
The Art of the Possible

Tools and Methods for Solving Models with

Substantial Heterogeneity

Tobias Grasl

Birkbeck College, University of London

Submitted for the Degree of PhD

April 24, 2017

1

Abstract

Macroeconomic models with rational, heterogeneous agents o�er the opportunity to study

both individual and aggregate economic outcomes, and the interaction between the two. Solv-

ing such models is di�cult: the non-trivial problem of solving a maximisation problem in the

presence of uncertainty is complicated by the need to determine model-consistent expecta-

tions in an economy with a non-degenerate distribution of agents over states.

This thesis provides both technical and mathematical tools which aid the economist in

working with such models. Chapter 1 provides an introduction to the topic and discusses the

literature.

Chapter 2 presents software libraries which automate some of the steps, for example cal-

culating expectations from policy functions. The economist can focus on the code which

implements the model-speci�c solution to the optimisation problem. The libraries are shown

to solve models far more e�ciently than a comparable solution coded in Matlab.

Chapter 3 introduces a new algorithm for calculating model-consistent expectations which

relies on straightforward mathematics and a guess for the distribution of agents over states.

The initial guess, the distribution obtained under constant aggregate conditions, yields good

results. Multiple approaches for further improvement in the forecasting function are dis-

cussed. All solutions are computed using the libraries from chapter 2, and the algorithm is

also implemented as part of those libraries for use in other models.

Chapter 4 discusses a model of the labour market with matching and large, heterogeneous

�rms. The �rms experience idiosyncratic demand shocks and adjust their size in response.

Steady state solutions are computed for di�erent values of the exogenous tax rate and the

transition path demonstrates that, in contrast to the canonical matching model, employment

does not adjust instantaneously to changes in market conditions.

Chapter 5 discusses some avenues for potential future research.

2

For Mum, Anni, Trudi, Pella & David and Gigi, who together got me here.

3

I would like to thank Stephen Wright for giving me the opportunity to complete this work,

and for advice and encouragement along the way. I would also like to thank my colleagues

Alex, George, Marco and Patrick for discussions and companionship. I am grateful to the par-

ticipants of workshops and sessions at CEF 2012 Prague and CEF 2013 Vancouver. Finally, I

would like to thank my examiners, Alessandro Mennuni and Wouter den Haan, for an inter-

esting viva and comments that were both helpful and encouraging.

