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Abstract

Jarosite is a family of iron-hydroxysulphate minerals that commonly occur in acidic,

sulphate-rich environments and in ore processing wastes. Jarosite precipitation is used

in hydrometallurgy to control Fe and other impurities. End-member jarosite sensu

stricto contains potassium and has the chemical formula KFe3(SO4)2(OH)6, but

extensive element substitution takes place in the crystal structure. Silver can be taken

up by jarosite minerals and, in theory, Ag can form solid-solution series with K, Na

and Pb in jarosite. This study carried out synthesis experiments, using a variety of

sulphate starting solutions and temperatures, to form K-jarosite, Na-jarosite and Pb-

jarosite minerals and determined their capacity for Ag by investigating them using

powder X-ray diffraction (XRD), Rietveld refinement, electron microprobe analysis

and inductively coupled plasma-atomic emission spectroscopy. Solid solution was

found between Ag-jarosite and separately K-jarosite, Na-jarosite and Pb-jarosite, but

with substantial hydronium (H3O) content and vacancies in the Fe site. The average

relative partitioning coefficients for Ag were 0.9 in K-jarosite, 1.3 in Na-jarosite and

1.17 in Pb-jarosite. Powder XRD analysis showed that, in the K-Ag-H3O and Pb-Ag-

H3O-jarosite series, d-spacing values for the hkl 003 and 006 peaks indicated the unit-

cell c-axis parameter decreased as Ag content increased. Rietveld refinement showed

that, in K-Ag-H3O-jarosite and Na-Ag-H3O-jarosite, there were trends of increasing

unit-cell a-axis parameters and decreasing c-axis parameters as Ag content increased.

Rietveld refinement indicated decreasing K,Ag-O2 and K,Ag-O3 bond lengths as Ag

content increased in K-Ag-H3O-jarosite. Raman spectroscopic analysis showed the

assigned v1SO4 and v3SO4 vibrational modes in some K-Ag-H3O-jarosite series had

higher wavenumbers (cm-1), indicating higher bonding energies, as Ag content
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increased. The XRD, Rietveld refinement and Raman data from this project will

inform the evaluation of the Ag composition of jarosite minerals in complex natural

mineral assemblages using these same techniques.
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1 INTRODUCTION

1.1 Importance of jarosite-family minerals and silver in the environment

and hydrometallurgy

Jarosites form a family of iron hydroxysulphate minerals that commonly occur as

secondary products in acidic (pH < 3.0) (Brown, 1971; Amoros et al., 1981),

sulphate-rich environments formed by the oxidation of sulphide minerals, especially

pyrite (FeS2) (Baron and Palmer, 1996; Welch et al., 2008). The environments that

jarosite minerals commonly form in include oxidised zones (gossans) of sulphide

deposits (Brown, 1971; Craddock, 1995), areas of acid rock drainage and acid mine

drainage (AMD), mine wastes, and acid sulphate soils from pyrite-bearing sediments

(Brophy and Sheridan, 1965; Brown, 1971; Baron and Palmer, 1996; Dutrizac and

Jambor, 2000; Becker and Gasharova, 2001; Welch et al., 2008; Murphy et al.,

2009). Jarosite precipitation is also used for industrial uses and contaminated land

remediation (Welch et al., 2007). In hydrometallurgy, especially the zinc industry,

the precipitation of jarosite group phases is used in the processing of sulphide ore

minerals to control Fe, sulphate, alkalis and other impurities (Dutrizac and Jambor,

1984; Groat et al., 2003; Murphy et al., 2009). These jarosites can contain Ag and

other metals such as Cd, Cu, Ni, Pb and Zn (Sanchez et al., 1996; Ju et al., 2013;

Kerolli-Mustafa et al., 2015). Significant losses of Ag can occur in the precipitation

of jarosites in hydrometallurgical circuits (Dutrizac and Jambor, 1984), as well as in

tailings as a by-product of the processing of economically important minerals (Cabri,

1987).

End-member jarosite sensu stricto contains potassium (K) and has the

chemical formula KFe3(SO4)2(OH)6, while other end-member minerals in the jarosite



17

group also contain iron (Fe3+) and sulphur (S6+) (Scott, 1987; Jambor, 1999; Dutrizac

and Jambor, 2000). In other end-member jarosite minerals, K+ is replaced by, for

example, sodium (Na+) in natrojarosite, hydronium (H3O
+) in hydronium jarosite,

silver (Ag+) in argentojarosite or lead (Pb2+) in plumbojarosite (Jambor, 1999;

Dutrizac and Jambor, 2000). Extensive element substitution may take place in the

jarosite crystal structure (Scott, 1990; Jambor, 1999; Dutrizac and Jambor, 2000),

which has the ability to incorporate 'much of the Periodic Table' as minor and trace

elements (Burger et al., 2009). For example, element substitution in jarosite may also

result in Fe3+ being replaced by aluminium (Al3+), copper (Cu2+), gallium (Ga3+),

chromium (Cr3+) or vanadium (V3+) (Dutrizac and Jambor, 2000; Basciano, 2008;

Hudson-Edwards et al., 2008; Murphy et al., 2009) and in S6+ being replaced by

phosphorus (P5+) or arsenic (As5+) (Jambor, 1999; Dutrizac and Jambor, 2000;

Basciano, 2008).

Argentojarosite and Ag-bearing plumbojarosite can be valuable ores of Ag

(Dutrizac and Jambor, 1984; Craddock, 1995). Silver is a precious metal for which

the main uses include jewellery, as well as photography, plating, electrical

applications and electronics (Blowes et al., 2003). The main mineral sources of Ag

are native metal, electrum, chlorides, sulphides, sulfosalts, lead ores, iron and copper

oxides and carbonates, occlusions in quartz, and jarosites in enrichment zones below

orebodies (Hahn, 1929; Craddock, 1995). By contrast to Ag, the precious metal gold

(Au) is not known to substitute for K+ in jarosite (Fairchild, 1933; Jambor, 1999),

but Au associated with jarosite in gossans has been reported (Darke et al., 1997).

Element substitution means that, in environments such as mine wastes,

jarosite minerals are able to scavenge and act as sinks for potentially toxic elements

such as As, Cr, Cu and Pb (Smith et al., 2006a; Hudson-Edwards et al., 2008;
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Murphy et al., 2009; Kerolli-Mustafa et al., 2015) and precious metals such as Ag

(Ju et al., 2013) that escaped extraction or were mobilised in the natural

environment. The take-up of elements by jarosite may also take place at the mineral

boundary through sorption or coprecipitation (Smith et al., 2006a). In addition,

jarosite minerals are potential sources of acid generation (Desborough et al., 2010)

and readily break down to release SO4
2- and H+, as well as metal cations such as K+

and trace metals, when they are removed from their stability region and dissolve

(Smith et al., 2006a; Welch et al., 2008).

1.2 Objectives

Silver can completely substitute in the A site of jarosite minerals, forming end-

member argentojarosite [AgFe3(SO4)2(OH)6], and studies have suggested that Ag

forms complete solid solution series with K and Na in synthetic jarosite in the

presence of hydronium (H3O
+) in the A site, and forms incomplete solid solution

between Ag-rich and Pb-rich jarosites, with the series disrupted by a region of two

phases (Dutrizac and Jambor, 1984 and 1987). These studies used X-ray diffraction

(XRD) and chemical analysis to characterise the jarosite series, which were

synthesised at 97ºC and 'elevated temperature'. Other studies have used Raman

spectroscopy to characterise end-member synthesised Ag-H3O-jarosite (Casas, et al.,

2007) and natural argentojarosite (Frost et al., 2006). However, to date, K-Ag-H3O-,

Na-Ag-H3O- and Pb-Ag-H3O-jarosite solid solution series synthesised at low

temperature (22ºC) have not been fully investigated and these jarosite series

synthesised at higher temperatures have not been fully investigated by XRD and

Rietveld refinement to determine changes in unit-cell parameters and atomic bond

lengths, angles and positions or by Raman spectroscopy to determine changes in the

wavenumbers of modes and so the bonding environment. Such knowledge of these



19

compounds is important for evaluating the Ag composition of naturally occurring

jarosite minerals in complex mineral assemblages and of jarosite minerals in mine

and metallurgical processing wastes. To this end, the aims of this study are to

determine the capacity of synthetic K-, Na- and Pb-jarosite compounds for Ag, by

analysing the A-site contents, and the characters of the Ag-bearing compounds.

These aims are fulfilled by carrying out the following objectives:

● determine the structural characteristics of the K-Ag-H3O jarosite, Na-Ag-H3O

jarosite and Pb-Ag-H3O jarosite solid solution series compounds.

● compare the structures of Ag-bearing jarosite compounds synthesised, under

various conditions, at hydrothermal temperatures (c. 97ºC and 140ºC) and at

temperatures characteristic of the surface environment (c. 22ºC).

1.3 Outline of the thesis

The questions raised in the objectives set out in section 1.2 are answered by the

experimental methods and results presented in this thesis. Chapter 2 reviews the

mineral sources of Ag and the geochemistry of Ag in the surface environment.

Chapter 3 presents the experimental methods and materials used in this project,

including Munsell mineral colour analysis, scanning electron microscopy, X-ray

powder diffraction and Rietveld refinement, electron microprobe analysis, Raman

spectroscopy and chemical analysis. Chapter 4 presents the results of the

experimental methods and explains how they help to characterise the natural and

synthetic jarosite compounds. Chapter 5 discusses the uptake of silver by jarosite

family minerals, including the effects of synthesis temperature and composition of

starting solutions, as well as the relationship of unit-cell parameters to the ionic radii

of A-site cations and Raman modes. The capacity of natural jarosite minerals for Ag
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is also discussed. Chapter 6 presents conclusions and recommendations for future

work. Appendix A lists the more than 40 minerals of the alunite supergroup.

Appendix B contains theoretical background on the physical and chemical analytical

techniques used in this project. Appendix C contains a table of product weights of K-

Ag jarosites synthesised at 22ºC, 97ºC and 140ºC, and the concentrations of K and

Ag in the starting solutions. Appendix D contains SEM secondary electron images of

synthesised jarosite compounds. Appendix E  contains XRD spectra. Appendix F

contains Raman spectra. Appendix G contains a table of K, Na, Pb and Ag

occupation of the A site and concentration in starting solutions, and partitioning

coefficients for Ag in K-Ag, Na-Ag and Pb-Ag-jarosites between synthesis solutions

and products. Appendix H contains figures of Ag partitioning in K-Ag-, Na-Ag- and

Pb-Ag-jarosites in syntheses at different temperatures and using different

concentrations of K, Na, Pb and Ag.

1.4 Summary

● Jarosite minerals form a family of iron-hydroxysulphate minerals that

commonly occur as secondary products in acidic, sulphate-rich

environments formed by the oxidation of sulphide ore deposits;

● end-member jarosite sensu stricto contains potassium and has the chemical

formula KFe3(SO4)2(OH)6, but extensive element substitution may take

place in the crystal structure, including Na, Pb, Ag and H3O;

● argentojarosite and Ag-bearing plumbojarosite can be valuable ores of Ag;

● this study's aims are to determine the capacity of synthetic K-, Na- and Pb-

jarosite compounds for Ag, by analysing the A-site contents, and the

characters of the Ag-bearing compounds;
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● these aims are fulfilled by carrying out the objectives of determining the

structural characteristics of the jarosite solid solution series compounds;

and comparing the structures of Ag-bearing jarosite compounds synthesised

at hydrothermal temperatures (c. 97ºC and 140ºC) and at temperatures

characteristic of the surface environment (c. 22ºC).
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2 LITERATURE REVIEW

2.1 Silver in the environment

The main mineral sources of Ag are native silver, electrum (natural Ag-Au alloy)

and in native copper, ‘dry ores’ such as silver chloride (cerargyrite AgCl), silver

sulphide (argentite or acanthite Ag2S) and sulfosalts, pyrite ores, argentiferous lead

ores, iron oxide, Fe-Cu oxide, malachite [Cu2CO3(OH)2] and siderite (FeCO3),

occlusions in quartz and jarosites associated with the supergene enrichment zones of

orebodies between gossans and primary deposits (Hahn, 1929; Craddock, 1995). The

main mineral deposits of Ag are low-sulphide quartz veins formed in fracture

systems, sedimentary exhalative (sedex) Zn-Pb-Ag deposits, porphyry Cu deposits,

epithermal quartz-alunite deposits, volcanogenic massive sulphide (VMS) deposits

and supergene Ag-bearing jarosite deposits in sulphide oxidation zones (gossans)

(Hahn, 1929; Craddock, 1995; Plumlee et al., 1995; Darke et al., 1997; Rice et al.,

1998; Blowes et al., 2003). An example of supergene Ag-bearing jarosite minerals

formed in the oxidation zone of VMS deposits is at Rio Tinto, Spain, and such

jarosites may also form in the oxidation zones of felsic and mafic volcanic host

rocks, as well as other sulphide deposits (Hahn, 1929; Amoros, et al., 1981;

Craddock, 1995).

In the surface environment (298.15 K, 105 Pa) and in the Ag-O-H system, Ag

occurs as Ag[+], Ag[2+], AgOH (aq), Ag(OH)2[-], AgO[-], Ag2O (s), Ag2O2 (s),

Ag2O3 (s) and Ag (native silver) (Takeno, 2005). Silver exists in four oxidation

states: 0, +1, +2 and +3; however, only 0 and +1 are important in soils (Lindsay,

1979) and the surface environment. Silver chemistry in soils and natural aqueous

environments is largely limited to Ag(c) and Ag+ with its minerals and complexes
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(Lindsay, 1979). This is because, from the reaction Ag2+ + e- ↔ Ag+ log Ko 33.60,

the ratio of Ag+/Ag2+ is at unity at pe (electron activity/‘concentration’) 33.60. In

moderately well-oxidised soil, pe is about 11, so the ratio of Ag+/Ag2+ would be

1033.6–11.0 = 1022.6, and in the redox range of soils Ag+ is the predominant silver ion

with very little Ag2+ and even less Ag3+ (Lindsay, 1979).

2.2 Jarosite-family minerals in the environment and in hydrometallurgy

2.2.1 Chemistry of the jarosite family of minerals

Jarosite-family minerals form part of the isostructural alunite supergroup, which has

the general chemical formula AB3(TO4)2(OH)6 (Jambor, 1999; Dutrizac and Jambor,

2000; Smith et al., 2006a). There is extensive element substitution in the A, B and T

sites in the alunite supergroup, which contains more than 40 end-member natural

minerals (see Appendix A) (Jambor, 1999; Dutrizac and Jambor, 2000; Basciano,

2008). The A site of the various end-member alunite-supergroup minerals contains a

total of 16 different ions: K, Na, H3O, Ag, Pb, NH4, Cu, Tl, Ca, Ba, Sr, Ce, La, Nd,

Bi and Th (Jambor, 1999; Dutrizac and Jambor, 2000; Basciano, 2008). In the

alunite supergroup, the T site contains S6+, As5+ and/or P5+, as well as Si4+ in two

end-member minerals (Scott, 1987; Jambor, 1999; Dutrizac and Jambor, 2000). In

the supergroup, the B site contains Al3+ or Fe3+, as well as Ga3+ and V3+ in one

mineral each (Dutrizac and Jambor, 2000; Basciano, 2008). Alunite minerals contain

Al3+ > Fe3+ occupying the B site, while in jarosite minerals B-site occupation is Fe3+

> Al3+ (Jambor, 1999; Dutrizac and Jambor, 2000); in natural alunite and jarosite

samples, extensive substitution between Al and Fe has been reported (Scott, 1987).

The jarosite family of end-member minerals contains the jarosite group (see

Table 2.1) plus two members of the beudantite group (Fe3+ > Al3+) and five members

of the crandallite group (Fe3+ > Al3+) (see Appendix A). End-member jarosite-group
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minerals contain S6+ in the T site, whereas in the beudantite group there is As-S and

P-S substitution and in the crandallite group P and As replace S (see Appendix A)

(Jambor, 1999; Dutrizac and Jambor, 2000; Basciano, 2008). The jarosite group

comprises eight minerals (see Table 2.1), including jarosite sensu stricto,

natrojarosite, hydronium jarosite, argentojarosite and plumbojarosite (Dutrizac and

Kaiman, 1976; Jambor, 1999; Dutrizac and Jambor, 2000; Drouet and Navrotsky,

2003). Analogues of all these minerals have been synthesised. Mercury jarosite

[Hg0.5Fe3(SO4)2(OH)6] and rubidium jarosite [RbFe3(SO4)2(OH)6] have also been

synthesised but no natural examples are known (Dutrizac and Kaiman, 1976;

Jambor, 1999). However, natural and synthetic jarosite minerals rarely have end-

member compositions (Welch et al., 2008). Hydronium (H3O) often substitutes for

cations in the A site of jarosite (Majzlan et al., 2004; Basciano and Peterson, 2007),

and the presence of H3O as a substitute ion in the A site has been demonstrated by

the use of nuclear magnetic resonance (NMR) spectroscopy (Ripmeester et al.,

1986).

Table 2.1. End-member minerals of the jarosite group and synthetic analogues.

Mineral name Formula Synthetic analogue

Jarosite1 KFe3(SO4)2(OH)6 Potassium jarosite

Natrojarosite1 NaFe3(SO4)2(OH)6 Sodium jarosite

Hydronium jarosite1 (H3O)Fe3(SO4)2(OH)6 Hydronium jarosite

Argentojarosite1 AgFe3(SO4)2(OH)6 Silver jarosite

Plumbojarosite1 Pb0.5Fe3(SO4)2(OH)6 Lead jarosite

Ammoniojarosite1 (NH4)Fe3(SO4)2(OH)6 Ammonium jarosite

Beaverite1 Pb(Fe,Cu)3(SO4)2(OH)6 Lead Fe-Cu-jarosite

Dorallcharite1 Tl0.8K0.2Fe3(SO4)2(OH)6 Thallium jarosite

No natural mineral Hg0.5Fe3(SO4)2(OH)6 Mercury jarosite2

No natural mineral RbFe3(SO4)2(OH)6 Rubidium jarosite2

1 Jambor, 1999; Dutrizac and Jambor, 2000; Drouet and Navrotsky, 2003; Smith, 2004; Basciano,

2008; Hudson-Edwards et al., 2008. 2 Dutrizac and Kaiman, 1976; Jambor, 1999
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Minerals of the alunite supergroup have the ability to incorporate many minor

and trace elements into their crystal structure (Burger et al., 2009). A wide range of

combinations of elements is possible in the A, B and TO4 sites. Reported

substitutions in the A site include Mn2+, Mo2+ and ions of end-member alunite

supergroup members Na+, H3O
+, Pb2+, Ca2+, Sr2+, Ba2+, Nd3+, Ce3+ and La3+, as well

as other REEs Sm, Eu, Dy, Er and Yb; reported substitutions in the B site include

Pb2+, Mg2+, Zn2+, In3+, Sb3+, Cr3+ and Ti4+, as well as ions of end-member alunite

supergroup members Cu2+, V3+ and Ga3+; and reported substitutions in the T site

include Cr6+, Se6+ and Sb5+, as well as P5+ and As5+ (Scott, 1987; Elgersma et al.,

1993; Jambor, 1999; Sejkora, et al., 2001; Paktunc and Dutrizac, 2003; Welch et al.,

2007, 2008; Burger et al., 2009). In addition, a reported substitution for TO4
2- is

CO3
2- (Scott, 1987). Reported substitutions in the OH- site are Cl-, F- and H2O (Scott,

1987; Sejkora et al., 2001; Burger et al., 2009).

In synthetic jarosite, reported substitutions for S in the T site are As, Se and Cr,

with a maximum As substitution of 17 mole % AsO4/(AsO4 + SO4), or As/(As + S) =

0.17 (Paktunc and Dutrizac, 2003). In synthesised jarosite- and alunite-group phases

and analogues, substitution between Al3+, Fe3+, Cr3+ and V3+ in the B site has been

reported (Murphy et al., 2009).

There is a strong relationship between occupancy of the crystallographic sites

to maintain charge balance in alunite- and jarosite-group minerals (Scott, 1987;

Burger, 2009). For example, studies have demonstrated coupled substitution of Pb2+

(Scott, 1987) and of Ba2+ and Sr2+ (Burger et al, 2009) for alkali cations in the

monovalent A site combined with trivalent anions PO4
3- and AsO4

3- for SO4
2- in the T

site. In addition, a study of alunite supergroup minerals has reported the substitution
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of AsO3OH for AsO4 and of PO3OH for PO4 to maintain charge balance where there

are substitutions or vacancies in the A and B sites (Sejkora et al., 2001).

In non-stoichiometric jarosite group minerals in which there are deficiencies in

occupancy of K+, Na+ or other substitute ions in the A site, studies often assume the

site is occupied by hydronium (H3O) (Basciano and Peterson, 2007; Desborough et

al., 2010); however, occupancy by H3O is not necessarily the case and often there

may be vacancies in the A site (Majzlan et al., 2004).

Deficiencies in the B site are also reported to be charge balanced by the

incorporation of water, in the form of hydronium, into the jarosite structure (Hudson-

Edwards et al., 2008). Studies of natural alunite supergroup minerals have reported

deficiencies in the B site (Scott, 1987; Rattray et al., 1996; Roca et al., 1999) and

studies of synthesised jarosite-group minerals have shown deficiencies of Fe in the B

site (Dutrizac and Kaiman, 1976; Basciano and Peterson, 2007, 2008; Hudson-

Edwards et al., 2008). However, a vacancy in the B site may be compensated for by

the addition of 4 H+ (protonation) at the B site to form four B-OH2 bonds per

vacancy, so H3O in the A site is not necessary for charge balance, hence vacancies in

the A site are commonly seen (Kubisz, 1970; Basciano and Peterson, 2007, 2010). In

addition, to maintain charge balance where substitutions or vacancies exist in

crystallographic sites of alunite supergroup minerals, including jarosite, many

studies have assumed the presence of H2O in the OH- site (Hendricks, 1937; Rattray

et al., 1996; Sejkora et al., 2001; Drouet et al., 2004; Burger, 2009). These

considerations have resulted in a modified general chemical formula being proposed

for jarosite compounds:

A1-x(H3O)xFe3-y[(OH)6-3y(H2O)3y(SO4)2] (Kubisz, 1970).
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Many solid solutions are complete among most or all synthetic jarosite species

(Dutrizac and Jambor, 2000). Studies have reported solid solution involving K+, Na+

and H3O
+ is extensive in synthetic alunite (Parker, 1962) and jarosite (Brophy et al.,

1962; Brophy and Sheridan, 1965; Kubisz, 1970; Stoffregen and Cygan, 1990; Li et

al., 1992; Jambor, 1999; Basciano and Peterson, 2007, 2008). Hydronium jarosite

forms a complete solid-solution series with alkali jarosites. In addition, there is a

complete solid solution among synthetic K, Na and NH4 jarosites (Brophy and

Sheridan, 1965), and another study has reported the incorporation of NH4 in

ammoniojarosite seems to be mainly at the expense of K+ and H3O
+ (Odum et al.,

1982). Substitution involving K+ and Pb2+ has also been shown to be extensive in

jarosite (De Oliveira et al., 1996; Roca et al., 1999). Lead jarosite forms a solid-

solution series with monovalent jarosites, but the series are not crystallographically

perfect because order-disorder often results in superstructure effects in Pb-rich

members, with c axis 34 Å (double axis length of monovalent jarosites) in Pb-

jarosite (Dutrizac and Jambor, 1984, 1987a).

However, studies of natural minerals have reported only limited solid solution

between K and Na in low-temperature jarosite and natrojarosite (Burger et al., 2009;

Desborough et al., 2010), suggesting the presence of a solvus in the jarosite-

natrojarosite system at temperatures below about 140ºC (Desborough et al., 2010). In

one of these studies, hydronium-bearing jarosite was detected in only one relatively

young supergene sample, suggesting H3O-bearing jarosites are unstable over

geological timescales. The extent of solid solution between Na, K, and H3O affects

the stability of natural jarosite and natrojarosite minerals (Desborough et al., 2010).

Synthetic Ag jarosite has been proposed to form an unbroken solid-solution

series with K-jarosite in the presence of hydronium (Dutrizac and Jambor, 1984 and
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2000), as well as with Na-H3O jarosite (Dutrizac and Jambor, 1984). Solid solution

between synthetic Ag-jarosite, NH4-jarosite and H3O-jarosite has also been reported

(Roca et al., 2007). In addition, in synthetic systems, solid solution between Ag-H3O

and Pb-H3O in jarosite has been reported; however, despite extensive solid solution

between Ag-rich and Pb-rich jarosites, end-member compositions have not been

achieved because of partial replacement of the non-ferrous metals by hydronium

(Dutrizac and Jambor, 1984).

2.2.2 Crystal structure of the jarosite family of minerals

The crystal system of jarosite minerals is hexagonal and the crystal structure is in

space group R-3m (Figueiredo and Pereira da Silva, 2011), and has trigonal

symmetry (Figueiredo and Pereira da Silva, 2011). The structure has three formula

units per unit cell (Z = 3), and in jarosite sensu stricto [KFe3(SO4)2(OH)6] the unit

cell contains 3 K, 9 Fe, 6 S, 24 O and 18 (OH).

The structures of minerals in the alunite supergroup, which includes jarosite

family minerals, are layered and based on octahedral-tetrahedral sheets (Jambor

1999; Hawthorne et al., 2000). These sheets are composed of variably distorted B-

site cations in octahedral coordination (coordination number [CN] = 6) and T-site

cation in tetrahedral coordination (CN = 4) (see Figure 1.1) (Dutrizac, 1980; Jambor,

1999; Figueiredo and Pereira da Silva, 2011). The B3+O6 octahedra are capped by the

TO4 tetrahedra and make up in-plane corner-sharing B3(OH)6(TO4)2
- trimers,

forming the layers. The interlayer space is filled by monovalent A+ ions, which set

the interlayer distance (Grohol and Nocera, 2007).

In jarosite, the B cation is Fe3+ in six-fold (octahedral) coordination with four

OH- and two O2-, while the tetrahedra contain SO4
2- (Brophy et al., 1962; Stoffregen

et al., 2000). In alunite minerals, the B site is filled by Al3+, which can form a solid
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solution with Fe3+. Fe3+ preference over Al3+ in the B site increases at higher acidity

(pH < 3), lower temperature and/or increased Eh of formation (more oxidizing

conditions) (Brophy et al., 1962; Burger et al., 2009). Other cations that are known

to substitute in the B site include Zn2+, Mg2+ and V4+ (Burger et al., 2009), Ga3+ and

Cr3+ (Drouet and Navrotsky, 2003) and In3+ (Baron and Palmer, 2002).

The octahedra occur at the vertices of a 63 plane net, forming six-membered

rings with the octahedra linked by corner-sharing four OH- (see Figure 2.1)

(Hawthorne et al., 2000). At the junction of three six-membered rings is a three-

membered ring, and one set of apical vertices of those three octahedra link to a T-site

tetrahedron (see Figure 2.1). The resultant sheets are held together by interstitial

cations and hydrogen bonds.

Figure 2.1. (a) Jarosite Fe-O and Fe-OH octahedra form six-membered rings with the

octahedra linked by corner-sharing four OH-. At the junction of three six-membered

rings is a three-membered ring. (b) Fe octahedra corner share (four OH-) to form

sheets perpendicular to the c axis, and Fe octahedra also corner-share with SO4

tetrahedra (two O2-), aligned along (001) (From Hawthorne et al., 2000).
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Figure 2.2. X–Z axis cut through a ball-and-spoke model of jarosite. The structure is

composed of FeO6 octahedra bonded to SO4 tetrahedra, making a tetrahedral–

octahedral–tetrahedral (T–O–T) sheetlike structure. A-site ions (Ag, H3O, K, Na) are

located between the T–O–T sheets.

Figure 2.3. Jarosite structure of FeO6 octahedra bonded to (corner-sharing with) SO4

tetrahedra, forming sheets perpendicular to the c axis, with A-site ions (Ag, K, Na,

Pb and H3O) located between the tetrahedral–octahedral–tetrahedral sheets.
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Fe octahedra corner share (four OH-) to form sheets perpendicular to the c axis

(Basciano and Peterson, 2007; Basciano, 2008), and Fe octahedra also corner-share

with SO4 tetrahedra (two O2-), aligned along (001), i.e. perpendicular to the c axis

(see Figures 2.1 and 2.2) (Jambor, 1999). This means substitutions in the B site

mainly affect a axis dimension, with a decreasing as Al replaces Fe (Jambor, 1999).

This is because Fe3+ (high spin) has a larger effective ionic radius (0.645 Å) in six-

fold coordination than Al3+ (0.535 Å) (Shannon, 1976).

SO4 tetrahedra (O1 bond), aligned along [001], occur as two

crystallographically independent sites within a layer: one set of TO4 points towards

+c (‘upward’ along the c axis), alternating with other set pointing toward –c

(‘downward’ along the c axis) (see Figure 2.1) (Stoffregen et al., 2000; Basciano and

Peterson, 2007; Basciano, 2008). The oxygens and hydroxyls of the octahedra and

tetrahedra form an icosahedron, amid which is the A cation. For compositions with

the same TO4, the length of the c parameter is mainly influenced by the size of the

A-site cation (Jambor, 1999; Stoffregen et al., 2000).

The A-site cation is in 12-fold (icosahedral) coordination (CN = 12)

(Figueiredo and Pereira da Silva, 2011) and the site is filled by monovalent K+ in

end-member jarosite, Na+ in natrojarosite and Ag+ in argentojarosite and divalent

Pb2+ in plumbojarosite. Another monovalent cation that can also fill the A site is

H3O
+, which forms the end-member mineral hydronium jarosite.

The Fe3+ position in the jarosite structure can be described by a kagome lattice

(of interlaced 2D triangles of atoms) (Wills et al., 2004; Basciano and Peterson,

2008). The jarosite group is a main model for studying spin frustration: kagome

layers are formed from corner-sharing Fe3+
3-(µ-OH)3 triangles – the most highly

frustrated two-dimensional lattice. Jarosite structures display novel physical
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properties connected with geometrically frustrated magnetism, such as

superconductivity (Grohol and Nocera, 2007).

2.2.3 Silver associated with members of the jarosite family of minerals

Silver is able to fill the A site of jarosite minerals and in natural environments forms

argentojarosite, which is generally near the end-member composition (Jambor,

1999). The analogue of argentojarosite has been synthesised (Dutrizac and Kaiman,

1976; Jambor, 1999). Argentojarosite is of economic importance, being abundant

enough at some localities to form ore minerals, while other subgroup members may

be carriers of Ag. Silver-bearing jarosite was exploited at Rio Tinto, southern Spain,

from pre-Roman times (Dutrizac and Jambor, 2000). End-member argentojarosite is

almost as stable as K-jarosite (Dutrizac and Jambor, 2000), with the solubility

products (at 298K) of jarosite and argentojarosite being reported as 10-12.50 and 10-

11.55, respectively (Gaboreau and Veillard, 2004).

Silver is a common trace element in the oxidised zones of sulphide ore

deposits and in mine waste and acid mine drainage (Scott, 1987; Darke et al., 1997;

Leverett et al., 2005; Basciano and Peterson, 2010). Studies have reported Ag-

bearing jarosites forming from the weathering of sulphides and sulfosalts at Mt

Leyshon, northeast Queensland (Scott, 1987, 1990), with one Ag-containing

natrojarosite sample having the formula:

Na0.47K0.33Ag0.01(Fe2.58Al0.59)(SO4)1.91(PO4)0.08(OH)6. Also, Ag associated with

jarosite in oxidised zones has been reported to be enriched compared with sulphide

ore deposits (Darke et al., 1997; Leverett et al., 2005).

Argentojarosite was first observed in 1925 as a secondary product from the

weathering of sulphide-rich ore veins at Tintic Standard Mine, Dividend, Utah

(Dutrizac and Jambor 2000). One of the principal sources of Ag is jarosite ores
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associated with the enrichment zones of orebodies near the base of gossans (oxidised

zones) above primary deposits, such as at Rio Tinto (Amoros et al., 1981; Craddock,

1995; Roca et al., 1999). Studies show Ag-bearing jarosite minerals in the gossan

ores of Rio Tinto are argentojarosite and/or argentian plumbojarosite, and

argentojarosite in dilute solid solution (Ag 230 ppm) in jarosite-beudantite

[PbFe3(As,SO4)2(OH,H2O)6] phases (Sanchez et al., 1996; Roca et al., 1999;

Dutrizac and Jambor, 2000). The affinity of Pb for Ag has been known since

antiquity, being used to recover the metal from primary ores and secondary products,

including jarosite (Craddock, 1995). Argentiferous plumbojarosite is relatively

common, and where abundant is typically from the weathering of Ag-bearing galena-

rich veins. Argentiferous plumbojarosite was mined at Matagente, Peru, including by

the Incas (Dutrizac and Jambor, 2000).

2.2.4 Occurrence and importance of jarosite minerals in the natural

environment

Environments in which jarosite-family minerals commonly form as secondary

products include gossans, areas of acid rock drainage and acid mine drainage

(AMD), mine tailings, and acidic soils (Dutrizac and Jambor, 2000; Becker and

Gasharova, 2001; Welch et al., 2008; Murphy et al., 2009). Jarosites form as

secondary minerals in the oxidised zones (gossans) of sulphide deposits, particularly

at the base of gossans (Craddock, 1995), by the reaction of dilute sulphuric acid

(H2SO4), Fe3+ and other cations such as Ag+ and Pb2+ in ground water with gangue

and wall-rock minerals (see Figure 1.3) (Brown, 1971; Craddock, 1995). Within

saturated (phreatic) or vadose zones of mine tailings and acid sulphate soils, jarosites

occur as yellow crusts and coatings (Basciano, 2008). In AMD fluvial environments,

jarosite is one of the Fe hydroxides, oxyhydroxides or oxyhydroxysulphates
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collectively termed ‘ochre’, ‘boulder coats’ or ‘yellowboy’ (Lottermoser, 2003).

Other common Fe minerals in ochre include ferrihydrite (Fe5HO8.4H2O),

schewertmannite (Fe8O8(SO4)(OH)6) and FeOOH polymorphs goethite, ferroxyhyte,

akaganeite and lepidocrocite. Ochre commonly occurs as bright reddish-yellow to

yellowish-brown stains and coatings, and the precipitates are amorphous, poorly

crystalline or crystalline (Lottermoser, 2003).

Figure 2.4 Pourbaix (Eh-pH) phase diagrams showing stability conditions of
jarosite in the Fe-S-O-H system at 22˚C, 97˚C and 140˚C and of
natrojarosite at 25˚C.

aFe = 10-1, log SO4
2- = 10-0.7, log K+ = 10-2 aFe = 10-1, log SO4

2- = 10-1, log K+ = 10-2

aFe = 10-1, log SO4
2- = 10-0.7, log K+ = 10-2.7 aFe = 10-1, log SO4

2- = 10-1, log K+ = 10-2.7



35

aFe = 10-1, log SO4
2- = 10-0.7, log K+ = 10-2 aFe = 10-1, log SO4

2- = 10-1, log K+ = 10-2

aFe = 10-1, log SO4
2- = 10-0.7, log K+ = 10-2.7 aFe = 10-1, log SO4

2- = 10-1, log K+ = 10-2.7

aFe = 10-1, log SO4
2- = 10-0.7, log K+ = 10-2 aFe = 10-1, log SO4

2- = 10-1, log K+ = 10-2
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aFe = 10-1, log SO4
2- = 10-0.7, log K+ = 10-2.7 aFe = 10-1, log SO4

2- = 10-1, log K+ = 10-2.7

aFe = 10-1, log SO4
2- = 10-0.7, log Na+ = 10-2 aFe = 10-1, log SO4

2- = 10-1, log Na+ = 10-2

aFe = 10-1, log SO4
2- = 10-0.7, log Na+ = 10-2.7 aFe = 10-1, log SO4

2- = 10-1, log Na+ = 10-2.7

Diagrams produced using the Geochemist’s Workbench program and databases.

Jarosite minerals can also form in environments including acidic hypersaline

lake sediments and evaporite basins, weathered coal refuse from pyritic coal seams,
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nodules and disseminations in clays, and hot springs and hydrothermal vents,

particularly through gases H2S and SO2 being dissolved and oxidised (Brophy and

Sheridan, 1965; Baron and Palmer, 1996; Dutrizac and Jambor, 2000; Becker and

Gasharova, 2001; Welch et al., 2008; Battler et al., 2013). Hypogene jarosite

minerals have formed during albitisation, by hydrothermal alteration of alunitised

volcanic rocks, as primary argentojarosite in polymetallic ore deposits, and in

secondary quartzites (Dutrizac and Jambor, 2000).

Jarosite minerals have been reported in other geological environments that

include glauconite sandstones, fillings in cavities in arkoses, bedded cherts, heavy-

mineral assemblages in sandstone, and altered quartz porphyry oxidation products

(Brophy and Sheridan, 1965). Jarosite, including chromium-jarosite, can form during

the corrosion of Portland cement concrete (Becker and Gasharova, 2001; Tazaki et

al., 1992). Jarosite-group minerals have accumulated as stalactites and fine-grained

mud on massive pyrite in mines (Jamieson et al., 2005). In addition, the presence of

jarosite on the surface of Mars has been reported (Papike et al., 2006).

Other jarosite group minerals commonly found in AMD settings are

natrojarosite, hydronium jarosite and plumbojarosite, as well as As-bearing phases

(Blowes et al., 2003). Other jarosites are rare compared with end-member K-jarosite,

but this invariably contains hydronium, commonly with K > H3O > Na (Blowes et

al., 2003). Hydronium jarosites exist where Fe-bearing sulphate solutions are

deficient in alkalis due to the more rapid oxidation of pyrite than the country rocks,

and the rapid neutralization of the solutions by, for example, carbonate rocks causing

jarosite to precipitate before alkalis in the country rock can be dissolved. Hydronium

jarosite has been found as crusts in mine dolomitic alteration zones, formed by

oxidation after a gallery was opened (Brophy and Sheridan, 1965).
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AMD forms from the oxidation of sulphide minerals such as pyrite (FeS2) and

produces acidic waters and secondary minerals such as metal-bearing sulphates,

hydrosulphates, such as jarosite, and hydrous oxides, for example goethite (α-

FeOOH). Jarosite group minerals form in strong acidity and moderate to highly

oxidized sulphate-rich waters. Jarosites occur as yellow crusts and coatings within

saturated (phreatic) or vadose zones of mine tailings and acid sulphate soils

(Basciano, 2008). In the early stages of acid generation most K+ is derived by the

incongruent alteration of trioctahedral mica, such as biotite

[K2(Fe,Mg)6[Si3AlO10]2(OH,F)4] (Blowes et al., 2003). Jarosite minerals act as sinks

for such interlayer monovalent cations from micas during weathering and

bioleaching (Wang et al., 2007). Pb2+ in plumbojarosite is commonly derived from

the weathering of the main ore of lead, galena (PbS) (Brophy and Sheridan, 1965;

Blowes et al., 2003).

Weathering of hydrothermal minerals in acid-sulphate epithermal systems

creates mineral products derived from sulphides, including jarosites, alunites and

metals such as Ag, Bi, Cu and Pb (Scott, 1990). Alunite group minerals can form

under acid oxidizing conditions in hypogene porphyry Cu and epithermal Au

deposits. Jarosite group minerals can replace alunite group minerals during

weathering, retaining the Na-K ratio of the parents and substantial Al. Jarosites that

directly replace pyrite have low Al contents and Na-K ratios differing from alunite

group minerals in the same sample (Scott, 1990).

Jarosite can form by precipitation of K+ with Fe3+ and SO4
2- generated by

pyrite oxidation as follows (Blowes et al., 2003; Basciano, 2008):

K+
(aq) + 3Fe3+

(aq) + 2SO4
2- + 6H2O(l) ↔ KFe3(SO4)2(OH)6(s) + 6H+

(aq)
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The equivalent equation applies for the formation of sodium-jarosite

(natrojarosite) from Na+ ions (Casas et al., 2007).

The Fe3+ and SO4
2- required for jarosite formation can be supplied by

processes other than sulphide mineral oxidation. Hypogene jarosites, for example,

form as a result of the oxidation of H2S gas to SO4 and host-rock Fe2+ to Fe3+ upon

ascent of hydrothermal fluids, and precipitation of the resultant oxidised species. In

evaporative environments, the necessary ions for jarosite formation are provided by

oxidation of sulphides, Fe(II)-bearing silicates and sulphate aerosols, and acidity

from ferrolysis or sulphide oxidation (McArthur et al., 1991).

Bacteria can metabolise metals and sulphur, accelerating sulphide oxidisation,

the release of metals into solution and the creation of AMD (Blowes et al., 2003).

Bacterial oxidation of Fe2+ from pyrite and other sulphides aids the formation of

jarosite (Sasaki and Konno, 2000; Becker and Gasharova, 2001). Acid tolerant

(acidophile) bacterium Thiobacillus ferrooxidans is one of 18 bacteria species and

four archaea species that are known oxidisers of pyrite. The process takes place

either by direct interaction, with the microbe attaching to the mineral surface and

solubilising it by enzymatic reactions, or by indirect interaction, with reactions

taking place close to the mineral surface but not on it (Blowes et al., 2003).

Without such bacteria the rate of sulphide oxidation would stabilise below pH

3.5 (Blowes et al., 2003). Also, because abiotic oxidation of pyrite is slow, it has

been suggested that T. ferrooxidans and other microbes are the driving force behind

AMD pollution (Blowes et al., 2003). It has been stated that Fe2+ ion oxidation in

high sulphate (~ 1 g l-1) and highly acidic (< pH 3) waters can only occur with the

assistance of microorganisms such as T. ferrooxidans (Schwertmann and Cornell,

2000). In reported experiments, jarosite has been synthesized within 1-6 months at
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room temperature by aerating solutions of Fe2+SO4 and K2SO4 at pH 1-2, but if T.

ferrooxidans is present, jarosite is able to form within days (Tazaki et al., 1992). T.

ferrooxidans is able to accelerate the oxidation of Fe2+ to Fe3+ by five to six orders of

magnitude than if it is absent (Tazaki et al., 1992).

Sasaki and Konno (2000) formed jarosite, argentojarosite and ammoniojarosite

experimentally in the presence of T. ferrooxidans. Silver ions are extremely toxic to

a wide range of bacteria, but T. ferrooxidans and T. thiooxidans accumulate Ag

during the bioleaching of sulphide ores (Sasaki et al., 1995). In the

hydrometallurgical bioleaching of metals from sulphides, jarosites are of great

importance in controlling ferric iron solubility and remove Ag from solution to form

argentojarosite (Wang et al., 2007). Argentojarosite can form in presence of T.

ferrooxidans but neither bacteria nor extracellular substances make a direct

contribution to its crystallization (Sasaki and Konno, 2000).

2.2.5 Jarosites in hydrometallurgy

The precipitation of jarosite group phases is used in hydrometallurgy, especially the

zinc industry, to control Fe, sulphate, alkalis and other impurities (Groat et al., 2003;

Murphy et al., 2009). Hydrometallurgical treatment of Zn sulphide ore involves

separation of Zn from Fe, as most Zn processing concentrates contain 5-12% Fe.

Processes involving the formation of jarosite remove Fe from acidic zinc sulphate

solutions prior to Zn electrolysis (Dutrizac and Kaiman, 1976; Arslan and Arslan,

2003).

As well as Fe, these jarosites can contain Ag and other metals such as Cd,

Cu, Ni, Pb, Zn (Sanchez et al., 1996; Ju, 2013; Kerolli-Mustafa, 2015).

Argentojarosite and Ag-bearing plumbojarosite can be valuable ores of Ag and Pb,

and precipitation of jarosites as controls of Fe and other impurities, including trace
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metals, in hydrometallurgical circuits can lead to significant losses of Ag (Dutrizac

and Jambor, 1984). In hydrometallurgy, much of the Ag present may enter the

jarosite fraction and could be a cause of erratic recoveries of Ag ‘values’ (Dutrizac

and Kaiman, 1976; Dutrizac and Jambor, 2000), as during conventional cyanidation

processing of gossan, precipitation of Ag as argentojarosite can prevent its recovery

(Dutrizac and Kaiman, 1976; May et al., 1973); cyanidation under conventional

conditions recovers 40% of Ag from gossan ores of Rio Tinto, Spain (Roca et al.,

1999). Studies have shown that, in zinc processing, Ag impurities are selectively

incorporated in jarosite in preference to Na, NH4 and Pb (Dutrizac and Jambor,

2000; Groat et al., 2003). Recovery of the Ag in jarosite formed hydrometallurgical

processes requires the crystal structure to be destroyed. The jarosite residues can be

decomposed by roasting and dissolution using NH4ClH2O (Ju et al., 2013) ,

cyanidation in alkaline media such as NaOH-CN- or Ca(OH)2-CN- (Roca et al.,

1999; Cruells et al., 2000; Dutrizac and Jambor 2000), or sulfidisation (Han et al.,

2014); complexation is then used to remove Ag, as well as other metals, from the

decomposition solids (Roca et al., 1999; Cruells et al., 2000).

In hydrometallurgy, jarosite is hazardous waste from zinc production and

jarosite is converted to jarofix, a solidified, stabilised and inert material which can be

disposed of in landfill (Cadena Zamudio, undated paper).

2.3 Synthesis methods for jarosite compounds

The factors affecting the extent of jarosite precipitation and the composition of

jarosites are important for mineralogists in terms of understanding the partitioning of

alkali ions during jarosite formation in supergene deposits and the extent of Ag, Pb

and hydronium substitution for alkalis (Dutrizac, 1983).
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Table 2.2: Examples of K, Na, Ag, Pb concentrations in reported jarosite syntheses
Compound Temp Reactants A:Fe3+ ratio Product formula
Dutrizac (1983)
Na-jarosite1 97ºC 0.1 M Fe2(SO4)3 + 0.3 M Na2SO4 Na+:Fe3+ 3:1 [Na0.8(H3O)0.2]Fe2.8(SO4)2(OH)6

Patino et al. (1998)
Na-Ag-jarosite2 (Ag2SO4 + Na2SO4) + Fe2(SO4)3

97ºC 0.6 M Na+, 0.00048 M Ag+, 0.4 M Fe3+ Na+:Ag+:Fe3 [Na0.675Ag0.005(H3O)0.32]Fe3(SO4)2(OH)6

1.5:0.0012:1
Basciano and Peterson (2008)
Na-K-jarosite3 KCl + NaCl + Fe2(SO4)3.5H2O

140ºC 0.016 M K+, 0.183 M Na+, 0.3 M Fe3+ (K+:Na+):Fe3+ 2:3 [K0.11Na0.85(H3O)0.04]Fe2.96(SO4)2(OH)6

140ºC 0.144 M K+, 0.02 M Na+, 0.3 M Fe3+ (K+:Na+):Fe3+ 1.64:3 [K0.78Na0.26(H3O)0.00]Fe3.01(SO4)2(OH)6

Dutrizac and Kaiman (1976)
K-jarosite4 100ºC 0.1 M Fe2(SO4)3 + 0.3 M KNO3 K+:Fe3+ 1:1.67 [K0.86(H3O)0.14]Fe2.49(SO4)2(OH)6

Na-jarosite4 100ºC 0.1 M Fe2(SO4)3 + 0.45 M Na2SO4 Na+:Fe3+ 1:2.22 [Na0.82(H3O)0.18]Fe2.80(SO4)2(OH)6

Ag-jarosite4 100ºC 0.1 M Fe2(SO4)3 + 0.06 M Ag2SO4 Ag+:Fe3+ 1:16.67 [Ag0.91(H3O)0.09]Fe2.78(SO4)2(OH)6

Brown (1970)
K-jarosite5 25ºC K2SO4 + FeSO4.7H2O K+:Fe3+ 1:3 [K0.97-1.00(H3O)0.03-0.00]Fe3(SO4)2(OH)6

0.02 M K+, 0.06 M Fe3+, 0.095 M SO4
2-

0.1 M K+, 0.3 M Fe3+, 0.491 M SO4
2-

0.2 M K+, 0.6 M Fe3+, 0.95 M SO4
2-

Dutrizac and Jambor (1984)
Ag-jarosite6 Ag2SO4 + Fe2(SO4)3

60°C 0.1 M Ag+, 0.3 M Fe3+ Ag+:Fe3+ 1:3 [Ag0.84(H3O)0.16]Fe3(SO4)2(OH)6

97ºC 0.1 M Ag+, 0.3 M Fe3+ Ag+:Fe3+ 1:3 [Ag0.86(H3O)0.14]Fe3(SO4)2(OH)6

140ºC 0.1 M Ag+, 0.3 M Fe3+ Ag+:Fe3+ 1:3 [Ag0.91(H3O)0.09]Fe3(SO4)2(OH)6

200°C 0.1 M Ag+, 0.3 M Fe3+ Ag+:Fe3+ 1:3 Ag1.00Fe3(SO4)2(OH)6

May et al. (1973)
Ag-jarosite7 97ºC 0.063 M Fe2(SO4)3 + 0.021 M Ag2SO4 Ag+:Fe3+ 1:3 [Ag0.903(H3O)0.097]Fe2.97(SO4)2(OH)6

Ag-jarosite7 97ºC 0.063 M Fe2(SO4)3 + 0.021 M Ag2SO4 Ag+:Fe3+ 1:3 [Ag0.904(H3O)0.096]Fe3(SO4)2(OH)6

Dutrizac and Jambor (1983)
Pb-jarosite8 PbSO4 + Fe2(SO4)3

97ºC 0.1 M Pb2+, 0.3 M Fe3+ Pb2+:Fe3+ 1:3 Pb0.242(H3O)0.516Fe2.825(SO4)2(OH)4.96

Dutrizac and Jambor (1984)
Pb-Ag-jarosite9 (Ag2SO4 + PbSO4) + Fe2(SO4)3

97ºC 0.3 M Fe3+, 0.1 M (0-0.1 Ag+-Pb2+) (Ag++Pb2+):Fe3+ 1:3 [(H3O)xPb0.0Ag0.775]Fe2.6(SO4)2(OH)6

97ºC 0.3 M Fe3+, 0.1 M (0-0.1 Pb2+-Ag+) (Pb2++Ag+):Fe3+ 1:3 [(H3O)xPb0.26Ag0.0]Fe2.73(SO4)2(OH)6

Dutrizac and Jambor (1987)
Na-Ag-jarosite10 (Ag2SO4 + Na2SO4) + Fe2(SO4)3

97ºC 0.06 M (Na++Ag+), 0.2 M Fe3+ (Ag++Na+):Fe3+ 1:3.33 [(Na,Ag)0.6-0.8(H3O)0.2-0.4]
Fe2.597-2.967(SO4)2(OH)6

Forray et al. (2010)
Pb-jarosite11 Pb(NO3)2 + Fe2(SO4)3.5H2O

95ºC 0.03 M Pb2+, 0.108 M Fe3+ Pb2+:Fe3+ 1:3.6 Pb0.13(H3O)0.74Fe2.92(SO4)2

(OH)5.76(H2O)0.24

Grohol and Nocera (2007)
K-jarosite12 K2SO4 + Fe2(SO4)3.5H2O

150ºC 0.13 M K+, 0.652 M Fe3+ K+:Fe3+ 1:5 [K0.73(H3O)0.27]Fe2.93(SO4)2(OH)6

Basciano and Peterson (2007a)
K-jarosite13 K2SO4 + Fe2(SO4)3.5H2O

140ºC 0.023 M K+, 0.163 M Fe3+ K+:Fe3+ 1:7.09 [K0.857(H3O)0.143]Fe2.96(SO4)2(OH)6

Patino et al. (1994)
Pb-Ag-jarosite14 PbSO4 + Ag2SO4 + Fe2(SO4)3

97ºC 0.6 M Fe3+, 0.06 M Pb2+, 0.00039 M Ag+ Pb2+:Ag+:Fe3+ [Pb0.32Ag0.011(H3O)0.35]Fe3(SO4)2(OH)6

0.1:0.00065:1
97ºC 0.6 M Fe3+, 0.06 M Pb2+, 0.0002 M Ag+ Pb2+:Ag+:Fe3+ [Pb0.32Ag0.0088(H3O)0.35]Fe3(SO4)2(OH)6

0.1:0.00033:1
97ºC 0.6 M Fe3+, 0.06 M Pb2+, 0.0001 M Ag+ Pb2+:Ag+:Fe3+ [Pb0.32Ag0.0034(H3O)0.35]Fe3(SO4)2(OH)6

0.1:0.00017:1
Basciano and Peterson (2008)
Na-jarosite15 Na2SO4 + Fe2(SO4)3.5H2O

140ºC 0.014 M Na+, 0.163 M Fe3+ Na+:Fe3+ 1:11.64 [Na0.49(H3O)0.51]Fe3.11(SO4)2(OH)6

Key: 1 Dutrizac (1983), 2 Patino et al. (1998), 3 Basciano and Peterson (2008), 4 Dutrizac and Kaiman (1976), 5 Brown
(1970), 6 Dutrizac and Jambor (1984), 7 May et al. (1973), 8 Dutrizac and Jambor (1983), 9 Dutrizac and Jambor (1984), 10
Dutrizac and Jambor (1987), 11 Forray et al. (2010), 12 Grohol and Nocera (2007), 13 Basciano and Peterson (2007a), 14
Patino et al. (1994), 15 Basciano and Peterson (2008).
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Synthetic jarosites are often used as analogues for natural jarosites

(Desborough et al., 2006). Therefore, one viewpoint holds that the methods used to

create K-, Na-, Ag- and Pb-jarosites should simulate the geochemical conditions for

the formation of natural jarosites by supergene or hydrothermal processes (Brown,

1970; Desborough et al., 2006; Swayze et al., 2008). Other experiments of jarosite

synthesis have been carried out as research on jarosite processes used in the

hydrometallurgical industry (Dutrizac and Jambor, 2000). Metallurgists are

concerned with the effect of factors such as temperature, seeding and pH on the yield

and composition of the jarosite product (Dutrizac, 1983).

Synthesis experiments to form jarosite minerals have been carried out at least

since the 1930s (Fairchild, 1933). A variety of methods have been used in these

jarosite syntheses, creating different amounts of product of various chemical

compositions (see Table 2.2). Dutrizac and Jambor (2000) provide a summary of the

literature on many of the synthesis parameters of jarosite formation, especially K-

and Na-jarosite, and since that time there have been numerous other experiments.

The following is a discussion of jarosite synthesis conditions.

2.3.1. Ferric iron media and concentrations

In synthesis experiments on jarosite, Brown (1970) used FeSO4.7H2O in seven out of

a total of eight syntheses and Fe2(SO4)3 in the other, on the basis that Fe2+ or some

ferrous complex is the dominant species of iron in natural aqueous solutions. Other

studies have carried out biological syntheses of K-, Na- and Ag-jarosite by using

bacteria such as Thiobacillus ferrooxidans to oxidize Fe(II) to Fe(III) (Sasaki et al.,

1995; Sasaki and Konno, 2000). However, most studies have assumed the necessary

presence of ferric iron for jarosite formation by using reactant Fe2(SO4)3 or
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Fe2(SO4)3.5H2O to supply Fe(III) to synthesis experiments (Fairchild, 1933; Baron

and Palmer, 1996). Examples of the molarities of Fe2(SO4)3 or Fe2(SO4)3.nH2O used

are 0.351 M (Driscoll and Leinz, 2005), 0.2 M (Patino et al., 1998; Cruells et al.,

2000), 0.1 M (Dutrizac and Kaiman, 1976; Dutrizac, 1983; Dutrizac and Jambor,

1987), 0.08 M (Frost et al., 2005), 0.078 M (Stoffregen, 1993), 0.063 M (May et al.,

1973) and 0.0625 M (Stoffregen, 1993). An exception is FeCl3 used, with

Fe2(SO4)3.5H2O, by Basciano and Peterson (2007, 2008) to reduce the sulphate

concentration in solution and thereby the amount of hydronium entering the jarosite

structure.

The lower limit of Fe(III) concentration for jarosite precipitation is near 10-3

(0.001) M (Brown, 1971), while synthetic jarosites readily precipitate from sulphate-

rich solutions containing 0.025-3.0 M Fe(III) (Brophy et al., 1962; Brophy and

Sheridan, 1965; Brown, 1970). To synthesize K-, Na- and Ag-jarosite at 25ºC,

Brown (1970) used the 1:3 molar ratio of (K+-Ag+):Fe3+ or (Na+-Ag+):Fe3+ in

stoichiometric jarosite. This achieved K+ occupancy of 97-100% in synthesised

jarosite. In other studies 20% extra ferric sulphate was used (Fairchild, 1933; Brophy

et al., 1962), raising the molar ratio to 1:3.6.

Experiments to synthesise K-, Na- and Ag-jarosites show ferric iron

precipitation as jarosite increases with increasing alkali ions in solution until the

M+:Fe3+ ratio is slightly above the stoichiometric ratio of 1:3 and thereafter is nearly

independent of the amount of alkali (Dutrizac and Kaiman, 1976). Where excess

alkali ions are used, the Fe composition of jarosite is independent of the Fe3+

concentration in the solution, even for relatively low Fe3+ concentrations, but the

total amount of jarosite formed (yield) increases linearly with increasing Fe(III)

(Dutrizac and Jambor, 2000).
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As an illustration of this relationship, Dutrizac and Jambor (1984) reported

that, in Ag-jarosite syntheses where there are excess ‘alkali’ (Ag+) ions, initial Fe3+

concentration has a major influence on yield but little effect on composition. Ag-

jarosite experiments using 250% excess Ag in solution resulted in products with

fairly constant Ag and Fe contents (Fe ~ 28 wt % and Ag 18.4 wt %, compared with

stoichiometric Fe 29.41 wt % and Ag 18.94 wt %) but with yields increasing linearly

as the initial Fe concentration increases (as well as initial Ag proportionately).

However, most accurate analyses of synthetic jarosite show a slight deficiency

of Fe relative to sulphate (Kubisz, 1970; Dutrizac and Kaiman, 1976). Because low

Fe3+ concentration in the starting solution results in a deficiency of Fe3+ in the

synthesised jarosite, and to achieve full Fe occupancy in the synthesis of H3O-

jarosite, Basciano and Peterson (2007a) used a high Fe2(SO4)3.nH2O concentration of

0.82 M.

An equation for the precipitation of jarosites from homogeneous solutions

containing alkali (A+) ions is (Grohol and Nocera 2007):

3Fe3+ + 2A2SO4 + 6H2O → AFe3(SO4)2(OH)6 + 3A+ + 6H+

If alkali ions are insufficient or depleted then hydronium ions (H3O
+) can

substitute for alkali ions, resulting in a product with the general composition

Ax(H3O)1-xFe3(SO4)2(OH)6 (0 < x < 1). During this reaction, incomplete hydrolysis

often results in substitution of H2O for OH-, leading to an excess positive charge.

Every three such disorders can result in the displacement of one Fe3+ ion, leading to

Fe deficiency and the general composition Kx(H3O)1-xFe3-y(H2O)3y(OH)6-3y(SO4)2,

where y > 0. The ratio of solubilised A+/H3O
+ ions in the reaction solutions will

affect the amount of these ions in the jarosite product. Varying the H3O
+

concentration is not practical, as jarosite precipitation is pH dependent: pH < 0.5 will
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dissolve jarosite and pH > 2.5 will cause the precipitation of hematite (Fe2O3)

impurity. So varying concentration of A+ ions is better way of controlling A+/H3O
+

ratio, which can achieve reasonable spread of x values in Kx(H3O)1-xFe3-

y(H2O)3y(OH)6-3y(SO4)2.

2.3.2. Alkali or substitute cation media and concentrations

At least four different types of reactant have been used to supply K, Na, Ag and Pb

in jarosite synthesis experiments:

 K2SO4, Na2SO4, Ag2SO4 and/or PbSO4 (Brophy et al., 1962; Brown, 1970; May et

al., 1973; Dutrizac and Kaiman, 1976; Dutrizac, 1983; Dutrizac and Jambor, 1984,

1987; Stoffregen, 1993; Patino et al., 1998; Cruells et al., 2000).

 KOH, NaOH and/or AgOH (Kubisz, 1970; Baron and Palmer, 1996; Driscoll and

Leinz, 2005; Smith et al., 2006). Baron and Palmer (1996) used KOH rather than

K2SO4 because they believed KOH would result in a higher K content in the jarosite

precipitate. Kubisz (1970) recommended that alkali cations should be introduced as

hydroxides to improve the sulphate-to-iron ratio in solution and so create purer alkali

end-member jarosites with less hydronium content. This was because preparation of

synthetic K-jarosite with K2SO4 and ferric sulphate creates a SO3:Fe2O3 molar ratio

of 3:1 as opposed to the stoichiometric ratio of 4:3.

 KNO3, NaNO3, AgNO3 and/or Pb(NO3)2 (Dutrizac and Kaiman, 1976; Frost et al.,

2005; Smith et al., 2006). In the synthesis of K-jarosite at 95ºC, Dutrizac and

Kaiman (1976) used KNO3 instead of K2SO4 on the basis that it results in a product

richer in alkali, reducing the hydronium content. To synthesise Pb-jarosite at 95ºC,

Smith et al. (2006) used Pb(NO3)2 in order to reduce the concentration of SO4 in

solution and hence hinder PbSO4 precipitation.
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 KCl and NaCl (Basciano and Peterson, 2007, 2008). KCl and NaCl were used by

Basciano and Peterson (2007a, 2008) to reduce the sulphate concentration in solution

in an effort to reduce the amount of hydronium entering the jarosite structure.

Jarosites can be precipitated from solutions with 0.05 M Na+ (Dutrizac, 1999;

Dutrizac and Jambor, 2000) or 0.02 M K+ (Brown, 1970). However, very high alkali-

sulphate concentrations (> 1.0 M Na2SO4) can result in the precipitation of alkali-

Fe3+ sulphates instead of jarosites (Dutrizac and Jambor, 2000).

Slightly excess alkali concentrations (i.e. higher than stoichiometric) in the

starting solution improve jarosite precipitate yield and alkali content (relative to

hydronium content) (Dutrizac and Jambor, 2000). Use of a stoichiometric M+:Fe3+

ratio does not give an optimum product: Fairchild (1933) claimed that an ideal

M+:Fe3+ stoichiometric ratio of 1:3 in the starting solution yields a product closest to

end-member composition (Dutrizac and Jambor, 2000). A wide variety of alkali and

substitute ion concentrations have been used in jarosite syntheses, some examples of

which are given in Table 1.2.

2.3.3. Temperature of synthesis

Laboratory syntheses of jarosites have been carried out at temperatures ranging from

20ºC to 150ºC, to simulate natural and engineered (hydrometallurgical)

environments, help to speed up the reaction and form purer compounds.

Brown (1970) states that it does not seem geologically reasonable for synthesis

experiments simulating the surface occurrences of jarosites to use high temperatures

and high initial concentrations of solutions, such as 105ºC and 0.505 M K+, 1.948 M

Fe3+ and 3.279 M SO4
2- used by Brophy et al. (1962). Dutrizac and Jambor (2000)

state that K-, Na- and NH4-jarosites can all form at 25ºC but the formation rates are
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very slow. Dutrizac and Jambor (1984) report that Ag-jarosite and K-jarosite

precipitate slowly at 25°C. Brown (1970) synthesised K-jarosites at 25ºC (1 atm)

over periods of four weeks to six months.

Studies show that the precipitation of synthetic jarosite becomes rapid at ~

80ºC and is nearly complete in several hours at 100ºC (Brophy et al., 1962; Dutrizac

and Kaiman, 1976). Higher temperatures significantly increase the amount of

precipitate (yield) and slightly raise the alkali content (Dutrizac, 1983). Reaction

rates increase rapidly above 100ºC, but there is an upper limit of jarosite formation at

180-200ºC, depending on solution composition. Commercially useful rates in

hydrometallurgy generally require > 90ºC (Dutrizac and Jambor, 2000).

In synthesis experiments on Na-jarosite (Dutrizac, 1983; Dutrizac and Jambor,

2000), the amount of synthesised precipitate is strongly temperature-dependent but

the composition of the jarosite is nearly temperature-independent (as shown by

constant Na contents). At 97°C using glass reaction vessels, the synthesis of Na-

jarosite (using 0.2 M Fe3+, 0.15 M Na2SO4 and 5 g Na-jarosite seed) shows that

reaction time sharply increases the percentage of iron precipitated as jarosite (and so

the amount of product) up to a maximum at ~ 15 h and then it is constant. The

percentage Fe precipitated is proportional to the amount of Na-jarosite formed

(content ~ 33.5-34.2 wt % Fe in all jarosite precipitates; stoichiometric is 34.57 wt

%), and the percentage Na content is nearly constant (3.5-3.8 wt %; stoichiometric is

4.74 wt %) (slight increase up to ~ 40 h) (Dutrizac, 1983; Dutrizac and Jambor,

2000). Over a reaction period of 24 h, the amount of Na-jarosite formed (shown by

rising percentage of Fe precipitated while Na composition almost constant) increases

sharply from 70°C to ~ 100°C, but then levels off at higher temperatures. At 140°C,

a steady-state of Fe precipitated as Na-jarosite is reached within ~ 1 h (Dutrizac,
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1983; Dutrizac and Jambor, 2000). The authors conclude that synthesis reactions are

under thermodynamic control at > 100°C but are kinetically limited at lower

temperatures.

At 100°C, H3O-jarosite can precipitate (if no alkali is added) but the reaction is

slow and incomplete except at higher temperatures (Dutrizac et al., 1980). H3O-

jarosite forms in autoclave at 130-160ºC (Dutrizac et al., 1980; Dutrizac and Jambor,

2000). However, the incorporation of H3O in K-, Na- and Ag-jarosites is not

favoured at high temperatures (≥ 110°C) (Dutrizac and Jambor, 1984).

Temperature has a significant effect on alkali jarosite and argentojarosite

formation (Dutrizac and Jambor, 1984). In this study, Ag-jarosite was able to form at

60°C, but Na-jarosite did not. The yield of synthesised Ag-jarosite increased from

60°C to ≈ 110°C then levelled off to at least 230°C. At 90°C, the formation of

argentojarosite (in syntheses series with alkali and plumbian jarosites) using Fe and

Ag sulphates was virtually complete in 24 h. The Ag content increased steadily with

increasing temperature, from ~ 16 wt. % at 60°C, ≈ 16.22 wt. % at 97°C, 17.2 wt. %

at 140°C, until nearly ideal (stoichiometric 18.94 wt. %) at 200°C. At 230°C, Ag

content was ~ 19 wt. %. These findings compare with the results of a study by May

et al. (1973) in which two argentojarosites were synthesised at 97°C using Fe and Ag

sulphates, but using HNO3 or H2SO4 in the solutions, which yielded products with

Ag content of 17.12 wt. % and 17.10 wt. % respectively.

2.3.4. Experimental techniques for heating of jarosite syntheses solutions

High-temperature syntheses of jarosites have been carried out using glass reaction

vessels (commonly 2 litre) (Dutrizac, 1983), often with neck adaptors, one typically

with a condenser attached to reduce solution loss through evaporation (Smith, 2004);
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Ti autoclaves, which allow solutions to react at a variety of temperatures and

pressures (Dutrizac, 1983; Smith, 2004), such as 130-160ºC (Dutrizac and Jambor,

2000); and stainless-steel pressure vessels (‘bombs’) with screw lids and Teflon

linings, which also allow solutions to react at high temperatures and pressures, such

as 140ºC and 3.58 atm (Basciano, 2008) and 150ºC (Grohol and Nocera, 2007).

Smith (2004) states that synthetic Pb-bearing jarosites can be made at varying

temperatures by autoclave or by a slow-addition technique, to prevent the

precipitation of PbSO4. The slow-addition optimum temperature is similar to that of

alkali jarosite formation in a reaction vessel, 97ºC (Dutrizac et al., 1980). For

autoclave synthesis, optimum formation is at 130ºC (because small quantities of

Fe2O3 form at 170ºC) (Dutrizac et al., 1980). Dutrizac and Jambor (1984) used 2 l

glass reaction kettles to synthesise argentojarosite at 97°C and Ti autoclaves for

higher temperatures (140°C and 150°C).

2.3.5. Acidity of synthesis solutions

The pH of the synthesis solution plays a major role in jarosite stability and the

amount of precipitate, but has little effect on composition (Dutrizac, 1983; Dutrizac

and Jambor, 2000). A key stage in jarosite formation is the hydrolysis of ferric iron

sulphate, which releases protons (H+) or sulphuric acid (H2SO4) into solution and

increases acidity (Dutrizac, 1983; Dutrizac and Jambor, 2000). An equation for the

hydrolysis of ferric iron to form jarosite, with each 1 mol Fe3+ precipitated producing

1 mol H2SO4, is (Dutrizac, 1983) (where M is a monovalent cation filling the A site):

0.5M2SO4 + 1.5Fe2(SO4)3 + 6H2O → MFe3(SO4)2(OH)6 + 3H2SO4

An alternative reaction for jarosite formations is (Grohol and Nocera, 2007):

3Fe3+ + 2M2SO4 + 6H2O → MFe3(SO4)2(OH)6 + 3M+ + 6H+
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Initial acid concentration, therefore, has a significant effect on Fe3+

precipitated and high acidity may retard synthetic jarosite precipitation (Brophy et

al., 1962; Brown, 1970; Dutrizac, 1983; Dutrizac and Jambor, 2000). For this reason,

initial pH of solution is critical to optimising jarosite formation and maximising

yield (Smith, 2004). At 100ºC, the ideal starting pH value is 1.5-1.6 for jarosite

formation, whereas other Fe compounds begin to form at pH values > 2 (Dutrizac

and Jambor, 2000).

Dutrizac and Jambor (1984) state that pH values of 1.0-1.6 are near-optimum

jarosite synthesis conditions. However, the amount of jarosite precipitated decreases

sharply at pH < 1.5, because free acid in solution increasingly dominates acid

released by hydrolysis, until free acid is too great for jarosite formation (including

hydrolysis) (Dutrizac, 1983; Dutrizac and Jambor, 1984). At an initial pH of ≤ 0.5 no

jarosite forms because equilibrium is displaced in favour of solution species (i.e.,

jarosite formation is not thermodynamically favourable), because free acid is too

great. Jarosite formation is negligible at > 0.5 M H2SO4 (Dutrizac, 1983).

In synthesis experiments at 97°C, a constant amount of Na-jarosite precipitated

using an initial solution pH of 1.5-2.0, whereas no Na-jarosite precipitated at pH <

0.5 (solution species in equilibrium) (Dutrizac, 1983; Dutrizac and Jambor, 2000).

The amount of precipitate increased sharply between pH 0.5 and 1.5. The Na content

of the jarosites was nearly constant at all pH values.

The acidity of initial solutions can be regulated using H2SO4 or LiCO3

(Dutrizac, 1983; Dutrizac and Jambor, 1984). Dutrizac and Kaiman (1976) added

0.01 M H2SO4 to the initial solution to prevent ferric ion hydrolysis and precipitation

of H3O-jarosite in experiments using 0.1 M Fe2(SO4)3. Lithium carbonate is used

because Li does not form an end-member jarosite-type compound and because it
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does not cause local precipitation of Fe(OH)3 on addition (Dutrizac and Jambor,

1987; Dutrizac and Jambor, 2000), as the carbonate dissolves slowly enough to

prevent local over-neutralisation with resulting Fe hydroxide precipitation (Dutrizac,

1983).

Higher temperatures are useful in combating high acidities (Dutrizac and

Jambor, 2000). At 97°C, jarosite product yield falls steadily with increasing initial

acid concentrations above 0.1 M. No jarosite is produced at 0.3 M H2SO4 (Dutrizac

and Jambor, 1984). At 150°C, product yield is slightly greater at all acidities, but

begins to decline after initial concentration of 0.4 M H2SO4. At 140°C, yield begins

to decrease at ~ 0.3 M H2SO4. Increased temperature probably means increasing

thermodynamic stability (i.e., over 24 h synthesis period, kinetic factors are not

dominant at these temperatures).

2.3.6. Problems of Ag-jarosite synthesis

Problems can arise in the synthesis of Ag-jarosite because Ag2SO4 has low solubility

and may precipitate when the sulphate concentration in solution is sufficiently high,

contaminating the jarosite product. The solubility of Ag2SO4 is reported as ~ 0.03 M

in water (0-240°C) (Dutrizac et al., 1975), or 0.02566 M (0.8 g/100 ml H2O at 20ºC)

(Dean, 1979). However, Dutrizac and Jambor (1984) state that Ag2SO4 has

moderately high solubility in hot sulphate media.

2.3.7. Problems of Pb-jarosite synthesis

Anglesite (PbSO4) has very low solubility of 0.00013 M (4.0 mg/100 ml H2O at

20ºC) (Dean, 1979). During the synthesis of Pb-jarosite, this may cause a PbSO4

impurity to precipitate. This problem is much less using a slow-addition technique
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rather than an autoclave (Smith, 2004), and Pb-jarosite has been successfully

synthesised at 95C by a slow-addition method using 2 l glass reaction vessels with

spiral condensers (Smith et al., 2006). However, autoclave synthesis commonly

creates jarosite products with higher Pb content and greater crystallinity (Smith,

2004).

A method of removing PbSO4 from Pb-jarosite is to leach the contaminant

using 10% ammonium acetate (CH3COONH4) at room temperature. Dutrizac et al.

(1980) used ammonium acetate to leach Pb sulphate from Pb-bearing jarosites and

concluded that acetate did not decompose Pb-jarosite at 25ºC or 35ºC. At 50ºC,

slight decomposition of Pb jarosite occurred, and at 70ºC to 90ºC this became

significant. The authors conclude that ammonium acetate leaching must be done at

low temperature to prevent Pb jarosite decomposition (Smith, 2004).

Dutrizac and Jambor (1983) successfully used this technique to selectively

leach excess PbSO4 from a Pb-jarosite precipitate by washing with four 1 l solutions

of 10% ammonium acetate at 25C. The Pb-jarosite was synthesised from a 1 l

solution containing 0.3 M Fe3+ and 0.1 M PbSO4. Dutrizac and Jambor (1984) were

successful with the same leaching technique on Pb-jarosite and Ag-bearing Pb-

jarosites synthesised from 1 l solutions each containing 0.3 M Fe3+ and 0.1 M PbSO4

and/or Ag2SO4.

2.3.8. Solid solution

There is extensive solid solution involving K+, Na+ and H3O
+ in jarosite family

minerals (Brophy et al., 1962; Parker, 1962; Brophy and Sheridan, 1965; Kubisz,

1960, 1970; Stoffregen and Cygan, 1990; Li et al., 1992; Jambor, 1999). For

example, hydronium jarosite forms a complete solid-solution series with alkali
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jarosites, and there is a complete solid solution among K, Na and NH4 jarosites

(Brophy and Sheridan, 1965). Substitution involving K+ and Pb2+ has been shown by

de Oliveira et al. (1996) and Roca et al. (1999) to be extensive in jarosite. The

incorporation of NH4 in ammoniojarosite (Odum er al. 1982) seems to be mainly at

the expense of K+ and (H3O)+. Apparent deficiencies in K + Na + NH4 A-site

occupancy are generally attributed to (H3O)+.

Jambor (1999) states that natural argentojarosite is generally near the end-

member composition, although in synthetic systems the solid solution between Ag-

Pb (± H3O) and Ag-K (± H3O) has been shown to be complete (Ildefonse el al. 1986,

Dutrizac and Jambor, 1984). Synthetic Ag-jarosite forms unbroken solid-solution

series with K-jarosite in the presence of hydronium (Dutrizac and Jambor, 1984,

2000), and solid solutions are likely complete among most or all synthetic jarosite

species (Dutrizac and Jambor, 2000).

Lead jarosite forms a solid-solution series with monovalent jarosites, but the

series are not crystallographically perfect because order-disorder often results in

superstructure effects in Pb-rich members, with a c axis of 34 Å (double axis length

of monovalent jarosites) in Pb-jarosite (Dutrizac and Jambor, 1984, 1987a).

Extensive solid solution between Ag-rich and Pb-rich jarosites has been shown by

X-ray methods, but end-member compositions have not been achieved in syntheses

because of partial replacement of non-ferrous metals by hydronium ion (Dutrizac

and Jambor, 1984). The solid solution series Pb-Ag-H3O is disrupted by a region in

which two jarosite phases (near end-member Pb-rich and Ag-rich phases) are present

(Dutrizac and Jambor, 1984).
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2.3.9. Jarosite formation and order of stability

Jarosite stability is based on the extent of Fe formation (Dutrizac and Jambor, 2000).

Iron precipitates as synthetic jarosite in the order K-jarosite > NH4-jarosite > Na-

jarosite (NH4 only slightly > Na). Potassium precipitates in jarosite in preference to

NH4 and Na; for example, an Na-K or NH4-K solution with 10 mol % K gives rise to

jarosite solid-solution series with 80 mol % K. Ag jarosite is almost as stable as K

jarosite in synthetic systems (Dutrizac 1983, 1991; Dutrizac and Jambor 1984). Ag-

jarosite has notable thermal stability, greater than for K-, Na- and Pb-jarosites, which

helps explain the significant and persistent Ag incorporation in hydrometallurgical

jarosite processes (Dutrizac and Jambor 1984). Pb-jarosite has similar stability to

Na-jarosite (Dutrizac and Jambor, 2000). Thallium-jarosite is only slightly less

stable than K-jarosite and Rb-jarosite is somewhat less stable. Mercury-jarosite,

which is difficult to synthesise, appears the least stable jarosite (Dutrizac and

Jambor, 2000).

Standard free energies of formation data (see Table 2.3) show that jarosite is

the preferred species:

NaFe3(SO4)2(OH)6 + K+ → KFe3(SO4)2(OH)6 + Na+ ΔG°reaction = -5.3 kcal/mole

The data also show the low stability of hydronium jarosite at low temperature

[25°C/298K]:

H3OFe3(SO4)2(OH)6 + Na+ → NaFe3(SO4)2(OH)6 + H3O
+ ΔG°reaction = -56.7

kcal/mole

However, the use of thermodynamics to predict behaviour in such systems is

complicated by high and variable ionic strength and by extensive formation of solid

solution compounds (Dutrizac and Jambor, 2000).
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Table 2.3. Standard free energies of formation of selected jarosite minerals (after
Dutrizac and Jambor, 2000) (Dutrizac, 1980, reported in Arslan and Arslan, 2003).

Jarosite
subgroup
mineral

Formula ΔG°298

(kcal/mole)

M+ ΔG°298

(kcal/mole)

Jarosite KFe3(SO4)2(OH)6 -788.6 K+ -67.5

Natrojarosite NaFe3(SO4)2(OH)6 -778.4 Na+ -62.6

Hydroniumjarosite H3OFe3(SO4)2(OH)6 -772.5 H3O
+ 0.0

Ammoniojarosite NH4Fe3(SO4)2(OH)6 -736.2 NH4
+ -19.0

Argentojarosite AgFe3(SO4)2(OH)6 -701.3 Ag+ +18.4

Plumbojarosite Pb0.5Fe3(SO4)2(OH)6 -722.5 0.5Pb+ -2.9

There is an induction period before appreciable jarosite forms when ferric

sulphate-alkali sulphate solutions are heated rapidly to 90-100°C. Studies show this

induction period is ~ 1 h (Dutrizac and Jambor, 2000). Once jarosite precipitation

starts, the reaction is complete after 4-6 h at 95°C and after < 1 h at 140°C. The

activation energy for jarosite precipitation is fairly high (as indicated by the

induction period).

2.3.10. Drying temperature

Desborough et al. (2006, 2010) and Swayze et al. (2008) state that there are two

types of naturally occurring low-temperature jarosites: ‘young’ (or ‘modern’) and

‘mature’.

Young natural low-temperature K- and Na-jarosites contain (based on measurement

of unit cell dimensions by XRD) H3O in the alkali site and have alkali- or Fe-site

vacancies. Young natural low-temperature K- and Na-jarosites are metastable and

H3O and alkali- and/or Fe-site vacancies disappear naturally over time through

desiccation and recrystallization. Mature natural low-temperature K- and Na-

jarosites lack alkali- or Fe-site vacancies, lack H3O and consist of K- and Na-jarosite
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end-members. Mature natural low-temperature jarosites resemble hydrothermal

jarosites, rather than low-temperature (< 100°C) synthetic jarosites. The instability of

H3O-jarosite over geological timescales is indicated by the detection of hydronium

only in young samples (Desborough et al., 2006 and 2010).

Heating of non-stoichiometric or hydronium-bearing jarosite products after

synthesis is a common practice in experiments. Heating to > 110°C (“drying”) after

synthesis drives off structural water, creating a crystal structure similar to

hydrothermal jarosite. The structural nature of the jarosite products is changed by

driving off water molecules in vacant alkali and/or protonated hydroxyl sites,

altering the cell dimensions, chemical composition and stability (or solubility)

(Desborough et al., 2006 and 2010). Swayze et al. (2008) recommend that heating of

jarosite to remove ‘excess’ water (not part of lattice structure) after synthesis should

be carried out to ≤ 60ºC if the products are to be analogues for young natural low-

temperature jarosites in mine waste. Driscoll and Leinz (2005) also dried the

synthesized product at 60ºC. However, Desborough et al. (2006) state that drying

should be at ≤ 95ºC, with the same aim.

2.3.11. Jarosite synthesis procedures used in this project

From the above discussion, in this project non-microbial syntheses of K-, Na-, Ag-

and Pb-jarosites were carried out at three temperatures: surface temperature 22ºC

(Brown, 1970); ‘low’ temperature 97ºC (Baron and Palmer, 1996, 2002; Drouet and

Navrotsky, 2003; Dutrizac and Kaiman, 1976; Frost et al., 2005; Smith et al., 2006;

Stoffregen, 1993); and high temperature 140ºC (Basciano and Peterson, 2007;

Dutrizac and Kaiman, 1976). In order to investigate the effect of different drying
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temperatures, for this project separate aliquots of synthesised K-Ag and Na-Ag

jarosite products were dried at 60°C and 110°C.

2.4 Summary

● Jarosites associated with the supergene enrichment zones of orebodies are

one of the main mineral sources of Ag;

● jarosite family minerals have the chemical formula AFe3(SO4)2(OH)6 and

there is extensive element substitution;

● jarosite precipitation is used in hydrometallurgy, especially the zinc

industry, to control Fe, sulphate, alkalis and other impurities;

● significant losses of Ag can occur in the precipitation of jarosites in

hydrometallurgical circuits;

● silver chemistry in soils and natural aqueous environments is largely

limited to colloidal Ag and Ag+ with its minerals and complexes;

● Ag-jarosite forms solid-solution series with both K-jarosite and Na-jarosite

in the presence of hydronium in syntheses at hydrothermal temperatures,

but it is not known if this is also the case with syntheses at temperatures

consistent with the surface environment;

● extensive solid solution between Ag-rich and Pb-rich jarosites has been

reported, but end-member compositions have not been achieved. The solid

solution series Pb-Ag-H3O is disrupted by a region comprising a near end-

member Pb-rich phase and an Ag-rich phase.
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3 EXPERIMENTAL METHODS AND MATERIALS

A variety of analytical techniques will be used in this project in an effort to provide

data on Ag incorporated into the jarosite structure in competition with K, Na and Pb

(see Appendix B). This will include X-ray diffraction and Rietveld refinement

analysis, providing data on the crystal structure and information on how Ag

incorporated in the A site of jarosite under different synthesis conditions changes the

unit-cell c parameters. Rietveld refinement will also be able to provide information

on the bond lengths and angles, and the atomic positions in the structure. In addition,

Raman spectroscopy will enable comparison of the c-axis parameters of the different

series of jarosite compounds with the wavenumbers of the assigned modes and so the

bonding environment, indicating changing bond strength.

3.1 Collection of natural jarosite samples

Natural samples of jarosite, natrojarosite and argentojarosite were obtained from the

Smithsonian Institution in Washington, D.C., United States, from mineral retailers

via the Internet, and from the mineral collection of University College

London/Birkbeck. A total of 48 samples were collected. The provenance of the ten

jarosite mineral samples obtained from the Smithsonian Institution was

Boolcoomatta, South Australia; Chuquicamata, Chile; Dividend, Utah, and

Kingman, Arizona, U.S.; and Laurion, Attike, Greece. The known provenance of the

other samples was Almeria, Spain; Arabia District, Esmeralda County, Iron Point

District, Nyeco and Pershing County, Nevada, U.S.; Kapunda, South Australia;

Laurion, Greece; Londonderry, Western Australia; Sierra Jarosa, Spain; Tintic

District and Toole County, Utah, U.S.
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3.2 Synthesis of K-, Na-, Pb-, Ag-, K-Ag-, Na-Ag- and Pb-Ag-jarosite

compounds

The synthesis of jarosite compounds is discussed in Chapter 2.3, including various

methods used in previous studies. For this project, synthetic samples were prepared

in the Wolfson Laboratory at the Department of Earth and Planetary Sciences,

Birkbeck College, University of London. Potassium-, Na-, Pb- and Ag-jarosites were

synthesised in several series of experiments at 20ºC, 97ºC or 140ºC using different

methods, detailed below. The chemicals used were AnalaR, Normapur or Alfa Aesar

reagent grade or Premion.

3.2.1 Syntheses using K2SO4, Na2SO4 and Ag2SO4 at 22ºC [0.51 M

Fe2(SO4)3.5H2O]

A total of nine syntheses were carried out at room temperature (22ºC) to make K-,

Na- and Ag-jarosite and three intermediate products each of K-Ag and Na-Ag

jarosites. For each synthesis, 0.51 M Fe2(SO4)3.5H2O (25 g) was dissolved in a 100

ml solution of 18 MΩ cm-1 ultra-pure water, containing 0.01 M H2SO4 (0.1 ml), in a

250 ml polypropylene beaker. To each solution was added a total of 0.11 M Ag2SO4

and/or K2SO4 or Na2SO4 in varying amounts (see Table 3.1). (All chemicals were

AnalaR Normapur.) The reagents were mixed into each solution by stirring for 15

min. The initial pH value of each solution was adjusted to 1.5-1.6 by the addition of

H2SO4 or LiCO3. Each solution was then poured into a 250 ml polypropylene bottle,

which was covered but to which air was allowed to enter. The reaction time of each

experiment was nine months. During this time the pH of each solution was

monitored periodically and adjusted, where necessary, by the addition of H2SO4 or
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LiCO3 to ensure the value was between 1.0 and 1.6. Before adjustment, pH values

reached a maximum of 1.9. Each synthesised product was filtered through Whatman

#2 ashless filter paper, washed well with ultra-pure water to remove any residual

acid, air-dried and stored in a desiccator.

Table 3.1 Syntheses using K2SO4, Na2SO4 and Ag2SO4 (0.51 M Fe2(SO4)3.5H2O)

Molar amount Weight (g) Molar amount Weight (g)

0.11 M K2SO4 2.0 0.00 M Ag2SO4 0.0

0.0825 M K2SO4 1.5 0.0275 M Ag2SO4 0.9

0.055 M K2SO4 1.0 0.055 M Ag2SO4 1.8

0.0275 M K2SO4 0.5 0.0825 M Ag2SO4 2.7

0.00 M (K,Na)2SO4 0.0 0.11 M Ag2SO4 3.6

0.11 M Na2SO4 1.6 0.00 M Ag2SO4 0.0

0.0825 M Na2SO4 1.2 0.0275 M Ag2SO4 0.9

0.055 M Na2SO4 0.8 0.055 M Ag2SO4 1.8

0.0275 M Na2SO4 0.4 0.0825 M Ag2SO4 2.7

3.2.2 Syntheses using K2SO4, Na2SO4 and Ag2SO4 at 22ºC [0.075 M

Fe2(SO4)3.5H2O]

A total of 13 syntheses were carried out at room temperature (22ºC) to make K-, Na-

and Ag-jarosite and five intermediate products each of K-Ag and Na-Ag jarosites.

For each synthesis, 0.075 M Fe2(SO4)3.5H2O (7.35 g) (AnalaR Normapur) or

Fe2(SO4)3.8H2O (8.16 g) (Alfa Aesar, reagent grade) was dissolved in a 200 ml

solution of 18 MΩ ultra-pure water with 0.01 M H2SO4 (0.2 ml) in a 250 ml
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polypropylene beaker. To each solution was added a total of 0.03 M Ag2SO4 (Alfa

Aesar, reagent grade) and/or K2SO4 or Na2SO4 (AnalaR Normapur) in varying

amounts (see Table 3.2). The procedure was then the same as for the K-, Na- and

Ag-jarosites synthesised at 22ºC using 0.51 M Fe2(SO4)3.5H2O (see above) in 100 ml

solutions, except the reaction time was 16 months.

