n-1 τ1— that is, task inhibition should decrease with longer inter-

vals immediately before the trial that causes the ‘A’ task to be inhibited. In their

experiments, when τ1 and τ2 could each be either short (i.e., 0.1s) or long (1.4s or

1.9s in experiments 1 & 2 respectively), n-2 repetition costs were a�ected by τ1 but

not τ2. This �nding has been taken to support the view that n-2 repetition costs are

an instance of cognitive inhibition, and linked to intertrial con�ict generated on

the n-1 trial (Koch et al., 2010). As the present model represents an implementation

of the inter-task con�ict hypothesis, it should readily produce this same empirical

pattern. This was tested in simulations 10a and 10b.

9.2.1 General methods

In the model, the concepts of residual activation and inhibition are modelled by

two features. As in Gilbert and Shallice (2002), residual task activation is simulated

by a proportion of task demand unit activation (determined by the task demand

squashing parameter, here designated as φ), which is carred forward to subsequent

trials. Inhibition is caused by the residual activation of con�ict units, modelled by

a proportion of con�ict unit activation (con�ict squashing parameter, χ) carried

forward to subsequent trials. Thus, residual activation in the model, actr, resulting

from the previous trial, is calculated as:

actr =


acttask × φ for task demand units

actconflict × χ for con�ict units
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where acttask is the task demand unit activation, and actconflict is the �nal con�ict

unit activation, at the end of the preceding trial.

These calculations assume that RCI is constant and do not consider how the

decay of activation over time will be a�ected by RCI. In this simulation, we assume

that the equation calculates decay after unit time (τ = 1). More generally, decay

after time τ may be calculated as:

actr =


acttask × φτ for task demand units

actconflict × χτ for con�ict units

Thus, the model parameters which a�ect residual activation and its decay are the

task demand squashing parameter φ, the con�ict squashing parameter χ, and the

two values of τ used as short and long RCI.

9.2.2 Simulation 10a: Method

This simulation varied τ while maintaining φ and χ at their default values (0.2 and

0.5 respectively). Values of τ of 0.9 and 1.5 were used for the short and long RCIs,

respectively. The simulation was run on the four di�erent combinations of τ1 and

τ2 for 2,000 3-trial blocks (1,000 of each ABA and CBA sequences).

9.2.3 Simulation 10a: Results

The RTs for trial 3 of 2SW and ALT sequences are plotted in �gure 9.5. As can

be observed from the �gure, for a given set of parameters, ALT trials have longer

RTs than 2SW trials, hence all produce an n-2 repetition cost. The τ1 parameter

is represented by line colour: short/long values represented by black/grey lines

respectively. It is evident that longer values of τ1 produce a greater n-2 repetition

cost, in addition to producing longer RTs overall. The τ2 parameter is represented

by line style, with solid/dashed lines representing short/long values. Di�erent val-
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Figure 9.5: Simulation 10a: RTs for 2SW and ALT conditions. Black/grey lines
represent short/long values of τ1, while solid/dashed lines represent short/long
values of τ2. Error bars represent bootstrapped 95% con�dence intervals.

ues of this parameter have a relatively insigni�cant e�ect on either overall RTs or

n-2 repetition costs.

This graphical analysis was assessed quantitatively using a 3-way ANOVA with

factors of sequence×RCIn−1×RCIn. The main e�ect of sequence (n-2 repetition

costs) was signi�cant, F (1, 7301) = 23.09, p < .0001, as was the main e�ect

of τ1, F (1, 7301) = 213.88, p < .0001. However, the main e�ect of τ2 was not

signi�cant, F (1, 7301) = 0.83, p = .36. The e�ect of interest, that of RCI on n-2

repetition costs, was assessed by the two τ × sequence interactions. First the τ2×

sequence interaction was not signi�cant, F (1, 7301) = 1.13, p = .29. However,

the τ1×sequence interaction was highly signi�cant, F (1, 7301) = 6.71, p = .009.

Finally τ1×τ2 interaction, F (1, 7301) = 1.14, p = .29, was not signi�cant, niether

was the three-way τ1 × τ2 × sequence interaction, F (1, 7301) = 1.43, p = .23.

Thus, for these two values of τ , the model con�rms the hypothesis and reproduces
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Sequence Intercept β(τ1) β(τ2)
2SW 105.32 [104.59 – 106.04] -12.45 [-12.81 – -12.10] 0.14 [-0.20 – +0.49]
ALT 112.56 [111.81 – 113.31] -14.57 [-14.93 – -14.20] 0.14 [-0.22 – +0.49]

Table 9.1: Regression coe�cients [and 95% con�dence intervals] for RT for 2SW
and ALT blocks

the empirical �nding, that n-2 repetition costs are a�ected by the RCI preceding

the n-1 (τ2), but not the n (τ1), trial.

9.2.4 Simulation 10b: Method

To determine the respective e�ects of τ1 and τ2 on n-2 repetition coosts more gen-

erally, a further simulation was run in which the two were varied factorially, from

0.3 to 2.4 in increments of 0.3. For each of these 64 combinations, 1000 blocks of

three trials were run for both ALT and 2SW sequences.

9.2.5 Simulation 10b: Results

The mean RTs are represented as 3D plots in �gure 9.6a and 9.6b, and the result-

ing n-2 repetition costs are plotted in �gure 9.6c. Linear regression was used to

estimate the e�ect of τ1 and τ2 on trial 3 RT, for both 2SW and ALT sequences.

Estimates for β coe�cients for τ1 and τ2 (and their bootstrapped 95% con�dence

intervals) are given in table 9.1. Note that the con�dence intervals for β(τ1) do

not overlap, while both con�dence intervals for β(τ2) include the other estimated

τ2 coe�cient, and indeed are nearly identical. The estimated coe�cients yield the

following regression equations, which may be combined to calculate n-2 repetition

costs:
2SWRT = 105.22− 12.45τ1 + 0.14τ2

ALTRT = 112.56− 14.57τ1 + 0.14τ2

. . .

n-2 repetition cost = 7.34− 3.12τ1
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(a) (b)

(c)

Figure 9.6: Simulation 10b: E�ects on RT of varying RSI preceding n-1 and n trials
(τ1, τ2) factorially. 9.6a: 2SW RTs 9.6b: ALT RTs. 9.6c: n-2 repetition costs.

Importantly, the n-2 repetition cost is dependent on τ1, while the τ2 term is can-

celled out.

9.2.6 Discussion

The model’s predictions clearly parallel the behavioural pattern observed by Gade

and Koch (2005). Most critically, longer values of τ1 reduce RTs of both 2SW and

ALT trials. However, the former are reduced by less than the latter. This has the

e�ect of decreasing n-2 repetition costs. τ2 has no reliable e�ect on RTs. The

general increase in RTs for both 2SW and ALT trials for shorter values of τ1, but
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not τ1 is also observed by Gade and Koch (2005), and consistent with blockwise

RCI manipulations (e.g., Grange & Houghton, 2009; Koch et al., 2004).

This simulation demonstrates that a characteristic empirical pattern is pre-

dicted by the model with no changes to its architecture, beyond the assumption

that residual activation decays over time (and hence decays more with longer in-

tertrial intervals). It also suggests that the claim that backward inhibition is a

residual e�ect caused by con�ict occurring when switching away from a task is a

viable theoretical proposal, and that this does indeed predict the observed empiri-

cal pattern. In short, it validates the verbally speci�ed model of Koch et al. (2010),

demonstrating that the theoretical proposals are indeed consistent with the data.

9.3 General Discussion

This chapter presents two simulations that extend the predictions of the backward

inhibition model, in situations that a�ect task con�ict in the model. Both manip-

ulations of response congruency and intertrial intervals a�ect the n-2 repetition

cost, when the manipulation increases con�ict on the n-1 trial. In the case of sim-

ulation 10, this prediction matches the empirical results observed in the study of

Gade and Koch (2005), and thus o�ers empirical validation of the model.
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Chapter 10

Strategic Adaptation of Backward

Inhibition

Thus far, it has been assumed that one general task switching model

can be applied to both two and three task switching paradigms. How-

ever, Grange et al. (2013) argued that classic empirically observed two-

and three-task switching e�ects (i.e., n-1 switch and n-2 repetition

costs) rarely occur within the same experimental block. One possibil-

ity is that humans strategically adapt task switching to optimise for

the task context: speci�cally, whether immediate task repeats occur.