4

All the work presented in this thesis is my own

5

Contents

Contents 6

List of Tables 12

List of Figures 13

1 Introduction 14

1.1 Does heterogeneity matter? . 15

1.1.1 Dynamic Stochastic General Equilibrium Models 15

1.1.2 Investigating the Impact of Heterogeneity 16

1.1.3 Developing the Techniques . 18

1.2 Accompanying Code . 19

2 The ModelSolver Toolkit 20

2.1 The Benchmark Model . 22

2.1.1 The Production Technology . 22

2.1.2 Households . 22

2.1.3 The State of the Economy . 23

2.1.4 Uncertainty and Insurance Markets . 24

2.1.5 The Solution . 24

2.2 Concepts and Algorithms . 24

2.2.1 Bounded Rationality and Approximate Aggregation 25

6

2.2.2 Alternating Solution . 26

2.2.3 Interleaved Iteration . 26

2.2.4 Rectangular Grid Approximation . 27

2.3 The Numerics Library . 28

2.3.1 Multi-Threading . 28

2.3.2 DoubleArray . 29

2.3.3 Interpolation . 36

2.4 The ModelSolver Library . 42

2.4.1 How to Solve a Model . 43

2.4.2 ModelRunner . 45

2.4.3 ModelConfig . 47

2.4.4 Model . 51

2.4.5 IndividualProblemSolver 55

2.4.6 AggregateProblemSolver . 55

2.4.7 State . 55

2.5 Algorithms . 57

2.5.1 The Method of Endogenous Gridpoints 57

2.5.2 Derivative Aggregation . 65

2.5.3 The Algorithm of Krusell and Smith (1998) 66

2.5.4 Simulating Heterogeneous Agent Models 67

2.5.5 Aggregate Controls . 71

2.6 Evaluating the ModelSolver Toolkit . 73

2.6.1 The Deterministic Solution with Identical Households 74

2.6.2 Complete Markets with Aggregate Uncertainty 76

2.6.3 Incomplete Markets with Aggregate Uncertainty 79

2.7 Future Work . 81

2.7.1 Additional Algorithms . 81

2.7.2 Function Objects . 81

7

2.7.3 Porting to Other Technologies . 82

2.8 Conclusion . 82

3 Finding the Forecasting Function by Derivative Aggregation 84

3.1 Assumptions . 86

3.1.1 The Individual Policy Function . 87

3.1.2 The Set of Feasible Distributions Ω . 87

3.2 Solving the Benchmark Model . 88

3.2.1 The Problem . 88

3.2.2 A Straightforward Approximation . 89

3.2.3 Exact Aggregation . 90

3.2.4 Approximate Aggregation . 91

3.2.5 A Graphical Illustration with Two Households 92

3.2.6 Returning to the Full Distribution . 94

3.2.7 Choosing a Curve . 95

3.2.8 Assessing Performance and Accuracy 97

3.3 Some Experiments to Improve the Solution . 102

3.3.1 Discovering a Reference Distribution by Simulation 102

3.3.2 Discovering a Transformation by Comparing Distributions 104

3.3.3 A Second-Order Approximation . 106

3.4 Generalising the Approach . 108

3.4.1 A Brief Digression on Notation . 108

3.4.2 A Generic Model . 110

3.4.3 The Forecasting Function . 110

3.4.4 The Overall Approach . 111

3.4.5 The Mathematics . 112

3.4.6 Exogenous Aggregates . 114

3.4.7 Higher-Order Approximations . 114

8

3.5 Adding a One-Period Bond . 114

3.5.1 The Extended Model . 115

3.5.2 Solving the model . 116

3.5.3 Calibration . 118

3.5.4 The Distribution for Derivative Aggregation 118

3.5.5 The Solution . 118

3.6 Discussion . 120

3.6.1 Derivative Aggregation and Approximate Aggregation 120

3.6.2 When Approximate Aggregation Does Not Hold 121

3.6.3 Finding Appropriate Curves . 121

3.6.4 Other Limitations . 122

3.6.5 Implementation . 123

3.7 Conclusion . 123

4 Matching with Heterogeneous Firms 125

4.1 Introduction . 125

4.2 Related Literature . 126

4.3 Model . 128

4.3.1 In Relation to Literature . 128

4.3.2 A Brief Preview . 129

4.3.3 Firms . 130

4.3.4 People . 133

4.3.5 The Employment Relationship . 137

4.4 The Solution . 140

4.4.1 The Firms’ Problem . 140

4.4.2 The Sign-Up Bonus . 143

4.4.3 Size Adjustment Costs . 144

4.5 Computing the Solution . 146

9

4.5.1 The Variable Grid . 147

4.5.2 The Firms’ Problem . 147

4.5.3 The Steady State With No Aggregate Uncertainty 150

4.5.4 Computing the Transition Path . 152

4.6 Parameters . 152

4.7 Results . 154

4.7.1 Aggregate Outcomes . 154

4.7.2 The Distribution of Firms . 155

4.7.3 Firms’ Policies and Outcomes . 156

4.7.4 A Change in Tax Policy . 156

4.8 Discussion And Further Work . 159

4.8.1 Entry and Aggregate Shocks . 161

4.8.2 Further Work . 162

5 Discussion 163

5.1 The ModelSolver Toolkit . 164

5.1.1 Computational Performance . 164

5.1.2 Ease of Use . 164

5.1.3 Comparable Solutions . 165

5.1.4 Potential Improvements . 166

5.2 Derivative Aggregation . 167

5.2.1 E�ciency . 167

5.2.2 Few Constraints . 168

5.2.3 Theoretical Insight . 168

5.3 Matching, Bargaining and Heterogeneous Agents 169

Bibliography 170

Appendices 176

10

A Derivative Aggregation 177

A.1 Mathematical Appendix . 177

A.1.1 Proof of Proposition 1 . 177

A.2 Extension to 2nd derivative . 180

A.2.1 Deriving

d2x̃ri,t
dX̃h

t dX̃
k
t

. 183

A.3 Solving the Individual Problem with Bonds . 184

A.3.1 Impact on Simulation Methodology . 185

A.4 Dealing with Aggregate Controls . 186

A.4.1 Performing Derivative Aggregation . 186

A.5 Metrics . 187

A.5.1 Aggregate Error . 187

A.5.2 Dynamic Euler Equation Error . 188

B Matching 189

B.1 Solving the Consumption Problem . 189

B.2 A ‘Wider’ Shock Distribution . 191

11

List of Tables

2.1 Parameters of the Economy . 75

2.2 Parameters of the aggregate stochastic process 76

2.3 Exogenous Transition Probabilities . 80

2.4 XPA Solution Times (ModelSolver vs. Matlab) 80

2.5 XPA Policy Function Di�erences (ModelSolver vs. Matlab) 81

3.1 Compute Time and Forecast Accuracy (XPA vs. DA) 98

3.2 Dynamic Euler Equation Errors (XPA vs. DA) 102

3.3 Compute Time and Forecast Accuracy (Distribution Improvement) 104

3.4 Compute Time and Forecast Accuracy (Transformation Improvement) 105

3.5 Compute Time and Forecast Accuracy (Summary) 107

3.6 Forecast Accuracy (Incomplete Markets with Bonds) 119

3.7 Dynamic Euler Equation Errors (Incomplete Markets with Bonds) 119

4.1 Grid Variables . 147

4.2 Parameter values used . 153

4.3 Aggregate Variables in Steady State, Benchmark 154

4.4 Estimated Parameters, Log-Normal Size Distribution 156

4.5 Estimated Parameters, Power-Law Size Distribution 156

4.6 Aggregate Variables in Steady State, High-Tax Scenario 159

12

List of Figures

2.1 The E�ective Shape of the Interpolant . 41

2.2 The Simulation Mechanism (Young, 2010) . 69

2.3 Simulation Grid Over�ow . 70

2.4 Aggregate Capital Policy (ModelSolver vs. Dynare) 77

2.5 Forecast Di�erences (Solver vs. Dynare) . 78

3.1 Two-Household Illustration . 93

3.2 Region of Maximal Forecast Errors . 100

3.3 One-Period-Ahead Forecast Errors (Derivative Aggregation) 101

3.4 One-Period-Ahead Forecast Errors (Distribution Improvement) 103

3.5 The Derivative of the Transformation . 105

3.6 One-Period-Ahead Forecast Errors (Dist. & Transformation Improvement) . . 106

3.7 One-Period-Ahead Forecast Errors (2nd-Order) 107

3.8 One-Period-Ahead Forecast Errors (Bonds) . 120

4.1 Firm-Demand and Firm-Size Distributions . 157

4.2 Firm-Speci�c Policies and Outcomes, By Size 158

4.3 The Transition Path . 160

B.1 Firm Distributions with 51 Demand Levels . 191

13

1
Introduction

An economist has a di�cult job. The world she seeks to understand is complex and intractable,

so she must identify assumptions which improve tractability at an acceptable cost to realism.