Table 3.2 Syntheses using K2SO4, Na2SO4 and Ag2SO4 (0.075 M

Fe2(SO4)3.5H2O)

Molar amount Weight (g) Molar amount Weight (g)

0.03 M K2SO4 1.05 0.00 M Ag2SO4 0.00

0.025 M K2SO4 0.87 0.005 M Ag2SO4 0.31

0.02 M K2SO4 0.70 0.01 M Ag2SO4 0.62

0.015 M K2SO4 0.52 0.015 M Ag2SO4 0.94

0.01 M K2SO4 0.35 0.02 M Ag2SO4 1.25

0.005 M K2SO4 0.17 0.025 M Ag2SO4 1.56

0.00 M (K,Na)2SO4 0.00 0.03 M Ag2SO4 1.88

0.03 M Na2SO4 0.85 0.00 M Ag2SO4 0.00

0.025 M Na2SO4 0.71 0.005 M Ag2SO4 0.31

0.02 M Na2SO4 0.57 0.01 M Ag2SO4 0.62

0.015 M Na2SO4 0.43 0.015 M Ag2SO4 0.94

0.01 M Na2SO4 0.28 0.02 M Ag2SO4 1.25

0.005 M Na2SO4 0.14 0.025 M Ag2SO4 1.56
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3.2.3 Syntheses using K2SO4, Na2SO4 and Ag2SO4 at 97ºC, dried at 60ºC

A total of nine syntheses were carried out at 97ºC to make K-, Na- and Ag-jarosite

and three intermediate products each of K-Ag and Na-Ag jarosites. The solution

preparation procedure and reagent quantities (see Table 3.1) used were the same as

those used in the syntheses above at 22ºC [0.51 M Fe2(SO4)3.5H2O]. The initial pH

values of the solutions were between 1.6 and 1.8. Each solution was then poured into

6 x 20 ml Teflon-lined stainless-steel vessels. The vessels were placed in an oven

preheated to 97°C and heated for 4 h. The vessels were removed from the oven and

cooled at room temperature for 30 min. The vessels were opened and the liquid

poured through Whatman #2 ashless filter paper. The precipitate was rinsed on the

filter paper with ultra-pure water to remove any residual acid. The solid was scraped

from the bottom and sides of the Teflon linings and washed on to another Whatman

#2 ashless filter paper and then rinsed thoroughly with ultra-pure water. The filter

papers were placed on watch glasses and dried by heating at 60ºC for 1 h in an oven.

The precipitates on the filter papers were scraped into separate glass containers and

stored in a desiccator.

3.2.4 Syntheses using K2SO4, Na2SO4 and Ag2SO4 at 97ºC, dried at 110ºC

A total of nine syntheses were carried out at 97ºC to make K-, Na- and Ag-jarosite

and three intermediate products each of K-Ag and Na-Ag jarosites. The same

solution preparation procedure and reagent quantities (see Table 3.1) were used as

those for the syntheses above at 97ºC, except that the precipitates on the filter papers

were dried by heating at 110ºC for 1 h. The initial pH value of each solution was 1.6.
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3.2.5 Syntheses using K2SO4, Na2SO4 and Ag2SO4 at 140ºC

A total of 13 syntheses were carried out at 140ºC to make K-, Na- and Ag-jarosite

and five intermediate products each of K-Ag and Na-Ag jarosites. The experimental

procedure was the same as that used in the synthesis above heated at 97ºC for 4 h

with a drying temperature of 110ºC, except that the reagent quantities were different.

For each synthesis, 0.15 M Fe2(SO4)3.5H2O (7.35 g) was used, which was mixed

with 0.06 M Ag2SO4 and/or K2SO4 or Na2SO4 in varying amounts (see Table 3.3).

The initial pH values of the solutions were between 1.26 and 1.44.

Table 3.3 Syntheses using K2SO4, Na2SO4 and Ag2SO4 (0.15 M Fe2(SO4)3.5H2O)

Molar amount Weight (g) Molar amount Weight (g)

0.06 M K2SO4 1.05 0.00 M Ag2SO4 0.00

0.05 M K2SO4 0.87 0.01 M Ag2SO4 0.31

0.04 M K2SO4 0.70 0.02 M Ag2SO4 0.62

0.03 M K2SO4 0.52 0.03 M Ag2SO4 0.94

0.02 M K2SO4 0.35 0.04 M Ag2SO4 1.25

0.01 M K2SO4 0.17 0.05 M Ag2SO4 1.56

0.00 M (K, Na)2SO4 0.00 0.06 M Ag2SO4 1.88

0.06 M Na2SO4 0.85 0.00 M Ag2SO4 0.00

0.05 M Na2SO4 0.71 0.01 M Ag2SO4 0.31

0.04 M Na2SO4 0.57 0.02 M Ag2SO4 0.62

0.03 M Na2SO4 0.43 0.03 M Ag2SO4 0.94

0.02 M Na2SO4 0.28 0.04 M Ag2SO4 1.25

0.01 M Na2SO4 0.14 0.05 M Ag2SO4 1.56
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3.2.6 Syntheses using PbSO4 and Ag2SO4 at 140ºC

A total of six syntheses were carried out at 140ºC to make Pb-jarosite and five Pb-

Ag jarosites. The same solution preparation and heating procedures were used as in

the syntheses above at 140ºC for 4 h with a drying temperature of 110ºC, using 0.15

M Fe2(SO4)3.5H2O (7.35 g) mixed with 0.06 M PbSO4 or PbSO4 and Ag2SO4 (Alfa

Aesar, Premion grade) in varying amounts (see Table 3.4). The initial pH values of

the solutions were between 1.39 and 1.57. Each precipitate was scraped on to filter

paper and rinsed with 400 ml of 10% ammonium acetate (40 g) (BDH, Prolabo

grade) to leach excess PbSO4. The precipitate was then rinsed on the filter paper with

ultra-pure water before drying at 110ºC for 1 h.

Table 3.4 Syntheses using PbSO4 and Ag2SO4 (0.15 M Fe2(SO4)3.5H2O)

Molar amount Weight (g) Molar amount Weight (g)

0.06 M PbSO4 1.82 0.00 M Ag2SO4 0.00

0.05 M PbSO4 1.52 0.01 M Ag2SO4 0.31

0.04 M PbSO4 1.21 0.02 M Ag2SO4 0.62

0.03 M PbSO4 0.91 0.03 M Ag2SO4 0.94

0.02 M PbSO4 0.61 0.04 M Ag2SO4 1.25

0.01 M PbSO4 0.30 0.05 M Ag2SO4 1.56

3.2.7 Syntheses using PbSO4 and Ag2SO4 at 22ºC

A total of six syntheses were carried out at room temperature (22ºC) to make Pb-

jarosite and five Pb-Ag jarosites. For each synthesis, 0.075 M Fe2(SO4)3.5H2O (7.35

g) (AnalaR, Normapur grade) or Fe2(SO4)3.8H2O (8.16 g) (Alfa Aesar, reagent
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grade) was dissolved in a 200 ml solution of 18 MΩ ultra-pure water with 0.02 M

H2SO4 (0.2 ml) in a 250 ml polypropylene beaker. To each solution was added

between 0.00013 M and 0.005 M PbSO4 plus 0.025 M Ag2SO4 (Alfa Aesar, Premion

grade); 0.001 M PbSO4 (added in amounts of 0.0001 M every two to three weeks a

total of ten times) plus 0.025 M Ag2SO4; and 0.001 M PbSO4 (added in amounts of

0.0001 M every two to three weeks a total of ten times) (see Table 3.5). These

concentrations were chosen on the basis of the solubilities of PbSO4 and Ag2SO4 of

0.00013 M and 0.02566 M respectively in H2O at 20ºC (Dean, 1979). The procedure

was then the same as for the K-Ag and Na-Ag jarosites synthesised at 22ºC using

0.075 M Fe2(SO4)3.5H2O (see above), except that the solid on the filter paper was

rinsed with 400 ml 10% ammonium acetate (40 g) (BDH, Prolabo grade) to leach

excess PbSO4 and then rinsed again with ultra-pure water to remove any residual

acid. The precipitate was then air-dried and stored in a desiccator.

Table 3.5 Syntheses using PbSO4 and Ag2SO4 [0.075 M Fe2(SO4)3.5H2O]

Molar amount Weight (g) Molar amount Weight (g)

0.00013 M PbSO4 0.008 0.025 M Ag2SO4 1.56

0.00032 M PbSO4 0.02 0.025 M Ag2SO4 1.56

0.001 M PbSO4 0.06 0.025 M Ag2SO4 1.56

0.005 M PbSO4 0.30 0.025 M Ag2SO4 1.56

0.0001 x 101 M PbSO4 0.06 0.025 M Ag2SO4 1.56

0.0001 x 101M PbSO4 0.06 0.0 M Ag2SO4 0.00

1 PbSO4 was added in amounts of 0.006 g (0.0001 M) ten times (two or three weeks apart) over five months.



67

3.2.8 Annealing of synthesised K-, Na-, Ag-, K-Ag and Na-Ag-jarosites at

140ºC

Annealing was carried out on K-Ag and Na-Ag jarosite series samples synthesised at

97ºC (both dried at 60ºC and dried at 110ºC), which had been formed in solutions

containing 0.51 M Fe2(SO4)3.5H2O. Each original synthesis solution had been

retained and was poured into a 250 ml polypropylene beaker and the pH was

adjusted, where necessary, with Li2CO3 powder to ensure the value was 1.0-1.6.

Each solution was poured into 6 x 20 ml Teflon-lined stainless-steel vessels. An

aliquot of the relevant jarosite sample was added as seed to each solution (see Tables

3.6 and 3.7). The vessels were placed in an oven preheated to 140ºC and heated for 3

h. The vessels were removed from the oven and cooled at room temperature for 30

min. The vessels were opened and the liquid poured through Whatman #2 ashless

filter paper. The solid was scraped from the Teflon linings and washed on to the

filter paper. The precipitate was rinsed on the filter paper with ≥ 500 ml ultra-pure

Table 3.6 Annealing of synthesised 1.02 M Fe3+ samples originally dried at

60ºC

Molar amounts in original solutions Sample added (g)

0.11 M K2SO4 0.00 M Ag2SO4 2.01

0.0825 M K2SO4 0.0275 M Ag2SO4 2.61

0.055 M K2SO4 0.055 M Ag2SO4 4.31

0.0275 M K2SO4 0.0825 M Ag2SO4 2.01

0.00 M (K, Na)2SO4 0.11 M Ag2SO4 2.31

0.11 M Na2SO4 0.00 M Ag2SO4 0.65

0.0825 M Na2SO4 0.0275 M Ag2SO4 2.9
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0.055 M Na2SO4 0.055 M Ag2SO4 1.51

0.0275 M Na2SO4 0.0825 M Ag2SO4 2.7

1 XRD analysis revealed unidentified, non-jarosite peak(s) in precipitate, so sample was rinsed in ultra-pure

water and ammonium acetate, filtered and dried at 110°C.

Table 3.7 Annealing of synthesised 1.02 M Fe3+ samples originally dried at

110ºC

Molar amounts in original solutions Sample added (g)

0.11 M K2SO4 0.00 M Ag2SO4 1.5

0.0825 M K2SO4 0.0275 M Ag2SO4 1.25

0.055 M K2SO4 0.055 M Ag2SO4 0.2

0.0275 M K2SO4 0.0825 M Ag2SO4 0.2

0.00 M (K, Na)2SO4 0.11 M Ag2SO4 0.251

0.11 M Na2SO4 0.00 M Ag2SO4 0.25

0.0825 M Na2SO4 0.0275 M Ag2SO4 0.65

0.055 M Na2SO4 0.055 M Ag2SO4 0.1

0.0275 M Na2SO4 0.0825 M Ag2SO4 0.25

1 XRD analysis revealed unidentified, non-jarosite peak(s) in precipitate, so sample was rinsed in ultra-pure

water and ammonium acetate, filtered and dried at 110°C.

water to remove any residual acid. The filter papers were placed on watch glasses

and dried by heating at 110ºC for 1 h in an oven. The precipitates on the filter papers

were scraped into separate glass containers and stored in a desiccator. For some

samples (see Tables 3.6 and 3.7), XRD analysis revealed one or more non-jarosite

peaks in the spectra. These samples were rinsed in ultra-pure water and ammonium

acetate to remove any residue sulphates.
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3.3 Characterisation of natural and synthetic jarosites

3.3.1 Determination of mineral colour

Colour analysis and Munsell colour charts (Munsell, 2000) have been used in studies

as a method to characterise jarosite mineral samples (Smith, 2004; Frost et al., 2005;

Jamieson et al., 2005; Smith et al., 2006a). For this project, a colour analysis of each

synthesised jarosite sample was carried out using Munsell charts. The charts enable

the colours of the samples to be characterised according to hue, value (lightness) and

chroma (colourfulness). There are 10 hues in the Munsell charts: five main hues (red,

purple, blue, green and yellow) and five intermediate hues (for example, YR is

yellow-red), and each hue has 10 subdivisions. Value refers to lightness on a scale of

0–10, with 0 being dark and 10 being light. Chroma is degree of colourfulness, such

as pastel, on a scale of 0–12, with 12 being maximum colourfulness.

3.3.2 Scanning electron microscopy

Scanning electron microscopy (SEM) has been used in previous studies of jarosite

minerals to determine the crystal morphology and to provide semi-quantitative

analyses of the chemical composition (Roca et al., 1993; Baron and Palmer, 1996;

Sanchez et al., 1996; Sasaki and Konno, 2000; Smith et al., 2006a). For this project,

SEM was used to determine the crystal morphology of synthetic jarosite samples

with secondary electron imaging (SEI). Backscattered electron (BSE) and energy

dispersive X-ray spectrometry (EDS) analyses were also undertaken. SEM analysis

was carried out at the SEM Laboratory in the Rock and Ice Physics Laboratory,

UCL, University of London, using a Jeol JSM-6480LV Variable Pressure Analytical

Scanning Electron Microscope (SEM) with a high resolution of 3.0nm, equipped

with Oxford Link EDS system and electron backscatter diffraction (EBSD) system.
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Jarosite grain samples were mounted on Leit carbon double-sided adhesive tabs

on 5 mm diameter aluminium stubs and then carbon or gold coated. A cobalt sample

was used to calibrate the SEM. SEI of Au-coated samples was used for high-quality

images of jarosite morphology. SEI of Au-coated samples used 7 kV accelerating

voltage, 3.0 μm spot size and a working distance (WD) of 11 mm. SEI of carbon-

coated samples used 1.5 kV and 10-12 mm WD, and BSE and EDS analyses of

carbon-coated samples used 10 kV and 10-13 mm WD.

.

3.3.3 Powder X-ray diffraction and Rietveld refinement

X-ray diffraction (XRD) analysis is commonly used in studies to provide

identification of jarosite family minerals (Brophy and Sheridan, 1965; May et al.,

1973; Dutrizac and Kaiman, 1976; Desborough et al., 2006; Papike et al., 2006;

Basciano and Peterson, 2007a, 2007b and 2008; Murphy et al., 2009). XRD analysis

for mineral identification in this project was carried out using the Philips PW1876

powder diffractometer, PC-APD computer software and X’Menu graphics software

in the Department of Earth and Planetary Sciences, Birkbeck, University of London.

The anode material used was Cu, which has a Kα1 wavelength of 1.54056 Å.

Mineral identification was carried out with X’Menu software, which uses the

Joint Committee for Powder Diffraction Spectrometry (JCPDS) database and has a

‘PC-identify’ function that proposes a range of candidate minerals for each sample

by comparing the automatically identified strongest spectrum of peaks (intensities, or

counts per second), 2θ reference lines and calculated d-spacings within the sample to

reference patterns. XRD peaks for synthetic and natural jarosites were indexed

against JCPDS standard patterns: jarosite 10-0443 and 22-0827; hydronian jarosite

36-0427; natrojarosite 11-0302, 30-1203 and 36-0425; argentojarosite 25-1327 and
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41-1398; hydronium jarosite 31-0650; and plumbojarosite 18-0698, 33-0759 and 39-

1353.

Rietveld refinement of Co-radiation powder XRD data of the jarosite samples

was also carried out for this project. This is a technique that has been used in other

studies of jarosite group minerals (Basciano and Peterson, 2007 and 2008). The

XRD analysis was carried out using a PANalytical X’Pert Pro diffractometer at the

Natural History Museum, London. The instrument was fitted with an MPPC

generator, PW3376/00 X-ray tube, PW3064 reflection-transmission spinner,

PW3050/60 goniometer, X’Celerator detector, X’Pert Data Collector, Data Viewer

and Database32, and X’Pert HighScore Plus software for crystallographic and

Rietveld analyses. The instrument was operated at room temperature. Co radiation

(Kα1 λ = 1.78897 Å, Kα2 λ = 1.79285 Å and α2/α1 intensity ratio = 0.5) was used for

the analyses of the synthesised samples, which were run in reflection mode, and a

monochromator was used. Continuous X-ray scans were used with a start angle of

10.00º 2θ and an end angle of 100.00º 2θ, a step size of 1.00º 2θ and a time per step

of 40.0 s, except for additional scans of two samples using a time per step of 80 s.

Before analysis, each sample was ground into a powder using a mortar and pestle.

Refinement of the unit-cell parameters, bond angles and lengths, and site

occupancies of the mineral phases present in the jarosite compounds was carried out

on the XRD data with the Rietveld method using the General Structure Analysis

System (GSAS) program (Larson and Von Dreele, 2004) and the GSAS ‘add-on’

software EXPGUI (‘Experiment Graphical User Interface’), a utility for viewing

refinement fits and results (Toby, 2001).
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3.3.4 Electron microprobe analysis

Electron microprobe analysis (EMPA) has been used in studies to provide chemical

composition information on jarosite minerals, including natural samples (Ildefonse et

al., 1984; Jamieson et al., 2005) and synthetic samples (Brophy and Sheridan, 1965;

Lowers et al., 2005; Desborough et al., 2010). In this project, the chemical

compositions of the natural and synthetic jarosite samples were analysed by electron

microprobe spectroscopy in wavelength dispersive X-ray spectrometry (WDS) mode

at the Electron Microprobe Suite, Department of Earth and Planetary Sciences,

Birkbeck, University of London. Polished resin blocks of the synthetic and natural

jarosite samples were prepared and these were analysed using a Jeol JXA-8100

electron microprobe, which operates under Windows XP Pro and Jeol analytical

software. The accelerating voltage of the probe filament was 15 kV, the probe

current was 2.5 x 10-8 amps and the spot beam diameter provides a spatial resolution

of about 1 µm.

Prior to WDS analysis, the microprobe’s backscattered electron imaging

system was used to identify potential natural jarosite mineral grains. An Oxford

Instruments energy dispersive X-ray spectrometry (EDS) system, equipped with

INCA x-sight microanalytical software, was then used to analyse their qualitative

chemical composition to confirm jarosite minerals for WDS analysis.

WDS analysis was carried out by the microprobe’s three Joel XM-86030

Type H Spectrometers using LiF, PET, TAP crystals, as well as a layered dispersion

elements (LDE) crystal to enable the quantitative analysis of the lighter element O.

Elements analysed by TAP crystals were Na, Si, Al, As and Ga and by PET/LiF

crystals were S, K, Pb, Fe, Ag, Au, P, V, Cr, Cu and Zn. Prior to WDS analysis,

reference materials of known composition were used to calibrate the microprobe.
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The standards used were pure metals, simple oxides or other natural minerals,

including: albite (Na), pyrite (S), fayalite (Fe), quartz (Si) and apatite (P).

3.3.4.1 Benefits and limitations of EMPA of jarosites

The properties of jarosite that make EMPA analysis difficult and complicate the

interpretation of the results, leading to potential errors of data interpretation, include

sensitivity to the electron beam, small particle size and chemical heterogeneity

(Lowers et al., 2005). Limitations of EMPA include the effects of interactions

between the jarosite sample and the electron beam (Lowers et al., 2005).

Jarosite interactions with the beam may result in alkali cation migration and

specimen damage at operating conditions varying from 10-20 kV, 5-30 nA (cup or

PCD) and spot to 10 μm diameter beam. Migration of K and, to a greater degree, Na

during microprobe analysis may result in loss of counts during analysis and an

apparent cation deficiency (Lowers et al., 2005; Desborough et al., 2010). For

example, at operating conditions of 15 kV, 20 nA and a spot beam, count losses of K

of up to ~ 50% may result (Lowers et al., 2005). Reducing the accelerating voltage to

10 kV and beam diameter tend to minimise alkali loss. Using operating conditions of

10 kV, 20 nA and 5 μm diameter beam, Na and K count rates remain relatively

constant for analysis times up to 30 s with no visible specimen damage.

If a sample contains high proportions of structural water and if the voltage of

the electron beam is set too high, some water may be lost during analysis, leading to

substantial error in elemental quantification (Smith, 2004). The structure of jarosite

contains significant amounts of structural water, some of which is not strongly

bound, while the samples are also likely to contain amounts of non-structural water

remaining after drying during synthesis.
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The operating conditions of the point analyses in this study included a spot (~

1 μm) electron beam of 15 kV and 25 nA (2.5 x 10-8 A) for 10 s (S) and 20 s (K, Na,

Ag, Pb and Fe). Monitoring of K and Na counts at these operating conditions using

EDS showed little loss of intensities (c.f. Lowers et al., 2005).

Jarosites may be very fine-grained so that the grains are too small to resolve by

EMPA (Desborough et al., 2010). Low-temperature jarosite minerals are generally

very fine-grained, which prohibits their separation for chemical analysis

(Desborough et al., 2010). Even a small electron beam may not resolve sub-

micrometre intergrowths of different compositions of jarosite (Papike et al., 2006,

2007; Desborough et al., 2010). Analysis of jarosite volumes smaller than the

excitation volume results in low totals of the elements of interest and incorrect cation

ratios (Lowers et al., 2005). Operating conditions of 10 kV and 5 μm beam produce

an excitation volume of ~ 4 μm3 and operating conditions of 15 kV and 5 μm beam

produce an excitation volume of ~ 8 μm3. Data collected under circumstances where

the jarosite volumes are smaller than the excitation volume must be used with

caution when concluding that Fe deficiencies exist and/or H3O
+ has substituted for K

(Lowers et al., 2005). However, in this study, although the synthesised jarosites are

very fine-grained, as indicated by the morphology studies, with some grains ≤ 1 μm,

all the grains are in aggregates that form areas and volumes sufficiently large for

EMPA. In addition, it has been shown that deficiencies in the K-monovalent site

may not be due to the presence of H3O
+ but rather to vacancies in the crystal

structure (Majzlan et al., 2004).

Crystal chemistry of jarosite allows multiple substitutions in the lattice.

Backscattered electron images can reveal chemical zonation within grains,

information of which can be used to prevent analysis of overlapping chemical zones
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(Lowers et al., 2005). However, orientation of chemical zones with depth is often not

known; therefore, may be parallel to or intersect the chemical zones at depth within

the excitation volume. Jarosite may display chemical zoning on a scale smaller than

the excitation volume, resulting in more than one zone being analysed at one time.

Interpretations of solid solution between end members (K, Na or H3O) must consider

the possibilities of heterogeneities in the excitation volume (Lowers et al., 2005).

A potential inaccuracy of the EMPA data obtained is if there is chemical

heterogeneity or zonation in the samples. This is especially the case if the chemical

zoning is of a scale smaller than the excitation volume of the beam, resulting in more

than one zone being analysed at one time (Lowers et al., 2005). Backscattered

electron images can reveal chemical zonation within grains and this information can

be used to prevent analysis of overlapping zones (Lowers et al., 2005). However,

backscattered electron images of the K-Ag, Na-Ag and Pb-Ag jarosite samples used

in this study during identification of positions for point analyses by WDS indicated

no chemical zonation within the synthesised crystals.

3.3.4.2 Interpretation of data and data quality

In EMPA of jarosite compounds, potential errors of data interpretation occur due to

particle size being smaller (< 1 μm) than the electron beam (see section 3.3.4.1) and

thus causing interactions. The EMPA readings of the content of the A-site cations in

each synthesised jarosite compound often show substantial variation, indicating

either significant heterogeneity or problems of obtaining good quality data from the

samples. The standard deviations of the compositions of the A-site cations are

generally relatively high. This is indicated by the analytical precision (in %) of the

data measured by the coefficient of variation (C, ratio of standard deviation of

population to the mean value) of the site occupancies of the A-site cations in each
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sample (Table 3.8a-c). Of the compounds containing Na, only 1 out of 34 (3%) has a

C value for Na of < 10%, while 8 (24%) have a C value of 20-29.99% and 16 (47%)

have a C value of ≥ 50%. Of the K-containing compounds, only 2 out of 36 (6%)

have a C value for K of < 10%, 13 (36%) have a C value of 10-19.99%, 11 (31%)

have a C value of 20-29.99% and 6 (17%) have a C value of 30-39.99%, while 3

(8%) have a C value of ≥ 50%. Of the Pb-containing compounds, 1 out of 10 (10%)

has a C value of < 10%, 1 (10%) has a C value of 30-30.99%, and 8 (80%) have a C

value of more than ≥ 50%. In the Ag-containing compounds only 1 out of 72 (1%)

has a C value for Ag of  < 10%, while 14 (19%) have a C value of 10-19.99%, 23

(32%) have a C value of 20-29.99%, 17 (24%) have a C value of 30-39.99%, 10

(14%) have a C value of 40-49.99% and 8 (11%) have a C value of ≥ 50%.

Table 3.8a. EMPA mean A-site occupancy (occ) of K and Ag, standard deviation
(s) and coefficient of variation (C) of synthesised K-Ag jarosites.

Sample K occ K s K C Ag occ Ag s Ag C
04 0.37 0.1411 38.11 0 0 0
06 0.60 0.0811 13.52 0.19 0.0409 21.53

06D 0.30 0.1024 34.13 0.06 0.0279 46.50
08 0.30 0.0913 30.43 0.29 0.0492 16.97
10 0.23 0.0364 15.83 0.14 0.0548 39.14

10D 0.22 0.0609 27.68 0.17 0.0702 41.29
12 0 0 0 0.31 0.0964 31.10
22 0.23 0.0486 21.13 0 0 0
24 0.25 0.0644 25.76 0.07 0.0281 40.14

24D 0.30 0.1521 50.70 0.09 0.0402 44.67
26 0.24 0.0450 18.75 0.07 0.0308 44.00
28 0.21 0.0272 12.95 0.10 0.0363 36.30
30 0 0 0 0.24 0.0627 26.13
40 0.26 0.0981 37.73 0.04 0.0100 25.00
55 0.43 0.0692 16.09 0 0 0
56 0.70 0.0451 6.44 0.16 0.0058 3.63
57 0.56 0.0643 11.48 0.26 0.0473 18.19
58 0.45 0.0819 18.20 0.27 0.0959 35.52
59 0.37 0.0579 15.65 0.35 0.1140 32.57
60 0.21 0.0432 20.57 0.60 0.1096 18.27
61 0 0 0 0.63 0.1848 29.33
62 0.55 0.0962 17.49 0 0 0
63 0.42 0.0881 20.98 0.24 0.0750 31.25
64 0.26 0.0471 18.12 0.30 0.0402 13.40
65 0.29 0.2155 74.31 0.34 0.0351 10.32
66 0 0 0 0.44 0.1517 34.48
71 0 0 0 0.66 0.0759 11.50
72 0 0 0 0.63 0.5282 83.84
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73 0.32 0.0952 29.75 0 0 0
74 0.64 0.1881 29.39 0.06 0.0160 26.67
75 0.35 0.0588 16.80 0.10 0.0283 28.30
76 0.36 0.0262 7.28 0.15 0.0251 16.73
81 0.64 0.1119 17.48 0 0 0
82 0.40 0.1608 40.20 0.14 0.0484 34.57
83 0.30 0.0691 23.03 0.43 0.1129 26.26
84 0.10 0.0294 29.40 0.64 0.2127 33.23
89 0.55 0.0977 17.76 0 0 0
90 0.56 0.1279 22.84 0.05 0.0168 33.60
91 0.48 0.1640 34.17 0.04 0.0205 51.25
92 0.31 0.0641 20.68 0.09 0.0251 27.89
93 0.35 0.1235 35.29 0.12 0.0558 46.50
94 0.17 0.0994 58.47 0.28 0.1696 60.57
95 0 0 0 0.56 0.1768 31.57

Table 3.8b. EMPA mean A-site occupancy (occ) of Na and Ag, standard deviation
(s) and coefficient of variation (C) of synthesised Na-Ag jarosites.

Sample Na occ Na s Na C Ag occ Ag s Ag C
12 0 0 0 0.31 0.0964 31.10
14 0.17 0.0404 23.76 0 0 0
16 0.10 0.0615 61.50 0.16 0.0574 35.88
18 0.05 0.0163 32.60 0.22 0.0390 17.73
20 0.04 0.0351 87.75 0.23 0.0460 20.00
30 0 0 0 0.24 0.0627 26.13
32 0.30 0.0894 29.80 0 0 0
34 0.10 0.0776 77.60 0.15 0.0336 22.40
36 0.04 0.0265 66.25 0.29 0.1328 45.79
38 0.01 0.0071 71.00 0.26 0.0510 19.62

38D 0.04 0.0283 70.75 0.23 0.1109 48.22
42 0.05 0.0087 17.40 0.20 0.0339 16.95
49 0.56 0.0289 5.16 0 0 0
50 0.25 0.1111 44.44 0.24 0.1031 42.96
51 0.16 0.0894 55.88 0.29 0.0808 27.86
52 0.05 0.0148 29.60 0.37 0.1394 37.68
53 0.03 0.0120 40.00 0.30 0.1127 37.57
54 0.01 0.0065 65.00 0.38 0.1402 36.89
61 0 0 0 0.63 0.1848 29.33
66 0 0 0 0.44 0.1517 34.48
67 0.65 0.1993 30.66 0 0 0
68 0.57 0.1699 29.81 0.09 0.1008 112.00
69 0.30 0.1759 58.63 0.12 0.1701 141.75
70 0.23 0.1778 77.30 0.33 0.2678 81.15
71 0 0 0 0.66 0.0759 11.50
72 0 0 0 0.63 0.5282 83.84
77 0.49 0.1878 38.33 0 0 0
78 0.05 0.0298 59.60 0.42 0.3550 84.52
79 0.06 0.0173 28.83 0.48 0.1452 30.25
80 0.03 0.0178 59.33 0.55 0.1466 26.65
85 0.55 0.1141 20.75 0 0 0
86 0.29 0.2672 92.14 0.35 0.2127 60.77
87 0.17 0.1014 59.65 0.50 0.1139 22.78
88 0.14 0.0711 50.79 0.49 0.0699 14.27
95 0 0 0 0.56 0.1768 31.57
96 0.56 0.1567 27.98 0 0 0
97 0.11 0.0374 34.00 0.46 0.2258 49.09
98 0.09 0.0312 34.67 0.55 0.1612 29.31
99 0.03 0.0088 29.33 0.57 0.1440 25.26
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100 0.02 0.0093 46.50 0.63 0.1510 23.97
101 0.02 0.0112 56.00 0.50 0.1785 35.70

Table 3.8c. EMPA mean A-site occupancy (occ) of Pb and Ag, standard deviation
(s) and coefficient of variation (C) of synthesised Pb-Ag jarosites.

Sample Pb occ Pb s Pb C Ag occ Ag s Ag C
43 n.d. n.d. n.d. n.d. n.d. n.d.
44 0.03 0.0194 64.67 0.223 0.0599 26.86
45 0.006 0.0059 98.33 0.448 0.1279 28.55
46 n.d. n.d. n.d. n.d. n.d. n.d.
47 0.006 0.0082 136.67 0.652 0.1546 23.71
48 0.009 0.0073 81.11 0.299 0.0433 14.48
61 0 0 0 0.63 0.1848 29.33
95 0 0 0 0.56 0.1768 31.57

102 0.004 0.0030 75.00 0.448 0.1322 29.51
103 0.003 0.0009 30.00 0.491 0.0752 15.32
104 0.025 0.0186 74.40 0.807 0.1974 24.46
105 0.047 0.0504 107.23 0.808 0.0881 10.90
106 0.018 0.0093 51.67 0.483 0.1374 28.45
107 0.03 0.0017 5.67 0 0 0

3.3.5 Raman spectroscopy

Raman spectroscopy has been used in studies to characterise jarosite minerals,

including synthetic compounds (Serna et al., 1986; Sasaki et al., 1998; Casas et al.,

2007; Murphy et al., 2009) and natural samples (Frost et al., 2006). Raman spectra

can serve to identify the specific type of jarosite-group compound (Sasaki et al.,

1998; Frost et al., 2006), including in poorly crystalline or low-concentration

geochemical samples (Sasaki et al., 1998). Differences in the wavenumbers of

v1(SO4
2-), v2(SO4

2-), v3(SO4
2-), v4(SO4

2-) and vOH modes have been shown between

K-, Na-, Ag-, H3O- and Pb-jarosite (Frost et al., 2006). In addition, Raman

spectroscopy has an advantage over infrared (IR) spectroscopy, another commonly

used characterisation technique for jarosite minerals (Serna et al., 1986; Sasaki et al.,

1998), as in aqueous solution, v1(SO4
2-), v2(SO4

2-), v3(SO4
2-) and v4(SO4

2-) modes are

all Raman active in sulphate tetrahedra, compared with only v3(SO4
2-) and v4(SO4

2-)

being IR active (Sasaki et al., 1998). Also, Raman spectra of the hydroxyl stretching

region of jarosites have the advantage that bands due to adsorbed water are
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eliminated and only jarosite OH stretching bands are observed, whereas the IR

spectrum of K-jarosite shows a broad profile and a considerable number of

overlapping bands of adsorbed water and hydroxyl (Frost et al., 2006).

Laser Raman microspectroscopic analyses were carried out at Kingston

University using a Renishaw RM1000 Raman spectrometer and a Renishaw inVia

Raman spectrometer, both of which were equipped with a thermoelectrically cooled

charge coupled device (CCD) detector and a 514.5 nm Ar ion laser. The instruments

were calibrated daily on a silicon standard at 520.5 cm-1. The Renishaw RM1000

system was operated in confocal mode with the laser focused on the sample through

the objective lens (magnification × 50) of an Olympus petrological microscope, and

the Renishaw inVia system used a Leica DM2500 M microscope. Under these

conditions the laser beam for analysis was restricted to an area of < 2 μm diameter.

Initial sample burn occurred at 100% laser beam power because of the

hydrous content of the samples, so the laser beam power of the Renishaw RM1000

system was reduced from 100% to 25%. The laser power was reduced using neutral

density filters and was typically between 1 mW and ~220 μW at the sample surface.

The laser beam power of the Renishaw inVia system was reduced to 10% and was

6.76 mW at the sample surface. Following the reduction of beam power, the samples

were inspected optically for any laser damage and none was observed.

Spectra were recorded over the frequency range 100 to 4000 cm-1, using

integration times of 60 s (except 120 s for one sample). The errors on the spectra

were < 0.1 cm-1. Peak fitting was performed using Galactic GRAMS/32 software

with the Renishaw RM1000 spectrometer and WIRE 3.3 software with the Renishaw

inVia spectrometer, both of which use a mixed Gaussian-Lorentzian curve.

Depending on the quality of the spectra, between one and four spectra were obtained
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over the full frequency range. The variation between the different spectra of

individual samples was small and therefore the samples were assumed to be

homogeneous.

.

3.3.6 Chemical analysis

Inductively coupled plasma-atomic emission spectrometry (ICP-AES) is a

commonly used technique to analyse the chemical composition of jarosite minerals

(Smith et al., 2006a; Basciano and Peterson, 2007a and 2008; Murphy et al., 2009).

To prepare solutions of the samples for quantitative total elemental analysis by ICP-

AES, acid digestion of the synthetic jarosite compounds was carried out. A

commonly used acid to dissolve jarosite minerals is HCl (Sasaki et al., 1995; Smith

et al., 2006a), sometimes in the form of aqua regia (3:1 HCl:HNO3) (Basciano and

Peterson 2007a and 2008). However, a problem encountered when using HCl to

dissolve argentojarosite is the precipitation of AgCl (Sasaki et al., 1995).

Consequently, for this project, trial dissolution using HCl of several of the synthetic

Ag-containing jarosite compounds was carried out and this resulted in the formation

of a precipitate. For this reason, an alternative method using HF was adopted to

completely dissolve the jarosite compounds.

For the acid digestion of the jarosite compounds, approximately 90 mg of

each dried synthetic compound were dissolved by adding 3 ml HF (38% wt) plus 1

ml HNO3 (67% wt) in a Savillex vial with cap and heated at 150°C for 16 hrs. The

resulting solutions were then evaporated at 110°C to incipient dryness. Then 1 ml

HNO3 was added to each and the resulting solutions were evaporated at 110°C to

incipient dryness. Following this, 3 ml HNO3 and 1 ml ultra-pure water were added.

After digestion, the solutions were made up to 100 mL with ultra-pure water.
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Following the acid digestion procedure, no visible solid remained. Following this, 10

ml of each solution were put in a 50 ml vial by pipette and 40 ml of ultra-pure water

was added.

The resulting solutions were analyzed for Ag, Na, K, Pb, Fe and S by ICP-

AES on a Varian 720-ES instrument, fitted with both a monochromator and a

polychromator, at University College London. To calibrate the machine for the

elements to be analysed, three standards were analysed: standard 1 contained 10 ppm

S, 20 ppm Ag, K, Na and Pb, and 50 ppm Fe; standard 2 contained 20 ppm S, 40

ppm Ag, K, Na and Pb, and 80 ppm Fe; and standard 3 contained 30 ppm S, 60 ppm

Ag, K, Na and Pb, and 100 ppm Fe. For drift calibration, standard 2 was analysed

every seven samples and standards 1, 2 and 3 were analysed every 14 samples.

Between every fourteen samples, a blank of ultrapure water was analysed. The

wavelengths (nm) analysed for the elements were S 180.669 and S 181.972; Pb

217.000 and 220.353; Fe 234.350, 238.204 and 259.940; Ag 328.068 and 338.289; K

404.721, 766.491 and 769.897; and Na 568.821, 588.995 and 589.592.

The precision (in %) of ICP-AES analysis of K, Na, K-Ag, Na-Ag and Pb-Ag

jarosites synthesised at 22ºC, 97ºC and 140ºC was calculated by analysing duplicates

of samples 4, 14, 26, 47, 55, 60, 70, 76, 83, 87, 93, 101 and 105. Analytical precision

(in %) of the results for these samples and duplicates is represented by the coefficient

of variation (C) (standard deviation divided by the mean, times 100). The results (see

Appendix I) show good analytical precision (C) figures of ≤ 6% for the elements in

all the above samples, except for K (18-32%) in sample 4; Na (23-97%), Ag (96%),

Fe (94-95%) and S (94-95%) in sample 101; and Pb (20-22%) in sample 105.
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3.4 Summary

● K-, Na-, Pb- and Ag-jarosites were synthesised in several series of

experiments at 20ºC, 97ºC or 140ºC using different methods.

● Synthesis used K2SO4, Na2SO4, Ag2SO4 and PbSO4 in different series of

experiments at concentrations of 0-11 M or 0-0.06 M.

● Synthesis experiments used either 0.075 M Fe2(SO4)3.5H2O, 0.15 M

Fe2(SO4)3.5H2O or 0.51 M Fe2(SO4)3.5H2O.

● Colour analysis of each synthesised jarosite sample was carried out using

Munsell charts.

● Scanning electron microscopy was used to determine the crystal

morphology of synthetic jarosite samples with secondary electron imaging.

● Mineral identification by X-ray diffraction analysis was carried out using

the Joint Committee for Powder Diffraction Spectrometry (JCPDS)

database.

● The chemical compositions of the natural and synthetic samples were

analysed by electron microprobe spectroscopy in wavelength dispersive X-

ray spectrometry.

● Laser Raman microspectroscopic analyses were carried out using a

Renishaw RM1000 Raman spectrometer or a Renishaw inVia Raman

spectrometer.

● Acid digestion of the synthetic jarosite compounds was carried out prior to

quantitative total elemental analysis by inductively coupled plasma-atomic

emission spectrometry.
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4 RESULTS

4.1 Characterisation of synthetic jarosite compounds

The products of the K-Ag, Na-Ag and Pb-Ag jarosite synthesis procedures were

weighed and the result for each sample was recorded. These results are shown in the

tables in Appendix C, which also show the 'ideal' or theoretical maximum weights of

the jarosite products that could be produced from the amounts of reagents used in the

synthesis experiments.

4.1.1 Munsell colour analysis

The synthesised jarosite compounds were ground to powders using a mortar and

pestle and then the powders were compared with Munsell colour charts. The results

of the Munsell colour analysis of each synthesised jarosite sample are shown in

Table 4.1. The samples have been characterised with colours comprising 2.5Y 5/6,

7/6, 8/6, 5/8, 6/8, 7/8 and 8/8, and 10YR 5/6, 6/8 and 7/8. The colour names given by

the Munsell charts for the notations are: 2.5Y 5/6 light olive yellow; 2.5Y 6/8 olive

yellow; 2.5Y 7/6, 8/6, 5/8, 7/8 and 8/8 yellow; 10YR 5/6 yellowish brown; 10YR 6/8

brownish yellow; and 10YR 7/8 yellow. Most of this project's synthesised jarosite

compounds have been characterised as yellow; however, there is a trend of

compounds with high Ag content in the starting solutions being characterised as

olive yellow.

These results compare with a reported Munsell colour for synthesised

potassium jarosite of 10YR 8/7 (Smith, 2004; Smith et al., 2006a), while another

study reports synthesised Ag-jarosite as being a yellow-brown precipitate (Frost et

al., 2005), so the results for some of the compounds in this project are close to those
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colours. A further study on natural jarosite-group minerals containing K, Na and

H3O, plus significant As, Pb and Zn, which are described as being dull orange-

yellow, are given the Munsell colours 2.5Y 6-7 and 2.5Y 7-8 in samples from

stalactites and Munsell colour 2.5Y 7/6 in a sample from mud on a mine wall

(Jamieson et al., 2005). Therefore, the compounds in this project have colours

similar to these.

Table 4.1: Munsell colours of synthesised K, Na, Pb, K-Ag, Na-Ag and Pb-Ag

jarosites.

Sample Colour Colour name Starting solution

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

4 2.5Y 7/8 Yellow 0.22 M K, 0.00 M Ag

6 2.5Y 7/8 Yellow 0.165 M K, 0.055 M Ag

8 2.5Y 8/8 Yellow 0.11 M K, 0.11 M Ag

10 2.5Y 7/8 Yellow 0.055 M K, 0.165 M Ag

12 2.5Y 6/8 Olive yellow 0.00 M K/Na, 0.22 M Ag

14 2.5Y 7/8 Yellow 0.22 M Na, 0.00 M Ag

16 2.5Y 6/8 Olive yellow 0.165 M Na, 0.055 M Ag

18 2.5Y 7/8 Yellow 0.11 M Na, 0.11 M Ag

20 2.5Y 7/8 Yellow 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

22 2.5Y 7/8 Yellow 0.22 M K, 0.00 M Ag

24 2.5Y 7/8 Yellow 0.165 M K, 0.055 M Ag

26 2.5Y 7/8 Yellow 0.11 M K, 0.11 M Ag

28 2.5Y 7/8 Yellow 0.055 M K, 0.165 M Ag

30 2.5Y 7/8 Yellow 0.00 M K/Na, 0.22 M Ag

32 10YR 6/8 Brownish yellow 0.22 M Na, 0.00 M Ag

34 2.5Y 7/8 Yellow 0.165 M Na, 0.055 M Ag

36 2.5Y 7/8 Yellow 0.11 M Na, 0.11 M Ag

38 2.5Y 7/8 Yellow 0.055 M Na, 0.165 M Ag

40 2.5Y 7/8 Yellow 0.5 M K, 0.1 M Ag

42 2.5Y 7/8 Yellow 0.5 M Na, 0.1 M Ag
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Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

43 2.5Y 7/8 Yellow 0.06 M Pb, 0.00 M Ag

44 2.5Y 7/8 Yellow 0.05 M Pb, 0.01 M Ag

45 2.5Y 7/8 Yellow 0.04 M Pb, 0.02 M Ag

46 10YR 7/8 Yellow 0.03 M Pb, 0.03 M Ag

47 2.5Y 7/8 Yellow 0.02 M Pb, 0.04 M Ag

48 2.5Y 7/8 Yellow 0.01 M Pb, 0.05 M Ag

49 2.5Y 7/8 Yellow 0.12 M Na, 0.00 M Ag

50 2.5Y 6/8 Olive yellow 0.10 M Na, 0.02 M Ag

51 2.5Y 6/8 Olive yellow 0.08 M Na, 0.04 M Ag

52 2.5Y 6/8 Olive yellow 0.06 M Na, 0.06 M Ag

53 2.5Y 6/8 Olive yellow 0.04 M Na, 0.08 M Ag

54 2.5Y 6/8 Olive yellow 0.02 M Na, 0.10 M Ag

55 2.5Y 7/8 Yellow 0.12 M K, 0.00 M Ag

56 2.5Y 7/8 Yellow 0.10 M K, 0.02 M Ag

57 2.5Y 7/8 Yellow 0.08 M K, 0.04 M Ag

58 2.5Y 7/8 Yellow 0.06 M K, 0.06 M Ag

59 2.5Y 7/8 Yellow 0.04 M K, 0.08 M Ag

60 2.5Y 7/8 Yellow 0.02 M K, 0.10 M Ag

61 2.5Y 6/8 Olive yellow 0.00 M M, 0.12 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC)

62 2.5Y 8/6 Yellow 0.22 M K, 0.00 M Ag

63 10YR 7/8 Yellow 0.165 M K, 0.055 M Ag

64 10YR 7/8 Yellow 0.11 M K, 0.11 M Ag

65 2.5Y 8/6 Yellow 0.055 M K, 0.165 M Ag

66 2.5Y 8/6 Yellow 0.00 M K/Na, 0.22 M Ag

67 2.5Y 8/8 Yellow 0.22 M Na, 0.00 M Ag

68 2.5Y 7/8 Yellow 0.165 M Na, 0.055 M Ag

69 2.5Y 7/6 Yellow 0.11 M Na, 0.11 M Ag

70 2.5Y 8/6 Yellow 0.055 M Na, 0.165 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC)

71 2.5Y 8/6 Yellow 0.00 M K/Na, 0.22 M Ag

81 2.5Y 8/6 Yellow 0.22 M K, 0.00 M Ag
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82 2.5Y 7/8 Yellow 0.165 M K, 0.055 M Ag

83 2.5Y 6/8 Olive yellow 0.11 M K, 0.11 M Ag

84 2.5Y 6/8 Olive yellow 0.055 M K, 0.165 M Ag

85 2.5Y 8/8 Yellow 0.22 M Na, 0.00 M Ag

86 2.5Y 8/6 Yellow 0.165 M Na, 0.055 M Ag

87 2.5Y 7/8 Yellow 0.11 M Na, 0.11 M Ag

88 2.5Y 6/8 Olive yellow 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

72 2.5Y 8/6 Yellow 0.00 M K, 0.22 M Ag

73 2.5Y 8/6 Yellow 0.22 M K, 0.00 M Ag

74 2.5Y 8/6 Yellow 0.165 M K, 0.055 M Ag

75 2.5Y 8/6 Yellow 0.11 M K, 0.11 M Ag

76 2.5Y 8/6 Yellow 0.055 M K, 0.165 M Ag

77 2.5Y 8/6 Yellow 0.22 M Na, 0.00 M Ag

78 2.5Y 8/6 Yellow 0.165 M Na, 0.055 M Ag

79 2.5Y 8/6 Yellow 0.11 M Na, 0.11 M Ag

80 2.5Y 8/6 Yellow 0.055 M Na, 0.165 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

89 2.5Y 5/6 Light olive yellow 0.12 M K, 0.00 M Ag

90 2.5Y 5/6 Light olive yellow 0.10 M K, 0.02 M Ag

91 2.5Y 5/6 Light olive yellow 0.08 M K, 0.04 M Ag

92 2.5Y 7/8 Yellow 0.06 M K, 0.06 M Ag

93 2.5Y 6/8 Olive yellow 0.04 M K, 0.08 M Ag

94 2.5Y 6/8 Olive yellow 0.02 M K, 0.10 M Ag

95 2.5Y 6/8 Olive yellow 0.00 M M, 0.12 M Ag

96 2.5Y 7/8 Yellow 0.12 M Na, 0.00 M Ag

97 2.5Y 7/8 Yellow 0.10 M Na, 0.02 M Ag

98 2.5Y 8/8 Yellow 0.08 M Na, 0.04 M Ag

99 2.5Y 5/8 Yellow 0.06 M Na, 0.06 M Ag

100 2.5Y 7/8 Yellow 0.04 M Na, 0.08 M Ag

101 2.5Y 6/8 Olive yellow 0.02 M Na, 0.10 M Ag

102 2.5Y 6/8 Olive yellow 0.00013 M Pb, 0.10 M Ag

103 2.5Y 6/8 Olive yellow 0.00032 M Pb, 0.10 M Ag

104 2.5Y 5/6 Light olive yellow 0.001 M Pb, 0.10 M Ag
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105 2.5Y 5/6 Light olive yellow 0.005 M Pb, 0.10 M Ag

106 2.5Y 5/6 Light olive yellow 0.001 M Pb, 0.10 M Ag

107 2.5Y 5/8 Yellow 0.001 M Pb, 0.00 M Ag

4.1.2 Scanning electron microscopy

4.1.2.1 Morphology and grain size of synthetic jarosite compounds

SEM secondary-electron images of (Au-coated) synthetic samples 4-42 (even

numbers) show end members of K-H3O-jarosite, Ag-H3O-jarosite and Na-H3O-

jarosite with distinctive morphologies, and K-Ag-H3O and Na-Ag-H3O-jarosite

compounds display transitional forms between the end-member morphologies (see

Table 4.2 and Appendix D). K-H3O-jarosite crystals generally comprise rounded

hexagonal plates on {0001} (Anthony et al., 2003) and discs, usually intergrown and

in compact texture, with grain sizes of 1-20 µm, also as aggregates. Ag-H3O-jarosite

crystals comprise intergrown hexagonal plates on {0001} and dipyramidal

(octahedral) rhombs with {01-12} and {0001} faces (Gasharova et al., 2005), both

sometimes rounded, and in compact texture, with grain sizes of 4-25 µm. Na-H3O-

jarosite crystals are intergrown with pyramidal {01-12} and {0001} faces and

rhombohedral {01-12} faces, in compact texture, with grain sizes of 1-20 µm.

Table 4.2. Morphology and grain size of synthetic K-Ag and Na-Ag jarosites

Sample Initial solution Morphology Grain
size (µm)

04 0.22 M K, 0.0 M Ag Intergrown rounded plates and hexagonal plates, and

rounded and angular aggregates

2-6

22 0.22 M K, 0.0 M Ag Intergrown rounded plates, some with hexagonal

faces, and aggregates

6-20

06 0.165 M K, 0.055 M Ag Rounded hexagonal plates 2.5-4
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24 0.165 M K, 0.055 M Ag Intergrown plates and hexagonal plates, some

rounded, and aggregates

5-10

06D 0.165 M K, 0.055 M Ag Intergrown plates, some rounded 2-8

24D 0.165 M K, 0.055 M Ag Intergrown rounded plates 15-40

08 0.11 M K, 0.11 M Ag Rounded plates and hexagonal plates, and pyramidal

rhombs

3.5-5

26 0.11 M K, 0.11 M Ag Intergrown rounded plates 4-10

10 0.055 M K, 0.165 M Ag Intergrown rounded plates and hexagonal plates,

pyramidal rhombs, and aggregates

3-8

28 0.055 M K, 0.165 M Ag Intergrown rounded plates, some with hexagonal

faces, pyramidal rhombs, irregular, angular forms, and

aggregates

2.5-6.5

40 0.5 M K, 0.1 M Ag Intergrown rounded rhombs, rounded plates, some

with hexagonal faces, and aggregates

2-8

12 0.22 M Ag, 0.0 M K Intergrown hexagonal plates, some rounded, and

pyramidal rhombs, some rounded

4-25

30 0.22 M Ag, 0.0 M K Intergrown pyramidal rhombs, some rounded, and

hexagonal plates, some rounded

10-20

14 0.22 M Na, 0.0 M Ag Intergrown pyramidal rhombs 2-20

32 0.22 M Na, 0.0 M Ag Intergrown pyramidal rhombs and pseudocubic

rhombohedra

3-12

16 0.165 M Na, 0.055 M Ag Intergrown pyramidal rhombs 1.5-25

34 0.165 M Na, 0.055 M Ag Intergrown pyramidal rhombs and aggregates 1-8

18 0.11 M Na, 0.11 M Ag Intergrown pyramidal rhombs 1-8

36 0.11 M Na, 0.11 M Ag Intergrown pyramidal rhombs 1.5-10

20 0.055 M Na, 0.165 M Ag Intergrown rounded plates, some with hexagonal

faces, pyramidal rhombs, and irregular aggregates

3-20

38 0.055 M Na, 0.165 M Ag Intergrown pyramidal rhombs 1-8

38D 0.055 M Na, 0.165 M Ag Intergrown pyramidal rhombs and rounded plates,

some with hexagonal faces

1-10

42 0.5 M Na, 0.1 M Ag Intergrown pyramidal rhombs 1-6
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4.1.2.2 Energy-dispersive X-ray spectroscopic analysis of K-Ag and Na-Ag

jarosite products

The results of SEM energy-dispersive X-ray spectroscopic (EDS) analysis of the

chemical compositions of the synthesised K-Ag-jarosite samples are shown in

Tables 4.3 and 4.4, which also show the concentrations of cations in the synthesis

starting solutions and the drying temperatures of the products. SEM analysis

provides qualitative and partly quantitative chemical compositions (Gill, 1997), and

the results of this project show generally declining content of K (Table 4.3) and Na

(Table 4.4) in the jarosite compounds with decreasing alkali cation concentration in

the starting solutions of the two series, which used different drying temperatures.

The results also show increasing Ag content in the products with rising Ag cation

concentration in the starting solutions.

Table 4.3: SEM EDS site occupancies of K-Ag jarosites synthesised at 97ºC

Series at 60°C drying temperature

Sample Na K Pb Ag H3O Fe S Starting solution

JS041 0 0.76 0 0.00 0.24 2.89 2 0.22 M K, 0.00 M Ag

JS061 0 0.62 0 0.14 0.24 2.50 2 0.165 M K, 0.055 M Ag

JS06D1 0 0.60 0 0.10 0.30 3.86 2 0.165 M K, 0.055 M Ag

JS081 0 0.41 0 0.43 0.16 2.59 2 0.11 M K, 0.11 M Ag

JS101 0 0.15 0 0.66 0.19 4.21 2 0.055 M K, 0.165 M Ag

JS10D1 0 0.23 0 0.53 0.24 3.65 2 0.055 M K, 0.165 M Ag

JS121 0 0.00 0 0.80 0.20 3.92 2 0.00 M M+,2+, 0.22 M Ag

Ave3 0 0.39 0 0.41 0.20 3.22 2

Ave4 0 0.40 0 0.37 0.23 3.38 2

Series at 110°C drying temperature

Sample Na K Pb Ag H3O Fe S Starting solution

JS222 0 0.75 0 0.00 0.25 4.10 2 0.22 M K, 0.00 M Ag
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JS242 0 0.68 0 0.19 0.13 3.66 2 0.165 M K, 0.055 M Ag

JS24D2 0 0.63 0 0.13 0.24 3.99 2 0.165 M K, 0.055 M Ag

JS262 0 0.49 0 0.37 0.14 3.65 2 0.11 M K, 0.11 M Ag

JS282 0 0.13 0 0.81 0.06 2.03 2 0.055 M K, 0.165 M Ag

JS302 0 0.00 0 0.86 0.14 3.40 2 0.00 M M+,2+, 0.22 M Ag

JS402 0 0.82 0 0.01 0.17 3.08 2 0.5 M K, 0.1 M Ag

Ave5 0 0.41 0 0.45 0.14 3.37 2

Ave6 0 0.40 0 0.43 0.17 3.43 2

Overall ave7 0 0.40 0 0.43 0.17 3.28 2

Overall ave8 0 0.40 0 0.40 0.20 3.41 2

Notes: 1 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 60ºC.
2 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 110ºC.
3 Average content of 60°C drying temperature series (excluding JS6D and 10D). 4 Average content of 60°C
drying temperature series (excluding JS6 and 10). 5 Average content of 110°C drying temperature series
(excluding JS24D and 40). 6 Average content of 110°C drying temperature series (excluding JS24 and 40).
7 Overall average of all products at 60°C and 110°C drying temperatures (excluding JS6D, 10D, 24D and 40).
8 Overall average of all products at 60°C and 110°C drying temperatures (excluding JS6, 10, 24 and 40).

Table 4.4: SEM EDS site occupancies of Na-Ag jarosites synthesised at 97ºC

Series at 60°C drying temperature

Sample Na K Pb Ag H3O Fe S Starting solution

JS121 0.00 0 0 0.80 0.20 3.92 2 0.00 M M+, 0.22 M Ag

JS141 0.73 0 0 0.00 0.27 3.51 2 0.22 M Na, 0.00 M Ag

JS161 0.44 0 0 0.07 0.49 2.90 2 0.165 M Na, 0.055 M Ag

JS181 0.10 0 0 0.63 0.27 3.03 2 0.11 M Na, 0.11 M Ag

JS201 0.07 0 0 0.87 0.06 4.59 2 0.055 M Na, 0.165 M Ag

Ave3 0.27 0 0 0.47 0.26 3.59 2

Series at 110°C drying temperature

Sample Na K Pb Ag H3O Fe S Starting solution

JS302 0.00 0 0 0.86 0.14 3.40 2 0.00 M M+, 0.22 M Ag

JS322 0.76 0 0 0.00 0.24 4.72 2 0.22 M Na, 0.00 M Ag

JS342 0.41 0 0 0.47 0.12 3.90 2 0.165 M Na, 0.055 M Ag

JS362 0.12 0 0 0.88 0.00 3.46 2 0.11 M Na, 0.11 M Ag

JS382 0.01 0 0 0.84 0.15 2.20 2 0.055 M Na, 0.165 M Ag

JS38D2 0.02 0 0 0.77 0.21 3.18 2 0.055 M Na, 0.165 M Ag

JS422 0.11 0 0 0.82 0.07 4.34 2 0.5 M Na, 0.1 M Ag

Ave4 0.26 0 0 0.61 0.13 3.54 2
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Ave5 0.26 0 0 0.60 0.14 3.73 2

Overall ave6 0.27 0 0 0.54 0.19 3.57 2

Overall ave7 0.27 0 0 0.54 0.19 3.66 2

Notes: 1 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 60ºC.
2 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 110ºC.
3 Average content of 60°C drying temperature series. 4 Average content of 110°C drying temperature series
(excluding JS38D and 42). 5 Average content of 110°C drying temperature series (excluding JS38 and 42).
6 Overall average of all products at 60°C and 110°C drying temperatures (excluding JS38D and 42). 7 Overall
average of all products at 60°C and 110°C drying temperatures (excluding JS38 and 42).

The composition (site occupancies) of the products 04 and 22 (Table 4.3) from

the highest concentration of K (0.22 M) in the starting solutions are 0.76 and 0.75

respectively. The composition of the products 12 and 30 from the corresponding

starting solutions for Ag (0.22 M) are 0.80 and 0.86 respectively, so the Ag content

is slightly higher than the K content of the corresponding products. The composition

of the products 08 and 26 from the starting solutions with equal concentrations of K

and Ag (0.11 M) are K 0.41, Ag 0.43 and K 0.49, Ag 0.37 respectively. The average

contents of K and Ag in the products of the two series of syntheses with initial

solutions containing cations varying between 0 and 0.22 M (Table 4.3) are 0.40 and

0.43 respectively (excluding 6D, 10D and 24D) and 0.40 and 0.40 respectively

(excluding 6, 10 and 24). On the basis of these average contents, the results for the

two synthesis series in Tables 4.3 indicate that K and Ag are approximately equally

incorporated into the structure of jarosite.

The A-site occupancies of the products 14 and 32 (Table 4.4) from the highest

concentration of Na (0.22 M) in the starting solutions are 0.73 and 0.76 respectively,

which compares with the occupancies of 0.80 and 0.86 respectively for the

corresponding Ag products 12 and 30. Therefore, the Ag content is slightly higher

than the Na content of the corresponding products. The site occupancies of products

18 and 36 from the starting solutions with equal concentrations of Na and Ag (0.11

M) are Na 0.10, Ag 0.63 and Na 0.12, Ag 0.88 respectively. The overall average
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contents of Na and Ag in the products of the two series of syntheses with initial

solutions containing cations varying between 0 and 0.22 M (Table 4.4) are 0.27 and

0.54 respectively. These average contents for the two synthesis series in Table 4.4

indicate that Ag is preferentially incorporated into the jarosite structure compared

with Na approximately by a factor of two.

4.1.3 Powder XRD analysis and Rietveld refinement

4.1.3.1 Chemical compositions and d-values of main peaks of K-Ag-H3O, Na-

Ag-H3O and Pb-Ag-H3O jarosite compounds

XRD data provide information on unit-cell lengths and the degree of cation

substitution in crystal structures (Schwertmann and Cornell, 2000), including jarosite

subgroup minerals (Desborough et al., 2006). This is because variations in unit-cell

dimensions are caused by differences between the ionic radii of elements contained

in end-members of the jarosite subgroup (Brophy and Sheridan, 1965). Therefore,

unit-cell variations can be used to estimate the elemental ratios in solid solution

between end-members, that is, the extent of element substitutions (Desborough et al.,

2006; Papike et al., 2006). Peak positions in XRD spectra can be used to determine

unit-cell edge lengths (Schwertmann and Cornell, 2000). Structural incorporation of

substituting cations in isomorphous minerals may be deduced from shifts in XRD

peaks (Schwertmann and Cornell, 2000). Substitution of a smaller cation leads to a

smaller unit cell, as indicated by shifts of all peaks towards higher 2θ angles.

Theoretically, the unit-cell edge lengths of mixed phases (solid solution) should lie

in a straight line between those of two end members, according to Vegard’s rule

(Schwertmann and Cornell, 2000).
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XRD patterns produced from the samples were compared with reference

patterns in the Joint Committee for Powder Diffraction Spectrometry (JCPDS)

database. The JCPDS patterns were jarosite 10-0443 and (synthetic) 22-0827;

hydromiumjarosite (synthetic) 36-0427; natrojarosite 11-0302, 30-1203 and

(synthetic) 36-0425; argentojarosite (synthetic) 25-1327 and 41-1398;

hydroniumjarosite (synthetic) 21-0932 and 31-0650; and plumbojarosite (natural)

18-0698, (synthetic) 33-0759 and (synthetic) 39-1353. The JCPDS patterns used to

identify the presence of contaminant compound Ag2SO4 (silver sulphate) were 07-

0203 and 27-1403. Cu radiation (Kα1 λ = 1.54056 Å) was used to produce the

profiles from the samples, which all contained Al peaks from the diffractometer’s

sample holder; these peaks were at ~ 38.40º 2θ (Kα1 d-value ~ 2.34 Å) and ~ 44.60º

2θ (Kα1 d-value ~ 2.03 Å) (Anthony et al., 2003).

Jarosite phases were identified in all the synthesised samples using the

X’Menu software. These synthetic jarosite phases (see Table 4.5) were all consistent

with the cations (K, Na, Pb and/or Ag) that were present in the starting solutions.

The XRD spectra of the samples are shown in Appendix E. In some samples the

XRD analysis identified peaks of Ag2SO4 or PbSO4, indicating the presence of

residual solutions that were not removed during washing. These samples were re-

washed with 0.5 L 10% ammonium acetate and 1.0 L ultrapure water and then were

re-analysed by XRD. Following this extra procedure, the XRD analysis showed that

the synthesised samples still contaminated with Ag2SO4 were 10D, 20, 24, 38D, 40,

42 and 63, and the samples still contaminated with PbSO4 were 43, 43D and 46D. In

addition, an unidentified peak remained in each of JS06, 08 and 48.
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Table 4.5: Phases identified by XRD in synthesised samples JS04-107. (Key: j = jarosite)

Sample K-j H3O-K-j Na-j Pb-j Ag-j H3O-j Ag2SO4 PbSO4

JS04 x x

JS06 x x

JS06D x x

JS08 x x

JS10 x x

JS10D x x x x

JS12 x

JS14 x

JS16 x x

JS18 x x

JS20 x x x

JS22 x

JS24 x x x

JS24D x x

JS26 x x

JS28 x x

JS30 x

JS32 x

JS34 x x

JS36 x x

JS38 x x x

JS38D x x x

JS40 x x x

JS42 x x x

JS43 x x x

JS43D x x x

JS44 x x x

JS45 x x x

JS46 x x x
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JS46D x x x x

JS47 x x x

JS48 x x x

JS49 x x

JS50 x x x

JS51 x x x

JS52 x x x

JS53 x x x

JS54 x x x

JS55 x x x

JS56 x x x

JS57 x x x x

JS58 x x x x

JS59 x x x x

JS60 x x x x

JS61 x x

JS62 x x

JS63 x x x

JS64 x x

JS65 x x x

JS66 x x

JS67 x x

JS68 x x x

JS69 x x x

JS70 x x x

JS71 x x

JS72 x x

JS73 x x

JS74 x x

JS75 x x

JS76 x x x
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JS77 x x

JS78 x x x

JS79 x x x

JS80 x x x

JS81 x x

JS82 x x

JS83 x x x

JS84 x x x

JS85 x x

JS86 x x x

JS87 x x x

JS88 x x x

JS89 x

JS90 x x

JS91 x x

JS92 x x

JS93 x x x

JS94 x x

JS95 x x

JS96 x x

JS97 x x x

JS98 x x x

JS99 x x x

JS100 x x x

JS101 x x x

JS102 x x x

JS103 x x

JS104 x x x

JS105 x x x

JS106 x x x

JS107 x x
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XRD peak broadening of synthesised Na-jarosite samples containing < 50%

Na indicates inhomogeneity of samples (Basciano and Peterson, 2008). Peak

broadening may be removed by grinding the samples and annealing at 140°C in the

starting solutions, with two cycles achieving sharp XRD peaks and increasing the A-

site occupancy of Na-jarosite (Basciano and Peterson, 2008). For this reason,

samples JS04-38 (even numbers) were annealed at 140°C in an attempt to produce

sharper peaks and increase site occupancy.

A problem that is caused by the use of Cu radiation for the XRD analysis of

Fe-bearing minerals such as jarosite is that the X-rays are strongly absorbed, causing

loss of X-ray intensity and high backgrounds as a result of fluorescence. This

absorbance may be removed by a monochromator (Schwertmann and Cornell, 2000).

For this reason, CoKα (λ = 1.78890 Å) or FeKα (λ = 1.93604 Å ) X-ray radiation is

preferable for Fe-rich phases (Schwertmann and Cornell, 2000). This problem makes

identification of Fe-rich phases problematic using Cu radiation. Relatively high

background intensities were especially noticeable, for example, in the XRD analyses

results of JS24, 26, 28, 30, 43, 44, 49, 55, 60, 63, 72 and 78.

The issue of changes in peak positions with cation substitution relates to

mineral identification using JCPDS patterns because these patterns are based on

minerals that are not necessarily end-member jarosite subgroup phases. For example,

the JCPDS pattern 25-1327 of argentojarosite represents data for synthesized

products reported by May et al. (1973), for which the chemical formula is Ag0.89-

93Fe2.93-3(SO4)2(OH)6, and JCPDS pattern 30-1203 of natrojarosite represents data for

synthesised products reported by Dutrizac and Kaiman (1976), for which the

chemical formula is Na0.82Fe2.80(SO4)2(OH)6. This makes problematical the matching
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of standard patterns with peaks in synthesised jarosites of varying chemical

compositions containing different proportions of cations. The differences in peak

positions of the jarosite compounds in this project are shown in the XRD spectra in

Appendix E.

The main peaks of the JCPDS patterns of jarosite (22-0827), natrojarosite

(30-1203), argentojarosite (25-1327), hydronium jarosite (31-0650) and

plumbojarosite (18-0698) are shown in Table 4.6. The strongest-intensity peaks of

these JCPDS patterns are closely comparable with the main peaks of the K-Ag-H3O,

Na-Ag-H3O and Pb-Ag-H3O jarosite compounds synthesised in this project, which

are also listed in Table 4.6. The maximum-intensity peaks (100) are consistent with

those of the JCPDS patterns, except for a few of the Na-Ag-H3O and Pb-Ag-H3O

jarosite compounds in which these peaks are consistent with the pattern for

hydronium jarosite and indicate the high H3O content in the samples. Some of the

sample series show changing highest-intensity d-value peaks in accordance with the

JCPDS patterns as the proportion of the different cations occupying the A site

changes. For example, the K-Ag-H3O-jarosite series of samples 04, 06, 08, 10 and

12, which has declining K content and increasing Ag content through the series, has

the highest-intensity d-value peaks of 3.081, 3.076, 3.073, 3.072 and 3.064 Å,

respectively. These decreasing d-values are consistent with the changing A-site

occupation as K+ content decreases and Ag+ content increases, according to the

equivalent peaks in the JCPDS patterns of 3.08 Å in jarosite and 3.062 Å in

argentojarosite.

The Na-Ag-H3O-jarosite series show no consistent trends of main peaks

(Table 4.6). Two of the seven sample series show main peaks declining from 3.067

and 3.083 Å for Na-H3O-jarosite products 49 and 67, respectively, to 3.064 and
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3.076 Å for Ag-H3O-jarosite products 61 and 66, respectively; the relatively high d-

values of 3.083 and 3.076 Å for samples 67 and 66, respectively, indicate the effect

of the highest-intensity peak of 3.08 Å of hydronium jarosite, as the compounds in

these series are relatively high in hydronium. Additionally, another of the Na-H3O-

jarosite series shows the highest-intensity peaks increasing from 3.067 Å for Na-H3O

jarosite product 85 to 3.085 Å for Ag-H3O jarosite product 71, again suggesting the

effect of H3O-jarosite. Table 4.6 also includes Na-H3O-jarosite samples 14, 32 and

77, the strongest peaks of which are 5.082, 5.066 and 5.075 Å, respectively. These

are consistent with the strongest peak (5.10 Å) of hydronium jarosite (31-0650),

rather than the strongest peak (3.06 Å) of natrojarosite (30-1203), and indicate the

high proportion of H3O in the samples shown by EMPA and ICP-AES. A similar

effect is seen in Pb-H3O-jarosite samples 43 and 43D, whose strongest peaks are

5.11 and 5.101 Å, respectively, rather than 3.066 Å as in plumbojarosite JCPDS

pattern 18-0698.

Table 4.6: XRD powder patterns: main peaks1 (d-values in Å) of samples JS04-107

and chemical compositions (site occupancies).

No. K/Na/Pb Ag H3O Fe Main peaks

22-0827 K 3.08 (100) 3.11 (75) 5.09 (70) 5.93 (45) 1.977 (45) 1.825 (45) 3.65 (40)

31-0650 H3O 5.10 (100) 3.13 (90) 3.09 (65) 1.839 (30) 1.990 (20) 5.67 (18) 5.97 (16)

25-1327 Ag 3.062 (100) 5.98 (50) 3.681 (30) 2.524 (30) 2.218 (30) 1.979 (25) 3.127 (20)

30-1203 Na 3.06 (100) 3.12 (90) 5.06 (90) 2.24 (50) 1.98 (50) 1.83 (50) 5.57 (40)

18-0698 Pb 3.066 (100) 5.933 (95) 1.829 (70) 3.114 (45) 1.976 (45) 6.232 (35) 3.657 (30)

K-Ag-H3O jarosite compounds

JS04 0.65 0 0.35 2.55 3.081 (100) 5.095 (63) 3.122 (57) 1.983 (22) 2.276 (20) 5.951 (18) 5.688 (18)

JS06 0.5 0.18 0.32 2.88 3.076 (100) 5.085 (47) 3.13 (43) 5.969 (30) 1.984 (23) 1.834 (19) 3.669 (16)

JS06D 0.52 0.15 0.33 2.56 3.086 (100) 3.132 (52) 5.106 (45) 5.981 (29) 2.268 (23) 1.987 (20) 3.682 (20)

JS08 0.41 0.3 0.29 2.72 3.073 (100) 5.074 (47) 3.123 (44) 5.941 (37) 1.984 (24) 1.836 (22) 3.668 (22)

JS10 0.25 0.41 0.34 2.72 3.072 (100) 5.955 (36) 3.128 (35) 1.984 (28) 5.075 (25) 1.839 (17) 2.239 (16)

JS10D 0.27 0.44 0.29 2.71 3.088 (100) 3.15 (38) 6.044 (32) 6.003 (30) 5.13 (23) 3.705 (23) 2.247 (22)
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JS22 0.64 0 0.36 2.59 3.09 (100) 5.113 (76) 3.13 (60) 2.283 (24) 1.986 (22) 1.836 (21) 5.973 (20)

JS24 0.53 0.15 0.32 2.62 3.069 (100) 3.078 (67) 5.087 (38) 3.12 (37) 2.254 (35) 2.824 (18) 1.83 (17)

JS24D 0.52 0.14 0.34 2.59 3.076 (100) 3.123 (54) 5.079 (46) 1.983 (30) 5.947 (25) 2.264 (25) 1.836 (19)

JS26 0.44 0.25 0.31 2.74 3.07 (100) 3.119 (40) 5.062 (35) 2.249 (35) 2.256 (32) 5.919 (24) 1.981 (24)

JS28 0.27 0.56 0.17 2.57 3.045 (100) 5.876 (52) 5.004 (34) 1.435 (31) 2.774 (26) 1.974 (24) 2.227 (23)

JS40 0.26 0.04 0.7 2.87 3.183 (100) 3.085 (96) 2.882 (75) 2.652 (66) 5.104 (56) 3.128 (54) 1.985 (29)

JS55 0.43 0 0.57 2.75 3.081 (100) 5.106 (70) 3.121 (54) 5.738 (28) 2.289 (26) 1.829 (24) 1.983 (23)

JS56 0.7 0.16 0.14 2.33 3.088 (100) 5.117 (56) 3.128 (43) 5.979 (29) 1.986 (23) 2.277 (22) 2.551 (19)

JS57 0.47 0.23 0.3 2.8 3.08 (100) 5.097 (38) 3.126 (38) 5.979 (32) 2.268 (25) 1.984 (24) 2.544 (17)

JS58 0.38 0.34 0.28 2.82 3.102 (100) 3.149 (32) 6.058 (31) 2.27 (28) 5.142 (27) 1.84 (23) 3.707 (21)

JS59 0.29 0.45 0.26 2.83 3.083 (100) 5.993 (49) 3.135 (36) 1.986 (26) 5.106 (23) 2.542 (21) 2.253 (21)

JS60 0.16 0.68 0.16 2.96 3.07 (100) 5.959 (65) 3.128 (34) 2.781 (33) 2.227 (28) 1.983 (25) 3.68 (24)

JS62 0.61 0 0.39 2.87 3.093 (100) 5.129 (68) 3.13 (62) 1.987 (24) 2.291 (23) 5.758 (22) 5.996 (21)

JS63 0.49 0.21 0.3 2.46 3.09 (100) 5.119 (47) 3.13 (42) 5.987 (36) 1.987 (25) 3.68 (16) 5.738 (14)

JS64 0.37 0.36 0.27 2.76 3.071 (100) 5.087 (36) 5.943 (33) 5.67 (24) 3.123 (24) 1.982 (23) 2.819 (21)

JS65 0.15 0.37 0.48 2.98 3.082 (100) 3.14 (57) 5.991 (36) 5.106 (34) 1.987 (26) 1.841 (21) 3.691 (20)

JS73 0.78 0 0.22 2.4 3.092 (100) 3.137 (48) 5.126 (47) 2.273 (25) 1.988 (25) 1.837 (24) 6.007 (24)

JS74 0.68 0.06 0.26 2.52 3.078 (100) 5.092 (49) 3.121 (46) 1.982 (33) 2.267 (31) 5.955 (20) 1.832 (19)

JS75 0.64 0.14 0.22 2.49 3.082 (100) 5.101 (41) 3.127 (39) 2.265 (28) 5.973 (23) 1.983 (21) 1.834 (19)

JS76 0.37 0.26 0.37 2.33 3.078 (100) 5.10 (89) 3.14 (77) 5.613 (30) 1.84 (28) 2.236 (28) 1.986 (27)

JS81 0.6 0 0.4 2.81 3.086 (100) 3.131 (48) 5.111 (39) 5.981 (37) 1.986 (23) 1.837 (20) 2.268 (19)

JS82 0.44 0.24 0.32 2.87 3.078 (100) 5.973 (54) 3.133 (41) 3.682 (29) 1.984 (26) 5.10 (23) 1.839 (21)

JS83 0.29 0.46 0.25 2.91 3.081 (100) 6.005 (63) 3.142 (34) 3.697 (25) 1.987 (23) 2.24 (20) 1.843 (19)

JS84 0.09 0.68 0.23 2.94 3.092 (100) 6.042 (42) 3.157 (31) 1.994 (29) 2.248 (26) 2.55 (22) 1.85 (22)

JS89 0.73 0 0.27 2.49 3.081 (100) 3.121 (61) 5.091 (49) 1.832 (33) 2.272 (31) 1.983 (27) 5.955 (20)

JS90 0.69 0.05 0.26 2.55 3.088 (100) 3.133 (57) 5.119 (46) 1.836 (27) 1.987 (27) 5.989 (25) 3.684 (20)

JS91 0.65 0.1 0.25 2.68 3.084 (100) 3.127 (63) 5.11 (58) 1.984 (28) 1.834 (26) 2.271 (24) 5.971 (23)

JS92 0.6 0.15 0.25 2.61 3.082 (100) 3.13 (45) 5.104 (45) 1.985 (31) 1.836 (28) 2.264 (26) 5.973 (26)

JS93 0.43 0.35 0.22 2.72 3.078 (100) 3.13 (44) 5.975 (37) 5.092 (26) 1.984 (26) 3.678 (19) 1.837 (19)

JS94 0.28 0.52 0.2 2.71 3.075 (100) 5.977 (41) 3.133 (30) 1.984 (25) 3.682 (24) 5.085 (20) 1.838 (19)

Na-Ag-H3O jarosite compounds

JS14 0.57 0 0.43 2.91 5.082 (100) 3.075 (96) 3.134 (88) 5.601 (34) 1.839 (32) 1.985 (25) 2.238 (24)
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JS16 0.33 0.37 0.3 2.92 3.064 (100) 3.125 (51) 5.055 (42) 5.939 (32) 1.981 (22) 3.678 (19) 1.838 (18)

JS18 0.1 0.63 0.27 2.72 3.065 (100) 5.949 (47) 3.128 (33) 1.983 (27) 2.222 (26) 1.84 (24) 3.678 (22)

JS20 0.06 0.71 0.23 2.71 3.064 (100) 5.951 (47) 3.13 (29) 2.223 (25) 3.679 (22) 1.982 (21) 2.527 (19)

JS32 0.55 0 0.45 2.87 5.066 (100) 3.127 (97) 3.069 (91) 1.837 (32) 5.58 (31) 2.24 (22) 1.984 (21)

JS34 0.12 0.21 0.67 2.97 3.067 (100) 5.957 (38) 3.131 (34) 5.062 (26) 3.681 (22) 1.983 (22) 2.225 (18)

JS36 0.05 0.31 0.64 2.83 3.071 (100) 5.975 (54) 3.138 (28) 2.227 (27) 3.692 (24) 1.986 (21) 1.843 (21)

JS38 0.04 0.61 0.35 2.59 3.066 (100) 5.957 (48) 2.223 (25) 3.133 (25) 3.684 (24) 1.983 (21) 1.841 (19)

JS38D 0.07 0.65 0.28 2.68 3.067 (100) 5.963 (43) 1.984 (26) 3.684 (25) 3.134 (25) 2.223 (22) 1.841 (21)

JS42 0.09 0.7 0.21 2.63 3.068 (100) 5.967 (49) 2.224 (28) 3.135 (26) 3.687 (24) 1.984 (23) 2.529 (18)

JS49 0.47 0 0.53 2.64 3.067 (100) 3.122 (95) 5.059 (91) 5.597 (32) 1.835 (27) 1.982 (20) 5.943 (18)

JS50 0.33 0.25 0.42 3.04 3.071 (100) 5.078 (79) 3.13 (64) 5.613 (34) 5.965 (30) 1.983 (22) 2.53 (20)

JS51 0.2 0.47 0.33 2.9 3.074 (100) 3.132 (43) 5.084 (39) 5.989 (38) 1.985 (30) 2.24 (14) 2.778 (14)

JS52 0.09 0.67 0.24 2.93 3.069 (100) 5.967 (48) 3.135 (25) 1.984 (20) 2.773 (19) 2.53 (19) 2.23 (19)

JS53 0.04 0.77 0.19 2.98 3.066 (100) 5.963 (52) 2.227 (34) 3.133 (26) 1.983 (26) 2.777 (21) 3.683 (20)

JS54 0.01 0.83 0.16 2.98 3.064 (100) 5.943 (48) 2.222 (33) 3.126 (24) 2.768 (23) 3.678 (22) 2.526 (21)

JS67 0.65 0 0.35 2.91 3.083 (100) 5.108 (80) 3.142 (79) 1.988 (25) 5.64 (25) 6.017 (23) 1.842 (23)

JS68 0.57 0.09 0.34 2.74 3.076 (100) 3.137 (53) 5.993 (43) 5.097 (42) 1.986 (24) 1.838 (18) 2.537 (16)

JS69 0.4 0.19 0.41 3.16 3.078 (100) 5.10 (88) 3.135 (85) 5.989 (36) 5.64 (29) 1.986 (26) 1.839 (26)

JS70 0.25 0.33 0.42 2.68 3.083 (100) 6.023 (51) 3.147 (25) 1.989 (23) 2.234 (22) 3.708 (20) 1.844 (19)

JS77 0.67 0 0.33 2.86 5.075 (100) 3.131 (95) 3.069 (88) 5.589 (40) 1.983 (29) 1.839 (19) 2.236 (17)

JS78 0.11 0.42 0.47 2.88 3.094 (100) 5.13 (65) 3.128 (51) 5.76 (33) 2.291 (28) 5.987 (21) 1.986 (21)

JS79 0.06 0.48 0.46 2.78 3.067 (100) 5.971 (45) 2.221 (33) 1.983 (28) 3.686 (25) 1.84 (21) 2.766 (18)

JS80 0.03 0.82 0.15 3.02 3.073 (100) 5.993 (42) 2.225 (36) 3.694 (26) 3.14 (24) 1.986 (22) 1.841 (21)

JS85 0.57 0 0.43 2.98 3.067 (100) 3.128 (87) 5.082 (87) 1.834 (26) 5.973 (23) 1.983 (23) 5.613 (21)

JS86 0.29 0.35 0.36 2.73 3.08 (100) 6.015 (46) 3.143 (34) 2.235 (28) 5.104 (24) 1.987 (22) 2.538 (20)

JS87 0.17 0.5 0.33 2.53 3.075 (100) 5.985 (38) 5.091 (32) 3.135 (28) 2.535 (20) 3.691 (17) 1.985 (18)

JS88 0.11 0.56 0.33 2.97 3.081 (100) 6.005 (51) 3.143 (38) 5.10 (27) 1.987 (26) 2.238 (22) 2.537 (19)

JS96 0.68 0 0.32 3.01 3.071 (100) 3.128 (93) 5.077 (80) 5.592 (33) 1.836 (31) 1.981 (27) 2.238 (27)

JS97 0.37 0.41 0.22 2.96 3.068 (100) 3.128 (50) 5.069 (43) 5.965 (33) 3.682 (24) 1.983 (23) 1.839 (17)

JS98 0.14 0.68 0.18 2.86 3.068 (100) 5.969 (48) 3.133 (32) 1.983 (29) 2.224 (24) 3.684 (23) 1.84 (23)

JS99 0.04 0.8 0.16 2.86 3.066 (100) 5.969 (47) 3.685 (27) 1.983 (26) 2.223 (22) 3.133 (22) 1.84 (21)

JS100 0.02 0.81 0.17 2.84 3.066 (100) 5.971 (54) 3.683 (26) 3.133 (25) 1.983 (24) 2.222 (24) 1.84 (20)

JS101 0.01 0.83 0.16 2.84 3.07 (100) 5.977 (54) 2.223 (26) 3.691 (26) 3.137 (25) 1.984 (24) 1.841 (23)
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Pb-Ag-H3O jarosite compounds

JS43 0.179 0 0.821 3 5.11 (100) 3.09 (86) 3.134 (70) 5.969 (23) 1.99 (23) 1.834 (23) 2.273 (21)

JS43D 0.168 0 0.832 3.15 5.101 (100) 3.086 (65) 3.131 (45) 3.068 (38) 5.957 (23) 5.679 (20) 1.839 (19)

JS44 0.081 0.281 0.638 3.01 3.076 (100) 5.122 (65) 3.139 (61) 3.09 (61) 5.983 (51) 3.131 (50) 1.986 (27)

JS45 0.082 0.502 0.416 2.97 3.071 (100) 5.969 (59) 3.134 (35) 5.092 (21) 3.687 (21) 1.985 (21) 1.84 (20)

JS46 0.046 0.701 0.253 3 3.066 (100) 5.951 (52) 2.772 (25) 3.678 (23) 3.13 (22) 2.529 (21) 2.246 (18)

JS47 0.021 0.766 0.213 2.98 3.074 (100) 5.983 (58) 2.23 (28) 2.776 (25) 3.694 (21) 2.533 (20) 1.843 (19)

JS48 0.021 0.765 0.214 3 3.066 (100) 5.957 (60) 2.223 (25) 3.681 (23) 3.13 (22) 2.771 (20) 2.53 (19)

JS102 0.006 0.826 0.168 2.8 3.067 (100) 5.979 (50) 3.059 (48) 2.222 (24) 1.841 (24) 3.689 (23) 1.984 (23)

JS103 0.028 0.822 0.15 2.89 3.068 (100) 5.971 (49) 2.223 (38) 3.686 (23) 2.768 (22) 3.134 (19) 1.84 (19)

JS104 0.02 0.853 0.127 2.92 3.069 (100) 5.977 (55) 3.687 (28) 1.984 (24) 3.135 (23) 1.84 (21) 2.53 (21)

JS105 0.063 0.824 0.113 2.85 3.072 (100) 5.991 (57) 3.694 (27) 1.986 (24) 2.225 (23) 3.137 (22) 1.841 (20)

JS106 0.036 0.799 0.165 2.78 3.068 (100) 5.973 (52) 2.223 (26) 3.687 (24) 1.984 (23) 3.135 (22) 1.84 (21)

JS107 0.258 0 0.742 2.91 3.087 (100) 5.991 (43) 3.132 (43) 1.987 (30) 5.111 (30) 1.837 (26) 2.549 (25)

Ag-H3O jarosite compounds

JS12 0 0.78 0.22 2.71 3.064 (100) 5.943 (50) 3.129 (26) 2.223 (24) 1.983 (22) 1.84 (21) 2.527 (19)

JS30 0 0.63 0.37 2.62 3.061 (100) 5.941 (47) 2.224 (41) 2.768 (31) 3.678 (26) 3.13 (21) 1.982 (20)

JS61 0 0.85 0.15 2.93 3.064 (100) 5.949 (60) 3.677 (24) 1.981 (24) 1.838 (22) 3.13 (22) 2.225 (21)

JS66 0 0.44 0.56 3.03 3.076 (100) 3.142 (69) 5.133 (57) 5.997 (51) 3.097 (49) 5.716 (37) 1.988 (31)

JS71 0 0.76 0.24 2.98 3.085 (100) 6.033 (54) 3.149 (28) 2.237 (23) 3.708 (21) 1.99 (20) 2.541 (18)

JS72 0 0.63 0.37 2.84 3.097 (100) 5.141 (58) 3.14 (57) 1.989 (28) 2.282 (24) 1.837 (24) 6.017 (20)

JS95 0 0.85 0.15 2.86 3.073 (100) 5.991 (65) 2.224 (28) 3.694 (28) 1.842 (25) 3.141 (24) 1.986 (23)

Note: 1 Peaks at 2.34 and 2.03 removed because these are Al peaks of the diffractometer holder.

Differences between the XRD peak positions of the 006 (hkl) reflections (2θ

degree angles) of jarosite, natrojarosite and mixtures of both end-members shown on

X-ray diffractograms have been compared as these result from the respective c-axis

dimensions of the unit cells (Desborough et al., 2010), as do the 003 reflections. The

different positions (d values) of the 003 and 006 reflections, using Cu radiation, of

synthesised K-Ag-H3O- and Na-Ag-H3O-jarosite compounds are listed in Table 4.7

and those of the Pb-Ag-H3O-jarosite samples are listed in Table 4.8. These d values

provide indicators of the variations in c-axis parameters of these synthesised jarosite
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products. In theory, these c-axis parameters should vary according to the proportions

of cations with different ionic radii occupying the A site. In 12-fold coordination, the

ionic radius of Na+ is 1.39 Å and K+ is 1.64 Å (Shannon, 1976), Ag+ is 1.48 Å

(Dutrizac and Jambor, 2000) and H3O
+ is 1.52 Å (Basciano and Peterson, 2008).

However, a crystal structure study of the argentojarosite end-member suggests that

the coordination of Ag+ is between six-fold and 12-fold (Groat et al., 2003). In 12-

fold coordination in end-member argentojarosite, Ag+ has a predicted ionic radius of

1.48-1.56 Å; however, the crystal structure study suggests Ag+ in the A site of

argentojarosite has an ionic radius of 1.35-1.36 Å (Groat et al., 2003). This

experimental radius for Ag+ indicates the cation is in nine-fold coordination,

according to the study; by comparison, Ag+ in eight-fold coordination has an

effective ionic radius of 1.28 Å (Shannon, 1976).

Tables 4.7 and 4.8 also list the positions of the hkl 003 and 006 reflections in

the JCPDS patterns of jarosite (22-0827), natrojarosite (30-1203), argentojarosite

(25-1327), hydronium jarosite (31-0650) and plumbojarosite (18-0698). The d values

of the 003 and 006 reflections in the JCPDS pattern for argentojarosite (25-1327) are

smaller than the values for natrojarosite (30-1203), indicating the Ag+ cation is

smaller than the Na+ cation. The d values of the patterns are closely comparable with

the d values of the K-, Na-, Pb- and Ag-jarosite analogues synthesised in this study.