This chapter examines the current empirical evidence for such strate-

gic adaptation, and moves toward a model of strategic adaptation via

a parameter tuning process of the strategic adaptation system. It is

demonstrated that tuning any of the three con�ict-system parameters

would produce such an adaptation e�ect, and that cumulative con-

�ict may be an appropriate environmental cue to trigger such tuning.

However, a learning algorithm which produces stable behaviour over

time in contexts where tasks may either repeat or not, has not been

established.
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10.1 Introduction

One question so far unaddressed is the extent to which backward inhibition may

be regulated in di�erent situations. There is some evidence that backward inhi-

bition may be enhanced in situations where it is bene�cial, such as in switching

paradigms where tasks never repeat, or reduced in situations where it is counter-

productive, such as where tasks repeat frequently (Philipp & Koch, 2006).

Theoretically, this question also has a bearing on the locus of task inhibition.

While there is robust empirical evidence for both n-1 switch costs and n-2 rep-

etition costs in a range of behavioural paradigms, Grange and colleagues have

favoured a model which does not produce these two phenomena simultaneously.

Instead, in certain advantageous situations, such as where tasks continually switch

and do not repeat, task-sets may be self-inhibitory, producing n-2 repetition costs

instead of switch costs (Grange et al., 2013; Grange & Juvina, 2015).

In the development of the present model, we have taken as a basic empirical

constraint that the model must produce both n-1 switch costs and n-2 repetition

costs. It has been previously demonstrated that within certain parameter con-

straints, the model produces both these behavioural e�ects. However, the model

is also capable of producing behaviour that does not meet these constraints. For

example, if the weight of the con�ict-task demand unit inhibitory connections is

attenuated, or set to zero, the size of the n-2 repetition cost decreases, albeit with

an increase to the magnitude of the n-1 switch costs (cf. �gure 5.3). To the extent

that we have accurately modelled the cognitive mechanisms of interest, it has been

an open question how a naturalistic cognitive system, such as the human mind,

sets its control parameters in such as way as to produce both empirical costs. One

possibility which has been explored by the empirical literature is whether there is

an adaptive element to backward inhibition – that is, whether the degree of back-

ward inhibition applied in a given context is adapted to provide an advantage, such

as more e�cient cognitive processing, or leaving the system in a ‘ready state’ such
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that it produces quicker and more accurate responses in the current context. In

this chapter, we will refer to such adaptation of cognitive mechanisms to a given

context as ‘strategic adaptation’.

The notion that some strategic adaptation takes place has a fair degree of em-

pirical support. Some studies have shown that n-2 repetition costs occur when n-1

repeats are possible (Arbuthnott, 2005), while others have shown that the n-2 rep-

etition cost is signi�cantly reduced in such circumstances (e.g., Philipp & Koch,

2006), with yet others suggesting that consistent n-1 switch and n-2 repetition

costs tend not to occur in the same block of trials (see Philipp & Koch, 2006, for

a review). Whether the degree of strategic adaptation observed empirically is suf-

�cient to support the modelling assumption of Grange and Juvina (2015) — that

self-inhibition of task sets is the mechanism for producing n-2 repetition costs,

but itself precludes n-1 switch costs — is unclear, and the exact mechanisms and

conditions for producing such adaptation, to date, remain unspeci�ed.

In summary, The possibility of strategic adaptation of a backward inhibition

mechanism to the structure of the task environment is an intriguing suggestion,

but the cognitive system responsible for such strategic (re)con�guration remains

to be speci�ed in theoretical terms, and empirical support remains somewhat in-

conclusive. The occurrence of both n-2 repetition costs and n-1 switch costs within

the same cognitive mechanism is a central criterion for assessing computational

models of task switching.

10.2 Empirical studies of strategic adaptation

The occurrence of n-2 repetition costs in behavioural paradigms that also allowed

n-1 task repeats, was reviewed by Philipp and Koch (2006). There is evidence that

the backward inhibition process is largely automatic, and occurs even when par-

ticipants should know it will be disadvantageous. Thus, Mayr and Keele (2000)
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found task inhibition occurred even for pre-planned sequences, such as when the

participant knew they would return to a task after a single intervening trial.

A number of three-task switching studies have been conducted where the pres-

ence of immediate task repeats was included (Arbuthnott & Frank, 2000; Arbuth-

nott & Woodward, 2002; Mayr & Keele, 2000; Mayr, 2001, 2002; Dreher & Berman,

2002). Of these studies, three found both n-1 switch costs and n-2 repetition costs

(Mayr, 2001, 2002; Mayr & Keele, 2000). Mayr and Keele (2000) reported experi-

ments both with (exp. 4) and without (exp. 1) task repeats, �nding n-2 repetition

costs for both. However, no between-experiment comparison on the size of the

n-2 repetition cost was reported. One study found n-2 repetition costs but no

signi�cant n-1 switch costs (Arbuthnott & Frank, 2000), while another found n-

2 repetition costs but did not report potential n-1 switch costs (Dreher & Berman,

2002). A further study found reliable n-1 switch costs but unreliable n-2 repetition

costs (Arbuthnott & Woodward, 2002).

More systematically, Philipp and Koch (2006) conducted two experiments which

compared n-2 repetition costs for blocks with repeats vs. no repeats. In a �rst ex-

periment, using a between-subjects design in which the presence of immediate

repetitions in the sequence of tasks was either allowed or disallowed, ANOVA

results indicated a signi�cant main e�ect of sequence, indicating an overall n-2

repetition cost, and importantly, a signi�cant sequence× group interaction, indi-

cating a signi�cant di�erence in n-2 repetition costs between the groups. Post-hoc

t-tests indicated n-2 repetition costs were signi�cant for the no-repetition group

but not the repetition group for RTs, while error rates showed the same trend but

did not reach signi�cance. No e�ect size statistics were reported.

A second experiment used a within-subjects design with alternating repetition

vs. no-repetition blocks. The block number (1/2 vs. 3/4 vs. 5/6 vs. 7/8) was used

as a factor, to account for gradual adaptation over the course of the experiment,

to determine whether adaptation occurs rapidly for each block (i.e., switching be-
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Figure 10.1: Experiment 2 from Philipp and Koch (2006): Change in n-1 switch
costs and n-2 repetition costs over the course of 8 blocks, as a result of alternat-
ing between repetition vs. no-repetition blocks. Reprinted from Philipp and Koch
(2006).

tween di�erent adaptations for repeating vs. non-repeating blocks), or settles to a

compromise setting for both repetition and non-repetition blocks. The empirical

data from Philipp and Koch (2006) experiment 2 (�gure 10.1) shows that after adap-

tation occurred, n-1 switch costs were signi�cant in all blocks, although they were

signi�cantly larger in blocks 1/2 (as indicated by the signi�cant block× sequence

interaction). While n-2 repetition costs were signi�cantly larger for blocks with

no repetitions than repetitions (the sequence×block type (repetitions vs. no repe-

titions) interaction), and n-2 repetition costs increased over a number of blocks

(sequence × block type × block number), separate analyses by block number

showed that n-2 repetition costs were only di�erent for repetitions/no repetitions

in blocks 1/2, with no signi�cant block type× sequence interaction in blocks 3/4,

5/6, or 7/8, suggesting n-2 repetition costs did occur even after adaptation had

taken place, and that after adaptation, the presence of repetitions did not a�ect

n-2 repetition costs.

Making sense of their results, Philipp and Koch (2006) suggested dual mecha-

nisms for resolving interference in task switching: Task activation and task inhi-

bition. Adaptation to the presence of task repeats consists of either increasing task
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activation (where repeats are possible) or inhibition (where repeats do not occur).

This explanation is a reasonable high-level description of the proposal by Grange

and Juvina (2015): task representations become more highly active after their exe-

cution where repeats are possible, while they self-inhibit in contexts where repeats

do not take place. However, as argued above, this conceptual explanation does not

necessarily imply that a model operating in this manner would �t the empirical

data. In particular, the data from Philipp and Koch (2006, experiment 2) suggests

that both n-1 switch costs and n-2 repetition costs are robust to the presence of

task repetitions once adaptation has occurred, a �nding which is problematic for a

model which produces exclusively either n-1 switch costs or n-2 repetition costs.