The model she constructs proves di�cult, if not impossible, to solve, so she must apply fur-

ther approximations to make the mathematics work. And �nally, there are no o�-the-shelf

tools which perform the required computations, so she must develop them herself. She can

not be just a ‘dismal scientist’, but must be a, most likely equally dismal, mathematician and

programmer to boot.

This thesis investigates theoretical and practical tools for completing the third step, com-

14

putation, in the context of macroeconomic models with substantial
1

heterogeneity. The mod-

els under consideration can be thought of as ‘DSGE
2

models with heterogeneity’, and impor-

tantly continue to assume model-consistency in expectation formation
3,4

. An early example

in this literature is Krusell and Smith (1997).

Chapter 2 presents a computational toolkit, developed as part of this thesis, which abstracts

from much of the technical di�culty of solving the model and allows the researcher to focus

on the economics and mathematics. Chapter 3 introduces a new algorithm for solving such

models in the presence of aggregate risk caused by exogenous shocks. Chapter 4 considers a

model of the labour market in which �rms experience idiosyncratic demand shocks and hence

di�er in size. This chapter motivates the research and provides some context in the literature,

while Chapter 5 concludes.

1.1 Does heterogeneity matter?

1.1.1 Dynamic Stochastic General Equilibrium Models

Macroeconomics studies the behaviour of the economy in aggregate. The fact that this be-

haviour is caused by the behaviour of individuals and �rms participating in the economy is

obvious, but, despite the well known reference to ‘animal spirits’ in Keynes (1936), the actual

behaviour of individual economic agents was largely abstracted away in much of the business

cycle theory up to the 1960s.

1

Substantial here meaning not just a prede�ned, �nite set of di�erent agents, but a potentially continuous range

of heterogeneity in outcomes, albeit perhaps arising from a very limited amount of input heterogeneity.

2

Dynamic Stochastic General Equilibrium

3

The introduction of Krusell and Smith (2006) describes the type of model considered well, though in this thesis

heterogeneity need not necessarily be among consumers.

4

This contrasts with agent-based models in the tradition of Brock and Hommes (1997), which consider het-

erogeneity from a di�erent starting point, with ex-ante heterogeneity in expectations. Whilst the latter approach

is becoming increasingly popular in the literature, that literature has not been considered as part of this project.

That is not to say that the work might not be useful for such models: the computational tools developed are fairly

general and would help in solving any model in which the solution contains policy functions de�ned over a large

domain, and the theoretical tools are designed to �nd model-consistent expectations, which, arguably, should be

attributed to at least some agents in any theoretical economy.

15

Lucas (1976) argued that the expectations of households and �rms matter. They will

change their behaviour in response to policy changes a�ecting those expectations, but these

e�ects are missed by models that do not take account of expectations. This argument proved

powerful. Much of the subsequent business cycle literature, building on the methodology
5
, if

not always the economic assumptions, of Kydland and Prescott (1982), explicitly considers op-

timising, forward-looking economic agents. Models in this literature rest on the assumption

that agents of each type satisfy the conditions for exact aggregation; as a result, the optimi-

sation problem need only be solved for a single, representative agent. The conditions under

which this is true come in both theoretical and mathematical guise: the assumption of com-

plete markets in the sense of Arrow-Debreu implies full insurance against idiosyncratic risk, so

that agents
6

always have identical state; or the model may be parametrised in such a way that

individual policies aggregate mathematically to a function which solves the same optimisation

problem
7
.

1.1.2 Investigating the Impact of Heterogeneity

The DSGE approach has come under much criticism, perhaps most damagingly for its apparent

failure to provide practical tools to aid in determining monetary or �scal policy (Mankiw,

2006). A potential weak point that was investigated from the earliest days
8

is the assumption

of a representative agent: is it justi�ed, or do models taking account of income and wealth

heterogeneity reach di�erent conclusion than those that do not? In many cases answering

this question requires solving a model which includes heterogeneity
9
.

One di�culty in solving models with heterogeneous agents and aggregate �uctuations is

that, in theory, the entire distribution of agents over their states forms an input to each agents’

optimisation problem. The problem is in�nite dimensional, hence impossible to solve with

5

Today termed dynamic general equilibrium (DSGE) modelling.

6

In this case, households.

7

On the consumption side, households are commonly assumed to have utility functions satisfying the Gorman

form, though this assumption does not take account of liquidity constraints

8

Ríos-Rull (1995) surveys the early literature.

9

See İmrohoroğlu (1992) for example.

16

known methods. Ríos-Rull (1995) surveyed the early literature which attempts to construct

macroeconomic models with heterogeneous agents. He found that these models avoided the

problem of in�nite-dimensionality by either imposing the distribution from the outside or

abstracting from capital. Krusell and Smith (1998) introduced a method to circumvent the

problem in their model: current aggregate states are su�cient to forecast future aggregates,

and hence all variables which directly a�ect household choices, with a high degree of accuracy.

They termed this �nding ‘approximate aggregation’. That aggregate law of motion is found

recursively and jointly with the individual decision rules.