In Table 4.7, the positions of the 003 and 006 reflections in samples 04, 06, 08, 10

and 12 (a series of K-Ag jarosite analogues synthesised at 97°C), for example, show

generally declining d-spacing values from 5.688 Å and 2.847 Å, respectively, for the

jarosite product (04) containing K-H3O only to 5.538 Å and 2.763 Å, respectively,

for the jarosite product (12) containing Ag-H3O only. These results are consistent

with the smaller radius of the Ag+ cation compared with K+. The other series of K-
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Ag-H3O-jarosite analogues – samples 22-30 (synthesised at 97°C); 55-61, 62-66, and

71 and 81-84 (synthesised at 140°C); and 72-76 and 89-95 (synthesised at 22°C) –

show similar generally declining trends of 003 and 006 reflection d-spacing values.

However, the sample showing a significant deviation from this trend is 72, a jarosite

product containing Ag-H3O only, which has anomalously large d-spacing values for

003 and 006 reflections of 5.74 Å and 2.855 Å, respectively.

Table 4.7. XRD peaks (d-values in Å) of K-Ag and Na-Ag synthetic samples.

Peak shifts of c parameters should be most pronounced, indicated by hkl indices of

003 and 006.

Number Type hkl 003 hkl 006 Number Type hkl 003 hkl 006

22-0827 K 5.72 2.861

31-0650 H3O 5.67 2.835 31-0650 H3O 5.67 2.835

2.783 30-1203 Na 5.57 2.783

25-1327 Ag 5.55 2.763 25-1327 Ag 5.55 2.763

JS04 K-H3O 5.688 2.847 JS14 Na-H3O 5.601 2.793

JS06 K-Ag-H3O 5.661 2.828 JS16 Na-Ag-H3O 5.559 2.784

JS06D K-Ag-H3O 5.674 2.83 JS18 Na-Ag-H3O 5.545 2.766

JS08 K-Ag-H3O 5.649 2.82 JS20 Na-Ag-H3O 5.55 2.766

JS10 K-Ag-H3O 5.61 2.788 JS12 Ag-H3O 5.538 2.763

JS10D K-Ag-H3O 5.663 2.815

JS12 Ag-H3O 5.538 2.763

JS22 K-H3O 5.721 2.853 JS32 Na-H3O 5.58 2.791

JS24 K-Ag-H3O 5.629 2.824 JS34 Na-Ag-H3O 5.576 2.773

JS24D K-Ag-H3O 5.652 2.825 JS36 Na-Ag-H3O 5.568 2.778

JS26 K-Ag-H3O 5.606 2.809 JS38 Na-Ag-H3O 5.538 2.772

JS28 K-Ag-H3O 5.519 2.774 JS38D Na-Ag-H3O 5.557 2.773

JS30 Ag-H3O 5.523 2.768 JS30 Ag-H3O 5.523 2.768

JS40 K-Ag-H3O 5.685 2.838 JS42 Na-Ag-H3O 5.555 2.774

JS55 K-H3O 5.738 2.86 JS49 Na-H3O 5.597 2.801
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JS56 K-Ag-H3O 5.723 2.854 JS50 Na-Ag-H3O 5.613 2.8

JS57 K-Ag-H3O 5.679 2.835 JS51 Na-Ag-H3O 5.603 2.778

JS58 K-Ag-H3O 5.716 2.834 JS52 Na-Ag-H3O 5.564 2.773

JS59 K-Ag-H3O 5.636 2.81 JS53 Na-Ag-H3O 5.559 2.777

JS60 K-Ag-H3O 5.589 2.781 JS54 Na-Ag-H3O 5.531 2.768

JS61 Ag-H3O 5.543 2.767 JS61 Ag-H3O 5.543 2.767

JS62D K-H3O 5.758 2.874 JS67 Na-H3O 5.64 2.798

JS63D K-Ag-H3O 5.738 2.856 JS68 Na-Ag-H3O 5.634 2.807

JS64D K-Ag-H3O 5.67 2.819 JS69D Na-Ag-H3O 5.64 2.807

JS65D K-Ag-H3O 5.71 2.841 JS70 Na-Ag-H3O 5.608 2.788

JS66D Ag-H3O 5.596 2.777 JS66D Ag-H3O 5.596 2.777

JS73 K-H3O 5.712 2.842 JS77 Na-H3O 5.589 2.785

JS74 K-Ag-H3O 5.676 2.831 JS78 Na-Ag-H3O 5.76 2.868

JS75 K-Ag-H3O 5.678 2.83 JS79 Na-Ag-H3O 5.549 2.766

JS76 K-Ag-H3O 5.613 2.789 JS80 Na-Ag-H3O 5.566 2.773

JS72 Ag-H3O 5.74 2.855 JS72 Ag-H3O 5.74 2.855

JS81 K-H3O 5.716 2.835 JS85 Na-H3O 5.613 2.787

JS82 K-Ag-H3O 5.622 2.813 JS86 Na-Ag-H3O 5.62 2.789

JS83 K-Ag-H3O 5.61 2.79 JS87 Na-Ag-H3O 5.613 2.782

JS84D K-Ag-H3O 5.665 2.807 JS88D Na-Ag-H3O 5.617 2.79

JS71D Ag-H3O 5.627 2.792 JS71D Ag-H3O 5.627 2.792

JS89 K-H3O 5.6848 2.8404 JS96 Na-H3O 5.592 2.7899

JS90 K-Ag-H3O 5.7176 2.8408 JS97 Na-Ag-H3O 5.5797 2.7722

JS91 K-Ag-H3O 5.6993 2.8417 JS98 Na-Ag-H3O 5.5519 2.7714

JS92 K-Ag-H3O 5.6721 2.8281 JS99 Na-Ag-H3O 5.5537 2.7664

JS93 K-Ag-H3O 5.6416 2.8108 JS100 Na-Ag-H3O 5.5502 2.7659

JS94 K-Ag-H3O 5.6061 2.7818 JS101 Na-Ag-H3O 5.571 2.7689

JS95 Ag-H3O 5.5623 2.7697 JS95 Ag-H3O 5.5623 2.7697

The Na-Ag-H3O-jarosite analogue series 12-20 (synthesised at 97°C) shows

d-values of 003 and 006 reflections (see Table 4.7) decreasing from 5.601 Å and

2.793 Å, respectively, in the jarosite compound with Na-H3O only in the A site to
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5.538 Å and 2.763 Å, respectively, in the Ag-H3O product. These results are

consistent with the radius of the Ag+ cation being smaller than that of Na+ and,

therefore, Ag+ being in 9-fold coordination. However, the d-values of the 003 and

006 reflections in the JCPDS patterns of natrojarosite and argentojarosite are of

similar respective magnitudes (Table 4.7); therefore, the decrease in d-values may be

the result of the higher H3O content of the Na-H3O compound than the Ag-H3O

compound. Additionally, one intermediate product (sample 20) has slightly high d-

values relative to the previous intermediate product (sample 18); these may be

explained by the EMPA compositional results, which show vacancies (Fe = 2.92) in

the B site of sample 18, which for charge balance may cause protonation of four Fe-

OH bonds for each vacancy and result in deprotonation of H3O and a vacancy in the

A site (Basciano and Peterson, 2010). (The assumption throughout this project is that

Fe3+ only occupies the B site of the products and the cations K+, Na+, Pb+, Ag+

and/or H3O
+ only occupy the A site of the products.) The Na-Ag-H3O jarosite

product series 30-38/38D (synthesised at 97°C) also shows a generally declining

trend of d-values for 003 and 006 reflections from 5.58 Å and 2.791 Å, respectively,

in the Na-H3O product to 5.523 Å and 2.768 Å, respectively, in the Ag-H3O product;

however, one intermediate product (sample 34) has a relatively low 006 d-value of

2.773 Å. The results of both these series are generally consistent with the Ag+ cation

having a smaller radius than Na+ and, therefore, being likely to be in 9-fold

coordination.

The Na-Ag-H3O jarosite analogue series 49-54 and 61 (synthesised at 140°C)

shows a generally decreasing trend of d-values from the Na-H3O product to the Ag-

H3O product. However, the Na-H3O product's (sample 49) 003 d-value of 5.597 Å

increases to 5.613 Å in the first intermediate product in the series, which may be
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explained by the low Fe occupancy (2.33) and consequent reduced H3O content of

sample 49. There is also an increase from the d-value of 5.531 Å of the final Na-Ag-

H3O intermediate product in the series (sample 54) to 5.543 Å in the Ag-H3O

product, which also may be explained by the low Fe occupancy (2.86) and

consequent reduced H3O content of sample 54. The Na-Ag jarosite analogues in

sample series 66-70 (synthesised at 140°C) have d-values for 003 and 006 reflections

that decrease from 5.64 Å and 2.798 Å, respectively, in the product with Na-H3O

only in the A site to 5.596 Å and 2.777 Å, respectively, in the product with Ag-H3O

only in the A site. These results also indicate the Ag+ cation has a smaller radius than

Na+; however, one intermediate Na-Ag-H3O jarosite product (sample 69) in the

series has a relatively high 003 d-value of 5.64 Å and two intermediate products

(samples 68 and 69) have high 006 d-values of 2.807 Å, so provide contradictory

evidence on the cation sizes. However, EMPA compositional data show sample 69

has a relatively low Na content (0.28) and high H3O content (0.51), which may

explain the high 003 and 006 d-values because of the relatively large size of the

hydronium cation; the compositional data do not provide an explanation for the high

006 d-value of sample 68, even taking into account the assumed H3O content and the

Fe vacancies in the B site.

The Na-Ag-H3O-jarosite analogues in sample series 71 and 85-88

(synthesised at 140°C) show a generally increasing trend of d-values for 003 and 006

reflections from 5.613 Å and 2.787 Å, respectively, in the product with Na-H3O only

in the A site to 5.627 Å and 2.792 Å, respectively, in the product with Ag-H3O only

in the A site, so indicate the Ag+ cation is larger than the Na+ cation and is in 12-fold

coordination. However, the 003 d-value of one intermediate product (sample 86) is

relatively high (5.62 Å) and the 006 d-value of another intermediate product (sample
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87) is relatively low (2.782 Å). In the Na-Ag-H3O jarosite analogue series 72 and 77-

80 (synthesised at 22°C), the 003 and 006 d-values increase from 5.589 Å and 2.785

Å, respectively, in the Na-H3O product to 5.74 Å and 2.855 Å, respectively, in the

Ag-H3O product; however, the intermediate Na-Ag-H3O products in the series do not

show a clear trend of d-values. This provides contradictory evidence from the d-

values for 003 and 006 peaks on the respective sizes of the ionic radii of the Na and

Ag cations and, therefore, whether Ag is in 9-fold or 12-fold coordination. In the Na-

Ag-H3O-jarosite series JS95-101 (synthesised at 22°C), the 003 and 006 d-values

decrease from 5.592 Å and 2.7899 Å, respectively, in the Na-H3O product to 5.5623

Å and 2.7697 Å, respectively, in the Ag-H3O product, which is consistent with the

reported d-values of the 003 and 006 reflections in the JCPDS patterns for

natrojarosite and argentojarosite. However, there is some variation within this overall

trend. In the intermediate compounds of the series, the 003 reflection's d-value

increases from 5.5519 Å for JS98 to 5.5537 Å for JS99, but then declines again to

5.5502 Å for JS100; however, the d-value then increases to 5.571 Å for JS101. In

Table 4.8. XRD hkl 003 and 006 peaks (d-values in Å) of Pb-Ag JS samples. Peak

shifts of c parameters should be most pronounced, indicated by hkl indices of 003

and 006 peaks

Number Type hkl 003 hkl 006 Number Type hkl 003 hkl 006

31-0650 H3O 5.67 2.835 31-0650 H3O 5.67 2.835

25-1327 Ag 5.55 2.763 25-1327 Ag 5.55 2.763

18-0698 Pb 11.3 2.812 18-0698 Pb 11.3 2.812

Pb 5.64 2.823 Pb 5.64 2.823

JS43 Pb0.18H3O0.82 5.69 2.84 JS102 Pb0.01Ag0.83H3O0.16 5.5641 2.7693

JS43D Pb0.17H3O0.83 5.679 2.838 JS103 Pb0.03Ag0.82H3O0.15 5.5763 2.7684

JS44 Pb0.08Ag0.28H3O0.64 5.707 2.836 JS104 Pb0.02Ag0.85H3O0.13 n.d. 2.7697

JS45 Pb0.08Ag0.50H3O0.42 5.64 2.807 JS105 Pb0.06Ag0.82H3O0.12 5.578 2.7705
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JS46 Pb0.05Ag0.70H3O0.25 5.545 2.772 JS106 Pb0.04Ag0.80H3O0.16 n.d. 2.7689

JS46D Pb0.04Ag0.58H3O0.38 5.608 2.768 JS107 Pb0.26H3O0.74 5.7011 2.8408

JS47 Pb0.02Ag0.77H3O0.21 5.578 2.776 JS95 Ag0.86H3O0.14 5.5623 2.7697

JS48 Pb0.02Ag0.77H3O0.21 5.554 2.771

JS61 Ag0.86H3O0.14 5.543 2.767

addition, the d-value for the 006 reflection increases from 2.7659 Å for JS100 to

2.7689 Å for JS101 and 2.7697 Å for JS95. The reasons for these variations are not

clear because they cannot be explained by the chemical compositional data.

The d-values for the 003 and 006 reflections of the Pb-Ag-H3O-jarosite

compounds in series JS43-48 & 61 and JS95 & 102-107 do not indicate the reported

doubled c-axis dimension of plumbojarosite (Hawthorne et al., 2000; Basciano and

Peterson, 2010), the doubled size represented by the 003 d-value of 11.3 Å in JCPDS

pattern 18-0698 (see Table 4.8); however, the d-values for the 003 and 006

reflections of the synthesised Pb-Ag-H3O compounds are consistent with their low

Pb contents and high H3O contents. For samples 43 and 44, the d-value results are

consistent with H3O
+ being the dominant A-site cation in the chemical compositions

and the JCPDS patterns in Table 4.8, with H3O-jarosite having a larger d-value for

the 003 reflection than Ag-jarosite and Pb-jarosite; the results are also consistent

with the larger ionic radius of H3O
+ of 1.52 Å in 12-fold coordination compared with

1.49 Å for Pb2+ (Shannon, 1976) and 1.48 Å for Ag+. For sample 45, the 003 d-value

is consistent with the chemical composition of Pb2+ plus H3O
+ being equal to Ag+;

and for samples 46-48 and 61 the results are consistent with Ag+ being the dominant

cation. In samples 95 and 102-106, Ag+ is the dominant cation in the chemical

compositions and the 003 and 006 d-values are similar; however, in Pb-H3O-jarosite

sample 107, these d-values increase, which is consistent with the JCPDS patterns.
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Powder X-ray diffraction analysis of the synthesized samples was also

carried out using a PANalytical X’Pert Pro diffractometer and Co radiation (Kα1 λ =

1.78897 Å), which, as noted above, is more suitable for Fe-bearing minerals than Cu

radiation. X’Pert HighScore Plus software was used for the crystallographic

analyses. All the samples contained jarosite phases and a contaminant phase of

Ag2SO4 was found to be present in samples JS12, 30 and 38, which was not

discovered using Cu radiation.

4.1.3.2 Rietveld refinement of XRD data

Refinement of the crystal structures, unit-cell parameters, site occupancies, and bond

lengths and angles of the mineral phases present in the jarosite compounds was

carried out on the Co-radiation XRD data with the Rietveld method using the

General Structure Analysis System (GSAS) (Larson and Von Dreele, 2004) and

EXPGUI (Toby, 2001) programs. The space group used was R-3m (Rbar3m) and the

lattice was centric R-centred (Rhombohedral symmetry) trigonal (Laue

classification) with interaxial angles of α = 90º and γ = 120º. Refinement was carried

out of atomic co-ordinates, with initial atomic co-ordinates based on those reported

by Basciano and Peterson (2007, 2008), and Uiso (thermal) isotropic displacement

factors. Refinement was also carried out of the background using a (‘type 2’)

pseudo-voigt function (six terms) and the histogram scale factor. Refinement of the

profile (peak shape) parameters included the Gaussian peak width terms U, V and W

and asymmetry, shift and transparency.

The results of the Rietveld refinements of the jarosite phases in the samples

are shown in Table 4.9. In the table, the chi-squared (Χ2) statistical test value

provides an assessment of how well the observed data fit the theoretical (model) data
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(goodness of fit), as also do the R-factor (Rp) and weighted R-factor (Rwp) values

(Young, 1993) and the Durbin-Watson d-statistic (DWd) values (Basciano and

Peterson, 2008). The Rp, Rwp and DWd values for goodness of fit are, for most

samples, reasonably comparable with the values reported by Basciano and Peterson

(2007, 2008) for Rietveld refinements on synthesised K-H3O and Na-H3O jarosite

series. These reported values for K-H3O jarosites were Rp 0.0329-0.0359, Rwp

0.0429-0.0499 and DWd 0.523-0.745 (Basciano and Peterson, 2007) and for Na-H3O

jarosites were Rp 0.0313-0.0355, Rwp 0.0436-0.0465 and DWd 0.547-0.740

(Basciano and Peterson, 2008).

During the Rietveld refinement of the synthesised samples’ XRD profiles, the

fit was in some cases improved by the inclusion of more than one phase (see Table

4.9), suggesting those samples are inhomogeneous. This raises the possibility that

there may be a lack of solid solution and immiscibility in K-Ag and Na-Ag jarosites

under the synthesis conditions used, a condition that has been reported in low-

temperature synthesised K-Na jarosites (Desborough et al., 2006, 2010), as well as in

natural jarosites (Swayze et al., 2008). However, against this conclusion is that more

than one phase was included in the refinements of only a minority of samples.

Table 4.9 shows the Rietveld-refined a parameters of synthesised K-H3O-

jarosite products 04 and 22 (7.3266 Å and 7.3282 Å, respectively) are shorter than

those of Na-H3O-jarosite products 14 and 32 (7.3421 Å and 7.3426 Å, respectively),

and the c parameters for K-H3O-jarosites 04 and 22 (17.0797 Å and 17.0823 Å) are

longer than those for Na-H3O-jarosites 14 and 32 (16.7008 Å and 16.7158 Å). These

values are consistent with reported a and c parameter values for K-jarosite and Na-

jarosite. For example, for K-jarosite, a values of 7.288 Å (Brophy and Sheridan,

1965), 7.29 Å (Sasaki and Konno, 2000; Anthony et al., 2003), 7.303 Å (K 0.95 site



112

occupancy) (Basciano and Peterson, 2007a) and 7.315 Å (K 0.92) (Dutrizac and

Kaiman, 1976) have been reported; for Na-jarosite, a values of 7.33 Å (Dutrizac and

Kaiman, 1976; Serna et al., 1986), 7.3346 Å (Hawthorne et al., 2000) and 7.3388 Å

(Na 0.49), 7.342 Å (Na 0.35) and 7.3474 Å (Na 0.24) (Basciano and Peterson, 2008)

have been reported. For K-jarosite, c values of 17.06 Å (Sasaki and Konno, 2000),

17.119 Å (K 0.92) (Dutrizac and Kaiman, 1976), 17.16 (Anthony et al., 2003),

17.192 Å (Brophy and Sheridan, 1965) and 17.204 Å (K 0.95) (Basciano and

Peterson, 2007a) have been reported; for Na-jarosite, c values of 16.70 Å (Dutrizac

and Kaiman, 1976) and 16.8105 Å (Na 0.49), 16.8574 Å (Na 0.35) and 16.9253 Å

(Na 0.24) (Basciano and Peterson, 2008) have been reported. In Table 4.9, Ag-H3O-

jarosite products 12 and 30 have a parameter values of 7.3582 Å and 7.3584 Å,

respectively, and c parameter values of 16.6095 Å and 16.6099 Å, respectively,

whereas reported parameters for Ag-jarosite are a 7.336 Å and c 16.564 Å (Dutrizac

and Jambor, 1987), a 7.3398 Å and c 16.538 Å (Groat et al., 2003), a 7.346 Å and c

16.668 Å (Ag 0.86) (Ildefonse et al., 1986), a 7.347 Å and c 16.58 Å (May et al.,

1973), a 7.348 Å and c 16.551 Å (Ag 0.96) (Kato and Miura, 1977) and a 7.35 Å

and c 16.55 Å (Dutrizac and Kaiman, 1976), and reported values for H3O-jarosite are

a 7.355 Å and c 16.98 Å (Brophy and Sheridan, 1965), a 7.347 Å and c 16.994 Å

(Dutrizac and Kaiman, 1976), a 7.35 Å and c 16.99 Å (Serna et al., 1986), and a

7.3552 Å and c 16.9945 Å (Basciano and Peterson, 2007a, 2008).

In all refinements of the K-Ag-H3O and Na-Ag-H3O-jarosite compounds,

improved fits were achieved with vacancies in the Fe site, shown by results of < 1 in

the refinements (see Table 4.9). Vacancies in the Fe site represent Fe:SO4 ratios

lower than the ideal 3:2, which have been commonly reported in synthetic studies

(Kubisz, 1970; Dutrizac and Jambor, 2000; Desborough et al., 2006; Basciano and
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Table 4.9. Rietveld refinement of synthetic Na-, K- and H3O-jarosite site

occupancies and unit-cell parameters (a and c in Å).

Sample Starting
solution

Rwp Rp Dwd 2 Na K Ag H3O Fe a c

K-Ag-H3O-jarosite compounds

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS04 0.22 M K,
0.00 M Ag

0.0740 0.0572 0.650 1.704 0.00 0.65 0.00 0.35 0.8042 7.3266 17.0797

JS06D 0.165 M K,
0.055 M Ag

0.0743 0.0584 0.649 1.632 0.00 0.71 0.09 0.20 0.8676 7.3388 16.9475

JS08c1 0.11 M K,
0.11 M Ag

0.0662 0.0474 0.361 2.964 0.00 0.53 0.28 0.19 0.9576 7.3426 16.9212

JS10 0.055 M K,
0.165 M Ag

0.0944 0.0692 0.426 2.481 0.00 0.32 0.38 0.30 0.7790 7.3479 16.7611

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS22 0.22 M K,
0.00 M Ag

0.0582 0.0426 0.487 2.398 0.00 0.61 0.00 0.39 0.7980 7.3282 17.0823

JS24 0.165 M K,
0.055 M Ag

0.0465 0.0350 0.468 2.377 0.00 0.63 0.10 0.27 0.7593 7.3377 16.9522

JS26i2 0.11 M K,
0.11 M Ag

0.0408 0.0278 0.319 4.379 0.00 0.45 0.20 0.35 0.7800 7.3397 16.8842

JS28c1 0.055 M K,
0.165 M Ag

0.0401 0.0294 0.288 3.995 0.00 0.30 0.43 0.27 0.9248 7.3470 16.7442

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS55 0.12 M K,
0.00 M Ag

0.0759 0.0581 0.608 1.828 0.00 0.32 0.00 0.68 0.7588 7.3137 17.1687

JS56 0.10 M K,
0.02 M Ag

0.0809 0.0613 0.543 1.991 0.00 0.71 0.09 0.20 0.8040 7.3242 17.0630

JS57 0.08 M K,
0.04 M Ag

0.0754 0.0588 0.651 1.677 0.00 0.56 0.21 0.23 0.8066 7.3302 16.9781

JS58 0.06 M K,
0.06 M Ag

0.0747 0.0579 0.650 1.603 0.00 0.38 0.35 0.27 0.8480 7.3358 16.8922

JS59 0.04 M K,
0.08 M Ag

0.0801 0.0603 0.585 1.788 0.00 0.46 0.39 0.15 0.8168 7.3391 16.8087

JS60 0.02 M K,
0.10 M Ag

0.0890 0.0656 0.501 2.107 0.00 0.34 0.55 0.11 0.8340 7.3475 16.6935

Solutions containing 0.51 M Fe2(SO4)3.5H2O prepared at 22ºC and products air-dried at 22ºC

JS73 0.22 M K,
0.00 M Ag

0.0717 0.0527 0.364 3.033 0.00 0.67 0.00 0.33 0.7310 7.3172 17.0031

JS74 0.165 M K,
0.055 M Ag

0.0784 0.0604 0.603 1.787 0.00 0.61 0.08 0.31 0.7801 7.3168 16.9719

JS75 0.11 M K,
0.11 M Ag

0.0836 0.0636 0.533 2.011 0.00 0.37 0.19 0.44 0.7673 7.3224 16.9411

JS76b1 0.055 M K,
0.165 M Ag

0.1056 0.0816 0.451 2.432 0.00 0.37 0.26 0.37 0.7756 7.3336 16.8748

Na-Ag-H3O-jarosite compounds

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS14b 0.22 M Na,
0.00 M Ag

0.0749 0.0576 0.550 2.050 0.66 0.00 0.00 0.34 0.8701 7.3421 16.7008
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JS16 0.165 M Na,
0.055 M Ag

0.0907 0.0665 0.451 2.464 0.35 0.00 0.27 0.38 0.8136 7.3492 16.6505

JS18 0.11 M Na,
0.11 M Ag

0.0910 0.0695 0.515 2.260 0.30 0.00 0.53 0.17 0.8047 7.3556 16.6134

JS20 0.055 M Na,
0.165 M Ag

0.0940 0.0725 0.477 2.346 0.20 0.00 0.56 0.24 0.7989 7.3539 16.6091

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS32 0.22 M Na,
0.00 M Ag

0.0607 0.0447 0.448 2.598 0.51 0.00 0.00 0.49 0.7724 7.3426 16.7158

JS34 0.165 M Na,
0.055 M Ag

0.0806 0.0594 0.629 1.801 0.47 0.00 0.43 0.10 0.7615 7.3528 16.6375

JS36 0.11 M Na,
0.11 M Ag

0.0969 0.0725 0.481 2.422 0.03 0.00 0.61 0.36 0.7477 7.3583 16.6155

JS38b1 0.055 M K,
0.165 M Ag

0.0958 0.0726 0.523 2.216 0.04 0.00 0.61 0.35 0.7274 7.3593 16.6103

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS49b1 0.12 M Na,
0.00 M Ag

0.0879 0.0690 0.362 2.883 0.47 0.00 0.00 0.53 0.8808 7.3380 16.7932

JS50 0.10 M Na,
0.02 M Ag

0.0991 0.0684 0.339 3.208 0.16 0.00 0.23 0.61 0.9418 7.3472 16.7537

JS51 0.08 M Na,
0.04 M Ag

0.0878 0.0645 0.496 2.254 0.22 0.00 0.38 0.40 0.8272 7.3474 16.6663

JS52 0.06 M Na,
0.06 M Ag

0.0847 0.0667 0.560 1.927 0.17 0.00 0.45 0.38 0.6558 7.3483 16.6193

JS53 0.04 M Na,
0.08 M Ag

0.0863 0.0681 0.542 1.961 0.06 0.00 0.57 0.37 0.7072 7.3482 16.6019

JS54 0.02 M Na,
0.10 M Ag

0.0887 0.0694 0.535 2.037 0.04 0.00 0.66 0.30 0.7775 7.3501 16.5989

Solutions containing 0.51 M Fe2(SO4)3.5H2O prepared at 22ºC and products air-dried at 22ºC

JS78 0.165 M Na,
0.055 M Ag

0.0859 0.0663 0.551 1.909 0.09 0.00 0.61 0.30 0.7773 7.3477 16.5654

JS80b1 0.055 M Na,
0.165 M Ag

0.1037 0.0814 0.495 2.068 0.03 0.00 0.68 0.29 0.8295 7.3474 16.5535

Ag-H3O-jarosite compounds

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS12 0.00 M M+,
0.22 M Ag

0.1030 0.0772 0.440 2.509 0.00 0.00 0.65 0.35 0.7693 7.3582 16.6095

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS30 0.00 M M+,
0.22 M Ag

0.0677 0.0464 0.200 9.215 0.00 0.00 0.63 0.37 0.7905 7.3562 16.6005

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS61 0.00 M M+,
0.12 M Ag

0.0789 0.0617 0.687 1.592 0.00 0.00 0.76 0.24 0.8356 7.3485 16.5013

Solutions containing 0.51 M Fe2(SO4)3.5H2O prepared at 22ºC and products air-dried at 22ºC

JS72 0.00 M M+,
0.22 M Ag

0.0904 0.0707 0.364 3.032 0.00 0.00 0.74 0.26 0.8027 7.3495 16.5551

Key: 2 = chi-squared test value, Rp = Rietveld pattern value, wRp = weighted Rietveld pattern value, and DWd
= Durbin-Watson d-statistic value. The notation b, c and h on the samples refers to the second, third or eighth
attempt at refinement; b1, b2, b3, c1, c2, c3, d2 and d3 refer to the jarosite phase number in the refinement; and l
refers to longer scans of 80 s per step.
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Peterson, 2007), such as 73% Fe3+ occupancy (Fe:SO4 value of 2.2:2) (Baron and

Palmer, 1996). Fe3+ deficiencies result in excess anion charge in the crystal structure,

leading to charge neutrality (balance) in the structure of these non-stoichiometric

jarosites to be maintained by protonation of hydroxyl groups, substituting H2O for

OH- in FeO2(OH,H2O)4 octahedra (Kubisz, 1970; Drouet et al., 2004; Desborough et

al., 2006; Basciano and Peterson, 2007; Burger et al., 2009). H2O groupings possibly

also occupy Fe vacant sites (Kubisz, 1970). Full Fe occupancy results in larger

jarosite unit-cell parameters than where there are vacancies (Basciano and Peterson,

2008). Fe deficiency decreases unit-cell volume (large change in c, minor change in

a) by shortening the Fe-OH (Fe-O3) bond length (Basciano and Peterson, 2007).

Rietveld refinement of the crystal structures produced the interatomic

distances and bond angles shown in Table 4.10 for Na-H3O-jarosite sample 49, Na-

Ag-H3O-jarosite samples 50-54 (all synthesised at 140ºC), and 78 and 80 (both

synthesised at 22ºC), K-H3O-jarosite sample 55, K-Ag-H3O-jarosite samples 56-60

(all synthesised at 140ºC) and 73-76 (synthesised at 22ºC), and Ag-H3O-jarosite

samples 61 (synthesised at 140ºC) and 72 (synthesised at 22ºC). These sample series

have been selected as being representative of series synthesised at 22ºC (low

temperature) and 140ºC (high temperature) (see Appendix F for data for samples 04-

80). Rietveld refinement of K-Ag-H3O-jarosite compounds reveals generally

decreasing K,Ag-O2 and K,Ag-O3 bond lengths as Ag content increases (although

there are some inconsistencies within the series). The same trends are not evident in

the Na-Ag-H3O-jarosite compounds, possibly because the ionic radii of Na+ and Ag+

are of relatively similar sizes and the H3O contents are relatively high in many of the

samples.
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Rietveld refinement also produced the atom positions and occupancies of

samples 04-80 shown in Tables 4.11a and 4.11b. It should be noted that there are

some substantial differences between the refined occupancies and the occupancies

from EMPA. For example, the Na occupancy of sample 49 is refined at 0.47,

whereas it is 0.56 from EMPA; the Ag occupancy of sample 61 is refined at 0.76,

whereas it is 0.54 from EMPA. Where there are site vacancies, charge balance of the

structure may be maintained by substitution of H3O
+ in the A site or protonation of

OH- to H2O (Kubisz, 1970). The refined structure of K-H3O-jarosite sample 55 (K

occupancy 0.32) has atom positions (see Table 4.11a) similar to reported positions

for two synthesised K-H3O-jarosite compounds (K occupancies 0.60 and 0.70),

although both had full Fe occupancy (Basciano and Peterson, 2007). The refined

structure of Na-H3O-jarosite sample 49 (Na occupancy 0.47) has atom positions (see

Table 4.11b) similar to reported positions for a synthesised Na-H3O-jarosite

compound (Na occupancy 0.49), although this had full Fe occupancy (Basciano and

Peterson, 2008). The refinements show changing atomic positions of O2 and O3

(OH), to which the A-site atom is bonded, with changing compositions of Ag. A

general trend in the atomic positions of O2 and O3 on the z axis is evident in the K-

Ag-H3O-jarosite sample series 55-61 (synthesised at 140ºC); however, no clear trend

is apparent in the corresponding Na-Ag-H3O-jarosite sample series 49-54 & 61. In

the K-Ag-H3O-jarosite sample series 72-76 (synthesised at 22ºC) a trend in the

atomic positions of O3 on the z axis is apparent; in the corresponding Na-Ag-H3O

jarosite sample series 72, 78 and 80, a trend in the atomic positions of O2 on the x

and y axes is apparent and of O3 on the z axis.
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Table 4.10 Rietveld refinement interatomic distances (Å) and angles of K-Ag- and Na-Ag-jarosites synthesised at 22ºC, 97ºC and 140ºC.
Synthesis temperature 97ºC

Bonds JS04 JS06D JS08 JS10 JS12 JS22 JS24 JS26 JS28 JS30
K0.65

H3O0.35

K0.71 Ag0.09

H3O0.20

K0.53 Ag0.28

H3O0.19

K0.32 Ag0.38

H3O0.30

Ag0.65

H3O0.35

K0.61

H3O0.39

K0.63 Ag0.10

H3O0.27

K0.27 Ag0.18

H3O0.55

K0.30 Ag0.43

H3O0.27

Ag0.63

H3O0.37

K,Ag – O2 × 6 2.994 (4) 3.01468 (4) 3.050 (11) 3.034 (6) 2.98574 (22) 2.9931 (31) 2.9758 (24) 2.95389 (1) 2.98760 (3) 2.97451 (2)
K,Ag – O3 × 6 2.822 (4) 2.83248 (5) 2.725 (11) 2.694 (6) 2.70820 (17) 2.8371 (27) 2.8019 (24) 2.80780 (2) 2.80256 (4) 2.74384 (2)
Fe – O2 × 2 2.046 (5) 2.114 (6) 2.112 (11) 1.997 (7) 2.10845 (16) 2.062 (4) 2.0472 (34) 2.08572 (2) 2.16386 (4) 2.11923 (2)
Fe – O3 × 4 2.0167 (17) 2.0104 (18) 1.9224 (30) 2.0346 (22) 2.00690 (15) 2.0015 (11) 2.0068 (10) 1.99907 (1) 2.01902 (2) 2.02132 (1)
S – O1 × 1 1.479 (7) 1.529 (8) 1.515 (21) 1.267 (10) 1.37218 (11) 1.543 (6) 1.511 (5) 1.53553 (2) 1.58893 (4) 1.56600 (0)
S – O2 × 3 1.483 (5) 1.421 (5) 1.370 (12) 1.487 (5) 1.43269 (11) 1.469 (4) 1.4889 (28) 1.48463 (1) 1.40089 (1) 1.42922 (1)
O2 - K,Ag – O2 × 6 69.29 (10) 67.73 (9) 67.75 (18) 69.29 (13) 66.877 (1) 69.01 (7) 68.87 (6) 68.024 (0) 66.347 (0) 66.669 (0)
O2 - K,Ag – O2 × 6 110.71 (10) 112.27 (9) 112.25 (18) 110.71 (13) 113.123 (1) 110.99 (7) 111.13 (6) 111.976 (0) 113.653 (0) 113.331 (0)
O2 - K,Ag – O3 × 6 71.80 (14) 70.20 (14) 76.05 (30) 70.72 (18) 69.097 (5) 72.24 (10) 71.70 (8) 71.143 (1) 67.797 (1) 67.947 (1)
O2 - K,Ag – O3 × 6 108.20 (14) 109.80 (14) 103.95 (30) 109.28 (18) 110.903 (5) 107.76 (10) 108.30 (8) 108.857 (1) 112.203 (1) 112.053 (1)
O2 - K,Ag – O3 × 12 57.77 (8) 59.15 (9) 60.78 (18) 69.29 (13) 59.919 (1) 58.19 (6) 59.043 (0) 59.342 (0) 60.287 (0) 59.882 (0)
O2 - K,Ag – O3 × 12 122.23 (8) 120.85 (9) 119.22 (18) 110.71 (13) 120.081 (1) 121.81 (6) 120.957 (0) 120.658 (0) 119.713 (0) 120.118 (0)
O3 - K,Ag – O3 × 6 61.85 (13) 61.69 (14) 52.10 (34) 63.60 (17) 61.874 (5) 60.65 (9) 61.29 (8) 60.695 (1) 62.943 (1) 63.336 (1)
O3 - K,Ag – O3 × 6 118.15 (13) 118.31 (14 127.90 (34) 116.40 (17) 118.126 (5) 119.35 (9) 118.71 (8) 119.305 (1) 117.057 (1) 116.664 (1)
O2 - Fe – O3 × 4 87.68 (12) 88.94 (13) 86.8 (4) 86.89 (20) 87.767 (3) 88.60 (9) 87.93 (7) 88.146 (0) 88.124 (1) 87.385 (0)
O2 - Fe – O3 × 4 92.32 (12) 91.06 (13) 93.2 (4) 93.11 (20) 92.233 (3) 91.40 (9) 92.07 (7) 91.854 (0) 91.876 (1) 92.615 (0)
O3 - Fe – O3 × 2 88.02 (20) 87.49 (23) 77.0 (6) 88.49 (27) 87.857 (1) 88.60 (14) 89.25 (12) 89.587 (0) 87.115 (0) 89.094 (0)
O3 - Fe – O3 × 2 91.98 (20) 92.51 (23) 103.0 (6) 91.51 (27) 92.143 (1) 91.40 (14) 90.75 (12) 90.413 (0) 92.885 (0) 90.906 (0)
O1 - S – O2 × 3 110.84 (27) 108.59 (29) 106.3 (6) 113.9 (4) 106.886 (2) 109.71 (20) 109.63 (17) 107.679 (0) 104.829 (0) 105.455 (0)
O2 - S – O2 × 3 108.07 (28) 110.33 (28) 112.4 (5) 104.8 (5) 111.928 (2) 109.23 (20) 109.32 (17) 111.202 (0) 113.688 (0) 113.171 (0)

Synthesis temperature 140ºC Synthesis temperature 22ºC
Bonds JS55 JS56 JS57 JS58 JS59 JS60 JS61 JS73 JS74 JS75 JS76 JS72

K0.32

H3O0.68

K0.71 Ag0.09

H3O0.20

K0.56 Ag0.21

H3O0.23

K0.38 Ag0.35

H3O0.27

K0.46 Ag0.39

H3O0.15

K0.34 Ag0.55

H3O0.11

Ag0.76

H3O0.24

K0.67

H3O0.33

K0.61 Ag0.08

H3O0.31

K0.37 Ag0.19

H3O0.44

K0.37 Ag0.26

H3O0.37

Ag0.74

H3O0.26

K,Ag – O2 × 6 2.97785(23) 2.98724(26) 2.97751(25) 2.98459(10) 2.96464(11) 2.94844(32) 2.95930(21) 3.00593(11) 3.02113(13) 2.99377(4) 3.0614(4) 2.9951(5)
K,Ag – O3 × 6 2.84616(18) 2.85561(21) 2.85479(20) 2.85253(8) 2.82147(9) 2.75587(25) 2.73381(16) 2.77891(8) 2.78448(10) 2.84001(3) 2.77527(31) 2.6808(6)
Fe – O2 × 2 2.01216(15) 2.09847(18) 2.09583(17) 2.11432(7) 2.11037(8) 2.13769(23) 2.10658(15) 2.03634(7) 2.06263(9) 2.07309(3) 2.08957(28) 2.0717(6)
Fe – O3 × 4 1.98702(16) 1.98324(18) 1.99911(17) 2.00134(7) 2.00257(8) 2.01157(22) 2.01611(14) 2.00467(8) 2.00357(9) 2.0015=75(2) 2.01922(28) 2.00319(34)
S – O1 × 1 1.52036(13) 1.61279(16) 1.65744(15) 1.62225(6) 1.56306(7) 1.41866(17) 1.50063(12) 1.44251(6) 1.40025(7) 1.53493(2) 1.39850(22) 1.4340(5)
S – O2 × 3 1.50993(12) 1.43700(13) 1.44741(12) 1.43066(5) 1.45289(6) 1.45205(16) 1.45061(10) 1.46940(5) 1.43526(6) 1.45262(2) 1.40998(19) 1.43527(24)
O2 - K,Ag – O2 × 6 70.188(2) 68.300(2) 68.094(2) 67.549(1) 67.364(1) 66.585(2) 66.843(1) 69.273(1) 68.735(1) 68.423(0) 68.042(3) 67.427(5)
O2 – K,Ag – O2 × 6 109.812(2) 111.700(2) 111.906(2) 112.451(1) 112.636(1) 113.415(2) 113.157(1) 110.727(1) 111.265(1) 111.577(0) 111.958(3) 112.573(5)
O2 - K,Ag – O3 × 6 74.242(5) 72.288(6) 71.120(6) 70.265(2) 69.883(3) 68.456(7) 68.356(5) 72.233(3) 71.618(3) 71.222(1) 70.021(9) 69.769(16)
O2 - K,Ag – O3 × 6 105.758(5) 107.712(6) 108.880(6) 109.735(2) 110.117(3) 111.544(7) 111.644(5) 107.767(3) 108.382(3) 108.778(1) 109.979(9) 110.231(16)
O2 - K,Ag – O3 × 12 57.385(1) 59.012(1) 58.954(1) 59.389(0) 59.515(0) 60.123(1) 59.767(1) 57.892(0) 58.341(0) 58.598(0) 58.741(1) 59.409(2)
O2 - K,Ag – O3 × 12 122.615(1) 120.988(1) 121.046(1) 120.611(0) 120.485(0) 119.877(1) 120.233(1) 122.108(0) 121.659(0) 121.402(0) 121.259(1) 120.591(2)
O3 - K,Ag – O3 × 6 59.383(5) 59.323(6) 60.858(6) 61.249(2) 61.527(3) 62.347(8) 63.013(5) 61.120(3) 61.189(3) 61.283(1) 62.551(10) 61.829(17)
O3 - K,Ag – O3 × 6 120.617(5) 120.677(6) 119.142(6) 118.751(2) 118.473(3) 117.653(8) 116.987(5) 118.880(3) 118.811(3) 118.717(1) 117.449(10) 118.171(17)
O2 - Fe – O3 × 4 88.817(3) 89.708(4) 89.036(3) 89.315(1) 88.636(2) 87.178(5) 87.180(3) 87.983(2) 88.483(2) 89.057(1) 88.734(6) 87.791(12)
O2 - Fe – O3 × 4 91.181(3) 90.292(4) 90.964(3) 90.685(1) 91.364(2) 92.822(5) 92.820(3) 92.017(2) 91.517(2) 90.941(1) 91.266(6) 92.209(12)
O3 - Fe – O3 × 2 89.610(1) 89.114(1) 87.352(1) 86.882(0) 87.783(0) 89.667(2) 89.750(1) 89.628(1) 89.964(1) 87.377(0) 88.950(2) 86.870(4)
O3 - Fe – O3 × 2 90.390(1) 90.886(1) 92.648(1) 93.118(0) 92.217(0) 90.333(2) 90.250(1) 90.372(1) 90.036(1) 92.621(0) 91.050(2) 93.130(4)
O1 - S – O2 × 3 111.054(2) 107.030(2) 107.109(2) 106.659(1) 107.100(1) 105.935(3) 106.535(2) 111.326(1) 110.446(1) 109.551(0) 112.342(4) 108.556(7)
O2 - S – O2 × 3 107.843(2) 111.798(2) 111.727(2) 112.131(1) 111.734(1) 112.764(2) 112.241(2) 107.554(1) 108.479(1) 109.391(0) 106.454(5) 110.371(6)
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Synthesis temperature 22ºC

Bonds JS14 JS16 JS18 JS20 JS12 JS32 JS34 JS36 JS38 JS30
Na0.66

H3O0.34

Na0.35 Ag0.27

H3O0.38

Na0.30 Ag0.53

H3O0.17

Na0.20 Ag0.56

H3O0.24

Ag0.65

H3O0.35

 Na0.51

H3O0.49

Na0.47 Ag0.43

H3O0.10

Na0.03 Ag0.61

H3O0.36

Na0.04 Ag0.61

H3O0.35

Ag0.63

H3O0.37

Na,Ag – O2 × 6 3.003 (4) 3.004 (5) 2.989 (5) 2.94763 (26) 2.98574 (22) 2.959 (4) 2.960 (4) 2.935 (5) 2.882 (5) 2.97451 (2)
Na,Ag – O3 × 6 2.7917 (32) 2.703 (5) 2.726 (6) 2.74808 (20) 2.70820 (17) 2.7753 (27) 2.710 (5) 2.725 (7) 2.701 (7) 2.74384 (2)
Fe – O2 × 2 2.055 (5) 2.013 (6) 2.122 (6) 2.17821 (19) 2.10845 (16) 1.971 (4) 2.053 (6) 2.083 (7) 2.072 (5) 2.11923 (2)
Fe – O3 × 4 2.0053 (13) 2.0095 (18) 2.0009 (19) 1.99476 (18) 2.00690 (15) 1.9933 (10) 2.0047 (18) 2.0007 (22) 2.0080 (22) 2.02132 (1)
S – O1 × 1 1.530 (7) 1.359 (9) 1.473 (10) 1.47741 (15) 1.37218 (11) 1.505 (6) 1.412 (9) 1.468 (11) 1.459 (11) 1.56600 (0)
S – O2 × 3 1.454 (5) 1.478 (5) 1.415 (5) 1.41801 (13) 1.43269 (11) 1.543 (4) 1.478 (4) 1.482 (5) 1.530 (6) 1.42922 (1)
O2 - Na,Ag – O2 × 6 68.06 (8) 68.65 (10) 67.71 (9) 65.734 (1) 66.877 (1) 69.58 (8) 67.85 (10) 67.26 (12) 67.38 (13) 66.669 (0)
O2 - Na,Ag – O2 × 6 111.94 (8) 111.35 (10) 112.27 (9) 114.266 (1) 113.123 (1) 110.42 (8) 112.15 (10) 112.74 (12) 112.62 (13) 113.331 (0)
O2 - Na,Ag – O3 × 6 70.37 (12) 71.02 (14) 70.20 (14) 68.165 (6) 69.097 (5) 72.75 (9) 70.36 (14) 69.84 (18) 69.65 (19) 67.947 (1)
O2 - Na,Ag – O3 × 6 109.63 (12) 108.98 (14) 109.80 (14) 111.835 (6) 110.903 (5) 107.25 (9) 109.64 (14) 110.16 (18) 110.35 (19) 112.053 (1)
O2 - Na,Ag – O3 × 12 58.80 (7) 58.29 (9) 59.15 (9) 61.194 (0) 59.919 (1) 57.69 (6) 59.05 (9) 59.64 (12) 59.44 (13) 59.882 (0)
O2 - Na,Ag – O3 × 12 121.20 (7) 121.71 (9) 120.85 (9) 118.806 (0) 120.081 (1) 122.31 (6) 120.95 (9) 120.36 (12) 120.56 (13) 120.118 (0)
O3 - Na,Ag – O3 × 6 62.01 (11) 62.01 (14) 61.47 (16) 61.093 (6) 61.874 (5) 60.79 (9) 61.65 (14) 61.39 (18) 61.93 (17) 63.336 (1)
O3 - Na,Ag – O3 × 6 117.99 (11) 117.99 (14) 118.53 (16) 118.907 (6) 118.126 (5) 119.21 (9) 118.35 (14) 118.61 (18) 118.07 (17) 116.664 (1)
O2 - Fe – O3 × 4 89.18 (11) 87.90 (16) 88.33 (19) 65.734 (1) 87.767 (3) 88.68 (9) 87.36 (16) 87.36 (21) 85.60 (19) 87.385 (0)
O2 - Fe – O3 × 4 90.82 (11) 92.10 (16) 91.67 (19) 114.266 (1) 92.233 (3) 91.32 (9) 92.64 (16) 92.64 (21) 94.40 (19) 92.615 (0)
O3 - Fe – O3 × 2 88.36 (16) 87.22 (23) 88.27 (26) 68.165 (6) 87.857 (1) 89.57 (14) 87.69 (25) 88.11 (31) 87.58 (31) 89.094 (0)
O3 - Fe – O3 × 2 91.64 (16) 92.28 (23) 91.73 (26) 111.835 (6) 92.143 (1) 90.43 (14) 92.31 (25) 91.89 (31) 92.42 (31) 90.906 (0)
O1 - S – O2 × 3 110.11 (24) 111.12 (33) 105.5 (4) 61.194 (0) 106.886 (2) 111.58 (19) 107.61 (31) 105.8 (4) 104.9 (4) 105.455 (0)
O2 - S – O2 × 3 108.82 (25) 107.78 (35) 113.12 (33) 118.806 (0) 111.928 (2) 107.28 (21) 111.26 (29) 112.92 (33) 113.60 (32) 113.171 (0)

Synthesis temperature 140ºC Synthesis temperature 22ºC
Bonds JS49 JS50 JS51 JS52 JS53 JS54 JS61 JS72 JS78 JS80

Na0.47

H3O0.53

Na0.16 Ag0.23

H3O0.61

Na0.22 Ag0.38

H3O0.40

Na0.17 Ag0.45

H3O0.38

Na0.06 Ag0.57

H3O0.37

Na0.04 Ag0.66

H3O0.30

Ag0.76

H3O0.24

Ag0.74

H3O0.26

Na0.09 Ag0.61

H3O0.30

Na0.03 Ag0.68

H3O0.29

Na,Ag – O2 × 6 3.04325(3) 3.0756(4) 2.98579(29) 2.84718(25) 2.89087(25) 2.93743(25) 2.95930(21) 2.9951(5) 2.92830(3) 2.92698(15)
Na,Ag – O3 × 6 2.80482(4) 2.80433(27) 2.70981(22) 2.71940(20) 2.71332(19) 2.74239(19) 2.73381(16) 2.6808(6) 2.74412(2) 2.73857(11)
Fe – O2 × 2 1.97703(3) 2.02518(22) 1.96822(19) 2.07450(19) 2.11065(18) 2.15295(19) 2.10658(15) 2.0717(6) 2.14599(2) 2.16617(10)
Fe – O3 × 4 1.98091(2) 1.98903(24) 2.01129(20) 1.99962(18) 2.00291(17) 1.99667(17) 2.01611(14) 2.00319(34) 1.99987(2) 1.00908(10)
S – O1 × 1 1.40326(3) 1.37004(18) 1.37276(15) 1.55166(16) 1.53964(15) 1.50083(14) 1.50063(12) 1.4340(5) 1.55299(2) 1.54274(9)
S – O2 × 3 1.47401(1) 1.41631(16) 1.51651(14) 1.55564(14) 1.49988(13) 1.44048(13) 1.45061(10) 1.43527(24) 1.44887(1) 1.43950(7)
O2 - Na,Ag – O2 × 6 69.767(0) 68.828(3) 69.487(3) 67.359(2) 66.727(2) 66.090(1) 66.843(1) 67.427(5) 66.107(0) 65.764(1)
O2 – Na,Ag – O2 × 6 110.233(0) 111.172(3) 110.513(3) 112.641(2) 113.273(2) 113.910(1) 113.157(1) 112.573(5) 113.893(0) 114.236(1)
O2 - Na,Ag – O3 × 6 73.628(1) 72.207(8) 71.805(7) 69.948(6) 69.003(6) 68.467(5) 68.356(5) 69.769(16) 68.205(1) 67.264(3)
O2 - Na,Ag – O3 × 6 106.372(1) 107.793(8) 108.195(7) 110.052(6) 110.997(6) 111.533(5) 111.644(5) 110.231(16) 111.795(1) 112.736(3)
O2 - Na,Ag – O3 × 12 57.690(0) 58.380(1) 57.562(1) 59.539(1) 60.086(1) 60.785(0) 59.767(1) 59.409(2) 60.688(0) 60.899(0)
O2 - Na,Ag – O3 × 12 122.310(0) 121.620(1) 122.438(1) 120.461(1) 119.914(1) 119.215(0) 120.233(1) 120.591(2) 119.312(0) 119.101(0)
O3 - Na,Ag – O3 × 6 59.683(1) 60.392(8) 62.180(7) 61.411(6) 61.736(6) 61.336(6) 63.013(5) 61.829(17) 61.800(1) 62.621(3)
O3 - Na,Ag – O3 × 6 120.317(1) 119.608(8) 117.820(7) 118.589(6) 118.264(6) 118.664(6) 116.987(5) 118.171(17) 118.200(0) 117.379(3)
O2 - Fe – O3 × 4 88.747(1) 88.417(5) 87.535(5) 85.502(4) 86.131(4) 87.760(4) 87.180(3) 87.791(12) 87.548(0) 86.979(2)
O2 - Fe – O3 × 4 91.253(1) 91.583(5) 92.465(5) 94.498(4) 93.869(4) 92.240(4) 82.820(3) 92.209(12) 92.452(0) 93.021(2)
O3 - Fe – O3 × 2 89.591(0) 89.671(1) 88.173(2) 87.965(1) 88.063(1) 88.948(1) 89.750(1) 86.870(4) 89.605(0) 89.797(1)
O3 - Fe – O3 × 2 90.409(0) 90.329(1) 91.827(2) 92.035(1) 91.937(1) 91.052(1) 90.250(1) 93.130(4) 90.395(0) 90.203(1)
O1 - S – O2 × 3 113.285(0) 112.121(4) 111.706(3) 104.405(2) 104.123(2) 103.546(2) 106.535(2) 108.556(7) 103.624(0) 102.802(1)
O2 - S – O2 × 3 105.403(1) 106.696(4) 107.146(3) 114.027(2) 114.249(1) 114.690(1) 112.241(2) 110.371(6) 114.631(0) 115.236(1)
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Table 4.11a. Rietveld-refined atom positions (x, y, z), isotropic displacement

parameters (Uiso) and occupancies of K-Ag-H3O-jarosite compounds synthesised at

22ºC, 97ºC and 140ºC.

Sample Site Multiple x y z Uiso Occupancy
Synthesis temperature 97ºC
4 K 3 0 0 0 0.025 0.65
K0.65 Fe 9 0.16667 -0.16667 -0.16667 0.075 0.8042
H3O0.35 S 6 0 0 0.309467 0.047 1

O1 6 0 0 0.396036 0.049 1
O2 18 0.224154 -0.224154 -0.05475 0.045 1
O3 18 0.131971 -0.131971 0.132993 0.048 1

6D K 3 0 0 0 0.025 0.71
K0.71 Ag 3 0 0 0 0.025 0.09
Ag0.09 Fe 9 0.16667 -0.16667 -0.16667 0.083 0.8676
H3O0.20 S 6 0 0 0.309523 0.034 1

O1 6 0 0 0.399748 0.045 1
O2 18 0.227395 -0.227395 -0.05054 0.028 1
O3 18 0.131934 -0.131934 0.13469 0.04 1

8 K 3 0 0 0 0.025 0.53
K0.53 Ag 3 0 0 0 0.025 0.28
Ag0.28 Fe 9 0.16667 -0.16667 -0.16667 0.029 0.9577
H3O0.19 S 6 0 0 0.304788 -0.005 1

O1 6 0 0 0.394304 0.089 1
O2 18 0.22996 -0.22996 -0.051263 -0.01 1
O3 18 0.10864 -0.10864 0.138794 0.002 1

10 K 3 0 0 0 0.025 0.32
K0.32 Ag 3 0 0 0 0.025 0.38
Ag0.38 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.779
H3O0.30 S 6 0 0 0.312665 0.025 1

O1 6 0 0 0.388285 0.025 1
O2 18 0.226473 -0.226473 -0.056543 0.025 1
O3 18 0.128797 -0.128797 0.127533 0.025 1

12 Ag 3 0 0 0 0.025 0.65
Ag0.65 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.8111
H3O0.35 S 6 0 0 0.310024 0.025 1

O1 6 0 0 0.392644 0.025 1
O2 18 0.225844 -0.225844 -0.047661 0.025 1
O3 18 0.125903 -0.125903 0.130745 0.025 1

Synthesis temperature 97ºC
22 K 3 0 0 0 0.058 0.61
K0.61 Fe 9 0.16667 -0.16667 -0.16667 0.066 0.798
H3O0.39 S 6 0 0 0.30847 0.04 1

O1 6 0 0 0.39878 0.054 1
O2 18 0.224389 -0.224389 -0.053867 0.047 1
O3 18 0.130315 -0.130315 0.134934 0.032 1

24 K 3 0 0 0 0.065 0.63
K0.63 Ag 3 0 0 0 0.025 0.1
Ag0.10 Fe 9 0.16667 -0.16667 -0.16667 0.055 0.7593
H3O0.27 S 6 0 0 0.309305 0.044 1

O1 6 0 0 0.398441 0.052 1
O2 18 0.222988 -0.222988 -0.053529 0.05 1
O3 18 0.129762 -0.129762 0.133618 0.033 1

26 K 3 0 0 0 0.025 0.45
K0.45 Ag 3 0 0 0 0.078 0.2
Ag0.20 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.78
H3O0.35 S 6 0 0 0.308 0.017 1

O1 6 0 0 0.4025 0.259 1
O2 18 0.224 -0.224 -0.0505 0.007 1
O3 18 0.131 -0.131 0.136 0.024 1

28 K 3 0 0 0 0.031 0.3
K0.30 Ag 3 0 0 0 0.068 0.43
Ag0.43 Fe 9 0.16667 -0.16667 -0.16667 0.093 0.9248
H3O0.27 S 6 0 0 0.30895 0.058 1

O1 6 0 0 0.40386 0.235 1
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O2 18 0.226913 -0.226913 -0.045799 0.041 1
O3 18 0.132767 -0.132767 0.133564 0.009 1

30 Ag 3 0 0 0 0.057 0.63
Ag0.63 Fe 9 0.16667 -0.16667 -0.16667 0.057 0.7905
H3O0.37 S 6 0 0 0.30993 0.048 1

O1 6 0 0 0.401021 0.087 1
O2 18 0.224133 -0.224133 -0.047482 0.045 1
O3 18 0.128853 -0.128853 0.13019 0.037 1

Synthesis temperature 140ºC
55 K 3 0 0 0 0.025 0.32
K0.32 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.7588
H3O0.68 S 6 0 0 0.308091 0.041 1

O1 6 0 0 0.396645 0.056 1
O2 18 0.22221 -0.222095 -0.056837 0.076 1
O3 18 0.12851 -0.128506 0.135984 0.051 1

56 K 3 0 0 0 0.025 0.71
K0.71 Ag 3 0 0 0 0.025 0.09
Ag0.09 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.804
H3O0.20 S 6 0 0 0.307 0.032 1

O1 6 0 0 0.402 0.074 1
O2 18 0.225 -0.225 -0.052 0.037 1
O3 18 0.129 -0.129 0.138 0.032 1

57 K 3 0 0 0 0.02 0.56
K0.56 Ag 3 0 0 0 0.13 0.21
Ag0.21 Fe 9 0.16667 -0.16667 -0.16667 0.05 0.8066
H3O0.23 S 6 0 0 0.3074 0.055 1

O1 6 0 0 0.405022 0.101 1
O2 18 0.22438 -0.224376 -0.051013 0.032 1
O3 18 0.1315 -0.131498 0.136393 0.048 1

58 K 3 0 0 0 0.035 0.38
K0.38 Ag 3 0 0 0 0.071 0.35
Ag0.35 Fe 9 0.16667 -0.16667 -0.16667 0.06 0.848
H3O0.27 S 6 0 0 0.308036 0.037 1

O1 6 0 0 0.404071 0.115 1
O2 18 0.225461 -0.225461 -0.049577 0.027 1
O3 18 0.132057 -0.132057 0.136563 0.03 1

59 K 3 0 0 0 0.19 0.46
K0.46 Ag 3 0 0 0 0.035 0.39
Ag0.39 Fe 9 0.16667 -0.16667 -0.16667 0.056 0.8168
H3O0.15 S 6 0 0 0.309886 0.038 1

O1 6 0 0 0.402877 0.08 1
O2 18 0.22409 -0.224091 -0.048864 0.034 1
O3 18 0.13109 -0.131093 0.135453 0.044 1

60 K 3 0 0 0 0.175 0.34
K0.34 Ag 3 0 0 0 0.033 0.55
Ag0.55 Fe 9 0.16667 -0.16667 -0.16667 0.05 0.834
H3O0.11 S 6 0 0 0.311018 0.034 1

O1 6 0 0 0.396001 0.048 1
O2 18 0.223618 -0.223618 -0.046196 0.037 1
O3 18 0.129435 -0.129435 0.132352 0.033 1

61 Ag 3 0 0 0 0.06 0.76
Ag0.76 Fe 9 0.16667 -0.16667 -0.16667 0.049 0.8356
H3O0.24 S 6 0 0 0.310634 0.036 1

O1 6 0 0 0.401081 0.06 1
O2 18 0.22408 -0.224077 -0.047583 0.022 1
O3 18 0.12961 -0.129611 0.131392 0.02 1

Synthesis temperature 22ºC
73 K 3 0 0 0 0.042 0.67
K0.67 Fe 9 0.16667 -0.16667 -0.16667 0.054 0.731
H3O0.33 S 6 0 0 0.30959 0.047 1

O1 6 0 0 0.394428 0.044 1
O2 18 0.225332 -0.225332 -0.055172 0.04 1
O3 18 0.12873 -0.12873 0.132304 0.063 1

74 K 3 0 0 0 0.082 0.61
K0.61 Ag 3 0 0 0 0.03 0.08
Ag0.08 Fe 9 0.16667 -0.16667 -0.16667 0.058 0.7801
H3O0.31 S 6 0 0 0.309017 0.036 1
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O1 6 0 0 0.391521 0.027 1
O2 18 0.22722 -0.227216 -0.053858 0.033 1
O3 18 0.12913 -0.129125 0.132742 0.068 1

75 K 3 0 0 0 0.141 0.37
K0.37 Ag 3 0 0 0 0.034 0.19
Ag0.19 Fe 9 0.16667 -0.16667 -0.16667 0.057 0.7673
H3O0.44 S 6 0 0 0.309556 0.046 1

O1 6 0 0 0.40016 0.048 1
O2 18 0.225403 -0.225403 -0.052472 0.055 1
O3 18 0.131782 -0.131782 0.135536 0.043 1

76 K 3 0 0 0 0.095 0.37
K0.37 Ag 3 0 0 0 0.025 0.26
Ag0.26 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.7756
H3O0.37 S 6 0 0 0.3125 0.025 1

O1 6 0 0 0.395375 0.03 1
O2 18 0.23066 -0.230664 -0.052596 0.025 1
O3 18 0.13098 -0.130976 0.131635 0.03 1

72 Ag 3 0 0 0 0.025 0.74
Ag0.74 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.8027
H3O0.26 S 6 0 0 -0.3106 0.025 1

O1 6 0 0 0.390231 0.025 1
O2 18 0.22363 -0.22363 -0.054048 0.025 1
O3 18 0.1251 -0.1251 0.13025 0.025 1

Table 4.11b. Rietveld-refined atom positions (x, y, z), isotropic displacement

parameters (Uiso) and occupancies of Na-Ag-H3O-jarosite compounds synthesised at

22ºC, 97ºC and 140ºC.

Sample Site Multiple x y z Uiso Occupancy
Synthesis temperature 97ºC
14 Na 3 0 0 0 0.209 0.66
Na0.66 Fe 9 0.16667 -0.16667 -0.16667 0.067 0.8701
H3O0.34 S 6 0 0 0.31108 0.038 1

O1 6 0 0 0.402681 0.041 1
O2 18 0.225952 -0.225952 -0.052193 0.046 1
O3 18 0.130582 -0.130582 0.134369 0.023 1

16 Na 3 0 0 0 0.025 0.35
Na0.35 Ag 3 0 0 0 0.025 0.27
Ag0.27 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.8136
H3O0.38 S 6 0 0 0.311004 0.025 1

O1 6 0 0 0.392622 0.025 1
O2 18 0.225019 -0.225019 -0.054311 0.025 1
O3 18 0.126297 -0.126297 0.130481 0.025 1

18 Na 3 0 0 0 0.025 0.3
Na0.30 Ag 3 0 0 0 0.025 0.53
Ag0.53 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.8047
H3O0.17 S 6 0 0 0.308746 0.025 1

O1 6 0 0 0.397393 0.025 1
O2 18 0.226295 -0.226295 -0.047375 0.025 1
O3 18 0.126283 -0.126283 0.132478 0.025 1

20 Na 3 0 0 0 0.025 0.2
Na0.20 Ag 3 0 0 0 0.025 0.56
Ag0.56 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.7989
H3O0.24 S 6 0 0 0.307866 0.025 1

O1 6 0 0 0.396818 0.025 1
O2 18 0.224444 -0.224444 -0.043235 0.025 1
O3 18 0.126616 -0.126616 0.133968 0.025 1

12 Ag 3 0 0 0 0.025 0.65
Ag0.65 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.8111
H3O0.35 S 6 0 0 0.310024 0.025 1

O1 6 0 0 0.392644 0.025 1
O2 18 0.225844 -0.225844 -0.047661 0.025 1
O3 18 0.125903 -0.125903 0.130745 0.025 1



122

Synthesis temperature 97ºC
32 Na 3 0 0 0 0.025 0.51
Na0.51 Fe 9 0.16667 -0.16667 -0.16667 0.045 0.7724
H3O0.49 S 6 0 0 0.31112 0.056 1

O1 6 0 0 0.401139 0.075 1
O2 18 0.220564 -0.220564 -0.056148 0.059 1
O3 18 0.127442 -0.127442 0.134688 0.052 1

34 Na 3 0 0 0 0.025 0.47
Na0.47 Ag 3 0 0 0 0.025 0.43
Ag0.43 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.7615
H3O0.10 S 6 0 0 0.309282 0.033 1

O1 6 0 0 0.394162 0.044 1
O2 18 0.222699 -0.222699 -0.050938 0.032 1
O3 18 0.125906 -0.125906 0.13132 0.045 1

36 Na 3 0 0 0 0.025 0.03
Na0.03 Ag 3 0 0 0 0.025 0.61
Ag0.61 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.7477
H3O0.36 S 6 0 0 0.308968 0.039 1

O1 6 0 0 0.397312 0.05 1
O2 18 0.221445 -0.221445 -0.048581 0.047 1
O3 18 0.126046 -0.126046 0.132497 0.05 1

38 Na 3 0 0 0 0.025 0.04
Na0.04 Ag 3 0 0 0 0.025 0.61
Ag0.61 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.7266
H3O0.35 S 6 0 0 0.307921 0.042 1

O1 6 0 0 0.392383 0.062 1
O2 18 0.2202 -0.2202 -0.047106 0.053 1
O3 18 0.125485 -0.125485 0.130927 0.05 1

30 Ag 3 0 0 0 0.057 0.63
Ag0.63 Fe 9 0.16667 -0.16667 -0.16667 0.057 0.7905
H3O0.37 S 6 0 0 0.30993 0.048 1

O1 6 0 0 0.401021 0.087 1
O2 18 0.224133 -0.224133 -0.047482 0.045 1
O3 18 0.128853 -0.128853 0.13019 0.037 1

Synthesis temperature 140ºC
49 Na 3 0 0 0 0.025 0.45
Na0.47 Fe 9 0.166667 -0.16667 -0.16667 0.025 0.8773
H3O0.53 S 6 0 0 0.309936 0.027 1

O1 6 0 0 0.393497 0.038 1
O2 18 0.22681 -0.226805 -0.058095 0.038 1
O3 18 0.1268 -0.1268 0.136698 0.029 1

50 Na 3 0 0 0 0.025 0.16
Na0.16 Ag 3 0 0 0 0.025 0.23
Ag0.23 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.9418
H3O0.61 S 6 0 0 0.309317 0.021 1

O1 6 0 0 0.391092 0.037 1
O2 18 0.23023 -0.23023 -0.05585 0.036 1
O3 18 0.127982 -0.127982 0.136264 0.022 1

51 Na 3 0 0 0 0.02 0.22
Na0.22 Ag 3 0 0 0 0.032 0.38
Ag0.38 Fe 9 0.16667 -0.16667 -0.16667 0.054 0.8272
H3O0.40 S 6 0 0 0.310415 0.042 1

O1 6 0 0 0.392782 0.117 1
O2 18 0.22262 -0.222617 -0.056572 0.05 1
O3 18 0.12697 -0.126967 0.130526 0.035 1

52 Na 3 0 0 0 0.025 0.17
Na0.17 Ag 3 0 0 0 0.025 0.45
Ag0.45 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.6558
H3O0.38 S 6 0 0 0.309175 0.076 1

O1 6 0 0 0.40254 0.164 1
O2 18 0.214951 -0.214951 -0.047445 0.084 1
O3 18 0.125978 -0.125978 0.13216 0.056 1

53 Na 3 0 0 0 0.025 0.06
Na0.06 Ag 3 0 0 0 0.025 0.57
Ag0.57 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.7072
H3O0.37 S 6 0 0 0.309332 0.06 1

O1 6 0 0 0.402071 0.135 1
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O2 18 0.21905 -0.21905 -0.046045 0.065 1
O3 18 0.1263 -0.126928 0.131666 0.044 1

54 Na 3 0 0 0 0.025 0.04
Na0.04 Ag 3 0 0 0 0.025 0.66
Ag0.66 Fe 9 0.16667 -0.16667 -0.16667 0.042 0.7775
H3O0.30 S 6 0 0 0.309197 0.038 1

O1 6 0 0 0.399614 0.114 1
O2 18 0.223332 -0.223332 -0.044463 0.037 1
O3 18 0.126873 -0.126873 0.133519 0.033 1

61 Ag 3 0 0 0 0.06 0.76
Ag0.76 Fe 9 0.16667 -0.16667 -0.16667 0.049 0.8356
H3O0.24 S 6 0 0 0.310634 0.036 1

O1 6 0 0 0.401081 0.06 1
O2 18 0.22408 -0.224077 -0.047583 0.022 1
O3 18 0.12961 -0.129611 0.131392 0.02 1

Synthesis temperature 22ºC
77 n.d.
78 Na 3 0 0 0 0.025 0.09
Na0.09 Ag 3 0 0 0 0.061 0.61
Ag0.61 Fe 9 0.16667 -0.16667 -0.16667 0.053 0.7773
H3O0.30 S 6 0 0 0.309454 0.038 1

O1 6 0 0 0.403203 0.03 1
O2 18 0.22269 -0.22269 -0.044481 0.046 1
O3 18 0.12786 -0.12786 0.133387 0.29 1

79 n.d.
80 Na 3 0 0 0 0.025 0.03
Na0.03 Ag 3 0 0 0 0.068 0.68
Ag0.68 Fe 9 0.16667 -0.16667 -0.16667 0.066 0.8295
H3O0.29 S 6 0 0 0.309409 0.04 1

O1 6 0 0 0.402606 0.049 1
O2 18 0.22303 -0.223031 -0.043193 0.045 1
O3 18 0.12913 -0.129132 0.132341 0.02 1

72 Ag 3 0 0 0 0.025 0.74
Ag0.74 Fe 9 0.16667 -0.16667 -0.16667 0.025 0.8027
H3O0.26 S 6 0 0 -0.3106 0.025 1

O1 6 0 0 0.390231 0.025 1
O2 18 0.22363 -0.22363 -0.054048 0.025 1
O3 18 0.1251 -0.1251 0.13025 0.025 1

4.1.4 Raman spectroscopy

4.1.4.1 Chemical composition and wavenumbers (cm-1) of modes v1(S-O) and

v3(S-O), v2(S-O) and v4(S-O), vOH, δOH, γOH, Fe-OH and Fe-O

Jarosite exhibits spectral features as a result of the vibrational frequencies of the

molecular bonds of sulphate groups, hydroxyl groups and metal-oxygen bonds, as

well as lattice vibrations and iron excitations (Bishop and Murad, 2005). Sulphate

tetrahedra in aqueous solution possess Td symmetry and vibrational frequencies

occur as a result of v1(SO4
2-) symmetric stretching, v2(SO4

2-) symmetric bending,

v3(SO4
2-) asymmetric stretching and v4(SO4

2-) asymmetric bending, which are all
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Raman active (Sasaki et al., 1998; Myneni, 2000). The symmetric vibrational modes

produce more intense bands compared with the other sulphate vibrations because of

changes in polarisability (Myneni, 2000). Sulphates of jarosite have C3v symmetry

(monodentate, corner-sharing) and one v1, one v2, two v3 and two v4 frequencies are

exhibited (Bishop and Murad, 2005; Myneni, 2000). Fundamental frequencies and

combinations and overtones are all observed (Bishop and Murad, 2005). In jarosites,

other vibrational frequencies occur as a result of hydroxyl v(OH) stretching, δ(OH)

in-plane bending and γ(OH) out-of-plane bending, as well as cation bonding in Fe-O

and Fe-OH (Serna et al., 1986; Sasaki et al., 1998; Frost et al., 2006; Casas et al.,

2007; Ling et al., 2016).

The results of Raman spectroscopic analyses of some of the jarosites

synthesised in this project enabled the detected vibrational frequencies

(wavenumbers, cm-1) of the spectral peaks to be assigned to particular modes, which

are shown in Table 4.12. These assignments were made on the basis of comparisons

with reported frequencies and assigned modes (Serna et al., 1986; Sasaki et al., 1998;

Frost et al., 2006; Casas et al., 2007; Murphy et al., 2009; Ling et al., 2016) and

comparison with detected peaks in samples of the RRUFF Project database of

Raman spectra at the University of Arizona (see Table 4.13). For the synthesised K-

Ag jarosites of this project, the modes assigned to detected ranges of vibrational

frequencies (wavenumbers) are: Fe-O 221.1-228.4 cm-1, 274.1-307.0 cm-1, 353.3-

371.9 cm-1, 432.4-438.1 cm-1; v2(SO4) 451.3-458.8 cm-1; Fe-OH 556.9-576.1 cm-1;

v4(SO4) 620.9-627.3 cm-1; v1(SO4) 965.8-1013.6 cm-1; v3(SO4) 1082.6-1110.1 cm-1,

1120.2-1125.2 cm-1, 1140.4-1166.8 cm-1; and v(OH) 3378.5-3419.9 cm-1. For the

synthesised Na-Ag jarosites, the vibrational frequencies and assigned modes are: Fe-

O 224.6-228.4 cm-1, 296.0-309.8 cm-1, 358.9-371.9 cm-1, 435.9-441.4 cm-1; v2(SO4)
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450.7-458.8 cm-1; Fe-OH 555.4-570.6 cm-1; v4(SO4) 621.8-625.8 cm-1; v1(SO4)

966.6-1016.2 cm-1; v3(SO4) 1088.0-1114.3 cm-1, 1122.2-1125.2 cm-1, 1140.4-1165.3

cm-1; and v(OH) 3378.5-3417.2 cm-1. For the synthesised Pb-Ag jarosites, the

vibrational frequencies and assigned modes are: Fe-O 217.6-226.4 cm-1, 277.0 cm-1,

336.1-362.0 cm-1, 422.2-437.6 cm-1; Fe-OH 558.2-573.4 cm-1; v4(SO4) 618.8-622.1

cm-1; v1(SO4) 976.7-1012.0 cm-1; v3(SO4) 1101.2-1104.4 cm-1, 1121.8 cm-1, 1156.5-

1172.2 cm-1; and v(OH) 3385.0-3449.6 cm-1. In the Pb-Ag jarosites, no peaks were

present that could be assigned to v2(SO4).

The Raman spectra of the synthesised K-Ag, Na-Ag and Pb-Ag jarosites also

contained bands (see Table 4.12) that have not been reported in previous Raman

studies. These include peaks at 3581.8-3595.3 cm-1 in K-Ag samples, 3578.3-3593.5

cm-1 in Na-Ag samples and 3584-3589.8 cm-1 in Pb-Ag samples. Of these, the only

strong bands were in Ag-sample JS72 at 3592.4 cm-1; in all the other samples the

band strengths were weak. These peaks have been assigned to a hydroxyl stretching

mode, v(OH), or water stretching mode, v(H2O), on the basis of evidence from other

studies. Raman peaks at 3515 cm-1 were assigned to v(OH) in Sasaki et al. (1998),

whereas IR peaks at 3501 cm-1 were assigned to v(H2O) in Powers et al. (1975). IR

peaks at ~ 3550 cm-1 (medium band strength) in synthetic Na-jarosite and K-jarosite

and ~ 3550 cm-1 (weak band strength) in natural jarosite were assigned to v(H2O) in

Bishop and Murad (2005). Peaks at 3459.7, 3410.5 and 3385.5 cm-1 were assigned to

v(OH) in synthesised K-jarosite [chemical formula K1.06Na0.01Fe3.30(SO4)2(OH)6] and

peaks at 3428.4, 3385.7 and 3357.1 cm-1 were assigned to v(OH) in Na-jarosite

[chemical formula Na1.05Fe3.30(SO4)2(OH)6] in Ling et al. (2016). A study of the IR

spectrum of K-jarosite reports a broad profile centred on 3356 cm-1 with overlapping

bands of v(OH) (hydroxyl stretching) modes and adsorbed water extending from
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3590 to 2600 cm-1, although Raman analysis does not detect bands of adsorbed water

(Frost et al., 2006). IR spectral bands at ~ 3600 cm-1 have been assigned to v(OH)

bands in the sulphates gypsum and ettringite (Myneni, 2000).

Spectral bands were detected at 3075.1-3080.1 cm-1 in K-Ag samples, 3075.1-

3082 cm-1 in Na-Ag samples and 3077.3-3081 cm-1 in Pb-Ag samples. These bands

were strong in Ag-jarosite samples JS72 and JS61, and in K-Ag samples JS24, JS26,

JS55, JS57, JS58, JS59, JS60, JS74 and JS76, and Na-Ag samples JS16, JS42, JS54

and JS77; these bands were medium strength in Na-Ag samples JS34, JS49, JS51,

JS52, JS53, JS78, JS79 and JS80; and all other of these peaks were weak. These

peaks have been assigned to v(OH), on the basis of the IR study of K-jarosite by

Frost et al. (2006), mentioned above, reporting a broad profile centred on 3356 cm-1

with overlapping bands of v(OH) modes from 3590 to 2600 cm-1. For the same

reason, two further band ranges have been assigned to v(OH). First, peaks at 2760.2-

2762.5 cm-1 in K-Ag samples and 2752.5-2760.2 cm-1 in Na-Ag samples. Ag-jarosite

sample JS72 has a medium-strength band at 2760.2 cm-1; all other bands in the range

are weak. Second, peaks at 2573.6-2580.5 cm-1 in K-Ag samples, 2574.9-2583.1 cm-

1 in Na-Ag samples and 2574.9-2581.5 cm-1 in Pb-Ag samples. Again, only Ag-

jarosite sample JS72 has a medium-strength band; all other bands in the range are

weak.

Spectral bands were present at 1668.0-1690.5 cm-1 in K-Ag samples, 1598.4-

1687.5 cm-1 in Na-Ag samples and 1668.0-1682.7 cm-1 in Pb-Ag samples. These

have been assigned to 2v3(SO4
2-)/2δOH, on the basis of reported IR bands at 1634s

cm-1 in synthetic K-jarosite and at 1639s cm-1 in synthetic Na-jarosite and at 1630m

cm-1 in natural K-jarosite, which were assigned to δ(H2O) (in-plane bending)

(Bishop and Murad, 2005). In addition, RRUFF Project jarosite samples R060113
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(K-jarosite), R070493 (K-jarosite), R050289 (Na-jarosite), R050471 (Na-jarosite)

and 060097 (Ag-jarosite) show weak, broad peaks at 1672.5-1692.2 cm-1. The

spectra from the Raman analysis of the synthesised jarosite compounds of this

project are contained in Appendix G.

In Raman spectra, frequency differences in vibrational modes with different A-

site substitutions in the jarosite structure may be caused by the heaviness (atomic

number) of the elements present (Murphy et al., 2009). These frequency differences

may be due to differences in the bonding to the metal cations, so revealing small but

important structural differences with cation substitution, which may be due to

different electronic configurations (Murphy et al., 2009); in this study, these

differences may be the result of the substitution of Ag (a transition metal) for K or

Na (alkali metals). In some of the synthesised products in this study, the assigned

vibrational modes of the synthesised K-H3O-jarosite compounds have higher

wavenumbers (cm-1) than their Ag-H3O equivalents, which is consistent with some

reported modes but not with others (Serna et al., 1996; Sasaki et al., 1998; Frost et

al., 2006; Murphy et al., 2009): samples 22 (K-H3O) and 30 (Ag-H3O) (both 97°C),

respectively, v(OH) (3411.7 and 3393.7), v3(SO4) (lower reading, 1104.5 and 1088),

v1(SO4) (lower reading, 1009.3 and 972.12), and v4(SO4) (627.16 and 624.4).

Therefore, these results are not consistent with predicted stronger bonds for heavier

elements (Murphy et al., 2009). In some other cases, the K-H3O-jarosite compounds

have lower wavenumbers than their Ag-H3O equivalents, thereby providing evidence

of stronger bonds for Ag: products 22 and 30, respectively, v3(SO4) (upper reading,

1158.4 and 1163.9) and v2(SO4) (432.6 and 438.12); products 55 (K-H3O) and 61
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Table 4.12a. Raman frequencies (wavenumbers, cm-1) and mode assignments in synthetic K-Ag jarosite compounds.

Mode JS22 JS73 JS55 JS24 JS74 JS26 JS08 JS75 JS28 JS76 JS56 JS57 JS58 JS59 JS60 JS30 JS72 JS61

Rietveld
fitting
content

K0.61

H3O0.39

K0.67

H3O0.33

K0.32

H3O0.68

K0.63

Ag0.10

H3O0.27

K0.61

Ag0.08

H3O0.31

K0.27

Ag0.18

H3O0.55

K0.53

Ag0.28

H3O0.19

K0.37

Ag0.19

H3O0.44

K0.30

Ag0.43

H3O0.27

K0.37

Ag0.26

H3O0.37

K0.71

Ag0.09

H3O0.20

K0.56

Ag0.21

H3O0.23

K0.38

Ag0.35

H3O0.27

K0.46

Ag0.39

H3O0.15

K0.34

Ag0.55

H3O0.11

Ag0.63

H3O0.37

Ag0.74

H3O0.26

Ag0.76

H3O0.24

Temp. of
formation

97ºC 22ºC 140ºC 97ºC 22ºC 97ºC 97ºC 22ºC 97ºC 22ºC 140ºC 140ºC 140ºC 140ºC 140ºC 97ºC 22ºC 140ºC

Temp. of
drying

110ºC 22ºC 110ºC 110ºC 22ºC 110ºC 60ºC 22ºC 110ºC 22ºC 110ºC 110ºC 110ºC 110ºC 110ºC 110ºC 22ºC 110ºC

Un-
assigned

3586.4w 3595.3w 3586.4w 3586.37
w

3592.4w 3584.1w 3585.2w 3586.4w 3581.8w 3585.2 2592.4s 3584.1w

vOH 3417.3

vOH 3411.7 3414.7 3412.08 3413.26 3413.1 3410.01 3410.4 3411.18 3416.78 3408.5s

vOH 3407.6 3406.19 3407.6 3407.6 3403.84

vOH 3399.3
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vOH 3395.2 3397.95

vOH 3384.97 3393.7 3373.43 3384.97

Un-
assigned

3123.4 3378.5

Un-
assigned

3077.7w 3080.1w 3077.3s 3075.1s 3078.5s 3077.3s 3079.2w 3078.8w 3077.6s 3079.8w 3078.5s 3078.5s 3078.5s 3078.5s 3080.1s 3078.5s

Un-
assigned

2762.5w 2760.2

Un-
assigned

2578.8w 2576.2w 2573.6w 2577.8w 2577.5w 2477.5w 2576.2w 2580.5 2574.9w

Un-
assigned

2409.88 2409.55 2410.9 2409.55 2413.92 2412.2s 2408.21 2409.55 2410.9 2413.92 2408.21

Un-
assigned

2292.76 2294.13 2296.87 2295.83 2292.76 2299.93

Un-
assigned

2206.08 2204.69 2206.08 2205.02 2207.46 2206.08 2204.69 2207.46 2203.31 2207.79 2204.69

Un-
assigned

2167.24 2165.85 2167.24 2165.85 2167.57 2167.24 2165.85 2165.85 2165.85 2165.85 2167.57 2165.85

Un-
assigned

2167.57 2103.01 2104.42 2104.42 2103.01 2104.75 2103.01 2103.01 2103.01 2103.01 2103.01 2104.75 2104.42

Un-
assigned

2103.35 2008.52 2007.1 2012.77 2014.19 2015.61 2012.77 2011.36
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Un-
assigned

2v3(SO4
2-)

/ 2δOH#
1681.61 1682.74 1690.12 1690.48 1682.74 1679.78 1673.87 1672.39 1676.83 1667.95

2v3(SO4
2-)

/ 2δOH
1404.72

s

HOH 1232.12

v3(SO4
2-) 1166.8

v3(SO4
2-) 1162.6 1161.3 1163.9

v3(SO4
2-) 1158.4 1158.46 1154.93 1154.93 1159.66 1156.88 1153 1158.46 1156.51 1156.51 1156.51 1156.51 1156.51 1156.51

v3(SO4
2-) 1140.4

v3(SO4
2-) 1125.2 1123.38 1122.6 1123.38 1121.8 1121.8 1122.18 1121.8 1121.8 1120.22 1122.18

v3(SO4
2-) 1110.1 1108.8 1108.8 1110.1

v3(SO4
2-) 1104.5 1103.18 1101.22 1106.1 1102.1 1104.39 1104.77 1104.77 1101.22 1102.81 1101.22 1101.22 1104.39 1104.77 1104.39

v3(SO4
2-) 1100.5 1082.56 1088
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v1(SO4
2-) 1013.5 1013.6 1013.6 1012.2 1013.5

v1(SO4
2-) 1009.3 1007.58 1007.2 1006.7 1007.2 1008.8 1009.5 1009.18 1009.5 1009.18 1007.2 1008.8 1008.8 1008.8 1010.4 1012.39 1012

v1(SO4
2-)† 972.26 965.82 972.12 969.04

v4(SO4
2-) 627.16 627.3 627.3

v4(SO4
2-) 624.21 623.81 623.81 623.81 621.8 624.21 623.16 620.85 623.81 623.81 622.13 622.13 622.13 624.4 622.53 622.13

Unassigne
d

595.6 592.32 592.67

Fe-OH 573.35 572.12 570.04 572.11 573.41 569.4 572.12 570.44

Fe-OH 564.98 565.2 561.07 566.66 564.98 563.29 561.6 563.29 562.31 562.01 559.92

Fe-OH 556.9

v2(SO4
2-) 456.06 453.27 452.96 454.67 451.26 452.1 452.06 456.79 451.26 451.26 458.82

v2(SO4
2-) 432.6 432.85 432.44 438.26 432.44 432.44 436.9 432.85 435.5 434.56 430.73 432.44 434.16 434.16 437.58 438.12 437.99 437.58

Fe-O 371.89
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Fe-O 363.61 357.21 353.34 356.8 356.8 361.0 358.23 360.66 353.34 355.07 353.34 356.8 358.52 360.85 362.39 360.25

Fe-O 302.9 300.05 303.04 301.37 301.37 301.7 301.79 304.42 301.79 301.37 301.37 303.11 304.85 307.04 305.26 304.85

Fe-O 299.64 299.64

Fe-O 274.06

Fe-O* 228.38 223.27 222.85 223.01 224.6 224.6 225.8 225.02 225.77 226.77 222.85 222.85 221.1 222.85 224.6 227 226.77 224.6

Un-
assigned

138.75 138.33 140.1 138.33 140.52 138.75 138.33 138.33 138.33 138.33 138.33 138.75 138.33

Key: B-O* = B-O (or OH-O, Frost et al,. 2006b); † = similar peak and assignment reported at http://www.sci.qut.edu.au/sci_schps.html; # Assigned to δ(H2O) in mid-IR study of synthetic K-jarosite in Bishop and
Murad (2005); s = strong; w = weak; sh = shoulder; b = broad; sp = sharp

Table 4.12b: Raman frequencies (wavenumbers, cm-1) and mode assignments in synthetic Na-Ag jarosite compounds.

Mode JS32 JS49b1 JS16 JS34 JS78 JS36 JS38b1 JS80 JS50 JS51 JS52 JS53 JS54 JS30 JS72 JS61

Rietveld
fitting
content

Na0.02

H3O0.98

Na0.47

H3O0.53

Na0.35

Ag0.27

H3O0.38

Na0.47

Ag0.43

H3O0.10

Na0.09

Ag0.61

H3O0.30

Na0.03

Ag0.61

H3O0.36

Na0.04

Ag0.61

H3O0.35

Na0.31

Ag0.68

H3O0.29

Na0.16

Ag0.23

H3O0.61

Na0.22

Ag0.38

H3O0.40

Na0.17

Ag0.45

H3O0.38

Na0.06

Ag0.57

H3O0.37

Na0.04

Ag0.66

H3O0.30

Ag0.63

H3O0.37

Ag0.74

H3O0.26

Ag0.76

H3O0.24

Formation
temp.

97ºC 140ºC 97ºC 97ºC 22ºC 97ºC 97ºC 22ºC 140ºC 140ºC 140ºC 140ºC 140ºC 97ºC 22ºC 140ºC

Drying
temp.