In addition, rather than proposing two mechanisms for adaptation, it would be

more parsimonious to account for this e�ect with a single mechanism. For exam-

ple, adapting the weight of con�ict-task demand connections and thus the strength

of inhibitory biasing, might plausibly produce both e�ects, given their appropriate

conditions. It is notable that over the course of 8 blocks (�gure 10.1), in repetition

blocks the n-1 switch cost and n-2 repetition cost behave as, in simulation 6d, as

if adaptation were occurring by increasing the weight of inhibitory con�ict-task

demand unit connections. In this case, n-1 switch costs become smaller while n-

2 repetition costs become larger, as a result of alternating with no-repeat blocks.

The current empirical evidence for strategic adaptation presents a clear picture,

although it relies on results from only a single study. Replication of these empir-

ical results is, therefore, desirable. One outstanding empirical question concerns

whether the adaptation taking place is truly strategic (i.e., applies equally to all

tasks) or whether it is task speci�c. Answering this question could be addressed

with an experiment where di�erent tasks repeat with varying rates. In such a situ-

ation, does the presence of repetitions of task A only lead to reduced n-2 repetition

costs for task A only, or for all tasks?
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10.3 Simulation 11: Strategic adaptation as param-

eter tuning

To begin the process of modelling strategic adaptation, let us �rst assume that

such an adaptation to the presence, or absence, of repeat trials, such as described

previously, may be accomplished via a single mechanism. We have also previously

noted that by modulating the weight parameter in simulation 6d (chapter 6), which

controls the level of backward inhibition applied to task demand units, the model

may produce smaller (or negative) n-2 repetition costs and greater switch costs, or

vice-versa. Indeed, as noted above this pattern is similar to the adaptation seen in

experiment 2 of Philipp and Koch (2006).

The purpose of this set of simulations is to explore which, if any, single model

parameters might produce the empirically observed pattern, if they were the sub-

ject of a strategic adaptation process. To achieve this, we re-ran the analysis from

simulation 6d (chapter 6), which used symmetric switching, and varied three pa-

rameters a�ecting the backward inhibition system, bias, gain, and weight. Param-

eter settings were varied between the following limits: gain: 0 to 98; bias: -42 to 0;

weight: -21 to 0.

First, in simulation 11a bias and gain parameters were kept at default values

(gain = 77, bias = -9) to examine e�ect that varying task demand weight has on

switch costs and n-2 repetition costs (�gure 10.2a). When weight is varied over a

small range (-15 to 0) the model reproduces the empirical pattern. That is, at small

weights (weight close to 0) the model produces large switch costs but negligible

n-2 repetition costs. When the weight becomes stronger (weight approaches -15)

switch costs are reduced and n-2 repetition costs increase. Thus, if the weights of

inhibitory connections between con�ict and task demand units were attenuated

in response to the presence of repeat trials, it is plausible that the model would

produce results similar to those reproduced in �gure 10.1.
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(a) Switch cost and n-2 repetition cost (model cycles) when inhibitory weight is varied.

(b) Aggregate RTs for repetition (1SW, 0SW) and no-repetition (2SW, ALT) conditions
when inhibitory weight is varied.

Figure 10.2: Simulation 11a, varying weight on horizontal axis. (gain = 77; bias =
-9; blocksize = 1500.)
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What would prompt such an adaptation? One possibility is that the human

cognitive system tries to optimise performance, by decreasing RT or error rate.

This may occur if a di�erent weight were optimal for repeat and no-repeat tri-

als. In our simulations, repeat trials are considered to be those with an immediate

repetition in the trial and its two preceding trials — the 0SW and 1SW conditions

— while no-repeat trials include 2SW and ALT sequences. RTs are plotted aggre-

gated for repetition and no-repetition trials in �gure 10.2b, and individually per

condition in �gure 10.3. Note that the optimal (i.e., lowest RT) weight setting for

repetition and non-repetition conditions is di�erent, with lowest RT obtained for

repetitions around -3.5, and the lowest RT for non-repetitions at -9.5. The reason

for this is illustrated by �gure 10.3, which shows that 0SW trials are optimised

with a weight of zero, while 1SW and 2SW trials both show optimal performance

between -9 and -15. ALT trials are optimised around -9. Thus, including 0SW se-

quences in a switching block would have the e�ect of altering the weight setting

required to give minimised RT performance, with the degree of shift in idealweight

dependent on the proportion of 0SW trials. Note that in human participants, it is

also plausible that 0SW trials may have a disproportionate e�ect on adaptation, as

they may be more salient than the other conditions (which all involve a switch of

task).

The previous analysis demonstrates that adjustment of the weight parameter

represents a viable adaptation to deliver optimised (i.e., minimised RT) perfor-

mance. Next, a similar analysis was carried out for systematically varying the bias

(simulation 11b) and gain (simulation 11c) parameters, to establish what e�ect, if

any, these have on performance.

The graphs shown in �gure 10.4 (simulation 11b) illustrate that adjusting the

gain parameter over a portion of its range has a similar trade-o� of switch costs and

n-2 repetition costs. In �gure 10.4a, a gain of 25 produces large switch costs and

negligible (slightly negative) n-2 repetition costs, while a gain of 75 (the model
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Figure 10.3: Simulation 11a, varying weight. RTs individually per condition. Pa-
rameters as in �gure 10.2.

default) produces smaller switch costs, and substantial n-2 repetition costs (but

still smaller than the switch costs). Examining �gure 10.4b suggests that a low

gain value of approximately 45 is optimal for repetition sequences, while a gain of

between 50 - 60 is optimal for no-repetition sequences. While, the irregular non-

monotonicity of the no-repetition RT would not necessarily provide an ideal signal

for adapting parameter settings, the range of optimal settings (i.e., 45 to 60) still

matches the empirical data, when assessed graphically. Thus, manipulation of the

gain parameter is also a viable means of adapting task inhibition to the sequential

structure of the task block.

Finally, �gures 10.5a and 10.5b illustrate the varying of the bias parameter on

the horizontal axis (simulation 11c). Similarly to the manipulation of gain, adjust-

ing bias over a portion of its range produces the pattern of costs observed in the

empirical data, that of large switch costs and negligible or negative n-2 repetition

costs (e.g., bias = -40 to -20) to smaller switch costs and signi�cant n-2 repetition
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(a) Switch cost and n-2 repetition cost (model cycles) when gain is varied.

(b) Aggregate RTs for repetition (1SW, 0SW) and no-repetition (2SW, ALT) conditions
when gain is varied.

Figure 10.4: Simulation 11b, varying gain on horizontal axis. (bias = -9; weight =
-10.5; blocksize = 500.)
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costs (bias = -5). Examining �gure 10.5b suggests that very large negative bias of

around -40 to -28 (functionally, disabling the task inhibition system) produces op-

timal repetition RTs, while a bias of -11 produces optimal non-repetition RTs. The

respective costs produced for these parameter settings are also a qualitative match

to the empirical pattern in �gure 10.1.

In sum, manipulating bias, gain and weight all o�er a viable means of adapting

or con�guring the task inhibition system appropriate to sequences containing ei-

ther repeating, or non-repeating trials. The RTs obtained for each type of sequence

suggest that if the cognitive system adapted performance by adjusting any of these

three parameters to minimise RT, the e�ects on n-1 switch and n-2 repetition costs

would be similar to the adaptation observed in the empirical data.

For modelling strategic adaptation of task inhibition, these results demonstrate

that a mechanism for implementing adaptation, of the type observed in the em-

pirical data, is not speci�c to a particular arbitrarily selected parameter within the

model, but relates to the degree of biasing exerted by the backward inhibition sys-

tem in general. Manipulating any of the three parameters, broadly speaking, has a

functionally equivalent e�ect of increasing or decreasing the modulatory in�uence

of con�ict units on task demand units, presenting a variety of ways of achieving

an appropriate setting for achieving optimal (i.e., fastest) performance.

In order to be a plausible mechanism for such strategic adaptation, however,

it remains to be demonstrated that this adaptation can be learned by the model

as the result of exposure to di�erent block types (i.e., the presence or absence of

repeats in the task sequence.)

10.4 Exploring potential cues for adaptation

Simulation 11 has demonstrated that by optimising performance to RT, the model

can produce the empirically observed adaptations. However, rather than an ex-
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(a) Switch cost and n-2 repetition cost (model cycles) when bias is varied.

(b) Aggregate RTs for repetition (1SW, 0SW) and no-repetition (2SW, ALT) conditions
when inhibitory biast is varied.