A possible interpretation of the �ndings of Krusell and Smith (1998), and more so the

work of Aiyagari (1994) which they build on, is that heterogeneity does not signi�cantly af-

fect the behaviour of aggregate economic variables
10

. This interpretation is rejected by Car-

roll (2000), who reached this conclusion by comparing a representative consumer model with

a version of Krusell and Smith (1998) calibrated to reproduce key microeconomic facts. The

representative consumer model can not replicate the empirical aggregate marginal propen-

sity to consume, whereas the version with heterogeneous households provides a much closer

�t. The author pronounces a “Requiem for the Representative Consumer” and declares that

‘. . . for many purposes, the representative-consumer model should be abandoned in favour of

a model that matches key microeconomic facts’. That language is relatively strong for aca-

demic economics, and the signi�cance of the result should not be understated: in the most

parsimonious business-cycle model possible, introducing a realistic degree of heterogeneity

signi�cantly a�ects policy- and welfare-relevant aggregate relationships.

In an extension of the model described above which adds indivisible labour supply at the

individual level, An et al. (2009) demonstrated that a representative agent model can only repli-

cate the behaviour of the economy with heterogeneous agents if household utility is allowed

to be non-concave or unstable.

10

The authors of the former paper invested some e�ort into �nding a calibration which does produce a degree

of wealth heterogeneity close to the empirical level, and were careful to document that the aggregate outcomes,

particularly the covariance of consumption and output, do change by a signi�cant margin under that calibration.

17

1.1.3 Developing the Techniques

The solution introduced by Krusell and Smith (1998) works by repeatedly executing two steps

in succession until convergence, starting from an initial guess for the aggregate forecasting

function:

1. Calculate the individual policies given the current assumption on the aggregate fore-

casting function

2. Update the aggregate forecasting function given the new individual policies

Since their contribution, the numerical work on solving models with substantial hetero-

geneity has continued.

The di�culty in computing rational expectations under aggregate uncertainty is just one

of the issues arising when solving models with substantial heterogeneity. A further di�erence

to representative agent models is that the individual agents’ policies must be calculated across

the entire feasible domain of their state variables, often including state boundaries. Represen-

tative agent models are generally only solved in a comparatively small neighbourhood of the

steady state. Carroll (2006) introduced a straightforward and e�cient method to performing

this aspect of the algorithm.

Young (2010) uses a discrete representation of the wealth distribution, rather than a large

number of individuals, to simulate an economy with heterogeneous households. This removes

one of the potential issues encountered in the alternative approach, namely that the distri-

bution of individual stochastic shock realisations encountered during simulation a�ects the

outcome.

Den Haan and Rendahl (2010) update the aggregate forecasting function by approximating

the individual transition rule with a (piece-wise) linear function, so that aggregation of the

function equates to calculating the function value at the average capital holdings. This does

away with the need for simulation altogether, but requires the introduction of an additional

aggregate state variable so that the capital held by employed and unemployed agents can be

18

tracked separately, because the individual transition rules di�er between the two groups.

The approach of Reiter (2010) is conceptually close to the approach presented in Chapter 3

in that he uses a discrete representation of the steady state distribution from the model with-

out aggregate uncertainty as a reference to perform the aggregation step. He independently

adjusts the reference distribution to match each point on a grid over current aggregate states

and then �nds the forecast for future aggregate states at that point using �xed-point methods.

An approach that does not follow the outline above but is also related to that introduced

in Chapter 3 is Reiter (2009). He �rst takes a discrete approximation of the steady state dis-

tribution under the assumption of no aggregate uncertainty. He then considers each of the

points in this discrete approximation as a separate variable, derives a system of equations that

describes the economy as a function of these variables and �nds a �rst-order approximation

of that solution using a perturbation approach.

1.2 Accompanying Code

This thesis presents software libraries and solves models using those libraries. Source code

for all the software discussed, as well as the model solutions, are available online. The website

Grasl (2016) (https://modelsolver.bitbucket.io/phd/) contains links and compiled packages.

19

2
The ModelSolver Toolkit

The process of theoretical analysis of an economy commonly involves three broad steps: con-

structing the model, solving the mathematical problem and computing the solution to the

equations obtained. An economist is taught how models are constructed and how the math-

ematics is solved from her earliest days in the �eld. Computing the solution to an economic

model is arguably the least standardised step in the process. With a few exceptions (for ex-

ample Dynare, Adjemian et al., 2011; Carroll et al., 2016)
1

the code to solve a model must be

1

The latter of these packages came to the author’s attention as this thesis went to press. It shares many common

aims with the ModelSolver Toolkit presented in this chapter.

20

hand-crafted using whichever languages and libraries the economist �nds most readily acces-

sible. This is time-intensive at an individual level and ine�cient for the profession, causing

duplication of e�ort and limiting knowledge sharing.

This chapter presents a toolkit which provides solutions to some of the computational

tasks the economist has thus far had to program herself. At conception, the target audience

of the toolkit (a.k.a. the author) was an economist working with macroeconomic models with

substantial
2

heterogeneity. Whilst this target audience remains relevant, the tools provided

are more widely applicable.

Insofar as it is written in Scala
3
, a language few economist are familiar with, the toolkit is

open to the criticism of being yet another di�erent and inaccessible approach, rather than a

widely usable tool. Whilst the claim that economists will (and should!) be reluctant to learn

another technology has merit, it is also the case that there are no obvious better candidates.

Models of the kind targeted are too diverse to allow for a completely programming-free ap-

proach, so the toolkit must provide an accessible language in which to implement the model.