110ºC 110ºC 60ºC 110ºC 22ºC 110ºC 110ºC 22ºC 110ºC 110ºC 110ºC 110ºC 110ºC 110ºC 22ºC 110ºC
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Unassigned 3578.6w 3578.3w 3585.5w 3586.6w 3585.5w 3585.5w 3584.4w 3592.4s 3584.1w

vOH 3417.2

vOH 3408.9 3405.3 3401.76

vOH 3399.2 3399.3 3396.77 3398.23

vOH 3392.4 3392.05 3389.69 3393.8 3388.2 3388.79 3384.07 3382.89 3393.51 3393.7 3373.43 3384.97

vOH 3378.5w

Unassigned 3078.8 3079.2w 3076.1 3078.8 3082w 3081.9w 3078.8 3078.8w 3078.8 3080.1 3077.6 3078.8s 3080.1s 3078.5s

Unassigned 2752.5w 2760.2

Unassigned 2576.5w 2581.8w 2579.2w 2583.1w 2475.2w 2580.5 2574.9w

Unassigned 2409.88 2410.9 2411.22 2412.57 2408.53 2412.57 2413.92 2408.21

Unassigned 2295.83 2291.72 2299.93

Unassigned 2206.41 2205.02 2207.79 2205.02 2206.41 2207.79 2204.69

Unassigned 2166.18 2167.24 2167.57 2166.18 2167.57 2167.57 2167.57 2165.85

Unassigned 2104.75 2103.01 2167.57 2167.57 2104.75 2103.35 2103.35 2103.35 2104.75 2104.42

Unassigned 2020.2 2103.35 2103.35 2015.95 2018.78 2014.53 2017.37 2013.11 2011.36
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2v3(SO4
2-) /

2δOH#
1687.52 1673.87 1680.14 1681.61 1687.52 1678.66 1684.57 1680.14 1666.82 1667.95

HOH 1232.12

v3(SO4
2-) 1165.3 1163.9 1160.03 1163.9

v3(SO4
2-) 1159.7 1158.46 1158.5 1158.08 1158.46 1159.9 1154.2 1156.88 1158.46 1158.46 1158.46 1158.46 1156.51

v3(SO4
2-) 1140.4

v3(SO4
2-) 1123.38 1122.18 1122.18

v3(SO4
2-) 1108.7 1114.3 1107.4 1110.1 1110.1

v3(SO4
2-) 1106.35 1105.97 1106.35 1106.35 1106.35 1106.35 1106.35 1106.35 1104.77 1104.77 1104.39

v3(SO4
2-) 1088

v3(SO4
2-) 1013.5 1012.39 1012.2 1012 1012.39 1012.2 1013.5 1012.39 1012.39 1012.39 1012.39 1012.39 1012.39 1013.5 1012.39 1012

v1(SO4
2-)† 966.61 972.12 969.04

v4(SO4
2-) 652

v4(SO4
2-) 625.78 622.53 623.2 622.13 622.53 621.78 624.4 622.53 622.53 622.53 622.53 622.53 622.53 624.4 622.53 622.13

Unassigned 592.67

B-OH 570.59
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B-OH 563.69 563.69 563.8 563.69 561.07 567.83 562.01 562.01 562.01 560.32 560.32 562.31 562.01 559.92

B-OH 558.23 558.17 558.63

v2(SO4
2-) 450.7 458.82

v2(SO4
2-) 439.5 437.99 438.3 435.87 439.7 436.88 438.12 437.99 437.99 436.28 437.99 437.99 437.99 438.12 437.99 437.58

B-O 366.51 366.37 371.89

B-O 364.99 360.66 360.25 362.39 359.47 365.84 360.66 360.66 362.39 358.94 362.39 360.85 362.39 360.25

B-O 309.79 300.05 303 303.11 307 304.42 308.42 307 303.53 305.26 305.26 305.26 305.26 307.04 305.26 304.85

B-O 296

B-O* 228.38 225.02 227.2 224.6 226.77 227.15 228.38 226.77 226.77 225.02 225.02 225.02 225.02 227 226.77 224.6

Unassigned 136.98 138.33 138.75 140.52 136.98 138.75 138.75 138.75 138.75 138.75 138.33

Key: B-O* = B-O (or OH-O, Frost et al,. 2006b); † = similar peak and assignment reported at http://www.sci.qut.edu.au/sci_schps.html; # Assigned to δ(H2O) in mid-IR study of synthetic K-jarosite in Bishop and Murad (2005); s = strong; w = weak; sh = shoulder; b = broad; sp = sha
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Table 4.12c. Raman frequencies (wavenumbers, cm-1) and mode assignments in
synthetic Pb-Ag jarosite compounds.
Sample JS43 JS43d JS44 JS45 JS46D JS47 JS48 JS61

A-site Pb0.179 Pb0.168 Pb0.081Ag0.281 Pb0.082Ag0.502 Pb0.041Ag0.58 Pb0.021Ag0.766 Pb0.021Ag0.765 Ag0.76

content H3O0.821 H3O0.832 H3O0.638  H3O0.416  H3O0.379  H3O0.213  H3O0.214 H3O0.24

Unass 3589.8w 3587.5w 3587.5w 3584.1

vOH 3441.43 3449.63

vOH 3430.88

vOH 3417.96

vOH 3402.66

vOH 3384.97 3389.69 3390.87 3384.97

Unass 3080.99 3077.29 3078.52 3078.52 3078.52 3077.29 3078.52 3078.52

Unass 2581.5w 2574.9w

Unass 2406.86 2410.9 2410.9 2408.21 2408.21

Unass 2296.87

Unass 2204.69 2206.08 2206.08 2204.69

Unass 2165.85 2165.85 2167.24 2167.24 2167.24 2167.24 2167.24 2165.85

Unass 2104.42 2103.01 2103.01 2103.01 2104.42 2103.01 2103.01 2104.42

Unass 2017.03 2012.77 2015.61 2022.7 2018.45 2011.36

Unass 1965.84

2v3(SO4
2-)

/ 2δOH # 1678.31 1676.83 1678.31 1679.78 1682.74 1667.95

v3(SO4
2-) 1172.24

v3(SO4
2-) 1169.09 1162.8

v3(SO4
2-) 1159.66 1156.51 1158.08 1158.08 1156.51

v3(SO4
2-)

/ δOH 1121.8

v3(SO4
2-) 1101.22 1102.81 1102.81 1104.39 1102.81 1104.39 1104.39 1104.39

v1(SO4
2-) 1012 1012 1012 1012 1012 1012 1010.4 1012

v1(SO4
2-)† 976.7

v4(SO4
2-) 618.78 620.46 620.46 620.46 620.46 620.46 620.46 622.13

Fe-OH 573.41 573.41 568.35 563.29 559.92

Fe-OH 558.23 559.92 559.92

v2(SO4
2-)

Fe-O 435.87 435.87 434.16 437.58 437.58 437.58 437.58

Fe-O 422.17 429.02

Fe-O 336.05 336.05 358.52 361.98 360.25 358.52 358.52 360.25

Fe-O 306.58 306.58 304.85 304.85 304.85 304.85

Fe-O 277.02

Fe-O* 224.6 217.59 224.6 226.35 222.85 224.6 224.6 224.6

Unass 134.79 134.79 134.79 136.56 138.33 138.33 138.33 138.33

Key: Unass = unassigned Fe-O* = Fe-O (or OH-O, Frost et al. 2006b) ; † = similar peak and assignment reported at http://www.sci.qut.edu.au/sci_schps.html;
# Assigned to δ(H2O) in mid-IR study of synthetic K-jarosite in Bishop and Murad (2005). s = strong; w = weak; sh = shoulder; b = broad; sp = sharp

A-site contents of 43-48 are Rietveld refinement data and the content of 61 is combined data.
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Table 4.13. Reported Raman frequencies (wavenumbers, cm-1) and mode assignments in synthetic jarosite compound end-members, and in other jarosite-family compounds.

Mode JS22 K1 K2 K5 K6 JS32 Na1 Na2 Na3 Na7 Na8 JS30 Ag2 Ag4 Ag9 Ag10 H3O1 H3O4

vOH
vOH 3417.2

3440.3 3452.0

vOH 3411.7 3410.67s 3412.36s 3408.9 3401.95s 3410.9

vOH 3399.2 3399 3394 3388.85s 3393.7 3394.2 3380.52s 3384.38s 3383.2

vOH 3368 3378.5w 3371.6 3372.0

Unassigned 3077.7w

Unassigned 2215.73w

Unassigned 2006.74w 2012.29w 2005.74w 2017.10w

Unassigned 1688.55w 1692.17w 1672.52w 1679.83w 1679.62w

v3(SO4
2-)

v3(SO4
2-)

1158.4 1161 1153.33 1154.36 1159.91s 1165.3
1159.7

1160 1154.24w 1152w 1153.76 1155.29 1163.9
1140.4

1160.58w 1153.6 1157 1157 1163 1154.3

v3(SO4
2-) 1125.2

v3(SO4
2-) 1110.1 1112 1102.63s 1102.29s 1109.77s 1108.7 1114 1112.59 1105 1109.41s 1105.15s 1110.1 1107.16 1104.5 1110.72s 1108.79 1099 1102.9

v3(SO4
2-)

v3(SO4
2-)

1104.5
1088
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v1(SO4
2-) 1013.5 1015 1006.67 1009.73s 1013.35 1013.5 1014 1012.10 1007 1012.98s 1010.65 1013.5 1012.10 1011 1016.22s 1016.22 1011 1007.3

v1(SO4
2-) 1009.3

v1(SO4
2-)† 974.41sh 972.12 975.73w

Unassigned 840.95b

v4(SO4
2-) 652 648.9 642.6

v4(SO4
2-) 627.16 625 624.61s 625.96 631.51 625.78 627 624.61sp 617sp 625.36s 623.03 624.4 622.80sp 627.6 626.67s 624.75 619 624.3

v4(SO4
2-) 621.0

v4(SO4
2-) 614.2

γOH 560 576.63w 573.89 591.01w 570.59 571 570.29w 559w 567.51w 563.25 592.67 573.91w 576.53w 578.46w 563 576.4

O-Fe 563.69 562.7

Fe-OH 562.31 558.5 554.7

O-Fe 573.35 530

v2(SO4
2-) 476.9 465.7

v2(SO4
2-) 456.06 453.50 450.78sh 458.82 451.4 453.4

v2(SO4
2-) 442 444.54s 445 445sh 444.09s 441.76s 448.97sh 440.6 445.40s 445.40s 433.6
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O-Fe 432.6 434.49s 436.97s 439.5 444.44s 437s 438.12 441.73s

O-Fe 406 371.89

O-Fe 363.61 357.53w 354.05 364.99 365 367.49w 357w 365.02w 356.90w 360.85 362.96w 368.26w 382

O-Fe 302.9 301.40 300.05 303.67w 309.79 303 307.04 305.93sp 308.48s 310.41

O-Fe 296 295 298.68 288 295.59 299.05

O-Fe 228.38 223.54s 222.91s 230.39s 228.38 228 227.16 220 224.24s 219.98s 227 228.07 224.8 229.41s 227.48 224.1

Unassigned 188.91w

Unassigned 147.47w 142 139.39w 140.91 142.63w 142.63sw 110

Key: 1 = Serna et al. (1986); 2 = Sasaki et al (1998); 3 = Casas et al. (2007) [Na0.53(H3O)0.47Fe1.79(OH)6(SO4)2]; 4 = Frost et al. (2006) (natural jarosite); 5 = RRUFF project R060113; 6 = RRUFF project R070493; 7 = RRUFF project R050289; 8 = RRUFF project R050471; 9 = RRUFF
project 060097; 10 = RRUFF project 060098. s = strong; w = weak; sh = shoulder; b = broad; sp = sharp † = www.sci.qut.edu.au/sci_schps.html; RRUFF Project (integrated database of Raman spectra, XRD and chemistry data at the University of Arizona):
http://rruff.info/jarosite/display=default/  5 = RRUFF Project R060113, Jarosite, Iron Blossom Mine, East Tintic District, Eureka, Utah, USA; 6 = RRUFF Project R070493, Jarosite, Maria Josefa Mine, Rhodalquilar, Almeria Province, Spain; 7 = RRUFF Project R050289, Natrojarosite,
Bristol Mine, Pioche, Lincoln County, Nevada, USA; 8 = RRUFF Project R050471, Natrojarosite, Bristol Mine, Pioche, Lincoln County, Nevada, USA; 9 = RRUFF Project 060097, Argentojarosite, Locality unknown; 10 = RRUFF Project 060098, Argentojarosite, Tintic Standard Mine,
Dividend, Utah, USA.
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(Ag-H3O) (both 140°C), respectively, v3(SO4) (1101.22 and 1104.39; 1154.93 and

1156.51), v1(SO4) (1007.2 and 1012) and v2(SO4) (432.44 and 437.58); and products

73 (K-H3O) and 72 (Ag-H3O) (both 22°C), respectively, v3(SO4) (lower reading,

1103.18 and 1104.77), v1(SO4) (1007.58 and 1012.39) and v2(SO4) (432.85 and

437.99).

In all cases, the assigned modes of Ag-H3O-jarosite compounds do not have

higher wavenumbers than their Na-H3O equivalents, but some have the same

wavenumbers, which is consistent with some reported modes but not with others (see

Tables 4.12 and 4.13) (Sasaki et al., 1998; Frost et al., 2006; RRUFF projects

060097 and 060098). The Na-H3O modes with higher wavenumbers than their Ag-

H3O equivalents are: products 32 (Na-H3O) and 30 (Ag-H3O) (both 97°C),

respectively, v(OH) (3399.2 and 3393.7), v3(SO4) (1108.7 and 1088; 1165.3 and

1163.9), v4(SO4) (625.78 and 624.4) and v2(SO4) (439.5 and 438.12); products 49

(Na-H3O) and 61 (Ag-H3O) (both 140°C), respectively, v(OH) (3405.3 and 3384.97)

and v3(SO4) (1106.35 and 1104.39; and 1158.46 and 1156.51); and products 77 (Na-

H3O) and 72 (Ag-H3O) (both 22°C), respectively, v(OH) (3401.76 and 3373.43),

v3(SO4) (1107.94 and 1104.77; 1156.88 and 1122.18), v4(SO4) (624.21 and 622.53)

and v2(SO4) (441.41 and 437.99). Therefore, these results are also not consistent with

predicted stronger bonds for heavier elements (Murphy et al., 2009).

The Pb-H3O-jarosite compounds (samples 43/43d) have lower wavenumbers

than their Ag-H3O equivalent (sample 61) for the assigned modes of v3(SO4)

(1101.22/1102.81 and 1104.39 respectively) and v4(SO4) (618.78/620.46 and

622.13), thereby providing evidence of stronger bonds for Ag. The Pb-H3O-jarosite

compounds have higher wavenumbers than their Ag-H3O equivalent for the assigned

modes of v(OH) (3441.43/3449.63 and 3384.97 respectively) and v3(SO4) (1172.24
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and 1156.51), indicating weaker bonds for Ag. The Pb-H3O and Ag-H3O jarosite

products have the same wavenumber for v1(SO4) (1012). Pb is a heavier element than

Ag but the chemical analyses indicate low Pb content in the Pb-H3O and Pb-Ag-H3O

jarosite compounds. A study (Smith, 2004) has reported that, in plumbojarosite,

broadening of the peaks corresponding to v1(SO4
2-) and v3(SO4

2-) owing to two

overlapping peaks assigned to two types of sulphate groups, SO4
2- ions adjacent and

not adjacent to Pb2+ ions in ordered plumbojarosite structure with half the A sites

filled with Pb and half the A sites vacant; however, the Raman spectra of this project

did not display such broad peaks for Pb-H3O-jarosite, although this may be because

of the low Pb content and high H3O content of the compounds.

In the series of synthesised K-Ag-H3O- and Na-Ag-H3O-jarosite compounds,

no consistent trend is discernible in the wavenumbers of the assigned modes with

increasing Ag content of the products. However, the K-Ag-H3O jarosite series in

which trends may be observed are: samples 22 (K-H3O)-30 (Ag-H3O) (97°C),

v4(SO4) (decreasing cm-1); 55 (K-H3O)-61 (Ag-H3O) (140°C), v(OH) (decreasing

cm-1), v3(SO4) (increasing cm-1) and v1SO4 (increasing cm-1); and 72 (Ag-H3O), 73

(K-H3O)-76 (K-Ag-H3O) (22°C), v(OH) (decreasing cm-1), v1(SO4) (increasing cm-1)

and v2(SO4) (increasing cm-1). The Na-Ag-H3O jarosite series in which trends may

be observed are: 30 (Ag-H3O), 32 (Na-H3O)-38 (Na-Ag-H3O) (97°C), v3(SO4)

(increasing cm-1, except the Na-H3O and Ag-H3O products) and v2(SO4) (increasing

cm-1, except the Na-H3O product); 49 (Na-H3O)-54 (Na-Ag-H3O) and 61 (Ag-H3O)

(140°C), v(OH) (decreasing cm-1) and v3(SO4) (decreasing cm-1); and 72 (Ag-H3O)

and 77 (Na-H3O)-80 (Na-Ag-H3O) (22°C), v2(SO4) (decreasing cm-1). The Pb-Ag-

H3O-jarosite series 43/43d (Pb-H3O)-48 (Pb-Ag-H3O) and 61 (Ag-H3O) (140°C)

shows a trend of generally decreasing wavenumbers for modes v(OH) and v3(SO4)
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(upper range) and a trend of generally increasing wavenumbers for modes v3(SO4)

(lower range) and v4(SO4). An increasing trend indicates growing bond strength with

increasing Ag content of the synthesised jarosite compounds; a decreasing trend

indicates declining bond strength with increasing Ag content.

In the Fe-O modes, the synthesised K-Ag-H3O-jarosite compounds have lower

ranges of wavenumbers than the Na-Ag-H3O jarosite products, which is not

consistent with some reported modes (Casas et al., 2007; Murphy et al., 2009;

RRUFF project R050471), but is with other reported modes (Sasaki et al., 1998;

Murphy et al., 2009; RRUFF project R060113). The Pb-Ag-H3O-jarosite compounds

have lower ranges of wavenumbers than the equivalent Na-Ag-H3O-jarosites for the

Fe-O modes. Relative to the equivalent K-Ag-H3O-jarosites, the Pb-Ag-H3O-

jarosites have a lower range of wavenumbers for one Fe-O mode and higher ranges

of wavenumbers for two other Fe-O modes. Therefore, these results provide

contradictory evidence on any relationship between Fe-O bonding and A-site

substitution.

4.1.5 Electron microprobe analysis (EMPA) of synthesised jarosites

4.1.5.1 Compositions of synthesised K-Ag, Na-Ag and Pb-Ag jarosites

The results of EMPA of the synthetic K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O

jarosite compounds are shown in the chemical compositions (weight percent) and

site occupancies listed in Appendix J. The site occupancies, as well as the

concentrations of cations in the starting solutions, of the synthetic K-Ag-H3O and

Na-Ag-H3O jarosites are also shown in Tables 4.14 and 4.15, respectively. The

results show a generally declining content of K (Table 4.14) and Na (Table 4.15) in

the jarosite compounds with declining alkali cation concentration in the starting

solutions of each series with different initial Fe sulphate concentrations. Similar
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results for synthetic Pb-Ag-H3O jarosites are shown in Table 4.16. Accompanying

these trends of declining K, Na and Pb contents is a complementary trend of

generally increasing Ag content as the concentration of this cation increases in the

starting solutions. However, the results have some anomalous contents, so some

series show only poor or fairly poor linear relationships between the content of the

cations in the products. Good linear relationships are shown by K-Ag-H3O jarosite

series 22-30, synthesised at 97ºC, with an R2 value of 0.8356; series 62-66 and 71 &

81-84, both synthesised at 140ºC, with R2 values of 0.8407 and 0.9390, respectively;

and series 89-95, synthesised at 22ºC, with an R2 value of 0.8779. The Na-Ag-H3O

jarosite compounds with good linear relationships are series 12-30, 30-38 and 30-

38D, synthesised at 97ºC, with R2 values of 0.9835, 0.9105 and 0.9041, respectively;

series 49-54 & 61, 66-70 and 71 & 85-88, synthesised at 140ºC, with R2 values of

0.7472, 0.8755 and 0.9915, respectively; and series 72 & 77-80 and 95-101,

synthesised at 22ºC, with R2 values of 0.9486 and 0.9534, respectively. The other K-

Ag-H3O and Na-Ag-H3O series have R2 values of ≤ 0.6859.

Table 4.14. EMPA site occupancies of K-Ag jarosites synthesised at 22ºC, 97ºC and

140ºC, and the concentrations of K and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS04 0 0.37 0 0.00 0.63 3.04 2 0.22 M K, 0.00 M Ag

JS06 0 0.60 0 0.19 0.21 3.06 2 0.165 M K, 0.055 M Ag

JS06D 0 0.30 0 0.06 0.64 2.99 2 0.165 M K, 0.055 M Ag

JS08 0 0.30 0 0.29 0.41 2.85 2 0.11 M K, 0.11 M Ag

JS10 0 0.23 0 0.14 0.63 3.03 2 0.055 M K, 0.165 M Ag

JS10D 0 0.22 0 0.17 0.61 3.03 2 0.055 M K, 0.165 M Ag

JS12 0 0.00 0 0.31 0.69 3.09 2 0.00 M K, 0.22 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS22 0 0.23 0 0.00 0.77 2.95 2 0.22 M K, 0.00 M Ag
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JS24 0 0.25 0 0.07 0.68 2.41 2 0.165 M K, 0.055 M Ag

JS24D 0 0.30 0 0.09 0.61 3.04 2 0.165 M K, 0.055 M Ag

JS26 0 0.24 0 0.07 0.69 2.93 2 0.11 M K, 0.11 M Ag

JS28 0 0.21 0 0.10 0.69 3.03 2 0.055 M K, 0.165 M Ag

JS30 0 0.00 0 0.24 0.76 3.12 2 0.00 M K, 0.22 M Ag

JS40 0 0.26 0 0.04 0.70 2.87 2 0.5 M K, 0.1 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS55 0 0.43 0 0.00 0.57 2.56 2 0.12 M K, 0.00 M Ag

JS56 0 0.70 0 0.16 0.14 2.33 2 0.10 M K, 0.02 M Ag

JS57 0 0.56 0 0.26 0.18 2.86 2 0.08 M K, 0.04 M Ag

JS58 0 0.45 0 0.27 0.28 2.83 2 0.06 M K, 0.06 M Ag

JS59 0 0.37 0 0.35 0.28 2.79 2 0.04 M K, 0.08 M Ag

JS60 0 0.21 0 0.60 0.19 2.87 2 0.02 M K, 0.10 M Ag

JS61 0 0.00 0 0.63 0.37 3.02 2 0.00 M K, 0.12 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC)

JS62 0 0.55 0 0.00 0.45 2.88 2 0.22 M K, 0.00 M Ag

JS63 0 0.42 0 0.24 0.34 2.46 2 0.165 M K, 0.055 M Ag

JS64 0 0.26 0 0.30 0.44 2.76 2 0.11 M K, 0.11 M Ag

JS65 0 0.29 0 0.34 0.37 2.88 2 0.055 M K, 0.165 M Ag

JS66 0 0.00 0 0.44 0.56 2.91 2 0.00 M K, 0.22 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC)

JS71 0 0.00 0 0.66 0.34 2.35 2 0.00 M K, 0.22 M Ag

JS81 0 0.64 0 0.00 0.36 2.86 2 0.22 M K, 0.00 M Ag

JS82 0 0.40 0 0.14 0.46 2.70 2 0.165 M K, 0.055 M Ag

JS83 0 0.30 0 0.43 0.27 2.38 2 0.11 M K, 0.11 M Ag

JS84 0 0.10 0 0.64 0.26 2.19 2 0.055 M K, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS72 0 0.00 0 0.63 0.37 2.84 2 0.00 M K, 0.22 M Ag

JS73 0 0.32 0 0.00 0.68 2.80 2 0.22 M K, 0.00 M Ag

JS74 0 0.64 0 0.06 0.30 2.88 2 0.165 M K, 0.055 M Ag

JS75 0 0.35 0 0.10 0.55 2.93 2 0.11 M K, 0.11 M Ag

JS76 0 0.36 0 0.15 0.49 2.92 2 0.055 M K, 0.165 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS89 0 0.55 0 0.00 0.45 2.06 2 0.12 M K, 0.00 M Ag
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JS90 0 0.56 0 0.05 0.39 2.58 2 0.10 M K, 0.02 M Ag

JS91 0 0.48 0 0.04 0.48 2.91 2 0.08 M K, 0.04 M Ag

JS92 0 0.31 0 0.09 0.60 3.03 2 0.06 M K, 0.06 M Ag

JS93 0 0.35 0 0.12 0.53 2.91 2 0.04 M K, 0.08 M Ag

JS94 0 0.17 0 0.28 0.55 2.12 2 0.02 M K, 0.10 M Ag

JS95 0 0.00 0 0.56 0.44 2.98 2 0.00 M K, 0.12 M Ag

Table 4.15. EMPA site occupancies of Na-Ag jarosites synthesised at 22ºC, 97ºC

and 140ºC, and the concentrations of Na and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS12 0.00 0 0 0.31 0.69 3.09 2 0.00 M Na, 0.22 M Ag

JS14 0.17 0 0 0.00 0.83 3.01 2 0.22 M Na, 0.00 M Ag

JS16 0.10 0 0 0.16 0.74 2.99 2 0.165 M Na, 0.055 M Ag

JS18 0.05 0 0 0.22 0.73 2.92 2 0.11 M Na, 0.11 M Ag

JS20 0.04 0 0 0.23 0.73 3.06 2 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS30 0.00 0 0 0.24 0.76 3.09 2 0.00 M Na, 0.22 M Ag

JS32 0.30 0 0 0.00 0.70 2.72 2 0.22 M Na, 0.00 M Ag

JS34 0.10 0 0 0.15 0.75 3.03 2 0.165 M Na, 0.055 M Ag

JS36 0.04 0 0 0.29 0.64 3.04 2 0.11 M Na, 0.11 M Ag

JS38 0.01 0 0 0.26 0.73 3.06 2 0.055 M Na, 0.165 M Ag

JS38D 0.04 0 0 0.23 0.73 3.05 2 0.055 M Na, 0.165 M Ag

JS42 0.05 0 0 0.20 0.75 3.07 2 0.5 M Na, 0.1 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS49 0.56 0 0 0.00 0.44 2.29 2 0.12 M Na, 0.00 M Ag

JS50 0.25 0 0 0.24 0.51 2.85 2 0.10 M Na, 0.02 M Ag

JS51 0.16 0 0 0.29 0.55 2.86 2 0.08 M Na, 0.04 M Ag

JS52 0.05 0 0 0.37 0.58 2.90 2 0.06 M Na, 0.06 M Ag

JS53 0.03 0 0 0.30 0.67 2.89 2 0.04 M Na, 0.08 M Ag

JS54 0.01 0 0 0.38 0.61 2.86 2 0.02 M Na, 0.10 M Ag

JS61 0.00 0 0 0.63 0.37 3.02 2 0.00 M Na, 0.12 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC)

JS66 0.00 0 0 0.44 0.56 2.91 2 0.00 M Na, 0.22 M Ag
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JS67 0.65 0 0 0.00 0.35 2.91 2 0.22 M Na, 0.00 M Ag

JS68 0.57 0 0 0.09 0.34 2.74 2 0.165 M Na, 0.055 M Ag

JS69 0.30 0 0 0.12 0.58 3.16 2 0.11 M Na, 0.11 M Ag

JS70 0.23 0 0 0.33 0.44 2.72 2 0.055 M Na, 0.165 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC)

JS71 0.00 0 0 0.66 0.34 2.35 2 0.00 M Na, 0.22 M Ag

JS85 0.55 0 0 0.00 0.45 2.76 2 0.22 M Na, 0.00 M Ag

JS86 0.29 0 0 0.35 0.36 2.73 2 0.165 M Na, 0.055 M Ag

JS87 0.17 0 0 0.50 0.33 2.53 2 0.11 M Na, 0.11 M Ag

JS88 0.14 0 0 0.49 0.37 2.63 2 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS72 0.00 0 0 0.63 0.37 2.84 2 0.00 M Na, 0.22 M Ag

JS77 0.49 0 0 0.00 0.51 2.86 2 0.22 M Na, 0.00 M Ag

JS78 0.05 0 0 0.42 0.53 2.88 2 0.165 M Na, 0.055 M Ag

JS79 0.06 0 0 0.48 0.46 2.78 2 0.11 M Na, 0.11 M Ag

JS80 0.03 0 0 0.55 0.42 2.70 2 0.055 M Na, 0.165 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS95 0.00 0 0 0.56 0.44 2.98 2 0.00 M Na, 0.12 M Ag

JS96 0.56 0 0 0.00 0.44 3.04 2 0.12 M Na, 0.00 M Ag

JS97 0.11 0 0 0.46 0.43 3.02 2 0.10 M Na, 0.02 M Ag

JS98 0.09 0 0 0.55 0.36 2.96 2 0.08 M Na, 0.04 M Ag

JS99 0.03 0 0 0.57 0.40 2.74 2 0.06 M Na, 0.06 M Ag

JS100 0.02 0 0 0.63 0.35 3.08 2 0.04 M Na, 0.08 M Ag

JS101 0.02 0 0 0.50 0.48 3.07 2 0.02 M Na, 0.10 M Ag

Table 4.16. EMPA site occupancies of Pb-Ag jarosites synthesised at 22ºC and

140ºC, plus the concentrations of Pb and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS43 n.d. n.d n.d. n.d. n.d. n.d. - 0.06 M Pb, 0.00 M Ag

JS43D n.d. n.d n.d. n.d. n.d. n.d. - 0.06 M Pb, 0.00 M Ag

JS44 0 0 0.030 0.223 0.717 2.80 2 0.05 M Pb, 0.02 M Ag

JS45 0 0 0.006 0.448 0.546 2.61 2 0.04 M Pb, 0.04 M Ag

JS46 n.d. n.d n.d. n.d. n.d. n.d. - 0.03 M Pb, 0.06 M Ag
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JS47 0 0 0.006 0.652 0.342 2.46 2 0.02 M Pb, 0.08 M Ag

JS48 0 0 0.009 0.299 0.692 3.11 2 0.01 M Pb, 0.10 M Ag

JS61 0 0 0 0.630 0.370 3.02 2 0.00 M Pb, 0.12 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS102 0 0 0.004 0.448 0.548 2.99 2 0.00013 M Pb, 0.05 M Ag

JS103 0 0 0.003 0.491 0.506 3.02 2 0.00032 M Pb, 0.05 M Ag

JS104 0 0 0.025 0.807 0.168 3.15 2 0.001 M Pb, 0.05 M Ag

JS105 0 0 0.047 0.808 0.145 2.73 2 0.005 M Pb, 0.05 M Ag

JS106 0 0 0.018 0.483 0.499 3.21 2 0.001 M Pb, 0.05 M Ag

JS107 0 0 0.030 0.000 0.970 2.91 2 0.001 M Pb, 0.00 M Ag

The K A-site contents of samples synthesised at 97ºC vary from 0.37 in JS04

(ideal site occupancy 1.0), from an initial solution concentration of 0.22 M K (0.00

M Ag) (and an Fe:K ratio in the starting solution of 4.64:1, so with excess Fe

compared with the stoichiometric ratio of 3:1), to 0.21 in JS28, from a starting-

solution K concentration of 0.055 M (and 0.165 M Ag) (Fe:K ratio 18.55:1). Sample

JS06 has the highest K content at 0.60, which is substantially higher than the other

products synthesised at 97ºC, from an initial concentration of 0.165 M K (and 0.055

M Ag) in the starting solution (Fe:K ratio 6.18:1); the duplicate JS06D has a K

content of 0.30. Sample JS22 has a K content of 0.23, from the same synthesis

starting solution concentrations as sample 04.

The Na contents of the jarosite products synthesised at 97ºC vary from 0.30 in

JS32, from an initial solution concentration of 0.22 M Na (0.00 M Ag) (Fe:Na ratio

in 4.64:1), to 0.01 in JS38, from a starting-solution Na concentration of 0.055 M (and

0.165 M Ag) (Fe:Na ratio 18.55:1). Sample JS34 has an Na content of 0.10, from an

initial solution concentration of 0.165 M Na (and 0.055 M Ag) (Fe:Na ratio 6.18:1).

In the syntheses at 97ºC, JS12 and JS30 have Ag contents of 0.31 and 0.24,

respectively, both from starting-solution concentrations of 0.22 M Ag (with no alkali
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cations). However, sample JS08 has a relatively high Ag product content of 0.29

from a starting solution concentration of 0.11 M Ag (and 0.11 M K), as does sample

JS06 with an Ag product content of 0.19 from a solution concentration of 0.055 M

Ag (and 0.165 M K); the duplicate JS06D has an Ag content of 0.06.

In the syntheses carried out at 97ºC, there are no significant differences in the

alkali and Ag cation contents, or corresponding H3O contents, between the products

dried at 60ºC and those dried at 110ºC (Lowers et al., 2005). There is also no

significant difference in Fe contents between the products dried at 60ºC and those

dried at 110ºC, which would potentially affect the structural water content by

protonation of hydroxyl to balance the overall charge where there is Fe deficiency.

The results from the samples synthesised at 140ºC indicate a higher alkali and

Ag content, and correspondingly lower H3O content, than the samples synthesised at

lower temperature. Sample JS55 has a K content of 0.43, from an initial solution

concentration of 0.12 M K (with no Ag) (Fe:K ratio 2.5:1), which compares with the

K content of 0.37 in JS04, synthesised at 97ºC and with 0.22 M K (Fe:K ratio 4.64:1)

in the starting solution. JS49 has an Na content of 0.56 and JS50 has an Na content

of 0.25, from starting-solution concentrations of 0.12 M (with no Ag) (Fe:Na ratio

2.5:1) and 0.10 M Na (and 0.02 M Ag) (Fe:Na ratio 3:1), respectively, which

compare with 0.30 in JS32, synthesised at 97ºC using 0.22 M Na (with no Ag)

(Fe:Na ratio 4.64:1). JS61 has an Ag content of 0.63, from an initial solution

concentration of 0.12 M Ag (and no K or Na) (Fe:Ag ratio 2.5:1), which compares

with Ag contents of 0.31 in JS12 and 0.24 in JS30 in syntheses both at 97ºC using

0.22 M Ag (and no alkali cation) (Fe:Ag ratio 4.64:1). In the Pb-Ag series

synthesised at 140ºC, JS44 has the highest Pb content of 0.03, from a starting-

solution concentration of 0.05 M Pb (and 0.02 M Ag).
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In the products synthesised at 22ºC, the K contents are comparable with the

equivalents synthesised at 97ºC, although there is variability; for example, JS73 has

a K content of 0.32 compared with 0.23 in JS22 and 0.37 in JS04, and JS76 has a

content of 0.36 compared with 0.23 in JS10, 0.22 in JS10D and 0.21 in JS28, while

JS74 has a content of 0.64 compared with 0.60 in JS06, 0.30 in JS06D and 0.30 in

JS24D. A trend of lower Na content is shown in the products synthesised at 22ºC

compared with the equivalents synthesised at 97ºC; for example, JS78 has an Na

content of 0.05 compared to 0.10 in JS16 and 0.10 in JS34, and JS80 has a content of

0.03 compared to 0.04 in JS20. In the products synthesised at 22ºC, a higher Ag

content (0.63) is shown in the Ag end member (JS72), compared with the equivalent

syntheses at 97ºC (0.31 and 0.24, respectively), although the content is the same as

equivalent made at 140ºC (0.63); however, this result may be anomalous. In the K-

Ag-H3O series synthesised at 22ºC, the Ag contents are comparable with those in

their equivalents synthesised at 97ºC. In the Na-Ag-H3O series synthesised at 22ºC,

the Ag contents are higher than in their equivalents synthesised at 97ºC.

The K-Ag and Na-Ag products synthesised at 97ºC with 0.51 M

Fe2(SO4)3.5H2O in the starting solutions have average Fe contents of 2.97 (± 0.56).

This compares with an average Fe content of 2.85 (± 0.15) for the compounds

synthesised at 22ºC using 0.51 M Fe2(SO4)3.5H2O. The K-Ag-H3O and Na-Ag-H3O

products synthesised at 140ºC with 0.15 M Fe2(SO4)3.5H2O in the starting solutions

have average Fe contents of 2.76 (± 0.47). The results show the syntheses that used

the highest concentrations of Fe3+ in the starting solutions (0.51 M Fe2(SO4)3.5H2O)

resulted in the highest occupancy of the Fe site in the products. The degree of

occupation of the Fe site varied with synthesis temperature: most products made at

97ºC had close to full occupancy, while those made at 22ºC contained significant Fe
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site vacancies. Products synthesised at 140ºC contained slightly higher Fe site

occupancies than those made at 22ºC, in spite of the lower concentration of Fe in the

starting solutions (0.15 M Fe2(SO4)3.5H2O).

The results for the K-Ag-H3O-jarosite series indicate the issue of data quality

of EMPA of powder jarosite samples (see section 3.3.4). In five out of seven of the

series, the EMPA results show the end-member K-H3O-jarosite compound

(synthesised from the starting solution with the highest K concentration in the series)

has a K content that is lower than the K content of the first intermediate K-Ag-H3O-

jarosite compound (synthesised from the starting solution with the second highest K

concentration). This could suggest there is an effect caused by the presence of the

two cations that increases total incorporation of the cations into the jarosite structure.

The samples involved are: 4 (K occupancy 0.37) and 6 (K 0.60, Ag 0.19); 22 (K

0.23) and 24 (K 0.25, Ag 0.07); 55 (K 0.43) and 56 (K 0.70, Ag 0.16); 73 (K 0.32)

and 74 (K 0.64, Ag 0.06); and 89 (K 0.55) and 90 (K 0.56, Ag 0.05). The result is

also seen in the Rietveld refinement analysis of K-Ag-H3O-jarosite series samples 4

(K 0.65) and 6D (K 0.71, Ag 0.09); 22 (K  0.61) and 24 (K 0.63, Ag 0.10); and 55

(K 0.32) and 56 (K 0.71, Ag 0.09). The same type of result does not arise with the

other analyses used, except for ICP-AES analysis of sample 66 (Ag 0.44) and 70 (Ag

0.45, Na 0.20).

4.1.5.2 Effects of temperature and starting solution composition on EMPA

compositional data

The EMPA results show that, in the K-Ag-H3O jarosite products synthesised at 22ºC,

the K and Ag contents are comparable with the equivalents synthesised at 97ºC,

although there is some variability (see Table 4.14) in products synthesised at 140ºC.
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In the Na-Ag-H3O jarosite compounds synthesised from starting solutions in

which Na and Ag each varies between 0 M  and 22 M, there is little difference

between the Na contents of intermediate products synthesised at 22ºC compared with

the equivalents synthesised at 97ºC (see Table 4.15); however, the Na end member

synthesised at 22ºC has a substantially higher Na occupancy (0.49) than the two

equivalents synthesised at 97ºC (0.17 and 0.30). In these samples, the Ag contents

are substantially higher in the compounds synthesised at 22ºC than their equivalents

synthesised at 97ºC; this may be related to the different lengths of time of synthesis,

which was 12 months at 22ºC and 4 hours at 97ºC. The equivalent compounds

synthesised at 140ºC have higher Na contents than the equivalents synthesised at

22ºC and 97ºC. The Ag contents of the compounds synthesised at 22ºC are higher

than the equivalents synthesised at both 97ºC and 140ºC, which again may be related

to the period of synthesis. The results of ICP-AES analysis showed generally higher

A-site occupancies in these same compounds than EMPA. ICP-AES analysis also

indicated the relatively high Ag contents in the compounds synthesised at 22ºC; it

also indicated relatively low contents in the compounds synthesised at 140ºC

compared with the original compounds synthesised at 97ºC, which suggests the

annealing experiment was not successful in these samples.

 In the K-Ag-H3O and Na-Ag-H3O jarosite products synthesised at 97ºC, the

EMPA results show no significant differences in the alkali and Ag cation contents,

or corresponding H3O contents, between the products dried at 60ºC and those dried

at 110ºC.

The concentrations of Pb and Ag in the starting solutions were substantially

different between the series  of Pb-Ag-H3O samples synthesised at 22ºC and the

series synthesised at 140ºC. Nevertheless, the Pb contents were very low in both
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series, indicating problems of incorporating Pb in the jarosite structure. However, the

Ag contents were generally relatively high in the compounds synthesised at 22ºC

compared with those synthesised at 140ºC; again this may relate to the relatively

long period of synthesis in the experiments at 22ºC.

4.1.6 Inductively coupled plasma-atomic emission spectroscopy

The bulk-composition data (in parts per million, ppm) from ICP-AES analysis of the

synthetic K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O jarosite compounds (see

Appendix K) were used to calculate the A-site occupancies of K+, Na+ or Pb2+ and

Ag+ and the B-site occupancy of Fe3+. Difference of these A-site occupancies from

1.0 was used to calculate their hydronium occupancy, and it was assumed there was

no H2O substitution in the A or B site or protonation of OH- (Kubisz, 1970; Murphy

et al, 2009; Basciano and Peterson, 2010). The site occupancies were calculated

based on the normalisation of the bulk-composition data for S to a site occupancy of

2.0 (Basciano and Peterson, 2010). The site occupancies calculated from the results

of ICP-AES analysis of the synthetic K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O

jarosite compounds show generally declining contents of K (Table 4.17), Na (Table

4.18), and Pb (Table 4.19) respectively with declining K+, Na+ or Pb2+ cation

concentration in the starting solutions of each series. Accompanying these trends of

declining K, Na and Pb contents are complementary trends of generally increasing

Ag content as the concentration of Ag increases in the starting solutions. These

trends are present irrespective of differences in the initial Fe sulphate concentration

in the starting solutions of the different series.  The results show anomalous,

excessive A-site occupancies in some of the products: in K-Ag-H3O jarosite products

40 and 76; in Na-Ag-H3O jarosite products 80 and 101; and in Ag-H3O jarosite
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product 72. In Pb-H3O jarosite product 107, there is excessive Fe content. In

addition, there are no data for samples 49 (Na-H3O jarosite product) and 56 (K-Ag-

H3O jarosite product), as these were not analysed.

Table 4.17. ICP-AES site occupancies of K-Ag jarosites synthesised at 22ºC, 97ºC

and 140ºC, and the concentrations of K and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS04 0 0.66 0 0.00 0.34 2.60 2 0.22 M K, 0.00 M Ag

JS06 0 0.50 0 0.18 0.32 2.88 2 0.165 M K, 0.055 M Ag

JS06D 0 0.52 0 0.15 0.33 2.56 2 0.165 M K, 0.055 M Ag

JS08 0 0.41 0 0.30 0.29 2.72 2 0.11 M K, 0.11 M Ag

JS10 0 0.25 0 0.41 0.34 2.72 2 0.055 M K, 0.165 M Ag

JS10D 0 0.27 0 0.44 0.29 2.71 2 0.055 M K, 0.165 M Ag

JS12 0 0.00 0 0.78 0.22 2.71 2 0.00 M K, 0.22 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS22 0 0.64 0 0.00 0.36 2.59 2 0.22 M K, 0.00 M Ag

JS24 0 0.53 0 0.15 0.32 2.62 2 0.165 M K, 0.055 M Ag

JS24D 0 0.52 0 0.14 0.34 2.59 2 0.165 M K, 0.055 M Ag

JS26 0 0.44 0 0.25 0.31 2.74 2 0.11 M K, 0.11 M Ag

JS28 0 0.27 0 0.56 0.17 2.57 2 0.055 M K, 0.165 M Ag

JS30 0 0.00 0 1.00 0.00 2.62 2 0.00 M K, 0.22 M Ag

JS40 0 0.41 0 1.66 0.00 1.51 2 0.5 M K, 0.1 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS55 0 0.37 0 0.36 0.27 2.56 2 0.12 M K, 0.00 M Ag

JS56 0 n.d. 0 n.d. n.d. n.d. n.d. 0.10 M K, 0.02 M Ag

JS57 0 0.47 0 0.23 0.30 2.80 2 0.08 M K, 0.04 M Ag

JS58 0 0.38 0 0.34 0.28 2.82 2 0.06 M K, 0.06 M Ag

JS59 0 0.29 0 0.45 0.26 2.83 2 0.04 M K, 0.08 M Ag

JS60 0 0.16 0 0.68 0.16 2.96 2 0.02 M K, 0.10 M Ag

JS61 0 0.00 0 0.85 0.46 2.93 2 0.00 M K, 0.12 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC)

JS62 0 0.61 0 0.00 0.39 2.87 2 0.22 M K, 0.00 M Ag
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JS63 0 0.49 0 0.21 0.30 3.36 2 0.165 M K, 0.055 M Ag

JS64 0 0.37 0 0.36 0.27 3.44 2 0.11 M K, 0.11 M Ag

JS65 0 0.15 0 0.37 0.48 2.98 2 0.055 M K, 0.165 M Ag

JS66 0 0.00 0 0.44 0.56 3.03 2 0.00 M K, 0.22 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC)

JS71 0 0.00 0 0.76 0.24 2.98 2 0.00 M K, 0.22 M Ag

JS81 0 0.60 0 0.00 0.40 2.81 2 0.22 M K, 0.00 M Ag

JS82 0 0.44 0 0.24 0.32 2.87 2 0.165 M K, 0.055 M Ag

JS83 0 0.29 0 0.46 0.25 2.91 2 0.11 M K, 0.11 M Ag

JS84 0 0.09 0 0.68 0.23 2.94 2 0.055 M K, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS72 0 0.00 0 2.10 0.00 1.88 2 0.00 M K, 0.22 M Ag

JS73 0 0.78 0 0.00 0.22 2.40 2 0.22 M K, 0.00 M Ag

JS74 0 0.68 0 0.06 0.26 2.52 2 0.165 M K, 0.055 M Ag

JS75 0 0.64 0 0.14 0.22 2.49 2 0.11 M K, 0.11 M Ag

JS76 0 0.42 0 1.07 0.00 1.99 2 0.055 M K, 0.165 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS89 0 0.73 0 0.00 0.27 2.49 2 0.12 M K, 0.00 M Ag

JS90 0 0.69 0 0.05 0.26 2.55 2 0.10 M K, 0.02 M Ag

JS91 0 0.65 0 0.10 0.25 2.68 2 0.08 M K, 0.04 M Ag

JS92 0 0.60 0 0.15 0.25 2.61 2 0.06 M K, 0.06 M Ag

JS93 0 0.43 0 0.35 0.22 2.72 2 0.04 M K, 0.08 M Ag

JS94 0 0.28 0 0.52 0.20 2.71 2 0.02 M K, 0.10 M Ag

JS95 0 0.00 0 0.85 0.15 2.86 2 0.00 M K, 0.12 M Ag

Table 4.18. ICP-AES site occupancies of Na-Ag jarosites synthesised at 22ºC, 97ºC

and 140ºC, and the concentrations of Na and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS12 0.00 0 0 0.78 0.22 2.71 2 0.00 M Na, 0.22 M Ag

JS14 0.57 0 0 0.00 0.43 2.91 2 0.22 M Na, 0.00 M Ag

JS16 0.33 0 0 0.37 0.30 2.92 2 0.165 M Na, 0.055 M Ag

JS18 0.10 0 0 0.63 0.27 2.72 2 0.11 M Na, 0.11 M Ag

JS20 0.06 0 0 0.71 0.23 2.71 2 0.055 M Na, 0.165 M Ag
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Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS30 0.00 0 0 1.00 0.00 2.62 2 0.00 M Na, 0.22 M Ag

JS32 0.55 0 0 0.00 0.45 2.87 2 0.22 M Na, 0.00 M Ag

JS34 0.16 0 0 0.55 0.29 2.97 2 0.165 M Na, 0.055 M Ag

JS36 0.03 0 0 0.72 0.25 2.83 2 0.11 M Na, 0.11 M Ag

JS38 0.01 0 0 0.97 0.02 2.59 2 0.055 M Na, 0.165 M Ag

JS38D 0.05 0 0 0.77 0.18 2.68 2 0.055 M Na, 0.165 M Ag

JS42 0.09 0 0 0.70 0.21 2.63 2 0.5 M Na, 0.1 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS49 n.d. 0 0 n.d. n.d. n.d. n.d. 0.12 M Na, 0.00 M Ag

JS50 0.33 0 0 0.25 0.42 3.04 2 0.10 M Na, 0.02 M Ag

JS51 0.20 0 0 0.47 0.33 2.90 2 0.08 M Na, 0.04 M Ag

JS52 0.09 0 0 0.67 0.24 2.93 2 0.06 M Na, 0.06 M Ag

JS53 0.04 0 0 0.77 0.19 2.98 2 0.04 M Na, 0.08 M Ag

JS54 0.01 0 0 0.83 0.16 2.98 2 0.02 M Na, 0.10 M Ag

JS61 0.00 0 0 0.85 0.15 2.93 2 0.00 M Na, 0.12 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC)

JS66 0.00 0 0 0.44 0.56 3.03 2 0.00 M Na, 0.22 M Ag

JS67 0.59 0 0 0.00 0.41 3.12 2 0.22 M Na, 0.00 M Ag

JS68 0.51 0 0 0.13 0.36 3.00 2 0.165 M Na, 0.055 M Ag

JS69 0.40 0 0 0.19 0.51 3.16 2 0.11 M Na, 0.11 M Ag

JS70 0.20 0 0 0.45 0.35 2.97 2 0.055 M Na, 0.165 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC)

JS71 0.00 0 0 0.76 0.24 2.98 2 0.00 M Na, 0.22 M Ag

JS85 0.57 0 0 0.00 0.43 2.98 2 0.22 M Na, 0.00 M Ag

JS86 0.55 0 0 0.08 0.37 3.02 2 0.165 M Na, 0.055 M Ag

JS87 0.13 0 0 0.60 0.27 2.99 2 0.11 M Na, 0.11 M Ag

JS88 0.11 0 0 0.56 0.33 2.97 2 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS72 0.00 0 0 2.10 0.00 1.88 2 0.00 M Na, 0.22 M Ag

JS77 0.67 0 0 0.00 0.33 2.86 2 0.22 M Na, 0.00 M Ag

JS78 0.11 0 0 0.71 0.18 2.68 2 0.165 M Na, 0.055 M Ag

JS79 0.03 0 0 0.80 0.17 2.76 2 0.11 M Na, 0.11 M Ag

JS80 0.03 0 0 1.93 0.42 1.92 2 0.055 M Na, 0.165 M Ag
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Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS95 0.00 0 0 0.85 0.15 2.86 2 0.00 M Na, 0.12 M Ag

JS96 0.68 0 0 0.00 0.32 3.01 2 0.12 M Na, 0.00 M Ag

JS97 0.37 0 0 0.41 0.22 2.96 2 0.10 M Na, 0.02 M Ag

JS98 0.14 0 0 0.68 0.18 2.86 2 0.08 M Na, 0.04 M Ag

JS99 0.04 0 0 0.80 0.16 2.86 2 0.06 M Na, 0.06 M Ag

JS100 0.02 0 0 0.81 0.17 2.84 2 0.04 M Na, 0.08 M Ag

JS101 0.03 0 0 1.93 0.42 1.92 2 0.02 M Na, 0.10 M Ag

Table 4.19. ICP-AES site occupancies of Pb-Ag jarosites synthesised at 22ºC and

140ºC, and the concentrations of Pb and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS43 0 0 0.179 0.00 0.821 3.00 2 0.06 M Pb, 0.00 M Ag

JS43D 0 0 0.168 0.00 0.832 3.15 2 0.06 M Pb, 0.00 M Ag

JS44 0 0 0.081 0.281 0.638 3.01 2 0.05 M Pb, 0.02 M Ag

JS45 0 0 0.082 0.502 0.416 2.97 2 0.04 M Pb, 0.04 M Ag

JS46 0 0 0.046 0.701 0.253 3.00 2 0.03 M Pb, 0.06 M Ag

JS46D 0 0 0.041 0.58 0.379 2.91 2 0.03 M Pb, 0.06 M Ag

JS47 0 0 0.021 0.766 0.213 2.98 2 0.02 M Pb, 0.08 M Ag

JS48 0 0 0.021 0.765 0.214 3.00 2 0.01 M Pb, 0.10 M Ag

JS61 0 0 0.000 0.857 0.143 2.93 2 0.00 M Pb, 0.12 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS95 0 0 0.00 0.856 0.144 2.86 2 0.00 M Pb, 0.12 M Ag

JS102 0 0 0.006 0.826 0.168 2.80 2 0.00013 M Pb, 0.10 M Ag

JS103 0 0 0.028 0.822 0.150 2.89 2 0.00032 M Pb, 0.10 M Ag

JS104 0 0 0.020 0.853 0.127 2.92 2 0.001 M Pb, 0.10 M Ag

JS105 0 0 0.063 0.824 0.113 2.85 2 0.005 M Pb, 0.10 M Ag

JS106 0 0 0.036 0.799 0.165 2.78 2 0.001 M Pb, 0.10 M Ag

JS107 0 0 0.258 0.00 0.742 9.8 2 0.001 M Pb, 0.00 M Ag

4.1.7 Combined data from EMPA, ICP-AES and Rietveld refinement

The occupancies of the A sites of the synthesised K-Ag-, Na-Ag- and Pb-Ag-jarosite

products based on a combination of the results of EMPA, ICP-AES and Rietveld
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refinement are shown in Tables 4.20, 4.21 and 4.22, respectively. The occupancies

shown in this table are mainly taken from the ICP-AES analysis, but where there is a

lack of data or the data are considered inaccurate, EMPA or Rietveld refinement data

are used. The jarosite products for which changes have been made to the ICP-AES

occupancy data are K-Ag-jarosite series 04-12, 22-30, 55-61, and 72-76; Na-Ag-

jarosite series 30-38, 49-54 & 61, 66-70, 72 & 77-80, and 71 & 85-88; and Pb-Ag-

jarosite sample 107.

Table 4.20: Combined data of site occupancies of K-Ag jarosites synthesised at
22ºC, 97ºC and 140ºC, and the concentrations of K and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS04 0 0.65 0 0.00 0.35 2.55 2 0.22 M K, 0.00 M Ag

JS06 0 0.50 0 0.18 0.32 2.88 2 0.165 M K, 0.055 M Ag

JS06D 0 0.52 0 0.15 0.33 2.56 2 0.165 M K, 0.055 M Ag

JS08 0 0.41 0 0.30 0.29 2.72 2 0.11 M K, 0.11 M Ag

JS10 0 0.25 0 0.41 0.34 2.72 2 0.055 M K, 0.165 M Ag

JS10D 0 0.27 0 0.44 0.29 2.71 2 0.055 M K, 0.165 M Ag

JS12 0 0.00 0 0.78 0.22 2.71 2 0.00 M K, 0.22 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS22 0 0.64 0 0.00 0.36 2.59 2 0.22 M K, 0.00 M Ag

JS24 0 0.53 0 0.15 0.32 2.62 2 0.165 M K, 0.055 M Ag

JS24D 0 0.52 0 0.14 0.34 2.59 2 0.165 M K, 0.055 M Ag

JS26 0 0.44 0 0.25 0.31 2.74 2 0.11 M K, 0.11 M Ag

JS28 0 0.27 0 0.56 0.17 2.57 2 0.055 M K, 0.165 M Ag

JS30 0 0.00 0 0.63 0.00 2.62 2 0.00 M K, 0.22 M Ag

JS40 0 0.26 0 0.04 0.70 2.87 2 0.5 M K, 0.1 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS55 0 0.43 0 0.00 0.57 2.75 2 0.12 M K, 0.00 M Ag

JS56 0 0.70 0 0.16 0.14 2.33 2 0.10 M K, 0.02 M Ag

JS57 0 0.47 0 0.23 0.30 2.80 2 0.08 M K, 0.04 M Ag

JS58 0 0.38 0 0.34 0.28 2.82 2 0.06 M K, 0.06 M Ag

JS59 0 0.29 0 0.45 0.26 2.83 2 0.04 M K, 0.08 M Ag
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JS60 0 0.16 0 0.68 0.16 2.96 2 0.02 M K, 0.10 M Ag

JS61 0 0.00 0 0.85 0.46 2.93 2 0.00 M K, 0.12 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC)

JS62 0 0.61 0 0.00 0.39 2.87 2 0.22 M K, 0.00 M Ag

JS63 0 0.49 0 0.21 0.30 2.46 2 0.165 M K, 0.055 M Ag

JS64 0 0.37 0 0.36 0.27 2.76 2 0.11 M K, 0.11 M Ag

JS65 0 0.15 0 0.37 0.48 2.98 2 0.055 M K, 0.165 M Ag

JS66 0 0.00 0 0.44 0.56 3.03 2 0.00 M K, 0.22 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC)

JS71 0 0.00 0 0.76 0.24 2.98 2 0.00 M K, 0.22 M Ag

JS81 0 0.60 0 0.00 0.40 2.81 2 0.22 M K, 0.00 M Ag

JS82 0 0.44 0 0.24 0.32 2.87 2 0.165 M K, 0.055 M Ag

JS83 0 0.29 0 0.46 0.25 2.91 2 0.11 M K, 0.11 M Ag

JS84 0 0.09 0 0.68 0.23 2.94 2 0.055 M K, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS72 0 0.00 0 0.63 0.37 2.84 2 0.00 M K, 0.22 M Ag

JS73 0 0.78 0 0.00 0.22 2.40 2 0.22 M K, 0.00 M Ag

JS74 0 0.68 0 0.06 0.26 2.52 2 0.165 M K, 0.055 M Ag

JS75 0 0.64 0 0.14 0.22 2.49 2 0.11 M K, 0.11 M Ag

JS76 0 0.37 0 0.26 0.37 2.33 2 0.055 M K, 0.165 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS89 0 0.73 0 0.00 0.27 2.49 2 0.12 M K, 0.00 M Ag

JS90 0 0.69 0 0.05 0.26 2.55 2 0.10 M K, 0.02 M Ag

JS91 0 0.65 0 0.10 0.25 2.68 2 0.08 M K, 0.04 M Ag

JS92 0 0.60 0 0.15 0.25 2.61 2 0.06 M K, 0.06 M Ag

JS93 0 0.43 0 0.35 0.22 2.72 2 0.04 M K, 0.08 M Ag

JS94 0 0.28 0 0.52 0.20 2.71 2 0.02 M K, 0.10 M Ag

JS95 0 0.00 0 0.85 0.15 2.86 2 0.00 M K, 0.12 M Ag

Table 4.21: Combined data of site occupancies of Na-Ag jarosites synthesised at
22ºC, 97ºC and 140ºC, and the concentrations of Na and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC

JS12 0.00 0 0 0.78 0.22 2.71 2 0.00 M Na, 0.22 M Ag
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JS14 0.57 0 0 0.00 0.43 2.91 2 0.22 M Na, 0.00 M Ag

JS16 0.33 0 0 0.37 0.30 2.92 2 0.165 M Na, 0.055 M Ag

JS18 0.10 0 0 0.63 0.27 2.72 2 0.11 M Na, 0.11 M Ag

JS20 0.06 0 0 0.71 0.23 2.71 2 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC

JS30 0.00 0 0 0.63 0.00 2.62 2 0.00 M Na, 0.22 M Ag

JS32 0.55 0 0 0.00 0.45 2.87 2 0.22 M Na, 0.00 M Ag

JS34 0.12 0 0 0.21 0.67 2.97 2 0.165 M Na, 0.055 M Ag

JS36 0.05 0 0 0.31 0.64 2.83 2 0.11 M Na, 0.11 M Ag

JS38 0.04 0 0 0.61 0.35 2.59 2 0.055 M Na, 0.165 M Ag

JS38D 0.07 0 0 0.65 0.28 2.68 2 0.055 M Na, 0.165 M Ag

JS42 0.09 0 0 0.70 0.21 2.63 2 0.5 M Na, 0.1 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS49 0.47 0 0 0.00 0.53 2.64 2 0.12 M Na, 0.00 M Ag

JS50 0.33 0 0 0.25 0.42 3.04 2 0.10 M Na, 0.02 M Ag

JS51 0.20 0 0 0.47 0.33 2.90 2 0.08 M Na, 0.04 M Ag

JS52 0.09 0 0 0.67 0.24 2.93 2 0.06 M Na, 0.06 M Ag

JS53 0.04 0 0 0.77 0.19 2.98 2 0.04 M Na, 0.08 M Ag

JS54 0.01 0 0 0.83 0.16 2.98 2 0.02 M Na, 0.10 M Ag

JS61 0.00 0 0 0.85 0.15 2.93 2 0.00 M Na, 0.12 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC)

JS66 0.00 0 0 0.44 0.56 3.03 2 0.00 M Na, 0.22 M Ag

JS67 0.65 0 0 0.00 0.35 2.91 2 0.22 M Na, 0.00 M Ag

JS68 0.57 0 0 0.09 0.34 2.74 2 0.165 M Na, 0.055 M Ag

JS69 0.40 0 0 0.19 0.41 3.16 2 0.11 M Na, 0.11 M Ag

JS70 0.23 0 0 0.33 0.44 2.72 2 0.055 M Na, 0.165 M Ag

Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M
Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC)

JS71 0.00 0 0 0.76 0.24 2.98 2 0.00 M Na, 0.22 M Ag

JS85 0.57 0 0 0.00 0.43 2.98 2 0.22 M Na, 0.00 M Ag

JS86 0.29 0 0 0.35 0.36 2.73 2 0.165 M Na, 0.055 M Ag

JS87 0.17 0 0 0.50 0.33 2.53 2 0.11 M Na, 0.11 M Ag

JS88 0.11 0 0 0.56 0.33 2.97 2 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS72 0.00 0 0 0.63 0.37 2.84 2 0.00 M Na, 0.22 M Ag
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JS77 0.67 0 0 0.00 0.33 2.86 2 0.22 M Na, 0.00 M Ag

JS78 0.11 0 0 0.42 0.47 2.88 2 0.165 M Na, 0.055 M Ag

JS79 0.06 0 0 0.48 0.46 2.78 2 0.11 M Na, 0.11 M Ag

JS80 0.03 0 0 0.82 0.15 3.02 2 0.055 M Na, 0.165 M Ag

Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS95 0.00 0 0 0.85 0.15 2.86 2 0.00 M Na, 0.12 M Ag

JS96 0.68 0 0 0.00 0.32 3.01 2 0.12 M Na, 0.00 M Ag

JS97 0.37 0 0 0.41 0.22 2.96 2 0.10 M Na, 0.02 M Ag

JS98 0.14 0 0 0.68 0.18 2.86 2 0.08 M Na, 0.04 M Ag

JS99 0.04 0 0 0.80 0.16 2.86 2 0.06 M Na, 0.06 M Ag

JS100 0.02 0 0 0.81 0.17 2.84 2 0.04 M Na, 0.08 M Ag

JS101 0.01 0 0 0.83 0.16 2.84 2 0.02 M Na, 0.10 M Ag

Table 4.22. Combined data of site occupancies of Pb-Ag jarosites synthesised at
22ºC and 140ºC, and the concentrations of Pb and Ag in the starting solutions.

Sample Na K Pb Ag H3O Fe S Starting solution

Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC

JS43 0 0 0.179 0.00 0.821 3.00 2 0.06 M Pb, 0.00 M Ag

JS43D 0 0 0.168 0.00 0.832 3.15 2 0.06 M Pb, 0.00 M Ag

JS44 0 0 0.081 0.281 0.638 3.01 2 0.05 M Pb, 0.02 M Ag

JS45 0 0 0.082 0.502 0.416 2.97 2 0.04 M Pb, 0.04 M Ag

JS46 0 0 0.046 0.701 0.253 3.00 2 0.03 M Pb, 0.06 M Ag

JS46D 0 0 0.041 0.58 0.379 2.91 2 0.03 M Pb, 0.06 M Ag

JS47 0 0 0.021 0.766 0.213 2.98 2 0.02 M Pb, 0.08 M Ag

JS48 0 0 0.021 0.765 0.214 3.00 2 0.01 M Pb, 0.10 M Ag

JS61 0 0 0.000 0.857 0.143 2.93 2 0.00 M Pb, 0.12 M Ag

Solutions containing 0.15 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC

JS95 0 0 0.00 0.856 0.144 2.86 2 0.00 M Pb, 0.12 M Ag

JS102 0 0 0.006 0.826 0.168 2.80 2 0.00013 M Pb, 0.10 M Ag

JS103 0 0 0.028 0.822 0.150 2.89 2 0.00032 M Pb, 0.10 M Ag

JS104 0 0 0.020 0.853 0.127 2.92 2 0.001 M Pb, 0.10 M Ag

JS105 0 0 0.063 0.824 0.113 2.85 2 0.005 M Pb, 0.10 M Ag

JS106 0 0 0.036 0.799 0.165 2.78 2 0.001 M Pb, 0.10 M Ag

JS107 0 0 0.258 0.00 0.742 2.91 2 0.001 M Pb, 0.00 M Ag
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4.2 Silver content of natural jarosite samples

The EMPA analysis of the natural jarosite, natrojarosite and argentojarosite samples

obtained for this project indicates that the samples have only trace levels of Ag,

except for sample 34, which is argentojarosite (see Table 4.23). Sample 34 has A-site

occupancies of Ag 0.64, Pb 0.011 and Au 0.005, plus, by difference from 1.0, H3O

0.333. Therefore, the analysis provided no useful data for this project.

Table 4.23. EMPA site occupancies for natural jarosite samples.
Sample Na K Ag Pb Au H3O Fe Al S As P

JN_01

JN_02 0.114 0.071 0 0 0.006 0.809 3.236 0.014 1.996 0 0.004

JN_03 0.114 0.002 0 0 0.002 0.882 3.196 0.002 2 0 0

JN_04 0.084 0.115 0 0 0.004 0.797 3.196 0.028 1.998 0 0.002

JN_05 0.056 0.029 0 0 0.002 0.913 2.596 0.001 1.968 0.032 0

JN_05_Na 0.127 0.003 0 0 0.002 0.868 2.506 0.002 1.989 0.011 0

JN_05_K 0.003 0.048 0 0 0.002 0.947 2.663 0.001 1.953 0.047 0

JN_06 0.002 0.712 0 0.019 0.002 0.265 3.202 0.004 1.988 0.008 0.004

JN_15 0.2 0.759 0.003 0.071 0.004 0 2.446 0.453 1.97 0.007 0.023

JN_16 0.162 0.532 0 0 0.003 0.303 2.218 0.384 1.995 0 0.005

JN_17 0.466 0.567 0 0.001 0.004 0 2.2 0.864 1.978 0 0.022

JN_18 0.077 0.692 0 0 0.004 0.227 2.511 0.446 1.965 0.003 0.032

JN_19 0.192 0.379 0 0 0.003 0.426 2.447 0.11 1.997 0 0.003

JN_20 0.115 0.551 0 0 0.005 0.329 1.992 1.004 1.978 0.002 0.02

JN_21 0.054 0.739 0 0.001 0.004 0.201 2.464 0.219 1.998 0.001 0.001

JN_22 0.354 0.422 0 0.001 0.003 0.219 2.554 0.099 1.997 0.001 0.002

JN_23 0.01 0.555 0 0 0.004 0.431 2.821 0.098 1.826 0 0.174

JN_24 0.167 0.324 0 0 0.003 0.506 2.989 0.011 1.972 0.006 0.022

JN_25 0.008 0.859 0 0.048 0.003 0.034 2.76 0.083 1.966 0.024 0.01

JN_26 0.287 0.211 0 0.001 0.006 0.494 2.563 0.206 1.994 0 0.006

JN_26_Na 0.329 0.134 0 0.001 0.007 0.528 2.461 0.225 1.995 0 0.005

JN_26_K 0.188 0.39 0 0.003 0.003 0.413 2.801 0.159 1.993 0 0.007

JN_27 0.32 0.066 0 0.124 0.004 0.362 2.855 0.13 1.985 0.012 0.003

JN_28 0.063 0.412 0 0.045 0.003 0.432 2.704 0.134 1.962 0.013 0.025

JN_31 0.045 0.457 0 0 0.002 0.496 2.698 0.17 1.993 0.003 0.004

JN_33 0.407 0.059 0 0.001 0.004 0.528 2.525 0.212 1.992 0 0.008

JN_34 0 0 0.64 0.011 0.005 0.333 2.755 0.012 1.996 0.003 0.001

JN_45 0.191 0.688 0.001 0.001 0.004 0.114 2.75 0.274 2 0 0

JN_46 0.189 0.392 0 0.001 0.005 0.412 2.983 0.085 1.999 0.001 0
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4.3 Summary

● The synthesised jarosite compounds have been given Munsell colour

numbers 2.5Y 5/6, 7/6, 8/6, 5/8, 6/8, 7/8 and 8/8, and 10YR 5/6, 6/8 and

7/8. Most of the compounds have a Munsell colour of yellow, but some

compounds with high Ag content in the starting solutions are olive yellow;

● SEM secondary-electron images indicate differences in morphology

between K-H3O, Na-H3O and Ag-H3O-jarosite compounds;

● powder XRD analysis indicates K-Ag-H3O jarosite series with declining K

content and increasing Ag content show a trend of generally declining d-

values for the strongest peaks as the relative proportions of the two cations

in the A site change;

● the XRD results for the Na-Ag-H3O-jarosite series show no consistent

trends of changing d-values of main peaks as the quantity of Na and Ag

occupying the A site changes. This is likely to be related to the high

proportion of H3O in the compounds, which is also the case with the Pb-

Ag-H3O-jarosites;

● XRD peak positions of hkl 003 and 006 reflections give information on

changing c-axis parameter of the unit cell, as the parameter varies

according to the ionic radii of cations occupying the A site;

● the K-Ag-H3O-jarosite series show generally declining d-spacing values for

003 and 006 reflections as K content decreases and Ag content increases,

consistent with the smaller ionic radius of Ag+ compared with K+;

● the Na-Ag-H3O-jarosite series show d-spacing values for the 003 and 006

reflections decrease from the Na-H3O-jarosite compound to the Ag-H3O-
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jarosite compound, which is consistent with the ionic radius of Ag+ being

smaller than that of Na+. However, within each series, although there is a

general decline, there are inconsistent d values for some intermediate

compounds;

● in the Pb-Ag-H3O-jarosite compounds, the d-values for the 003 and 006

reflections do not indicate the reported doubled c-axis dimension (11.3 Å)

of plumbojarosite, but the d-values of the samples are consistent with their

low Pb contents and high H3O contents;

● Rietveld refinement of the XRD data indicates the a-axis parameters of K-

H3O-jarosite compounds are shorter (7.3172-7.3282 Å) and the c-axis

parameters are longer (17.0031-17.1687 Å) than those of Na-H3O-jarosite

(7.338-7.3426 Å and 16.7008-16.7932 Å) and Ag-H3O-jarosite (7.3485-

7.3582 Å and 16.5013-16.6095 Å), which are consistent with published

data. These results indicate the ionic radius of the Ag+ cation is smaller

than the radius of the Na+ cation;

● Rietveld refinement of the intermediate Na-Ag-H3O-jarosite compounds in

the different series gives contradictory evidence on the effect of Ag content

on the length of the a- and c-axis parameters and so on whether the ionic

radius of Ag+ is larger or smaller than that of Na+, and therefore on whether

Ag+ in the A site is likely to be in 12-fold or 9-fold coordination;

● Rietveld refinement of K-Ag-H3O-jarosite compounds reveals generally

decreasing K,Ag-O2 and K,Ag-O3 bond lengths as Ag content increases

(although there are some inconsistencies within the series). The same

trends are not evident in the Na-Ag-H3O-jarosite compounds, possibly

because the ionic radii of Na+ and Ag+ are of relatively similar sizes
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compared with K+, whichever the coordination of Ag+, and the H3O

contents are relatively high in many of the samples;

● Rietveld refinement of K-Ag-H3O and Na-Ag-H3O-jarosite compounds

reveals changing atomic positions of O2 and O3 (OH), to which the A-site

atom is bonded, with changing composition of Ag;

● the assigned Raman vibrational modes of some of the synthesised K-H3O-

jarosite products have higher wavenumbers (cm-1) than their Ag-H3O

equivalents, but others do not. The same is the case with the Pb-H3O-

jarosite compounds and Ag-H3O-jarosite compounds. The assigned modes

of Ag-H3O-jarosite compounds do not have higher wavenumbers than their

Na-H3O equivalents, but some have the same wavenumbers. Consequently,

the results do not provide consistent evidence on predicted stronger bonds

for heavier elements;

● EMPA and ICP-AES analysis of the chemical composition of the synthetic

K-Ag-H3O-, Na-Ag-H3O- and Pb-Ag-H3O-jarosite compounds show

generally declining contents of K, Na and Pb, respectively, with declining

K+, Na+ or Pb2+ cation concentration in the starting solutions, and

complementary trends of generally increasing Ag+ contents as Ag increases

in the starting solutions.
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5 DISCUSSION

5.1 Capacity and mechanisms of uptake of silver by synthesised jarosite-

family minerals

5.1.1 Influence of synthesis temperature on the K-Ag-H3O, Na-Ag-H3O

and Pb-Ag-H3O compound characteristics

5.1.1.1 Influence of synthesis temperature on A-site occupancies

Compositional information on the K, Na, Pb and Ag occupancies of the A site of the

jarosite compounds synthesised in this project is provided by EMPA, ICP-AES and

Rietveld refinement of powder XRD data. Several studies have suggested increased

cation occupancies of jarosite structural sites with increased temperature of synthesis

(e.g., Murphy et al., 2009); however, the compositional data from the different

analytical techniques used in this project indicate inconsistent trends in the A-site

occupancies of the different jarosite series. The results of the different analyses show

that the K-Ag-H3O and Na-Ag-H3O-jarosite product series have generally declining

mean and median A-site occupancies of both K + Ag and Na + Ag, respectively, and

Ag-only cations as synthesis temperature increases from 22ºC to 97ºC. However, the

occupancies generally increase as synthesis temperature increases from 97ºC to

140ºC. There are variations in the differences in occupancies between products

synthesised at 22ºC and those made at 140ºC according to analysis technique. The

EMPA results show the mean and median K and Ag A-site occupancies of the K-Ag-

H3O-jarosite product series are generally higher in those synthesised at 140ºC

compared with those synthesised at 22ºC; the ICP-AES results show the opposite

trend in occupancies in the majority of cases. In the Na-Ag-H3O-jarosite products,

the EMPA results show the Na and Ag occupancies are generally lower in the series

synthesised at 140ºC than in those synthesised at 22ºC; this is also the case with the



166

ICP-AES analysis results. The Rietveld refinement results show that, in the K-Ag-

H3O-jarosite product series, the K and Ag occupancies rise with increased synthesis

temperature from 22ºC to 97ºC and 140ºC; in the Na-Ag-jarosite product series, the

opposite trend is seen in Na and Ag occupancies. A combination of data from the

different analysis techniques shows that the K + Ag mean and median A-site

occupancies of the K-Ag-H3O-jarosite product series decrease as synthesis

temperature increases from 22ºC to 97ºC and from 22ºC to 140ºC, whereas the Ag-

only occupancies generally increase. As temperature increases from 97ºC to 140ºC,

there is a decrease in mean occupancy and an increase in median occupancy of K +

Ag, and there are increases in mean and median occupancy of Ag-only. In the Na-

Ag-H3O-jarosite product series, the combined data show that, in most cases, the Na

+ Ag and Ag-only mean and median A-site occupancies decrease as synthesis

temperature increases from 22ºC to 97ºC and from 22ºC to 140ºC. As temperature

increases from 97ºC to 140ºC, the mean and median occupancies of Na + Ag

increase, whereas for Ag-only they decrease. For the Pb-Ag-H3O-jarosite products,

the EMPA and ICP-AES results both show declining Pb and Ag A-site occupancies

with increasing synthesis temperature. The details of these general findings are

discussed in the following sections.

5.1.1.1.1 EMPA data of A-site occupancies

The EMPA results for the K-Ag-H3O-jarosite samples synthesised at 22ºC, 97ºC and

140ºC using 0.51 M Fe2(SO4)3.5H2O and at 22ºC and 140ºC using 0.15 M

Fe2(SO4)3.5H2O show cation occupancy (total of K and Ag) of the A-site decreases

as the synthesis temperature is increased from 22ºC (mean 0.52, median 0.52, range

0.34-0.70) to 97ºC (mean 0.35, median 0.34, range 0.23-0.59); however, there is an
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increase in occupancy as the temperature is increased to 140ºC (mean 0.65, median

0.66, range between 0.43 and 0.86) (see Table 5.1 and Figure 5.1). The same trends

are generally seen for the Ag-only occupancies: there is a decline in the mean but

increase in the median occupancy from 22ºC (mean 0.21, median 0.11, range 0.04-

0.63) to 97ºC (mean 0.17, median 0.15, range 0.06-0.31) and an increase in the mean

and median to 140ºC (mean 0.39, median 0.35, range 0.14-0.66) (see Figure 5.1a). A

possible reason for these trends is that the difference in synthesis period between ~ 1

year at 22ºC and 4 hours at 97ºC is sufficient to result in greater occupancies at the

lower temperature, whereas the increase in temperature to 140ºC is sufficiently high

to outweigh this effect.

Table 5.1: EMPA A-site occupancies of K + Ag, Na + Ag, and Ag and synthesis
temperature of K-Ag-H3O and Na-Ag-H3O-jarosite compounds

Cation Mean Med. Range Temp Mean Med. Range Temp Mean Med. Range Temp
Synthesis solution 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O
K+Ag 0.52 0.52 0.34-

70
22 0.35 0.34 0.23-

59
97 0.65 0.66 0.43-

86
140

Ag 0.21 0.11 0.04-
63

22 0.17 0.15 0.06-
31

97 0.39 0.35 0.14-
66

140

Na+Ag 0.57 0.57 0.47-
64

22 0.27 0.27 0.17-
33

97 0.50 0.49 0.33-
66

140

Ag 0.54 0.55 0.42-
63

22 0.23 0.23 0.15-
31

97 0.32 0.32 0.09-
63

140
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Figure 5.1: EMPA total A-site occupancy of K + Ag in K-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at 22˚C, 97˚C

and 140˚C. (Error bars show series mean precision or C in %, see Appendix I.)
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EMPA: Ag in K-Ag jarosite
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Figure 5.1a: EMPA total A-site occupancy of Ag in K-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at 22˚C, 97˚C

and 140˚C. (Error bars show series mean precision or C in %, see Appendix I.)

The EMPA results for the Na-Ag-H3O-jarosite samples synthesised at 22ºC,

97ºC and 140ºC using 0.51 M Fe2(SO4)3.5H2O and at 22ºC and 140ºC using 0.15 M

Fe2(SO4)3.5H2O show the A-site cation occupancies (total of Na and Ag) decrease as

the synthesis temperature is increased from 22ºC (mean 0.57, median 0.57, range

0.47-0.64) to 97ºC (mean 0.27, median 0.27, range 0.17-0.33) and 140ºC (mean

0.50, median 0.49, range 0.33-0.66) (see Table 5.1 and Figure 5.1b). However, there

is an increase in occupancies as the temperature is increased from 97ºC to 140ºC,

although the occupancies at 140ºC are below those at 22ºC. Similar trends are seen

for the Ag-only occupancies: there is a decline from 22ºC (mean 0.54, median 0.55,

range 0.42-0.63) to 97ºC (mean 0.23, median 0.23, range 0.15-0.31) and then a lesser

increase to 140ºC (mean 0.32, median 0.32, range 0.09-0.63) (see Figure 5.1c). A

possible reason for these trends is that the difference in synthesis period between ~ 1

year at 22ºC and 4 hours at 97ºC and 140ºC is sufficient to result in greater

occupancies at the lower temperature, while the increase in temperature from 97ºC to

140ºC increases A-site occupancies.
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EMPA: Na + Ag in Na-Ag jarosite
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Figure 5.1b: EMPA total A-site occupancy of Na + Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at

22̊ C, 97˚C and 140˚C.  (Error bars show series mean precision or C in %, see
Appendix I.)
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Figure 5.1c: EMPA total A-site occupancy of Ag in Na-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at 22˚C, 97˚C

and 140˚C. (Error bars show series mean precision or C in %, see Appendix I.)

The EMPA results for the K-Ag-H3O-jarosite samples indicate that, of the

products synthesised using 0.51 M Fe2(SO4)3.5H2O, the lowest A-site cation

occupancies (total of K and Ag) are found for those synthesised at 97ºC (content

mean 0.35, median 0.33, range between 0.23 and 0.59), compared with those

synthesised at 22ºC (mean 0.53, median 0.48, range 0.34-0.70). There is an increase

in occupancies, however, in those synthesised at 140ºC (mean 0.62, median 0.64,

range 0.44-0.74) (see Table 5.2 and Figure 5.2). This is also the case for the mean

Ag-only contents of these K-Ag-jarosite samples (see Figure 5.2a): 0.17 at 97ºC;

0.24 at 22ºC; and 0.40 at 140ºC. However, apart from the Ag-jarosite end-member,



170

the median (0.13) and range (0.06-0.15) of Ag contents is lower in the products

made at 22ºC than in the products made at 97ºC (median 0.14 and range 0.06-0.31);

therefore, the increase in synthesis temperature increases the median and range of Ag

A-site contents. In the products synthesised at 140ºC, the Ag contents are: mean

0.40, median 0.39, range 0.14-0.66; therefore, they have higher A-site Ag contents

than those synthesised at 97ºC or 22ºC, a finding supported by the results for the K-

Ag-H3O-jarosite samples synthesised using 0.15 M Fe2(SO4)3.5H2O (see Table 5.2

and Figure 5.2b). These results indicate that the increase in synthesis temperature to

140ºC increases A-site content (mean 0.71, median 0.72, range 0.43-0.86) compared

with the products made at 22ºC (mean 0.51, median 0.50, range 0.40-0.61). The Ag-

only contents of these samples also show this trend: mean 0.19, median 0.11, range

0.04-0.56 at 22ºC; and mean 0.36, median 0.31, range 0.16-0.60 at 140ºC (see Figure

5.2c). The lower contents of the samples synthesised at 97ºC compared with the

samples synthesised at 22ºC in the series using 0.51 M Fe2(SO4)3.5H2O may be

explained by the difference between their periods of synthesis, which were 4 hours

and ~ 1 year, respectively.

Table 5.2: EMPA A-site occupancy of K + Ag, Na + Ag, Pb + Ag and Ag and
synthesis temperature of K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite
compounds according to Fe concentration in the synthesis solution

Cation Mean Med. Range Temp Mean Med. Range Temp Mean Med. Range Temp
Synthesis solution 0.51 M Fe2(SO4)3.5H2O
K+Ag 0.53 0.48 0.34-

70
22 0.35 0.33 0.23-

59
97 0.62 0.64 0.44-

74
140

Ag 0.24 0.13 0.06-
63

22 0.17 0.14 0.06-
31

97 0.40 0.39 0.14-
66

140

Na+Ag 0.54 0.54 0.47-
63

22 0.27 0.27 0.17-
33

97 0.55 0.58 0.44-
66

140

Ag 0.52 0.52 0.42-
63

22 0.23 0.23 0.15-
31

97 0.27 0.27 0.09-
44

140

Synthesis solution 0.15 M Fe2(SO4)3.5H2O
K+Ag 0.51 0.50 0.40-

61
22 0.71 0.72 0.43-

86
140

Ag 0.19 0.11 0.04-
56

22 0.36 0.31 0.16-
60

140

Na+Ag 0.59 0.57 0.52-
65

22 0.47 0.44 0.33-
63

140

Ag 0.55 0.57 0.46-
63

22 0.36 0.34 0.24-
54

140
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Pb+Ag 0.53 0.53 0.03-
86

22 0.46 0.45 0.25-
66

140

Ag 0.60 0.53 0.45-
81

22 0.45 0.45 0.22-
65

140

EMPA: K + Ag in K-Ag jarosite (0.51 M Fe2)

0
20
40
60
80

100
120
140
160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K + Ag A-site occupancy

Te
m

p 
(d

eg
. C

)

Figure 5.2: EMPA total A-site occupancy of K + Ag in K-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C . (Error bars

show series mean precision or C in %, see Appendix I.)

EMPA: Ag in K-Ag jarosite (0.51 M Fe2)
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Figure 5.2a: EMPA total A-site occupancy of Ag in K-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C . (Error bars

show series mean precision or C in %, see Appendix I.)
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Figure 5.2b: EMPA total A-site occupancy of K + Ag in K-Ag-H3Ojarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C . (Error bars

show series mean precision or C in %, see Appendix I.)
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EMPA: Ag in K-Ag jarosites (0.15 M Fe2)
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Figure 5.2c: EMPA total A-site occupancy of Ag in K-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C . (Error bars

show series mean precision or C in %, see Appendix I.)

The EMPA results for the Na-Ag-H3O-jarosite samples synthesised using

0.51 M Fe2(SO4)3.5H2O indicate that, as in the K-Ag-H3O-jarosite samples, the

lowest A-site contents (total of Na and Ag), on average, are found in the products

synthesised at 97ºC (mean 0.27, median 0.27, range 0.17-0.33), compared with those

synthesised at 22ºC (mean 0.54, median 0.54, range 0.47-0.63) or 140ºC (mean 0.55,

median 0.58, range 0.44-0.66) (see Figure 5.2d). This is also the case for the Ag-only

contents of these Na-Ag-jarosite samples (see Figure 5.2e): mean 0.23, median 0.23,

range 0.15-0.31 at 97ºC; mean 0.52, median 0.52, range 0.42-0.63 at 22ºC; and mean

0.27, median 0.27, range 0.09-0.44 at 140ºC. However, the products synthesised at

140ºC have slightly higher Na plus Ag A-site contents but lower Ag-only contents

than those synthesised at 22ºC. The lower contents of the samples synthesised at

97ºC and 140ºC compared with those made at 22ºC may be explained by the

difference in synthesis periods, which were 4 hours and ~ 1 year, respectively.

In the Na-Ag-H3O-jarosite samples synthesised using 0.15 M

Fe2(SO4)3.5H2O (see Figure 5.2f), the products synthesised at 22ºC (mean 0.59,

median 0.57, range 0.52-0.65) have higher A-site contents, on average, than those

synthesised at 140ºC (mean 0.47, median 0.44, range 0.33-0.63). The Ag-only



173

contents of these samples also show this trend: mean 0.55, median 0.57, range 0.46-

0.63 at 22ºC; and mean 0.36, median 0.34, range 0.24-0.54 at 140ºC (see Figure

5.2g). Therefore, these results contradict the results (above) for the syntheses using

0.51 M Fe2(SO4)3.5H2O, in which the products synthesised at 140ºC have higher

average contents than those made at 22ºC. As a consequence, it is not sufficient for

the lower contents of the samples synthesised at 140ºC compared with the samples

synthesised at 22ºC in the 0.15 M Fe2(SO4)3.5H2O data set to be explained by the

difference between their periods of synthesis (4 hours and ~ 1 year, respectively). It
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Figure 5.2d: EMPA total A-site occupancy of Na + Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O at 22˚C, 97˚C and 140˚C. (Error

bars show series mean precision or C in %, see Appendix I.)
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Figure 5.2e: EMPA total A-site occupancy of Ag in Na-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C . (Error bars

show series mean precision or C in %, see Appendix I.)
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EMPA: Na + Ag in Na-Ag jarosite (0.15 M Fe2)
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Figure 5.2f: EMPA total A-site occupancy of Na + Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.15 M Fe2(SO4)3.5H2O at 22˚C, 97˚C and 140˚C. (Error

bars show series mean precision or C in %, see Appendix I.)
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Figure 5.2g: EMPA total A-site occupancy of Ag in Na-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C . (Error bars

show series mean precision or C in %, see Appendix I.)

is more likely that inaccurate results have been caused by the problems of EMPA of

jarosite compounds, including sample sensitivity to the electron beam causing

interactions and small particle size (< 1 μm) (see section 4.1.5).

The EMPA results for the Pb-Ag-H3O-jarosite samples synthesised using

0.15 M Fe2(SO4)3.5H2O (see Figure 5.2h) indicate the products synthesised at 22ºC

(mean 0.53, median 0.53, range 0.03-0.86) have higher A-site contents, on average,

than those synthesised at 140ºC (mean 0.46, median 0.45, range 0.25-0.66). The Ag-

only contents of these samples also show this trend (see Figure 5.2i): mean 0.60,

median 0.53, range 0.45-0.81 at 22ºC; and mean 0.45, median 0.45, range 0.22-0.65
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at 140ºC. As with the Na-Ag-jarosite samples (above), the lower contents of the

samples synthesised at 140ºC compared with those made at 22ºC may be explained

by the difference between their synthesis periods (4 hours and ~ 1 year, respectively)

or by inaccurate results created by the problems of EMPA of jarosite compounds.

EMPA: Pb + Ag in Pb-Ag jarosites (0.15 M Fe2)
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Figure 5.2h: EMPA total A-site occupancy of Pb + Ag in Pb-Ag-H3O-jarosite
samples synthesised using 0.15 M Fe2(SO4)3.5H2O at 22˚C, 97˚C and 140˚C. (Error

bars show series mean precision or C in %, see Appendix I.)

EMPA: Ag in Pb-Ag jarosites (0.15 M Fe2)
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Figure 5.2i: EMPA total A-site occupancy of Ag in Pb-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C . (Error bars

show series mean precision or C in %, see Appendix I.)

5.1.1.1.2 ICP-AES data on A-site occupancies

The ICP-AES results for the K-Ag-H3O-jarosite samples synthesised at 22ºC, 97ºC

and 140ºC using 0.51 M Fe2(SO4)3.5H2O and at 22ºC and 140ºC using 0.15 M

Fe2(SO4)3.5H2O show cation occupancy (total of K and Ag) of the A-site decreases

as the synthesis temperature is increased from 22ºC (mean 0.77, median 0.77, range
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0.73-0.85) to 97ºC (mean 0.72, median 0.68, range 0.64-1.00) and 140ºC (mean

0.67, median 0.71, range 0.37-0.85) (see Table 5.3 and Figure 5.3). The opposite

trend is seen for the Ag-only occupancies: there is an increase in occupancy as

Table 5.3: ICP-AES A-site occupancies of K + Ag, Na + Ag and Ag and synthesis
temperature of K-Ag-H3O and Na-Ag-H3O-jarosite compounds

Cation Mean Med. Range Temp Mean Med. Range Temp Mean Med. Range Temp
Synthesis solution 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O
K+Ag 0.77 0.77 0.74-

85
22 0.72 0.68 0.64-1 97 0.67 0.71 0.37-

85
140

Ag 0.28 0.15 0.05-
85

22 0.40 0.30 0.14-1 97 0.47 0.44 0.21-
85

140

Na+Ag 0.80 0.83 0.67-
85

22 0.74 0.74 0.55-1 97 0.67 0.65 0.44-
85

140

Ag 0.74 0.80 0.41-
85

22 0.69 0.72 0.37-1 97 0.51 0.46 0.13-
85

140

ICP-AES: K + Ag in K-Ag jarosite
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Figure 5.3: ICP-AES total A-site occupancy of K + Ag in K-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at

22̊ C, 97˚C and 140˚C.  (Error bars show series mean precision or C in %, see
Appendix H.)