Figure 10.5: Simulation 11c, varying bias on horizontal axis. (gain = 77; weight =
-10.5; blocksize = 500.)
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ternally observed metric of performance, such as reaction time or error rate, such

a mechanism would be cognitively more plausible if it used a signal internal to

the model on which to base adaptation. Some salient possibilities relate to con�ict

— for example, the �nal level of con�ict at the end of each trial, or the cumula-

tive degree of con�ict experienced over the duration of the trial. The next step in

developing a strategic adaptation mechanism, therefore, is to systematically exam-

ine the relative levels of con�ict typical for di�erent types of sequence, within the

model, and implement a model which adjusts weights (or some other parameter)

on the basis of this con�ict. Assuming that con�ict is monotonic with RT, such an

adaptation would involve making weights larger in response to more con�ict, and

attenuating weights in response to less con�ict.

10.4.1 Simulation 12a: Final trial con�ict as a cue for strate-

gic adaptation

The aim of simulation 12a is to investigate a link between the within-model vari-

able of con�ict (operationalised as �nal trial con�ict, as a proxy for cumulative

con�ict which is harder to measure) and reaction time. If the values correlate, as

seems plausible, then con�ict might also plausibly serve as a a signal for training

a mechanism for strategic adaptation. Such a model would adjust any one of three

parameters — bias, gain, or the weight of con�ict-task demand connections — such

that following high con�ict trials (i.e., task switches) the biasing in�uence of task

inhibition is increased, and following low-con�ict trials, the biasing in�uence is

decreased.

Are there systematic di�erences between sequences in �nal trial 3 con�ict, as

there are in RT? Figure 10.6 suggests that the type of sequence is indeed the source

of signi�cant di�erences in total �nal trial con�ict. However, the magnitude of the

di�erences is small, and it is doubtful whether such a small di�erence could pro-

duce signi�cant adaptation in the model. Additionally, the ordering of sequences
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Figure 10.6: Simulation 12a: Total con�ict by sequence. Error bars represent 95%
con�dence intervals

according to �nal con�ict does not correspond with ordering according to RT. In

particular, 0SW sequences generate the greatest amount of �nal trial con�ict, even

though the �nal trial is a repeat trial. This may be due to con�ict generated be-

tween irrelevant response units: e.g., for the 0SW sequence BAA, con�ict gener-

ated between BC tasks is irrelevant to the performance of task A, and in fact a

large amount of irrelevant task con�ict would facilitate task A performance.

10.4.2 Simulation 12b: Task speci�c con�ict as a cue for strate-

gic adaptation

Given the conclusions from simulation 12a, a more accurate measure of con�ict

may be relevant task con�ict, i.e., on the AB con�ict detecting unit only. Simulation

12b looks at con�ict a�ecting speci�c con�ict units, rather than total con�ict. Here,

therefore, con�ict is considered as speci�c to a particular task, rather than a global

variable.

In this simulation, all switches are symmetric and unidirectional — i.e., all 0SW

sequences are BAA, all 1SW are BBA, all 2SW are CBA and all ALT are ABA. There-

fore, con�ict between tasks A and B (i.e., the AB con�ict unit, unit 0 in the model)

is the crucial unit for managing relevant-task con�ict. The �nal trial con�ict for
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trial 3, summed for all units, is plotted per sequence in �gure 10.7a. Additionally,

con�ict for speci�c con�ict units is plotted in �gures 10.7b (unit AB), 10.7c (unit

BC), and 10.7d (unit CA). Although di�erences in total con�ict are the reverse of

reaction times, with greater con�ict for repeating sequences, AB con�ict follows

the reverse trend, with higher con�ict on non-repeating sequences. Why, then,

does total con�ict not follow the same trend? The answer follows from the �-

nal activation of units BC and CA, where di�erences in activation per sequence

are greater than the di�erences observed in the activation of the AB unit (which

should be sensitive to the increased con�ict associated with the ABA alternation

in the ALT condition). This �nding suggests that �nal trial con�ict, calculated on

the 3rd trial of each triplet, is not a good analog for a measure of e�ciency such

as reaction time.

One further possibility is worthy of consideration. Rather than restricting the

adaptation to �nal trial con�ict on the third trial of each block, which would be ex-

cessively arti�cial, let us consider con�ict calculated on all trials. Final trial con�ict

for all trials is therefore plotted in �gure 10.8. Although this means of calculating

con�ict produces di�erences per sequence, for speci�c con�ict units, overall con-

�ict summed for all three units produces similar results when summed over 3 trials,

compared to the �nal trial: the average con�ict for repeating sequences is slightly

higher than for non-repeating sequences. However, this represents an extremely

small di�erence.

In conclusion, �nal-trial con�ict does not provide a compelling analog to the

behavioural measure of reaction time. Thus, �nal-trial con�ict is unlikely to be a

source for an adaptation signal.
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(a) Total con�ict (b) AB con�ict

(c) BC con�ict (d) CA con�ict

Figure 10.7: Simulation 12b: Con�ict by sequence type. Con�ict is generally higher
for non-repeating sequences than repeating sequences, except 0SW con�ict is high
in 10.7d.
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(a) Total con�ict (b) AB con�ict

(c) BC con�ict (d) CA con�ict

Figure 10.8: Simulation 12b: Con�ict by sequence. Repeats �gure 10.7 but calcu-
lates total con�ict from all trials, rather than just at end of 3rd trial.
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(a) (b)

Figure 10.9: Simulation 12c: Total con�ict and RT by sequence

10.4.3 Simulation 12c: Cumulative con�ict as a cue for strate-

gic adaptation

Simulation 12c, like simulation 12a, aimed to �nd a link between a within-model

variable and reaction time. Simulation 12a did not �nd a persuasive link between

�nal-trial con�ict and reaction time. One explanation for the absence of such a

link is provided by looking at the di�erence between trials at di�erent ends of the

RT distribution: long RT trials compared with short RT trials. On long RT trials,

�nal-trial con�ict was low because the model had longer to resolve the con�ict. On

short RT trials, �nal-trial con�ict was low because a response could be generated

without a large degree of between-task interference.

Thus, instead of looking at �nal trial con�ict, simulation 12c instead examined

cumulative con�ict. This was calculated as the cumulative sum of con�ict on all

model cycles. Thus, if activation of con�ict units were static, more cumulative

con�ict would be observed on long RTs compared with short RTs. Total cumulative

con�ict (summed for all con�ict units) per sequence type is plotted in �gure 10.9b.

This may be compared with reaction times (�gure 10.9a). Visual comparison of the

two suggests that total con�ict may indeed be a suitable analog for reaction time.
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It should be emphasised at this point that there is no empirical evidence that

suggests cumulative con�ict (or �nal-trial con�ict, for that matter) is tracked or

serves as the basis for any adaptation by the human cognitive system. In that re-

spect, these simulations have been somewhat exploratory. The aim of modelling

strategic adaptation, however, is not to provide a de�nitive cognitive theory of the

behavioural phenomenon, but to demonstrate that such an adaptation could plau-

sibly take place on the basis of information contained within the model. Although,

at this stage, we have not adapted the model to include such features, the necessary

computational units for tracking cumulative con�ict, such as accumulator units,

are not new to this type of model, and have often been used for thresholds (i.e.,

a response is deemed to have been made when a certain amount of activation, or

evidence, has been accumulated; see, e.g., Ratcli� & Rouder, 1998).

10.5 Towards a model of strategic adaptation

In the following simulations, the model was run on large blocks of trials, where

the sequence of tasks was generated randomly but with the constraint that imme-

diate repeats were either allowed, or not allowed, depending on condition. If the

assumptions that strategic adaptation occurs on the basis of a con�ict signal avail-

able to the model, and that this adaption acts by adjusting the weight (or another

parameter of the con�ict monitoring system) are correct, exposing the model to

large blocks of trials either containing, or not containing, immediate task repe-

titions, should cause di�erent adaptations. Speci�cally, following repeat blocks,

we should expect the weight parameter to settle at approximately -3. Following

no-repeat blocks, it should settle between -4 and -7. This is because these values

represent local RT minima when the weight parameter is varied (cf. �gure 10.2a).

The following simulations detail di�erent versions of the learning algorithm

and di�erent parameter settings. All parameters were hand-set. While this ap-
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proach to parameter setting does not rigorously demonstrate that the behaviour

of the model is universal, the aim at this stage was to demonstrate that with certain

parameters, it was at least possible for the model to achieve di�erent adaptations

in the weight parameter based on cumulative con�ict.