An economist should not be expected to learn a lower level language such as C++ or FOR-

TRAN, and initial research for this project showed that more specialised tools such as MAT-

LAB and Mathematica perform very poorly when faced with problems of this kind
4
. Scala

has some signi�cant points in its favour: it provides enough syntactic sugar to be easily ac-

cessible; it runs on a platform
5

that is mature, performant and free to deploy; and it is widely

used outside of academia, so that both good, free development tools and budding economist-

programmers are available. The examples in this chapter, as well as the code to solve the

models in subsequent ones, illustrate the ease-of-use of the language in conjunction with the

toolkit.

2

Substantial here meaning not just a pre-de�ned, �nite set of di�erent agents, but a potentially continuous

range of heterogeneity in outcomes, albeit perhaps arising from a very limited amount of input heterogeneity.

3

Much of the underlying logic is actually implemented in Java, but Scala provides a good platform for accessing

that Java code whilst using idioms more familiar to users of higher-level languages.

4

This point was recently documented by Aruoba and Fernández-Villaverde (2014)

5

The Java Virtual Machine

21

2.1 The Benchmark Model

This section introduces the model used in subsequent sections �rst to illustrate the concepts

on which the ModelSolver Toolkit builds, and later to evaluate the toolkit. The model is a

variation of the stochastic growth model (see, for example, Taylor and Uhlig, 1990).

2.1.1 The Production Technology

The economy is a production economy with competitive goods, labour and physical capital

markets. Firms in the economy face the production function

Yt = AtK
α
t (Pt l̄Lt)

1−α
(2.1)

where Pt = gPt−1 (2.2)

Here, Yt is output per period, At is the exogenous aggregate productivity process, and Pt

is labour-augmenting productivity growth with growth rate g. Kt is aggregate capital, Lt is

employment and l̄ is the time endowment per employed person.

Firms hire capital and labour to maximise pro�ts each period. The �rms’ �rst order con-

ditions yield a rental rate of capital, rt, and wage per unit of time worked, wt, of

rt = αAt

(
Kt

Pt l̄Lt

)α−1
(2.3)

wt = (1− α)AtPt

(
Kt

Pt l̄Lt

)α
(2.4)

2.1.2 Households

The economy is populated by a continuum of in�nitely-lived households of measure one, in-

dexed on the unit interval. Each household i seeks employment and, when employed, supplies

22

l̄ units of labour per period. The household receives income eit, which depends only on vari-

ables exogenous to its decision.

There is one asset, production capital. Households have identical utility functions and

maximise expected lifetime utility subject to their budget constraint. Household i’s problem

is thus

max
{cit,kit+1}∞t=0

E

[∞∑
t=0

(
βt

(cit)
1−γ − 1

1− γ

)]
(2.5)

s.t. cit + kit+1 = (1 + rt − δ)kit + eit (2.6)

kit+1 ≥ 0 (2.7)

where cit is consumption, kit is individual capital holdings. β is the per-period discount

rate, γ is the coe�cient of relative risk aversion and δ the depreciation rate of physical capital.

Solving the households’ maximisation problem yields �rst-order condition

βE
[(
cit+1

)−γ
(1 + rt+1 − δ)

]
=
(
cit
)−γ − φit (2.8)

where φit ≥ 0 is the multiplier on the borrowing constraint.

2.1.3 The State of the Economy

Each household’s state at the beginning of period t is capture by two variables: its exogenous

income eit and its endogenous capital holdings kit. There is only one stochastic state which is

independent of households: At, the exogenous aggregate productivity process.

The state of the economy, St, is therefore given by

St = (ωt, At) (2.9)

23

where ωt is the distribution of households over capital and employment:

ωt = ωt : (0, 1)→ R2
+ ≡ {(kit, eit) : i ∈ (0, 1)} (2.10)

2.1.4 Uncertainty and Insurance Markets

The description of the economy to this point is incomplete in that it does not specify the nature

of the income process or the insurance markets available to households. The model will later

be solved in a variety of con�gurations for both. Until they are de�ned, the assumption should

be the most general one, namely that households may, for whatever reason, �nd themselves

in di�ering states at any given point in time.

2.1.5 The Solution

Each household has a single endogenous choice: the consumption-savings decision. This

choice is conditional on the state of the economy, St, as well as the household’s own state

(kit, e
i
t). It can therefore be expressed as

kit+1 = f(kit, e
i
t,St) (2.11)

Given the current state of the economy St, this function yields all future household wealth

levels kit+1 and therefore, in conjunction with future exogenous states, the future state St+1.

Finding f thus solves the model.

2.2 Concepts and Algorithms

The ModelSolver Toolkit does not aim to introduce new concepts and algorithms, but to facili-

tate the use of those already documented in the literature. This section outlines the theoretical

building blocks that form the basis for much of the functionality the ModelSolver provides.

24

2.2.1 Bounded Rationality and Approximate Aggregation

The benchmark economy has in�nitely many households, which may be in di�erent states.

The state of the economy comprises the state of all its constituent households and is therefore

in�nite dimensional. A rational, forward-looking household includes this state in its decision

making and must form expectations over its future value that are consistent
6

with the be-

haviour of the economy. Though the household may be capable of doing so, an economist

modelling the household is as yet not provided with tools for such a task.