ICP-AES: Ag in K-Ag jarosite
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Figure 5.3a: ICP-AES total A-site occupancy of Ag in K-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at 22˚C, 97˚C

and 140˚C. (Error bars show series mean precision or C in %, see Appendix H.)
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synthesis temperature increases from 22ºC (mean 0.28, median 0.15, range 0.05-

0.85) to 97ºC (mean 0.40, median 0.30, range 0.14-1.00) and 140ºC (mean 0.47,

median 0.44, range 0.21-0.85) (see Figure 5.3a).

The ICP-AES results for the Na-Ag-H3O-jarosite samples synthesised at

22ºC, 97ºC and 140ºC using 0.51 M Fe2(SO4)3.5H2O and at 22ºC and 140ºC using

0.15 M Fe2(SO4)3.5H2O show the A-site cation occupancies (total of Na and Ag)

decrease as the synthesis temperature is increased from 22ºC (mean 0.80, median

0.83, range 0.67-0.85) to 97ºC (mean 0.74, median 0.74, range 0.55-1.00) and 140ºC

(mean 0.67, median 0.65, range 0.44-0.85) (see Table 5.3 and Figure 5.3b). Similar

trends are seen for the Ag-only occupancies: there is a decline from 22ºC (mean

0.74, median 0.80, range 0.41-0.85) to 97ºC (mean 0.69, median 0.72, range 0.37-

1.00) and 140ºC (mean 0.51, median 0.46, range 0.13-0.85) (see Figure 5.3c). A

possible reason for these trends is that the difference in synthesis period between ~ 1

year at 22ºC and 4 hours at 97ºC and 140ºC is sufficient to result in greater

occupancies at the lower temperature, although the lower A-site occupancies with

increase in temperature from 97ºC to 140ºC is not readily explainable.

ICP-AES: Na + Ag in Na-Ag jarosite
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Figure 5.3b: ICP-AES total A-site occupancy of Na + Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at

22̊ C, 97˚C and 140˚C.  (Error bars show series mean precision or C in %, see
Appendix H.)
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ICP-AES: Ag in Na-Ag jarosite
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Figure 5.3c: ICP-AES total A-site occupancy of Ag in Na-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at 22˚C, 97˚C

and 140˚C. (Error bars show series mean precision or C in %, see Appendix H.)

The breakdown of the ICP-AES results for the K-Ag-H3O-jarosite samples

shows those synthesised using 0.51 M Fe2(SO4)3.5H2O indicate higher A-site

contents (total of K and Ag), on average, in the products synthesised at 22ºC (mean

0.77, median 0.78, range 0.74-0.78) than in those synthesised at 97ºC (mean 0.72,

median 0.68, range 0.64-1.00) and 140ºC (mean 0.66, median 0.69, range 0.44-0.77)

(see Table 5.4 and Figure 5.3d). Although there were data for only three out of five

samples synthesised at 22ºC, the two missing samples were products synthesised

using starting solutions with the highest concentrations of Ag, so the absence of

these data is highly unlikely to have altered the observed occupancy trend. The

results of the Ag-only contents of these K-Ag-H3O-jarosite samples show an

increase with the increase in temperature (see Figure 5.3e) from 97ºC (mean 0.40,

median 0.28 and range 0.14-1.00) to 140ºC (mean 0.44, median 0.41 and range 0.21-

0.76). The Ag-only results show an increase in occupancy from synthesis at 22ºC

(mean 0.10, median 0.10 and range 0.06-0.14) to synthesis at 97ºC; however, data

were obtained for only two out of five samples in the series synthesised at 22ºC, and
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these were samples with the highest Ag concentrations in the starting solutions, so

the data obtained were inadequate for identifying trends in the data.

The ICP-AES results for the K-Ag-H3O-jarosite samples synthesised using

0.15 M Fe2(SO4)3.5H2O (see Table 5.4 and Figure 5.3f) do not indicate that the

increase in synthesis temperature to 140ºC increases total K and Ag A-site content

(mean 0.70, median 0.73, range 0.37-0.85) compared with the products made at 22ºC

(mean 0.77, median 0.75, range 0.73-0.85), which may be explained by the

difference between their periods of synthesis (4 hours and ~ 1 year, respectively).

However, the Ag-only contents of these samples contradict this finding because they

do show increasing content with increased temperature of synthesis from 22ºC to

140ºC: mean 0.34, median 0.25, range 0.05-0.85 at 22ºC; and mean 0.51, median

0.45, range 0.23-0.85 at 140ºC (see Figure 5.3g).

Table 5.4: ICP-AES A-site occupancy of K + Ag, Na + Ag, Pb + Ag and Ag and
synthesis temperature of K-Ag-H3O, Na-Ag- H3O and Pb-Ag- H3O-jarosite
compounds according to Fe concentration in the synthesis solution

Cation Mean Med. Range Temp Mean Med. Range Temp Mean Med. Range Temp
Synthesis solution 0.51 M Fe2(SO4)3.5H2O
K+Ag 0.77 0.78 0.74-

78
22 0.72 0.68 0.64-1 97 0.66 0.69 0.44-

77
140

Ag 0.10 0.10 0.06-
14

22 0.40 0.28 0.14-1 97 0.44 0.41 0.21-
76

140

Na+Ag 0.77 0.82 0.67-
83

22 0.74 0.74 0.55-1 97 0.58 0.59 0.44-
65

140

Ag 0.76 0.76 0.71-
80

22 0.62 0.67 0.37-
78

97 0.30 0.32 0.13-
45

140

Synthesis solution 0.15 M Fe2(SO4)3.5H2O
K+Ag 0.77 0.75 0.73-

85
22 0.70 0.73 0.37-

85
140

Ag 0.34 0.25 0.05-
85

22 0.51 0.45 0.23-
85

140

Na+Ag 0.81 0.84 0.68-
85

22 0.75 0.79 0.58-
85

140

Ag 0.73 0.81 0.41-
85

22 0.64 0.72 0.25-
85

140

Pb+Ag 0.77 0.84 0.26-
90

22 0.57 0.67 0.18-
79

140

Ag 0.83 0.83 0.80-
85

22 0.60 0.70 0.28-
77

140
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ICP-AES: K + Ag in K-Ag jarosite
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Figure 5.3d: ICP-AES total A-site content of K + Ag in K-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)

ICP-AES: Ag in K-Ag jarosite
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Figure 5.3e: ICP-AES total A-site content of Ag in K-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)

ICP-AES: K + Ag in K-Ag jarosite 0.15 M Fe2
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Figure 5.3f: ICP-AES total A-site content of K + Ag in K-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)
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ICP-AES: Ag in K-Ag jarosite 0.15 M Fe2
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Figure 5.3g: ICP-AES total A-site content of Ag in K-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)

The ICP-AES results for the Na-Ag-H3O-jarosite samples synthesised using

0.51 M Fe2(SO4)3.5H2O show the A-site contents (total of Na and Ag), on average,

decrease as the synthesis temperature is increased from 22ºC (mean 0.77, median

0.82, range 0.67-0.83) to 97ºC (mean 0.74, median 0.74, range 0.55-1.00) and 140ºC

(mean 0.58, median 0.59, range 0.44-0.65) (see Table 5.4 and Figure 5.3h). There is

also a decrease in the Ag-only contents of these Na-Ag-H3O-jarosite samples as

synthesis temperature is increased (see Figure 5.3i): mean 0.76, median 0.76, range

0.71-0.80 at 22ºC; mean 0.62, median 0.67, range 0.37-0.78 at 97ºC; and mean 0.30,

median 0.32, range 0.13-0.45 at 140ºC.

This trend in Na + Ag content change in the Na-Ag-H3O-jarosite samples

synthesised using 0.51 M Fe2(SO4)3.5H2O is repeated in the samples synthesised

using 0.15 M Fe2(SO4)3.5H2O (see Figure 5.3j): the products synthesised at 22ºC

have higher Na + Ag A-site occupancies (mean 0.81, median 0.84, range 0.68-0.85),

on average, than those synthesised at 140ºC (mean 0.75, median 0.79, range 0.58-

0.85). The Ag-only contents of these samples also show this trend: mean 0.73,

median 0.81, range 0.41-0.85 at 22ºC; and mean 0.64, median 0.72, range 0.25-0.85

at 140ºC (see Figure 5.3k).
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The lower total Na + Ag and Ag-only contents of the samples synthesised at

140ºC than the samples synthesised at 22ºC in the series using 0.51 M

Fe2(SO4)3.5H2O and the series using 0.15 M Fe2(SO4)3.5H2O may be explained by

the difference between their periods of synthesis, which were 4 hours and ~ 1 year,

respectively. This may also be the reason for the samples synthesised at 97ºC having

lower contents than those synthesised at 22ºC; however, the reason for the samples

synthesised at 97ºC having higher contents than those synthesised at 140ºC is

unclear.

ICP-AES: Na + Ag in Na-Ag jarosite 0.51 M Fe2
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Figure 5.3h: ICP-AES total A-site content of Na + Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series mean

precision or C in %, see Appendix H.)

ICP-AES: Ag in Na-Ag jarosite 0.51 M Fe2
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Figure 5.3i: ICP-AES total A-site content of Ag in Na-Ag-H3O-jarosite samples
synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)
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ICP-AES: Na + Ag in Na-Ag jarosite 0.15 M Fe2
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Figure 5.3j: ICP-AES total A-site content of Na + Ag in Na-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)

ICP-AES: Ag in Na-Ag jarosite 0.15 M Fe2
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Figure 5.3k: ICP-AES total A-site content of Ag in Na-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)

The ICP-AES results for the Pb-Ag-H3O-jarosite samples synthesised using

0.15 M Fe2(SO4)3.5H2O (see Table 5.4 and Figure 5.3l) indicate the products

synthesised at 22ºC have higher Pb + Ag A-site occupancies (mean 0.77, median

0.84, range 0.26-0.90), on average, than those synthesised at 140ºC (mean 0.57,

median 0.67, range 0.18-0.79). The Ag-only contents of these samples also show this

trend: mean 0.83, median 0.83, range 0.80-0.85 at 22ºC; and mean 0.60, median

0.70, range 0.28-0.77 at 140ºC (see Figure 5.3m). As with some of the K-Ag and Na-

Ag samples, the lower A-site contents of the Pb-Ag samples synthesised at 140ºC
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compared with the samples synthesised at 22ºC may be explained by the difference

between their periods of synthesis, which were 4 hours and ~ 1 year, respectively.

ICP-AES: Pb + Ag in Pb-Ag jarosite 0.15 M Fe2
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Figure 5.3l: ICP-AES total A-site content of Pb + Ag in Pb-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)

ICP-AES: Ag in Pb-Ag jarosite 0.15 M Fe2
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Figure 5.3m: ICP-AES total A-site content of Ag in Pb-Ag-H3O-jarosite samples
synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean precision or

C in %, see Appendix H.)

5.1.1.1.3 Rietveld refinement data of A-site occupancies

Rietveld refinement of the powder XRD results for the K-Ag-H3O-jarosite

compounds synthesised at 22ºC and 97ºC using 0.51 M Fe2(SO4)3.5H2O and at

140ºC using 0.15 M Fe2(SO4)3.5H2O shows the A-site occupancies (total of K and

Ag) increase as the synthesis temperature is increased from 22ºC (mean 0.66, median

0.67, range 0.58-0.74) to 97ºC (mean 0.68, median 0.69, range 0.45-0.81) and 140ºC
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(mean 0.73, median 0.77, range 0.32-0.89) (see Table 5.5 and Figure 5.4). There is

also an increase in the Ag-only contents of these K-Ag-H3O-jarosite compounds as

synthesis temperature is increased (see Figure 5.4a): mean 0.32, median 0.23, range

Table 5.5: Rietveld refined A-site occupancy of K + Ag, Na + Ag and Ag and
synthesis temperature of K-Ag-H3O and Na-Ag-H3O-jarosite compounds

Cation Mean Med. Range Temp Mean Med. Range Temp Mean Med. Range Temp
Synthesis solution 0.51 M Fe2(SO4)3.5H2O
K+Ag 0.66 0.67 0.58-74 22 0.68 0.69 0.45-0.81 97 - - - -

Ag 0.32 0.23 0.08-74 22 0.34 0.33 0.09-0.65 97 - - - -
Na+Ag 0.72 0.71 0.70-74 22 0.69 0.65 0.51-0.90 97 - - - -

Ag 0.68 0.68 0.61-74 22 0.54 0.59 0.27-65 97 - - - -
Synthesis solution 0.15 M Fe2(SO4)3.5H2O
K+Ag - - - - - - - - 0.73 0.77 0.32-89 140

Ag - - - - - - - - 0.39 0.37 0.09-76 140
Na+Ag - - - - - - - - 0.60 0.61 0.39-76 140

Ag - - - - - - - - 0.51 0.51 0.23-76 140

Rietveld refined K and Ag in K-Ag jarosite
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Figure 5.4: Rietveld refined total A-site occupancies of K + Ag in K-Ag-H3O-jarosite
compounds synthesised at 22˚C, 97˚C and 140˚C.

Rietveld refined Ag in K-Ag jarosite
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Figure 5.4a: Rietveld refined A-site occupancies of Ag in K-Ag-H3O-jarosite
compounds synthesised at 22˚C, 97˚C and 140˚C.
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0.19-0.74 at 22ºC; mean 0.34, median 0.33, range 0.09-0.65 at 97ºC; and mean 0.39,

median 0.37, range 0.09-0.76 at 140ºC.

Unlike the K-Ag-H3O-jarosite products, Rietveld refinement of the Na-Ag-

H3O-jarosite compounds synthesised at 22ºC and 97ºC using 0.51 M Fe2(SO4)3.5H2O

and at 140ºC using 0.15 M Fe2(SO4)3.5H2O shows the A-site occupancies (total of

Na and Ag) decrease as the synthesis temperature increases from 22ºC (mean 0.72,

median 0.71, range 0.71-0.74) to 97ºC (mean 0.69, median 0.65, range 0.51-0.83)

and 140ºC (mean 0.60, median 0.61, range 0.39-0.76) (see Table 5.5 and Figure

5.4b). There is also a decrease in the Ag-only contents of the Na-Ag-H3O-jarosite

samples as synthesis temperature is increased (see Figure 5.4c): mean 0.68, median

0.68, range 0.61-0.74 at 22ºC; mean 0.54, median 0.59, range 0.27-0.65 at 97ºC; and

mean 0.51, median 0.51, range 0.23-0.76 at 140ºC. The 22ºC data consist of only

three samples out of a series of five because no data are available for two, but the

missing data are for the two samples with the highest Ag concentrations in the

starting solutions, so are unlikely to have affected the trend.

Rietveld refined Na and Ag in Na-Ag jarosite
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Figure 5.4b: Rietveld refined total A-site occupancies of Na + Ag in Na-Ag-H3O-
jarosite compounds synthesised at 22˚C, 97˚C and 140˚C.
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Rietveld refined Ag in Na-Ag jarosite
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Figure 5.4c: Rietveld refined A-site occupancies of Ag in Na-Ag-H3O-jarosite
compounds synthesised at 22˚C, 97˚C and 140˚C.

The results of the EMPA, ICP-AES and Rietveld refinement of the K-Ag-

H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite product series indicate inconsistent trends

in the A-site occupancies as synthesis temperature changes. Increases in occupancy

as synthesis temperature is raised from 22ºC to 97ºC are seen in the median content

of Ag in K-Ag jarosite from the EMPA results, as well as in the Ag-only contents

from ICP-AES analysis; such an increase is also seen in the K + Ag and Ag-only

occupancies of these products from Rietveld refinement. Otherwise, the general

trend is for A-site occupancies to decrease as synthesis temperature is raised from

22ºC to 97ºC; this may be explained by the difference between how long the

products were synthesised at these temperatures, which was 4 hours and ~ 1 year,

respectively. There is an approximately equal split between trends in occupancies in

the product series that show these rising as temperature is increased to 140ºC and

those that show occupancies declining. In addition, data are missing for several

samples in the EMPA, ICP-AES and Rietveld refinement results for the K-Ag-H3O,

Na-Ag-H3O and Pb-Ag-H3O-jarosite product series. There are also results for some

samples that seem anomalous, such as the Ag occupancy of 1.00 in JS30, although

the removal of this result from its series does not alter the trend observed. For these
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reasons, a combined table of A-site occupancies for the three techniques has been

created to analyse trends in the products' contents as synthesis temperature varies

(see next sub-section). The combined data are based on the ICP-AES results but

replaced by EMPA or Rietveld refinement results where ICP-AES data are lacking

or anomalous.

5.1.1.1.4 Combined data from analysis results of A-site occupancies

The combined data from the results of EMPA, ICP-AES and Rietveld refinement

(see Tables 4.20, 4.21 and 4.22) of the K-Ag-H3O-jarosite samples synthesised at

22ºC, 97ºC and 140ºC using 0.51 M Fe2(SO4)3.5H2O and at 22ºC and 140ºC using

0.15 M Fe2(SO4)3.5H2O show cation occupancy (total of K and Ag) of the A-site

decreases as the synthesis temperature is increased from 22ºC (mean 0.75, median

0.75, range 0.63-0.85) to 97ºC (mean 0.70, median 0.69, range 0.63-0.83) and 140ºC

(mean 0.69, median 0.72, range 0.43-0.86) (see Table 5.6 and Figure 5.5). However,

there is an opposite, increasing trend for the Ag-only occupancies as temperature is

increased from 22ºC (mean 0.31, median 0.20, range 0.05-0.85) to 97ºC (mean 0.41,

median 0.37, range 0.14-0.78) and 140ºC (mean 0.45, median 0.41, range 0.16-0.85)

(see Figure 5.5a).

Table 5.6: Combined data results of A-site occupancies of K + Ag, Na + Ag and Ag
and synthesis temperature of K-Ag-H3O and Na-Ag-H3O-jarosite compounds.

Cation Mean Med. Range Temp Mean Med. Range Temp Mean Med. Range Temp
Synthesis solution 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O
K+Ag 0.75 0.75 0.63-

85
22 0.70 0.69 0.63-

83
97 0.69 0.72 0.43-

86
140

Ag 0.31 0.20 0.05-
85

22 0.41 0.37 0.14-
78

97 0.45 0.41 0.16-
85

140

Na+Ag 0.74 0.80 0.54-
85

22 0.61 0.64 0.33-
78

97 0.66 0.66 0.44-
85

140

Ag 0.67 0.74 0.41-
85

22 0.53 0.62 0.21-
78

97 0.50 0.49 0.09-
85

140
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Combined data: K + Ag in K-Ag jarosite
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Figure 5.5: Combined data on total A-site occupancy of K + Ag in K-Ag-H3O-
jarosite samples synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M

Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C. (Error bars show series mean precision or
C in %, see Appendices H and I.)

Combined data: Ag in K-Ag jarosite
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Figure 5.5a: Combined data on total A-site occupancy of Ag in K-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at

22̊ C, 97˚C and 140˚C. (Error bars show series mean precision or C in %, see
Appendices H and I.)

The combined data results for the Na-Ag-H3O-jarosite samples synthesised at

22ºC, 97ºC and 140ºC using 0.51 M Fe2(SO4)3.5H2O and at 22ºC and 140ºC using

0.15 M Fe2(SO4)3.5H2O show the A-site cation occupancies (total of Na and Ag)

decrease as the synthesis temperature is increased from 22ºC (mean 0.74, median

0.80, range 0.53-0.85) to 97ºC (mean 0.61, median 0.64, range 0.33-0.78), and then

increase as temperature increases from 97ºC to 140ºC (mean 0.66, median 0.66,

range 0.44-0.85) (see Table 5.6 and Figure 5.5b). The Ag-only occupancies show a

declining trend as temperature is increased from 22ºC (mean 0.67, median 0.74,
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range 0.41-0.85) to 97ºC (mean 0.53, median 0.62, range 0.21-0.78) and 140ºC

(mean 0.50, median 0.49, range 0.09-0.85) (see Figure 5.5c).

Combined data: Na + Ag in Na-Ag jarosite
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Figure 5.5b: Combined data on total A-site occupancy of Na + Ag in Na-Ag-H3O-
jarosite samples synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M

Fe2(SO4)3.5H2O at 22̊ C, 97˚C and 140˚C. (Error bars show series mean precision or
C in %, see Appendices H and I.)

Combined data: Ag in Na-Ag jarosite
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Figure 5.5c: Combined data on total A-site occupancy of Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O at

22̊ C, 97˚C and 140˚C. (Error bars show series mean precision or C in %, see
Appendices H and I.)

The breakdown of the combined data for the K-Ag-H3O-jarosite samples

shows those synthesised using 0.51 M Fe2(SO4)3.5H2O indicate higher A-site

occupancies (total of K and Ag) of the products synthesised at 22ºC (mean 0.71,

median 0.74, range 0.63-0.78) than in those synthesised at 97ºC (mean 0.70, median

0.69, range 0.64-0.83) and 140ºC (mean 0.66, median 0.69, range 0.44-0.77) (see



191

Table 5.7 and Figure 5.5d). The results of the Ag-only contents of these K-Ag-H3O-

jarosite samples show an increase in occupancy with increase in temperature (see

Figure 5.5e) from 22ºC (mean 0.27, median 0.20 and range 0.06-0.63) to 97ºC (mean

0.41, median 0.37 and range 0.14-0.78) and 140ºC (mean 0.44, median 0.41 and

range 0.21-0.76).

Table 5.7: Combined data results of K + Ag, Na + Ag, Pb + Ag and Ag A-site
occupancy and synthesis temperature of K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-
jarosite compounds.

Cation Mean Med. Range Temp Mean Med. Range Temp Mean Med. Range Temp
Synthesis solution 0.51 M Fe2(SO4)3.5H2O
K+Ag 0.71 0.74 0.63-

78
22 0.70 0.69 0.64-

83
97 0.66 0.69 0.44-

77
140

Ag 0.27 0.20 0.06-
63

22 0.41 0.37 0.14-
63

97 0.44 0.41 0.21-
76

140

Na+Ag 0.64 0.63 0.53-
85

22 0.61 0.64 0.33-
78

97 0.62 0.65 0.44-
76

140

Ag 0.59 0.56 0.42-
82

22 0.53 0.62 0.21-
78

97 0.40 0.40 0.09-
76

140

Synthesis solution 0.15 M Fe2(SO4)3.5H2O
K+Ag 0.77 0.75 0.73-

85
22 - - - - 0.73 0.74 0.43-

86
140

Ag 0.34 0.25 0.05-
85

22 - - - - 0.45 0.40 0.16-
85

140

Na+Ag 0.81 0.83 0.68-
85

22 - - - - 0.71 0.76 0.47-
85

140

Ag 0.73 0.81 0.41-
85

22 - - - - 0.64 0.72 0.25-
85

140

Pb+Ag 0.77 0.84 0.26-
90

22 - - - - 0.61 0.75 0.18-
85

140

Ag 0.83 0.83 0.80-
85

22 - - - - 0.64 0.73 0.28-
85

140

Combined data: K + Ag in K-Ag jarosite 0.51 M Fe2
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Figure 5.5d: Combined data on total A-site occupancy of K + Ag in K-Ag-H3O-
jarosite samples synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series

mean precision or C in %, see Appendices H and I.)
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Combined data: Ag in K-Ag jarosite 0.51 M Fe2
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Figure 5.5e: Combined data on total A-site occupancy of Ag in K-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series mean

precision or C in %, see Appendices H and I.)

The combined data for the K-Ag-H3O-jarosite samples synthesised using

0.15 M Fe2(SO4)3.5H2O (see Table 5.7 and Figure 5.5f) indicate occupancy

decreases with increase of synthesis temperature from 22ºC (mean 0.77, median

0.75, range 0.73-0.85) to 140ºC (mean 0.73, median 0.74, range 0.43-0.86).

However, the Ag-only contents do show increased content with higher temperature

of synthesis: mean 0.34, median 0.25, range 0.05-0.85 at 22ºC; and mean 0.45,

median 0.40, range 0.16-0.85 at 140ºC (see Figure 5.5g).

Combined data: K + Ag in K-Ag jarosite 0.15 M Fe2
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Figure 5.5f: Combined data on total A-site occupancy of K + Ag in K-Ag-H3O-
jarosite samples synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series

mean precision or C in %, see Appendices H and I.)
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Combined data: Ag in K-Ag jarosite 0.15 M Fe2
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Figure 5.5g: Combined data on total A-site occupancy of Ag in K-Ag-H3O-jarosite
samples synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean

precision or C in %, see Appendices H and I.)

The combined data for the Na-Ag-H3O-jarosite samples synthesised using

0.51 M Fe2(SO4)3.5H2O show the mean A-site content (total of Na and Ag) decreases

slightly (although the median content increases slightly) as the synthesis temperature

is increased from 22ºC (mean 0.64, median 0.63, range 0.53-0.85) to 97ºC (mean

0.61, median 0.64, range 0.33-0.78), but then increases slightly to 140ºC (mean 0.62,

median 0.65, range 0.44-0.76) (see Table 5.7 and Figure 5.5h). There is a decrease

in the mean Ag-only content (but increase in the median content) of these Na-Ag-

H3O-jarosite samples as synthesis temperature is increased (see Figure 5.5i) from

22ºC (mean 0.59, median 0.56, range 0.42-0.82) to 97ºC (mean 0.53, median 0.62,

range 0.21-0.78); the contents then decrease as synthesis temperature is increased to

140ºC (mean 0.40, median 0.40, range 0.09-0.76).

The trend in the Na-Ag-H3O-jarosite samples synthesised using 0.15 M

Fe2(SO4)3.5H2O is also decreasing A-site contents as synthesis temperature increases

from 22ºC (mean 0.81, median 0.83, range 0.68-0.85) to 140ºC (mean 0.71, median

0.76, range 0.47-0.85) (see Figure 5.5j). The Ag-only contents of these samples also

show this trend: mean 0.73, median 0.81, range 0.41-0.85 at 22ºC; and mean 0.64,

median 0.72, range 0.25-0.85 at 140ºC (see Figure 5.5k).
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Combined data: Na + Ag in Na-Ag jarosite 0.51 M Fe2
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Figure 5.5h: Combined data on total A-site occupancy of Na + Ag in Na-Ag-H3O-
jarosite samples synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series

mean precision or C in %, see Appendices H and I.)

Combined data: Ag in Na-Ag jarosite 0.51 M Fe2
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Figure 5.5i: Combined data on total A-site occupancy of Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.51 M Fe2(SO4)3.5H2O. (Error bars show series mean

precision or C in %, see Appendices H and I.)

Combined data: Na + Ag in Na-Ag jarosite 0.15 M Fe2
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Figure 5.5j: Combined data on total A-site occupancy of Na + Ag in Na-Ag-H3O-
jarosite samples synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series

mean precision or C in %, see Appendices H and I.)
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Combined data: Ag in Na-Ag jarosite 0.15 M Fe2
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Figure 5.5k: Combined data on total A-site occupancy of Ag in Na-Ag-H3O-jarosite
samples synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean

precision or C in %, see Appendices H and I.)

The combined data results for the Pb-Ag-H3O-jarosite compounds

synthesised using 0.15 M Fe2(SO4)3.5H2O (see Table 5.7) indicate the products made

at 22ºC have higher Pb + Ag A-site occupancies (mean 0.77, median 0.84, range

0.26-0.90), on average, than those synthesised at 140ºC (mean 0.61, median 0.75,

range 0.18-0.85) (see Figure 5.5l). The Ag-only contents of these products also show

this trend: mean 0.83, median 0.83, range 0.80-0.85 at 22ºC; and mean 0.64, median

0.73, range 0.28-0.85 at 140ºC (see Figure 5.5m). The lower A-site contents of the

Combined data: Pb + Ag in Pb-Ag jarosite 0.15 M Fe2
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Figure 5.5l: Combined data on total A-site occupancy of Pb + Ag in Pb-Ag-H3O-
jarosite samples synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series

mean precision or C in %, see Appendices H and I.)
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Combined data: Ag in Pb-Ag jarosite 0.15 M Fe2
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Figure 5.5m: Combined data on total A-site occupancy of Ag in Pb-Ag-H3O-jarosite
samples synthesised using 0.15 M Fe2(SO4)3.5H2O. (Error bars show series mean

precision or C in %, see Appendices H and I.)

Pb-Ag products synthesised at 140ºC compared with those made at 22ºC may be

explained by the difference between their periods of synthesis, which were 4 hours

and ~ 1 year, respectively.

5.1.1.2 Influence of temperature on B-site occupancies

Lower temperatures of synthesis may result in jarosite compounds with greater

amounts of Fe vacancies in the B sites of their crystal structures (Swayze et al.,

2008), although synthetic K- and Na-jarosites prepared at 95°C have shown variation

of products between high Fe-deficiency and low Fe-deficiency (Swayze et al., 2008).

Vacancies of Fe in the B sites may affect the amount of cations (K, Na, Pb or Ag)

required in the A site, or the amount of hydronium substitution, to maintain charge

balance (Kubiscz, 1970).

5.1.1.2.1 EMPA results of B-site occupancies

EMPA indicates a decrease in the proportion of B-site vacancies with increase in

synthesis temperature from 22°C to 97°C in the combined K-Ag-H3O and Na-Ag-

H3O-jarosite compounds (see Table 5.8 and Figure 5.6), and in the K-Ag- and Na-
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Ag-jarosite compounds synthesised with 0.51 M Fe2(SO4)3.5H2O in the starting

solutions (see Figure 5.6a) (Murphy et al., 2009). The proportion of vacancies then

increases with the increase in temperature from 97°C to 140°C, and by a greater

amount than the previous decrease, so the vacancies are higher in the compounds

made at 140°C than in those made at 22°C. In the K-Ag-H3O and Pb-Ag-H3O

jarosite compounds synthesised with 0.15 M Fe2(SO4)3.5H2O in the starting solutions

(see Table 5.8 and Figures 5.6b and 5.6c) the vacancies decrease with the synthesis

temperature increase from 22°C to 140°C; in the Na-Ag jarosite compounds the

opposite trend is seen (Figure 5.6d).

Table 5.8: EMPA data of B-site occupancies and synthesis temperature of K-Ag-,
Na-Ag- and Pb-Ag-jarosite compounds.

Samples Mean +/- Temp Mean +/- Temp Mean +/- Temp
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O

All 2.86 0.80 22 2.97 0.56 97 2.73 0.54 140
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O

All 2.84 0.14 22 2.97 0.56 97 2.70 0.24 140
K-Ag 2.87 0.06 22 2.97 0.56 97 2.64 0.45 140
Na-Ag 2.81 0.11 22 3.01 0.29 97 2.74 0.42 140

Synthesis solution 0.15 M Fe2(SO4)3.5H2O
All 2.87 0.81 22 - - - 2.76 0.47 140

K-Ag 2.66 0.60 22 - - - 2.75 0.42 140
Na-Ag 2.98 0.24 22 - - - 2.81 0.52 140
Pb-Ag 2.80 0.34 22 - - - 3.00 0.27 140

EMPA: K, Na, Pb, Ag jarosite B-site vacancies
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Figure 5.6: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies in
EMPA of K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite compounds [0.51 M
Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O solutions]. (Error bars show mean

precision or C in %, see Appendix I.)
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EMPA: K, Na, Ag jarosite 0.51 M Fe2
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Figure 5.6a: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies in
EMPA of K-Ag-H3O and Na-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O

solutions]. (Error bars show mean precision or C in %, see Appendix I.)

EMPA: K, Na, Pb, Ag jarosite 0.15 M Fe2
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Figure 5.6b: Synthesis temperature (22°C and 140°C) vs B-site vacancies in EMPA
of K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite compounds [0.15 M

Fe2(SO4)3.5H2O solutions]. (Error bars show mean precision or C in %, see
Appendix I.)

The EMPA results show the K-Ag and Na-Ag products synthesised at 97ºC

with 0.51 M Fe2(SO4)3.5H2O in the starting solutions have combined average Fe

contents of 2.97 (± 0.56) (see Table 5.8). However, if outliers with anomalously low

Fe contents (JS24 and 32) are removed from the data set (Rollinson, 1993), the

average Fe content is 3.01 (± 0.16). In the samples synthesised at 140ºC using 0.51

M Fe2(SO4)3.5H2O, the average Fe content is 2.70 (± 0.24). If the outliers (JS63, 71,

83 and 84) with anomalously low Fe contents are removed from the 140ºC data set,

the average Fe content is 2.80 (± 0.36), so remains lower than that of the 97ºC data

set in spite of the higher temperature of synthesis. This compares with an average Fe
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content of 2.84 (± 0.14) for the compounds synthesised at 22ºC using 0.51 M

Fe2(SO4)3.5H2O; that is, the average content is higher than that of the 140ºC data set

in spite of the lower temperature of synthesis.

The K-Ag, Na-Ag and Pb-Ag products synthesised at 140ºC with 0.15 M

Fe2(SO4)3.5H2O in the starting solutions have mean Fe contents of 2.76 (± 0.47). If

the outliers with anomalously high Fe content (JS48) and low Fe contents (JS47, 49

and 56) are removed from the data set, the average Fe content is 2.82 (± 0.26). This

compares with an average Fe content of 2.87 (± 0.81) for the compounds synthesised

at 22ºC using 0.15 M Fe2(SO4)3.5H2O. If the outliers with anomalously high Fe

contents (JS104 and 106) and low Fe contents (JS89 and 94) are removed from the

data set, the average Fe content is 2.93 (± 0.35); that is, the average content is higher

than that of the 140ºC data set in spite of the lower temperature of synthesis.

The EMPA results show the syntheses at 97ºC and using the highest

concentration of Fe3+ in the starting solutions [0.51 M Fe2(SO4)3.5H2O] resulted in

the highest (full) occupancy of the B site in the combined K-Ag and Na-Ag jarosite

products’ crystal structure. The products made at 22ºC and 140ºC contained

substantial Fe site vacancies. In the syntheses using starting solutions containing

0.15 M Fe2(SO4)3.5H2O and in those using starting solutions containing 0.51 M

Fe2(SO4)3.5H2O, the products made at 22ºC contained higher average Fe site

occupancies than those made at 140ºC. This result may be explained by the longer

period of synthesis (1 year) of the products made at 22ºC compared with the

synthesis period (4 hours) of the products made at 140ºC.

In both the K-Ag- and the Na-Ag-jarosite products synthesised with 0.51 M

Fe2(SO4)3.5H2O in the starting solutions, the lowest B-site vacancies are in those

made at 97ºC (mean Fe contents 2.97 ± 0.56 and 3.01 ± 0.29, respectively), while the
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vacancies are lower in those made at 22ºC (mean Fe contents 2.87 ± 0.06 and 2.81 ±

0.11, respectively) than in those made at 140ºC (mean Fe contents 2.64 ± 0.45 and

2.74 ± 0.42, respectively) (see Figures 5.6c and 5.6d). In the K-Ag-jarosite products

synthesised with 0.15 M Fe2(SO4)3.5H2O in the starting solutions, lower Fe

vacancies are in the products made at 140ºC (mean Fe content 2.75 ± 0.42) than in

those made at 22ºC (mean Fe content 2.66 ± 0.60) (see Figure 5.6e); in the Na-Ag

jarosites, the products made at 22ºC (mean Fe content 2.98 ± 0.24) have lower Fe

vacancies than in those made at 140ºC (mean Fe content 2.81 ± 0.52) (see Figure

5.6f).

EMPA: K-Ag jarosite B-site vacancies 0.51 M Fe2
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Figure 5.6c: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies in
EMPA of K-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O solutions]. (Error

bars show mean precision or C in %, see Appendix I.)
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Figure 5.6d: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies in
EMPA of Na-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O solutions].

(Error bars show mean precision or C in %, see Appendix I.)
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EMPA: K-Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.6e: Synthesis temperature (22°C and 140°C) vs B-site vacancies in EMPA
of K-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O solutions]. (Error bars

show mean precision or C in %, see Appendix I.)
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Figure 5.6f: Synthesis temperature (22°C and 140°C) vs B-site vacancies in EMPA
of Na-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O solutions]. (Error bars

show mean precision or C in %, see Appendix I.)

EMPA: Pb-Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.6g: Synthesis temperature (22°C and 140°C) vs B-site vacancies in EMPA
of Pb-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O solutions]. (Error bars

show mean precision or C in %, see Appendix I.)

In the Pb-Ag-jarosite product series, synthesised with 0.15 M

Fe2(SO4)3.5H2O in the starting solutions, the EMPA results show mean Fe contents
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are 3.00 (± 0.27) in the products synthesised at 22ºC and 2.80 (± 0.34) in the

products synthesised at 140ºC. Consequently, B-site vacancies increase in the

products synthesised at a higher temperature (see Figure 5.6g).

5.1.1.2.2 ICP-AES results of B-site occupancies

The ICP-AES results indicate decreasing B-site vacancies (increasing Fe

occupancies) in the K-Ag, Na-Ag and Pb-Ag-jarosite compounds with increasing

temperature of synthesis (see Table 5.9). In the results for the K-Ag and Na-Ag

jarosite compounds synthesised with 0.51 M Fe2(SO4)3.5H2O in the starting

solutions, the B-site vacancies decrease as synthesis temperature increases from

22°C to 97°C and 140°C (see Figure 5.7). The mean Fe contents are 2.39 (± 0.51) in

the products made at 22°C, 2.67 (± 1.16) in those made at 97°C and 3.02 (± 0.42) in

those made at 140°C. The K-Ag, Na-Ag and Pb-Ag jarosite compounds synthesised

with 0.15 M Fe2(SO4)3.5H2O in the starting solutions also have lower B-site

vacancies in the products made at higher temperature (see Figure 5.7a): mean Fe

content is 2.79 (± 0.30) in the products made at 22°C and 2.95 (± 0.20) in those

made at 140°C.

Table 5.9: ICP-AES data of B-site occupancies and synthesis temperature of K-Ag-,
Na-Ag- and Pb-Ag-jarosite compounds

Samples Mean +/- Temp Mean +/- Temp Mean +/- Temp
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O

All 2.66 0.78 22 2.67 1.16 97 2.98 0.46 140
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O

All 2.39 0.51 22 2.67 1.16 97 3.02 0.42 140
K-Ag 2.26 0.38 22 2.58 1.07 97 3.02 0.42 140
Na-Ag 2.42 0.54 22 2.76 0.21 97 3.02 0.14 140

Synthesis solution 0.15 M Fe2(SO4)3.5H2O
All 2.79 0.30 22 - - - 2.95 0.20 140

K-Ag 2.66 0.20 22 - - - 2.86 0.10 140
Na-Ag 2.89 0.12 22 - - - 2.96 0.08 140
Pb-Ag 2.85 0.07 22 - - - 2.99 0.16 140
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ICP-AES: K, Na, Ag jarosite B-site vacancies 0.51 M Fe2
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Figure 5.7: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies in
ICP-AES of K-Ag-H3O and Na-Ag-H3O-jarosite compounds [0.51 M

Fe2(SO4)3.5H2O solutions]. (Error bars show series mean precision or C in %, see
Appendix H.)
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Figure 5.7a: Synthesis temperature (22°C and 140°C) vs B-site vacancies in ICP-
AES of K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite compounds [0.15 M

Fe2(SO4)3.5H2O solutions]. (Error bars show series mean precision or C in %, see
Appendix H.)

The ICP-AES results show that in both the K-Ag-jarosite and the Na-Ag-

jarosite products synthesised with 0.51 M Fe2(SO4)3.5H2O in the starting solutions,

the percentage of B-site vacancies is higher the lower the temperature of synthesis

(see Figures 5.7b and 5.7c). The mean Fe occupancy is highest at 3.02 ± 0.42 in the

K-Ag-jarosite products and 3.02 ± 0.14 in the Na-Ag-jarosite products made at the

highest temperature of 140ºC, and is 2.58 ± 1.07 and 2.76  ± 0.21, respectively, in

the products made at 97ºC and 2.26 ± 0.38 and 2.42 ± 0.54, respectively, in those

made at 22ºC. In the K-Ag-jarosite and Na-Ag-jarosite products synthesised with

0.15 M Fe2(SO4)3.5H2O in the starting solutions, lower Fe vacancies are found in the
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ICP-AES: K-Ag jarosite B-site vacancies 0.51 M Fe2
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Figure 5.7b: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies in
ICP-AES of K-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O solutions].

(Error bars show series mean precision or C in %, see Appendix H.)
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Figure 5.7c: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies in
ICP-AES of Na-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O solutions].

(Error bars show series mean precision or C in %, see Appendix H.)
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Figure 5.7d: Synthesis temperature (22°C and 140°C) vs B-site vacancies in ICP-
AES of K-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O solutions]. (Error

bars show series mean precision or C in %, see Appendix H.)
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ICP-AES: Na-Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.7e: Synthesis temperature (22°C and 140°C) vs B-site vacancies in ICP-
AES of Na-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O solutions]. (Error

bars show series mean precision or C in %, see Appendix H.)

products made at 140ºC (mean Fe content 2.86 ± 0.10 and 2.96 ± 0.08, respectively)

than in those made at 22ºC (2.66 ± 0.20 and 2.89 ± 0.12, respectively) (see Figures

5.7d and 5.7e).

In the Pb-Ag-jarosite product series, synthesised with 0.15 M

Fe2(SO4)3.5H2O in the starting solutions, the ICP-AES results show mean Fe

contents are 2.85 (± 0.07) in the products synthesised at 22ºC and 2.99 (± 0.16) in

the products synthesised at 140ºC. Consequently, B-site vacancies decrease in the

products synthesised at a higher temperature (see Figure 5.7f).

ICP-AES: Pb-Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.7f: Synthesis temperature (22°C and 140°C) vs B-site vacancies in ICP-
AES of Pb-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O solutions]. (Error

bars show mean precision or C in %, see Appendix H.)
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5.1.1.2.3 Rietveld refinement results of B-site occupancies

The Rietveld refinement of powder XRD data for the K-Ag- and Na-Ag-jarosite

products indicates Fe vacancies in the B site decrease as synthesis temperature

increases (see Table 5.10 and Figure 5.8). The same trend is observable in the K-Ag-

jarosite product series: in the samples synthesised with 0.51 M Fe2(SO4)3.5H2O in

the starting solutions, the mean Fe occupancies are 2.52 (± 0.32) at 22ºC and 2.64 (±

0.10) at 97ºC; and in the samples synthesised with 0.15 M Fe2(SO4)3.5H2O, 2.77 (±

0.44) at 140ºC (see Figure 5.8a). In the Na-Ag-jarosite series, in the products

synthesised with 0.51 M Fe2(SO4)3.5H2O in the starting solutions, the overall mean

Fe occupancies are 2.79 (± 0.20) at 97ºC, compared with 2.91 (± 0.11) at 22ºC; and

Table 5.10: Rietveld refinement data of B-site occupancies and synthesis temperature
of K-Ag-H3O and Na-Ag-H3O-jarosite compounds

Samples Mean +/- Temp Mean +/- Temp Mean +/- Temp
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O

All 2.64 0.38 22 2.72 0.25 97 2.84 0.51 140
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O

K-Ag 2.52 0.32 22 2.64 0.10 97 - - -
Na-Ag 2.91 0.11 22 2.79 0.20 97 - - -

Synthesis solution 0.15 M Fe2(SO4)3.5H2O
K-Ag - - - - - - 2.77 0.44 140
Na-Ag - - - - - - 2.91 0.27 140

Rietveld refinement: K, Na, Ag jarosite B-site vacancies
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Figure 5.8: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies from
Rietveld refinement of K-Ag-H3O and Na-Ag-H3O-jarosite compounds [0.51 M

Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O solutions].
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Rietveld: K-Ag jarosite B-site vacancies 0.15 + 0.51 M Fe2
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Figure 5.8a: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies from
Rietveld refinement of K-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O and

0.15 M Fe2(SO4)3.5H2O solutions].

Rietveld: Na-Ag jarosite B-site vacancies 0.15 + 0.51 M Fe2
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Figure 5.8b: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies from
Rietveld refinement of Na-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O and

0.15 M Fe2(SO4)3.5H2O solutions].

(in the products synthesised with 0.15 M Fe2(SO4)3.5H2O) the mean occupancy is

2.91 (± 0.27) at 140ºC (see Figure 5.9b).

5.1.1.2.4 Combined data results of B-site occupancies

On the basis of a combination of data from the different analytical techniques used to

study the chemical composition of the jarosite products (see Tables 4.20-22), an

increase in the synthesis temperature from 22°C to 97°C and 140°C results, in

general, in a decrease in the proportion of B-site vacancies in the crystal structure
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(Murphy et al., 2009). The results for all the K-Ag-, Na-Ag- and Pb-Ag-jarosite

compounds show the products synthesised at the highest temperature (140°C) have

the lowest percentage of Fe vacancies (mean Fe occupancy 2.89 ± 0.56) (see Table

5.11 and Figure 5.9), whereas the products synthesised at 22°C and 97°C have

similar Fe contents to each other of 2.76 ± 0.43 and 2.72 ± 0.25, respectively. Of the

products synthesised with 0.51 M Fe2(SO4)3.5H2O in the starting solutions, the

samples made at 140°C have the lowest percentage of B-site vacancies (mean Fe

occupancy 2.87 ± 0.41), while the mean Fe occupancies are 2.72 ± 0.25 for those

made at 97°C and 2.68 ± 0.35 for those made at 22°C (see Figure 5.9a). The same

Table 5.11: Combined data of B-site occupancies and synthesis temperature of K-
Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite compounds

Samples Mean +/- Temp Mean +/- Temp Mean +/- Temp
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O

All 2.76 0.43 22 2.72 0.25 97 2.89 0.56 140
Synthesis solutions 0.51 M Fe2(SO4)3.5H2O

All 2.68 0.35 22 2.72 0.25 97 2.87 0.41 140
K-Ag 2.52 0.32 22 2.68 0.20 97 2.86 0.40 140
Na-Ag 2.88 0.14 22 2.76 0.21 97 2.92 0.24 140

Synthesis solution 0.15 M Fe2(SO4)3.5H2O
All 2.80 0.31 22 - - - 2.90 0.26 140

K-Ag 2.66 0.20 22 - - - 2.78 0.45 140
Na-Ag 2.89 0.12 22 - - - 2.91 0.27 140
Pb-Ag 2.86 0.08 22 - - - 2.99 0.16 140

Combined data: K, Na, Pb, Ag jarosite B-site vacancies
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Figure 5.9: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies from
combined data of all K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite compounds
[0.51 M Fe2(SO4)3.5H2O and 0.15 M Fe2(SO4)3.5H2O solutions]. (Error bars show

series mean precision or C in %, see Appendices H and I.)
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Combined data: K, Na, Ag jarosite B-site vacancies 0.51 M Fe2
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Figure 5.9a: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies from
combined data of all K-Ag-H3O and Na-Ag-H3O-jarosite compounds [0.51 M

Fe2(SO4)3.5H2O solutions]. (Error bars show series mean precision or C in %, see
Appendices H and I.)

Combined data: K, Na, Pb, Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.9b: Synthesis temperature (22°C and 140°C) vs B-site vacancies from
combined data of all K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O-jarosite compounds
[0.15 M Fe2(SO4)3.5H2O solutions]. (Error bars show series mean precision or C in

%, see Appendices H and I.)

trend is seen in the products synthesised with 0.15 M Fe2(SO4)3.5H2O in the starting

solutions (see Figure 5.9b): mean Fe occupancies are 2.90 ± 0.26 at 140°C and 2.80

± 0.31 at 22°C.

The combined data for the separate K-Ag, Na-Ag and Pb-Ag-jarosite series

(with 0.51 M Fe2(SO4)3.5H2O and with 0.15 M Fe2(SO4)3.5H2O in the starting

solutions) show that the percentage of Fe vacancies decreases (Fe occupancy

increases) as the temperature of synthesis increases (see Table 5.11 and Figures 5.9c,

5.9d, 5.9e, 5.9f and 5.9g). The exception is the Na-Ag-jarosite series (with 0.51 M
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Combined data: K-Ag jarosite B-site vacancies 0.51 M Fe2
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Figure 5.9c: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies from
combined data of K-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O

solutions]. (Error bars show series mean precision or C in %, see Appendices H, I.)

Combined data: K-Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.9d: Synthesis temperature (22°C and 140°C) vs B-site vacancies from
combined data of K-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O

solutions]. (Error bars show series mean precision or C in %, see Appendices H, I.)

Combined data: Na-Ag jarosite B-site vacancies 0.51 M Fe2
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Figure 5.9e: Synthesis temperature (22°C, 97°C and 140°C) vs B-site vacancies from
combined data of Na-Ag-H3O-jarosite compounds [0.51 M Fe2(SO4)3.5H2O

solutions]. (Error bars show series mean precision or C in %, see Appendices H, I.)
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Combined data: Na-Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.9f: Synthesis temperature (22°C and 140°C) vs B-site vacancies from
combined data of Na-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O

solutions]. (Error bars show series mean precision or C in %, see Appendices H, I.)

Combined data: Pb-Ag jarosite B-site vacancies 0.15 M Fe2
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Figure 5.9g: Synthesis temperature (22°C and 140°C) vs B-site vacancies from
combined data of Pb-Ag-H3O-jarosite compounds [0.15 M Fe2(SO4)3.5H2O

solutions]. (Error bars show series mean precision or C in %, see Appendices H, I.)

Fe2(SO4)3.5H2O in the starting solutions), as the products made at 22°C (mean Fe

occupancy 2.88 ± 0.14) have fewer Fe vacancies than those made at 97°C (mean Fe

occupancy 2.76 ± 0.21).

5.1.2 Influence of starting composition on the final chemistry of the

synthesised K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O compounds

A range of starting solutions in the synthesis of jarosite compounds has been used in

this project. The concentrations of K+ and Na+ were in separate series with Ag+
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involving 0, 0.055, 0.11, 0.165 and 0.22 M and 0, 0.02, 0.04, 0.06, 0.08, 0.10 and

0.12 M of each cation in 100 ml solutions and 0. 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06

M of each in 200 ml solutions. In addition, two concentrations of Fe3+ were used:

0.15 M Fe2(SO4)3.5H2O and 0.51 M Fe2(SO4)3.5H2O. In two Pb2+-Ag+ series,

concentrations of 0, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06 M of each cation and 0,

0.0001, 0.00013, 0.00032, 0.001 and 0.005 M Pb and 0.25 M Ag were used. In the

former series Fe was 0.15 M Fe2(SO4)3.5H2O and in the latter series Fe was 0.075 M

Fe2(SO4)3.5H2O.

The different analytical techniques used (EMPA, ICP-AES, and Rietveld

refinement of XRD data) all show increasing K, Na, Pb and Ag contents in the

synthesised jarosite compounds as the concentration of the respective cations

increases in the starting solutions of the series of synthesis experiments.

The EMPA compositional results for the K-Ag-H3O- and Na-Ag-H3O-

jarosite synthesis products show generally declining K and Na contents with

decreasing alkali cation concentration in the starting solutions of each series. The

results are similar for Pb-Ag-H3O-jarosite samples (synthesised at 140ºC). There are

also complementary trends of generally increasing Ag content as the concentration

of this cation increases in the starting solutions. However, the results have some

anomalous contents, so the different series of compounds generally show only poor

or fairly poor linear relationships between the content of K, Na and Pb cations and

Ag cations in the products, with only three series showing good linear relationships

between the content of alkali and Ag cations with R2 values of ≥ 0.8356.

In the K-Ag-H3O-jarosite compounds, the K content is consistently higher than

the Ag content even when the Ag concentration in the starting solutions is three

times the K concentration, such as in JS10 and JS28. The residual H3O content is
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higher than the K content even in samples with the highest concentration (0.22 M) of

K in the starting solutions, such as JS04, 22, 73, although JS62 and 81 contain more

K than H3O. However, the high (residual) H3O contents in the samples synthesised at

97ºC are also likely to have been the result of the excess Fe in the starting solutions,

with the Fe:K ratio 4.64:1 compared with the stoichiometric jarosite ratio of 3:1. By

contrast, sample 56 has a K A-site occupation of 0.70 and sample 57 has a K content

of 0.56 from starting solutions with K+ concentrations of 0.10 M and 0.08 M,

respectively, and Fe:K ratios of 3:1 and 3.75:1, respectively. In the same series,

samples 60 and 61 have Ag contents of 0.60 and 0.63, respectively, from starting

solutions with Ag concentrations 0.10 M and 0.12 M, respectively. Of the other K-

Ag-H3O-jarosite compound series, the only samples with Ag contents above 0.5 are

end-member samples 72 (0.63) and 71 (0.66), as well as sample 84 (0.64) from a

starting-solution Ag+ concentration of 0.165 M and Fe ratio of 4.64:1.

 In the Na-Ag-H3O-jarosite compounds synthesised at 97ºC, the Ag A-site

occupation is consistently higher than the Na content, even when the concentration

of Na+ in the starting solution was three times that of Ag+ (samples 16 and 34) or

five times that of Ag+ (JS42). In the series JS49-54 and 61 (synthesised at 140ºC),

only sample 50 has a higher Na content (0.25) than Ag (0.24) and this is from a

starting solution in which the Na concentration was five times that of the Ag

concentration. Series JS72 and 77-80 (synthesised at 22ºC) and 71 and 85-88

(synthesised at 140ºC) have higher Ag contents than Na contents in all intermediate

products. Series JS66-70 (synthesised at 140ºC) has higher Na content than Ag

content in two of the intermediate products: sample 68 (Na 0.57 and Ag 0.09), for

which the Na+ concentration in the starting solution was three times that of Ag+; and

sample 69 (Na 0.30 and Ag 0.12) from a starting solution with equal concentrations
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of Na+ and Ag+, so this is a contradictory result to the other series. The residual H3O

content is higher than the Na content and the Na+Ag content in all the products

synthesised at 97ºC, although this may be explained by the excess of Fe3+ in the

starting solutions, with an Fe:(Na+Ag) ratio of 4.64:1. In the series JS49-54 and 61

(synthesised at 140ºC), the H3O content is higher than the Na+Ag content in all the

intermediate products, with an Fe:(Na+Ag) ratio of 2.5:1 in the starting solutions.

The end-member jarosite products of this series have Na and Ag contents of 0.56 and

0.63 respectively. In the other Na-Ag-H3O jarosite compound series, only the end-

member products have Na or Ag contents higher than 0.5.

In the Pb-Ag-H3O jarosite compounds, the Ag content is consistently higher

than the Pb content even when the concentration of Pb in the starting solutions is 2.5

times the concentration of Ag (sample 44). However, in the low-temperature

compounds (synthesised at 22ºC) the Ag concentration in the starting solutions is a

minimum of 10 times the Pb concentration. The residual H3O content is higher than

the Pb content in all samples.

5.1.2.1 Partitioning coefficients for Ag in synthesised jarosite compounds

The relative incorporation of K, Na, Pb and Ag in the synthesised jarosite products

may also be indicated by comparing their molar concentrations (M) in the synthesis

starting solutions with their molar concentrations in the A site of the jarosite

precipitates (Dutrizac and Jambor, 1987). Tables 5.12 and 5.13 show relative

partitioning coefficients for the various jarosite compounds and product series

between K and Ag, Na and Ag, and Pb and Ag (see also Appendix G). The

partitioning coefficients are based on the A-site occupancies from the combined data

of the analysis techniques used in this project (see Section 4.1.7 and Appendix G).
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The partitioning coefficient of each compound is calculated from the A-site

occupancy of Ag divided by the total A-site occupancy of Ag and K (Ag/Ag+K), Na

(Ag/Ag+Na) or Pb (Ag/Ag+Pb) in the K-Ag-, Na-Ag- or Pb-Ag-jarosite products,

respectively; and from the Ag concentration (M) divided by the total concentration of

Ag and K (Ag/Ag+K), Na (Ag/Ag+Na) or Pb (Ag/Ag+Pb) in the synthesis solutions.

The partitioning coefficient is the ratio of the former to the latter: Ag/(Ag+X)product /

Ag/(Ag+X)solution (where X is K, Na or Pb). The graphs below (Figures 5.10a-p)

illustrate this relative partitioning, in which a straight line between 0 and 1 would

indicate ideal solid solution between the two phases (Ag-jarosite and K-jarosite or

Na-jarosite), with the ratio of the cations' molar concentrations in the starting

solutions being equal to the ratio of the cations' site occupancies in the products

(Dutrizac and Jambor, 1987).

Table 5.12: Partitioning coefficients for Ag in K-Ag- and Na-Ag-jarosites as ratio of
Ag/Ag+(K or Na) in products to Ag/Ag+(K or Na) in synthesis solutions.
Sample [Ag/Ag+K]j [Ag/Ag+K]sol P. coeff. Sample [Ag/Ag+Na]j [Ag/Ag+Na]sol P. coeff.
Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC
JS04 0 0 0 JS12 1 1 1
JS06 0.265 0.25 1.06 JS14 0 0 0
JS06D 0.224 0.25 0.896 JS16 0.529 0.25 2.116
JS08 0.423 0.5 0.846 JS18 0.863 0.5 1.726
JS10 0.621 0.75 0.828 JS20 0.922 0.75 1.229
JS10D 0.62 0.75 0.827 JS12-20 3.314 2.5 1.326
JS12 1 1 1
JS04-12 3.153 3.5 0.901
Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC
JS22 0 0 0 JS30 1 1 1
JS24 0.221 0.25 0.884 JS32 0 0 0
JS24D 0.212 0.25 0.848 JS34 0.636 0.25 2.544
JS26 0.362 0.5 0.724 JS36 0.861 0.5 1.722
JS28 0.675 0.75 0.9 JS38 0.938 0.75 1.251
JS30 1 1 1 JS38D 0.903 0.75 1.204
JS22-30 2.47 2.75 0.898 JS30-38 4.338 3.25 1.335
Samples annealed at 140ºC and dried at 110ºC [from 0.51 M Fe2(SO4)3.5H2O solutions heated at 97ºC, products dried at 60ºC]
JS62 0 0 0 JS66 1 1 1
JS63 0.3 0.25 1.2 JS67 0 0 0
JS64 0.493 0.5 0.986 JS68 0.136 0.25 0.544
JS65 0.712 0.75 0.949 JS69 0.322 0.5 0.644
JS66 1 1 1 JS70 0.589 0.75 0.785
JS62-66 2.505 2.5 1.002 JS66-70 2.047 2.5 0.819
Samples annealed at 140ºC and dried at 110ºC [from 0.51 M Fe2(SO4)3.5H2O solutions heated at 97ºC, products dried at
110ºC]
JS71 1 1 1 JS71 1 1 1
JS81 0 0 0 JS85 0 0 0
JS82 0.353 0.25 1.412 JS86 0.547 0.25 2.188
JS83 0.613 0.5 1.226 JS87 0.746 0.5 1.492
JS84 0.883 0.75 1.177 JS88 0.836 0.75 1.115
JS71, 81-84 2.849 2.5 1.140 JS71, 85-88 3.129 2.5 1.252
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Solutions containing 0.51 M Fe2(SO4)3.5H2O prepared at 22ºC and products air-dried at 22ºC
JS72 1 1 1 JS72 1 1 1
JS73 0 0 0 JS77 0 0 0
JS74 0.081 0.25 0.324 JS78 0.792 0.25 3.168
JS75 0.179 0.5 0.358 JS79 0.889 0.5 1.778
JS76 0.413 0.75 0.551 JS80 0.965 0.75 1.287
JS72-76 1.673 2.5 0.669 JS72, 77-80 3.646 2.5 1.458
Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC
JS55 0 0 0 JS49 0 0 0
JS56 0.186 0.167 1.114 JS50 0.431 0.167 2.581
JS57 0.329 0.333 0.988 JS51 0.701 0.333 2.105
JS58 0.472 0.5 0.944 JS52 0.882 0.5 1.764
JS59 0.608 0.667 0.912 JS53 0.951 0.667 1.426
JS60 0.81 0.833 0.972 JS54 0.988 0.833 1.186
JS61 1 1 1 JS61 1 1 1
JS55-61 3.405 3.5 0.973 JS49-54, 61 4.953 3.5 1.415
Solutions containing 0.075 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC
JS89 0 0 0 JS95 1 1 1
JS90 0.068 0.167 0.407 JS96 0 0 0
JS91 0.133 0.333 0.399 JS97 0.526 0.167 3.15
JS92 0.2 0.5 0.4 JS98 0.829 0.333 2.489
JS93 0.449 0.667 0.673 JS99 0.952 0.5 1.904
JS94 0.65 0.833 0.78 JS100 0.976 0.667 1.463
JS95 1 1 1 JS101 0.988 0.833 1.186
JS89-95 2.5 3.5 0.714 JS95-101 5.271 3.5 1.506
Key: j = jarosite product; sol. = synthesis solution; P. coeff. = partitioning coefficient. [Ag/Ag+K]j = Ag A-site occupancy
divided by total A-site occupancy of Ag and K in K-Ag-jarosite product. [Ag/Ag+Na]j = Ag A-site occupancy divided by total
A-site occupancy of Ag and Na in Na-Ag-jarosite product. [Ag/Ag+K]sol = Ag concentration (M) divided by total
concentration of Ag and K in synthesis solution. [Ag/Ag+Na]sol = Ag concentration (M) divided by total concentration of Ag
and Na in synthesis solution.

In Table 5.12, the partitioning coefficients for Ag in the K-Ag-jarosite

compounds are, in general, less than 1 (the mean value for the seven series of K-Ag-

jarosite compounds is 0.900), which indicates that K is preferentially incorporated in

the products relative to Ag. The coefficients for Ag in the different K-Ag-jarosite

series synthesised in solutions containing 0.22 M K+Ag and 0.51 M Fe2(SO4)3.5H2O

are 0.901 (JS04-12), 0.898 (JS22-30), 1.002 (JS62-66), 1.140 (JS71, 81-84) and

0.669 (JS72-76) (Table 5.14). These compare with partitioning coefficients for Ag in

the K-Ag-jarosite series synthesised in solutions containing 0.12 M K+Ag (100 ml

solution) or 0.06 M K+Ag (200 ml solution) and 0.15 M Fe2(SO4)3.5H2O and 0.075

M Fe2(SO4)3.5H2O, respectively, of 0.973 (JS55-61) and 0.714 (JS89-95). Therefore,

the data indicate differences in chemical composition of the synthesis starting

solutions have, in general, no substantial effect on the relative partitioning between

Ag and K in K-Ag-jarosite compounds. However, the lowest relative partitioning

coefficients of Ag are for the two K-Ag-jarosite series synthesised at low
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temperature (22ºC): 0.669 for series JS72-76 and 0.714 for JS89-95; that is, K has a

greater preference for occupation of the jarosite structure, compared with Ag, at

lower temperature of synthesis. This conclusion is also supported by the partitioning

coefficients for the K-Ag-jarosite series synthesised at 97ºC and 140ºC. The two

product series synthesised at 97ºC have Ag partitioning coefficients of 0.901 (JS04-

22) and 0.898 (JS22-30), while for the series synthesised at 140ºC the coefficients

are higher at 1.002 (JS62-66), 1.140 (JS71, 81-84) and 0.973 (JS55-61). The mean of

the relative partitioning coefficients for Ag in the three K-Ag-jarosite series

synthesised at 140ºC is 1.038 and indicates that, at the highest temperature of

synthesis of 140ºC, Ag is at least equally incorporated into the jarosite structure

compared with K or is even slightly preferentially incorporated into the structure.

In Table 5.12, the K-Ag-jarosite series JS04-12 and JS22-30 synthesised at

97ºC and with synthesis solutions containing 0.22 M K+Ag and 0.51 M

Fe2(SO4)3.5H2O show relatively high Ag partitioning coefficients (1.06, 0.896, 0.884

and 0.848) for the products (06, 06D, 24 and 24D, respectively) synthesised from

solutions containing the lowest Ag concentration of 0.055 M (indicating relatively

high initial uptake of Ag in K-Ag-jarosite compounds). The values of the

partitioning coefficients then decrease slightly in the other intermediate products

with increasing Ag concentration in the synthesis solutions, except for JS28, which

is the intermediate product in the JS22-30 series with the highest concentration of Ag

in the synthesis solution, until the coefficients rise to 1 in the Ag-only products. The

trends in the partitioning coefficients' values of the two series are illustrated by the

shape of curves formed by the points in Figures 5.10a and 5.10b, which initially have

slightly decreasing gradients after the point for the first intermediate product

(indicating slightly declining uptake of Ag into the jarosite structure relative to K as
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Ag concentration in the synthesis solutions is increased) and then increasing

gradients towards the point (with a value of 1) for the Ag-only product.

04-12: Ag partitioning in K-Ag jarosite at 97C (0.51 M Fe2)
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Figure 5.10a: JS04-12: 0.22 M (K+Ag) and 0.51 M Fe2(SO4)3.5H2O at 97ºC.

22-30: Ag partitioning in K-Ag jarosite at 97C (0.51 M Fe2)
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Figure 5.10b: JS22-30: 0.22 M (K+Ag) and 0.51 M Fe2(SO4)3.5H2O at 97ºC.

The three K-Ag-jarosite series synthesised at 140ºC (JS55-61, 62-66 and 71 &

81-84) show the same trends as the two series synthesised at 97ºC of relatively high

initial Ag partitioning coefficient values (see Table 5.12) and then slightly declining

values (except JS60 in series 55-61), until increasing to 1 in the Ag-only compound;

however, in series 71, 81-84, the values of the intermediate products are all above 1,

so the value (1.177) for the last intermediate product (JS84) decreases to 1 for the

Ag-only product (JS71). The trends in the partitioning coefficients' values of the

three series are illustrated by the shape of curves formed by the points in Figures

5.10c, 5.10d and 5.10e. In Figures 5.10c and 5.10d, these curves initially have
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slightly decreasing gradients after the point for the first intermediate product and

then increasing gradients; in Figure 5.10e, the curve continues to have a slightly

decreasing gradient after the point for the first intermediate product (again indicating

slightly declining relative uptake of Ag compared to K, and so Ag concentration is

possibly moving closer to saturation in the synthesis solutions relative to

incorporation of Ag in the jarosite structure).

55-61: Ag partitioning in K-Ag jarosite at 140C (0.15 M Fe2)
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Figure 5.10c: JS55-61: 0.12 M (K+Ag), 0.15 M Fe2(SO4)3.5H2O at 140ºC.

62-66: Ag partitioning in K-Ag jarosite at 140C (0.51 M Fe2)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

[Ag/Ag+K]solution

[A
g/

Ag
+K

]s
ol

id

Figure 5.10d: JS62-66: 0.22 M (K+Ag), 0.51 M Fe2(SO4)3.5H2O at 140ºC.

In contrast, the two K-Ag-jarosite series synthesised at 22ºC have relatively

low Ag partitioning coefficients for the first intermediate products, indicating

relatively low initial Ag uptake. In series JS72-76, the Ag partitioning coefficients

then gradually increase through the series to 1; in series JS89-95, the Ag partitioning

coefficients remain around 0.4 for three intermediate products and then gradually
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increase to 1. The trends in the partitioning coefficients' values of the two series are

illustrated by the shape of curves formed by the points in Figures 5.10f and 5.10g.

Figures 5.10f shows the curve gradient increasing after the point for the first

intermediate product, indicating Ag has a growing preference for incorporation in the

jarosite structure as the concentration of Ag in the synthesis solution increases. In

Figure 5.10g, the curve gradients described by the points are initially approximately

equal, representing the partitioning coefficients of around 0.4 for the first three

intermediate products, indicating K concentration is at saturation level in the

synthesis solutions for these products, and then the gradients increase through the

series as solution K concentration declines and Ag concentration increases.

71, 81-84: Ag partitioning in K-Ag jarosite at 140C (0.51 M Fe2)
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Figure 5.10e: JS71, 81-84: 0.22 M (K+Ag), 0.51 M Fe2(SO4)3.5H2O at 140ºC.

72-76: Ag partitioning in K-Ag jarosite at 22C (0.51 M Fe2)
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Figure 5.10f: JS72-76: 0.22 M (K+Ag) and 0.51 M Fe2(SO4)3.5H2O at 22ºC.
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89-95: Ag partitioning in K-Ag jarosite 22C (0.075 M Fe2)
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Figure 5.10g: JS89-95: 0.06 M (K+Ag), 0.075 M Fe2(SO4)3.5H2O at 22ºC.

In comparison to the K-Ag-jarosites, the partitioning coefficients for Ag in the

Na-Ag-jarosite series are, in general, greater than 1 (the mean value for the seven

series of Na-Ag-jarosite compounds is 1.302), indicating that Ag is preferentially

incorporated in these products compared to Na. The partitioning coefficients for Ag

in the different Na-Ag-jarosite series synthesised in solutions containing 0.22 M

Na+Ag and 0.51 M Fe2(SO4)3.5H2O are 1.326 (JS12-20), 1.335 (JS30-38), 0.819

(JS66-70), 1.252 (JS71, 85-88) and 1.458 (JS72, 77-80) (Table 5.12). The coefficient

of 0.819 for the series JS66-70 appears to be an anomalous result. These values

compare with partitioning coefficients for Ag in the Na-Ag-jarosite series

synthesised in solutions containing 0.12 M Na+Ag (100 ml solution) or 0.06 M

Na+Ag (200 ml solution) and 0.15 M Fe2(SO4)3.5H2O or 0.075 M Fe2(SO4)3.5H2O,

respectively, of 1.415 (JS49-54 & 61) and 1.506 (JS95-101). The series (JS49-54 &

61 and JS95-101) synthesised from solutions with the lowest concentrations of

Na+Ag (Fe:[Na+Ag] ratio 2.5:1) in the starting solutions are two of the three series

with the highest partitioning coefficients for Ag. However, there are no substantial

differences between the partitioning coefficients for Ag in the different Na-Ag-

jarosite series (in the other series, the Fe:[Na+Ag] ratio is 4.64:1), apart from the

anomalous result for series JS66-70. The partitioning coefficients for Ag in Na-Ag-
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jarosite in this project are lower than, but approximately consistent with, the reported

limiting partitioning coefficient of ~ 2.0 for Ag in Na-jarosite synthesised at 97ºC

from dilute silver solutions of 0.03 M [Ag2SO4 + Na2SO4] in sulphate media

containing 0.2 M Fe2(SO4)3 (Dutrizac and Jambor, 1987).

The two Na-Ag-jarosite series synthesised at low temperature (22ºC) have the

highest relative partitioning coefficients for Ag: 1.458 for series JS72 & 77-80 and

1.506 for JS95-101. This is consistent with the results for the two K-Ag-jarosite

series synthesised at 22ºC, which had the lowest Ag partitioning coefficients of the

K-Ag-jarosite series and, concomitantly, relative partitioning was highest for the

preferentially incorporated cation, K. In the two Na-Ag-jarosite series synthesised at

22ºC (JS72 & 77-80 and JS95-101), the relative partitioning coefficients for Ag are

highest (3.168 and 3.15) in the compounds (JS78 and 97, respectively) synthesised

from solutions with the lowest Ag concentrations in the respective series (see Table

5.12); therefore there is a relatively high initial uptake of Ag into the Na-Ag-jarosite

compounds. In both series, the partitioning coefficients then progressively decrease

as the concentration of Ag is increased in the synthesis solutions, until the

partitioning coefficient is 1 in the Ag-only compounds. This trend of decreasing

partitioning coefficients for these two series is illustrated in Figures 5.10h and 5.10i.

In these figures, the curve described by the points shows a progressive change

towards a lower gradient away from the source, which indicates that the Ag

concentration in solution is increasingly approaching saturation point relative to

incorporation of Ag into the jarosite structure. This is the case even though there is

substantial difference between the Ag concentrations in the synthesis solutions of the

two series: in series JS72 & 77-80, Ag concentration varies between 0.055 and 0.22

M; and in series JS95-101, Ag concentration is 0.01-0.06 M.
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72 & 77-80: Ag partitioning in Na-Ag jarosite at 22C (0.51 M Fe2)
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Figure 5.10h: JS72,77-80: 0.22 M (Na+Ag), 0.51 M Fe2(SO4)3.5H2O at 22ºC.

95-101: Ag partitioning in Na-Ag jarosite 22C (0.075 M Fe2)
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Figure 5.10i: JS95-101: 0.06 M (Na+Ag), 0.075 M Fe2(SO4)3.5H2O at 22ºC.

The Na-Ag-jarosite series JS12-20 and JS30-38 synthesised at 97ºC and from

solutions containing 0.22 M Na+Ag and 0.51 M Fe2(SO4)3.5H2O also show relatively

high Ag partitioning coefficients (2.116 and 2.544) for the products (JS16 and 34,

respectively) synthesised from solutions containing the series' lowest Ag

concentration of 0.055 M (see Table 5.12). As with the products synthesised at 22ºC,

this indicates relatively high initial uptake of Ag in the Na-Ag-jarosite compounds.

The partitioning coefficients then progressively decrease in both series as the

concentration of Ag increases in the synthesis solutions, which is illustrated in

Figures 5.10j and 5.10k by the curve formed by the points having a progressively

lower gradient. This indicates that, as with the products synthesised at 22ºC, the Ag
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concentration in solution is increasingly approaching saturation point relative to

incorporation of Ag into the jarosite structure.

12-20: Ag partitioning in Na-Ag jarosite at 97C (0.51 M Fe2)
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Figure 5.10j: JS12-20: 0.22 M (Na+Ag), 0.51 M Fe2(SO4)3.5H2O at 97ºC.

30-38: Ag partitioning in Na-Ag jarosite at 97C (0.51 M Fe2)
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Figure 5.10k: JS30-38: 0.22 M (Na+Ag), 0.51 M Fe2(SO4)3.5H2O at 97ºC.

Two of the three Na-Ag-jarosite series synthesised at 140ºC (JS49-54 & 61

and JS71 & 85-88) show the same trends as the series synthesised at 22ºC and 97ºC

of relatively high initial Ag partitioning coefficient values (2.581 and 2.188) in the

first intermediate products (JS50 and 86, respectively) and then progressively

declining values (see Table 5.12). The trends in the partitioning coefficients' values

of these two series are illustrated by the shape of curves formed by the points in

Figures 5.10l and 5.10n, which have decreasing gradients after the point for the first

intermediate product, indicating slightly declining relative uptake of Ag compared to

Na, and possible Ag concentration reaching saturation in the synthesis solutions
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relative to Ag incorporated in the jarosite structure. However, the other Na-Ag-

jarosite series synthesised at 140ºC (JS66-70) displays a different trend of a

relatively low partitioning coefficient (0.544) for the first intermediate product

(JS68) and then increasing partitioning coefficients to the value of 1 for the Ag-only

product, indicating Ag has a growing preference for incorporation in the jarosite

structure as the concentration of Ag in the synthesis solution increases. This trend is

illustrated by the shape of curve formed by the points in Figure 5.10m, which shows

progressively increasing gradients. Series JS66-70 was synthesised under the same

conditions as series JS71 & 85-88 and, therefore, the partitioning coefficients for

series JS66-70 are anomalous.

49-54 & 61: Ag partitioning in Na-Ag jarosite at 140C (0.15 M Fe2)
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Figure 5.10l: JS49-54,61: 0.12 M (Na+Ag), 0.15 M Fe2(SO4)3.5H2O at 140ºC.

66-70: Ag partitioning in Na-Ag jarosite at 140C (0.51 M Fe2)
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Figure 5.10m: JS66-70: 0.22 M (Na+Ag), 0.51 M Fe2(SO4)3.5H2O at 140ºC.
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71 & 85-88: Ag partitioning in Na-Ag jarosite at 140C (0.51 M Fe2)
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Figure 5.10n: JS71, 85-88: 0.22 M (Na+Ag), 0.51 M Fe2(SO4)3.5H2O at 140ºC.

Table 5.13: Partitioning coefficients for Ag in Pb-Ag-jarosites as ratio of Ag/Ag+Pb
in products to Ag/Ag+Pb in synthesis solutions.
Sample [Ag/Ag+Pb]j [Ag/Ag+Pb]sol P. coeff.
Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC
JS43 0 0 0
JS43D 0 0 0
JS44 0.776 0.286 2.713
JS45 0.86 0.5 1.72
JS46 0.938 0.667 1.406
JS46D 0.934 0.667 1.4
JS47 0.973 0.8 1.216
JS48 0.973 0.909 1.07
JS61 1 1 1
JS43-48, 61 6.454 4.829 1.337
Solutions containing 0.075 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC
JS95 1 1 1
JS102 0.993 0.998 0.995
JS103 0.967 0.994 0.973
JS104 0.977 0.98 0.997
JS105 0.929 0.909 1.022
JS106 0.957 0.98 0.977
JS107 0 0 0
JS95, 102-107 5.823 5.861 0.994
Key: j = jarosite product; sol. = synthesis solution; P. coeff. = partitioning coefficient. [Ag/Ag+Pb]j = Ag A-site occupancy
divided by total A-site occupancy of Ag and Pb in Pb-Ag-jarosite product. [Ag/Ag+Pb]sol = Ag concentration (M) divided by
total concentration of Ag and Pb in synthesis solution.

The partitioning coefficients for Ag in the two Pb-Ag-jarosite series are close

to or higher than 1 (the series mean is 1.166), which indicates that Ag is

preferentially incorporated in the products relative to Pb (see Table 5.13). The

partitioning coefficient for Ag in Pb-Ag-jarosite series JS43-48 & 61 synthesised in

solutions containing 0.06-12 M Pb+Ag and 0.15 M Fe2(SO4)3.5H2O) (Fe:[Pb+Ag]

ratio 2.5:1 to 5:1) is 1.337. The partitioning coefficient for Ag in Pb-Ag-jarosite

series JS95 & 102-107 synthesised in solutions containing 0.05013-0.06 M Pb+Ag

and 0.075 M Fe2(SO4)3.5H2O (Fe:[Pb+Ag] ratio 2.5:1 to ~3:1) is 0.994, so is close to
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unity. However, the concentrations of Pb in the synthesis solutions of this series are

low (ranging between 0.00013 M and 0.005 M), which were chosen because of the

low solubility of PbSO4; therefore, the overwhelming predominance of Ag means

the series result provides a limited indicator of relative partitioning between Ag and

Pb.

In Pb-Ag-jarosite series JS43-48 & 61, the product (JS44) synthesised from a

solution containing the lowest Ag concentration of 0.02 M has the highest Ag

partitioning coefficient of 2.713 (see Table 5.13), indicating relatively high initial

uptake of Ag in the Pb-Ag-jarosite structure. The partitioning coefficients then

progressively decrease in the series as the concentration of Ag increases in the

synthesis solutions, which is illustrated in Figure 5.10o by the curve formed by the

points having a progressively lower gradient. This indicates that the Ag

concentration in solution is increasingly approaching saturation point relative to

incorporation of Ag into the jarosite structure. In series 95 & 102-107, no such trend

is discernible (see Figure 5.10p) as the Ag concentration is constant at 0.05 M in the

synthesis solutions, except for 0.06 M in the Ag-only synthesis experiment (JS95).

43-48 & 61: Ag partitioning in Pb-Ag jarosite at 140C (0.15 M Fe2)
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Figure 5.10o: JS43-48 & 61: 0.12 M (Pb+Ag), 0.15 M Fe2(SO4)3.5H2O at 140ºC.
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95 & 102-107: Ag partitioning in Pb-Ag jarosite at 22C (0.075 M Fe2)
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Figure 5.10p: JS95&102-107: 0.06&0.025 M Ag, 0.075 M Fe2(SO4)3.5H2O at 22ºC.

5.1.3 Relationship of unit-cell parameters to other characteristics

5.1.3.1 Ionic radii of A-site cations

5.1.3.1.1 XRD analysis

In the data from powder XRD analysis using Cu radiation, the different positions (d

values) of the hkl 003 and 006 reflections of synthesised K-Ag-H3O-jarosite and Na-

Ag-H3O-jarosite samples indicate variations in c-axis parameters of the unit cells of

the compounds, which are caused by differences between the ionic radii of cations

substituting in the A site of the crystal structure (see Tables 4.7 and 4.8). This study's

XRD results provide contradictory evidence on whether Ag+ in the A site is likely to

be in 12-fold coordination or in nine-fold coordination, the latter being reported by a

jarosite crystal structure study (Groat et al., 2003). The K-Ag-H3O-jarosite

compounds show generally declining d-spacing values in each series as K content

declines and Ag content increases, which is consistent with the smaller Ag+ cation

(ionic radius of 1.48 Å in 12-fold coordination) compared with the K+ cation (1.64

Å) and the H3O
+ cation (1.52 Å). In Na-Ag-H3O-jarosite series 12-20 and 30-38/38D

(both synthesised at 97°C) and series 49-54 & 61 (synthesised at 140°C), the 003 and

006 reflections show a generally declining trend of d-values as Ag increases, which

may indicate the Ag+ cation has a smaller radius than the Na+ cation (1.39 Å). If it
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does, this may indicate Ag+ is in nine-fold coordination, for which an experimental

radius of 1.35-1.36 Å has been reported (Groat et al., 2003). An alternative

explanation is that the declining trend of d-values in these series may be the result of

the relatively high H3O content in the Na-Ag-H3O-jarosite compounds synthesised

from starting solutions containing high Na. However, Na-Ag-H3O jarosite series 71

& 85-88 (synthesised at 140°C) shows a generally increasing trend of d-values from

5.613 Å and 2.787 Å in Na-H3O-jarosite to 5.627 Å and 2.792 Å in Ag-H3O-jarosite,

which is consistent with the Ag+ cation having a larger radius than Na+ and,

therefore, being in 12-fold coordination. The other three series of Na-Ag-H3O-

jarosite products do not provide clear increasing or decreasing trends in the d-values.

Theoretically, possible explanations for the lack of trends in the d-values of these

series may be low Na content and high H3O content or, in other cases, low Fe

occupancy and consequent relatively low H3O content and vacancies in the A site.

However, the chemical compositional data are not consistent with these explanations

for the changes in d-values of series 66-70 and 95-101, although the d-values are

smaller for the Ag-H3O-jarosite compounds than the Na-H3O-jarosite compounds.

The chemical compositional data for series 72 & 77-80 are potentially consistent

with these explanations, except for Ag-H3O-jarosite sample 72, which has

anomalously large d-values more consistent with the JCPDS pattern for hydronium

jarosite, even though the H3O occupancy is 0.37, and larger than those for Na-H3O-

jarosite sample 77.

5.1.3.1.2 Rietveld refinement

Rietveld refinement of XRD data indicates the K-Ag-H3O-jarosite and Na-Ag-H3O-

jarosite compounds show a trend of increasing a parameter and decreasing c
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parameter as K+ or Na+ occupancy of the A site declines and Ag+ occupancy

increases, which is consistent with reported end-member values for jarosite,

natrojarosite and argentojarosite (see Table 4.9). In the Na-H3O-jarosite product with

very high H3O occupancy of the A site (sample 49), the refined c parameters are

higher than those of the next Na-Ag-H3O-jarosite products in the series (samples 34

and 50 respectively), which is consistent with reported end-member values for

natrojarosite, hydronium jarosite and argentojarosite.

The refined unit-cell parameters for K-Ag-H3O- and Na-Ag-H3O-jarosite in

Table 4.9 are consistent with reported a-axis and c-axis values for K-, Na-, Ag- and

H3O-jarosites. In the K-Ag-H3O-jarosite series (04-12, 22-30, 55-61 and 72-76),

there is a trend of increasing a parameter as K site occupancy declines and Ag

occupancy increases, while the c parameter decreases, which is consistent with

reported end-member values (May et al., 1973; Dutrizac and Kaiman, 1976; Kato

and Miura, 1977; Basciano and Peterson, 2007). In the Na-Ag-H3O-jarosite series

(12-20; 30-38; 49-54 and 61; 72, 78 and 80), the trend is for the a parameter to

increase as Na site occupancy declines and Ag occupancy increases, while the c

parameter declines, which is consistent with the ionic radius of Ag+ in jarosite being

smaller than Na+ (May et al., 1973; Dutrizac and Kaiman, 1976; Kato and Miura,

1977; Basciano and Peterson, 2008).

Tables 4.11a and 4.11b show isotropic displacement (Uiso) values for the

Rietveld refined structures of the selected K-, Na- and Ag-bearing synthesised

jarosite compounds. These Uiso values may provide information on whether Ag+ in

argentojarosite has an ionic radius of 1.35-1.36 Å and is in nine-fold coordination or

is in 12-fold coordination (ionic radius 1.48 Å) (Groat et al., 2003). It is suggested

by Groat et al. (2003) that in argentojarosite the internal energy (U) values
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(displacement values) of Ag+ are anomalously high and this could indicate the Ag

atom is located slightly off the A site, with correspondingly reduced occupancy,

because the void is too large for the Ag+ ion, which tries to locally achieve lower

coordination numbers. In this project, the Uiso values generated by Rietveld

refinement of K-Ag-H3O-jarosite compounds indicate no consistent relationship is

identifiable between the values of K and Ag. In Table 4.11a, in four samples, the Uiso

value for Ag+ is higher than the value for K+: JS26 and 28 (synthesised at 97ºC) and

JS57 and 58 (synthesised at 140ºC). In addition, in the series JS55-61, the Uiso value

for Ag+ (0.06) in Ag-H3O-jarosite sample 61 is higher than the value for K+ (0.025)

in K-H3O-jarosite sample 55. However, in six samples, the Uiso value for K+ is

higher than the value for Ag+: JS24 (synthesised at 97ºC) , JS59 and 60 (synthesised

at 140ºC), and JS74, 75 and 76 (synthesised at 22ºC). In addition, in the series JS22-

30 and JS72-76, the Uiso values for K+ (0.058 and 0.042, respectively) in the K-H3O-

jarosite compounds are higher than the values for Ag+ (0.057 and 0.025,

respectively) in the Ag-H3O-jarosite compounds. In four samples, the Uiso value for

Ag+ is the same as the value for K+: JS04, 08 and 10 (synthesised at 97ºC) and JS56

(synthesised at 140ºC). In addition, in the series JS04-12 (synthesised at 97ºC), the

Uiso value (0.025) for Ag+ in the Ag-H3O-jarosite compound is the same as the value

for K+ in the K-H3O-jarosite compound.

In Table 11b, in Na-Ag jarosite samples 51 (synthesised at 140ºC), 78 and 80

(both synthesised at 22ºC), the Uiso values for Ag+ (0.032, 0.061 and 0.068,

respectively) are higher than the values for Na+ (0.02, 0.025 and 0.025, respectively).

In series JS30-38 (synthesised at 97ºC) and JS49-54 & 61 (synthesised at 140ºC), the

Uiso values for Ag+ (0.057 and 0.06, respectively) in the Ag-H3O-jarosite compounds

are higher than the values for Na+ (0.025 in both series) in Na-H3O-jarosite. The Uiso
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value for Na+ (0.209) is higher than the value for Ag+ (0.025) only in the respective

Na-H3O- and Ag-H3O-jarosite compounds of series JS12-20 (synthesised at 97ºC).

In samples 16, 18, 20, 34, 36 and 38 (synthesised at 97ºC) and samples 50, 52, 53

and 54 (synthesised at 140ºC), the Uiso value for Ag+ (0.025) is the same as the value

for Na+.

5.1.3.1.3 Raman spectroscopy

Studies have compared the unit-cell parameters of jarosite group compounds with

the wavenumbers of their modes (Sasaki et al., 1998; Frost et al., 2004, 2006;

Murphy et al., 2009). Unit-cell parameters vary with the size of the ionic radius of

the cation in the A site of the jarosite structure (Brophy and Sheridan, 1965;

Desborough et al., 2010). A relationship between SO4 band position and ionic radius

in jarosite has been reported, specifically the symmetric stretching band (v1SO4)

(Frost et al., 2004); ionic radius affects the polarisability of SO4
2- vibrations. In

theory, unit-cell parameter differences indicate different bond lengths due to size of

ionic radii, which potentially are related to bonding strength and may result in

changes in the wavenumbers of vibrational modes (Murphy et al., 2009). Reportedly,

Raman spectra of jarosite-group compounds are characterised by a tendency for

wavenumbers assigned to vibrational modes v1(SO4
2-) and v3(SO4

2-), and three

vibrational modes of Fe-O bonds, to decrease with an increase in the c unit-cell

parameter, whereas wavenumbers assigned to v2(SO4
2-) and v4(SO4

2-) are

independent of the value of c (Sasaki et al., 1998); however, Frost et al. (2006) report

the relationship is tenuous, and is questionable for bands assigned to Fe-O

vibrations. In addition, it has been reported that previous studies have found no
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correlation between the c parameter and any of the vSO4 Raman wavenumbers

(Murphy et al., 2009).