10.5.1 Simulation 13a

This simulation introduced a strategic adaptation algorithm into the model. After

each trial, this algorithm adjusted theweight parameter of the model in response to

changes in the cumulative con�ict, compared to the trial before. On the �rst trial,

the model made an adjustment to the weight parameter in a random direction. On

subsequent trials, if the level of con�ict was greater than on the previous trial,

the model adjusted the weight parameter in the opposite direction to the previous

adjustment. If the con�ict was less than on the previous trial, it adjusted the weight

parameter in the same direction as the previous adjustment.

Additionally, the algorithm contained a momentum term aiming to minimise

the adaptation to short term trial-to-trial di�erences in con�ict, and instead keep

the model adapting to longer term trends.

∆weightn =


ρ∆weightn−1 + λ(Cn−1 − Cn) if ∆weightn−1 ≥ 0

ρ∆weightn−1 + λ(Cn − Cn−1) if ∆weightn−1 < 0
(10.1)

Cn is the cumulative con�ict on this trial, Cn−1 is the cumulative con�ict on the

previous trial, and λ is a learning rate parameter (set to 0.01). The starting weight

(i.e., weight0) was -3.0.

Two versions of the simulation were run for 300 trials (�gure 10.10) and 800 tri-

als (�gure 10.11). Of these graphs, 10.10a plots the weight parameter per epoch (in

this case, averaged over blocks of 300 trials). Error bars represent 95% con�dence

intervals. In most cases, the model initially sharply adjusts weights downwards

from their starting value of -3.0. This is, as previously, because the algorithm aims
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to minimise di�erences in con�ict between successive trials, and weights closer

to zero produce bigger between-trial di�erences in con�ict (although less absolute

levels of con�ict overall). In this instance, the model adapted di�erently to repeat-

ing blocks than non-repeating blocks, although the �nal weights were signi�cantly

di�erent to those expected based on the minima in the RT curve (�gure 10.2b), with

�nal weights approximately -11 and -13 for repeating and non-repeating blocks re-

spectively. However, in a second run with 800 trials per block (�gure 10.10b), the

model did not adapt di�erently to the two types of block, suggesting that this result

is less than robust.

Figure 10.10b plots the changing weight parameter for individual models, al-

lowing a visual representation of whether the previously described averages are

being driven by outlier models. In this case, it is visually evident that despite dif-

ferences between average weights over time, there is signi�cant overlap for in-

dividual models between the two sequences. Figure 10.10c plots RTs and costs

per epoch. If the model were adapting to repeating and non-repeating blocks as

expected, we would expect switch costs to increase and n-2 repetition costs to de-

crease for repeating blocks, and vice-versa for non-repeating blocks. While there

is some evidence of this pattern, it is not robust over time, and is not evident when

the simulation is run with more models (�gure 10.11). Finally, �gure 10.10d plots

con�ict over time, illustrating that the model is indeed reducing con�ict for each

sequence. However, the reduction in con�ict does not appear to be producing the

expected adaptation.

10.5.2 Simulation 13b

In this simulation, the learning algorithm was further adapted, in an aim to im-

prove the model’s adaptation to longer-term trends in con�ict, rather than speci�c

trial-to-trial changes, which tend to produce more negative weights over time.

Rather than comparing current-trial con�ict with previous trial con�ict, therefore,
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(a) Weight as a function of epoch (averaged
over models).

(b) Weight as a function of epoch for indi-
vidual models.

(c) RTs and costs per epoch. (d) Con�ict over time.

Figure 10.10: Simulation 13a: Adaptation by reducing cumulative con�ict. (λ =
0.005, ρ = 0.8, 10 × 300 trial blocks, starting Con�ict-TD weight = -3.0.)

the algorithm compares with a weighted average of a number of previous trials

con�ict:

∆weightn =


ρ∆weightn−1 + λ(Chn−1 − Cn) if ∆weightn−1 ≥ 0

ρ∆weightn−1 + λ(Cn − Chn−1) if ∆weightn−1 < 0
(10.2)
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(a) Weight as a function of epoch (averaged
over models).

(b) Weight as a function of epoch for indi-
vidual models.

(c) RTs and costs per epoch. (d) Con�ict over time.

Figure 10.11: Simulation 13a: Adaptation by reducing cumulative con�ict. (λ =
0.0025, ρ = 0.95, 10 × 800 trial blocks.)

Cn is the cumulative con�ict on this trial, Chn−1 is the historical con�ict, a value

with is iteratively updated slowly for each trial, according to the equation:

Chn =
ω(Chn−1 + Cn)

ω + 1
(10.3)

These simulations did suggest separate adaptation to repeating and non-repeating

blocks (see �gs. 10.12a, 10.13a, 10.14a), which did produce di�erences in switch and

n-2 repetition costs in some simulations (�gs. 10.12c, 10.13c, 10.14c), although in

others the di�erences in n-2 repetition costs, the main empirically observed e�ect,
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(a) Weight as a function of epoch (averaged
over models).

(b) Weight as a function of epoch for indi-
vidual models.

(c) RTs and costs per epoch. (d) Con�ict over time.

Figure 10.12: Simulation 13b: Adaptation by reducing con�ict (λ = 0.0020, ρ =
0.80, ω = 0.80, 50 models, 2,000 trials each, starting Con�ict-TD weight = -5.0.)

was less clear (e.g., �g. 10.12c), and again the weight parameter did not reach �nal

stable values.

Additionally, when the simulation was run with more models (40) for signi�-

cantly longer blocks of trials (10,000 trials, �gure 10.15), the results suggested that

over this duration, weights did not stabilise, and instead results from di�erent mod-

els adapting to either repeating or non-repeating sequences di�used su�ciently

to eliminate average di�erences between the two groups of models (�gs. 10.15a,

10.15b).
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(a) Weight as a function of epoch (averaged
over models).

(b) Weight as a function of epoch for indi-
vidual models.

(c) RTs and costs per epoch. (d) Con�ict over time.

Figure 10.13: Simulation 13b: Adaptation by reducing con�ict (λ = 0.0005, ρ =
0.95, ω = 0.80, 20 models, 6,000 trials each, starting Con�ict-TD weight = -5.0.)

In conclusion, simulation 13b suggests that the model with the strategic adapta-

tion mechanism does adapt di�erently to repeating, than non-repeating sequences.

While these di�erences could reach statistical signi�cance (as evidenced by the

non-overlapping 95% con�dence intervals) this adaptation was not robust, and for

a population of models, there was substantial overlap between the adaptations of

the repeating and non-repeating groups.
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(a) Weight as a function of epoch (averaged
over models).

(b) Weight as a function of epoch for indi-
vidual models.

(c) RTs and costs per epoch. (d) Con�ict over time.

Figure 10.14: Simulation 13b: Adaptation by reducing con�ict (λ = 0.0005, ρ =
0.95, ω = 0.80, 30 models, 6,000 trials each, starting Con�ict-TD weight = -5.0.)

10.6 Discussion

The strategic adaptation simulations presented in this chapter produced mixed re-

sults. While certain simulations did produce separate adaptations for repeating

and non-repeating sequences, by making small adjustments to the weight param-

eter, this adaptation did not stabilise over time, but instead continued to grow in

magnitude. In a human cognitive system, it is highly unlikely that such an unsta-

ble adaptation would occur, and indeed in the only systematic empirical study, the

e�ects did appear to stabilise over the course of multiple blocks (�gure 10.1). While
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(a) Weight as a function of epoch (averaged
over models).

(b) Weight as a function of epoch for indi-
vidual models.

(c) RTs and costs per epoch. (d) Con�ict over time.

Figure 10.15: Simulation 13b: Adaptation by reducing con�ict (λ = 0.00035, ρ =
0.97, ω = 0.90, 40 models, 10,000 trials each, starting Con�ict-TD weight = -5.0.)
Note that with very long blocks, models have di�used too much and results start
to overlap, e.g., after 5,000 trials.

the model operated by minimising di�erences in cumulative con�ict, and it was

anticipated that this would lead to the weight parameter for each model settling

on a value producing the lowest con�ict for the type of sequence each model was

performing, re�ected by local minima in RTs, in practice this did not occur. Addi-

tionally, strategic adaption did not prove to be robust. When the model was run for

large numbers of models or over long blocks of trials, the adaptations of individ-

ual models di�used, such that the adaptations of the group trained on repeating
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sequences overlapped with those of the non-repeating group. This di�usion in-

creased over time, leading to a reduction in di�erences in behavioural measures

between the two groups.