A fact which may simplify the necessary calculations is that a household’s economic out-

comes are not a�ected directly by every other household’s choices. Instead, the consumption-

savings decisions of all households jointly give rise to aggregate capital and hence the interest

rate and wage. The latter two are the only endogenous variables not speci�c to the household

that appear in its optimisation problem. This is a key aspect of a market economy, and it re-

duces the number of variables a household considers explicitly to a small number, albeit that

forecasting those variables exactly still requires knowledge of all households’ actions.

The conjecture of Krusell and Smith (1998) was that a small set of aggregate variables,

including but not necessarily limited to aggregate capital, forms a su�cient set of information

to forecast its own future state with high precision. Boundedly rational (see Simon, 1972)

households choose to restrict the amount of information they consider to that set of aggregate

variables and can take advantage of the accurate forecast to reduce their problem to a tractable

one. The papers’ results con�rmed the authors’ conjecture. They termed this feature of the

economy approximate aggregation.

The ModelSolver Toolkit’s principal assumption is that agents are boundedly rational and

use a small number of endogenous aggregate states in their decision making, ignoring other

agents. As a consequence, approximate aggregation is also assumed to hold: if the forecasts

formed using the approach are not very accurate then the assumption of bounded rationality

may also not be appropriate.

6

Consistent in the sense that the probability assigned to any possible future outcome is that implied by the

model (Muth, 1961).

25

2.2.2 Alternating Solution

The assumption of bounded rationality renders the households’ problem �nite-dimensional

and hence tractable, but an issue of circularity remains. Solving the household optimisation

problem requires, as input, a function that forecasts future aggregate capital based on current

values. But this function is itself an aggregation of all the savings choices made by individual

households, so that computing it requires, as input, the solution to the household optimisation.

Krusell and Smith (1998) acknowledge this circularity and integrate in into their solution

algorithm. They start with an initial guess for the capital forecasting function, and then iterate

over two steps until the solutions have converged:

1. Solve the household problem, using the current guess of the forecasting function as

input

2. Update the guess of the forecasting function using the latest outcome of step 1.

In theoretical terms, the ModelSolver Toolkit’s overall algorithm maintains this approach.

It can also be replicated precisely.

2.2.3 Interleaved Iteration

The description above of the two steps of the algorithm does not explain how these steps are

performed. Multiple approaches to both steps are documented in the literature, and indeed

Chapter 3 proposes a new way of performing step 2. The original authors perform step 1 by

value function iteration, and simulate a large number of periods in step 2 in order to generate

data from which the forecasting function can be estimated. Re�nements to both approaches,

such as Carroll (2006) for step 1 and Den Haan and Rendahl (2010) for step 2, exist, and will

be discussed in more detail below.

If one of the steps is itself recursive, a potential (compute) optimisation
7

is to refrain from

forcing that step to converge fully in each iteration of the overall loop. A partially converged

7

This optimisation is present in the code provided with Den Haan and Rendahl (2010), though it is not men-

tioned in the paper explicitly.

26

solution may already be close enough to the actual solution to improve the other step’s result

relative to the last iteration.

The e�ect of this approach is to change the balance of how many times each of the steps is

executed. Its impact depends on the relative computational cost of those steps. The simulation-

based solution to step 2 of Krusell and Smith (1998) is costly, so although step 1 is iterative,

using this approach would not constitute an optimisation. In the algorithm of Den Haan and

Rendahl (2010) step 2 is computationally trivial, so that the approach yields large gains.

The ModelSolver Toolkit performs one overall iterative loop. In each iteration of this loop

it delegates to the model-speci�c code the decision to perform step 1 (�rst) and then step 2.

Potential decision criteria are legion: most straightforwardly, both steps might be performed

in each iteration; the number of iterations performed might be decisive; more complex criteria

include measures of the degree of convergence. For example, the solution of the benchmark

model in the calibration of Den Haan and Rendahl (2010) performs only step 1 in the �rst 100

iterations of the loop, but both step 1 and step 2 in each subsequent iteration.

2.2.4 Rectangular Grid Approximation

The ModelSolver approximates functions it is solving for using spline interpolation on a rect-

angular grid. In this approach, a grid of coordinates over the domain of the function is con-

structed and a multi-dimensional array is used to hold the function values on the grid. Since

the grid is rectangular, the grid coordinate values along each dimension are constant across

the other dimensions, so that the coordinate system is a list of one-dimensional arrays. The

n-th member of this list holds the values of the n-th input variable (i.e. xn) on the points of the

grid traversing that dimension. Each element in the function value array represents a point

on this grid, and the value held at that position is the value of the function at that point.

Continuous Variables

Most input variables to the functions are continuous variables, whereas the grid is by de�ni-

tion discrete. O�-grid function values are evaluated by interpolation. Currently, only linear

27

interpolation is available, yielding a piece-wise linear approximation.

Discrete Variables

Some models use discrete variables, particularly for exogenous states. This may be due to

the discrete nature of the quantity being modelled, such as ‘employment status’, or due to a

modelling decision, commonly made to decrease computational cost. The latter is the case

with aggregate shocks in the benchmark model, for example.

The possible values of such variables are used as the grid coordinates in that dimension.

No interpolation is required for these variables.

2.3 The Numerics Library

The ModelSolver Toolkit consists of two libraries: the Numerics library and the ModelSolver

library. The latter contains the functionality speci�c to solving models, along with algorithm

implementations and other code speci�c to economics. It is the subject of the next section.

This section presents the Numerics library.

Scala and Java are all-purpose programming languages and are not designed with numeri-

cal computation in mind. They therefore lack some programming constructs which are useful

in numerical applications. The Numerics library provides these constructs. Much of the code

written to solve models using the toolkit will utilise the Numerics library heavily, whilst the

ModelSolver library will form the sca�olding that structures the application, but will not fre-

quently be called directly.