In this project, differences in Raman spectra are evident between compounds

with different compositions of Ag and/or K or Na cations, especially in the vSO4 and

vOH bands. The spectra differences indicate differences in bonding and symmetry of

the compounds as a result of A-site cation composition of the products. For the vOH

bands, a decrease in wavenumbers is evident between the end-members of the K-Ag-

H3O-, Na-Ag-H3O and Pb-Ag-H3O-jarosite series, indicating decreasing bond

strength. For the v1SO4 band, there are increasing wavenumber trends as Ag content

increases in the different K-Ag-H3O-jarosite series synthesised at 22ºC, 97ºC and

140ºC. By contrast, there is no change in wavenumbers across two of the Na-Ag-

H3O-jarosite series (synthesised at 22ºC and 140ºC), whereas for series 30-38

(synthesised at 97ºC) there is no change in wavenumbers between the end-members

but a general wavenumber increase in the intermediate members as Ag content

increases. There is no change in wavenumbers in the Pb-Ag-H3O-jarosite series. For

the v3SO4 band, there are increasing wavenumber trends as Ag content increases in

the K-Ag-H3O-jarosite series synthesised at 22ºC and 140ºC; in the series

synthesised at 97ºC there is no change in wavenumber between the end-members

and no clear trend in the wavenumbers of the intermediate members. In the Na-Ag-

H3O-jarosites, there is an increasing wavenumber trend as Ag content increases in

the series synthesised at 97ºC and decreasing trends in the series synthesised at 22ºC

and 140ºC. In the Pb-Ag-H3O-jarosite series, there is an increasing wavenumber

trend as Ag content increases. In other modes of the K-H3O-jarosite compounds

there is no consistent evidence of whether the various Raman modes of Ag-H3O-

jarosite compounds have higher wavenumbers than K-H3O-jarosite compounds and
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so have higher bonding energies. None of the other modes for Ag-H3O-jarosite

compounds have higher wavenumbers than the Na-H3O equivalents, but some have

the same wavenumbers. Consequently, no consistent trend is discernible in the

wavenumbers of the assigned modes, so there is no clear evidence of whether bond

strength grows with increasing Ag content of the jarosite compounds.

Table 5.14 compares the Raman wavenumbers with the Rietveld refined c-axis

parameters of selected synthesised K-Ag-H3O- and Na-Ag-H3O-jarosite compounds

Table 5.14 Rietveld-refined c parameters and Raman wavenumbers of selected1

jarosite compounds synthesised at 97°C, 140°C and 22°C.

Number Compound Temp (°C) c parameter vOH v3(SO4) v1(SO4) v4(SO4) v2(SO4)
JS22 K-H3O 97 17.0823 3411.7 1110.1 1009.3 627.16 432.6
JS24 K-Ag-H3O 97 16.9522 3407.6 1106.1 1006.7 627.3 438.26
JS26 K-Ag-H3O 97 16.8897 3406.19 1104.39 1008.8 623.81 432.44
JS28 K-Ag-H3O 97 16.8358 3410.4 1108.8 1009.5 623.16 435.5
JS30 Ag-H3O 97 16.5995 3393.7 1110.1 1013.5 624.4 438.12

JS55 K-H3O 140 17.1687 3412.08 1101.22 1007.2 623.81 432.44
JS56 K-Ag-H3O 140 17.063 3416.78 1101.22 1007.2 623.81 430.73
JS57 K-Ag-H3O 140 16.9781 3408.55 1102.81 1008.8 623.81 432.44
JS58 K-Ag-H3O 140 16.8922 3403.84 1101.22 1008.8 622.13 434.16
JS59 K-Ag-H3O 140 16.8087 3397.95 1101.22 1008.8 622.13 434.16
JS60 K-Ag-H3O 140 16.6935 3384.97 1104.39 1010.4 622.13 437.58
JS61 Ag-H3O 140 16.5913 3384.97 1104.39 1012 622.13 437.58

JS73 K-H3O 22 17.0031 3414.71 1103.18 1007.58 624.21 432.85
JS74 K-Ag-H3O 22 16.9719 3413.26 1102.81 1007.2 623.81 432.44
JS75 K-Ag-H3O 22 16.9411 3410.01 1104.77 1009.18 624.21 432.85
JS76 K-Ag-H3O 22 16.8748 3411.18 1104.77 1009.18 620.85 434.56
JS72 Ag-H3O 22 16.5551 3373.43 1104.77 1012.39 622.53 437.99

JS32 Na-H3O 97 16.7231 3399.2 1108.7 1013.5 625.78 439.5
JS34 Na-Ag-H3O 97 16.6375 3396.77 1105.97 1012 622.13 435.87
JS36 Na-Ag-H3O 97 16.6155 3393.8 1107.4 1012.2 621.78 436.88
JS38 Na-Ag-H3O 97 16.6103 3388.2 1110.1 1013.5 624.4 438.12
JS30 Ag-H3O 97 16.5995 3378.5 1110.1 1013.5 624.4 438.12

JS49 Na-H3O 140 16.8017 3405.3 1106.35 1012.39 622.53 437.99
JS50 Na-Ag-H3O 140 16.7537 3401.76 1106.35 1012.39 622.53 437.99
JS51 Na-Ag-H3O 140 16.6663 3398.23 1106.35 1012.39 622.53 436.28
JS52 Na-Ag-H3O 140 16.6193 3384.07 1106.35 1012.39 622.53 437.99
JS53 Na-Ag-H3O 140 16.6019 3382.89 1106.35 1012.39 622.53 437.99
JS54 Na-Ag-H3O 140 16.5989 3393.51 1104.77 1012.39 622.53 437.99
JS61 Ag-H3O 140 16.5913 3384.97 1104.39 1012 622.13 437.58

JS77 Na-H3O 22 n.d. 3401.76 1107.94 1012.39 624.21 441.41
JS78 Na-Ag-H3O 22 16.5654 3389.69 1106.35 1012.39 622.53 439.7
JS79 Na-Ag-H3O 22 n.d. 3384.97 1105.97 1012 622.13 439.29
JS80 Na-Ag-H3O 22 16.5535 3388.79 1106.35 1012.39 622.53 437.99
JS72 Ag-H3O 22 16.5551 3373.43 1104.77 1012.39 622.53 437.99

Key: 1 Selected jarosite sample series are representative of the different synthesis starting solutions
and  temperatures used.
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in this study. (Selected jarosite sample series are representative of the different

synthesis starting solutions and  temperatures used.) Most of the assigned Raman

modes of the synthesised jarosite series (20 out of 30) have poor or fairly poor linear

relationships (R2 values of ≤ 0.6082) between the Raman wavenumbers and the c-

axis parameters; however, in one-third (10 out of 30) of the modes of the different

series (eight for K-Ag-H3O-jarosite compounds; two for Na-Ag-H3O-jarosite

compounds) there is a good linear relationship between the wavenumbers and the c-

axis parameters (see Figure 5.11). Good or fairly good linear relationships (R2

values) were identified in sample numbers 22-30 (K-Ag-H3O) for vOH (0.7859);

numbers 55-61 (K-Ag-H3O) for vOH (0.9005), v1SO4 (0.8992), v4SO4 (0.7187) and

v2SO4 (0.8304); numbers 72-76 (K-Ag-H3O) for vOH (0.9605), v1SO4 (0.9168) and

v2SO4 (0.9661); numbers 49-54 and 61 (Na-Ag-H3O) for vOH (0.7783); and

numbers 72, 78 and 80 (Na-Ag-H3O) for v2SO4 (0.9847) (see Figure 4.1.3). There

are no Rietveld refinement data for the Pb-H3O- and Pb-Ag-H3O-jarosite products.

Figure 5.11 R2 values of Raman wavenumbers (cm-1) of modes vOH, v1SO4,
v2SO4, v3SO4 and v4SO4 compared with refined c parameters for selected series of K-
Ag-H3O-jarosite compounds synthesised at 22ºC, 97ºC and 140ºC.
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Figure 5.12 R2 values of Raman wavenumbers (cm-1) of modes vOH, v1SO4,
v2SO4, v3SO4 and v4SO4 compared with refined c parameters for selected series of
Na-Ag-H3O-jarosite compounds synthesised at 22ºC, 97ºC and 140ºC.
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5.1.4 Possibility of solid solution in Ag-containing K-, Na- or Pb-jarosite

compounds

The ICP-OES results show the different series of jarosite compounds have good

linear relationships between the contents of the K, Na or Pb cation and the Ag cation

in the products (see Tables 4.17, 4.18 and 4.19), if outliers of anomalous contents in

some of the series are removed (Rollinson, 1993). Of the K-Ag-H3O jarosite

products, the R2 values are: series 04-12 and 22-30 (both synthesised at 97ºC),

0.9877 and 0.996, respectively; series 57-61, 62-66, and 71 & 81-84 (all synthesised

at 140ºC), 0.993, 0.7949 and 0.9918, respectively; and series 73-75 and 89-95 (both

synthesised at 22ºC), 0.8981 and 0.9999, respectively. Of the Na-Ag-H3O jarosite

products, the R2 values are: series 12-20 and 30-38 (both synthesised at 97ºC), 0.996

and 0.9374, respectively; series 50-54 & 61, 66-70, and 71 & 85-88 (all synthesised

at 140ºC), 0.9989, 0.8916 and 0.9908, respectively; and series 77-79 and 95-101

(both synthesised at 22ºC), 0.9999 and 0.9989, respectively. The good linear

relationships of these series indicate solid solution between synthetic Ag-H3O-

jarosite and both K-H3O-jarosite and Na-H3O-jarosite at low temperature (22ºC),

elevated temperature (97ºC) and high temperature (140ºC) of synthesis. This finding

is also supported by the partitioning coefficients for Ag in K-H3O- and Na-H3O-

jarosites based on the combined data from the analysis techniques of A-site

occupancies (see section 5.2.2).

The partitioning coefficients from the combined data also indicate solid

solution between Ag-H3O-jarosite and Pb-H3O-jarosite in sample series JS43-48 &

61 (synthesised at 140ºC) and series 95 & 102-105 (synthesised at 22ºC); however,

the low Pb contents make such a conclusion problematic. From the ICP-OES results,
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the R2 values for Pb-Ag-H3O-jarosite products are: series 43-48 & 61, 0.9347; and

series 95 & 102-105, 0.9582. Despite the good linear relationships indicated by these

R2 values, because the samples contain only low levels of Pb (A-site occupancies

vary between 0 and 0.179 in the 140ºC series and 0 and 0.258 in the 22ºC series),

this indicates problems of Pb entering the jarosite structure, probably because of the

unit cell doubling to accommodate Pb2+ in the structure. One study has reported an

incomplete solid solution exists between jarosite and plumbojarosite (Basciano and

Peterson, 2010), with XRD analysis showing no peak broadening indicating non-

homogeneity, only distinct peaks attributable to either jarosite or plumbojarosite. In

the study's jarosite synthesis experiments involving solutions containing varying

mixtures of K and Pb, it was found plumbojarosite first precipitates with 85 mol. %

Pb in the solution and plumbojarosite only will precipitate with 99 mol. % Pb in the

solution. However, other studies have reported substitution involving K+ and Pb2+ to

be extensive in jarosite (De Oliveira et al., 1996; Roca et al., 1999). Another study

reports Pb-jarosite forms a solid-solution series with monovalent jarosites, but the

series are not crystallographically perfect because order-disorder often results in

superstructure effects in Pb-rich members, with a c axis of 34 Å (double the axis

length of monovalent jarosites) in Pb-jarosite (Dutrizac and Jambor, 1984). In

synthetic systems, the solid solution between Ag-Pb (± H3O) and Ag-K (± H3O) has

been reported to be complete (Dutrizac and Jambor, 1984). In addition, extensive

solid solution between Ag-rich and Pb-rich jarosites has been reported, but end-

member compositions have not been achieved in syntheses because of partial

replacement of non-ferrous metals by hydronium (Dutrizac and Jambor, 1984). It has

been suggested, the solid solution series Pb-Ag-H3O is disrupted by a region in

which two jarosite phases (near end-member Pb-rich and Ag-rich phases) are present
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(Dutrizac and Jambor, 1984). In this project, Pb-rich phases have not been achieved;

the preference of H3O over Pb for the jarosite A site has resulted, according to the

ICP-AES results, in highest Pb occupancies of 0.179 (series 43-48 & 61) and 0.258

(series 95 & 102-107), from starting solutions containing 0.06 M Pb and 0.001 M Pb,

respectively.

5.1.5 Other discussion of Ag-containing K-, Na- or Pb-jarosite compounds

5.1.5.1 A-O2 and A-O3 bond lengths

Rietveld refinement of the XRD data shows that, in the K-Ag-H3O- and Na-Ag-H3O-

jarosite sample series synthesised at 22ºC and 140ºC, there are trends of generally

declining bond lengths for both A-O2 and A-O3 as K+ or Na+ occupancy of the A site

declines and Ag+ occupancy increases (Table 5.15 and Figure 5.13). These results

indicate the Ag+ cation in the jarosite structure is smaller than both the K+ cation and

the Na+ cation. In 12-fold coordination the ionic radius of K+ is 1.64 Å (Shannon,

1976), Ag+ is 1.48 Å (Dutrizac and Jambor, 2000) and H3O
+ is 1.52 Å (Basciano and

Peterson, 2008), so the results for the K-Ag-H3O jarosite series indicate generally

increasing bond lengths of A-O2 and A-O3 as the ionic radius of the cation

occupying the A site increases (Basciano and Peterson, 2010). In K-Ag-H3O jarosite

sample series 55-61, synthesised at 140°C, sample 56 (K occupancy 0.71, Ag

occupancy 0.09) has an A-O2 bond length of 2.9872 Å, which decreases to 2.9484 Å

in sample 60 (K occupancy 0.34, Ag occupancy 0.55). For the same samples, the A-

O3 (OH-) bond lengths decrease from 2.8556 Å for sample 56 to 2.7559 Å for

sample 60.

In Na-Ag-H3O jarosite sample series 49-54 & 61, synthesised at 140°C,

sample 50 (Na occupancy 0.16, Ag occupancy 0.23) has an A-O2 bond length of
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3.0756 Å, which decreases to 2.9374 Å in sample 54, which has a higher Ag content

(Na occupancy 0.04, Ag occupancy 0.66). However, the decreasing A-O2 bond

length trend as Ag+ increases, including the intermediate samples in the series, is not

linear. The A-O2 bond length for the Ag-H3O-jarosite sample in the series is 2.9593

Å, meaning an increase in bond length from sample 54, so the results are

inconsistent. However, this is not the case with the A-O3 (OH-) bond lengths for the

same samples, which decrease consistently from 2.8043 Å for sample 50 to 2.7424 Å

for sample 54. In these Na-Ag-H3O jarosite series, if the ionic radius of Ag+ is

smaller than that of Na+, this may mean Ag+ is in 9-fold coordination (Ag+ ionic

radius 1.35-36 Å, compared with Na+ 1.39 Å), rather than 12-fold (Ag+ 1.48 Å), as

reported by Groat et al. (2003). Another possible explanation for the A-O2 bond

Table 5.15. Changes in A-O2 and A-O3 bond lengths in selected1 K-Ag-H3O- and
Na-Ag-H3O-jarosite products as A-site cation occupancies vary.

K-Ag-H3O-jarosite products synthesised at 140ºC
Sample A-site occupancy A-O2 (Å) A-O3 (Å)
55 K 0.32, Ag 0.00 2.97785 2.84616
56 K 0.71, Ag 0.09 2.98724 2.85561
57 K 0.56, Ag 0.21 2.97751 2.85479
58 K 0.38, Ag 0.35 2.98459 2.85253
59 K 0.46, Ag 0.39 2.96464 2.82147
60 K 0.34, Ag 0.55 2.94844 2.75587
61 K 0.00, Ag 0.76 2.95930 2.73381
K-Ag-H3O-jarosite products synthesised at 22ºC
Sample A-site occupancy A-O2 (Å) A-O3 (Å)
73 K 0.67, Ag 0.00 3.00593 2.77891
74 K 0.61, Ag 0.08 3.02113 2.78448
75 K 0.37, Ag 0.19 2.99377 2.84001
76 K 0.37, Ag 0.26 3.0614 2.77527
72 K 0.00, Ag 0.74 2.9951 2.6808
Na-Ag-H3O-jarosite products synthesised at 140ºC
Sample A-site occupancy A-O2 (Å) A-O3 (Å)
49 Na 0.47, Ag 0.00 3.04325 2.80482
50 Na 0.16, Ag 0.23 3.0756 2.80433
51 Na 0.22, Ag 0.38 2.98579 2.70981
52 Na 0.17, Ag 0.45 2.84718 2.71940
53 Na 0.06, Ag 0.57 2.89087 2.71332
54 Na 0.04, Ag 0.66 2.93743 2.74239
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61 Na 0.00, Ag 0.76 2.95930 2.73381
Na-Ag-H3O-jarosite products synthesised at 22ºC
Sample A-site occupancy A-O2 (Å) A-O3 (Å)
72 Na 0.00, Ag 0.74 2.9951 2.6808
77 n.d
78 Na 0.09, Ag 0.61 2.92830 2.74412
79 n.d.
80 Na 0.03, Ag 0.68 2.92698 2.73857
Key: 1 Selected samples are representative of low and high temperatures of synthesis.

Series 56-61: K-Ag-H3O jarosite 140C
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Figure 5.13. Changes in A-O2 and A-O3 bond lengths in K-Ag-H3O- and Na-Ag-

H3O-jarosite series as A-site cation occupancies vary.

length trend is the proportion of H3O
+ in the A site declines and vacancies increase as

Na+ declines, so reducing bond length. The results for Na-Ag-H3O jarosite sample

series 72, 78 & 80, synthesised at 22°C, shows a decreasing A-O3 bond length trend

as Ag increases and an increasing A-O2 bond length trend.



242

5.1.5.2 O2 and O3 bond angles

Systematic changes of bond angles with Ag occupancy are evident in the Rietveld

refinement results for both K-Ag-H3O- and Na-Ag-H3O-jarosite sample series. There

are trends in the O2-A-O2, O3-A-O3 and O2-A-O3 bond angles in the K-Ag-H3O-

jarosite sample series, and trends in the O2-A-O2 and O2-A-O3 bond angles in the

Na-Ag-H3O-jarosite sample series (see Table 4.10). The O2-A-O2 bond angles

Table 5.16 Changes in O2-A-O2, O2-A-O3 and O3-A-O3 bond angles (in
degrees) in selected1 K-Ag-H3O- and Na-Ag-H3O-jarosite products

K-Ag-H3O-jarosite products synthesised at 140ºC
Sample A-site occupancy O2-A-O2 O2-A-O3 O3-A-O3
55 K 0.32, Ag 0.00 70.188(2), 109.812(2) 74.242(5), 105.758(5) 59.383(5), 120.617(5)
56 K 0.71, Ag 0.09 68.300(2), 111.700(2) 72.288(6), 107.712(6) 59.323(6), 120.677(6)
57 K 0.56, Ag 0.21 68.094(2), 111.906(2) 71.120(6), 108.880(6) 60.858(6), 119.142(6)
58 K 0.38, Ag 0.35 67.549(1), 112.451(1) 70.265(2), 109.735(2) 61.249(2), 118.751(2)
59 K 0.46, Ag 0.39 67.364(1), 112.636(1) 69.883(3), 110.117(3) 61.527(3), 118.473(3)
60 K 0.34, Ag 0.55 66.585(2), 113.415(2) 68.456(7), 111.544(7) 62.347(8), 117.653(8)
61 K 0.00, Ag 0.76 66.843(1), 113.157(1) 68.356(5), 111.644(5) 63.013(5), 116.987(5)
K-Ag-H3O-jarosite products synthesised at 22ºC
Sample A-site occupancy O2-A-O2 O2-A-O3 O3-A-O3
72 K 0.00, Ag 0.74 67.427(5), 112.573(5) 69.769(16), 110.231(16) 61.829(17), 118.171(17)
73 K 0.67, Ag 0.00 69.273(1), 110.727(1) 72.233(3), 107.767(3) 61.120(3), 118.880(3)
74 K 0.61, Ag 0.08 68.735(1), 111.265(1) 71.618(3), 108.382(3) 61.189(3), 118.811(3)
75 K 0.37, Ag 0.19 68.423(0), 111.577(0) 71.222(1), 108.778(1) 61.283(1), 118.717(1)
76 K 0.37, Ag 0.26 68.042(3), 111.958(3) 70.021(9), 109.979(9) 62.551(10), 117.449(10)
Na-Ag-H3O-jarosite products synthesised at 140ºC
Sample A-site occupancy O2-A-O2 O2-A-O3 O3-A-O3
49 Na 0.47, Ag 0.00 69.767(0), 110.233(0) 73.628(1), 106.372(1) 59.683(1), 120.317(1)
50 Na 0.16, Ag 0.23 68.828(3), 111.172(3) 72.207(8), 107.793(8) 60.392(8), 119.608(8)
51 Na 0.22, Ag 0.38 69.487(3), 110.513(3) 71.805(7), 108.195(7) 62.180(7), 117.820(7)
52 Na 0.17, Ag 0.45 67.359(2), 112.641(2) 69.948(6), 110.052(6) 61.411(6), 118.589(6)
53 Na 0.06, Ag 0.57 66.727(2), 113.273(2) 69.003(6), 110.997(6) 61.736(6), 118.264(6)
54 Na 0.04, Ag 0.66 66.090(1), 113.910(1) 68.467(5), 111.533(5) 61.336(6), 118.664(6)
61 Na 0.00, Ag 0.76 66.843(1), 113.157(1) 68.356(5), 111.644(5) 63.013(5), 116.987(5)
Na-Ag-H3O-jarosite products synthesised at 22ºC
Sample A-site occupancy O2-A-O2 O2-A-O3 O3-A-O3
72 Na 0.00, Ag 0.74 67.427(5), 112.573(5) 69.769(16), 110.231(16) 61.829(17), 118.171(17)
77 n.d
78 Na 0.09, Ag 0.61 66.107(0), 113.893(0) 68.205(1), 111.795(1) 61.800(1), 118.200(1)
79 n.d.
80 Na 0.03, Ag 0.68 65.764(1), 114.236(1) 67.264(3), 112.736(3) 62.621(3), 117.379(3)
Key: 1 Selected samples are representative of low and high temperatures of synthesis.

decrease from 70.188(2) degrees in the K-H3O-jarosite product (sample 55, K

occupancy 0.32) to 66.585(2) degrees in K-Ag-H3O jarosite sample 60 (K occupancy
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0.34, Ag 0.55); the angle is 66.843(1) degrees in the Ag-H3O-jarosite product

(sample 61, Ag occupancy 0.76) (see Table 5.16). The O3-A-O3 bond angle of K-

H3O-jarosite sample 55 is 59.383(5) degrees; there is then a trend of the angles

increasing from 59.323(6) degrees in K-Ag-H3O-jarosite sample 56 to 63.013(5)

degrees in Ag-H3O-jarosite sample 61. Trends are also seen in the O2-A-O3 bond

angles of the K-Ag-H3O jarosite sample series: in series 55-61, the angle decreases

from 74.242(5) degrees to 68.356(5) degrees; in series 72-76, the angle decreases

from 72.233(3) degrees (K occupancy 0.67) to 69.769(16) degrees (Ag occupancy

0.74). In the Na-Ag-H3O jarosite product series, there is a general trend of O2-A-O2

bond angles decreasing from 69.767(0) degrees in sample 49 (Na occupancy 0.47,

Ag 0) to 66.090(1) degrees in sample 54 (Na occupancy 0.04, Ag 0.66). There is no

clear trend in the O3-A-O3 bond angles, although there is an overall non-linear

increase from 59.683(1) degrees in sample 49 to 63.013(5) in sample 61. The O2-A-

O3 bond angles show a trend of decreasing from 73.628(1) degrees in Na-H3O-

jarosite sample 49 to 68.356(5) degrees in Ag-H3O-jarosite sample 61.

5.1.5.3 Cation selective occupancy of A site

The EMPA and ICP-AES results suggest that, at all temperatures of synthesis, the

order of cation preference for occupancy of the A site in the jarosite crystal structure

is K > H3O > Ag > Na > Pb, which is consistent with the reported order of

preference (Jambor, 1999). The partitioning coefficients for Ag in jarosites based on

the A-site occupancies from the combined data from the analysis techniques also

support this order of cation preference (see section 5.2.2). It is also consistent with

reported PHREEQC data on the end-member solubility products (at 25ºC) of

jarosite, hydronium jarosite and natrojarosite of 10-9.21, 10-5.39 and 10-5.28,
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respectively (Glynn, 2000). However, the solubility products (at 298K) of jarosite,

hydronium jarosite, argentojarosite and natrojarosite have been reported as 10-12.50,

10-8.67, 10-11.55 and 10-8.56, respectively (Gaboreau and Veillard, 2004), according to

the following reaction: AFe3(SO4)2(OH)0 + 6H+ → A+
(aq) + 3Fe3+

(aq) + 2(SO4)
2-

(aq) +

6(H2O)(l). Consequently, this indicates an order of K > Ag > H3O > Na. From the

results of EMPA and ICP-AES, in the Pb-Ag-H3O compounds synthesised at 22ºC

and 140ºC, the order of preference for occupancy of the A site is indicated as H3O >

Ag > Pb.

5.2 Capacity of natural jarosite minerals for Ag

The natural jarosite samples obtained for this project were found to contain only

trace contents of Ag, even though many originated from mining areas known to

contain Ag, such as Rio Tinto in Spain, Tintic Standard Mine in the United States

and Laurion in Greece. EMPA detected Ag in only three out of 24 samples,

including argentojarosite sample 34; the other two had Ag site occupancies of 0.001

and 0.003. Consequently, these samples provided no useful data on Ag in jarosite

and natrojarosite.

5.3 Summary

● EMPA of jarosite compounds is problematical because potential errors of

data interpretation occur as a result of particle size being smaller (< 1 μm) than the

electron beam and thus causing interactions, resulting in substantial variation in the

different readings of the composition of each compound;
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● compositional data from the different analytical techniques (EMPA, ICP-

AES and Rietveld refinement) used in this project indicate inconsistent trends in the

A-site occupancies of the different jarosite series with increased temperature of

synthesis, rather than simply increased cation occupancies with increased

temperature of synthesis, as suggested by previous studies;

● the K-Ag-H3O- and Na-Ag-H3O-jarosite compound series have generally

declining mean and median A-site occupancies for K + Ag and Na + Ag,

respectively, and Ag-only as synthesis temperature increases from 22ºC to 97ºC,

probably because of the different periods of synthesis of ~ 1 year and 4 hours,

respectively; however, the occupancies generally increase as synthesis temperature

rises from 97ºC to 140ºC, with the synthesis periods the same at the two

temperatures;

● the Ag contents are substantially higher in Na-Ag-H3O-jarosite compounds

synthesised at 22ºC than in their equivalents synthesised at 97ºC and 140ºC, possibly

because of the periods of synthesis of ~ 1 year at 22ºC and 4 hours at 97ºC and

140ºC;

● the Ag contents are generally relatively high in the Pb-Ag-H3O-jarosite

compounds synthesised at 22ºC compared with those synthesised at 140ºC, again

probably because of different synthesis periods and the lower Pb concentrations in

the starting solutions of compounds synthesised at 22ºC;

● EMPA and Rietveld refinement indicate no consistent relationship between

synthesis temperature (22°C, 97°C and 140°C) and the proportion of B-site

vacancies in the jarosite compounds;

● increasing concentrations of K, Na, Pb, and Ag in the synthesis starting

solutions increase the K, Na, Pb, and Ag A-site occupancies of the jarosite products,
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but the EMPA results have some anomalous contents, so the different series of

compounds generally show only poor or fairly poor linear relationships between the

concentrations of K, Na, Pb and Ag in the synthesis starting solutions and Ag

content in the products;

● in the K-Ag-H3O-jarosite compounds, the K content is consistently higher

than the Ag content even when the Ag concentration in the starting solutions is three

times the K concentration;

● in the Na-Ag-H3O-jarosite compounds, the Ag content is higher than the

Na content in the majority of them, even in some cases when the concentration of Na

in the starting solutions is three times that of Ag;

● in the Pb-Ag-H3O-jarosite compounds, the Ag content is consistently

higher than the Pb content even when the concentration of Pb in the starting

solutions is 2.5 times the concentration of Ag;

● comparison of the molar concentrations of Ag and K, Na or Pb in the

synthesis starting solutions with their occupancies in the A site of the jarosite

precipitates provides relative partitioning coefficients for Ag. The relative

partitioning coefficients for Ag in the K-Ag-jarosites are, in general, less than 1 (the

mean value of the seven series is 0.900), indicating that K is preferentially

incorporated in the compounds relative to Ag. The lowest relative partitioning

coefficients for Ag in the K-Ag-jarosites (0.669 and 0.714) are for the two series

synthesised at low temperature (22ºC), indicating increased incorporation of K in the

jarosite structure relative to Ag at lower temperature of synthesis. At 140ºC, Ag is

slightly preferentially incorporated into the structure compared with K (the mean of

the Ag partitioning coefficients for the three series is 1.038);
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● the partitioning coefficients for Ag in the Na-Ag-jarosites are, in general,

greater than 1 (the series average is 1.302), indicating that Ag is preferentially

incorporated in these compounds. The two series synthesised at low temperature

(22ºC) have the highest relative partitioning coefficients for Ag (1.458 and 1.506);

● the partitioning coefficients for Ag in the Pb-Ag-jarosites are, in general,

greater than 1 (the mean of the two series is 1.166), indicating that Ag is

preferentially incorporated in these compounds;

● the relative partitioning coefficients for Ag in the majority of the K-, Na-

and Pb-Ag-jarosite series (12 out of a total of 16) are highest in the intermediate

compounds synthesised from solutions with the lowest Ag concentrations in the

respective series; therefore, there is a relatively high initial uptake of Ag into the

jarosite compounds. The partitioning coefficients in the intermediate compounds

then progressively decrease as the concentration of Ag is increased in the synthesis

solutions, indicating that Ag concentration in the solutions is increasingly

approaching saturation point relative to incorporation of Ag into the jarosite

structure;

● the powder XRD data of the K-Ag-H3O jarosite compounds show generally

declining d-spacing values of the hkl 003 and 006 reflections as K content declines

and Ag content increases, indicating decreases in the c-axis parameter caused by the

smaller ionic radius of Ag substituting in the A site;

● the d values of the hkl 003 and 006 reflections of the Na-Ag-H3O-jarosite

compounds show generally declining d values for three of the series, another series

shows an increasing d-value trend, and three series do not show consistent trends;



248

● the Pb-Ag-H3O-jarosite compounds have d values of the hkl 003 and 006

reflections that are consistent with the low Pb contents and high H3O contents but

also show a generally declining trend as Ag occupancy increases;

● Rietveld refinement indicates the K-Ag-H3O and Na-Ag-H3O jarosite

compounds show a trend of increasing unit-cell a-axis parameter and decreasing c-

axis parameter as respectively K+ and Na+ occupancy of the A site declines and Ag+

occupancy increases, which suggests the ionic radius of Ag+ in jarosite is smaller

than K+ and Na+;

● the isotropic displacement (Uiso) values from the Rietveld refinement of K-

Ag-H3O- and Na-Ag-H3O-jarosite compounds show Ag has higher values than K

and Na, respectively, in several samples, but no consistent relationship is indicated.

Therefore, the data do not support the suggestion that the Ag+ cation is smaller than

K+ and Na+ and may be located, as has been reported, slightly off the A site because

the void is too large for the Ag+ ion, which tries to locally achieve lower, 9-fold

coordination;

● Raman spectroscopy reveals that, for the v1SO4 band, there are increasing

wavenumber trends as Ag content increases in the different K-Ag-H3O-jarosite series

synthesised at 22ºC, 97ºC and 140ºC, which is consistent with a smaller ionic radius

and higher bonding energies. In two of the Na-Ag-H3O-jarosite series (synthesised at

22ºC and 140ºC), there is no change in wavenumbers, whereas for series 30-38

(synthesised at 97ºC) there is no change in wavenumbers between the end-members

but a general wavenumber increase in the intermediate members as Ag content

increases. There is no change in wavenumbers in the Pb-Ag-H3O-jarosite series;

● for the v3SO4 Raman band, there are increasing wavenumber trends as Ag

content increases in the K-Ag-H3O-jarosite series synthesised at 22ºC and 140ºC,
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whereas in the series synthesised at 97ºC there is no change in wavenumber between

the end-members and no clear trend in the wavenumbers of the intermediate

members. In the Na-Ag-H3O-jarosites, there is an increasing wavenumber trend as

Ag content increases in the series synthesised at 97ºC and decreasing trends in the

series synthesised at 22ºC and 140ºC. In the Pb-Ag-H3O-jarosite series, there is an

increasing wavenumber trend as Ag content increases;

● reportedly, Raman spectra of jarosite-group compounds are characterised by

a tendency for wavenumbers assigned to vibrational modes v1(SO4
2-) and v3(SO4

2-),

and three vibrational modes of Fe-O bonds, to decrease with an increase in the c

unit-cell parameter, whereas wavenumbers assigned to v2(SO4
2-) and v4(SO4

2-) are

independent of the value of c;

● wavenumbers assigned to vibrational modes v1(SO4
2-) and v3(SO4

2-) in K-Ag-

H3O-jarosite decrease as Ag content declines and the unit-cell c parameter increases,

showing linear relationships (R2 values) of 0.6082 and 0.0429, respectively, in series

22-30; 0.8992 and 0.5673, respectively, in sample series 55-61; and 0.9168 and

0.3368, respectively, in series 72-76;

● from the ICP-AES compositional results, good linear relationships between

Ag and K content and Ag and Na content indicate solid solution between synthetic

Ag-H3O-jarosite and both K-H3O-jarosite and Na-H3O-jarosite at low temperature

(22ºC), elevated temperature (97ºC) and high temperature (140ºC) of synthesis. This

finding is also supported by the partitioning coefficients for Ag in K-H3O- and Na-

H3O-jarosites based on the combined data from the analysis techniques of A-site

occupancies;

● partitioning coefficients indicate solid solution between Ag-H3O-jarosite and

Pb-H3O-jarosite in sample series JS43-48 & 61 (synthesised at 140ºC) and series 95
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& 102-105 (synthesised at 22ºC); however, the low Pb contents make such a

conclusion problematic;

● Rietveld refinement shows that, in the K-Ag-H3O- and Na-Ag-H3O-jarosite

sample series synthesised at 22ºC and 140ºC, there are trends of generally declining

bond lengths for both A-O2 and A-O3 as K+ or Na+ occupancy of the A site declines

and Ag+ occupancy increases, indicating the Ag+ cation in the jarosite structure is

smaller than both the K+ cation and the Na+ cation.
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6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

The aims of this study have been to determine the capacity of synthetic K-, Na- and

Pb-jarosite compounds for Ag, by analysing the A-site contents and the characters of

the Ag-bearing compounds. To achieve these aims, the objectives have been to

determine the structural characteristics of the compounds of the solid solution series

between Ag-H3O-jarosite and respectively K-H3O-jarosite, Na-H3O-jarosite and Pb-

H3O-jarosite, and to compare the structures and characteristics of Ag-bearing jarosite

compounds synthesised, under various conditions, at elevated temperatures (97ºC

and 140ºC) and at a temperature characteristic of the surface environment (22ºC).

One of the reasons for doing this has been to determine whether compounds

synthesised at surface temperatures are more disordered and poorly crystalline than

compounds made at elevated temperatures, as has been suggested by several authors

(e.g., Swayze et al., 2008). In addition, understanding the differences in the bonding

of Ag in different jarosite compounds may give important information on the

potential release of Ag from these jarosites and the cycling of Ag in the natural

environment. Silver is a valuable resource and the information gained in this study

may also help resource geologists, mining engineers and environmental

mineralogists to better understand the structural characteristics and potential

economic value of naturally occurring Ag-bearing jarosite minerals.

The methods of jarosite synthesis used in this project have been successful in

almost all cases, as indicated by XRD analysis, with only a few compounds showing

sulphate contamination and in almost all cases this was removed by rewashing or

rinsing with ammonium acetate. In addition, the XRD spectra of jarosite compounds
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synthesised at low temperature (22ºC) (samples JS72-80 and 89-107) do not display

problems of peak broadening and therefore inhomogeneity, with only JS77 and 78

showing some broadening of the more intense peaks (see Appendix E).

The analytical techniques have provided extensive data on the extent of Ag

incorporation in the jarosite crystal structure in competition with K and Na during a

variety of synthesis experiments. These data have provided information on the

selective incorporation of K, Na and Ag in the jarosite structure, including

partitioning coefficients. Data have also been provided on Ag incorporation into the

jarosite structure in competition with Pb, and on the problems of synthesising Pb-

containing jarosite compounds, particularly because of the low solubility and

precipitation of PbSO4. This problem of sulphate contamination of the jarosite

products of synthesis resulted in this project's experiments with very low

concentrations of Pb (0.00013-0.005 M) in sulphate synthesis starting solutions and

hence resulted in low Pb content of the jarosite products, especially in the presence

of Ag, which is preferentially incorporated in the crystal structure. Improved

occupancies were achieved with up to 0.06 M Pb in the starting solutions; however,

the highest Pb occupancies of the A site from the synthesis experiments in this

project are only 0.168 (JS43D), 0.179 (JS43) and 0.258 (JS107). Other studies have

reported that Pb-jarosite only precipitates with large amounts of Pb in the starting

solution (Smith, 2004; Basciano, 2008).

One difficulty of analysis that has arisen is that EMPA of powder jarosite

compounds is problematical because potential errors of data interpretation occur as a

result of the particle size being smaller (< 1 μm) than the electron beam and so

causing interactions. This resulted in substantial variation in the different EMPA

readings of the composition of each jarosite compound. The standard deviations of
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the compositions of the A-site cations from the EMPA readings are generally

relatively high. This is indicated by the coefficient of variation (C, ratio of standard

deviation of population to the mean) of the content the A-site cations in each sample:

of the K-containing compounds, 45% have a C value of ≥ 20%; of the Na-containing

compounds, 44% have a C value of ≥ 50%; and of the Pb-containing compounds,

70% have a C value of more than ≥ 50%. Of the compounds containing Ag, 78%

have a C value of ≥ 20%.

Compositional data from the analytical techniques used (EMPA, ICP-AES

and Rietveld refinement) indicate the trends in the A-site occupancies of the different

jarosite compound series as temperature of synthesis increases are more complex

than simply increased cation occupancies with higher temperature of synthesis, as

suggested by previous studies. The K-Ag-H3O-jarosite compound series have

generally declining mean and median A-site occupancies of K + Ag with increase of

synthesis temperature from 22ºC to 97ºC and from 22ºC to 140ºC, possibly because

of the different periods of synthesis of ~ 1 year and 4 hours, respectively; however,

the Ag-only occupancies generally increase with increase of synthesis temperature.

The mean occupancies increase as synthesis temperature rises from 97ºC to 140ºC,

with the synthesis periods being the same at the two temperatures. In the Na-Ag-

H3O-jarosite compound series, the mean Na + Ag and Ag-only A-site occupancies

generally decrease as synthesis temperature increases from 22ºC to 97ºC and from

22ºC to 140ºC, again possibly because the period of synthesis at 22ºC is ~ 1 year

compared with 4 hours at the higher temperatures. As temperature increases from

97ºC to 140ºC, the mean Na + Ag occupancies increase, whereas the Ag-only

occupancies decrease. The mean Ag occupancies are generally relatively high in the

Pb-Ag-H3O-jarosite compounds synthesised at 22ºC compared with those
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synthesised at 140ºC, again probably because of different synthesis periods and the

lower Pb concentrations in the starting solutions of compounds synthesised at 22ºC.

EMPA and Rietveld refinement indicate no consistent relationship between

synthesis temperature (22°C, 97°C or 140°C) and the proportion of B-site vacancies

in the jarosite compounds, as has been suggested in previous studies.

In the synthesis experiments, increasing concentrations of K, Na, Pb, and Ag

in the starting solutions result in increasing K, Na, Pb, and Ag contents of the

jarosite compounds. However, because of anomalous contents in the EMPA results

for some of the products, the different series of jarosite compounds generally show

only poor or fairly poor linear relationships between the concentrations of K, Na, Pb

and Ag in the synthesis starting solutions and the Ag content in the products, with

only three series showing good linear relationships with R2 values of ≥ 0.8356.

In the K-Ag-H3O-jarosite compounds, the K content is consistently higher

than the Ag content even when the Ag concentration in the starting solutions is three

times the K concentration; this is an indicator of the selective incorporation of K in

the jarosite structure compared with Ag. This finding is supported by the relative

partitioning coefficients for Ag in the K-Ag-H3O-jarosites, the comparison of the

molar concentrations of Ag and K in the synthesis starting solutions with their molar

concentrations in the A site of the jarosite precipitates. Based on the combined data

from the analysis techniques, the relative partitioning coefficients for Ag in the K-

Ag-H3O-jarosites are, in general, less than 1 (series average 0.9), indicating that K is

preferentially incorporated in the compounds relative to Ag. The lowest relative

partitioning coefficients for Ag in the K-Ag-H3O-jarosite compounds (0.669 and

0.714) are for the two series synthesised at low temperature (22ºC).
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In the Na-Ag-H3O-jarosite compounds, the Ag content is higher than the Na

content in the majority of them, even in some cases when the concentration of Na in

the starting solutions is three times that of Ag; this is an indicator of the selective

incorporation of Ag in the jarosite structure compared with Na. The partitioning

coefficients for Ag in the Na-Ag-H3O-jarosites, which are, in general, greater than 1

(series average 1.3), also indicate that Ag is preferentially incorporated relative to

Na. The two Na-Ag-H3O-jarosite series synthesised at low temperature (22ºC) have

the highest relative partitioning coefficients (1.458 and 1.506).

In the Pb-Ag-H3O-jarosite compounds, the Ag content is consistently higher

than the Pb content even when the concentration of Pb in the starting solutions is 2.5

times the concentration of Ag, indicating the selective incorporation of Ag in the

jarosite structure compared with Pb. The partitioning coefficients for Ag in the Pb-

Ag-H3O-jarosites are, in general, greater than 1 (series average ~ 1.17), also

indicating that Ag is preferentially incorporated.

The ICP-AES compositional results show good linear relationships between

Ag and K content and Ag and Na content in the jarosite compounds, indicating solid

solution between synthetic Ag-H3O-jarosite and both K-H3O-jarosite and Na-H3O-

jarosite at low temperature (22ºC), elevated temperature (97ºC) and high temperature

(140ºC) of synthesis. This finding is also supported by the partitioning coefficients

for Ag in K-H3O- and Na-H3O-jarosites based on the combined data from the

analysis techniques of A-site occupancies. The partitioning coefficients also indicate

solid solution between Ag-H3O-jarosite and Pb-H3O-jarosite in sample series JS43-

48 & 61 (synthesised at 140ºC) and series 95 & 102-105 (synthesised at 22ºC);

however, the low Pb contents make such a conclusion problematic.
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The XRD main peaks and Rietveld refinement data provide useful

information on how the proportion of Ag in the A site of jarosite compounds changes

the unit cell's a- and c-axis parameters. This information will be valuable in the

interpretation of XRD data on jarosite minerals from complex natural mineral

assemblages (Basciano, 2008). The data from this project will inform the evaluation

of data from XRD analysis of naturally occurring jarosite minerals and jarosites from

mine and metallurgical processing wastes, including the evaluation of the proportion

of Ag in the A site using variations in unit-cell a- and c-axis parameters as a guide.

The powder XRD data of the K-Ag-H3O jarosite compounds show generally

declining d-spacing values of the hkl 003 and 006 reflections as K content declines

and Ag content increases, indicating decreases in the c-axis parameter caused by the

smaller ionic radius of Ag substituting in the A site. The d values of the hkl 003 and

006 reflections of the Na-Ag-H3O-jarosite compounds generally decline as Ag

content increases in three of the series, indicating decreases in the c-axis parameter;

another series shows an increasing d-value trend and three series do not show

consistent trends. The Pb-Ag-H3O-jarosite compounds have d values of the hkl 003

and 006 reflections that are consistent with the low Pb contents and high H3O

contents, according to the JCPDS patterns and reported data, and also show a

generally declining trend as Ag occupancy increases. In addition, Rietveld

refinement of XRD data indicates the K-Ag-H3O and Na-Ag-H3O jarosite

compounds show a trend of increasing a parameter and decreasing c parameter as K+

or Na+ occupancy of the A site declines and Ag+ occupancy increases, which also

suggests the ionic radius of Ag+ in jarosite is smaller than those of K+ and Na+.

Raman spectroscopy enables comparison of the c-axis parameters of the

different series of jarosite compounds with the wavenumbers of the assigned modes.
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As a consequence, the wavenumbers may become indicators of changing bond

strength as the varying Ag content alters the c-axis parameters. These results may

provide data that create the potential to use Raman spectroscopy to characterise the

composition of Ag-bearing natural jarosite compounds. A study has noted that

studying synthesised minerals in different solid solution series allows recognition of

the properties of more complex natural samples and interpretation of natural

assemblages, including chemical composition (Basciano, 2008). In addition, another

study reported systematic increases in characteristic Raman peaks of v1(SO4),

v3(SO4) and v2(SO4) and decreases in vOH peaks with increases in Na content in

K/(K+Na) chemical composition ratios of K–Na jarosite solid solution compounds

(Ling et al., 2016). The authors proposed using Raman peak positions of K–Na

jarosite solid solution compounds as a guide to estimating compositional variation in

K-Na-jarosites identified during in-situ and remote sensing measurements on Mars.

Also, studies have used remote sensing to carry out spectral analyses to identify

jarosite deposits (as analogues of environments on Mars), detecting jarosite

absorption features at wavelengths 2.26 and 2.46 μm in northwest Canada (Battler et

al., 2013) and ~ 2.26 μm in southern Utah, United States (Bell et al., 2010).

Consequently, these studies suggest the potential to use the Raman spectroscopic

data from this project to estimate the chemical composition of jarosites identified

using remote sensing.

Raman spectra of jarosite-group compounds are characterised by a tendency

for wavenumbers assigned to vibrational modes v1(SO4
2-) and v3(SO4

2-) to decrease

with increases in the c unit-cell parameter, whereas wavenumbers assigned to

v2(SO4
2-) and v4(SO4

2-) are independent of the value of c. Consequently, increasing
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wavenumbers of modes v1(SO4
2-) and v3(SO4

2-) as Ag occupancy increases would be

an indicator of a smaller ionic radius and shorter unit-cell c parameter.

Raman spectroscopy in this project has revealed that, for the v1SO4 band,

there are increasing wavenumber trends as Ag content increases in the different K-

Ag-H3O-jarosite series synthesised at 22ºC, 97ºC and 140ºC, which is consistent

with a smaller ionic radius and higher bonding energies. For the v3SO4 band, there

are increasing wavenumber trends as Ag content increases in the K-Ag-H3O-jarosite

series synthesised at 22ºC and 140ºC, whereas in the series synthesised at 97ºC there

is no change in wavenumber between the end-members and no clear trend in the

wavenumbers of the intermediate members. In the K-Ag-H3O-jarosites, the Raman

results show the increase in the wavenumbers as Ag content increases and the unit-

cell c parameter decreases has a stronger linear relationship (higher R2 values) for

vibrational mode v1(SO4
2-) than for mode v3(SO4

2-). For modes v1(SO4
2-)and v3(SO4

2-

), the R2 values are 0.6082 and 0.0429, respectively, in series 22-30; 0.8992 and

0.5673, respectively, in sample series 55-61; and 0.9168 and 0.3368 in series 72-76.

In two of the Na-Ag-H3O-jarosite series (synthesised at 22ºC and 140ºC), there is no

change in the wavenumbers of the v1SO4 band as Ag content increases, whereas for

series 30-38 (synthesised at 97ºC) there is no change in wavenumbers between the

end-members but a general wavenumber increase in the intermediate members as Ag

content increases. In the Na-Ag-H3O-jarosites, there is an increasing wavenumber

trend for the v3SO4 band as Ag content increases in the series synthesised at 97ºC;

however, there are decreasing wavenumber trends as Ag content increases in the

series synthesised at 22ºC and 140ºC, indicating a larger ionic radius of Ag than Na

and increasing c parameter. In the Pb-Ag-H3O-jarosite series, there is no change in

wavenumbers for the v1SO4 band as Ag content changes; however, there is an
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increasing wavenumber trend for the v3SO4 band as Ag content increases, indicating

shortening c parameters and a smaller ionic radius of Ag compared with Pb.

Rietveld refinement has also provided information on how the bond lengths

and angles of the A-site cations, Fe, S and O in the jarosite structure alter with the

occupancies of Ag, K and Na in the A site, as well as data on the atomic positions in

the structure. Rietveld refinement shows that, in the K-Ag-H3O- and Na-Ag-H3O-

jarosite sample series synthesised at 22ºC and 140ºC, there are trends of generally

declining bond lengths for both A-O2 and A-O3 as K+ or Na+ occupancy of the A site

declines and Ag+ occupancy increases, indicating the Ag+ cation in the jarosite

structure is smaller than both the K+ cation and the Na+ cation.

In addition, Rietveld refinement has provided isotropic displacement (Uiso)

values for the K-Ag-H3O- and Na-Ag-H3O-jarosite compounds, which show Ag has

higher values than K and Na, respectively, in several samples, but do not indicate a

consistent relationship. Therefore, the data do not support the suggestion that the Ag+

cation is smaller than K+ and Na+ and may be located, as has been reported, slightly

off the A site because the void is too large for the Ag+ ion, which tries to locally

achieve lower, 9-fold coordination.

6.2 Recommendations for future work

Further analysis of Pb-Ag-H3O jarosite compounds by XRD and Rietveld refinement

could be undertaken, including looking for any XRD peak broadening indicating

non-homogeneity or for doubling of peaks.

Collection and analysis could be carried out of additional natural Ag-bearing

jarosite samples to identify how incorporation of Ag alters the bonding and structure
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of the minerals. The data from this project's synthesised solid solution jarosite

compounds could be used to guide interpretation of natural assemblages.

Computer simulation studies have been used to model the incorporation of

cations into the jarosite structure (Smith, 2004; Smith et al., 2006a and 2006b). Such

computational modelling of the jarosite structure could be carried out to calculate the

energies involved in the chemical reactions in incorporation of K, Na, Pb, Ag and

H3O into the structure from various concentrations of cations in the synthesis

solutions. This would enable evaluation of the incorporation of Ag into the structure

relative to the competing cations. Similar modelling could be carried out of

vacancies in the Fe site in the jarosite structure.

Analysis could be carried out of synthesised Ag-bearing jarosite compounds

using X-ray absorption spectroscopy (XAS) to give insights into the bonding of Ag

in jarosite. Extended X-ray Absorption Fine Structure (EXAFS) and X-ray

Absorption Near Edge Structure (XANES) spectroscopic analyses are synchrotron

radiation-based techniques that provide molecular-scale information on mineral local

structure and binding forms (to other minerals and organic substances). The

structures of K-Ag-H3O, Na-Ag-H3O and Pb-Ag-H3O members of the synthetic

argentojarosite-jarosite, argentojarosite-natrojarosite and argentojarosite-

plumojarosite solid solution series, respectively, could be investigated using Ag K-

edge and Na-edge, Fe K-edge and Na-edge, and Pb LIII-edge EXAFS and XANES

spectroscopy. These experiments would address the bonding of Ag in the members

jarosite solid solution series and whether or not it varies with the amount of Ag

content and the presence of either K, Na or Pb. The experiments would also address

whether the presence of Ag in the crystal structure modifies the bonding

environment of Fe and Pb (in Pb-bearing varieties) in the lattice. Any differences in
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the results for compounds formed at different synthesis temperatures (22ºC, 97ºC

and140ºC) would also be investigated. Studies have previously modelled XAS data

of jarosite minerals collected during experiments undertaken at the Synchrotron

Radiation Source at Daresbury Laboratory (e.g., Hudson-Edwards et al., 2008).
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APPENDIX A

Minerals of the alunite supergroup (total 48 minerals)
(Sources: Anthony et al., 2003; Groat et al., 2003; Basciano, 2008)
Jarosite Group Fe>Al
jarosite KFe3(SO4)2(OH)6

natrojarosite NaFe3(SO4)2(OH)6

hydronium jarosite (H3O)Fe3(SO4)2(OH)6

ammoniojarosite (NH4)Fe3(SO4)2(OH)6

argentojarosite AgFe3(SO4)2(OH)6

plumbojarosite Pb[Fe3(SO4)2(OH)6]2

beaverite PbCu(Fe,Al)2(SO4)2(OH)6

dorallcharite Tl0.8K0.2Fe3(SO4)2(OH)6

Alunite Group Al>Fe
alunite KAl3(SO4)2(OH)6

natroalunite NaAl3(SO4)2(OH)6

ammonioalunite (NH4)Al3(SO4)2(OH)6

schlossmacherite (H3O,Ca)Al3(SO4)2(OH)6

minamiite (Na,K,Ca)Al3(SO4)2(OH)6

osarizawaite PbCuAl2(SO4)2(OH)6

walthierite Ba0.5Al3(SO4)2(OH)6

huangite Ca0.5Al3(SO4)2(OH)6

Beudantite Group Fe>Al
beudantite PbFe3[(As,S)O4]2(OH,H2O)6

corkite PbFe3[(P,S)O4]2(OH,H2O)6

Beudantite Group Al>Fe
hidalgoite PbAl3[(As,S)O4]2(OH,H2O)6

hinsdalite PbAl3[(P,S)O4]2(OH)6

kemmlitzite (Sr,Ce)Al3[(As,S)O4]2(OH,H2O)6

svanbergite SrAl3[(P,S)O4]2(OH,H2O)6

woodhouseite CaAl3[(P,S)O4]2(OH,H2O)6

weilerite BaAl3[(As,S)O4](OH)6

gallobeudantite PbGa3[(As,S)O4]2(OH,H2O)6

Crandallite Group Al>Fe
crandallite CaAl3(PO4)2(OH,H2O)6

plumbogummite PbAl3(PO4)2(OH,H2O)6

goyazite SrAl3(PO4)2(OH,H2O)6

gorceixite BaAl3(PO4)2(OH,H2O)6

arsenocrandallite CaAl3[(As,P)O4]2(OH,H2O)6

phillipsbornite PbAl3(AsO4)2(OH,H2O)6

arsenogoyazite (Sr,Ca,Ba)Al3[(As,P)O4]2(OH,H2O
arsenogorceixite BaAl3(AsO4)(AsO3•OH)(OH)6

florencite-(Ce) CeAl3(PO4)2(OH)6

florencite-(La) LaAl3(PO4)2(OH)6

florencite-(Nd) NdAl3(PO4)2(OH)6

arsenoflorencite-(Ce) CeAl3(AsO4,PO4)2(OH)6

arsenoflorencite-(La) LaAl3(AsO4,PO4)2(OH)6

arsenoflorencite-(Nd) NdAl3(AsO4,PO4)2(OH)6

waylandite (Bi,Ca)Al3(PO4,SiO4)2(OH)6

eyelettersite (Th,Pb)1-xAl3(PO4,SiO4)2(OH)6

arsenowaylandite (Bi,Ca)Al3(AsO4)2(OH)6

Crandallite Group Fe>Al
benauite SrFe3(PO4)2(OH,H2O)6

kintoreite PbFe3(PO4)2(OH,H2O)6

lusungite (Sr,Pb)Fe3(PO4)2(OH,H2O)6

zairite BiFe3(PO4)2(OH)6

dussertite BaFe3(AsO4)2(OH)5

segnitite PbFe3(AsO4)2(OH,H2O)6
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APPENDIX B: THEORY OF PHYSICAL AND CHEMICAL ANALYTICAL

TECHNIQUES

B1 Scanning Electron Microscopy

The scanning electron microscope (SEM) is designed mainly for imaging, rather than

compositional analysis. The SEM produces images by scanning an electron beam on

a sample and producing a signal collected by an electron detector and displayed on a

monitor. Spatial resolution better than 10 nm is available and SEM three-

dimensional images have a large depth of field. The SEM is effective in the study of

crystal morphology.

B2 X-ray diffraction

X-ray diffraction (XRD) is used to identify mineral samples by using a

monochromatic X-ray beam generated by bombarding an anode with electrons and

this beam is directed, via a collimator, on to a powdered sample. The beam causes

the sample to emit characteristic X-rays diffracted at an angle 2θ (θ is the angle of

incidence of the beam), which are directed on to a detector via a collimator and

monochromator (removing fluorescence). An X-ray beam scan is produced by

changing the angle between the source, sample and detector, and the 2θ degree

angles are measured. This produces diffraction patterns of the crystalline substances

in the sample, each having a unique pattern independent of other substances in the

compound. A spectrum is generated of the X-ray intensity (counts) on the y axis with

the 2θ degrees angle on the x axis. Using the known wavelength (λ) of X-rays from

the anode, the 2θ angles and the order of reflection (n), Bragg’s law (nλ = 2d sin θ)

enables the unique spacing (d spacing) of each crystal lattice to be calculated,

allowing identification of minerals using the Joint Committee for Powder Diffraction

Standards’ (JCPDS) reference patterns.



271

B3 Electron microprobe analysis

Electron microprobe analysis (EMPA) is used to identify minerals and to determine

the concentrations of elements in the minerals. The technique can also be used to

determine the textures of the minerals. In EMPA, samples are analysed as polished

thin sections or resin blocks, with an outer coating of carbon to prevent charging. A

spot beam of electrons is directed at the sample by an electron gun and filament. The

electron beam excites electrons in the sample from their ground state by inelastic

collisions (involving a loss of total kinetic energy); these collisions cause electrons

to be ejected from inner electron shells of atoms in the sample. Electrons from higher

shells of the atom fill the vacancies created in the inner shells and these transitions

between energy levels generate X-rays with wavelengths characteristic of the

element involved. Transitions into the K shell (innermost shell around the nucleus)

from the outer orbital of the L shell (next shell out from the nucleus) are called Kα1

transitions. EMPA also has a backscattered electron imaging system to enable the

identification of mineral grains and their textures.

In energy dispersive X-ray spectrometry (EDS) mode, a solid-state

semiconductor (silicon-lithium crystal) detector generates electrical pulses

proportional to the photon energy of the characteristic X-rays detected. The photon

energy (E) in kiloelectronvolts (keV) and X-ray wavelength (λ) are related by the

equation Eλ = 12.398. The pulses generated are processed into ‘channels’ of pulse

counts by a multichannel analyser and the chemical composition of the sample is

displayed as a spectrum of elements, with counts per second (intensity) plotted on

the y axis and keV on the x axis. EDS enables simultaneous determination of the

elements in a sample.
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In wavelength dispersive X-ray spectrometry (WDS) mode, the characteristic

X-rays are reflected by an analysing crystal according to wavelength and directed on

to a detector. A range of analysing crystals, which are curved to ensure a consistent

angle of incidence from the point source in the sample, is used to cover the entire

range of elements. Layered synthetic microstructure (LSM) crystals are used, such as

lithium fluoride (LiF), pentaerythritol (PET) or thallium acid phthalate (TAP)

crystals. Analysis by WDS (5-8 min) takes longer than EDS (2 min) but the accuracy

of WDS is an order of magnitude greater. The detection limits for the two systems

are WDS 0.01 weight % and EDS 0.1-0.5 wt %. Each system makes corrections for

dead time, background X-rays, spectral interference and matrix effects.

B4 Raman spectroscopy

Raman spectroscopy measures inelastic scattering – Raman scattering – of

monochromatic light, in the visible, near infrared or near ultraviolet spectra range,

from a laser on to a sample. Atoms possess quantised vibrational energy states, and

Raman scattering occurs when incident light excites an electron from its ground state

to a virtual energy state and it then relaxes into a vibrational excited state. Raman

scattering is separated from the elastic Rayleigh scattered light by diffraction

gratings and dispersion stages. The Raman scattered light is detected by a charge-

coupled device or photon-counting photomultiplier tube. The counts are used to

generate graphs of peaks and troughs that act as patterns that may be interpreted to

reveal chemical composition and mineralogy. An advantage of the technique is that

samples do not have to be fixed or sectioned and samples < 1 µm in diameter can be

analysed.
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B5 Inductively coupled plasma-atomic emission spectrometry

ICP-OES measures spectra of light emitted by atoms when excited electrons return

to their ground states (lowest energy level). The emission or absorption of energy by

electrons involves transitions between energy levels (orbitals). To jump up orbital

levels requires energy input (absorption of heat), while dropping down levels gives

off energy (photon of light). Electron energy levels, and the energy differences

between them, are related to the charge on the nucleus (and the atomic number, Z).

For each transition, light of a specific wavelength is generated, according to the

energy involved, creating an emission spectral line characteristic of the element. To

identify elements present, the lines are compared with standard lines for each

element.

The light source is the ICP silica glass torch, which atomises the sample

solution in argon plasma at up to 10,000 K, causing complete breakdown of atomic

bonds, so minimising chemical interference. Argon gas is used because it is

optically transparent, is chemically inert and has low thermal conductivity. The

toroidal (doughnut-shaped) plasma is generated by argon gas being introduced

through the outer glass tube of the coaxial torch, flowing through a radio-frequency

magnetic field, produced by load coils around the torch, and being exposed to an

electrical (Tesla) spark. The spark creates ‘seed’ electrons and ions, which oscillate

in the RF field and collide, intensifying the ionisation. Eddy currents of free

electrons are created that cause an ohmic (resistive) heating of the plasma up to

about 10,000 K. The sample solution is mixed with argon gas in a nebuliser

(atomiser) and then passes into a spray chamber, from which it is introduced through

the torch’s inner glass tube into the plasma as an aerosol in the argon carrier gas.



274

The observation region is in the torch’s tail flame (14-18 mm above the induction

coil), where the temperature is 6000 K. An axial or radial system of transfer optics

directs the light to a spectrometer. The spectrometer then directs the light on to a

diffraction grating, which separates (diffracts) the emitted light by wavelength and

focuses it on to a detector. The intensities (counts) of the emitted spectral lines

provide a quantitative measure of analyte concentration and these are compared with

standards.

Simultaneous systems have a polychromator spectrometer with a curved

diffraction grating and up to 30 fixed detector channels that enable the simultaneous

measurement of different wavelengths. The diffraction grating resolves the incident

light into component wavelengths and the diffracted light is directed on to

photomultipliers, aligned to a specific wavelength. The intensity of the signal on to

the photomultiplier gives a measure of element concentration. Sequential systems

focus the light on to a monochromator, which has a diffraction grating that is rotated

under computer control to select wavelengths one element at a time. The diffracted

light is focused on to a single photomultiplier tube, which determines the pre-

selected wavelength (different tubes are needed for multiple elements). An analogue

to digital converter (ADC) changes the voltage of the electrical signal produced by

the photomultiplier into a digital signal for processing.

The temperature of the plasma of up to 10,000 K causes complete

breakdown of the bonds between atoms, so minimising chemical interference.

Matrix effects are minimised by matching standards to the unknowns. Background

emissions can be measured by running an instrument blank.
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APPENDIX C

Product weights of K-Ag jarosites synthesised at 22ºC, 97ºC and 140ºC, and the
concentrations of K and Ag in the starting solutions
Sample Concentration Solution (ml) Product, actual (g) Product, ideal (g)
JS041 0.22 M K, 0.00 M Ag 100 10.10 11.51
JS061 0.165 M K, 0.055 M Ag 100 8.10 11.87
JS06D1 0.165 M K, 0.055 M Ag 100 4.90 11.87
JS081 0.11 M K, 0.11 M Ag 100 8.50 12.25
JS101 0.055 M K, 0.165 M Ag 100 8.20 12.64
JS10D1 0.055 M K, 0.165 M Ag 100 4.30 12.64
JS121 0.00 M M+,2+, 0.22 M Ag 100 8.15 13.05
JS222 0.22 M K, 0.00 M Ag 100 9.48 11.51
JS242 0.165 M K, 0.055 M Ag 100 8.15 11.87
JS24D2 0.165 M K, 0.055 M Ag 100 3.90 11.87
JS262 0.11 M K, 0.11 M Ag 100 5.57 12.25
JS282 0.055 M K, 0.165 M Ag 100 6.92 12.64
JS302 0.00 M M+,2+, 0.22 M Ag 100 6.20 13.05
JS402 0.5 M K, 0.1 M Ag 100 2.14 17.42
JS553 0.12 M K, 0.00 M Ag 100 3.95 6.04
JS563 0.10 M K, 0.02 M Ag 100 3.94 6.09
JS573 0.08 M K, 0.04 M Ag 100 4.69 6.26
JS583 0.06 M K, 0.06 M Ag 100 4.52 6.39
JS593 0.04 M K, 0.08 M Ag 100 3.18 6.51
JS603 0.02 M K, 0.10 M Ag 100 4.73 6.64
JS613 0.00 M M+,2+, 0.12 M Ag 100 3.89 6.81
JS624 0.22 M K, 0.00 M Ag 100 4.90 11.51
JS634 0.165 M K, 0.055 M Ag 100 5.60 11.87
JS644 0.11 M K, 0.11 M Ag 100 7.70 12.25
JS654 0.055 M K, 0.165 M Ag 100 4.50 12.64
JS664 0.00 M M+,2+, 0.22 M Ag 100 4.50 13.05
JS715 0.00 M M+,2+, 0.22 M Ag 100 3.10 13.05
JS726 0.00 M M+,2+, 0.22 M Ag 100 4.60 13.05
JS736 0.22 M K, 0.00 M Ag 100 5.00 11.51
JS746 0.165 M K, 0.055 M Ag 100 4.40 11.87
JS756 0.11 M K, 0.11 M Ag 100 4.30 12.25
JS766 0.055 M K, 0.165 M Ag 100 5.30 12.64
JS815 0.22 M K, 0.00 M Ag 100 5.35 11.51
JS825 0.165 M K, 0.055 M Ag 100 7.20 11.87
JS835 0.11 M K, 0.11 M Ag 100 5.90 12.25
JS845 0.055 M K, 0.165 M Ag 100 3.50 12.64
JS897 0.06 M K, 0.00 M Ag 200 2.60 6.04
JS907 0.05 M K, 0.01 M Ag 200 3.70 6.09
JS917 0.04 M K, 0.02 M Ag 200 4.10 6.26
JS927 0.03 M K, 0.03 M Ag 200 2.90 6.39
JS937 0.02 M K, 0.04 M Ag 200 3.90 6.51
JS947 0.01 M K, 0.05 M Ag 200 2.90 6.64
JS957 0.00 M M+,2+, 0.06 M Ag 200 3.00 6.81
Notes: 1 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 60ºC.
2 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 110ºC.
3 Solutions contained 0.15 M Fe2(SO4)3.5H2O and were heated at 140ºC and products were dried at 110ºC.
4 Samples were annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M Fe2(SO4)3.5H2O and heated
at 97ºC and products dried at 60ºC). 5 Samples were annealed at 140ºC and dried at 110ºC (from solutions originally containing
0.51 M Fe2(SO4)3.5H2O and heated at 97ºC and products dried at 110ºC). 6 Solutions contained 0.51 M Fe2(SO4)3.5H2O and
were prepared at 22ºC and products were air dried. 7 Solutions contained 0.075 M Fe2(SO4)3.5H2O and were prepared at 22ºC
and products were air dried.
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Product weights of Na-Ag jarosites synthesised at 22ºC, 97ºC and 140ºC, and the
concentrations of Na and Ag in the starting solutions
Sample Starting solution Solution (ml) Product, actual (g) Product, ideal (g)
JS121 0.00 M M+, 0.22 M Ag 100 8.15 13.05
JS141 0.22 M Na, 0.00 M Ag 100 4.45 10.94
JS161 0.165 M Na, 0.055 M Ag 100 6.90 11.50
JS181 0.11 M Na, 0.11 M Ag 100 7.20 12.02
JS201 0.055 M Na, 0.165 M Ag 100 8.10 12.53
JS302 0.00 M M+, 0.22 M Ag 100 6.20 13.05
JS322 0.22 M Na, 0.00 M Ag 100 3.72 10.94
JS342 0.165 M Na, 0.055 M Ag 100 4.95 11.50
JS362 0.11 M Na, 0.11 M Ag 100 3.20 12.02
JS382 0.055 M Na, 0.165 M Ag 100 4.35 12.53
JS38D2 0.055 M Na, 0.165 M Ag 100 4.50 12.53
JS422 0.5 M Na, 0.1 M Ag 100 2.48 16.97
JS493 0.12 M Na, 0.00 M Ag 100 4.42 5.81
JS503 0.10 M Na, 0.02 M Ag 100 3.13 5.90
JS513 0.08 M Na, 0.04 M Ag 100 3.29 6.13
JS523 0.06 M Na, 0.06 M Ag 100 3.46 6.31
JS533 0.04 M Na, 0.08 M Ag 100 3.61 6.42
JS543 0.02 M Na, 0.10 M Ag 100 2.82 6.62
JS613 0.00 M M+, 0.12 M Ag 100 3.89 6.81
JS664 0.00 M M+, 0.22 M Ag 100 4.50 13.05
JS674 0.22 M Na, 0.00 M Ag 100 6.80 10.94
JS684 0.165 M Na, 0.055 M Ag 100 8.10 11.50
JS694 0.11 M Na, 0.11 M Ag 100 6.10 12.02
JS704 0.055 M Na, 0.165 M Ag 100 5.80 12.53
JS715 0.00 M M+, 0.22 M Ag 100 3.10 13.05
JS726 0.00 M M+, 0.22 M Ag 100 4.60 13.05
JS776 0.22 M Na, 0.00 M Ag 100 1.90 10.94
JS786 0.165 M Na, 0.055 M Ag 100 1.85 11.50
JS796 0.11 M Na, 0.11 M Ag 100 2.10 12.02
JS806 0.055 M Na, 0.165 M Ag 100 2.90 12.53
JS855 0.22 M Na, 0.00 M Ag 100 8.90 10.94
JS865 0.165 M Na, 0.055 M Ag 100 7.10 11.50
JS875 0.11 M Na, 0.11 M Ag 100 5.10 12.02
JS885 0.055 M Na, 0.165 M Ag 100 4.00 12.53
JS957 0.00 M M+,2+, 0.06 M Ag 200 3.00 6.81
JS967 0.06 M Na, 0.00 M Ag 200 1.00 5.81
JS977 0.05 M Na, 0.01 M Ag 200 2.20 5.90
JS987 0.04 M Na, 0.02 M Ag 200 3.00 6.13
JS997 0.03 M Na, 0.03 M Ag 200 3.40 6.31
JS1007 0.02 M Na, 0.04 M Ag 200 3.50 6.42
JS1017 0.01 M Na, 0.05 M Ag 200 4.20 6.62
Notes: 1 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 60ºC.
2 Solutions contained 0.51 M Fe2(SO4)3.5H2O and were heated at 97ºC and products were dried at 110ºC.
3 Solutions contained 0.15 M Fe2(SO4)3.5H2O and were heated at 140ºC and products were dried at 110ºC.
4 Samples were annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M Fe2(SO4)3.5H2O and heated
at 97ºC and products dried at 60ºC). 5 Samples were annealed at 140ºC and dried at 110ºC (from solutions originally containing
0.51 M Fe2(SO4)3.5H2O and heated at 97ºC and products dried at 110ºC). 6 Solutions contained 0.51 M Fe2(SO4)3.5H2O and
were prepared at 22ºC and products were air dried. 7 Solutions contained 0.075 M Fe2(SO4)3.5H2O and were prepared at 22ºC
and products were air dried.
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Product weights of Pb-Ag jarosites synthesised at 22ºC and 140ºC, plus the
concentrations of Pb and Ag in the starting solutions
Sample Starting solution Solution (ml) Product, actual (g) Product, ideal (g)
JS431 0.06 M Pb, 0.00 M Ag 100 2.87 9.94
JS43D1 0.06 M Pb, 0.00 M Ag 100 2.68 9.94
JS441 0.05 M Pb, 0.02 M Ag 100 2.90 6.78
JS451 0.04 M Pb, 0.04 M Ag 100 3.90 6.75
JS461 0.03 M Pb, 0.06 M Ag 100 4.34 6.80
JS471 0.02 M Pb, 0.08 M Ag 100 4.85 6.79
JS481 0.01 M Pb, 0.10 M Ag 100 3.85 6.77
JS61 0.00 M M+, 0.12 M Ag 100 3.89 6.81
JS952 0.00 M M+,2+, 0.06 M Ag 200 3.00 6.81
JS1022 0.00013 M Pb, 0.05 M Ag 200 3.20 5.94
JS1032 0.00032 M Pb, 0.05 M Ag 200 2.50 5.75
JS1042 0.001 M Pb, 0.05 M Ag 200 4.20 5.87
JS1052 0.005 M Pb, 0.05 M Ag 200 4.30 6.77
JS1062 0.001 M Pb, 0.05 M Ag 200 3.10 5.87
JS1072,3 0.001 M Pb, 0.00 M Ag 200 0.80 0.33 (5.23)
1 Samples contained 0.15 M Fe2(SO4)3.5H2O and were prepared at 140ºC and product were dried at 110ºC.
2 Solutions contained 0.075 M Fe2(SO4)3.5H2O and were prepared at 22ºC and products were air dried. Samples 106 and 107
involved slow addition of Pb over several months. 3 Figure in parentheses is for (Pb0.25[H3O]0.5)Fe3(SO4)2(OH)6.
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APPENDIX D SECONDARY ELECTRON IMAGES

JS4 0.22 M K, 0.0 M Ag (dried at 60ºC)

JS22 0.22 M K, 0.0 M Ag (dried at 110ºC)
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JS6 0.165 M K, 0.055 M Ag (dried at 60ºC)

JS24 0.165 M K, 0.055 M Ag (dried at 110ºC)
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JS6D 0.165 M K, 0.055 M Ag (dried at 60ºC)

JS24D 0.165 M K, 0.055 M Ag (dried at 110ºC)
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JS8 0.11 M K, 0.11 M Ag (dried at 60ºC)

JS26 0.11 M K, 0.11 M Ag (dried at 110ºC)
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JS10 0.055 M K, 0.165 M Ag (dried at 60ºC)

JS28 0.055 M K, 0.165 M Ag (dried at 110ºC)
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JS40 0.5 M K, 0.1 M Ag (dried at 110ºC)

JS12 0.0 M K/Na, 0.22 M Ag (dried at 60ºC)
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JS30 0.0 M K/Na, 0.22 M Ag (dried at 110ºC)

JS14 0.22 M Na, 0.0 M Ag (dried at 60ºC)
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JS32 0.22 M Na, 0.0 M Ag (dried at 110ºC)

JS16 0.165 M Na, 0.055 M Ag (dried at 60ºC)
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JS34 0.165 M Na, 0.055 M Ag (dried at 110ºC)

JS18 0.11 M Na, 0.11 M Ag (dried at 60ºC)
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JS36 0.11 M Na, 0.11 M Ag (dried at 110ºC)

JS20 0.055 M Na, 0.165 M Ag (dried at 60ºC)
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JS38 0.055 M Na, 0.165 M Ag (dried at 110ºC)

JS38D 0.055 M Na, 0.165 M Ag (dried at 110ºC)
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JS42 0.5 M Na, 0.1 M Ag (dried at 110ºC)
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APPENDIX E XRD spectra of synthesised jarosite products (Cu radiation)
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APPENDIX F Raman spectra of synthesised jarosite compounds
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APPENDIX G

Potassium, Na, Pb and Ag occupancies of A site (based on the combined data) and
concentration (M) in starting solutions, and partitioning coefficients for Ag in K-Ag,
Na-Ag and Pb-Ag-jarosites between synthesis solutions and products.

Sample Ag occ. K occ. (Ag/Ag+K)j [Ag]sol. [K]sol. [Ag/Ag+K]sol. P. coeff.
Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC
JS04 0 0.65 0 0 0.22 0 0
JS06 0.18 0.5 0.265 0.055 0.165 0.25 1.06
JS06D 0.15 0.52 0.224 0.055 0.165 0.25 0.896
JS08 0.3 0.41 0.423 0.11 0.11 0.5 0.846
JS10 0.41 0.25 0.621 0.165 0.055 0.75 0.828
JS10D 0.44 0.27 0.62 0.165 0.055 0.75 0.827
JS12 0.78 0 1 0.22 0 1 1
JS04-12 3.153 3.5 0.901
Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC
JS22 0 0.64 0 0 0.22 0 0
JS24 0.15 0.53 0.221 0.055 0.165 0.25 0.884
JS24D 0.14 0.52 0.212 0.055 0.165 0.25 0.848
JS26 0.25 0.44 0.362 0.11 0.11 0.5 0.724
JS28 0.56 0.27 0.675 0.165 0.055 0.75 0.9
JS30 0.63 0 1 0.22 0 1 1
JS22-30 2.470 2.75 0.898
JS40 0.04 0.26 0.133 0.1 0.5 0.167 0.796
Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC
JS55 0 0.43 0 0 0.12 0 0
JS56 0.16 0.7 0.186 0.02 0.1 0.167 1.114
JS57 0.23 0.47 0.329 0.04 0.08 0.333 0.988
JS58 0.34 0.38 0.472 0.06 0.06 0.5 0.944
JS59 0.45 0.29 0.608 0.08 0.04 0.667 0.912
JS60 0.68 0.16 0.81 0.1 0.02 0.833 0.972
JS61 0.85 0 1 0.12 0 1 1
JS55-61 3.405 3.5 0.973
Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC
and products dried at 60ºC)
JS62 0 0.61 0 0 0.22 0 0
JS63 0.21 0.49 0.3 0.055 0.165 0.25 1.2
JS64 0.36 0.37 0.493 0.11 0.11 0.5 0.986
JS65 0.37 0.15 0.712 0.165 0.055 0.75 0.949
JS66 0.44 0 1 0.22 0 1 1
JS62-66 2.505 2.5 1.002
Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC
and products dried at 110ºC)
JS71 0.76 0 1 0.22 0 1 1
JS81 0 0.6 0 0 0.22 0 0
JS82 0.24 0.44 0.353 0.055 0.165 0.25 1.412
JS83 0.46 0.29 0.613 0.11 0.11 0.5 1.226
JS84 0.68 0.09 0.883 0.165 0.055 0.75 1.177
JS71,81-84 2.849 2.5 1.14
Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC
JS72 0.63 0 1 0.22 0 1 1
JS73 0 0.78 0 0 0.22 0 0
JS74 0.06 0.68 0.081 0.055 0.165 0.25 0.324
JS75 0.14 0.64 0.179 0.11 0.11 0.5 0.358
JS76 0.26 0.37 0.413 0.165 0.055 0.75 0.551
JS72-76 1.673 2.5 0.669
Solutions containing 0.075 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC
JS89 0 0.73 0 0 0.06 0 0
JS90 0.05 0.69 0.068 0.01 0.05 0.167 0.407
JS91 0.1 0.65 0.133 0.02 0.04 0.333 0.399
JS92 0.15 0.6 0.2 0.03 0.03 0.5 0.4
JS93 0.35 0.43 0.449 0.04 0.02 0.667 0.673
JS94 0.52 0.28 0.65 0.05 0.01 0.833 0.78
JS95 0.85 0 1 0.06 0 1 1
JS89-95 2.5 3.5 0.714

Key: occ. = A-site occupation; j. = jarosite product; [Ag]sol. = concentration of Ag in starting solution (M); [K]sol. =
concentration of K in starting solution (M); P. coeff. = partitioning coefficient.
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Sample Ag occ. Na occ. (Ag/Ag+Na)j [Ag]sol. [Na]sol. [Ag/Ag+Na]sol. P. coeff.
Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 60ºC
JS12 0.78 0 1 0.22 0 1 1
JS14 0 0.57 0 0 0.22 0 0
JS16 0.37 0.33 0.529 0.055 0.165 0.25 2.116
JS18 0.63 0.1 0.863 0.11 0.11 0.5 1.726
JS20 0.71 0.06 0.922 0.165 0.055 0.75 1.229
JS12-20 3.314 2.5 1.326
Solutions containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC and products dried at 110ºC
JS30 0.63 0 1 0.22 0 1 1
JS32 0 0.55 0 0 0.22 0 0
JS34 0.21 0.12 0.636 0.055 0.165 0.25 2.544
JS36 0.31 0.05 0.861 0.11 0.11 0.5 1.722
JS38 0.61 0.04 0.938 0.165 0.055 0.75 1.251
JS38D 0.65 0.07 0.903 0.165 0.055 0.75 1.204
JS30-38 4.338 3.25 1.335
JS42 0.7 0.09 0.886 0.1 0.5 0.167 5.305
Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC
JS49 0 0.47 0 0 0.12 0 0
JS50 0.25 0.33 0.431 0.02 0.1 0.167 2.581
JS51 0.47 0.2 0.701 0.04 0.08 0.333 2.105
JS52 0.67 0.09 0.882 0.06 0.06 0.5 1.764
JS53 0.77 0.04 0.951 0.08 0.04 0.667 1.426
JS54 0.83 0.01 0.988 0.1 0.02 0.833 1.186
JS61 0.85 0 1 0.12 0 1 1
JS49-54,61 4.953 3.5 1.415
Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC
and products dried at 60ºC)
JS66 0.44 0 1 0.22 0 1 1
JS67 0 0.65 0 0 0.22 0 0
JS68 0.09 0.57 0.136 0.055 0.165 0.25 0.544
JS69 0.19 0.4 0.322 0.11 0.11 0.5 0.644
JS70 0.33 0.23 0.589 0.165 0.055 0.75 0.785
JS66-70 2.047 2.5 0.819
Samples annealed at 140ºC and dried at 110ºC (from solutions originally containing 0.51 M Fe2(SO4)3.5H2O heated at 97ºC
and products dried at 110ºC)
JS71 0.76 0 1 0.22 0 1 1
JS85 0 0.57 0 0 0.22 0 0
JS86 0.35 0.29 0.547 0.055 0.165 0.25 2.188
JS87 0.5 0.17 0.746 0.11 0.11 0.5 1.492
JS88 0.56 0.11 0.836 0.165 0.055 0.75 1.115
JS71,85-88 3.129 2.5 1.252
Solutions containing 0.51 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC
JS72 0.63 0 1 0.22 0 1 1
JS77 0 0.67 0 0 0.22 0 0
JS78 0.42 0.11 0.792 0.055 0.165 0.25 3.168
JS79 0.48 0.06 0.889 0.11 0.11 0.5 1.778
JS80 0.82 0.03 0.965 0.165 0.055 0.75 1.287
JS72,77-80 3.646 2.5 1.458
Solutions containing 0.075 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC
JS95 0.85 0 1 0.06 0 1 1
JS96 0 0.68 0 0 0.06 0 0
JS97 0.41 0.37 0.526 0.01 0.05 0.167 3.15
JS98 0.68 0.14 0.829 0.02 0.04 0.333 2.489
JS99 0.8 0.04 0.952 0.03 0.03 0.5 1.904
JS100 0.81 0.02 0.976 0.04 0.02 0.667 1.463
JS101 0.83 0.01 0.988 0.05 0.01 0.833 1.186
JS95-101 5.271 3.5 1.506
Key: occ. = A-site occupation; j. = jarosite product; [Ag]sol. = concentration of Ag in starting solution (M); [Na]sol. =
concentration of Na in starting solution (M); P. coeff. = partitioning coefficient.
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Sample Ag occ. Pb occ. (Ag/Ag+Pb)j [Ag]sol. [Pb]sol. [Ag/Ag+Pb]sol. P. coeff.
Solutions containing 0.15 M Fe2(SO4)3.5H2O heated at 140ºC and products dried at 110ºC
JS43 0 0.179 0 0 0.06 0 0
JS43D 0 0.168 0 0 0.06 0 0
JS44 0.281 0.081 0.776 0.02 0.05 0.286 2.713
JS45 0.502 0.082 0.86 0.04 0.04 0.5 1.72
JS46 0.701 0.046 0.938 0.06 0.03 0.667 1.406
JS46D 0.58 0.041 0.934 0.06 0.03 0.667 1.4
JS47 0.766 0.021 0.973 0.08 0.02 0.8 1.216
JS48 0.765 0.021 0.973 0.10 0.01 0.909 1.07
JS61 0.857 0 1 0.12 0 1 1
JS43-48,61 6.454 4.829 1.337
Solutions containing 0.075 M Fe2(SO4)3.5H2O were prepared at 22ºC and products air-dried at 22ºC
JS95 0.856 0 1 0.06 0 1 1
JS102 0.826 0.006 0.993 0.05 0.00013 0.998 0.995
JS103 0.822 0.028 0.967 0.05 0.00032 0.994 0.973
JS104 0.853 0.02 0.977 0.05 0.001 0.98 0.997
JS105 0.824 0.063 0.929 0.05 0.005 0.909 1.022
JS106 0.799 0.036 0.957 0.05 0.001 0.98 0.977
JS107 0 0.258 0 0 0.001 0 0
JS95,102-107 5.823 5.861 0.994

Key: occ. = A-site occupation; j. = jarosite product; [Ag]sol. = concentration of Ag in starting solution (M); [Pb]sol. =
concentration of Pb in starting solution (M); P. coeff. = partitioning coefficient.
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APPENDIX H Table of analytical precision (%) of ICP-AES results (parts per million) for samples and duplicates (dup) of K, Na, K-Ag,

Na-Ag and Pb-Ag jarosites synthesised at 22ºC, 97ºC and 140ºC.

Sample Na1 Na2 Na3 K1 K2 K3 Pb1 Pb2 Ag1 Ag2 Fe1 Fe2 Fe3 S1 S2
4 - - - 65289 35654 36924 - - - - 257276 255882 257460 115752 114790

4 dup - - - 103697 46588 47729 - - - - 270472 266855 266936 117916 118596
Precision (%) - - - 32 19 18 - - - - 4 3 3 1 2

14 9880 22698 21321 - - - - - - - 268049 268607 269534 111777 111393
14 dup 8092 24230 22620 - - - - - - - 293411 290979 291306 115265 115177

Precision (%) 14 5 4 - - - - - - - 6 6 5 2 2
26 - - - 70211 29687 29873 - - 44745 46139 257179 256644 257318 114030 112813

26 dup - - - 64652 30497 31234 - - 47639 48329 276839 275037 274654 115357 114838
Precision (%) - - - 6 2 3 - - 4 3 5 5 5 1 1

47 - - - - - - 7004 6281 131528 133051 265361 264176 266757 102066 103233
47 dup - - - - - - 6751 5818 128586 131110 263455 261668 261269 99079 98539

Precision (%) - - - - - - 3 5 2 1 1 1 1 2 3
55 - - - - 24235 24222 - - 63954 66051 264703 263222 263624 110107 110160

55 dup - - - - 23957 24377 - - 64723 65251 270455 267881 267751 109149 109245
Precision (%) - - - - 1 0 - - 1 1 2 1 1 1 1

60 - - - - 9283 10031 - - 110903 109814 261590 259124 260512 100996 101250
60 dup - - - - 9374 9943 - - 110942 111887 259916 258797 258620 102819 103581

Precision (%) - - - - 1 1 - - 0 1 0 0 1 1 2
70 - 7684 7159 - - - - - 78507 78752 268274 270075 271926 104897 105014

70 dup - 7785 7141 - - - - - 78942 79922 274293 272482 273232 105670 105669
Precision (%) - 1 0 - - - - - 0 1 2 1 0 1 0

76 - - - - 27426 28141 - - 198798 196641 185628 186688 191473 109109 108762
76 dup - - - - 27200 28196 - - 197935 194116 187560 189098 193397 109155 109412

Precision (%) - - - - 1 0 - - 0 1 1 1 1 0 0
83 - - - - 17818 17812 - - 78103 80018 257481 260050 261473 102462 102181

83 dup - - - - 18922 18745 - - 81893 83688 271113 272599 272291 107674 108190
Precision (%) - - - - 4 4 - - 3 3 4 3 3 4 4

87 - 5040 4651 - - - - - 104338 105486 272842 272197 274682 107151 106823
87 dup - 4865 4326 - - - - - 101322 104204 265976 266445 266723 102252 103592

Precision (%) - 3 5 - - - - - 2 1 2 2 2 3 2
93 - - - - 27288 27104 - - 61334 62072 245309 245710 246982 104007 105087

93 dup - - - - 27967 28066 - - 62727 63674 251675 252386 252231 107380 108050
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Precision (%) - - - - 2 2 - - 2 2 2 2 1 2 2
101 - 196 318 - - - - 142966 143126 250465 252882 254117 101948 101433

101 dup - 36 228 - - - - - 27613 27722 48696 51330 51422 20226 20679
Precision (%) - 97 23 - - - - - 96 96 95 94 94 95 94

105 - - - - - - 19930 19088 133255 132565 234795 234907 241860 95887 94800
105 dup - - - - - - 26545 26223 135387 133304 236747 238440 241012 96890 96022

Precision (%) - - - - - - 20 22 1 0 1 1 0 1 1

Key: Element and wavelength (nm) analysed: Na1 = Na 568.821; Na2 = Na 588.995; Na3 = Na 589.592; K1 = K 404.721; K2 = K 766.491; K3 = K 769.897; Pb1 = Pb 217.000; P2 = Pb
220.353; Ag1 = Ag 328.068; Ag2 = Ag 338.289; Fe1 = Fe 234.350; Fe2 = Fe 238.204; Fe3 = Fe 259.940; S1 = S 180.669; S2 = S 181.972.
Note: Precision (%) or coefficient of variation = (standard deviation divided by mean) times 100.
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APPENDIX I EMPA chemical compositions (weight %) and site occupancies (and mean or average, ave), standard deviations (s) and

coefficients of variation (C) of K-, Na-, Pb-, Ag-, K-Ag, Na-Ag and Pb-Ag jarosites synthesised at 22ºC, 97ºC and 140ºC.