One possible cause of this failure to capture strategic adaptation is that the dif-

ferences in cumulative con�ict between repeating and non-repeating sequences

did not provide a strong enough signal for the models to make stable adaptations

and settle on optimal settings. Instead, adaptations drifted akin to a random-walk.

Another possibility is limitations in the speci�c strategic adaptation algorithm

used. This algorithm attempted to minimise di�erences in con�ict between tri-

als. One way of achieving this was to make the weight parameter very negative,

which does minimise di�erences in con�ict between di�erent types of trial, even

though the absolute level of con�ict is higher. Despite a number of features of the

algorithm (i.e., addition of a momentum and an averaged historical con�ict term)

intended to allow the mechanism to adapt to longer-term trends in the changes of

con�ict, it may still have been too sensitive to trial-by-trial changes in con�ict such

as those produced from moving between a 0SW trial and a 2SW trial. This may

have been responsible for the model’s lack of stability. One approach to a more

successful strategic adaptation mechanism would be to devise some algorithm ca-

pable of minimising absolute con�ict over a block of trials, rather than changes in

con�ict.

Nevertheless, in some simulations the model did produce adaptations su�cient

to produce di�erences in n-2 repetition cost, the key empirical e�ect, between re-

peating and non-repeating sequences. While these e�ects were not fully robust,

either over time or across di�erent models, it should be noted that the empiri-

cally observed strategic adaptation e�ect may be similarly non-robust. Of multi-

ple studies, only a certain proportion have reported di�erences in n-2 repetition

cost between repeating and non-repeating sequences. Therefore, alongside future

modelling work, additional empirical studies of strategic adaptation should be con-
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ducted.

311



Chapter 11

General Summary and Conclusions

11.1 Contributions

The research reported as the subject of this thesis has contributed to the task

switching literature in a number of respects. These are speci�cally as follows:

1. The task switching model of Gilbert and Shallice (2002) was successfully

replicated, by reconstructing the model from the published details and with-

out re-use of their original code. This type of replication con�rms that the

originally published data from the model is indeed due to the details of the

model, and not to any errors or bugs in the model. While an attempted repli-

cation of the model of Yeung and Monsell (2003) was unsuccessful, this thesis

details limitations in the published detail of the model which prevented suc-

cessful replication.

2. The two-task switching model of Gilbert and Shallice (2002) was gener-

alised to three tasks, without any additional cognitive mechanisms. This

simple three-task switching model established that while n-1 switch costs

remained a behavioural property of the model, n-2 repetition costs were

not. This demonstrated that the existing model mechanisms — speci�cally

between-task interference implemented as the residual activation of task de-
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mand units, and lateral inhibition between cognitive representations at the

task-demand and response levels — did not account for n-2 repetition costs.

This �nding supported the simpler simulations of Grange et al. (2013) that

lateral inhibition alone was insu�cient to account for the phenomenon.

3. A working computational model of backward inhibition has been presented,

in the form of an additional cognitive mechanism to the previous simple

three-task switching model. This consists of a layer of con�ict-monitoring

units, similar to those used within the con�ict monitoring literature (Botvinick

et al., 2001), with the exception that in the present model they bias model

processing interactively, in keeping with the existing implementation of the

model. These con�ict units detect simultaneous activation of units at the

task demand level, and have reciprocal inhibitory connections. The model

implements residual activation of con�ict units, consistent with the residual

activation of task demand units used in the model of Gilbert and Shallice

(2002) that accounts for the n-1 switch cost. These additional mechanisms

account for both n-1 switch and n-2 repetition costs in the same model.

4. The scope of the empirical e�ect and its independence from speci�c model

parameter settings has been explored. Speci�cally, the three parameters gov-

erning the con�ict system (gain (γ), bias (β) and weight (ω)) were system-

atically searched in a three-dimensional grid, of which a large central re-

gion corresponded to the empirically observed behavioural pattern. Outside

of this region, the model’s failure to produce the empirical pattern can be

understood in terms of theoretical or implementational failure of the model

(e.g., where the gain parameter is so small that the activation of con�ict units

does not increase even when a large degree of simultaneous task-demand ac-

tivation is occurring). Additionally, multiple simulations demonstrated that

the reproduction of the empirically observed pattern is independent of spe-
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ci�c implementational details of the model, such as the treatment of nega-

tive con�ict. While negative con�ict may occur within the model due to a

particular activation function, the concept is not theoretically meaningful.

While simulation of the empirically observed behavioural pattern requires

preventing negative con�ict from in�uencing model performance, two pos-

sible treatments of negative con�ict suggest that the speci�c way that this is

implemented in the model does not a�ect the model’s behavioural properties

at a gross, qualitative level.

5. Rather than an ad-hoc computational model, the model presented in the

present thesis has been implemented as an extension of a literature of ex-

isting IAC models. In an attempt to additionally constrain modelling, prin-

ciples of GRAIN models were adhered to (McClelland, 1993). Further, the

non-theoretically relevant aspects of the model were left unchanged from

earlier models where possible. While more sophisticated arti�cial neural

network models are presently being developed (e.g., O’Reilly, Hazy, & Herd,

2013), the simplicity of the present model makes clear the elements of the

model which are both necessary and su�cient for backward inhibition, in

its current formulation.

6. The model has been extended to additional simulations of behavioural phe-

nomena already reported in the backward inhibition literature, or novel pre-

dictions:

Intertrial Intervals It has been reported that the n-2 repetition cost is mod-

ulated by the size of the interval preceding the n-1 task, but not the

current task (n) itself (Gade & Koch, 2005). This evidence has been in-

terpreted as suggesting that backward inhibition is related to con�ict

occurring on the n-1 trial, rather than the current trial. In the present

model, variable intertrial intervals were simulated by modulating the
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level of residual task-demand and con�ict unit activation. The simu-

lated results clearly predict the empirical pattern: the n-2 repetition

cost is related to the interval preceding the n-1 task, but not the n task.

Graded Response Congruency E�ects While the e�ects of graded response

congruency (i.e., fully congruent, semi-congruent, fully incongruent)

on n-1 switch costs has been studied, the e�ects on n-2 repetition costs

have not. The model was used to simulate graded response congruency

conditions on the n-2, n-1, and n trials. While the results are consis-

tent with the empirical literature (i.e., e�ects of trial n) they also pre-

dict an e�ect of n-1 congruency on the n-2 repetition cost, albeit with

very small e�ect size. Given the predicted size of the e�ect, an em-

pirical test of this prediction was not attempted as part of this thesis.

The simulated results also validated concerns that response congru-

ency is a signi�cant confound for the behavioural three-task classi�ca-

tion paradigm. The empirical studies conducted in the present thesis

used three possible responses, allowing all trials to be fully incongru-

ent and removing congruency as a confounding factor. However, these

simulated results clearly indicate that empirical studies using classi�-

cation tasks should include at least three possible responses, allowing

stimuli to be fully incongruent.

Dimension Inhibition/Competitor Rule Suppression As part of the sim-

ulation of the e�ects of response congruency, it was additionally shown

that the backward inhibition mechanisms in the model do not account

for the inhibitory e�ect of dimension inhibition (competitor rule sup-

pression). This suggests the involvement of an additional inhibitory

mechanism. Alternatively, it leaves scope for a model of backward in-

hibition which parsimoniously accounts for these e�ects with a single

mechanism.
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Asymmetric task di�culties The model was used to simulate tasks of

variable di�culty. This was simulated systematically using a gridsearch

approach, using the two task-relevant parameters of stimulus input

strength (SIS) and top-down control strength (TDCS) as well as the

weight (ω) parameter a�ecting the strength of inhibitory biasing by

con�ict units. The results clearly predicted that for the n-2 repetition

condition (i.e., ABA sequences) hard-easy-hard alternations had larger

n-2 repetition costs than easy-hard-easy alternations. These predic-

tions diverge from the extant theoretical literature (Arbuthnott, 2008a).

7. The predictions of model behaviour for switches between three asymmetric

tasks was empirically tested. A new experimental version of the digit clas-

si�cation paradigm was developed, in which participants classi�ed letters

according to dimensions of colour, font, and alphabet. The results of two ex-

periments were inconsistent with the null hypothesis, providing validation

of the model.