The source code for the numerics library is available online (Grasl, 2011b, 2014d).

2.3.1 Multi-Threading

Numerical computations, run on modern computers that have multiple cores, can bene�t

greatly from multi-threading. The Numerics library takes extensive advantage of this, dis-

tributing calculations across multiple threads, where possible transparently. This applies par-

28

ticularly to array operations, and is one of the key reasons why the performance of the library

is better relative to manual, loop-based approaches.

Updating shared resources in multi-threaded operations is problematic, and transparency

can be an impediment in such cases. The documentation for speci�c functions below identi�es

those that are multi-threaded.

2.3.2 DoubleArray

The DoubleArray type is at the root of the Numerics library, both in the sense of being

causal for its creation and the foundation upon which the rest of the library is built.

A DoubleArray is an n-dimensional, regular array of double values. Both languages

used to construct the library already provide such a concept, but these implementations do not

easily support some of the primary use cases the ModelSolver requires: applications where the

number of array dimensions is not known at design-time; applying functions element-wise to

all the members of one or more arrays; and performing operations on sub-arrays in selected

dimensions.

More specialized languages, such as Octave, do provide “point-wise” operators which can

be applied to each point in an array and even methods for applying functions element-by-

element to one or more arrays. Working with arrays when the number of dimensions is

unknown ex ante remains di�cult. Performance and memory requirements also cause dif-

�culties. Aruoba and Fernández-Villaverde (2014) compare the execution time of a common

economic problem in a number of languages and �nd MATLAB and Mathematica among the

slowest options.

Language designers face trade-o�s when choosing how to implement arrays (Bezanson

et al., 2014a). One of the choices commonly made by general purpose languages, including

Java and Scala, is that the rank
8

of an array must be known when the program is compiled.

This is not conducive to writing applications that may require variable rank. The ModelSolver

is just such an application because the number of model variables, which determines the rank

8

Number of dimensions

29

of arrays needed to represent model functions, depends on the model. The DoubleArray

type supports working with arrays of unknown rank.

This section documents the most important features of DoubleArray . Comprehensive

documentation is provided in the form of Javadoc and Scaladoc documentation that forms part

of the toolkit.

2.3.2.1 createArrayOfSize(n1, n2,. . .)

n1,n2,. . . Int, number of elements in each dimension

returns A new DoubleArray of the requested size

Creates and returns a DoubleArray of the given size. Note that the size of the array is

�xed at creation and cannot be changed subsequently.

2.3.2.2 Indexing

Zero-Based

DoubleArray uses zero-based indexing, so the �rst value in an array a is a(0).

Arrays as Indexes

DoubleArray allows arrays of length unknown at compile-time and so must allow indexes

of variable length. Integer arrays serve as such indexes.

Example

val a = createArrayOfSize(5,4,3)

val idx = Array(1,2,3)

a(idx) // Equivalent to a(1,2,3)

30

Linear Indexing

In some situations it is bene�cial to be able to identify an element in an array without using

its full index. Linear indexing serves this purpose. In linear indexing, a single integer is passed

and can identify any point in an array. Whenever a single index is used on an array, linear

indexing is applied.

In an array of n dimensions of length D1, D2, · · · , Dn respectively, the linear index of

index i1, i2, · · · , in is given by

n∑
i=1

in n∏
j=i+1

Dj

 (2.12)

Note that the order of dimensions is reversed from that in MATLAB.

Example

val a = createArrayOfSize(5,4,3)

a(0) // Equivalent to a(0,0,0)

a(1) // Equivalent to a(0,0,1)

a(20) // Equivalent to a(1,2,2)

Sub-Array Selection

The character $ has a special meaning within an index. If a $ is passed in any position, then

the function result will be the sub-array at those index points where positive integers where

passed, but with the other dimensions unrestricted.

Example

val a = createArrayOfSize(5,4,3)

31

a($,1,1) // Returns a 1-D array of size 5

Returns a one-dimensional DoubleArray containing the elements of a along its �rst di-

mension at the second point in its second and third dimensions.

2.3.2.3 Basic Arithmetic Operators

The DoubleArray supports the basic arithmetic operations, both as element-wise opera-

tions with other DoubleArray instances and with Double instances. If the operands are

bothDoubleArray , then they must be of identical size. If one of the operands is aDouble

, the operation is again element-wise but that operand is the same for all array elements.

Example

a + b // Adds two arrays element-wise

a/d // Divides each element of A by the Double d

d + a // Double can be the first operand

In addition, C-style compound assignment operators that modify their �rst operand are also

supported.

Example

a -= b // Modifies a to contain a-b (like a = a-b)

a *= d // Modifies a to contain a*d

2.3.2.4 a << (d1,d2,. . .)

d1,d2,. . . Double values to be �lled into the array

Fills array a with the provided values, in linear indexing order. There must either be as many

input values as there are elements in a, or one. In the latter case, each element of a is set to

n1.

Example

32

val a = createArrayOfSize(2,2)

a << (1 to 4) // a contains (1,2

// 3,4)

2.3.2.5 a -> fn

fn A function that maps a Double to another Double

returns A DoubleArray o� the same size as a

Performs an element-wise mapping of the array a through function fn, so that each element

in the returned array is the result of applying the function fn to the value at the same position

in a.

This operation is performed in multiple threads, and no guarantees are made which points

will or will not share the same thread. Writing to shared resources in fn should be avoided.