Chemical composition (wt %) Site occupancy
Analysis Na K Pb Ag Fe S O Total Na K Pb Ag H3O Fe S
4_1 0 1.769 0 0 24.163 8.233 19.61 53.775 0 0.35 0 0 0.65 3.37 2
4_4 0 2.347 0 0 25.759 11.707 25.383 65.196 0 0.33 0 0 0.67 2.53 2
4_5 0 2.113 0 0 29.71 12.719 27.983 72.525 0 0.27 0 0 0.73 2.68 2
4_9 0 3.084 0 0 33.334 12.172 28.401 76.991 0 0.42 0 0 0.58 3.14 2
4_12 0 1.369 0 0 30.281 12.954 28.347 72.951 0 0.17 0 0 0.83 2.68 2
4_19 0 2.244 0 0 25.893 8.844 21.116 58.097 0 0.42 0 0 0.58 3.39 2
4_20 0 2.428 0 0 19.581 6.35 15.611 43.97 0 0.62 0 0 0.38 3.54 2

4_ave 0 0.37 0 0 0.63 3.04 2
s 0 0.1411 0 0 0.1411 0.4104 0
C 0 38.14 0 0 22.40 13.50 0

6_02 0 3.334 0 3.125 29.421 10.714 20.007 66.601 0 0.51 0 0.17 0.32 3.15 2
6_15 0 4.356 0 3.167 15.121 10.743 21.539 54.926 0 0.67 0 0.18 0.15 1.62 2
6_18 0 3.346 0 2.759 27.835 8.277 21.254 63.471 0 0.66 0 0.2 0.14 3.86 2
6_20 0 3.755 0 4.032 29.429 9.678 23.988 70.882 0 0.64 0 0.25 0.11 3.49 2
6_69 0 2.175 0 1.605 19.572 7.043 8.718 39.113 0 0.51 0 0.14 0.35 3.19 2

6_ave 0 0.6 0 0.19 0.21 3.06 2
s 0 0.0811 0 0.0409 0.1119 0.8549 0
C 0 13.52 0 21.53 53.29 27.94 0

6D_2 0 1.18 0 1.012 32.696 12.19 26.751 75.009 0 0.16 0 0.05 0.79 3.08 2
6D_3 0 1.516 0 1.256 31.484 12.722 30.983 77.961 0 0.2 0 0.06 0.74 2.84 2
6D_8 0 2.498 0 2.11 26.694 9.233 22.135 62.67 0 0.44 0 0.14 0.42 3.32 2
6D_11 0 4.453 0 2.604 28.528 10.412 24.863 70.86 0 0.7 0 0.15 0.15 3.15 2
6D_17 0 1.088 0 0.695 15.234 5.392 12.709 35.118 0 0.33 0 0.08 0.59 3.24 2
6D_20 0 1.801 0 1.47 27.368 10.321 23.769 64.729 0 0.29 0 0.08 0.63 3.04 2
6D_23 0 2.128 0 0.978 35.142 14.044 29.383 81.675 0 0.25 0 0.04 0.71 2.87 2
6D_24 0 2.716 0 1.392 35.821 12.875 22.197 75.001 0 0.35 0 0.06 0.59 3.19 2
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6D_26 0 2.462 0 1.296 35.859 13.425 26.728 79.77 0 0.3 0 0.06 0.64 3.07 2
6D_27 0 1.745 0 1.197 36.816 13.864 24.333 77.955 0 0.21 0 0.14 0.65 3.05 2
6D_28 0 2.126 0 0.987 29.691 12.345 19.284 64.433 0 0.28 0 0.05 0.67 2.76 2
6D_29 0 1.937 0 1.181 36.467 13.595 28.706 81.886 0 0.23 0 0.05 0.72 3.08 2
6D_31 0 1.868 0 1.088 35.227 13.938 30.539 82.66 0 0.22 0 0.05 0.73 2.9 2
6D_32 0 2.185 0 1.005 29.827 12.298 18.867 64.182 0 0.29 0 0.05 0.66 2.78 2
6D_33 0 2.261 0 1.138 20.546 7.989 17.17 49.104 0 0.46 0 0.08 0.46 2.95 2
6D_34 0 1.961 0 1.089 36.013 14.18 27.195 80.438 0 0.23 0 0.05 0.72 2.92 2
6D_35 0 2.144 0 1.182 34.339 14.39 22.512 74.567 0 0.24 0 0.05 0.71 2.74 2
6D_36 0 2.982 0 1.17 35.836 14.732 19.879 74.599 0 0.33 0 0.05 0.62 2.79 2
6D_37 0 1.995 0 1.045 36.969 14.218 23.539 77.766 0 0.23 0 0.04 0.73 2.99 2
6D_38 0 2.417 0 1.05 35.762 13.518 21.194 73.941 0 0.29 0 0.05 0.66 3.04 2
6D_39 0 1.801 0 0.772 35.637 14.205 23.358 75.773 0 0.21 0 0.03 0.76 2.88 2
6D_40 0 3.653 0 1.595 37.544 13.16 26.689 82.641 0 0.46 0 0.07 0.47 3.28 2
6D_41 0 1.715 0 1.025 35.44 13.272 27.236 78.688 0 0.21 0 0.05 0.74 3.07 2
6D_42 0 2.535 0 1.146 35.283 12.963 21.757 73.684 0 0.32 0 0.05 0.63 3.12 2
6D_43 0 2.01 0 1.413 35.003 13.015 26.086 77.527 0 0.25 0 0.06 0.69 3.09 2
6D_44 0 1.522 0 0.719 35.96 13.37 20.02 71.591 0 0.19 0 0.03 0.78 3.09 2
6D_45 0 1.873 0 1.125 33.988 13.509 13.17 63.665 0 0.23 0 0.05 0.72 2.89 2
6D_46 0 1.934 0 0.688 21.079 8.917 11.948 44.566 0 0.36 0 0.05 0.59 2.71 2
6D_48 0 2.341 0 1.077 35.226 14.526 12.334 65.504 0 0.26 0 0.04 0.7 2.78 2
6D_49 0 3.869 0 1.693 38.412 13.364 19.466 76.804 0 0.47 0 0.08 0.45 3.30 2
6D_50 0 2.534 0 1.45 30.724 12.868 20.429 68.005 0 0.32 0 0.07 0.61 2.74 2
6D_51 0 2.918 0 1.344 40.432 14.256 20.242 79.192 0 0.34 0 0.06 0.6 3.26 2
6D_52 0 2.051 0 0.907 36.974 14.282 30.031 84.245 0 0.24 0 0.04 0.72 2.97 2
6D_53 0 1.861 0 0.945 35.352 13.44 18.048 69.646 0 0.23 0 0.04 0.73 3.02 2
6D_56 0 1.047 0 0.377 12.393 5.109 19.484 38.41 0 0.34 0 0.04 0.62 2.78 2
6D_57 0 2.127 0 0.903 31.763 12.985 21.609 69.387 0 0.27 0 0.04 0.69 2.81 2
6D_59 0 1.747 0 0.931 31.199 12.231 12.444 58.552 0 0.23 0 0.05 0.72 2.93 2
6D_60 0 2.639 0 1.172 38.114 14.574 17.31 73.809 0 0.29 0 0.05 0.66 3.00 2

6D_ave 0 0.30 0 0.06 0.64 2.99 2
s 0 0.1024 0 0.0279 0.1219 0.1727 0
C 0 34.13 0 46.5 19.05 5.69 0
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8_01 0 2.596 0 5.908 26.07 9.571 25.245 69.39 0 0.44 0 0.37 0.19 3.13 2
8_02 0 2.928 0 5.91 30.996 12.058 24.4 76.292 0 0.4 0 0.29 0.31 2.94 2
8_03 0 2.18 0 4.179 26.243 10.91 18.568 62.08 0 0.33 0 0.23 0.44 2.76 2
8_04 0 2.67 0 7.204 26.861 11.478 22.511 70.724 0 0.38 0 0.37 0.25 2.69 2
8_05 0 1.698 0 6.268 29.64 11.131 21.648 70.385 0 0.25 0 0.33 0.42 3.06 2
8_06 0 1.408 0 5.621 24.874 10.231 10.07 52.204 0 0.23 0 0.33 0.44 2.79 2
8_07 0 1.849 0 4.897 30.838 12.226 27.753 77.563 0 0.25 0 0.24 0.51 2.9 2
8_11 0 2.471 0 5.783 25.352 11.703 22.503 67.812 0 0.35 0 0.29 0.36 2.49 2
8_12 0 2.761 0 5.506 30.251 12.571 23.97 75.059 0 0.36 0 0.26 0.38 2.76 2
8_13 0 1.496 0 4.381 29.936 11.185 17.767 64.765 0 0.22 0 0.23 0.55 3.07 2
8_16 0 0.888 0 5.511 24.556 10.941 16.19 58.086 0 0.13 0 0.3 0.57 2.58 2
8_19 0 1.921 0 6.171 34.391 13.049 22.263 77.795 0 0.24 0 0.28 0.48 3.03 2

08_ave 0 0.3 0 0.29 0.41 2.85 2
s 0 0.0913 0 0.0492 0.1165 0.2049 0
C 0 30.43 0 16.97 28.41 7.19 0

10_1 0 2.404 0 7.087 42.841 12.881 25.155 90.368 0 0.23 0 0.11 0.66 3.04 2
10_2 0 2.438 0 5.323 47.227 14.329 28.271 97.588 0 0.23 0 0.11 0.66 3.1 2
10_3 0 2.341 0 6.243 42.572 13.169 25.193 89.518 0 0.2 0 0.11 0.69 2.94 2
10_4 0 1.764 0 2.952 38.471 13.614 26.455 83.256 0 0.23 0 0.14 0.63 3.02 2
10_5 0 1.499 0 11.168 50.716 17.447 22.816 103.646 0 0.22 0 0.11 0.67 3.05 2
10_6 0 2.199 0 4.666 41.354 14.585 31.084 93.888 0 0.19 0 0.08 0.73 3.02 2
10_11 0 2.431 0 3.822 38.25 13.958 27.67 86.131 0 0.22 0 0.13 0.65 2.9 2
10_12 0 1.736 0 3.862 35.28 14.086 26.824 81.788 0 0.22 0 0.09 0.69 3.08 2
10_13 0 3.532 0 10.125 56.44 21.517 49.751 141.365 0 0.2 0 0.11 0.69 3 2
10_14 0 3.419 0 4.081 42.565 13.839 26.299 90.203 0 0.2 0 0.09 0.71 3 2
10_15 0 2.986 0 3.513 41.144 13.999 25.586 87.228 0 0.2 0 0.13 0.67 3.04 2
10_17 0 2.845 0 5.523 45.181 16.145 32.461 102.155 0 0.22 0 0.12 0.66 3.11 2
10_18 0 1.714 0 4.37 38.027 14.338 31.497 89.946 0 0.19 0 0.08 0.73 2.95 2
10_19 0 2.955 0 3.47 42.433 12.23 21.338 82.426 0 0.23 0 0.1 0.67 3.1 2
10_20 0 2.644 0 5.496 37.755 14.23 27.439 87.564 0 0.23 0 0.11 0.66 3.04 2
10_31 0 2.329 0 5.708 37.363 13.075 25.816 84.291 0 0.29 0 0.16 0.55 3.15 2
10_32 0 1.074 0 8.449 41.417 12.223 27.215 90.378 0 0.2 0 0.16 0.64 2.88 2
10_33 0 1.473 0 5.893 37.205 13.024 28.903 86.498 0 0.27 0 0.28 0.45 3.01 2
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10_36 0 2.973 0 4.613 42.057 13.256 26.893 89.792 0 0.22 0 0.15 0.63 3.12 2
10_38 0 3.332 0 5.236 44.242 14.167 28.369 95.346 0 0.2 0 0.18 0.62 3.04 2
10_40 0 1.4 0 3.308 38.324 13.667 30.084 86.785 0 0.3 0 0.23 0.47 3.05 2
10_43 0 2.353 0 4.638 37.412 13.839 29.705 87.947 0 0.28 0 0.2 0.52 3.1 2
10_44 0 1.711 0 2.922 36.146 14.143 30.493 85.415 0 0.2 0 0.12 0.68 2.93 2
10_46 0 2.079 0 4.308 37.47 14.015 30.325 88.197 0 0.24 0 0.18 0.58 3.07 2
10_49 0 3.4 0 5.929 68.356 26.732 54.564 158.981 0 0.21 0 0.13 0.66 2.94 2
10_55 0 2.824 0 6.557 37.903 13.914 28.811 90.009 0 0.33 0 0.28 0.39 3.13 2

10_ave 0 0.23 0 0.14 0.63 3.03 2
s 0 0.0364 0 0.0548 0.0863 0.0730 0
C 15.83 0 39.14 13.70 2.41 0

10D_3 0 1.14 0 2.132 24.496 9.593 21.773 59.134 0 0.2 0 0.13 0.67 2.93 2
10D_7 0 1.864 0 2.591 29.781 13.171 28.822 76.229 0 0.23 0 0.12 0.65 2.6 2
10D_8 0 1.381 0 4.722 26.94 11.085 24.955 69.083 0 0.2 0 0.25 0.55 2.79 2
10D_10 0 2.644 0 8.752 29.422 12.737 28.685 82.24 0 0.34 0 0.41 0.25 2.65 2
10D_17 0 1.312 0 2.575 33.781 13.821 30.825 82.314 0 0.16 0 0.11 0.73 2.81 2
10D_26 0 1.631 0 3.153 38.177 13.906 29.762 86.629 0 0.19 0 0.13 0.68 3.15 2
10D_28 0 1.496 0 4.613 37.212 13.503 16.626 73.45 0 0.18 0 0.2 0.62 3.16 2
10D_32 0 0.729 0 2.506 23.517 8.082 10.619 45.453 0 0.15 0 0.1 0.75 3.34 2
10D_34 0 2.44 0 5.904 57.493 20.623 28.729 115.189 0 0.19 0 0.17 0.64 3.2 2
10D_35 0 1.605 0 4.618 36.988 13.629 30.844 87.684 0 0.19 0 0.2 0.61 3.12 2
10D_43 0 1.512 0 3.304 42.478 14.757 34.583 96.634 0 0.17 0 0.13 0.7 3.3 2
10D_44 0 2.777 0 4.494 39.638 14.381 23.752 85.042 0 0.32 0 0.19 0.49 3.16 2
10D_45 0 2.196 0 4.426 38.121 14.26 25.956 84.959 0 0.25 0 0.18 0.57 3.07 2
10D_47 0 2.038 0 3.301 37.906 14.195 32.993 90.433 0 0.24 0 0.14 0.62 3.07 2
10D_48 0 1.625 0 3.325 36.998 14.155 26.326 82.429 0 0.19 0 0.14 0.67 3 2
10D_52 0 3.238 0 6.061 37.878 15.039 19.864 82.08 0 0.35 0 0.24 0.41 2.89 2
10D_53 0 1.634 0 2.77 35.897 13.588 35.857 89.746 0 0.2 0 0.12 0.68 3.03 2
10D_54 0 2.768 0 6.387 46.447 16.77 37.038 109.41 0 0.27 0 0.23 0.5 3.18 2
10D_56 0 0.922 0 4.286 36.919 13.106 27.919 83.152 0 0.12 0 0.19 0.69 3.23 2
10D_60 0 1.925 0 3.779 36.733 14.006 24.976 81.419 0 0.23 0 0.16 0.61 3.01 2
10D_61 0 1.504 0 2.486 36.124 13.655 29.449 83.218 0 0.18 0 0.11 0.71 3.04 2

10D_ave 0 0.22 0 0.17 0.61 3.03 2
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s 0 0.0609 0 0.0702 0.1182 0.1982 0
C 0 27.68 0 41.29 19.38 6.54 0

12_29 0 0 0 15.504 57.935 21.96 49.183 144.582 0 0 0 0.42 0.58 3.03 2
12_31 0 0 0 6.215 36.707 13.69 27.565 84.177 0 0 0 0.27 0.73 3.08 2
12_42 0 0 0 5.175 35.627 12.946 27.179 80.927 0 0 0 0.24 0.76 3.16 2

12_ave 0 0 0 0.31 0.69 3.09 2
s 0 0 0 0.0964 0.0964 0.0656 0
C 0 0 0 31.10 13.97 2.12 0

14_25 0.791 0 0 0 37.312 14.299 20.237 72.639 0.15 0 0 0 0.85 3 2
14_26 0.754 0 0 0 36.989 14.433 24.01 76.186 0.15 0 0 0 0.85 2.94 2
14_45 1.238 0 0 0 42.872 15.946 28.246 88.302 0.22 0 0 0 0.78 3.09 2

14_ave 0.17 0 0 0 0.83 3.01 2
s 0.0404 0 0 0 0.0404 0.0755 0
C 23.76 0 0 0 4.87 2.51 0

16_1 0.359 0 0 3.299 24.676 10.608 23.317 62.259 0.09 0 0 0.18 0.73 2.67 2
16_2 0.308 0 0 3.803 27.162 10.807 24.348 66.428 0.08 0 0 0.21 0.71 2.89 2
16_9 0.369 0 0 4.389 25.771 10.863 24.098 65.49 0.09 0 0 0.24 0.67 2.72 2
16_10 0.185 0 0 2.658 29.723 10.565 24.592 67.723 0.05 0 0 0.15 0.8 3.23 2
16_12 0.23 0 0 3.767 23.419 9.892 21.877 59.185 0.06 0 0 0.23 0.71 2.72 2
16_18 0.285 0 0 2.388 29.043 10.671 24.569 66.956 0.07 0 0 0.13 0.8 3.13 2
16_20 0.24 0 0 2.474 26.019 11.081 24.308 64.122 0.06 0 0 0.13 0.81 2.7 2
16_23 1.098 0 0 1.931 38.6 13.548 27.654 82.831 0.23 0 0 0.08 0.69 3.27 2
16_26 0.473 0 0 2.384 38.065 13.262 26.478 80.662 0.1 0 0 0.11 0.79 3.3 2
16_31 0.935 0 0 1.98 37.458 13.242 23.08 76.695 0.2 0 0 0.09 0.71 3.25 2

16_ave 0.1 0 0 0.16 0.74 2.99 2
s 0.0615 0 0 0.0574 0.0525 0.2711 0
C 61.5 0 0 35.88 7.09 9.07 0

18_3 0.274 0 0 4.396 32.947 13.639 30.277 81.533 0.06 0 0 0.19 0.75 2.77 2
18_4 0.137 0 0 5.411 30.43 11.281 26.085 73.344 0.03 0 0 0.29 0.68 3.1 2
18_8 0.244 0 0 3.665 23.178 9.477 21.184 57.748 0.07 0 0 0.23 0.7 2.8 2
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18_15 0.165 0 0 4.125 32.494 11.177 26.404 74.365 0.04 0 0 0.22 0.74 3.34 2
18_21 0.283 0 0 3.444 27.458 11.146 24.903 67.234 0.07 0 0 0.18 0.75 2.83 2
18_22 0.203 0 0 4.082 27.132 11.629 25.551 68.597 0.05 0 0 0.21 0.74 2.68 2

18_ave 0.05 0 0 0.22 0.73 2.92 2
s 0.0163 0 0 0.0390 0.0294 0.2496 0
C 32.60 0 0 17.73 4.03 8.55 0

20_1 0.114 0 0 3.563 37.91 13.362 31.167 86.116 0.02 0 0 0.16 0.82 3.26 2
20_2 0.32 0 0 4.295 38.678 13.213 31.288 87.794 0.07 0 0 0.19 0.74 3.36 2
20_3 0.64 0 0 4.297 37.774 12.82 30.554 86.085 0.14 0 0 0.2 0.66 3.38 2
20_6 0.085 0 0 4.085 29.899 13.47 29.061 76.6 0.02 0 0 0.18 0.8 2.55 2
20_7 0.074 0 0 5.414 29.478 12.077 26.952 73.995 0.02 0 0 0.27 0.71 2.8 2
20_8 0.131 0 0 6.967 33.627 13.363 30.199 84.287 0.03 0 0 0.31 0.66 2.89 2
20_9 0.066 0 0 5.973 34.7 13.539 30.675 84.953 0.01 0 0 0.26 0.73 2.94 2
20_14 0.145 0 0 4.714 32.58 11.586 27.076 76.101 0.03 0 0 0.24 0.73 3.23 2
20_15 0.13 0 0 5.358 25.92 11.739 25.461 68.608 0.03 0 0 0.27 0.7 2.54 2
20_16 0.119 0 0 4.551 32.012 10.745 25.633 73.06 0.03 0 0 0.25 0.72 3.42 2
20_17 0.128 0 0 4.503 36.019 13.068 30.261 83.979 0.03 0 0 0.2 0.77 3.16 2
20_19 0.121 0 0 4.194 36.509 13.154 30.503 84.481 0.03 0 0 0.19 0.78 3.19 2

20_ave 0.04 0 0 0.23 0.74 3.06 2
s 0.0351 0 0 0.0460 0.0505 0.3103 0
C 87.75 0 0 20.00 6.82 10.14 0

22_1 0 1.854 0 0 34.989 14.608 32.27 83.721 0 0.21 0 0 0.79 2.75 2
22_2 0 1.897 0 0 35.321 15.09 33.095 85.403 0 0.21 0 0 0.79 2.69 2
22_3 0 1.848 0 0 34.28 14.701 32.205 83.034 0 0.21 0 0 0.79 2.68 2
22_4 0 3.013 0 0 36.035 15.277 33.808 88.133 0 0.32 0 0 0.68 2.71 2
22_5 0 2.295 0 0 34.703 14.256 31.752 83.006 0 0.26 0 0 0.74 2.8 2
22_6 0 1.908 0 0 32.101 13.466 29.746 77.221 0 0.23 0 0 0.77 2.74 2
22_7 0 1.871 0 0 32.884 14.515 31.532 80.802 0 0.21 0 0 0.79 2.6 2
22_8 0 2.234 0 0 32.574 14.558 31.581 80.947 0 0.25 0 0 0.75 2.57 2
22_9 0 1.712 0 0 31.962 14.442 31.126 79.242 0 0.19 0 0 0.81 2.54 2
22_10 0 1.88 0 0 32.577 14.734 31.775 80.966 0 0.21 0 0 0.79 2.54 2
22_11 0 1.735 0 0 33.286 13.832 30.597 79.45 0 0.21 0 0 0.79 2.76 2
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22_12 0 2.031 0 0 33.841 14.8 32.266 82.938 0 0.23 0 0 0.77 2.63 2
22_13 0 1.749 0 0 34.394 14.534 31.967 82.644 0 0.2 0 0 0.8 2.72 2
22_14 0 1.891 0 0 32.439 14.323 31.121 79.774 0 0.22 0 0 0.78 2.6 2
22_15 0 2.481 0 0 36.157 14.612 34.439 85.989 0 0.28 0 0 0.72 2.84 2
22_16 0 2.115 0 0 33.356 14.777 32.109 82.357 0 0.23 0 0 0.77 2.59 2
22_17 0 2.069 0 0 34.614 14.199 31.595 82.477 0 0.24 0 0 0.76 2.8 2
22_18 0 1.472 0 0 34.452 12.352 28.662 76.938 0 0.2 0 0 0.8 3.2 2
22_19 0 1.361 0 0 32.865 14.639 31.609 80.474 0 0.15 0 0 0.85 2.58 2
22_20 0 1.419 0 0 32.913 14.547 31.496 80.375 0 0.16 0 0 0.84 2.6 2
22_21 0 1.205 0 0 36.651 13.638 31.162 82.656 0 0.14 0 0 0.86 3.09 2
22_22 0 2.408 0 0 37.292 14.075 24.472 78.247 0 0.28 0 0 0.72 3.04 2
22_23 0 1.707 0 0 37.82 13.715 23.695 76.937 0 0.2 0 0 0.8 3.17 2
22_24 0 1.566 0 0 38.181 14.469 28.091 82.307 0 0.18 0 0 0.82 3.03 2
22_25 0 1.91 0 0 36.807 14.334 30.605 83.656 0 0.22 0 0 0.78 2.95 2
22_26 0 1.555 0 0 35.689 14.333 29.806 81.383 0 0.18 0 0 0.82 2.86 2
22_27 0 1.462 0 0 38.187 14.363 27.769 81.781 0 0.17 0 0 0.83 3.05 2
22_28 0 1.958 0 0 41.376 14.298 24.057 81.689 0 0.22 0 0 0.78 3.32 2
22_29 0 2.837 0 0 36.34 14.625 27.583 81.385 0 0.32 0 0 0.68 2.85 2
22_30 0 1.853 0 0 36.877 14.338 28.88 81.948 0 0.21 0 0 0.79 2.95 2
22_31 0 1.645 0 0 37.486 14.221 27.509 80.861 0 0.19 0 0 0.81 3.03 2
22_32 0 2.576 0 0 41.055 14.176 25.832 83.639 0 0.3 0 0 0.7 3.32 2
22_33 0 1.512 0 0 38.868 14.598 28.936 83.914 0 0.17 0 0 0.83 3.06 2
22_34 0 1.651 0 0 37.236 14.037 28.456 81.38 0 0.19 0 0 0.81 3.05 2
22_35 0 1.595 0 0 37.531 13.255 28.293 80.674 0 0.2 0 0 0.8 3.25 2
22_36 0 2.12 0 0 39.743 14.315 25.806 81.984 0 0.24 0 0 0.76 3.19 2
22_37 0 1.685 0 0 37.982 14.222 28.033 81.922 0 0.19 0 0 0.81 3.07 2
22_38 0 1.83 0 0 37.981 14.058 26.809 80.678 0 0.21 0 0 0.79 3.1 2
22_39 0 1.954 0 0 37.363 14.211 25.989 79.517 0 0.23 0 0 0.77 3.02 2
22_40 0 1.58 0 0 38.721 14.375 29.41 84.086 0 0.18 0 0 0.82 3.09 2
22_41 0 1.51 0 0 38.07 14.032 28.645 82.257 0 0.18 0 0 0.82 3.11 2
22_42 0 1.811 0 0 36.075 14.404 28.729 81.019 0 0.21 0 0 0.79 2.88 2
22_43 0 2.055 0 0 33.893 13.561 25.713 75.222 0 0.25 0 0 0.75 2.87 2
22_44 0 1.922 0 0 36.31 13.672 27.808 79.712 0 0.23 0 0 0.77 3.05 2
22_45 0 1.854 0 0 36.893 14.141 25.139 78.027 0 0.21 0 0 0.79 3 2
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22_46 0 2.073 0 0 36.657 13.528 23.535 75.796 0 0.25 0 0 0.75 3.11 2
22_47 0 1.857 0 0 38.466 13.535 25.225 79.083 0 0.22 0 0 0.78 3.26 2
22_48 0 2.032 0 0 37.77 13.292 26.891 79.985 0 0.25 0 0 0.75 3.26 2
22_49 0 1.836 0 0 36.779 13.948 28.434 80.997 0 0.22 0 0 0.78 3.03 2
22_50 0 1.884 0 0 37.984 13.284 24.104 77.256 0 0.23 0 0 0.77 3.28 2
22_51 0 2.321 0 0 38.011 13.552 26.139 80.023 0 0.28 0 0 0.72 3.22 2
22_52 0 2.044 0 0 36.493 14.499 24.139 77.175 0 0.23 0 0 0.77 2.89 2
22_53 0 2.522 0 0 37.281 14.191 27.484 81.478 0 0.29 0 0 0.71 3.02 2
22_54 0 2.846 0 0 37.781 13.982 25.708 80.317 0 0.33 0 0 0.67 3.1 2
22_55 0 3.168 0 0 38.954 14.322 23.107 79.551 0 0.36 0 0 0.64 3.12 2
22_56 0 2.588 0 0 39.615 14.147 23.98 80.33 0 0.3 0 0 0.7 3.21 2
22_57 0 2.056 0 0 36.573 13.25 23.321 75.172 0 0.25 0 0 0.75 3.17 2
22_58 0 3.031 0 0 37.96 14.062 24.532 79.585 0 0.35 0 0 0.65 3.1 2
22_59 0 1.878 0 0 37.644 14.17 26.265 79.957 0 0.22 0 0 0.78 3.05 2
22_60 0 2.793 0 0 38.991 14.214 25.256 81.244 0 0.32 0 0 0.68 3.15 2
22_61 0 2.186 0 0 35.754 14.051 21.577 73.568 0 0.26 0 0 0.74 2.92 2

22_ave 0 0.23 0 0 0.77 2.95 2
s 0 0.0486 0 0 0.0486 0.2248 0
C 0 21.13 0 0 6.31 7.62 0

24_1 0 1.554 0 0.838 16.889 8.596 18.087 45.964 0 0.3 0 0.06 0.64 2.26 2
24_3 0 2.014 0 2.576 32.987 12.355 28.549 78.481 0 0.27 0 0.12 0.61 3.07 2
24_4 0 1.823 0 1.75 21.75 8.203 19.014 52.54 0 0.36 0 0.13 0.51 3.04 2
24_6 0 1.794 0 1.822 31.284 14.816 31.644 81.36 0 0.2 0 0.07 0.73 2.42 2
24_7 0 1.834 0 1.235 31.599 11.19 26.271 72.129 0 0.27 0 0.07 0.66 3.24 2
24_9 0 1.083 0 0.994 26.876 14.738 30.057 73.748 0 0.12 0 0.04 0.84 2.09 2
24_11 0 1.346 0 1.339 18.585 11.617 23.09 55.977 0 0.19 0 0.07 0.74 1.84 2
24_13 0 1.703 0 0.968 16.132 9.386 19.093 47.282 0 0.3 0 0.06 0.64 1.97 2
24_14 0 1.635 0 1.737 24.636 11.743 25.1 64.851 0 0.23 0 0.09 0.68 2.41 2
24_15 0 1.707 0 1.128 24.309 11.796 25.055 63.995 0 0.24 0 0.06 0.7 2.37 2
24_17 0 1.79 0 1.117 19.209 12.196 24.209 58.521 0 0.24 0 0.05 0.71 1.81 2

24_ave 0 0.25 0 0.07 0.68 2.41 2
s 0 0.0644 0 0.0281 0.0839 0.5026 0
C 0 25.76 0 40.14 12.34 20.85 0
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24D_2 0 1.155 0 1.009 39.161 14.975 33.949 90.249 0 0.13 0 0.04 0.83 3 2
24D_17 0 4.736 0 3.089 40.523 13.808 33.478 95.634 0 0.56 0 0.13 0.31 3.37 2
24D_19 0 1.405 0 1.412 40.626 14.879 26.27 92.626 0 0.15 0 0.06 0.79 3.14 2
24D_21 0 3.127 0 2.409 37.761 13.546 22.304 79.147 0 0.38 0 0.11 0.51 3.2 2
24D_24 0 2.1 0 1.695 35.051 13.978 26.508 79.332 0 0.25 0 0.07 0.68 2.88 2
24D_27 0 2.085 0 1.942 35.319 12.844 22.407 74.597 0 0.27 0 0.09 0.64 3.16 2
24D_28 0 2.926 0 1.365 36.998 13.658 22.257 77.204 0 0.35 0 0.06 0.59 3.11 2
24D_29 0 2.102 0 1.439 35.089 12.536 22.391 73.557 0 0.27 0 0.07 0.66 3.21 2
24D_30 0 1.917 0 1.318 37.322 13.631 25.738 79.926 0 0.23 0 0.06 0.71 3.14 2
24D_31 0 1.958 0 1.865 35.429 12.853 20.817 72.922 0 0.25 0 0.09 0.66 3.16 2
24D_32 0 1.585 0 1.569 34.326 13.499 25.108 76.087 0 0.19 0 0.07 0.74 2.92 2
24D_33 0 2.376 0 1.692 39.564 13.966 21.58 79.178 0 0.28 0 0.07 0.65 3.25 2
24D_34 0 1.882 0 1.716 37.181 13.862 26.754 81.395 0 0.22 0 0.07 0.71 3.08 2
24D_35 0 1.787 0 1.339 35.182 13.638 27.16 79.106 0 0.21 0 0.06 0.73 2.96 2
24D_36 0 1.892 0 1.346 36.743 14.024 28.291 82.296 0 0.22 0 0.06 0.72 3.01 2
24D_37 0 2.111 0 1.753 35.647 13.844 28.089 81.444 0 0.25 0 0.08 0.67 2.96 2
24D_38 0 2.158 0 2.243 36.262 13.19 26.563 80.416 0 0.27 0 0.1 0.63 3.16 2
24D_39 0 2.298 0 1.602 36.091 13.987 27.664 81.642 0 0.27 0 0.07 0.66 2.96 2
24D_40 0 1.76 0 1.643 34.864 14.086 27.533 79.886 0 0.2 0 0.07 0.73 2.84 2
24D_41 0 2.008 0 1.448 32.474 13.373 23.692 72.995 0 0.25 0 0.06 0.69 2.79 2
24D_42 0 1.969 0 1.837 35.084 12.817 23.555 75.262 0 0.25 0 0.09 0.66 3.14 2
24D_43 0 1.939 0 2.31 35.131 13.354 23.983 76.717 0 0.24 0 0.1 0.66 3.02 2
24D_44 0 1.982 0 2.186 36.142 13.856 26.511 80.677 0 0.23 0 0.09 0.68 2.99 2
24D_45 0 2.515 0 2.662 35.752 13.593 25.899 80.421 0 0.3 0 0.12 0.58 3.02 2
24D_46 0 1.89 0 2.034 35.071 13.27 26.298 78.563 0 0.23 0 0.09 0.68 3.03 2
24D_47 0 2.462 0 1.616 36.858 12.873 20.095 73.904 0 0.31 0 0.07 0.62 3.22 2
24D_48 0 1.697 0 1.788 35.385 13.721 25.986 78.577 0 0.2 0 0.08 0.72 2.96 2
24D_49 0 3.1 0 3.106 37.915 14.409 14.746 73.276 0 0.35 0 0.13 0.52 3.02 2
24D_51 0 5.238 0 4.767 31.927 12.682 33.283 87.897 0 0.68 0 0.22 0.1 2.89 2
24D_53 0 6.985 0 4.869 32.154 12.938 35.004 91.95 0 0.89 0 0.22 0 2.85 2
24D_54 0 4.243 0 3.017 31.425 13.507 33.711 85.903 0 0.52 0 0.13 0.35 2.67 2
24D_56 0 2.016 0 1.214 32.386 13.959 23.554 73.129 0 0.24 0 0.05 0.71 2.66 2
24D_57 0 2.634 0 2.239 38.861 13.602 23.425 80.761 0 0.32 0 0.1 0.58 3.28 2
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24D_59 0 2.667 0 1.905 39.493 13.361 20.827 78.253 0 0.33 0 0.08 0.59 3.39 2
24D_ave 0 0.3 0 0.09 0.61 3.04 2

s 0 0.1521 0 0.0402 0.1768 0.1753 0
C 0 50.70 0 44.67 28.98 5.77 0

26_2 0 1.912 0 1.314 27.481 12.069 26.428 69.204 0 0.26 0 0.06 0.68 2.61 2
26_3 0 2.134 0 2.39 29.478 13.278 28.934 76.214 0 0.26 0 0.11 0.63 2.55 2
26_4 0 1.698 0 1.113 30.891 12.262 27.635 73.599 0 0.23 0 0.05 0.72 2.89 2
26_7 0 2.01 0 1.936 32.009 11.702 27.242 74.899 0 0.28 0 0.1 0.62 3.14 2
26_10 0 2.307 0 1.767 35.132 12.799 29.827 81.832 0 0.3 0 0.08 0.62 3.15 2
26_12 0 1.478 0 1.822 36.274 12.96 30.229 82.763 0 0.19 0 0.08 0.73 3.21 2
26_20 0 1.439 0 0.429 34.27 13.235 29.958 79.331 0 0.18 0 0.02 0.8 2.97 2

26_ave 0 0.24 0 0.07 0.69 2.93 2
s 0 0.0450 0 0.0308 0.0683 0.2649 0
C 0 18.75 0 44.00 9.90 9.04 0

28_1 0 1.959 0 2.467 35.691 13.478 30.984 84.579 0 0.24 0 0.11 0.65 3.04 2
28_2 0 1.849 0 4.294 38.321 13.277 31.433 89.174 0 0.23 0 0.19 0.58 3.31 2
28_3 0 1.528 0 2.064 35.087 14.082 31.596 84.357 0 0.18 0 0.09 0.73 2.86 2
28_4 0 1.688 0 2.691 32.748 13.913 30.752 81.792 0 0.2 0 0.11 0.69 2.7 2
28_5 0 2.432 0 4.814 39.848 14.038 33.303 94.435 0 0.28 0 0.2 0.52 3.26 2
28_6 0 1.891 0 2.247 35.701 13.836 31.495 85.17 0 0.22 0 0.1 0.68 2.96 2
28_7 0 1.6 0 1.866 36.35 13.435 30.99 84.241 0 0.2 0 0.08 0.72 3.11 2
28_8 0 1.746 0 2.911 36.694 13.496 31.287 86.134 0 0.21 0 0.13 0.66 3.12 2
28_9 0 1.583 0 1.99 36.738 13.783 31.627 85.721 0 0.19 0 0.09 0.72 3.06 2
28_10 0 1.506 0 2.351 35.294 13.203 30.358 82.712 0 0.19 0 0.11 0.7 3.07 2
28_11 0 1.458 0 1.434 35.718 13.981 32.166 84.757 0 0.17 0 0.08 0.75 2.93 2
28_12 0 1.761 0 1.986 35.776 14.043 31.777 85.343 0 0.21 0 0.08 0.71 2.93 2
28_13 0 1.704 0 2.03 36.647 13.656 31.44 85.477 0 0.2 0 0.09 0.71 3.08 2
28_14 0 1.477 0 1.718 35.817 13.75 31.273 84.035 0 0.18 0 0.07 0.75 2.99 2
28_15 0 1.723 0 2.411 35.632 13.818 31.425 85.009 0 0.2 0 0.1 0.7 2.96 2
28_16 0 2.069 0 1.955 38.975 13.668 33.101 89.768 0 0.25 0 0.12 0.63 3.27 2
28_17 0 1.663 0 1.639 35.619 13.367 30.677 82.965 0 0.2 0 0.07 0.73 3.06 2
28_18 0 1.838 0 2.148 36.005 14.199 31.105 85.295 0 0.21 0 0.09 0.7 2.91 2
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28_19 0 1.714 0 1.96 37.561 14.033 32.263 87.531 0 0.2 0 0.08 0.72 3.07 2
28_20 0 1.462 0 1.501 36.506 14.076 31.939 85.484 0 0.17 0 0.06 0.77 2.98 2

28_ave 0 0.21 0 0.1 0.69 3.03 2
s 0 0.0272 0 0.0363 0.0597 0.1445 0
C 0 12.95 0 36.30 8.65 4.77 0

30_3 0 0 0 6.553 33.867 12.23 28.497 81.147 0 0 0 0.32 0.68 3.18 2
30_9 0 0 0 4.237 37.462 13.971 31.959 87.629 0 0 0 0.18 0.82 3.08 2
30_17 0 0 0 5.126 36.291 13.518 31.013 85.948 0 0 0 0.23 0.77 3.08 2
30_18 0 0 0 4.658 37.516 14.088 32.181 88.443 0 0 0 0.2 0.8 3.06 2
30_19 0 0 0 4.715 37.858 13.895 31.995 88.463 0 0 0 0.2 0.8 3.13 2
30_47 0 0 0 7.036 36.755 13.276 29.239 86.306 0 0 0 0.32 0.68 3.18 2

30_ave 0 0 0 0.24 0.76 3.12 2
s 0 0 0 0.0627 0.0627 0.0531 0
C 0 0 0 26.13 8.25 1.7 0

32_21 1.601 0 0 0 29.452 11.2 24.941 67.194 0.4 0 0 0 0.6 3.02 2
32_22 1.57 0 0 0 32.467 12.616 24.956 71.609 0.35 0 0 0 0.65 2.95 2
32_23 1.344 0 0 0 30.386 12.816 30.651 75.197 0.29 0 0 0 0.71 2.72 2
32_24 0.886 0 0 0 29.88 12.621 30.144 73.531 0.2 0 0 0 0.8 2.72 2
32_25 1.757 0 0 0 30.54 11.664 28.086 72.047 0.42 0 0 0 0.58 3.01 2
32_26 1.082 0 0 0 33.842 12.803 26.367 74.094 0.24 0 0 0 0.76 3.03 2
32_28 0.938 0 0 0 31.726 12.406 22.969 68.039 0.21 0 0 0 0.79 2.94 2
32_29 1.281 0 0 0 34.739 13.431 20.905 70.356 0.27 0 0 0 0.73 2.97 2
32_30 1.206 0 0 0 25.315 10.474 20.628 57.623 0.32 0 0 0 0.68 2.77 2
32_31 0.938 0 0 0 30.379 12.833 30.461 74.611 0.2 0 0 0 0.8 2.72 2
32_32 0.899 0 0 0 29.466 12.003 25.901 68.269 0.21 0 0 0 0.79 2.82 2
32_33 0.944 0 0 0 29.015 11.626 28.846 70.431 0.23 0 0 0 0.77 2.87 2
32_34 1.852 0 0 0 30.572 11.859 27.815 72.098 0.44 0 0 0 0.56 2.96 2
32_35 1.171 0 0 0 27.726 12.682 24.509 66.088 0.26 0 0 0 0.74 2.51 2
32_36 0.845 0 0 0 28.667 11.983 25.214 66.709 0.2 0 0 0 0.8 2.75 2
32_37 0.964 0 0 0 27.401 11.64 25.671 65.678 0.23 0 0 0 0.77 2.7 2
32_38 0.609 0 0 0 29.585 12.168 31.595 73.957 0.14 0 0 0 0.86 2.79 2
32_39 1.5 0 0 0 31.193 11.831 28.477 73.001 0.35 0 0 0 0.65 3.03 2
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32_40 1.455 0 0 0 28.44 11.807 28.713 70.416 0.34 0 0 0 0.66 2.77 2
32_41 1.616 0 0 0 24.44 9.862 20.029 55.947 0.46 0 0 0 0.54 2.85 2
32_42 1.043 0 0 0 29.525 11.562 24.167 66.297 0.25 0 0 0 0.75 2.93 2
32_43 1.288 0 0 0 29.713 11.565 25.48 68.046 0.31 0 0 0 0.69 2.95 2
32_44 1.178 0 0 0 26.948 11.591 28.517 68.234 0.28 0 0 0 0.72 2.67 2
32_45 1.159 0 0 0 28.493 11.343 30.872 71.867 0.28 0 0 0 0.72 2.88 2
32_46 1.625 0 0 0 28.05 11.359 24.896 65.93 0.4 0 0 0 0.6 2.84 2
32_47 1.578 0 0 0 30.69 11.956 27.538 71.762 0.37 0 0 0 0.63 2.95 2
32_48 1.444 0 0 0 26.496 11.509 29.845 69.294 0.35 0 0 0 0.65 2.64 2
32_49 1.415 0 0 0 28.849 10.863 28.447 69.574 0.36 0 0 0 0.64 3.05 2
32_50 0.993 0 0 0 26.421 11.544 26.126 65.084 0.24 0 0 0 0.76 2.63 2
32_51 1.485 0 0 0 23.951 10.146 19.933 55.515 0.41 0 0 0 0.59 2.71 2
32_52 1.29 0 0 0 17.386 7.932 13.502 40.11 0.45 0 0 0 0.55 2.52 2
32_53 0.774 0 0 0 25.619 11.477 30.721 68.591 0.19 0 0 0 0.81 2.56 2
32_54 0.664 0 0 0 24.199 11.75 29.539 66.152 0.16 0 0 0 0.84 2.36 2
32_55 1.535 0 0 0 26.63 9.849 16.442 54.456 0.43 0 0 0 0.57 3.1 2
32_56 1.669 0 0 0 26.376 10.823 31.543 70.411 0.43 0 0 0 0.57 2.8 2
32_57 1.147 0 0 0 23.011 11.129 30.1 65.387 0.29 0 0 0 0.71 2.37 2
32_58 1.44 0 0 0 24.818 10.749 28.702 65.709 0.37 0 0 0 0.63 2.65 2
32_59 1.301 0 0 0 24.494 10.923 24.965 61.665 0.33 0 0 0 0.67 2.57 2
32_60 0.898 0 0 0 24.559 11.21 30.342 67.009 0.22 0 0 0 0.78 2.52 2

32_ave 0.3 0 0 0 0.7 2.78 2
s 0.0894 0 0 0 0.0894 0.1907 0
C 29.80 0 0 0 12.77 6.86 0

34_36 0.156 0 0 3.193 30.689 12.346 21.252 67.636 0.04 0 0 0.15 0.81 2.85 2
34_37 0.203 0 0 2.557 31.219 11.736 27.521 73.236 0.05 0 0 0.13 0.82 3.05 2
34_38 0.231 0 0 2.485 29.891 11.601 24.952 69.16 0.06 0 0 0.13 0.81 2.96 2
34_39 0.281 0 0 3.982 31.413 11.514 26.92 74.11 0.07 0 0 0.21 0.72 3.13 2
34_40 0.589 0 0 3.827 32.852 11.792 24.98 74.04 0.14 0 0 0.19 0.67 3.2 2
34_41 1.499 0 0 1.815 28.299 10.701 22.311 64.625 0.39 0 0 0.1 0.51 3.04 2
34_42 0.202 0 0 3.297 29.408 11.213 25.01 69.13 0.05 0 0 0.17 0.78 3.01 2
34_46 0.208 0 0 3.022 33.554 12.194 21.07 70.048 0.05 0 0 0.15 0.8 3.16 2
34_47 0.566 0 0 2.759 32.481 11.748 15.897 63.451 0.13 0 0 0.14 0.73 3.17 2



343

34_48 0.189 0 0 2.542 30.946 11.2 12.747 57.624 0.05 0 0 0.13 0.82 3.17 2
34_51 0.653 0 0 3.219 32.015 11.507 24.115 71.509 0.16 0 0 0.17 0.67 3.19 2
34_53 0.295 0 0 2.851 33.399 12.798 17.103 66.446 0.06 0 0 0.13 0.81 3 2
34_54 0.256 0 0 2.425 35.253 12.875 27.5 78.309 0.06 0 0 0.11 0.83 3.14 2
34_56 0.34 0 0 2.927 33.719 12.909 22.611 72.506 0.07 0 0 0.13 0.8 3 2
34_57 0.227 0 0 4.803 35.823 12.992 26.473 80.318 0.05 0 0 0.22 0.73 3.17 2
34_61 0.46 0 0 2.455 33.799 12.335 24.523 73.572 0.1 0 0 0.12 0.78 3.15 2
34_62 0.732 0 0 1.99 23.405 9.198 12.808 48.133 0.22 0 0 0.13 0.65 2.92 2
34_66 0.212 0 0 2.078 25.159 10.866 22.196 60.511 0.05 0 0 0.11 0.84 2.66 2
34_67 0.454 0 0 3.579 26.889 10.557 19.598 61.077 0.12 0 0 0.2 0.68 2.92 2
34_69 0.441 0 0 2.815 32.071 11.58 17.223 64.13 0.11 0 0 0.14 0.75 3.18 2
34_70 0.205 0 0 1.711 22.493 10.166 1.889 36.464 0.06 0 0 0.1 0.84 2.54 2
34_71 0.369 0 0 2.9 32.089 12.195 26.227 73.78 0.08 0 0 0.14 0.78 3.02 2
34_72 0.398 0 0 3.037 32.554 12.016 22.726 70.731 0.09 0 0 0.15 0.76 3.11 2

34_ave 0.1 0 0 0.15 0.75 3.03 2
s 0.0776 0 0 0.0336 0.0790 0.1701 0
C 77.60 0 0 22.40 10.53 5.61 0

36_2 0.145 0 0 4.278 33.413 12.039 27.963 77.838 0.03 0 0 0.21 0.76 3.19 2
36_6 0.11 0 0 4.569 33.788 12.708 29.08 80.255 0.02 0 0 0.21 0.77 3.05 2
36_20 0.24 0 0 7.43 24.951 9.965 22.698 65.284 0.07 0 0 0.44 0.49 2.87 2

36_ave 0.04 0 0 0.29 0.67 3.04 2
s 0.0265 0 0 0.1328 0.1589 0.1604 0
C 66.25 0 0 45.79 23.72 5.28 0

38_1 0.059 0 0 7.34 37.209 13.8 31.804 90.212 0.01 0 0 0.32 0.67 3.1 2
38_3 0 0 0 6.038 42.095 15.764 36.103 100 0 0 0 0.23 0.77 3.07 2
38_7 0.056 0 0 6.226 41.649 15.872 36.183 99.986 0.01 0 0 0.23 0.76 3.01 2
38_12 0.102 0 0 4.811 36.878 13.79 31.601 87.182 0.02 0 0 0.21 0.77 3.07 2
38_20 0.073 0 0 7.104 36.468 13.712 31.525 88.882 0.01 0 0 0.31 0.68 3.05 2

38_ave 0.01 0 0 0.26 0.73 3.06 2
s 0.0071 0 0 0.0510 0.0505 0.0332 0
C 71.00 0 0 19.62 6.92 1.08 0
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38D_1 0.079 0 0 3.764 34.468 13.118 34.051 100.252 0.02 0 0 0.17 0.81 3.02 2
38D_2 0.119 0 0 3.641 34.737 11.613 31.917 96.914 0.03 0 0 0.19 0.78 3.43 2
38D_3 0.346 0 0 4.463 24.088 8.234 22.638 70.092 0.12 0 0 0.32 0.56 3.36 2
38D_6 0.252 0 0 4.209 34.25 13.87 35.178 102.437 0.05 0 0 0.18 0.77 2.84 2
38D_7 0.124 0 0 4.418 36.593 14.143 36.517 107.477 0.02 0 0 0.19 0.79 2.97 2
38D_8 0.108 0 0 3.479 35.096 14.156 35.852 103.732 0.02 0 0 0.15 0.83 2.85 2
38D_9 0.35 0 0 9.643 30.86 11.206 30.246 95.53 0.09 0 0 0.51 0.4 3.16 2
38D_10 0.115 0 0 2.773 34.974 12.538 33.33 98.719 0.03 0 0 0.13 0.84 3.2 2
38D_11 0.238 0 0 7.02 34.429 13.309 34.617 104.368 0.05 0 0 0.31 0.64 2.97 2
38D_12 0.08 0 0 4.324 35.4 14.199 36.091 105.265 0.02 0 0 0.18 0.8 2.86 2
38D_13 0.142 0 0 4.151 33.031 14.153 35.062 100.695 0.03 0 0 0.17 0.8 2.68 2
38D_14 0.254 0 0 5.352 33.117 12.922 33.383 99.221 0.05 0 0 0.25 0.7 2.94 2
38D_16 0.17 0 0 9.299 38.588 12.886 35.834 113.315 0.04 0 0 0.43 0.53 3.44 2
38D_17 0.116 0 0 4.226 34.618 13.339 34.491 101.626 0.02 0 0 0.19 0.79 2.98 2
38D_18 0.085 0 0 2.532 36.019 13.373 34.979 102.425 0.02 0 0 0.11 0.87 3.09 2
38D_21 0.13 0 0 3.781 33.506 13.952 34.924 100.652 0.03 0 0 0.17 0.8 2.97 2

38D_ave 0.04 0 0 0.23 0.73 3.05 2
s 0.0283 0 0 0.1109 0.1319 0.2195 0
C 70.75 0 0 48.22 18.07 7.20 0

40_4 0 2.704 0 1.05 32.985 12.309 28.506 77.554 0 0.36 0 0.05 0.59 3.08 2
40_9 0 2.094 0 0.729 34.622 14.315 31.83 83.59 0 0.24 0 0.03 0.73 2.78 2
40_11 0 1.112 0 0.733 34.05 13.673 30.505 80.073 0 0.13 0 0.03 0.84 2.86 2
40_18 0 2.648 0 0.647 34.86 14.601 32.434 85.19 0 0.3 0 0.03 0.67 2.74 2

40_ave 0 0.26 0 0.04 0.7 2.87 2
s 0 0.0981 0 0.01 0.1053 0.1518 0
C 0 37.73 0 0.25 15.04 5.29 0

42_5 0.275 0 0 3.813 37.284 13.794 31.707 86.873 0.06 0 0 0.16 0.78 3.1 2
42_7 0.269 0 0 4.359 39.254 13.752 32.249 89.883 0.05 0 0 0.19 0.76 3.28 2
42_11 0.258 0 0 4.517 29.176 10.986 25.229 70.166 0.07 0 0 0.24 0.69 3.05 2
42_12 0.244 0 0 5.138 39.764 14.287 33.245 92.678 0.05 0 0 0.21 0.74 3.2 2
42_13 0.321 0 0 6.161 37.746 14.015 32.364 90.607 0.06 0 0 0.26 0.68 3.09 2
42_15 0.217 0 0 3.886 38.386 13.508 31.574 87.571 0.04 0 0 0.17 0.79 3.26 2
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42_16 0.249 0 0 4.466 33.669 13.959 30.959 83.302 0.05 0 0 0.19 0.76 2.77 2
42_19 0.247 0 0 4.257 33.806 14.326 21.845 84.167 0.05 0 0 0.18 0.77 2.71 2
42_20 0.249 0 0 3.684 36.383 13.131 31.44 84.887 0.05 0 0 0.17 0.78 3.18 2

42_ave 0.05 0 0 0.2 0.75 3.07 2
s 0.0086 0 0 0.0339 0.0397 0.2033 0
C 17.40 0 0 16.95 5.29 6.62 0

44_1 0 0 1.412 5.426 25.827 10.486 34.1 77.251 0 0 0.042 0.308 0.608 2.828 2
44_3 0 0 0.647 3.271 23.716 9.985 31.668 69.287 0 0 0.02 0.195 0.785 2.727 2
44_4 0 0 0.279 2.941 25.001 10.204 32.834 71.259 0 0 0.008 0.171 0.821 2.813 2
44_8 0 0 1.756 3.996 26.835 10.927 35.379 78.893 0 0 0.05 0.217 0.733 2.819 2

44_ave 0 0 0.03 0.223 0.747 2.797 2
s 0 0 0.0194 0.0599 0.0931 0.0469 0
C 0 0 64.67 26.86 12.46 1.68 0

45_07 0 0 0.149 6.578 19.645 6.444 15.772 48.588 0 0 0.007 0.607 0.386 3.5 2
45_40 0 0 0.159 10.376 22.828 12.664 16.546 62.573 0 0 0.004 0.487 0.509 2.069 2
45_41 0 0 0.483 5.653 19.384 10.697 18.516 54.733 0 0 0.014 0.314 0.672 2.08 2
45_61 0 0 0 0.411 1.56 0.64 1.66 4.271 0 0 0 0.382 0.618 2.798 2

45_ave 0 0 0.006 0.448 0.546 2.61 2
s 0 0 0.0059 0.1279 0.1265 0.6834 0
C 0 0 98.33 28.55 23.17 26.18 0

47_46 0 0 0.311 14.181 25.787 13.288 17.882 71.449 0 0 0.007 0.634 0.359 2.23 2
47_47 0 0 0.116 20.792 33.609 17.328 17.355 89.2 0 0 0.002 0.713 0.285 2.23 2
47_48 0 0 0.111 20.78 37.484 16.228 19.163 93.766 0 0 0.002 0.761 0.237 2.65 2
47_52 0 0 0.096 20.737 32.386 15.362 19.986 88.567 0 0 0.002 0.802 0.196 2.42 2
47_54 0 0 0.183 18.805 29.279 13.981 21.826 84.074 0 0 0.004 0.8 0.196 2.40 2
47_55 0 0 0.036 16.999 28.851 14.329 25.658 85.873 0 0 0.001 0.705 0.294 2.31 2
47_56 0 0 0.929 8.729 31.21 12.174 23.349 76.391 0 0 0.024 0.426 0.55 2.94 2
47_57 0 0 0.273 19.353 37.553 17.692 18.128 92.999 0 0 0.005 0.65 0.345 2.44 2
47_58 0 0 0 14.887 29.339 15.415 18.704 78.345 0 0 0 0.574 0.426 2.19 2
47_61 0 0 0 20.227 32.292 15.254 22.762 90.535 0 0 0 0.788 0.212 2.43 2
47_62 0 0 0 19.258 31.089 15.627 20.462 86.436 0 0 0 0.733 0.267 2.28 2
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47_63 0 0 0.507 17.185 36.347 14.96 21.108 90.107 0 0 0.01 0.68 0.31 2.79 2
47_65 0 0 0.208 13.242 33.459 15.881 16.907 79.697 0 0 0.004 0.496 0.5 2.42 2
47_67 0 0 0.286 17.935 43.012 20.771 15.526 97.53 0 0 0.004 0.513 0.483 2.38 2
47_68 0 0 0.186 18.771 41.232 19.731 15.13 95.05 0 0 0.003 0.565 0.432 2.40 2
47_69 0 0 0.124 14.63 29.094 15.344 6.016 65.208 0 0 0.003 0.567 0.43 2.18 2
47_70 0 0 0.131 19.916 28.578 15.033 20.313 83.971 0 0 0.003 0.788 0.209 2.18 2
47_72 0 0 0.17 14.808 29.09 13.602 29.016 86.686 0 0 0.004 0.647 0.349 2.46 2
47_74 0 0 0.061 23.112 37.29 16.429 24.887 101.779 0 0 0.001 0.836 0.163 2.61 2
47_75 0 0 0 16.548 42.64 18.773 29.487 107.448 0 0 0 0.524 0.476 2.61 2
47_76 0 0 0.143 14.036 20.14 8.566 21.742 64.627 0 0 0.005 0.974 0.021 2.7 2
47_77 0 0 0 27.062 41.47 16.803 25.135 110.47 0 0 0 0.957 0.043 2.83 2
47_80 0 0 2.393 17.23 36.008 18.957 13.844 88.432 0 0 0.039 0.54 0.421 2.18 2
47_81 0 0 0.257 14.603 34.005 12.987 15.286 77.138 0 0 0.006 0.668 0.326 3 2
47_82 0 0 0.184 17.981 28.528 14.441 25.726 86.86 0 0 0.004 0.69 0.306 2.27 2
47_83 0 0 0.111 20.282 35.716 16.616 23.337 96.062 0 0 0.002 0.726 0.272 2.47 2
47_84 0 0 0.701 19.755 43.595 20.516 16 100.567 0 0 0.011 0.572 0.417 2.44 2
47_87 0 0 0.097 17.364 40.195 17.036 26.73 101.422 0 0 0.002 0.606 0.392 2.71 2
47_88 0 0 0.109 14.964 35.188 15.389 5.593 71.243 0 0 0.002 0.578 0.42 2.63 2
47_89 0 0 1.607 14.125 48.576 21.056 24.192 109.556 0 0 0.024 0.399 0.577 2.65 2
47_90 0 0 0.127 18.242 32.673 16.123 22.996 90.161 0 0 0.002 0.673 0.325 2.33 2
47_91 0 0 0 15.842 24.695 11.687 29.403 81.627 0 0 0 0.806 0.194 2.43 2
47_92 0 0 0.081 13.148 28.578 14.436 17.061 73.304 0 0 0.002 0.541 0.457 2.27 2
47_93 0 0 0.688 7.747 40.323 20.701 20.556 90.015 0 0 0.01 0.222 0.768 2.24 2

47_ave 0 0 0.006 0.652 0.342 2.46 2
s 0 0 0.0082 0.1546 0.1511 0.2243 0
C 0 0 136.67 23.71 44.18 9.12 0

48_8 0 0 0.224 5.715 27.994 10.07 26.071 70.064 0 0 0.007 0.337 0.656 3.19 2
48_12 0 0 0.061 5.881 25.739 10.051 25.187 66.925 0 0 0.002 0.348 0.65 2.94 2
48_17 0 0 0.168 4.162 27.568 10.048 25.753 67.699 0 0 0.005 0.246 0.749 3.15 2
48_21 0 0 0.315 5.068 28.251 10.367 26.568 70.579 0 0 0.009 0.291 0.7 3.13 2
48_24 0 0 0.72 4.755 28.386 10.441 26.747 71.039 0 0 0.021 0.271 0.708 3.12 2

48_ave 0 0 0.009 0.299 0.693 3.11 2
s 0 0 0.0073 0.0433 0.0407 0.0966 0
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C 0 0 81.11 14.48 5.87 3.11 0

49_1 2.28 0 0 0 22.767 10.605 34.495 70.147 0.6 0 0 0 0.4 2.46 2
49_14 1.887 0 0 0 18.234 9.344 33.376 62.841 0.56 0 0 0 0.44 2.24 2
49_18 2.014 0 0 0 20.351 10.568 35.497 68.43 0.53 0 0 0 0.47 2.21 2
49_20 2.089 0 0 0 19.947 10.28 35.297 67.613 0.57 0 0 0 0.43 2.23 2

49_ave 0.56 0.44 2.29 2
s 0.0289 0 0 0 0.0289 0.1173 0
C 5.16 0 0 0 6.57 5.12 0

50_1 1.749 0 0 3.887 33.201 13.674 28.924 81.435 0.36 0 0 0.17 0.47 2.79 2
50_2 0.965 0 0 3.551 30.105 12.212 21.782 68.615 0.22 0 0 0.17 0.61 2.83 2
50_3 1.296 0 0 4.876 30.397 13.127 24.979 74.675 0.28 0 0 0.22 0.5 2.66 2
50_4 0.48 0 0 3.983 34.616 13.578 36.113 88.77 0.1 0 0 0.17 0.73 2.93 2
50_5 0.48 0 0 5.382 35.009 13.649 24.836 79.356 0.1 0 0 0.23 0.67 2.94 2
50_6 0.756 0 0 4.128 33.398 13.678 31.019 82.979 0.15 0 0 0.18 0.67 2.8 2
50_10 1.337 0 0 6.742 31.463 12.614 24.259 76.415 0.3 0 0 0.32 0.38 2.86 2
50_14 1.872 0 0 2.989 32.228 13.629 24.194 74.912 0.38 0 0 0.13 0.49 2.71 2
50_15 1.943 0 0 3.281 32.287 13.477 26.4 77.388 0.4 0 0 0.15 0.45 2.75 2
50_18 0.599 0 0 5.15 34.2 13.741 33.5 87.19 0.12 0 0 0.22 0.66 2.86 2
50_19 1.386 0 0 4.734 32.964 13.159 27.167 79.41 0.29 0 0 0.21 0.5 2.88 2
50_20 0.572 0 0 9.913 33.705 12.565 29.586 86.341 0.13 0 0 0.47 0.4 3.08 2
50_21 2.347 0 0 2.96 29.896 13.027 19.008 67.238 0.5 0 0 0.14 0.36 2.63 2
50_22 0.645 0 0 7.898 34.443 12.938 28.084 84.008 0.14 0 0 0.36 0.5 3.06 2
50_23 0.6 0 0 5.895 34.363 13.287 32.486 86.631 0.13 0 0 0.26 0.61 2.97 2
50_24 1.381 0 0 4.351 30.526 12.557 30.991 79.806 0.31 0 0 0.21 0.48 2.79 2
50_25 0.904 0 0 4.587 34.97 14.264 27.945 82.67 0.18 0 0 0.19 0.63 2.81 2
50_27 0.515 0 0 4.648 33.618 13.279 31.158 83.218 0.11 0 0 0.21 0.68 2.91 2
50_29 1.628 0 0 6.034 30.618 13.324 19.916 71.52 0.34 0 0 0.27 0.39 2.64 2
50_30 1.593 0 0 7.493 27.053 13.135 22.111 71.385 0.34 0 0 0.34 0.32 2.36 2
50_32 0.9 0 0 4.863 34.221 13.445 30.303 83.732 0.19 0 0 0.21 0.6 2.92 2
50_33 1.495 0 0 3.207 34.311 13.099 28.527 80.639 0.32 0 0 0.15 0.53 3 2
50_34 0.836 0 0 8.823 33.166 12.99 28.898 84.713 0.18 0 0 0.4 0.42 2.93 2
50_37 0.725 0 0 6.272 33.635 13.596 26.224 80.452 0.15 0 0 0.27 0.58 2.84 2
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50_39 2.011 0 0 3.875 34.079 13.701 30.356 84.022 0.41 0 0 0.17 0.42 2.86 2
50_40 0.723 0 0 5.693 33.57 14.13 23.018 77.134 0.14 0 0 0.24 0.62 2.73 2
50_42 1.488 0 0 5.143 34.068 13.799 33.8 88.298 0.3 0 0 0.22 0.48 2.83 2
50_43 1.8 0 0 2.866 33.132 13.402 35.939 87.139 0.37 0 0 0.13 0.5 2.84 2
50_44 0.645 0 0 4.664 34.564 13.83 32.452 86.155 0.13 0 0 0.2 0.67 2.87 2
50_45 2.011 0 0 3.199 33.718 13.302 33.981 86.211 0.42 0 0 0.14 0.44 2.91 2
50_46 1.215 0 0 5.708 33.445 13.654 24.224 78.246 0.25 0 0 0.25 0.5 2.81 2
50_47 1.509 0 0 3.137 32.227 13.282 28.26 78.415 0.32 0 0 0.14 0.54 2.79 2
50_48 1.99 0 0 3.932 33.81 13.35 32.522 85.604 0.42 0 0 0.18 0.4 2.91 2
50_49 1.626 0 0 3.907 31.51 12.918 30.616 80.577 0.35 0 0 0.18 0.47 2.8 2
50_50 1.029 0 0 4.342 34.779 14.167 23.334 77.651 0.2 0 0 0.18 0.62 2.82 2
50_51 1.638 0 0 5.81 32.613 12.247 27.816 80.124 0.37 0 0 0.28 0.35 3.06 2
50_53 0.925 0 0 4.755 34.873 13.613 31.44 85.606 0.19 0 0 0.21 0.6 2.94 2
50_54 1.451 0 0 5.533 32.508 13.345 25.148 77.985 0.3 0 0 0.25 0.45 2.8 2
50_55 0.535 0 0 6.274 34.751 13.468 30.087 85.115 0.11 0 0 0.28 0.61 2.96 2
50_56 0.764 0 0 4.947 33.97 13.47 25.5 78.651 0.16 0 0 0.22 0.62 2.9 2
50_58 0.648 0 0 11.588 28.815 11.61 27.003 79.664 0.16 0 0 0.59 0.25 2.85 2
50_59 0.644 0 0 11.174 33.104 12.355 23.827 81.104 0.15 0 0 0.54 0.31 3.08 2
50_60 0.739 0 0 3.609 33.532 12.997 28.137 79.014 0.16 0 0 0.17 0.67 2.96 2

50_ave 0.25 0 0 0.24 0.51 2.85 2
s 0.1111 0 0 0.1031 0.1181 0.1327 0
C 44.44 0 0 42.96 23.16 4.66 0

51_5 0.796 0 0 8.387 30.184 12.672 26.361 78.4 0.18 0 0 0.39 0.43 2.73 2
51_6 0.552 0 0 9.305 31.366 12.171 31.748 85.142 0.13 0 0 0.45 0.42 2.96 2
51_12 0.317 0 0 5.013 29.691 12.546 29.805 77.372 0.07 0 0 0.24 0.69 2.72 2
51_13 0.487 0 0 8.682 30.253 12.336 33.782 85.54 0.11 0 0 0.42 0.47 2.82 2
51_14 0.851 0 0 4.727 31.802 12.801 34.05 84.231 0.19 0 0 0.22 0.59 2.85 2
51_15 0.748 0 0 5.887 30.891 12.402 33.067 82.995 0.17 0 0 0.28 0.55 2.86 2
51_16 0.724 0 0 6.983 30.892 12.557 28.325 79.481 0.16 0 0 0.33 0.51 2.82 2
51_17 1.748 0 0 3.806 30.843 11.892 33.248 81.537 0.41 0 0 0.19 0.4 2.98 2
51_22 0.267 0 0 4.537 34.228 12.926 33.38 85.338 0.06 0 0 0.21 0.73 3.04 2
51_23 0.538 0 0 7.016 31.562 12.871 25 76.987 0.12 0 0 0.32 0.56 2.82 2
51_24 0.302 0 0 5.065 33.224 12.654 34.68 85.925 0.07 0 0 0.24 0.69 3.01 2
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51_25 0.577 0 0 8.053 32.002 13.138 26.936 80.706 0.12 0 0 0.36 0.52 2.8 2
51_26 0.312 0 0 6.392 32.732 12.983 33.952 86.371 0.07 0 0 0.29 0.64 2.89 2
51_27 0.655 0 0 6.286 31.695 12.505 35.41 86.551 0.15 0 0 0.3 0.55 2.91 2
51_28 0.766 0 0 4.758 32.733 13.78 29.622 81.659 0.16 0 0 0.21 0.63 2.73 2
51_29 0.319 0 0 4.918 33.549 12.948 30.903 82.637 0.07 0 0 0.23 0.7 2.97 2
51_30 0.63 0 0 8.017 30.767 12.314 32.303 84.031 0.14 0 0 0.39 0.47 2.87 2
51_31 1.366 0 0 5.713 29.99 12.181 27.15 76.4 0.31 0 0 0.28 0.41 2.83 2
51_33 0.368 0 0 4.211 32.576 13.017 26.665 76.837 0.08 0 0 0.19 0.73 2.87 2
51_34 1.838 0 0 4.385 30.592 12.78 25.837 75.432 0.4 0 0 0.2 0.4 2.75 2
51_35 1.036 0 0 8.996 28.303 12.38 27.037 77.752 0.23 0 0 0.43 0.44 2.62 2
51_37 1.115 0 0 6.35 30.945 12.602 30.137 81.149 0.25 0 0 0.3 0.45 2.82 2
51_39 1.45 0 0 4.839 31.345 13.195 27.118 77.947 0.31 0 0 0.22 0.47 2.73 2
51_41 0.643 0 0 5.368 31.706 13.041 34.747 85.505 0.14 0 0 0.24 0.62 2.79 2
51_42 0.789 0 0 4.486 32.269 12.8 33.822 84.166 0.17 0 0 0.21 0.62 2.89 2
51_44 0.409 0 0 9.11 30.619 12.764 30.644 83.546 0.09 0 0 0.42 0.49 2.75 2
51_46 0.728 0 0 8.083 33.46 12.477 33.781 88.529 0.16 0 0 0.39 0.45 3.08 2
51_48 0.709 0 0 7.21 28.008 12.217 27.674 75.818 0.16 0 0 0.35 0.49 2.63 2
51_51 0.188 0 0 4.354 33.216 12.307 31.709 81.774 0.04 0 0 0.21 0.75 3.1 2
51_53 0.46 0 0 5.508 31.059 12.904 33.568 83.499 0.1 0 0 0.25 0.65 2.76 2
51_54 0.529 0 0 8.023 30.797 11.913 28.894 80.156 0.12 0 0 0.4 0.48 2.97 2
51_56 0.996 0 0 6.795 31.457 12.385 31.898 83.531 0.22 0 0 0.33 0.45 2.92 2
51_57 0.537 0 0 4.515 33.533 13.16 31.115 82.86 0.11 0 0 0.2 0.69 2.93 2
51_58 0.54 0 0 4.25 32.536 12.764 28.858 78.948 0.12 0 0 0.2 0.68 2.93 2
51_59 0.249 0 0 5.695 32.958 13.13 33.086 85.118 0.05 0 0 0.26 0.69 2.88 2
51_60 0.633 0 0 6.934 31.457 12.711 29.924 81.659 0.14 0 0 0.32 0.54 2.84 2

51_ave 0.16 0 0 0.29 0.55 2.86 2
s 0.0894 0 0 0.0808 0.1107 0.1145 0
C 55.88 0 0 27.86 20.13 4.00 0

52_1 0.158 0 0 5.068 34.196 13.669 35.862 88.953 0.03 0 0 0.22 0.75 2.87 2
52_2 0.182 0 0 7.575 33.164 13.107 27.359 81.387 0.04 0 0 0.34 0.62 2.9 2
52_4 0.141 0 0 3.802 34.012 14.081 30.578 82.614 0.03 0 0 0.16 0.81 2.77 2
52_8 0.181 0 0 8.576 33.466 12.947 33.518 88.688 0.04 0 0 0.39 0.57 2.97 2
52_9 0.225 0 0 12.516 29.461 11.74 28.191 82.133 0.05 0 0 0.63 0.32 2.88 2
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52_13 0.251 0 0 12.01 30.16 12.488 28.15 83.059 0.06 0 0 0.57 0.37 2.77 2
52_21 0.168 0 0 4.93 33.295 12.776 35.001 86.17 0.04 0 0 0.23 0.73 2.99 2
52_22 0.224 0 0 11.838 31.4 12.401 29.949 85.812 0.05 0 0 0.57 0.38 2.91 2
52_24 0.199 0 0 5.249 33.642 13.974 27.976 81.04 0.04 0 0 0.22 0.74 2.76 2
52_25 0.122 0 0 7.149 33.48 13.865 32.5 87.116 0.02 0 0 0.31 0.67 2.77 2
52_32 0.247 0 0 8.004 31.588 12.842 33.206 85.887 0.05 0 0 0.37 0.58 2.82 2
52_33 0.22 0 0 5.37 33.52 13.257 30.787 83.154 0.05 0 0 0.24 0.71 2.9 2
52_34 0.186 0 0 7.155 31.839 13.041 29.578 81.799 0.04 0 0 0.33 0.63 2.8 2
52_36 0.244 0 0 8.55 32.46 12.657 32.743 86.654 0.05 0 0 0.4 0.55 2.94 2
52_38 0.276 0 0 5.347 32.968 13.4 34.135 86.126 0.06 0 0 0.24 0.7 2.82 2
52_40 0.291 0 0 8.932 31.246 12.2 31.699 84.368 0.07 0 0 0.44 0.49 2.94 2
52_41 0.367 0 0 13.491 30.408 11.654 26.647 82.567 0.09 0 0 0.69 0.22 3 2
52_45 0.145 0 0 4.951 32.035 12.091 38.458 87.68 0.03 0 0 0.24 0.73 3.04 2
52_48 0.223 0 0 10.848 32.897 12.572 28.575 85.115 0.05 0 0 0.51 0.44 3 2
52_49 0.13 0 0 9.372 30.765 12.301 32.868 85.436 0.03 0 0 0.45 0.52 2.87 2
52_50 0.257 0 0 7.328 28.972 11.589 35.741 83.887 0.06 0 0 0.38 0.56 2.87 2
52_51 0.134 0 0 5.893 33.932 13.174 38.787 91.92 0.03 0 0 0.27 0.7 2.96 2
52_54 0.195 0 0 7.026 33.456 13.333 28.86 82.87 0.04 0 0 0.31 0.65 2.88 2
52_55 0.136 0 0 11.597 28.079 11.298 30.007 81.117 0.03 0 0 0.61 0.36 2.85 2
52_60 0.229 0 0 7.644 31.518 12.717 36.214 88.322 0.05 0 0 0.36 0.59 2.85 2
52_74 0.177 0 0 5.495 46.629 27.447 0.556 80.304 0.03 0 0 0.28 0.69 2.88 2
52_80 0.26 0 0 6.356 45.815 26.084 0.201 78.716 0.05 0 0 0.34 0.61 2.97 2
52_81 0.315 0 0 6.935 45.235 25.473 0.484 78.442 0.06 0 0 0.38 0.56 3.01 2
52_83 0.317 0 0 4.134 45.686 27.007 0.354 77.498 0.06 0 0 0.21 0.73 2.87 2
52_85 0.24 0 0 4.642 42.487 23.771 0.812 71.952 0.05 0 0 0.27 0.68 3.02 2

52_ave 0.05 0 0 0.37 0.58 2.9 2
s 0.0148 0 0 0.1394 0.1464 0.0816 0
C 29.60 0 0 37.68 25.24 2.81 0

53_1 0.129 0 0 5.47 34.204 13.764 32.584 86.151 0.03 0 0 0.24 0.73 2.85 2
53_2 0.038 0 0 6.014 32.161 12.356 33.922 84.491 0.01 0 0 0.29 0.7 2.99 2
53_3 0.091 0 0 4.081 35.003 13.922 31.423 84.52 0.02 0 0 0.17 0.81 2.89 2
53_6 0.105 0 0 4.408 35.036 13.583 28.395 81.527 0.02 0 0 0.19 0.79 2.96 2
53_7 0.119 0 0 6.509 31.171 12.559 29.455 79.813 0.03 0 0 0.31 0.66 2.85 2
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53_9 0.069 0 0 4.22 32.721 13.061 28.949 79.02 0.01 0 0 0.19 0.8 2.88 2
53_11 0.161 0 0 6.319 30.987 13.09 24.823 75.38 0.03 0 0 0.29 0.68 2.72 2
53_12 0.136 0 0 7.869 31.758 12.393 30.909 83.065 0.03 0 0 0.38 0.59 2.94 2
53_14 0.196 0 0 7.119 33.831 12.703 21.955 75.804 0.04 0 0 0.33 0.63 3.06 2
53_15 0.205 0 0 7.118 32.439 12.858 27.597 80.217 0.04 0 0 0.33 0.63 2.9 2
53_18 0.132 0 0 5.421 33.705 13.288 31.316 83.862 0.03 0 0 0.24 0.73 2.91 2
53_21 0.203 0 0 5.073 31.838 12.545 35.563 85.222 0.05 0 0 0.24 0.71 2.91 2
53_23 0.078 0 0 5.15 32.292 12.477 38.58 88.577 0.02 0 0 0.25 0.73 2.97 2
53_24 0.1 0 0 4.138 33.231 14.248 30.135 81.852 0.02 0 0 0.17 0.81 2.68 2
53_25 0.176 0 0 9.63 32.945 12.671 26.674 82.096 0.04 0 0 0.45 0.51 2.99 2
53_26 0.095 0 0 5.167 34.132 13.767 28.007 81.168 0.02 0 0 0.22 0.76 2.85 2
53_32 0.071 0 0 5.812 32.48 13.263 31.371 82.997 0.01 0 0 0.26 0.73 2.81 2
53_34 0.2 0 0 4.568 32.839 13 29.966 80.573 0.04 0 0 0.21 0.75 2.9 2
53_35 0.163 0 0 8.355 32.862 12.537 24.629 78.546 0.04 0 0 0.4 0.56 3.01 2
53_36 0.099 0 0 4.728 32.718 13.739 32.596 83.88 0.02 0 0 0.2 0.78 2.73 2
53_37 0.133 0 0 6.847 33.134 13.353 29.192 82.659 0.03 0 0 0.3 0.67 2.85 2
53_38 0.112 0 0 7.016 30.757 12.688 34.015 84.588 0.02 0 0 0.33 0.65 2.78 2
53_39 0.165 0 0 5.66 33.598 13.606 26.801 79.83 0.03 0 0 0.25 0.72 2.84 2
53_42 0.105 0 0 5.375 33.568 13.375 29.704 82.127 0.02 0 0 0.24 0.74 2.88 2
53_45 0.105 0 0 8.708 32.544 13.107 22.713 77.177 0.02 0 0 0.39 0.59 2.85 2
53_47 0.121 0 0 11.123 29.467 11.919 23.899 76.529 0.03 0 0 0.55 0.42 2.84 2
53_48 0.248 0 0 10.471 29.665 11.189 24.159 75.732 0.06 0 0 0.56 0.38 3.04 2
53_50 0.147 0 0 9.342 33.864 12.729 33.014 89.096 0.03 0 0 0.44 0.53 3.05 2
53_52 0.134 0 0 4.225 33.557 13.547 30.7 82.163 0.03 0 0 0.19 0.78 2.84 2
53_54 0.099 0 0 5.306 34.096 12.909 29.369 81.779 0.02 0 0 0.24 0.74 3.03 2
53_55 0.191 0 0 10.479 26.909 11.241 31.825 80.645 0.05 0 0 0.55 0.4 2.75 2

53_ave 0.03 0 0 0.3 0.67 2.89 2
s 0.0120 0 0 0.1127 0.1200 0.0997 0
C 40.00 0 0 37.57 17.91 3.45 0

54_2 0.049 0 0 14.292 27.295 10.921 34.328 86.885 0.01 0 0 0.78 0.21 2.87 2
54_3 0.022 0 0 7.671 33.47 13.393 27.845 82.401 0 0 0 0.34 0.66 2.87 2
54_4 0.079 0 0 6.057 31.39 13.061 29.303 79.89 0.02 0 0 0.28 0.7 2.76 2
54_7 0.066 0 0 9.892 32.042 12.388 32.382 86.77 0.01 0 0 0.47 0.52 2.97 2



352

54_8 0.075 0 0 5.698 33.194 13.334 33.836 86.137 0.02 0 0 0.25 0.73 2.86 2
54_9 0.092 0 0 5.023 32.115 12.834 27.099 77.163 0.02 0 0 0.23 0.75 2.87 2
54_10 0.037 0 0 8.702 32.809 13.272 25.899 80.719 0.01 0 0 0.39 0.6 2.84 2
54_12 0.067 0 0 9.11 33.225 12.811 26.838 82.051 0.01 0 0 0.42 0.57 2.98 2
54_13 0.102 0 0 7.263 32.473 13.248 30.296 83.382 0.02 0 0 0.33 0.65 2.81 2
54_14 0.051 0 0 9.081 33.374 13.986 18.568 75.06 0.01 0 0 0.39 0.6 2.74 2
54_16 0.063 0 0 6.081 29.57 11.449 34.177 81.34 0.02 0 0 0.32 0.66 2.97 2
54_17 0.07 0 0 6.978 29.9 12.21 28.998 78.156 0.02 0 0 0.34 0.64 2.81 2
54_18 0.089 0 0 9.899 33.105 13.336 29.806 86.235 0.02 0 0 0.44 0.54 2.85 2
54_25 0.053 0 0 4.316 31.76 11.996 31.499 79.624 0.01 0 0 0.21 0.78 3.04 2
54_27 0.021 0 0 7.341 29.694 11.246 34.907 83.209 0.01 0 0 0.39 0.6 3.03 2
54_28 0.12 0 0 7.079 28.118 10.645 31.989 77.951 0.03 0 0 0.4 0.57 3.03 2
54_30 0.055 0 0 5.184 33.883 13.418 30.605 83.145 0.01 0 0 0.23 0.76 2.9 2
54_31 0.065 0 0 7.541 31.288 12.644 29.31 80.848 0.01 0 0 0.35 0.64 2.84 2
54_33 0.097 0 0 4.812 30.737 12.571 30.347 78.564 0.02 0 0 0.23 0.75 2.81 2
54_34 0.073 0 0 6.198 32.648 13.603 29.906 82.428 0.01 0 0 0.27 0.72 2.76 2
54_35 0.085 0 0 11.321 29.677 11.977 27.676 80.736 0.02 0 0 0.56 0.42 2.84 2
54_36 0.088 0 0 8.961 29.767 11.936 31.631 82.383 0.02 0 0 0.45 0.53 2.86 2
54_37 0.069 0 0 7.265 30.69 11.571 30.096 79.691 0.02 0 0 0.37 0.61 3.05 2
54_38 0.079 0 0 5.172 32.256 13.631 31.921 83.059 0.02 0 0 0.23 0.75 2.72 2
54_39 0.078 0 0 5.816 32.901 13.091 29.633 81.519 0.02 0 0 0.26 0.72 2.89 2
54_41 0.083 0 0 8.81 30.722 12.632 24.175 76.422 0.02 0 0 0.41 0.57 2.79 2
54_46 0.051 0 0 6.998 32.432 13.325 29.664 82.47 0.01 0 0 0.31 0.68 2.79 2
54_47 0.089 0 0 10.659 30.902 12.78 28.756 83.186 0.02 0 0 0.5 0.48 2.78 2
54_48 0.068 0 0 8.59 29.933 12.896 26.36 77.847 0.01 0 0 0.4 0.59 2.66 2
54_51 0.05 0 0 14.064 26.937 10.187 33.844 85.082 0.01 0 0 0.82 0.17 3.04 2
54_53 0.047 0 0 6.449 29.018 11.922 35.248 82.684 0.01 0 0 0.32 0.67 2.79 2
54_54 0.052 0 0 9.794 32.474 13.483 23.161 78.964 0.01 0 0 0.43 0.56 2.77 2
54_55 0.007 0 0 7.728 32.598 13.315 28.801 82.449 0 0 0 0.35 0.65 2.81 2
54_58 0.06 0 0 10.965 29.023 11.924 24.71 76.682 0.01 0 0 0.55 0.44 2.79 2
54_59 0.08 0 0 5.037 32.813 13.335 34.749 86.014 0.02 0 0 0.22 0.76 2.83 2
54_60 0.03 0 0 5.329 33.132 13.469 35.014 86.974 0.01 0 0 0.24 0.75 2.82 2

54_ave 0.01 0 0 0.38 0.61 2.86 2
s 0.0065 0 0 0.1402 0.1394 0.0988 0
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C 65.00 0 0 36.89 22.85 3.45 0

55_1 0 2.757 0 0.008 28.024 11.848 40.393 83.03 0 0.38 0 0 0.62 2.72 2
55_2 0 3.061 0 0.009 27.792 11.997 41.756 84.615 0 0.42 0 0 0.58 2.66 2
55_7 0 3.283 0 0.028 27.001 10.6 35.903 76.815 0 0.51 0 0 0.49 2.92 2
55_10 0 2.92 0 0 28.142 12.476 34.531 78.069 0 0.38 0 0 0.62 2.59 2
55_11 0 3.69 0 0 25.879 11.104 34.385 75.058 0 0.54 0 0 0.46 2.68 2
55_37 0 2.543 0 0 21.761 11.619 39.207 75.13 0 0.36 0 0 0.64 2.15 2
55_57 0 2.985 0 0.01 21.024 10.938 40.048 75.005 0 0.45 0 0 0.55 2.21 2

55_ave 0 0.43 0 0 0.57 2.56 2
s 0 0.0692 0 0 0.0692 0.2802 0
C 0 16.09 0 0 12.14 10.95 0

56_1 0 2.708 0 1.799 14.048 6.724 31.919 57.198 0 0.66 0 0.16 0.18 2.4 2
56_2 0 3.216 0 1.865 13.982 7.011 31.418 57.492 0 0.75 0 0.16 0.09 2.29 2
56_11 0 2.883 0 1.729 13.525 6.716 30.785 55.638 0 0.7 0 0.15 0.15 2.31 2

56_ave 0 0.7 0 0.16 0.14 2.33 2
s 0 0.0451 0 0.0058 0.0458 0.0586 0
C 0 6.44 0 3.63 32.71 2.52 0

57_2 0 2.468 0 2.729 32.679 12.516 25.673 76.065 0 0.53 0 0.21 0.26 3 2
57_6 0 3.695 0 4.822 24.947 9.613 22.33 65.407 0 0.63 0 0.3 0.07 2.98 2
57_28 0 2.619 0 4.016 19.064 8.423 15.182 49.304 0 0.51 0 0.28 0.21 2.6 2

57_ave 0 0.56 0 0.26 0.18 2.86 2
s 0 0.0643 0 0.0473 0.0985 0.2254 0
C 11.48 0 18.19 54.72 7.88 0

58_5 0 2.426 0 3.013 32.56 11.816 32.517 82.332 0 0.34 0 0.15 0.51 3.16 2
58_16 0 3.538 0 6.474 29.936 10.921 29.366 80.235 0 0.53 0 0.35 0.12 3.15 2
58_19 0 2.481 0 2.826 34.523 12.419 37.459 89.708 0 0.33 0 0.14 0.53 3.19 2
58_27 0 2.676 0 3.712 28.164 10.384 26.004 70.94 0 0.42 0 0.21 0.37 3.11 2
58_32 0 2.159 0 3.948 14.216 6.345 14.263 40.931 0 0.56 0 0.37 0.07 2.57 2
58_42 0 2.283 0 5.013 19.317 7.404 14.662 48.679 0 0.51 0 0.4 0.09 3 2
58_48 0 2.414 0 5.038 21.328 8.32 15.836 52.936 0 0.48 0 0.36 0.16 2.94 2
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58_60 0 2.656 0 3.105 30.197 11.1 27.755 74.813 0 0.39 0 0.17 0.44 3.12 2
58_83 0 4.086 0 7.175 32.624 17.467 24.573 85.925 0 0.38 0 0.24 0.38 2.14 2
58_84 0 4.887 0 8.097 36.744 17.472 21.048 88.248 0 0.46 0 0.28 0.26 2.41 2
58_89 0 4.828 0 8.357 30.492 14.646 23.05 81.373 0 0.54 0 0.34 0.12 2.39 2

58_ave 0 0.45 0 0.27 0.28 2.83 2
s 0 0.0781 0 0.0915 0.1666 0.3641 0
C 0 18.20 0 35.52 62.39 13.49 0

59_1 0 1.735 0 7.154 18.891 7.396 29.831 65.007 0 0.38 0 0.57 0.05 2.93 2
59_2 0 1.907 0 3.473 21.865 9.296 34.748 71.289 0 0.34 0 0.22 0.44 2.7 2
59_3 0 1.754 0 5.989 19.915 8.173 27.732 63.563 0 0.35 0 0.44 0.21 2.8 2
59_4 0 2.02 0 5.235 20.756 8.61 29.327 65.948 0 0.38 0 0.36 0.26 2.77 2
59_5 0 1.927 0 6.881 21.171 8.639 29.527 68.145 0 0.37 0 0.47 0.16 2.81 2
59_6 0 1.985 0 7.144 19.144 8.357 27.587 64.217 0 0.39 0 0.51 0.1 2.63 2
59_7 0 2.007 0 4.917 22.564 9.545 35.349 74.382 0 0.34 0 0.31 0.35 2.71 2
59_8 0 2.406 0 4.304 23.458 9.214 28.733 68.115 0 0.43 0 0.28 0.29 2.92 2
59_9 0 2.008 0 4.514 23.425 9.975 26.322 66.244 0 0.33 0 0.26 0.41 2.7 2
59_10 0 2.028 0 4.682 23.735 9.767 32.869 73.081 0 0.34 0 0.28 0.38 2.79 2
59_11 0 2.563 0 6.68 24.599 9.762 34.397 78.001 0 0.43 0 0.41 0.16 2.89 2
59_12 0 2.769 0 6.385 20.242 8.338 26.696 64.43 0 0.54 0 0.46 0 2.79 2
59_13 0 1.809 0 5.126 18.8 8.275 33.422 67.432 0 0.36 0 0.37 0.27 2.61 2
59_15 0 1.675 0 2.799 22.894 9.027 34.636 71.031 0 0.3 0 0.18 0.52 2.91 2
59_19 0 1.609 0 4.633 19.518 7.635 31.028 64.423 0 0.35 0 0.36 0.29 2.93 2
59_21 0 1.746 0 3.41 21.081 8.737 36.052 71.026 0 0.33 0 0.23 0.44 2.77 2
59_22 0 1.762 0 7.01 21.258 8.68 35.424 74.134 0 0.33 0 0.48 0.19 2.81 2
59_24 0 1.683 0 2.651 21.788 9.391 40.822 76.335 0 0.29 0 0.17 0.54 2.66 2
59_25 0 2.589 0 4.824 23.722 9.429 36.648 77.212 0 0.45 0 0.3 0.25 2.89 2
59_26 0 1.82 0 4.478 20.925 8.791 28.042 64.056 0 0.34 0 0.3 0.36 2.73 2