8. Finally, the thesis addressed the question of strategic adaptation, or whether

the model can adapt to respond more advantageously to di�erent task con-

texts. It has been suggested that the human cognitive system may adapt sit-

uationally — whether tasks immediately repeat, or do not — applying back-

ward inhibition in the latter case. If this were the case, the constraint that

the same model must predict the empirical behavioural pattern in two- and

three-task contexts, may not apply. Indeed, there is some empirical support

for this type of strategic adaptation. A version of the model was developed

which modulated the e�ectiveness of task inhibition in response to ongo-

ing task performance. Speci�cally, whether measures of con�ict could pro-

vide the information a model would need to drive such adaptation. System-

atic di�erences were found in the levels of con�ict between repeating and
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non-repeating sequences, suggesting that con�ict could, in principle, pro-

vide such a learning signal. However, the present simulations did not �nd a

learning algorithm which could produce stable states corresponding to re-

peating and non-repeating contexts. This remains a project for the future.

11.2 Outstanding theoretical issues and areas for

future research

Although this thesis has contributed to an understanding of backward inhibition

by giving one account of the phenomenon in computational terms, a number of

theoretical issues remain outstanding.

It remains unclear where backward inhibition �ts in an overall architecture of

human cognitive control processes. Within the executive function literature, task

or set shifting remains an important high-level control function which accounts

for a range of human abilities on a variety of tasks (Miyake & Friedman, 2012).

However, the mechanistic processes remain yet to be speci�ed. The present thesis

has clari�ed the function of backward inhibition as a means of managing interfer-

ence between competing task representations. Moreover, it has been demonstrated

that backward inhibition is computationally ‘cheap’, in that it can be accomplished

by a single layer of units reciprocally connected to task representations. This type

of relatively automatic inhibition does not seem to �t the criteria for an executive

function. It might, however, be regarded as one constituent process of task/set

switching, were that process to be further fractionated.

A related unanswered question is whether backward inhibition represents a

form of proactive (cf. Kuhns et al., 2007) or reactive (Schuch & Koch, 2004) control,

given these present di�ering computational implications. In the present model,

con�ict acts as a signal for the requirement of cognitive control, and backward in-

hibition provides an automatic inhibitory response. As the e�ects of con�ict persist
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and only decay gradually over time, backward inhibition is exerted and released

accordingly, explaining the n-2 repetition cost. This explanation is not consis-

tent with a more proactive view of backward inhibition. Additionally, it remains

unclear whether backward inhibition can be exerted strategically in response to

changing environmental requirements. For example, some empirical evidence sug-

gests that backward inhibition may be somewhat adaptive, with n-2 repetition

costs only occurring in task contexts where immediate repeats do not occur. How-

ever, the empirical support for this type of adaptation is, at present, mixed. In the

present model, backward inhibition facilitates switches but presents a disadvan-

tage for immediate task repeats. It remains a possibility that the level of backward

inhibition could be modulated, either deliberatively or reactively/automatically by

the human cognitive system. Simulations have demonstrated that in the model

this could be accomplished by modulation of any one of the three key parameters

controlling the con�ict units (bias (β), gain (γ) or weight (ω)). Whether such a

process of adaptation occurs, what level it occurs at (i.e., whether it represents a

top-down ‘executive’ control process) and how it is triggered, remain theoretical

and empirical questions of signi�cant interest.

A further question concerns the stage of cognitive processing at which back-

ward inhibition is triggered. Various empirical studies have provided evidence for

cue-encoding, response-selection, or response execution processes. In their re-

view, Koch et al. (2010) propose that backward inhibition is a �exible mechanism,

which may be deployed at whatever level of the cognitive system con�ict takes

place. How this proposal might be implemented computationally, however, is un-

clear. One possibility is that multiple con�ict-inhibition loops exist, operating in a

similar manner to the con�ict system operating in the present model. As has been

demonstrated, such a system is computationally ‘cheap’, requiring only a single

layer of units to monitor con�ict between task-relevant representations, with re-

ciprocal inhibitory connections. One possibility is that this is a relatively common
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arrangement deployed at various points in the cognitive system. An alternative

possibility would consist of a single backward inhibition system with multiple con-

�ict detectors, and multiple inhibitory connections. How such a system would be

arranged and would operate has yet to be speci�ed.

The present model does not emphasise either cue encoding processes (task-

demand units merely receive ‘top down control’ activation which is assumed to be

all-or-none) or response execution processes. Implementation of either of these

mechanisms would require a wide range of additional modelling assumptions.

Thus, simulation of the modulation of the n-2 repetition cost by either cue-encoding

or response execution processes is beyond the scope of the present model. Instead,

detailed simulation of these phenomena would be better suited to a backward in-

hibition model based within an architectural framework such as the models of

Grange and colleagues (Grange et al., 2013; Grange & Juvina, 2015). Indeed, as

one of the strengths of the ACT-R architecture is memory retrieval, the focus of

those models on cue-based memory encoding processes makes them well suited

for simulating cue-based phenomena.

Further research on this question may require further empirical and compu-

tational approaches, �rstly, to empirically determine the limiting conditions for

the modulation of the n-2 repetition cost due to cue-based and response-based

processes, and secondly, to empirically determine whether backward inhibition

triggered by cue-based con�ict and response-based con�ict re�ects the operation

of a single system or multiple systems. One simplistic approach might be to de-

vise a paradigm in which cue-based and response-based manipulations modulate

the n-2 repetition cost. If backward inhibition were a single cognitive mechanism,

one might expect these manipulations to interact, while if backward inhibition

consisted of multiple systems, one might expect them to be independent. A more

sophisticated approach might use computational modelling to make distinct quan-

titative predictions based on di�erent models representing alternative hypotheses
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(e.g., single con�ict system, multiple con�ict systems).

One area of di�erence between the model and the present empirical data is the

simulation of error trials. In human participants, a trade-o� is observed between

speed and accuracy: it appears that participants regulate their level of performance

to give either fast, but more error-prone responses, or slower, more accurate re-

sponses. Indeed, balancing this speed/accuracy tradeo� by encouraging partici-

pants to regulate their performance appropriately for each task was an important

factor in the design of experiments 2 and 3, in order to prioritise good RT data. In

the model, however, error trials tend to occur with very long RTs, while the fastest

responses tend to be the most accurate. This is because in the model responses

are not produced until one response unit’s activation is su�ciently more than that

of the next largest, incompatible unit. Ordinarily, correct responses may occur

quickly. However, due to a combination of residual task-demand activation (irrel-

evant task interference) and noise, errors may occur if an incorrect response unit

is able to exceed that of the correct unit. In this case, intense competition typically

occurs, with the activation of both units at a similar level, before one unit ‘wins’

and its activation exceeds the response threshold. This mechanism for producing

responses, and of error commission, does not seem well suited to capturing the

speed/accuracy tradeo� that characterises human behaviour.

One alternative possibility is provided by substantially more complex model

of Brown et al. (2007). In that model, response production is governed by tonic

excitation of the response layer, generating regular responses. This tonic signal

is disrupted by the detection of various con�icts in the model (e.g., provided by

incongruency or across-trial change detectors) producing a slowing e�ect and re-

inforcing the activation of the current task set. Thus, slower and more accurate re-

sponses are produced following changes or con�icts presented in the task, making

the model substantially better suited to modelling speed/accuracy tradeo�s char-

acteristic of human behaviour. How can the present model be reconciled with the
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model of Brown et al. (2007)? The simplicity of the computational mechanisms ac-

counting for backward inhibition in the present model would make incorporating

these elements into a signi�cantly more complex model challenging. The model of

Brown et al. (2007) already incorporates mechanisms for con�ict (incongruency)

detection and response slowing at the task level. However, the complexity of the

model’s architecture and parameter set would require a substantial survey of the

model’s behaviour in order to determine how the model as presented by the au-

thors would perform in the three-task paradigm, and how it might be modi�ed

to incorporate backward inhibition.1 In this regard, incremental development of a

backward inhibition model from earlier task switching models, within the signif-

icantly simpler GRAIN framework, presents advantages in terms of making clear

which mechanisms exactly are responsible for the model’s success in simulating

empirically observed behaviour.

11.3 Final Words

This thesis has presented one possible model of backward inhibition, which of-

fers one explanation for the n-2 repetition cost phenomenon. While it is related

to existing verbal backward inhibition theories, it also draws on constraints and

computational principles inherited from the IAC modelling framework, as well as

previous models of task switching. It therefore represents a cumulative approach

to theory building, by extending existing theories of task switching. While com-

putational cognitive models may have many roles within cognitive science, this

thesis has aimed to develop a model which will prove useful for the understanding

of human cognition. To this end, it aims to present as simpli�ed a model of its

subject as possible, while still containing the necessary and su�cient elements to

explain the phenomenon in cognitive terms. It has not been the intention of this
1Although, it remains a possibility that backward inhibition is already a property of the model

out-of-the-box.
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thesis to present a complete model of human cognition, although it is hoped that

the knowledge gained as a part of this thesis will contribute to the development of

such models in the future.

322



Appendix A

Model Parameter Settings
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Appendix B

Simulation 6e: Parameter search

with default noise parameter

This appendix presents parallel results to those from simulation 6d (chapter 6).

While those simulations were conducted with a reduced noise parameter (0.004)

compared with that used in the model of Gilbert and Shallice (2002), the same sim-

ulations were also conducted with the original parameter setting of 0.006. Com-

parison of results indicates that the noise parameter has no qualitative e�ect on

the shape of parameter space.
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(a) (b)

(c) (d)

Figure B.1: Model behaviour when negative con�ict is clipped, noise = 0.006 (cf.
�gure 6.2). Dependent variables (switch costs, B.1a); n-2 repetition costs, B.1c) are
transformed with a logistic function: f(x)→ 2

1+e(−0.1x) − 1
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Figure B.2: Intersection of RT switch cost and n-2 repetition cost, negative con�ict
clipped, noise = 0.006 (cf. �gure 6.4)

(a) (b)

Figure B.3: Model behaviour, assessed via error rates (trials 1&2), negative con�ict
clipped, noise = 0.006, in the 0SW (B.3a) and 1SW (B.3b) conditions (cf. �gure 6.5).
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(a) (b)

Figure B.4: Model behaviour, assessed via error rates on trial 3, negative con�ict
clipped, noise = 0.006, in the ALT (B.4b) and 2SW conditions (B.4a).
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(a) (b)

(c)

Figure B.5: Model behaviour, assessed via error rates on trial 3, negative con�ict
clipped, noise=.006. Plots show di�erences between the 1SW and 0SW conditions
(i.e., the error switch cost, panel B.5a) and between the ALT and 2SW conditions
(i.e., the error n-2 repetition cost, panel B.5b). The di�erences are plotted such
that the empirical pattern of behaviour (i.e., 1SW > 0SW, ALT > 2SW) is positive,
while the alternative (i.e., 1SW< 0SW, etc.) is in green. Note that the di�erences in
error rates are transformed with a logistic function, f(x)→ 2

1+e(−100x) − 1, before
plotting, and the actual magnitude of the di�erences in error rates is very small.
The overlap between error rates is assessed as the geometric mean of the positive
(i.e., red) part of parameter space for SCs and n-2RCs, and is presented in panel
B.5b.
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(a) (b)

(c) (d)

Figure B.6: Model behaviour when negative con�ict is allowed, noise = 0.006 (cf.
�gure 6.1). Dependent variables (switch costs, (B.6a); n-2 repetition costs, (B.6c)
are transformed with a logistic function: f(x)→ 2

1+e(−0.1x) − 1
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(a) (b)

Figure B.7: Model behaviour, assessed via error rates (trials 1&2), negative con�ict
allowed, noise = 0.006, in the 0SW (B.7a) and 1SW (B.7b) conditions.

(a) (b)

Figure B.8: Model behaviour, assessed via error rates on trial 3, negative con�ict
allowed, noise = 0.006, in the in 2SW (B.8a) and ALT (B.8b) conditions.
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(a) (b)

(c)

Figure B.9: Model behaviour, assessed via error rates on trial 3, negative con�ict
allowed, noise=.006. Plots show di�erences between the 1SW and 0SW conditions
(i.e., the error switch cost, panel B.9a) and between the ALT and 2SW conditions
(i.e., the error n-2 repetition cost, panel B.9b). The di�erences are plotted such
that the empirical pattern of behaviour (i.e., 1SW > 0SW, ALT > 2SW) is positive,
while the alternative (i.e., 1SW< 0SW, etc.) is in green. Note that the di�erences in
error rates are transformed with a logistic function, f(x)→ 2

1+e(−100x) − 1, before
plotting, and the actual magnitude of the di�erences in error rates is very small.
The overlap between error rates is assessed as the product of the positive (i.e., ed)
part of parameter space for SCs and n-2RCs, and is presented in panel B.9c.
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(a) (b)

(c) (d)

Figure B.10: Model behaviour when negative con�ict is rescaled, noise = 0.006 (cf.
�gure 6.3). Dependent variables (switch costs, (B.10a); n-2 repetition costs, (B.10c)
are transformed with a logistic function: f(x)→ 2

1+e(−0.1x) − 1
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(a) (b)

Figure B.11: Model behaviour, assessed via error rates (trials 1&2), negative con-
�ict rescaled, noise = 0.006, in the 0SW (B.11a) and 1SW (B.11b) conditions.

(a) (b)

Figure B.12: Model behaviour, assessed via error rates on trial 3, negative con�ict
rescaled, noise = 0.006, in the in 2SW (B.12a) and ALT conditions (B.12b).
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(a) (b)

(c)

Figure B.13: Model behaviour, assessed via error rates on trial 3, negative con�ict
allowed, noise=.006. Plots show di�erences between the 1SW and 0SW conditions
(i.e., the error switch cost, panel B.13a) and between the ALT and 2SW conditions
(i.e., the error n-2 repetition cost, panel B.13b). The di�erences are plotted such
that the empirical pattern of behaviour (i.e., 1SW > 0SW, ALT > 2SW) is positive,
while the alternative (i.e., 1SW< 0SW, etc.) is in green. Note that the di�erences in
error rates are transformed with a logistic function, f(x)→ 2

1+e(−100x) − 1, before
plotting, and the actual magnitude of the di�erences in error rates is very small.
The overlap between error rates is assessed as the product of the positive (i.e., red)
part of parameter space for SCs and n-2RCs, and is presented in panel B.13c.
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Appendix C

Simulation 8b: Parameter search

with a modi�ed model

Chapter 7 presented a modi�ed version of the backward inhibition model adapted

to tasks of asymmetric di�culty. Speci�cally, the top-down control strength pa-

rameter was scaled by the weight parameter for each task. This appendix presents

results when the parameter studies conducted in chapter 6 are re-run using the

modi�ed model. The �gures presented here demonstrate that the qualitative shape

of parameter space is not changed for this version of the model.
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(a) (b)

(c) (d)

Figure C.1: Model behaviour (n-1 Switch & n-2 repetition costs for RTs) when
negative con�ict is clipped, noise =.006 (cf. �gure 6.2) Dependent variables (switch
costs, (C.1a); n-2 repetition costs, (C.1c) are transformed with a logistic function:
f(x)→ 2

1+e(−0.1x) − 1
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Figure C.2: Model behaviour: Intersection of RT switch cost and n-2 repetition cost
(cf. �gure 6.4)

(a) (b)

Figure C.3: Model behaviour (error rates), for clipped con�ict, in the 0SW (C.3a)
and 1SW (C.3b) conditions (cf. �gure 6.5)
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(a) (b)

Figure C.4: Model behaviour: Trial 3 error rates in the ALT (C.4b)and 2SW (C.4a)
conditions (cf. �gure 6.6).
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between ALT and 2SW conditions)

(a) (b)

(c)

Figure C.5: Error rate di�erences between the 1SW and 0SW conditions (i.e., the
error switch cost, panel C.5a) and between the ALT and 2SW conditions (i.e., the
error n-2 repetition cost, panel C.5b). cf. �gure 6.7. The di�erences are plotted such
that the empirical pattern of behaviour (i.e., 1SW > 0SW, ALT > 2SW) is positive,
while the alternative (i.e., 1SW< 0SW, etc.) is in green. Note that the di�erences in
error rates are transformed with a logistic function, f(x)→ 2

1+e(−100x) − 1, before
plotting, and the actual magnitude of the di�erences in error rates is very small.
The overlap between error rates is assessed as the product of the positive (i.e., red)
part of parameter space for SCs and n-2RCs, and is presented in panel C.5c.
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