59_ave 0 0.37 0 0.35 0.28 2.79 2
s 0 0.0579 0 0.1140 0.1489 0.1008 0
C 0 15.65 0 32.57 53.18 3.61 0

60_37 0 1.059 0 8.599 21.976 8.285 28.898 68.817 0 0.21 0 0.62 0.17 3.05 2
60_42 0 1.002 0 4.395 16.109 6.321 24.066 51.893 0 0.26 0 0.41 0.33 2.93 2
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60_43 0 0.977 0 7.218 17.579 6.741 21.893 54.408 0 0.24 0 0.64 0.12 2.99 2
60_44 0 0.529 0 6.056 12.372 5.293 12.29 36.54 0 0.16 0 0.68 0.16 2.68 2
60_50 0 0.605 0 6.548 13.919 5.904 6.952 33.928 0 0.17 0 0.66 0.17 2.71 2

60_ave 0 0.21 0 0.6 0.19 2.87 2
s 0 0.0432 0 0.1096 0.0809 0.1674 0
C 0 20.57 0 18.27 42.58 5.83 0

61_17 0 0 0 3.685 9.196 3.733 9.063 27.656 0 0 0 0.59 0.41 2.83 2
61_32 0 0 0 2.994 10.614 4.004 9.911 29.807 0 0 0 0.44 0.56 3.04 2
61_48 0 0 0 3.624 11.109 4.258 10.511 31.893 0 0 0 0.51 0.49 3 2
61_50 0 0 0 3.4 11.046 4.385 10.662 31.87 0 0 0 0.46 0.54 2.89 2
61_56 0 0 0 2.777 11.074 4.255 10.431 30.92 0 0 0 0.39 0.61 2.99 2
61_57 0 0 0 2.502 12.688 4.813 11.806 34.54 0 0 0 0.31 0.69 3.03 2
61_58 0 0 0 11.898 26.133 9.334 23.954 76.943 0 0 0 0.76 0.24 3.21 2
61_59 0 0 0 14.212 25.907 9.634 24.494 79.823 0 0 0 0.88 0.12 3.09 2
61_60 0 0 0 12.058 29.108 9.542 25.31 82.283 0 0 0 0.75 0.25 3.5 2
61_61 0 0 0 13.031 25.513 9.459 24.007 77.501 0 0 0 0.82 0.18 3.1 2
61_65 0 0 0 5.738 13.287 6.378 14.599 42.861 0 0 0 0.53 0.47 2.39 2
61_66 0 0 0 11.601 28.267 10.778 26.836 83.566 0 0 0 0.64 0.36 3.01 2
61_71 0 0 0 10.071 23.89 8.6 21.937 69.639 0 0 0 0.7 0.3 3.19 2
61_72 0 0 0 8.345 19.807 8.575 20.349 61.339 0 0 0 0.58 0.42 2.65 2
61_74 0 0 0 13.999 28.118 10.003 25.802 83.973 0 0 0 0.83 0.17 3.23 2
61_79 0 0 0 13.787 24.849 8.884 22.973 75.841 0 0 0 0.92 0.08 3.21 2

61_ave 0 0 0 0.63 0.37 3.02 2
s 0 0 0 0.1848 0.1848 0.2550 0
C 0 0 0 29.33 49.95 8.44 0

62_05 0 4.189 0 0.022 23.623 9.149 20.38 57.363 0 0.75 0 0 0.25 2.96 2
62_06 0 0.803 0 0.036 5.645 2.455 7.066 16.005 0 0.54 0 0 0.46 2.64 2
62_07 0 3.931 0 0.022 30.274 12.935 14.597 61.759 0 0.5 0 0 0.5 2.69 2
62_10 0 3.933 0 0.012 36.487 14.132 12.055 66.619 0 0.46 0 0 0.54 2.96 2
62_11 0 3.123 0 0.026 35.154 13.847 1.669 53.819 0 0.37 0 0 0.63 2.91 2
62_12 0 3.955 0 0.041 28.482 11.325 5.054 48.857 0 0.57 0 0 0.43 2.89 2
62_18 0 3.598 0 0 27.447 10.288 11.319 52.652 0 0.57 0 0 0.43 3.06 2
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62_19 0 4.3 0 0 29.875 11.186 10.147 55.508 0 0.63 0 0 0.37 3.07 2
62_20 0 3.974 0 0.006 27.698 11.093 8.286 51.057 0 0.59 0 0 0.41 2.87 2
62_28 0 2.403 0 0.009 17.272 7.383 10.613 37.68 0 0.53 0 0 0.47 2.69 2
62_30 0 2.052 0 0.038 15.423 5.954 9.243 32.71 0 0.57 0 0 0.43 2.97 2

62_ave 0 0.55 0 0 0.45 2.88 2
s 0 0.0962 0 0 0.0962 0.1484 0
C 0 17.49 0 0 21.38 5.15 0

63_49 0 1.429 0 2.671 10.758 5.578 9.112 29.548 0 0.42 0 0.28 0.3 2.21 2
63_50 0 0.512 0 0.688 6.271 2.481 8.06 18.012 0 0.34 0 0.16 0.5 2.9 2
63_53 0 3.153 0 4.51 13.733 7.995 9.68 39.071 0 0.54 0 0.32 0.14 2.29 2
63_63 0 0.11 0 0.153 1.028 0.486 4.423 6.2 0 0.37 0 0.19 0.44 2.43 2

63_ave 0 0.42 0 0.24 0.34 2.46 2
s 0 0.0881 0 0.0750 0.1603 0.3087 0
C 0 20.98 0 31.25 47.15 12.55 0

64_4 0 1.688 0 5.839 29.533 11.318 15.022 60.466 0 0.24 0 0.31 0.45 3 2
64_6 0 2.456 0 6.426 31.709 12.276 13.408 63.268 0 0.33 0 0.31 0.36 2.97 2
64_7 0 2.429 0 7.619 34.701 13.851 16.287 71.296 0 0.29 0 0.33 0.38 2.88 2
64_8 0 2.278 0 6.217 30.728 13.283 16.264 65.326 0 0.28 0 0.28 0.44 2.66 2
64_10 0 2.13 0 5.815 26.164 10.203 11.77 53.437 0 0.34 0 0.34 0.32 2.94 2
64_12 0 1.418 0 5.135 22.372 9.931 15.385 51.666 0 0.23 0 0.31 0.46 2.59 2
64_14 0 0.646 0 1.637 9.412 3.64 5.544 19.935 0 0.29 0 0.27 0.44 2.97 2
64_18 0 1.348 0 4.947 24.364 10.472 11.246 49.662 0 0.21 0 0.28 0.51 2.67 2
64_19 0 1.825 0 5.797 26.21 11.537 15.85 58.228 0 0.26 0 0.3 0.44 2.61 2
64_20 0 1.721 0 5.479 27.065 10.855 10.439 52.745 0 0.26 0 0.3 0.44 2.86 2
64_21 0 1.621 0 5.326 24.942 9.902 14.049 53.273 0 0.27 0 0.32 0.41 2.89 2
64_22 0 0.827 0 3.419 15.163 6.321 18.52 42.611 0 0.21 0 0.32 0.47 2.75 2
64_26 0 1.899 0 5.858 26.445 11.24 13.282 55.81 0 0.28 0 0.31 0.41 2.7 2
64_27 0 1.899 0 4.419 22.693 9.302 14.2 50.101 0 0.33 0 0.28 0.39 2.8 2
64_29 0 0.705 0 2.476 9.867 5.06 9.196 25.992 0 0.31 0 0.39 0.3 3.02 2
64_30 0 2.732 0 5.026 31.906 13.217 14.447 63.901 0 0.34 0 0.23 0.43 2.77 2
64_33 0 1.78 0 5.869 28.349 12.281 14.243 59.338 0 0.24 0 0.28 0.48 2.65 2
64_35 0 1.409 0 4.805 23.133 9.717 12.289 48.834 0 0.24 0 0.29 0.47 2.73 2
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64_36 0 1.587 0 5.185 20.188 9.134 13.184 46.91 0 0.28 0 0.34 0.38 2.54 2
64_38 0 2.274 0 6.435 33.179 13.838 14.696 66.834 0 0.27 0 0.28 0.45 2.75 2
64_39 0 2.376 0 5.792 31.985 14.36 23.326 74.116 0 0.27 0 0.24 0.49 2.56 2
64_40 0 2.346 0 6.876 35.724 15.36 17.93 74.254 0 0.25 0 0.27 0.48 2.67 2
64_41 0 0.892 0 3.127 18.126 7.536 16.025 43.752 0 0.19 0 0.25 0.56 2.76 2
64_44 0 1.418 0 5.127 24.561 9.906 10.382 48.826 0 0.23 0 0.31 0.46 2.85 2
64_45 0 2.046 0 4.615 23.281 10.276 14.94 52.494 0 0.33 0 0.27 0.4 2.6 2
64_46 0 2.153 0 5.216 34.454 15.09 9.333 62.364 0 0.23 0 0.21 0.56 2.62 2
64_62 0 0.027 0 0.132 0.581 0.23 2.536 3.506 0 0.19 0 0.34 0.47 2.9 2
64_75 0 0.031 0 0.185 0.667 0.294 4.484 5.661 0 0.17 0 0.37 0.46 2.6 2

64_ave 0 0.26 0 0.3 0.44 2.76 2
s 0 0.0471 0 0.0402 0.0600 0.1453 0
C 0 18.12 0 13.40 13.64 5.26 0

65_04 0 1.857 0 6.326 25.885 9.867 5.18 49.115 0 0.31 0 0.38 0.31 3.01 2
65_10 0 2.82 0 4.753 24.099 9.236 18.276 59.184 0 0.5 0 0.31 0.19 3 2
65_35 0 0.261 0 3.741 14.766 6.464 6.478 31.71 0 0.07 0 0.34 0.59 2.62 2

65_ave 0 0.29 0 0.34 0.37 2.88 2
s 0 0.2155 0 0.0351 0.2053 0.2223 0
C 0 74.31 0 10.32 55.49 7.72 0

66_05 0 0 0 6.377 32.466 12.287 17.797 69.927 0 0 0 0.31 0.69 3.03 2
66_15 0 0 0 7.855 16.348 7.194 12.756 44.153 0 0 0 0.65 0.35 2.61 2
66_24 0 0 0 5.925 26.423 10.086 10.32 52.754 0 0 0 0.35 0.65 3.01 2
66_39 0 0 0 7.539 26.263 10.138 13.17 56.724 0 0 0 0.44 0.56 2.97 2

66_ave 0 0 0 0.44 0.56 2.91 2
s 0 0 0 0.1517 0.1517 0.1982 0
C 0 0 0 34.48 27.09 6.81 0

67_4 3.093 0 0 0.013 24.438 9.621 10.291 47.628 0.81 0 0 0 0.19 2.92 2
67_8 2.378 0 0 0 34.862 13.212 13.973 64.425 0.5 0 0 0 0.5 3.03 2
67_11 4.362 0 0 0 33.518 13.077 5.61 56.587 0.93 0 0 0 0.07 2.94 2
67_21 1.635 0 0 0.007 19.114 8.492 15.715 44.963 0.54 0 0 0 0.46 2.58 2
67_23 1.26 0 0 0.008 22.355 8.676 0.754 33.053 0.41 0 0 0 0.59 2.96 2
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67_49 3.1 0 0 0 32.194 12.277 17.635 65.206 0.7 0 0 0 0.3 3.01 2
67_ave 0.65 0 0 0 0.35 2.91 2

s 0.1993 0 0 0 0.1993 0.1654 0
C 30.66 0 0 0 56.94 5.68 0

68_07 0.905 0 0 1.233 17.974 7.108 15.611 42.831 0.36 0 0 0.1 0.54 2.9 2
68_13 0.894 0 0 0.736 8.732 3.656 4.559 18.577 0.68 0 0 0.12 0.2 2.74 2
68_21 2.353 0 0 4.985 30.383 11.925 14.553 64.199 0.55 0 0 0.25 0.2 2.93 2
68_23 1.147 0 0 0.293 17.081 7.524 11.645 37.69 0.43 0 0 0.02 0.55 2.61 2
68_25 1.677 0 0 0.628 15.845 7.266 6.011 31.427 0.64 0 0 0.05 0.31 2.5 2
68_33 1.098 0 0 0.106 16.526 7.163 7.011 31.904 0.43 0 0 0.01 0.56 2.65 2
68_43 1.448 0 0 3.563 21.11 8.48 0.512 35.113 0.48 0 0 0.25 0.27 2.86 2
68_45 3.83 0 0 0.029 29.802 11.725 9.534 54.92 0.91 0 0 0 0.09 2.92 2
68_48 1.628 0 0 0.015 15.861 7.025 5.805 30.334 0.65 0 0 0 0.35 2.59 2

68_ave 0.57 0 0 0.09 0.34 2.74 2
s 0.1699 0 0 0.1008 0.1732 0.1633 0
C 29.81 0 0 112.00 50.94 5.96 0

69_01 1.006 0 0 0.323 16.725 6.593 8.252 32.899 0.43 0 0 0.03 0.54 2.91 2
69_02 1.502 0 0 0.918 38.352 13.458 22.208 76.438 0.31 0 0 0.04 0.65 3.27 2
69_03 1.955 0 0 0.69 35.293 13.064 17.6 68.602 0.42 0 0 0.03 0.55 3.1 2
69_11 0.771 0 0 2.982 37.205 12.934 19.172 73.064 0.03 0 0 0.14 0.83 3.3 2
69_16 2.092 0 0 1.369 30.938 10.989 13.231 58.601 0.53 0 0 0.07 0.4 3.23 2
69_22 0.296 0 0 10.241 29.599 11.477 13.862 65.575 0.07 0 0 0.53 0.4 2.96 2
69_23 1.756 0 0 0.724 38.292 13.403 21.386 75.561 0.37 0 0 0.03 0.6 3.28 2
69_29 1.243 0 0 1.98 37.172 13.097 18.414 71.906 0.26 0 0 0.09 0.65 3.26 2

69_ave 0.3 0 0 0.12 0.58 3.16 2
s 0.1759 0 0 0.1701 0.1414 0.1545 0
C 58.63 0 0 141.75 24.38 4.89 0

70_1 2.064 0 0 3.27 32.794 12.267 10.05 60.445 0.47 0 0 0.16 0.37 3.07 2
70_3 0.205 0 0 9.199 23.617 10.147 8.613 51.781 0.06 0 0 0.54 0.4 2.67 2
70_6 0.966 0 0 3.839 31.381 12.055 18.575 66.816 0.22 0 0 0.19 0.59 2.99 2
70_23 0.101 0 0 4.999 8.672 4.231 17.629 35.632 0.07 0 0 0.7 0.23 2.35 2
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70_30 0.826 0 0 0.998 14.388 6.537 5.493 28.242 0.35 0 0 0.09 0.56 2.53 2
70_ave 0.23 0 0 0.33 0.44 2.72 2

s 0.1778 0 0 0.2678 0.1475 0.3045 0
C 77.30 0 0 81.15 33.52 11.19 0

71_2 0 0 0 12.418 26.608 13.475 20.164 72.665 0 0 0 0.55 0.45 2.26 2
71_8 0 0 0 9.13 19.598 9.259 20.185 58.172 0 0 0 0.59 0.41 2.43 2
71_19 0 0 0 11.085 19.725 9.897 10.016 50.723 0 0 0 0.67 0.33 2.29 2
71_22 0 0 0 16.388 25.176 13.022 18.57 73.156 0 0 0 0.75 0.25 2.2 2
71_23 0 0 0 12.901 20.895 10.227 18.851 62.874 0 0 0 0.75 0.25 2.35 2
71_24 0 0 0 12.039 20.503 10.155 14.427 57.124 0 0 0 0.7 0.3 2.31 2
71_25 0 0 0 12.905 26.23 11.591 22.681 73.407 0 0 0 0.66 0.34 2.6 2

71_ave 0 0 0 0.66 0.34 2.35 2
s 0 0 0 0.0759 0.0759 0.1321 0
C 0 0 0 11.50 22.32 5.62 0

72_7 0 0 0 9.399 12.981 5.728 22.105 50.213 0 0 0 0.98 0.02 2.6 2
72_82 0 0 0 0.439 13.21 5.787 1.275 20.711 0 0 0 0.05 0.95 2.62 2
72_84 0 0 0 0.695 21.57 8.674 1.646 32.585 0 0 0 0.05 0.95 2.85 2
72_104 0 0 0 9.394 9.121 3.416 12.639 34.57 0 0 0 1.05 0 3.07 2
72_120 0 0 0 12.491 21.051 7.895 17.31 58.747 0 0 0 1.01 0 3.06 2

72_ave 0 0 0 0.63 0.37 2.84 2
s 0 0 0 0.5282 0.5282 0.2277 0
C 0 0 0 83.84 142.76 8.02 0

73_41 0 1.923 0 0 32.453 14.577 32.975 81.928 0 0.22 0 0 0.78 2.56 2
73_42 0 4.467 0 0 36.445 14.505 29.266 84.683 0 0.51 0 0 0.49 2.88 2
73_43 0 1.63 0 0 30.633 11.711 25.284 69.258 0 0.23 0 0 0.77 3 2
73_48 0 1.999 0 0 33.808 13.647 37.357 86.811 0 0.24 0 0 0.76 2.84 2
73_49 0 1.746 0 0 35.425 13.641 39.245 90.057 0 0.21 0 0 0.79 2.98 2
73_50 0 2.498 0 0 33.929 14.641 31.379 82.447 0 0.28 0 0 0.72 2.66 2
73_52 0 1.437 0 0 31.773 14.56 19.96 67.73 0 0.16 0 0 0.84 2.51 2
73_53 0 3.279 0 0 36.036 14.49 29.969 83.774 0 0.37 0 0 0.63 2.86 2
73_54 0 1.99 0 0 35.184 14.443 27.948 79.565 0 0.23 0 0 0.77 2.8 2
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73_55 0 1.493 0 0 34.041 13.758 33.139 82.431 0 0.18 0 0 0.82 2.84 2
73_56 0 2.987 0 0 34.714 14.247 13.639 65.587 0 0.34 0 0 0.66 2.8 2
73_57 0 1.854 0 0 32.202 14.066 23.226 71.348 0 0.22 0 0 0.78 2.63 2
73_61 0 3.603 0 0 37.664 14.524 20.714 76.505 0 0.41 0 0 0.59 2.98 2
73_62 0 3.799 0 0 36.139 14.584 22.461 76.983 0 0.43 0 0 0.57 2.84 2
73_65 0 5.096 0 0 32.328 14.368 21.733 73.525 0 0.58 0 0 0.42 2.58 2
73_67 0 3.02 0 0 30.572 14.322 21.138 69.052 0 0.35 0 0 0.65 2.45 2
73_69 0 3.028 0 0 32.146 13.102 11.767 60.043 0 0.38 0 0 0.62 2.82 2
73_73 0 2.326 0 0 32.385 14.431 24.786 73.928 0 0.26 0 0 0.74 2.58 2
73_74 0 3.257 0 0 34.812 14.861 23.231 76.161 0 0.36 0 0 0.64 2.69 2
73_75 0 2.089 0 0 32.068 12.846 29.525 76.528 0 0.27 0 0 0.73 2.87 2
73_76 0 2.029 0 0 32.545 12.84 30.098 77.512 0 0.26 0 0 0.74 2.91 2
73_77 0 1.908 0 0 32.057 13.004 32.568 79.537 0 0.24 0 0 0.76 2.83 2
73_78 0 2.22 0 0 32.11 12.798 29.072 76.2 0 0.28 0 0 0.72 2.88 2
73_79 0 3.38 0 0 33.705 13.078 27.384 77.547 0 0.42 0 0 0.58 2.96 2
73_82 0 3.095 0 0 32.909 13.006 28.724 77.734 0 0.39 0 0 0.61 2.9 2
73_83 0 3.105 0 0 31.991 12.888 29.862 77.846 0 0.4 0 0 0.6 2.85 2
73_84 0 2.123 0 0 31.615 13.066 29.934 76.738 0 0.27 0 0 0.73 2.78 2
73_85 0 2.761 0 0 33.464 12.91 27.669 76.804 0 0.35 0 0 0.65 2.98 2
73_86 0 2.684 0 0 36.392 14.733 21.968 75.777 0 0.3 0 0 0.7 2.84 2
73_87 0 2.847 0 0 37.092 14.818 23.248 78.005 0 0.32 0 0 0.68 2.87 2
73_88 0 3.908 0 0 40.987 15.246 16.752 76.893 0 0.42 0 0 0.58 3.09 2
73_89 0 4.248 0 0 42.183 16.718 25.104 88.253 0 0.42 0 0 0.58 2.9 2
73_90 0 3.72 0 0 42.32 15.934 16.224 78.198 0 0.38 0 0 0.62 3.05 2
73_91 0 3.44 0 0 38.447 14.612 15.179 71.678 0 0.39 0 0 0.61 3.02 2
73_92 0 3.478 0 0 38.139 14.925 22.64 79.182 0 0.38 0 0 0.62 2.93 2
73_93 0 3.404 0 0 36.733 14.076 13.724 67.937 0 0.4 0 0 0.6 3 2
73_94 0 3.145 0 0 37.192 14.848 23.659 78.844 0 0.35 0 0 0.65 2.88 2
73_95 0 1.963 0 0 34.256 14.566 16.688 67.473 0 0.22 0 0 0.78 2.7 2
73_96 0 5.308 0 0 35.2 14.405 18.006 72.919 0 0.24 0 0 0.76 2.81 2
73_97 0 5.207 0 0 34.844 15.205 13.86 69.116 0 0.56 0 0 0.44 2.63 2
73_98 0 3.357 0 0 35.516 15.368 16.147 70.388 0 0.36 0 0 0.64 2.65 2
73_101 0 2.413 0 0 35.698 15.534 6.206 59.851 0 0.25 0 0 0.75 2.64 2
73_102 0 2.65 0 0 35.566 15.1 8.618 61.934 0 0.29 0 0 0.71 2.7 2
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73_103 0 2.152 0 0 35.404 15.043 20.678 73.277 0 0.23 0 0 0.77 2.7 2
73_104 0 2.498 0 0 37.763 15.659 22.498 78.418 0 0.26 0 0 0.74 2.77 2
73_107 0 3.453 0 0 34.452 14.611 22.282 74.798 0 0.39 0 0 0.61 2.71 2
73_108 0 3.806 0 0 37.907 16.083 19.69 77.486 0 0.39 0 0 0.61 2.71 2

73_ave 0 0.32 0 0 0.68 2.8 2
s 0 0.0952 0 0 0.0952 0.1500 0
C 0 29.75 0 0 14.00 5.36 0

74_3 0 2.31 0 0.329 13.726 5.094 5.825 27.284 0 0.74 0 0.04 0.22 3.09 2
74_9 0 2.089 0 0.849 30.71 11.528 28.841 74.017 0 0.3 0 0.04 0.66 3.06 2
74_28 0 3.622 0 1.069 21.412 8.999 23.814 58.916 0 0.66 0 0.07 0.27 2.73 2
74_31 0 3.076 0 0.777 16.924 7.514 11.116 39.407 0 0.67 0 0.06 0.27 2.59 2
74_36 0 2.462 0 0.62 11.45 4.68 18.367 37.579 0 0.86 0 0.08 0.06 2.81 2
74_47 0 4.443 0 1.194 31.587 12.114 26.965 76.303 0 0.6 0 0.06 0.34 2.99 2

74_ave 0 0.64 0 0.06 0.3 2.88 2
s 0 0.1881 0 0.0160 0.1985 0.2000 0
C 0 29.39 0 26.67 66.17 6.94 0

75_1 0 3.015 0 3.397 34.02 13.107 24.331 77.87 0 0.38 0 0.15 0.47 2.98 2
75_4 0 2.848 0 2.698 33.476 12.784 25.205 77.011 0 0.37 0 0.13 0.5 3.01 2
75_9 0 2.424 0 1.689 34.544 13.497 28.037 80.191 0 0.29 0 0.07 0.64 2.94 2
75_11 0 1.696 0 1.114 15.136 6.295 25.587 49.828 0 0.44 0 0.11 0.45 2.76 2
75_26 0 2.6 0 2.077 30.466 11.676 17.066 63.885 0 0.37 0 0.11 0.52 3 2
75_35 0 2.289 0 1.544 34.589 13.613 29.65 81.685 0 0.28 0 0.07 0.65 2.92 2
75_36 0 2.608 0 1.649 33.094 13.281 23.9 74.532 0 0.32 0 0.07 0.61 2.86 2
75_38 0 2.19 0 2.107 32.824 12.821 28.799 78.741 0 0.28 0 0.1 0.62 2.94 2
75_40 0 3.333 0 2.121 34.193 13.351 21.399 74.397 0 0.41 0 0.09 0.5 2.94 2

75_ave 0 0.35 0 0.1 0.55 2.93 2
s 0 0.0588 0 0.0283 0.0782 0.0774 0
C 0 16.80 0 28.30 14.22 2.64 0

76_92 0 2.546 0 2.525 29.597 12.041 8.19 54.899 0 0.35 0 0.12 0.53 2.82 2
76_93 0 2.549 0 2.605 28.603 11.605 14.968 60.33 0 0.36 0 0.13 0.51 2.83 2
76_94 0 2.683 0 2.357 28.695 11.202 24.302 69.239 0 0.39 0 0.13 0.48 2.94 2
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76_99 0 2.394 0 2.912 31.385 11.72 37.534 85.945 0 0.33 0 0.15 0.52 3.07 2
76_100 0 2.244 0 3.373 28.089 10.824 24.961 69.491 0 0.34 0 0.19 0.47 2.98 2
76_103 0 2.776 0 3.035 30.355 12.407 27.096 75.669 0 0.37 0 0.15 0.48 2.81 2
76_104 0 2.58 0 2.448 29.255 11.726 24.297 70.306 0 0.36 0 0.12 0.52 2.86 2
76_105 0 2.993 0 3.432 31.467 11.984 25.942 75.818 0 0.41 0 0.17 0.42 3.01 2

76_ave 0 0.36 0 0.15 0.49 2.92 2
s 0 0.0262 0 0.0251 0.0364 0.0987 0
C 0 7.28 0 16.73 7.43 3.38 0

77_21 1.327 0 0 0 26.385 11.293 37.233 76.238 0.33 0 0 0 0.67 2.68 2
77_22 2.586 0 0 0 24.999 9.471 13.496 50.552 0.76 0 0 0 0.24 3.03 2
77_28 1.382 0 0 0 22.521 9.363 21.334 54.6 0.41 0 0 0 0.59 2.76 2
77_39 1.658 0 0 0 25.856 9.992 25.451 62.957 0.46 0 0 0 0.54 2.97 2

77_ave 0.49 0 0 0 0.51 2.86 2
s 0.1878 0 0 0 0.1878 0.1667 0
C 38.33 0 0 0 36.82 5.83 0

78_41 0.173 0 0 0.598 31.471 11.986 15.143 59.371 0.04 0 0 0.03 0.93 3.01 2
78_43 0.053 0 0 0.541 34.844 13.174 17.045 65.657 0.01 0 0 0.02 0.97 3.04 2
78_49 0.186 0 0 0.466 35.135 13.148 17.302 66.237 0.04 0 0 0.02 0.94 3.07 2
78_55 0.273 0 0 0.356 35.13 13.663 6.909 56.331 0.06 0 0 0.02 0.92 2.95 2
78_77 0.237 0 0 7.684 22.199 8.463 18.894 57.477 0.08 0 0 0.54 0.38 3.01 2
78_114 0 0 0 13.264 23.218 10.277 17.189 63.948 0 0 0 0.77 0.05 2.59 2
78_118 0 0 0 8.203 23.087 8.537 12.042 51.869 0 0 0 0.57 0.29 3.1 2
78_120 0 0 0 15.595 29.861 10.796 16.693 72.945 0 0 0 0.86 0 3.18 2
78_123 0 0 0 12.199 26.143 12.841 12.591 63.774 0 0 0 0.56 0.3 2.34 2
78_127 0 0 0 10.948 18.125 8.394 4.496 41.963 0 0 0 0.78 0.07 2.48 2

78_ave 0.05 0 0 0.42 0.53 2.88 2
s 0.0298 0 0 0.3550 0.4095 0.2933 0
C 59.60 0 0 84.52 77.26 10.18 0

79_60 0.244 0 0 6.626 24.489 9.89 25.939 67.188 0.07 0 0 0.4 0.53 2.84 2
79_62 0.13 0 0 9.988 21.054 9.89 23.61 64.672 0.04 0 0 0.6 0.36 2.44 2
79_63 0.163 0 0 11.069 26.79 10.848 44.915 93.785 0.04 0 0 0.61 0.35 2.84 2
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79_70 0.268 0 0 5.508 27.193 10.373 21.267 64.609 0.07 0 0 0.32 0.61 3.01 2
79_ave 0.06 0 0 0.48 0.46 2.78 2

s 0.0173 0 0 0.1452 0.1284 0.2420 0
C 28.83 0 0 30.25 27.91 8.71 0

80_75 0.078 0 0 6.8 24.415 9.289 34.748 75.33 0.02 0 0 0.33 0.65 3.01 2
80_76 0.18 0 0 11.755 25.671 11.091 23.84 72.537 0.04 0 0 0.56 0.4 2.65 2
80_77 0.137 0 0 10.898 26.931 12.033 23.771 73.77 0.03 0 0 0.54 0.43 2.56 2
80_78 0.139 0 0 15.558 23.912 11.002 34.011 84.622 0.04 0 0 0.84 0.12 2.49 2
80_79 0.106 0 0 16.513 29.043 12.909 33.655 92.226 0.02 0 0 0.63 0.35 2.58 2
80_80 0.212 0 0 16.487 28.694 12.351 28.502 86.246 0.04 0 0 0.78 0.18 2.63 2
80_81 0.149 0 0 14.906 27.956 13.679 35.169 91.859 0.03 0 0 0.65 0.32 2.35 2
80_82 0.348 0 0 16.723 26.738 11.929 33.205 88.943 0.08 0 0 0.82 0.1 2.51 2
80_83 0.081 0 0 8.532 28.847 12.002 35.248 84.71 0.02 0 0 0.42 0.56 2.76 2
80_84 0.215 0 0 10.191 28.738 13.156 20.766 73.066 0.05 0 0 0.45 0.5 2.5 2
80_86 0.139 0 0 10.995 25.17 10.252 12.547 59.103 0.04 0 0 0.63 0.33 2.82 2
80_88 0.098 0 0 8.639 34.399 13.804 16.141 73.081 0.01 0 0 0.37 0.62 2.86 2
80_89 0.064 0 0 10.209 34.922 14.183 22.556 81.934 0.01 0 0 0.42 0.57 2.83 2
80_90 0.056 0 0 10.569 36.345 14.082 17.492 78.544 0.01 0 0 0.45 0.54 2.96 2
80_91 0.054 0 0 10.425 33.537 13.835 17.572 75.423 0.01 0 0 0.44 0.55 2.78 2
80_92 0.15 0 0 12.877 33.575 13.282 19.592 79.476 0.03 0 0 0.52 0.45 2.9 2
80_100 0.079 0 0 10.381 23.241 10.333 15.279 59.313 0.02 0 0 0.59 0.39 2.58 2
80_107 0.105 0 0 12.49 33.527 13.338 23.334 82.794 0.02 0 0 0.56 0.42 2.89 2
80_113 0.052 0 0 9.662 28.72 10.732 13.023 62.189 0.01 0 0 0.48 0.51 2.73 2

80_ave 0.03 0 0 0.55 0.42 2.7 2
s 0.0178 0 0 0.1466 0.1592 0.1834 0
C 59.33 0 0 26.65 37.90 6.79 0

81_5 0 0.163 0 0.047 1.072 0.399 4.455 6.136 0 0.67 0 0 0.26 3.08 2
81_31 0 3.206 0 0 27.836 11.181 6.767 48.99 0 0.47 0 0 0.53 2.86 2
81_33 0 3.301 0 0.023 17.073 7.769 1.081 29.247 0 0.7 0 0 0.3 2.52 2
81_37 0 2.899 0 0.02 32.354 11.634 5.491 52.398 0 0.41 0 0 0.59 3.19 2
81_38 0 1.905 0 0.02 12.981 4.683 2.779 22.368 0 0.67 0 0 0.33 3.18 2
81_39 0 1.802 0 0.01 9.891 3.92 8.877 24.5 0 0.75 0 0 0.25 2.9 2
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81_40 0 1.719 0 0.001 9.752 4.708 6.364 22.544 0 0.6 0 0 0.4 2.38 2
81_44 0 1.866 0 0.002 12.415 4.912 7.376 26.571 0 0.62 0 0 0.38 2.9 2
81_47 0 1.049 0 0.007 7.139 3.006 9.08 20.281 0 0.57 0 0 0.43 2.73 2
81_48 0 3.926 0 0 24.964 9.989 6.254 45.133 0 0.64 0 0 0.36 2.87 2
81_54 0 1.972 0 0.026 9.591 4.153 6.863 22.605 0 0.78 0 0 0.22 2.65 2
81_58 0 4.534 0 0 26.07 9.907 9.459 49.97 0 0.75 0 0 0.25 3.02 2

81_ave 0 0.64 0 0 0.36 2.86 2
s 0 0.1119 0 0 0.1119 0.2514 0
C 0 17.48 0 0 31.08 8.79 0

82_6 0 0.296 0 0.205 1.026 0.576 7.479 9.582 0 0.84 0 0.21 0 2.05 2
82_26 0 0.063 0 0.1 0.452 0.26 3.734 4.609 0 0.4 0 0.23 0.37 2 2
82_35 0 3.177 0 2.198 18.196 9.019 9.014 41.604 0 0.58 0 0.14 0.28 2.32 2
82_36 0 1.825 0 1.844 22.17 9.043 9.66 44.542 0 0.33 0 0.12 0.55 2.81 2
82_37 0 4.884 0 3.339 38.089 14.046 5.547 65.905 0 0.57 0 0.14 0.29 3.11 2
82_42 0 2.567 0 2.899 36.597 13.746 22.014 77.823 0 0.31 0 0.13 0.56 3.06 2
82_43 0 2.551 0 2.701 37.318 13.557 35.144 91.271 0 0.31 0 0.12 0.57 3.16 2
82_44 0 2.952 0 3.328 41.444 16.091 29.952 93.767 0 0.3 0 0.12 0.58 2.96 2
82_49 0 2.127 0 2.442 18.179 7.199 18.185 48.261 0 0.48 0 0.2 0.32 2.9 2
82_50 0 2.091 0 3.38 26.208 9.91 13.01 54.599 0 0.35 0 0.2 0.45 3.04 2
82_51 0 1.602 0 1.553 31.278 13.521 16.911 64.865 0 0.19 0 0.07 0.74 2.66 2
82_53 0 1.479 0 1.083 13.554 6.495 3.698 26.309 0 0.37 0 0.1 0.53 2.4 2
82_54 0 2.187 0 1.902 33.934 12.692 14.195 64.91 0 0.28 0 0.09 0.63 3.07 2
82_60 0 1.063 0 1.191 7.406 3.998 0.411 14.069 0 0.44 0 0.18 0.38 2.13 2
82_62 0 2.293 0 2.158 29.307 11.873 2.031 47.662 0 0.32 0 0.11 0.57 2.83 2

82_ave 0 0.4 0 0.14 0.46 2.7 2
s 0.1608 0 0.0484 0.1843 0.4116 0
C 0 40.20 0 34.57 40.07 15.24 0

83_1 0 3.925 0 10.58 38.158 16.258 33.828 102.749 0 0.4 0 0.39 0.21 2.69 2
83_2 0 2.909 0 6.337 31.276 16.267 7.132 63.921 0 0.29 0 0.23 0.48 2.21 2
83_24 0 0.091 0 0.48 1.423 0.678 13.769 16.441 0 0.22 0 0.42 0.36 2.41 2
83_26 0 2.457 0 12.265 28.084 14.673 15.673 73.152 0 0.27 0 0.5 0.23 2.2 2
83_27 0 0.075 0 0.356 0.93 0.468 15.224 17.053 0 0.26 0 0.45 0.29 2.28 2
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83_31 0 1.991 0 8.38 19.165 8.897 13.365 51.798 0 0.37 0 0.56 0.07 2.47 2
83_ave 0 0.3 0 0.43 0.27 2.38 2

s 0 0.0691 0 0.1129 0.1398 0.1878 0
C 0 23.03 0 26.26 51.78 7.89 0

84_21 0 0.907 0 13.097 26.287 15.028 25.895 81.214 0 0.1 0 0.52 0.38 2.01 2
84_23 0 1.029 0 17.097 20.849 11.951 23.253 74.179 0 0.14 0 0.85 0.01 2 2
84_26 0 0.909 0 11.613 32.072 17.284 35.728 97.606 0 0.09 0 0.4 0.51 2.13 2
84_27 0 0.407 0 13.292 23.101 10.144 29.502 76.446 0 0.07 0 0.78 0.15 2.61 2

84_ave 0 0.1 0 0.64 0.26 2.19 2
s 0 0.0294 0 0.2127 0.2247 0.2878 0
C 0 29.40 0 33.23 86.42 13.14 0

85_1 1.682 0 0 0 26.068 10.287 24.399 62.436 0.46 0 0 0 0.54 2.91 2
85_5 1.908 0 0 0 18.764 7.571 12.767 41.01 0.7 0 0 0 0.3 2.85 2
85_6 2.719 0 0 0 25.613 11.474 4.453 44.259 0.66 0 0 0 0.34 2.56 2
85_7 2.923 0 0 0 31.306 12.863 21.604 68.696 0.63 0 0 0 0.37 2.79 2
85_8 2.385 0 0 0 25.246 10.702 15.037 53.37 0.62 0 0 0 0.38 2.71 2
85_16 1.612 0 0 0 22.034 8.823 11.891 44.36 0.51 0 0 0 0.49 2.87 2
85_17 2.475 0 0 0 29.875 12.332 15.189 59.871 0.56 0 0 0 0.44 2.78 2
85_19 1.137 0 0 0 20.563 8.331 12.289 42.32 0.38 0 0 0 0.62 2.83 2
85_20 1.338 0 0 0 20.184 9.11 14.153 44.785 0.41 0 0 0 0.59 2.54 2

85_ave 0.55 0 0 0 0.45 2.76 2
s 0.1141 0 0 0 0.1141 0.1322 2
C 20.75 0 0 0 25.36 4.79 0

86_64 0.307 0 0 6.735 17.811 7.266 17.035 49.154 0.12 0 0 0.55 0.33 2.81 2
86_65 0.199 0 0 4.42 12.682 5.448 16.372 39.119 0.1 0 0 0.48 0.42 2.67 2
86_67 0.528 0 0 6.515 26.994 10.659 22.782 67.478 0.14 0 0 0.36 0.5 2.91 2
86_68 0.585 0 0 7.56 19.951 8.563 11.16 47.819 0.19 0 0 0.52 0.29 2.67 2
86_69 0.264 0 0 2.644 10.016 4.697 5.334 22.946 0.16 0 0 0.33 0.51 2.45 2
86_73 0.534 0 0 10.069 26.612 10.246 18.394 65.855 0.15 0 0 0.58 0.27 2.98 2
86_77 0.423 0 0 8.578 24.58 10.355 14.651 58.587 0.11 0 0 0.49 0.4 2.73 2
86_78 0.395 0 0 5.431 17.331 7.629 9.529 40.315 0.14 0 0 0.42 0.44 2.61 2
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86_81 1.278 0 0 0.962 11.977 5.16 8.38 27.757 0.69 0 0 0.11 0.2 2.66 2
86_91 2.592 0 0 0.205 27.17 10.782 14.379 55.128 0.67 0 0 0.01 0.32 2.89 2
86_92 2.394 0 0 0.218 21.502 8.827 7.418 40.359 0.76 0 0 0.01 0.23 2.8 2

86_ave 0.29 0 0 0.35 0.36 2.73 2
s 0.2672 0 0 0.2127 0.1056 0.1532 0
C 92.14 0 0 60.77 29.33 5.61 0

87_1 0.252 0 0 9.647 22.032 9.586 18.001 59.545 0.07 0 0 0.6 0.33 2.64 2
87_2 0.429 0 0 10.029 24.359 10.481 17.295 62.593 0.11 0 0 0.57 0.32 2.67 2
87_3 0.465 0 0 8.676 22.154 8.777 18.599 58.671 0.15 0 0 0.59 0.26 2.9 2
87_4 0.701 0 0 8.813 24.015 10.082 12.545 56.156 0.19 0 0 0.52 0.29 2.73 2
87_5 0.277 0 0 9.159 26.523 11.092 15.268 62.319 0.07 0 0 0.49 0.44 2.75 2
87_6 0.21 0 0 10.05 24.902 11.008 18.325 64.495 0.05 0 0 0.54 0.41 2.6 2
87_7 0.103 0 0 2.098 3.452 2.046 4.061 11.76 0.14 0 0 0.61 0.25 1.94 2
87_8 0.209 0 0 4.284 8 4.193 3.525 20.211 0.14 0 0 0.61 0.25 2.19 2
87_9 0.476 0 0 9.203 22.106 10.042 14.781 56.608 0.13 0 0 0.54 0.33 2.53 2
87_10 0.211 0 0 7.309 15.229 7.311 7.901 37.961 0.08 0 0 0.59 0.33 2.39 2
87_11 0.293 0 0 2.117 3.687 2.132 4.47 12.699 0.38 0 0 0.59 0.03 1.99 2
87_12 0.167 0 0 2.915 4.975 2.705 4.869 15.631 0.17 0 0 0.64 0.19 2.11 2
87_13 0.109 0 0 2.375 6.231 2.639 8.171 19.525 0.12 0 0 0.53 0.35 2.71 2
87_14 0.148 0 0 0.697 1.978 1.086 5.243 9.152 0.38 0 0 0.38 0.24 2.09 2
87_15 0.07 0 0 0.534 1.618 0.784 8.008 11.014 0.25 0 0 0.4 0.35 2.37 2
87_16 0.352 0 0 11.257 25.947 11.327 19.649 68.532 0.09 0 0 0.59 0.32 2.63 2
87_17 1.356 0 0 6.289 25.821 9.494 24.769 67.729 0.4 0 0 0.39 0.21 3.12 2
87_18 1.006 0 0 6.146 26.985 9.918 24.696 68.751 0.28 0 0 0.37 0.35 3.12 2
87_19 0.352 0 0 9.545 25.324 10.986 18.032 64.239 0.09 0 0 0.52 0.39 2.65 2
87_20 0.213 0 0 10.371 25.574 11.138 18.522 65.818 0.05 0 0 0.55 0.4 2.64 2
87_21 0.24 0 0 10.097 26.038 10.96 18.77 66.105 0.06 0 0 0.55 0.39 2.73 2
87_22 0.905 0 0 6.921 23.955 10.449 16.445 58.675 0.24 0 0 0.39 0.37 2.63 2
87_23 0.284 0 0 8.956 24.99 9.169 25.01 68.409 0.09 0 0 0.54 0.37 3.13 2
87_24 0.292 0 0 8.534 26.569 9.837 22.509 67.741 0.08 0 0 0.52 0.4 3.1 2
87_25 0.2 0 0 1.932 6.603 2.966 8.649 20.35 0.19 0 0 0.39 0.42 2.56 2
87_26 0.074 0 0 0.795 2.059 0.978 6.247 10.153 0.21 0 0 0.16 0.63 2.42 2
87_27 0.267 0 0 0.622 2.42 1.264 3.3 7.917 0.14 0 0 0.29 0.57 2.2 2
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87_28 0.311 0 0 2.225 6.15 3.334 5.512 17.532 0.26 0 0 0.4 0.34 2.18 2
87_29 0.135 0 0 0.955 2.161 1.283 5.434 9.968 0.29 0 0 0.44 0.27 1.93 2
87_30 0.146 0 0 3.329 5.717 3.025 3.55 15.767 0.13 0 0 0.65 0.22 2.17 2

87_ave 0.17 0 0 0.50 0.33 2.53 2
s 0.1014 0 0 0.1139 0.1118 0.3556 0
C 59.65 0 0 22.78 33.88 14.06 0

88_1 0.66 0 0 7.97 23.801 10.488 16.482 59.563 0.18 0 0 0.45 0.37 2.61 2
88_2 0.624 0 0 10.173 23.941 10.067 13.403 58.208 0.17 0 0 0.6 0.23 2.73 2
88_3 0.829 0 0 8.737 23.129 9.529 13.166 55.39 0.24 0 0 0.55 0.21 2.79 2
88_4 0.819 0 0 9.496 25.919 10.447 16.425 63.106 0.22 0 0 0.54 0.24 2.85 2
88_5 0.533 0 0 8.609 23.417 10.341 17.3 60.2 0.14 0 0 0.49 0.37 2.6 2
88_6 0.275 0 0 10.022 23.893 10.286 21.705 66.181 0.07 0 0 0.58 0.35 2.67 2
88_7 0.423 0 0 6.589 19.806 8.897 15.427 51.142 0.13 0 0 0.44 0.43 2.56 2
88_9 0.293 0 0 8.18 23.444 9.935 17.578 59.43 0.08 0 0 0.49 0.43 2.71 2
88_10 0.243 0 0 7.983 26.633 11.522 16.463 62.844 0.06 0 0 0.41 0.53 2.65 2
88_11 0.701 0 0 6.71 20.997 9.656 17.418 55.482 0.2 0 0 0.41 0.39 2.5 2
88_16 0.636 0 0 6.373 22.421 9.684 22.934 62.048 0.18 0 0 0.39 0.43 2.66 2
88_17 0.574 0 0 5.673 16.124 7.372 12.767 42.51 0.05 0 0 0.49 0.46 2.51 2
88_19 0.53 0 0 6.906 17.852 8.362 11.528 45.178 0.18 0 0 0.49 0.33 2.45 2
88_21 0.654 0 0 5.329 17.654 7.51 14.513 45.66 0.24 0 0 0.42 0.34 2.7 2
88_22 0.313 0 0 10.037 23.942 10.586 18.002 62.88 0.08 0 0 0.56 0.36 2.6 2
88_23 0.259 0 0 8.474 23.245 9.849 21.758 63.839 0.07 0 0 0.51 0.42 2.71 2
88_26 0.409 0 0 8.056 20.195 9.239 16.044 53.931 0.12 0 0 0.52 0.36 2.51 2
88_27 1.058 0 0 6.199 23.724 10.325 21.454 62.76 0.29 0 0 0.36 0.35 2.64 2
88_28 0.305 0 0 8.981 21.966 9.663 22.149 63.064 0.09 0 0 0.55 0.36 2.61 2
88_29 0.293 0 0 10.399 24.193 10.677 18.076 63.638 0.08 0 0 0.58 0.33 2.6 2

88_ave 0.14 0 0 0.49 0.37 2.63 2
s 0.0711 0 0 0.0699 0.0775 0.1003 0
C 50.79 0 0 14.27 20.95 3.81 0

89_11 0 1.029 0 0 8.221 3.033 23.783 36.066 0 0.56 0 0 0.44 3.11 2
89_13 0 2.842 0 0 10.94 6.994 26.739 47.515 0 0.67 0 0 0.33 1.8 2
89_14 0 3.181 0 0.003 14.178 8.181 32.39 57.933 0 0.64 0 0 0.36 1.99 2
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89_18 0 2.334 0 0.009 13.487 8.56 27.337 51.727 0 0.45 0 0 0.55 1.81 2
89_26 0 2.504 0 0.008 12.511 7.877 19.272 42.172 0 0.52 0 0 0.48 1.82 2
89_32 0 2.213 0 0.02 13.331 8.366 27.511 51.441 0 0.43 0 0 0.57 1.83 2

89_ave 0 0.55 0 0 0.45 2.06 2
s 0 0.0977 0 0 0.0977 0.5192 0
C 0 17.76 0 0 21.71 25.20 0

90_1 0 4.07 0 0.783 27.909 12.701 11.411 56.875 0 0.53 0 0.04 0.43 2.52 2
90_2 0 4.007 0 0.998 30.073 13.67 17.158 65.906 0 0.48 0 0.04 0.48 2.53 2
90_3 0 4.357 0 0.928 29.703 13.673 14.625 63.286 0 0.52 0 0.04 0.44 2.49 2
90_4 0 4.422 0 1.013 32.022 13.661 22.349 73.467 0 0.52 0 0.04 0.44 2.69 2
90_5 0 3.446 0 0.66 29.247 13.022 20.523 66.898 0 0.43 0 0.03 0.54 2.58 2
90_6 0 3.282 0 0.763 28.154 12.072 27.432 71.703 0 0.45 0 0.04 0.51 2.68 2
90_7 0 3.676 0 0.743 26.898 12.223 16.859 60.399 0 0.49 0 0.04 0.47 2.53 2
90_8 0 3.519 0 0.76 29.364 13.16 16.899 63.702 0 0.44 0 0.03 0.53 2.56 2
90_9 0 3.434 0 0.6 28.762 13.141 21.684 67.621 0 0.43 0 0.03 0.54 2.51 2
90_10 0 3.1 0 0.666 26.571 11.807 16.38 58.524 0 0.43 0 0.03 0.54 2.58 2
90_11 0 4.237 0 1.141 30.651 13.6 11.429 61.058 0 0.51 0 0.05 0.44 2.59 2
90_12 0 3.534 0 0.844 30.009 13.508 19.774 67.669 0 0.43 0 0.04 0.53 2.55 2
90_13 0 5.941 0 1.014 28.147 11.535 18.468 65.105 0 0.84 0 0.05 0.11 2.8 2
90_16 0 4.104 0 0.914 19.255 9.667 6.351 40.291 0 0.7 0 0.06 0.24 2.29 2
90_17 0 4.08 0 1.135 21.856 10.111 11.618 48.8 0 0.66 0 0.07 0.27 2.48 2
90_18 0 5.865 0 1.08 27.442 12.412 19.706 66.505 0 0.78 0 0.05 0.17 2.54 2
90_19 0 3.726 0 0.888 18.353 8.375 15.681 47.023 0 0.73 0 0.06 0.21 2.52 2
90_20 0 4.308 0 1.122 26.116 11.516 13.879 56.941 0 0.61 0 0.06 0.33 2.6 2
90_21 0 4.46 0 1.863 26.604 11.43 20.548 64.905 0 0.64 0 0.1 0.26 2.67 2
90_23 0 4.842 0 1.322 28.02 11.452 22.202 67.838 0 0.69 0 0.07 0.24 2.81 2
90_24 0 3.283 0 0.782 28.12 12.816 19.465 64.466 0 0.42 0 0.04 0.54 2.52 2
90_30 0 4.319 0 1.03 28.049 11.953 24.777 70.128 0 0.59 0 0.05 0.36 2.69 2

90_ave 0 0.56 0 0.05 0.39 2.58 2
s 0 0.1279 0 0.0168 0.1392 0.1134 0
C 0 22.84 0 33.6 35.69 4.40 0

91_1 0 2.239 0 0.276 33.386 14.335 29.82 80.056 0 0.26 0 0.01 0.73 2.67 2
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91_2 0 4.524 0 0.785 34.569 12.878 32.041 84.797 0 0.58 0 0.04 0.38 3.08 2
91_3 0 5.783 0 0.74 32.762 12.163 20.691 72.139 0 0.78 0 0.04 0.18 3.09 2
91_5 0 2.871 0 0.652 34.842 12.494 31.443 82.302 0 0.38 0 0.03 0.59 3.2 2
91_6 0 3.726 0 0.706 32.543 11.778 25.718 74.471 0 0.52 0 0.04 0.44 3.17 2
91_9 0 1.628 0 0.418 8.537 4.895 9.562 25.04 0 0.55 0 0.05 0.4 2 2
91_10 0 3.66 0 0.867 22.667 10.501 22.067 59.762 0 0.57 0 0.05 0.38 2.48 2
91_11 0 4.155 0 1.41 34.301 12.475 23.312 75.653 0 0.55 0 0.07 0.38 3.16 2
91_12 0 5.031 0 1.415 32.713 11.934 25.883 76.976 0 0.69 0 0.07 0.24 3.15 2
91_15 0 3.805 0 1.207 22.397 10.651 24.26 62.32 0 0.59 0 0.07 0.34 2.41 2
91_16 0 4.309 0 1.171 17.606 9.211 25.866 58.163 0 0.77 0 0.08 0.15 2.19 2
91_17 0 5.043 0 1.193 32.295 13.033 20.611 72.175 0 0.63 0 0.05 0.32 2.84 2
91_18 0 2.146 0 0.466 26.485 11.933 22.726 63.756 0 0.29 0 0.02 0.69 2.55 2
91_19 0 3.472 0 1.16 20.462 9.725 22.694 57.513 0 0.59 0 0.07 0.34 2.42 2
91_20 0 3.693 0 1.121 15.627 7.219 21.779 49.439 0 0.84 0 0.09 0.07 2.49 2
91_21 0 3.054 0 0.614 32.472 11.691 28.394 76.225 0 0.43 0 0.03 0.54 3.19 2
91_22 0 3.498 0 0.764 31.358 13.235 10.48 59.335 0 0.43 0 0.03 0.54 2.72 2
91_23 0 2.941 0 0.495 32.234 12.374 19.975 68.019 0 0.39 0 0.02 0.59 2.99 2
91_24 0 2.378 0 0.34 27.658 11.022 28.346 69.744 0 0.35 0 0.02 0.63 2.88 2
91_25 0 3.868 0 0.637 31.513 11.637 16.514 64.169 0 0.55 0 0.03 0.42 3.11 2
91_26 0 3.007 0 0.522 31.625 13.401 17.396 65.951 0 0.37 0 0.02 0.61 2.71 2
91_27 0 3.11 0 0.444 21.204 8.019 29.285 62.062 0 0.64 0 0.03 0.33 3.04 2
91_28 0 4.445 0 0.631 28.749 11.092 27.532 72.449 0 0.66 0 0.03 0.31 2.98 2
91_29 0 2.766 0 0.398 28.2 10.597 23.569 65.53 0 0.43 0 0.02 0.55 3.06 2
91_31 0 2.619 0 0.489 33.304 13.373 25.946 75.731 0 0.32 0 0.02 0.66 2.86 2
91_33 0 4 0 1.197 26.394 10.509 33.238 75.338 0 0.62 0 0.07 0.31 2.88 2
91_34 0 4.848 0 1.306 31.575 12.031 25.616 75.376 0 0.66 0 0.06 0.28 3.01 2
91_35 0 3.381 0 1.377 32.222 12.251 23.898 73.129 0 0.45 0 0.07 0.48 3.02 2
91_36 0 3.006 0 1.848 41.323 16.32 18.256 80.799 0 0.3 0 0.07 0.63 2.91 2
91_42 0 2.976 0 1.922 43.698 15.966 19.912 84.482 0 0.31 0 0.07 0.62 3.14 2
91_43 0 2.154 0 0.973 43.276 16.61 25.559 88.572 0 0.21 0 0.03 0.76 2.99 2
91_50 0 2.419 0 0.951 37.186 15.176 17.38 73.112 0 0.26 0 0.04 0.7 2.81 2
91_52 0 2.605 0 1.252 38.278 15.732 6.285 64.152 0 0.27 0 0.05 0.68 2.79 2
91_56 0 4.435 0 1.178 36.546 14.711 21.979 78.849 0 0.49 0 0.05 0.46 2.85 2
91_57 0 2.76 0 1.346 38.223 14.296 18.081 74.706 0 0.32 0 0.06 0.62 3.07 2
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91_58 0 3.1 0 0.742 22.631 9.512 27.108 63.093 0 0.53 0 0.05 0.42 2.73 2
91_59 0 2.974 0 1.022 37.759 13.859 34.809 90.423 0 0.35 0 0.04 0.61 3.13 2
91_63 0 1.882 0 0.537 36.145 14.191 20.559 73.314 0 0.22 0 0.02 0.76 2.92 2
91_64 0 4.86 0 1.181 36.756 15.06 20.669 78.526 0 0.53 0 0.05 0.42 2.8 2
91_65 0 3.862 0 0.781 36.477 14.894 19.87 75.884 0 0.43 0 0.03 0.54 2.81 2

91_ave 0 0.48 0 0.04 0.48 2.91 2
s 0 0.1640 0 0.0205 0.1755 0.2820 0
C 0 34.17 0 51.25 36.56 9.69 0

92_38 0 3.321 0 2.584 36.345 14.254 33.027 89.531 0 0.38 0 0.11 0.51 2.93 2
92_40 0 1.993 0 1.367 35.987 13.159 28.731 81.237 0 0.25 0 0.06 0.69 3.14 2
92_43 0 3.068 0 2.331 47.594 17.991 19.299 90.283 0 0.28 0 0.08 0.64 3.04 2
92_55 0 2.069 0 1.95 40.041 14.746 20.639 79.445 0 0.23 0 0.08 0.69 3.12 2
92_61 0 2.952 0 2.61 34.887 12.867 34.401 87.717 0 0.38 0 0.12 0.5 3.11 2
92_65 0 2.789 0 1.499 36.57 14.85 27.921 83.629 0 0.31 0 0.06 0.63 2.83 2

92_ave 0 0.31 0 0.09 0.6 3.03 2
s 0 0.0641 0 0.0251 0.0851 0.1238 0
C 0 20.68 0 27.89 14.18 4.09 0

93_2 0 2.671 0 2.671 35.98 13.457 21.432 76.211 0 0.33 0 0.12 0.55 3.07 2
93_5 0 3.189 0 2.648 32.861 12.957 4.975 56.63 0 0.4 0 0.12 0.48 2.91 2
93_6 0 2.747 0 2.965 35.095 13.852 0.864 55.523 0 0.33 0 0.13 0.54 2.91 2
93_7 0 4.015 0 3.367 34.302 12.807 13.288 67.779 0 0.51 0 0.16 0.33 3.07 2
93_12 0 2.541 0 1.87 35.278 13.752 32.208 85.649 0 0.3 0 0.08 0.62 2.95 2
93_14 0 2.48 0 1.845 37.232 14.534 35.641 91.732 0 0.28 0 0.08 0.64 2.94 2
93_15 0 3.286 0 2.393 31.793 12.552 24.374 74.398 0 0.43 0 0.11 0.46 2.91 2
93_19 0 1.969 0 1.582 34 14.364 38.319 90.234 0 0.22 0 0.07 0.71 2.72 2
93_21 0 1.902 0 1.72 30.572 12.791 36.526 83.511 0 0.24 0 0.08 0.68 2.74 2
93_22 0 1.975 0 2.252 37.039 13.855 36.897 92.018 0 0.23 0 0.1 0.67 3.07 2
93_25 0 2.596 0 2.051 34.746 14.117 34.521 88.031 0 0.3 0 0.09 0.61 2.83 2
93_27 0 4.001 0 4.402 29.312 12.363 12.318 62.396 0 0.53 0 0.21 0.26 2.72 2
93_31 0 4.195 0 5.018 26.68 10.521 1.786 48.2 0 0.65 0 0.28 0.07 2.91 2
93_32 0 2.471 0 2.202 28.874 11.167 12.37 57.084 0 0.36 0 0.12 0.52 2.97 2
93_34 0 1.687 0 1.448 31.751 12.605 41.398 88.889 0 0.22 0 0.07 0.71 2.89 2
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93_35 0 2.713 0 2.595 35.553 13.976 18.645 73.482 0 0.32 0 0.11 0.57 2.92 2
93_ave 0 0.35 0 0.12 0.53 2.91 2

s 0 0.1235 0 0.0558 0.1765 0.1128 0
C 0 35.29 0 46.50 33.30 3.88 0

94_2 0 0.236 0 0.518 6.757 3.591 38.765 49.867 0 0.11 0 0.08 0.81 2.16 2
94_3 0 0.028 0 0.631 2.266 1.198 19.814 23.937 0 0.03 0 0.31 0.66 2.18 2
94_5 0 0.228 0 1.219 2.953 1.58 46.229 52.209 0 0.23 0 0.46 0.31 2.14 2
94_6 0 0.04 0 0.174 0.581 0.328 31.671 32.794 0 0.2 0 0.32 0.48 2.09 2
94_9 0 0.88 0 1.438 7.18 4.061 25.838 39.397 0 0.32 0 0.23 0.45 2.03 2
94_10 0 1.228 0 3.591 12.044 6.711 16.02 39.594 0 0.3 0 0.32 0.38 2.06 2
94_12 0 0.169 0 0.397 2.28 1.136 21.757 25.739 0 0.23 0 0.21 0.56 2.24 2
94_13 0 0.08 0 0.549 1.765 0.936 29.571 32.901 0 0.14 0 0.33 0.53 2.17 2
94_14 0 0.228 0 0.365 4.043 2.343 25.543 32.522 0 0.15 0 0.09 0.76 1.98 2
94_16 0 0.032 0 0.194 4.373 2.43 28.914 35.943 0 0.02 0 0.05 0.93 2.09 2
94_18 0 0.041 0 0.143 0.592 0.323 24.343 25.442 0 0.2 0 0.26 0.54 2.12 2
94_19 0 0.061 0 0.126 1.351 0.711 20.437 22.686 0 0.14 0 0.1 0.76 2.19 2
94_20 0 0.031 0 0.134 1.964 1.079 30.706 31.986 0 0.05 0 0.07 0.88 2.09 2
94_21 0 0.346 0 3.243 16.346 8.345 60.974 89.254 0 0.07 0 0.23 0.7 2.25 2
94_22 0 0.863 0 1.772 16.025 8.404 68.068 95.132 0 0.17 0 0.13 0.7 2.19 2
94_23 0 0.158 0 0.651 6.616 3.481 41.101 52.007 0 0.07 0 0.11 0.82 2.18 2
94_24 0 0.393 0 1.565 3.804 2.102 38.353 46.217 0 0.3 0 0.44 0.26 2.08 2
94_25 0 0.186 0 1.411 3.171 1.741 40.012 46.521 0 0.17 0 0.48 0.35 2.09 2
94_26 0 0.089 0 0.575 2.173 1.177 8.596 10.502 0 0.12 0 0.29 0.59 2.12 2
94_27 0 0.211 0 1.613 2.981 1.739 32.473 39.017 0 0.2 0 0.55 0.25 1.98 2
94_28 0 0.355 0 3.767 9.693 5.258 53.435 72.508 0 0.11 0 0.43 0.46 2.12 2
94_29 0 0.609 0 2.758 4.633 2.513 14.525 25.389 0 0.4 0 0.65 0 2.12 2

94_ave 0 0.17 0 0.28 0.53 2.12 2
s 0 0.0994 0 0.1696 0.2357 0.0720 0
C 0 58.47 0 60.57 44.47 3.40 0

95_4 0 0 0 9.973 30.807 11.659 19.008 71.447 0 0 0 0.51 0.49 3.03 2
95_7 0 0 0 12.662 27.72 10.84 17.406 68.628 0 0 0 0.69 0.31 2.94 2
95_9 0 0 0 8.578 31.372 12.078 10.98 63.008 0 0 0 0.42 0.58 2.98 2
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95_12 0 0 0 11.798 33.855 13.252 10.243 69.148 0 0 0 0.53 0.47 2.93 2
95_19 0 0 0 9.643 30.494 11.594 10.69 62.421 0 0 0 0.49 0.51 3.02 2
95_25 0 0 0 11.338 24.788 9.388 19.566 65.08 0 0 0 0.72 0.28 3.03 2
95_26 0 0 0 6.529 29.824 11.447 8.421 56.221 0 0 0 0.34 0.66 2.99 2
95_27 0 0 0 5.99 32.692 12.238 9.88 60.8 0 0 0 0.29 0.71 3.07 2
95_29 0 0 0 10.693 26.92 10.7 16.916 65.229 0 0 0 0.59 0.41 2.89 2
95_30 0 0 0 6.594 31.295 11.81 1.752 51.451 0 0 0 0.33 0.67 3.04 2
95_32 0 0 0 13.893 30.571 11.998 33.912 90.374 0 0 0 0.69 0.31 2.93 2
95_35 0 0 0 10.309 26.349 9.614 29.588 75.86 0 0 0 0.64 0.36 3.15 2
95_36 0 0 0 18.24 31.225 13.104 16.956 79.525 0 0 0 0.89 0.11 2.74 2
95_37 0 0 0 9.522 21.406 8.281 21.628 60.837 0 0 0 0.73 0.27 2.97 2

95_ave 0 0 0 0.56 0.44 2.98 2
s 0 0 0 0.1768 0.1768 0.0960 0
C 0 0 0 31.57 40.18 3.22 0

96_31 2.842 0 0 0 45.656 16.753 34.657 99.908 0.47 0 0 0 0.53 3.13 2
96_32 2.87 0 0 0 30.181 11.352 20.377 64.78 0.71 0 0 0 0.29 3.05 2
96_36 2.17 0 0 0 22.221 8.38 7.712 40.483 0.72 0 0 0 0.28 3.04 2
96_39 3.208 0 0 0 34.629 12.736 12.276 62.849 0.7 0 0 0 0.3 3.12 2
96_40 3.057 0 0 0 31.202 12.004 14.314 60.577 0.71 0 0 0 0.29 2.98 2
96_41 1.08 0 0 0 28.299 10.583 23.601 63.564 0.28 0 0 0 0.72 3.07 2
96_42 2.133 0 0 0 37.306 14.777 20.102 74.318 0.4 0 0 0 0.6 2.9 2
96_44 2.093 0 0 0 29.161 11.098 22.249 64.601 0.53 0 0 0 0.47 3.02 2
96_48 2.006 0 0 0 30.535 11.569 26.779 70.889 0.48 0 0 0 0.52 3.03 2
96_49 2.798 0 0 0 30.512 11.29 19.536 64.136 0.69 0 0 0 0.31 3.1 2
96_51 1.806 0 0 0 32.335 12.587 15.143 61.871 0.4 0 0 0 0.6 2.95 2
96_52 2.172 0 0 0 29.557 11.063 22.328 65.12 0.55 0 0 0 0.45 3.07 2
96_53 3.725 0 0 0 35.161 13.515 23.26 75.661 0.77 0 0 0 0.23 2.99 2
96_55 2.036 0 0 0 30.757 11.354 22.993 67.14 0.5 0 0 0 0.5 3.11 2
96_56 2.311 0 0 0 25.938 9.67 20.704 58.623 0.67 0 0 0 0.33 3.08 2
96_57 1.197 0 0 0 37.662 13.751 32.044 84.654 0.24 0 0 0 0.76 3.14 2
96_59 2.655 0 0 0 32.764 12.238 14.087 61.744 0.61 0 0 0 0.39 3.07 2
96_60 2.263 0 0 0 26.821 10.772 14.687 54.543 0.59 0 0 0 0.41 2.86 2

96_ave 0.56 0 0 0 0.44 3.04 2
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s 0.1567 0 0 0 0.1567 0.0783 0
C 27.98 0 0 0 35.61 2.58 0

97_33 0.452 0 0 14.341 31.417 11.971 12.331 70.512 0.11 0 0 0.71 0.18 3.01 2
97_48 0.615 0 0 16.62 45.356 17.169 2.305 82.065 0.1 0 0 0.58 0.32 3.03 2
97_50 0.309 0 0 5.48 32.715 12.106 18.682 69.292 0.07 0 0 0.27 0.66 3.1 2
97_56 0.744 0 0 5.696 33.637 13.138 15.32 68.535 0.16 0 0 0.26 0.58 2.94 2

97_ave 0.11 0 0 0.46 0.43 3.02 2
s 0.0374 0 0 0.2258 0.2235 0.0658 0
C 34.00 0 0 49.09 51.98 2.18 0

98_55 0.507 0 0 12.397 30.526 11.754 14.844 70.028 0.12 0 0 0.63 0.25 2.98 2
98_56 0.775 0 0 20.042 46.474 17.623 20.882 105.796 0.12 0 0 0.68 0.2 3.03 2
98_57 0.274 0 0 8.062 28.088 10.847 23.586 70.857 0.07 0 0 0.44 0.49 2.97 2
98_58 0.344 0 0 9.339 28.325 10.86 24.453 73.321 0.09 0 0 0.51 0.4 2.99 2
98_59 0.346 0 0 7.547 34.005 13.73 19.252 74.88 0.07 0 0 0.33 0.6 2.84 2
98_60 0.257 0 0 10.029 28.342 10.768 19.73 69.126 0.07 0 0 0.55 0.38 3.02 2
98_61 0.397 0 0 12.598 28.586 10.284 19.132 70.997 0.11 0 0 0.73 0.16 3.19 2
98_62 0.39 0 0 12.941 26.618 9.909 19.584 69.442 0.11 0 0 0.78 0.11 3.08 2
98_63 0.427 0 0 18.182 44.737 16.449 38.888 118.683 0.07 0 0 0.66 0.27 3.12 2
98_64 0.264 0 0 4.665 26.472 9.413 27.772 68.586 0.08 0 0 0.29 0.63 3.23 2
98_65 0.266 0 0 6.829 26.179 9.943 21.883 65.1 0.07 0 0 0.41 0.52 3.02 2
98_66 0.235 0 0 7.791 33.505 11.945 18.676 72.152 0.05 0 0 0.39 0.56 3.22 2
98_67 0.293 0 0 12.241 27.318 10.349 17.422 67.623 0.08 0 0 0.7 0.22 3.03 2
98_68 0.308 0 0 11.701 22.893 8.513 20.629 64.044 0.1 0 0 0.82 0.08 3.09 2
98_69 0.429 0 0 13.459 28.449 11.297 19.39 73.024 0.11 0 0 0.71 0.18 2.89 2
98_71 0.439 0 0 11.621 26.335 9.94 16.528 64.863 0.12 0 0 0.69 0.19 3.04 2
98_72 0.385 0 0 10.742 23.156 9.309 12.447 56.039 0.12 0 0 0.69 0.19 2.86 2
98_73 0.27 0 0 10.859 37.939 13.253 33.092 95.413 0.06 0 0 0.76 0.18 3.29 2
98_74 0.445 0 0 10.042 31.996 11.405 20.482 74.37 0.11 0 0 0.52 0.37 3.22 2
98_75 0.226 0 0 8.981 23.931 9.373 28.161 70.658 0.07 0 0 0.57 0.36 2.93 2
98_76 0.254 0 0 6.173 22.986 8.28 18.514 56.207 0.09 0 0 0.44 0.47 3.19 2
98_77 0.209 0 0 7.323 18.994 8.628 24.012 59.166 0.07 0 0 0.5 0.43 2.53 2
98_78 0.073 0 0 4.949 18.829 8.994 9.833 42.678 0.02 0 0 0.33 0.65 2.4 2
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98_79 0.383 0 0 7.146 14.535 6.876 26.152 55.092 0.16 0 0 0.62 0.22 2.43 2
98_80 0.362 0 0 20.28 46.451 18.348 50.461 135.902 0.06 0 0 0.66 0.28 2.91 2
98_81 0.105 0 0 5.66 23.941 9.94 28.611 68.257 0.03 0 0 0.34 0.63 2.77 2
98_82 0.311 0 0 9.167 25.563 10.15 23.549 68.748 0.09 0 0 0.54 0.37 2.89 2
98_83 0.443 0 0 10.746 27.323 11.185 15.408 65.105 0.11 0 0 0.57 0.32 2.8 2
98_84 0.134 0 0 3.342 21.429 8.538 26.086 59.529 0.04 0 0 0.23 0.73 2.88 2

98_ave 0.09 0 0 0.55 0.36 2.96 2
s 0.0312 0 0 0.1612 0.1815 0.2228 0
C 34.67 0 0 29.31 50.42 7.53 0

99_55 0.141 0 0 14.118 31.882 12.86 23.715 80.166 0.03 0 0 0.65 0.32 2.85 2
99_56 0.144 0 0 16.429 37.253 14.079 19.288 85.128 0.03 0 0 0.69 0.28 3.04 2
99_58 0.221 0 0 14.321 28.861 15.346 13.139 66.727 0.04 0 0 0.55 0.41 2.16 2
99_59 0.108 0 0 13.771 27.901 14.043 15.674 66.895 0.02 0 0 0.58 0.4 2.28 2
99_60 0.184 0 0 17.041 35.332 12.768 18.201 81.13 0.04 0 0 0.79 0.17 3.18 2
99_61 0.064 0 0 13.085 31.966 11.913 15.831 69.26 0.01 0 0 0.65 0.34 3.08 2
99_62 0.158 0 0 15.886 32.727 13.167 16.813 75.527 0.03 0 0 0.72 0.25 2.85 2
99_63 0.158 0 0 15.842 32.298 13.757 17.795 76.811 0.03 0 0 0.68 0.29 2.7 2
99_65 0.134 0 0 10.625 33.629 14.409 22.721 78.39 0.03 0 0 0.44 0.53 2.68 2
99_66 0.196 0 0 11.167 35.159 17.047 10.987 69.279 0.03 0 0 0.39 0.58 2.37 2
99_68 0.145 0 0 14.945 36.164 14.474 19.813 83.085 0.03 0 0 0.61 0.36 2.87 2
99_69 0.072 0 0 11.922 35.382 15.128 18.203 77.263 0.01 0 0 0.47 0.52 2.69 2
99_71 0.115 0 0 10.813 26.596 11.686 16.044 60.614 0.03 0 0 0.55 0.42 2.61 2
99_72 0.143 0 0 15.884 34.626 12.691 16.929 77.411 0.03 0 0 0.74 0.23 3.13 2
99_73 0.118 0 0 8.105 36.671 17.882 18.546 77.232 0.02 0 0 0.27 0.71 2.35 2
99_75 0.054 0 0 4.246 32.871 13.282 26.603 73.526 0.01 0 0 0.19 0.8 2.84 2
99_76 0.112 0 0 14.677 35.522 14.411 19.001 80.979 0.02 0 0 0.61 0.37 2.83 2
99_78 0.088 0 0 12.466 37.669 13.49 28.165 90.621 0.02 0 0 0.55 0.43 3.21 2
99_79 0.163 0 0 13.984 33.315 14.387 20.387 79.271 0.03 0 0 0.58 0.39 2.66 2
99_81 0.177 0 0 14.67 30.946 15.49 11.195 67.404 0.03 0 0 0.56 0.41 2.29 2
99_82 0.157 0 0 15.286 34.67 13.519 21.197 82.474 0.03 0 0 0.67 0.3 2.94 2
99_83 0.188 0 0 16.19 34.987 14.778 10.758 72.867 0.04 0 0 0.65 0.31 2.72 2
99_84 0.145 0 0 14.159 32.652 13.506 23.021 80.876 0.03 0 0 0.62 0.35 2.78 2

99_ave 0.03 0 0 0.57 0.4 2.74 2
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s 0.0088 0 0 0.1440 0.1485 0.2972 0
C 29.33 0 0 25.26 37.13 10.85 0

100_54 0.136 0 0 13.983 28.376 10.657 13.631 66.783 0.04 0 0 0.78 0.18 3.06 2
100_55 0.019 0 0 10.684 24.992 9.482 13.512 58.689 0.01 0 0 0.67 0.32 3.03 2
100_62 0.084 0 0 15.025 38.661 14.089 20.162 88.021 0.02 0 0 0.63 0.35 3.15 2
100_63 0.1 0 0 17.575 34.888 13.596 6.128 72.287 0.02 0 0 0.77 0.21 2.95 2
100_69 0.079 0 0 11.487 33.635 12.167 18.696 76.064 0.02 0 0 0.56 0.42 3.17 2
100_71 0.056 0 0 7.646 32.533 11.677 22.605 74.517 0.01 0 0 0.39 0.6 3.2 2
100_74 0.088 0 0 11.411 28.705 10.872 20.473 71.549 0.02 0 0 0.62 0.36 3.03 2
100_77 0.04 0 0 12.08 22.307 8.676 10.343 53.446 0.01 0 0 0.83 0.16 2.95 2
100_80 0.068 0 0 8.534 31.737 11.524 14.217 66.08 0.02 0 0 0.44 0.54 3.16 2

100_ave 0.02 0 0 0.63 0.35 3.08 2
s 0.0093 0 0 0.1510 0.1537 0.0955 0
C 46.50 0 0 23.97 43.91 3.10 0

101_31 0.045 0 0 7.293 29.818 11.531 21.322 70.009 0.01 0 0 0.38 0.61 2.97 2
101_32 0.15 0 0 12.494 28.147 10.446 23.976 75.213 0.04 0 0 0.71 0.25 3.09 2
101_33 0.037 0 0 6.427 33.737 13.193 17.522 70.916 0.01 0 0 0.29 0.7 2.94 2
101_34 0.039 0 0 9.634 31.786 11.865 13.822 67.146 0.01 0 0 0.48 0.51 3.08 2
101_36 0.056 0 0 8.405 34.221 13.04 30.16 85.882 0.01 0 0 0.38 0.61 3.01 2
101_37 0.096 0 0 10.214 34.112 13.016 11.063 68.501 0.02 0 0 0.47 0.51 3.01 2
101_40 0.088 0 0 7.321 27.507 9.978 8.528 53.422 0.02 0 0 0.44 0.54 3.16 2
101_43 0.025 0 0 4.011 23.921 9.014 10.969 47.94 0.01 0 0 0.21 0.78 2.48 2
101_44 0.097 0 0 4.437 26.916 9.72 8.398 49.568 0.03 0 0 0.27 0.7 3.18 2
101_47 0.109 0 0 15.086 38.265 13.333 17.713 84.506 0.02 0 0 0.67 0.31 3.29 2
101_52 0.111 0 0 13.175 31.773 11.475 17.302 73.836 0.03 0 0 0.68 0.29 3.18 2
101_55 0 0 0 8.774 26.053 9.273 8.097 52.197 0 0 0 0.56 0.44 3.23 2
101_57 0.017 0 0 14.823 36.786 13.859 6.982 72.467 0 0 0 0.64 0.36 3.05 2
101_61 0.062 0 0 9.473 31.394 11.453 17.949 70.331 0.02 0 0 0.49 0.49 3.15 2
101_64 0.035 0 0 15.127 31.605 11.024 13.296 71.087 0.01 0 0 0.82 0.17 3.29 2

101_ave 0.02 0 0 0.5 0.48 3.07 2
s 0.0112 0 0 0.1785 0.1804 0.1971 0
C 56.00 0 0 35.70 37.58 6.42 0
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102_5 0 0 0.174 12.079 30.071 11.544 14.329 59.194 0 0 0.005 0.622 0.373 2.99 2
102_17 0 0 0.491 8.391 33.831 12.707 8.27 53.78 0 0 0.012 0.393 0.595 3.06 2
102_19 0 0 0.132 9.057 34.616 12.934 21.292 67.944 0 0 0.003 0.416 0.581 3.07 2
102_20 0 0 0.087 12.193 33.297 12.471 15.115 63.437 0 0 0.002 0.581 0.417 3.07 2
102_27 0 0 0.175 11.603 32.274 12.243 5.068 51.815 0 0 0.004 0.563 0.433 3.03 2
102_30 0 0 0.077 5.647 33.206 13.624 19.71 61.639 0 0 0.002 0.246 0.752 2.8 2
102_31 0 0 0.142 8.694 33.724 12.716 2.979 48.338 0 0 0.003 0.406 0.591 3.04 2
102_32 0 0 0.082 4.973 35.746 13.652 13.476 57.282 0 0 0.002 0.217 0.781 3.01 2
102_34 0 0 0.152 11.862 32.704 12.793 19.886 67.42 0 0 0.004 0.551 0.445 2.93 2
102_38 0 0 0.056 9.015 31.8 12.384 14.706 58.303 0 0 0.001 0.433 0.566 2.95 2
102_50 0 0 0.193 11.192 34.138 13.322 22.434 81.279 0 0 0.004 0.5 0.496 2.94 2

102_ave 0 0 0.004 0.448 0.548 2.99 2
s 0 0 0.0030 0.1322 0.1326 0.0812 0
C 0 0 75.00 29.51 24.20 2.72 0

103_10 0 0 0.109 10.714 36.714 13.4 24.589 85.526 0 0 0.0025 0.475 0.5225 3.15 2
103_13 0 0 0.09 7.653 29.092 11.157 24.246 72.238 0 0 0.0025 0.408 0.5895 2.99 2
103_16 0 0 0.087 12.596 34.984 12.672 25.576 85.915 0 0 0.002 0.59 0.408 3.17 2
103_23 0 0 0.122 7.877 22.831 9.473 13.181 53.484 0 0 0.004 0.49 0.506 2.77 2

103_ave 0 0 0.003 0.491 0.506 3.02 2
s 0 0 0.0009 0.0752 0.0749 0.1851 0
C 0 0 30.00 15.32 14.80 6.13 0

104_20 0 0 0.512 9.042 31.449 11.616 17.949 70.568 0 0 0.014 0.463 0.523 3.11 2
104_31 0 0 1.267 11.908 23.794 8.542 23.794 69.305 0 0 0.046 0.83 0.124 3.2 2
104_33 0 0 0 16.722 29.819 10.605 11.415 68.561 0 0 0 0.94 0.06 3.23 2
104_34 0 0 1.203 14.86 25.914 9.508 2.732 54.217 0 0 0.039 0.93 0.031 3.13 2
104_35 0 0 0.887 15.256 27.862 10.401 11.796 66.202 0 0 0.026 0.872 0.102 3.08 2

104_ave 0 0 0.025 0.807 0.168 3.15 2
s 0 0 0.0186 0.1974 0.2017 0.0628 0
C 0 0 74.40 24.46 120.06 1.99 0

105_1 0 0 0.91 8.843 21.519 8.537 18.22 58.029 0 0 0.033 0.616 0.351 2.89 2
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105_3 0 0 0.727 9.83 14.888 6.84 15.489 47.774 0 0 0.033 0.854 0.113 2.5 2
105_12 0 0 0.582 10.034 15.076 7.052 17.8 50.544 0 0 0.026 0.846 0.128 2.45 2
105_17 0 0 0.745 10.925 15.55 7.346 18.764 53.33 0 0 0.031 0.884 0.085 2.43 2
105_19 0 0 0.793 11.096 15.279 7.02 18.175 52.363 0 0 0.035 0.94 0.025 2.5 2
105_30 0 0 3.227 7.194 10.214 4.804 6.661 32.1 0 0 0.19 0.81 0 2.44 2
105_37 0 0 0.701 10.053 18.939 7.185 25.892 62.77 0 0 0.03 0.832 0.138 3.03 2
105_38 0 0 0.58 9.182 18.161 7.216 20.932 56.071 0 0 0.025 0.756 0.219 2.89 2
105_39 0 0 0.866 9.672 20.952 7.399 25.612 64.501 0 0 0.036 0.777 0.187 3.25 2
105_40 0 0 0.765 9.953 19.977 7.747 26.968 65.41 0 0 0.031 0.764 0.205 2.96 2

105_ave 0 0 0.047 0.808 0.145 2.73 2
s 0 0 0.0504 0.0881 0.1020 0.3023 0
C 0 0 107.23 10.90 70.34 11.07 0

106_2 0 0 0.794 14.02 30.413 10.882 16.107 72.216 0 0 0.023 0.766 0.211 3.21 2
106_8 0 0 0.856 8.716 34.105 12.096 24.966 80.739 0 0 0.022 0.428 0.55 3.24 2
106_9 0 0 0.95 6.075 31.886 12.288 24.996 76.195 0 0 0.024 0.294 0.682 2.98 2
106_18 0 0 0.244 8.89 36.727 12.781 28.317 86.959 0 0 0.006 0.413 0.581 3.3 2
106_21 0 0 0.248 9.535 35.761 12.593 25.464 83.601 0 0 0.006 0.45 0.544 3.26 2
106_22 0 0 0.22 7.747 33.546 12.196 28.492 82.201 0 0 0.006 0.378 0.616 3.16 2
106_27 0 0 1.345 13.671 45.329 15.81 43.872 120.027 0 0 0.026 0.514 0.46 3.29 2
106_30 0 0 0.684 12 33.539 11.872 16.375 74.47 0 0 0.018 0.601 0.381 3.24 2
106_34 0 0 1.12 10.071 33.763 11.968 20.589 77.511 0 0 0.029 0.5 0.471 3.24 2

106_ave 0 0 0.018 0.483 0.499 3.21 2
s 0 0 0.0093 0.1374 0.1404 0.0968 0
C 0 0 51.67 28.45 28.14 3.02 0

107_1 0 0 1.487 0.032 30.04 3.56 7.582 42.701 0 0 0.029 0 0.971 2.15 2
107_7 0 0 1.436 0.059 38.523 3.338 10.369 53.725 0 0 0.03 0 0.97 2.94 2
107_10 0 0 1.219 0.018 38.754 2.871 9.092 51.954 0 0 0.029 0 0.971 3.44 2
107_18 0 0 1.339 0.066 39.042 2.763 8.018 51.228 0 0 0.033 0 0.967 3.6 2
107_32 0 0 1.659 0.062 41.585 3.795 8.447 55.548 0 0 0.03 0 0.97 2.8 2
107_40 0 0 0.894 0.022 21.291 2.172 5.477 29.856 0 0 0.028 0 0.972 2.5 2

107_ave 0 0 0.03 0 0.97 2.91 2
s 0 0 0.0017 0 0.0017 0.5506 0
C 0 0 5.67 0 0.18 18.92 0
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APPENDIX J ICP-AES compositions (parts per million) of K, Na, Pb, Ag,

K-Ag, Na-Ag and Pb-Ag jarosites synthesised at 22ºC, 97ºC and 140ºC.

Sample Na K Pb Ag Fe S
4 - 47729 - - 266936 117916
6 - 33570 - 33312 277200 110614

6D - 36783 - 28817 259212 116404
8 - 28041 - 55504 262938 110932

10 - 16874 - 77305 262280 110799
10D - 17463 - 79717 252697 107035
12 - - - 134206 240715 102017
14 23425 - - - 291899 115265
16 12936 - - 68936 284810 112064
18 3542 - - 108223 242973 102730
20 2114 - - 122589 241607 102295
22 - 46134 - - 267781 118667
24 - 36627 - 28422 258954 113311

24D - 36732 - 27878 261274 115882
26 - 31234 - 48329 275037 115357
28 - 18084 - 102315 245031 109395
30 - - - 166157 221906 97430
32 22821 - - - 290990 116444
34 6140 - - 99541 277627 107479
36 1192 - - 127912 262431 106332
38 510 - - 176680 242868 107814

38D 1818 - - 143122 255975 109826
40 - 27916 - 309964 145889 111276
42 3160 - - 122781 237188 103547
43 - - 61635 - 278116 106299

43D - - 53572 - 270582 98683
44 - - 27991 50382 279068 106430
45 - - 29230 90604 275724 106721
46 - - 15300 123130 272864 104474

46D - - 14078 103757 269840 106461
47 - - 7004 133051 264176 102066
48 - - 6986 133507 271107 103581
50 13493 - - 47973 300731 113561
51 7879 - - 84434 267552 105833
52 3435 - - 120738 272310 106646
53 1522 - - 137391 274275 105754
54 485 - - 140886 260604 100556
55 - 24377 - 65251 268696 109149
57 - 31861 - 42725 272441 111862
58 - 24661 - 61656 261214 106292
59 - 18827 - 81998 264237 107182
60 - 10031 - 110359 260512 100996
61 - - 150657 266529 104541

62D - 41230 - 272711 109083
63D - 27634 - 33440 272603 93150
64D - 21193 - 56430 281084 93729
65D - 9437 - 66864 276320 106441
66D - - - 79722 282742 107229
67 23882 - - - 309695 113862
68 20796 - - 23926 297479 113689

69D 16441 - - 36137 311674 113342
70 7684 - - 78752 271000 104897

71D - - - 132215 270206 103975
72 - - - 341857 158931 96906
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73 - 54617 - 241507 115402
74 - 47208 - 12016 248705 113395
75 - 42983 - 25976 240196 110611
76 - 28196 - 196025 189098 109155
77 28421 - - 298320 119820
78 4165 - - 122353 239400 102630
79 1080 - - 129493 230677 96053
80 884 - - 312655 161823 96668
81 - 40876 - - 275562 112426
82 - 30547 - 45627 284693 113757
83 - 17818 - 80018 260050 102462

84D - 5500 - 120610 270179 105568
85 22992 - - - 289671 111598
86 22512 - - 14573 296800 112911
87 4865 - - 102763 266723 102252

88D 4495 - - 103213 285472 110222
89 - 47406 - - 230042 106101
90 - 49498 - 10523 261396 117556
91 - 41719 - 18156 247635 105910
92 - 37765 - 26014 233569 102780
93 - 27288 - 62072 246000 104007
94 - 17668 - 90307 241526 102384
95 - - - 138281 240926 96546
96 27849 - - - 300064 114260
97 13273 - - 69379 261800 101478
98 4906 - - 114586 248490 99738
99 1421 - - 125991 234323 93869

100 593 - - 135153 244316 98658
101 318 - - 143126 252488 101948
102 - - 1839 143016 251476 103021
103 - - 9072 137716 250565 99695
104 - - 6286 140451 248749 97903
105 - - 19509 132910 237187 95887
106 - - 11223 129708 233848 96484
107 - - 38799 - 398754 46687