Example

val a = createArrayOfSize(2)

a << (1,4)

a -> (ai => ai*10 + sqrt(ai)) // Returns (11,42)

This results in an array with elements (11, 42).

2.3.2.6 a ->= fn

fn A function that maps a Double to another Double

returns a

Performs -> and stores the result in a.

33

2.3.2.7 (a1 :: a2 ::. . . :: an) -> fn

a1,a2,. . . ,an DoubleArray instances of the same size

fn A function of n Double which returns an array of m Double

returns An array of m DoubleArray instances of size a1.size

Performs and element-wise mapping of the elements at the same positions in each of the input

arrays through the function fn.

This operation is performed in multiple threads, and no guarantees are made which points

will or will not share the same thread. Writing to shared resources in fn should be avoided.

Example

a << (1, 2) // Assumes A,B,C are all 2-element DoubleArray

b << (2, 3)

c << (3, 5)

val Array(d, e) = (a :: b :: c) :-> ((ai, bi, ci) => {

Array((ai + bi) * ci, (ai + bi) / ci)

})

d now contains elements (9, 25) and e = (1, 1).

2.3.2.8 (a1::a2::. . . ::an) =-> fn

a1,a2,. . . ,an DoubleArray instances of the same size

fn A function of n Double which returns a Double

returns A1

Performs -> and stores the result in a1.

34

2.3.2.9 a.reduce(fn)

fn A function of type Iterator[Double] => Double

returns A Double

Returns the result of passing an iterator over the entire array, in linear-index order, to fn.

Example

val a = createArrayOfSize(10) << (1 to 10)

val res = a.reduce((it:Iterator[Double]) => {

var s = 0d

for(i <- it) s = s+i

s

})

res now contains 55.

2.3.2.10 A\(d1,d1,. . .)

d1,d2,. . . Int zero-based dimensions across which to apply the mapping

returns See below

The returned value can be uses as the �rst operand in arithmetic operations, including com-

pound assignments, :: and reduce. The e�ect is that the subsequent operations will be

applied repeatedly, once for each point in the dimensions not speci�ed. If A.size = s,

where s is an Array[Int], then subsequent operands added with the :: operator must

have size (s(d1), s(d2),. . .).

These subsequent operations are performed in multiple-threads. The usual proviso ap-

plies.

Example

35

val a = createArrayOfSize(2,2)

val b = createArrayOfSize(2)

a << (1 to 4)

b << (5,6)

val c = (a\(1) :: b) -> ((ai,bi) => ai + bi) //add b to a across dim 1

// c = (6,8

// 8,10)

val d = (c\(0)).reduce((iter : Iterator[Double]) => {

iter.reduce((prod,ci) => prod * ci) // Product of elements

})

c now contains (6,8; 8,10), and d is (48, 80).

2.3.3 Interpolation

The iterative methods used in solving models by grid-projection often require results that lie

o� the grid to be bought back onto the grid (see Carroll, 2006). This is achieved by interpola-

tion. Because the grid can consist of 100000s of points, and these operations happen multiple

times per iteration, e�cient interpolation is key in keeping the time required to solve a model

down.

The methods provided by this library currently all perform linear interpolation. To date

this has been found to be su�cient. Alternative approaches could be implemented transpar-

ently since they do not a�ect the method signature. In economic problems the shape of the

function, particularly its monotonicity, concavity and boundaries, are often important, so care

must be taken to preserve these values where necessary.

36

2.3.3.1 Arrays as Function Values

A common use of DoubleArray in the ModelSolver Toolkit is to act as an interpolant:

the array represents the values of a function f(x1, x2, · · · , xn) at the points on a rectangular

grid. Each array dimension d represents one of the input variables xd, and each point i in that

dimension represents a known value xid of xd. The xid change monotonically in i. Determining

the value of the function at o�-grid points requires interpolation along each dimension. The

Numerics library provides n-dimensional interpolation to support this approach.

2.3.3.2 spec(x, a, v)

d Int The dimension to interpolate

x DoubleArray The values of input variable xd at the grid points along dimension d

v Double The target value of xd to interpolate to

Returns an Interpolation.Specification which speci�es the parameters for a

single dimension of the interpolation to be performed. This speci�cation is used in interp

below.

2.3.3.3 interp(a, sp1, sp2,. . .)

a DoubleArray to be interpolated

sp1,sp2,. . . Interpolation.Specifications detailing operation to be performed

returns The result of the interpolation

Interpolates a according to the speci�cations sp1,sp2,. . . . The result will be of di-

mension a.numberOfDimensions - length(sp1,sp2,...), with the remain-

ing dimensions of equal size and in the same order as those dimensions of a not interpolated.

Example

val a = createArrayOfSize(5,7,3,2)

37

val x0 = createArrayOfSize(5) << (1,2,3,4,5)

val x2 = createArrayOfSize(3) << (3,6,9)

a << (1 to a.numberOfElements) // Fill A with some values

val b = interp(a, spec(0,x0,2.5), spec(2,x2,4))

After this operation, b.size is (7,2).

2.3.3.4 Interpolating many values

Reverse-time iterative methods, such as the method of endogenous gridpoints, commonly

yield functions de�ned at o�-grid points in one dimension as the outcome of an iteration.

The on-grid function values must then be determined for the entire grid before commencing

the next iteration. If the function is monotonous, commonly the case in well-behaved eco-

nomic problems, an optimisation is possible: the interpolation can be performed by iterating

just once across both the grid and the function values in parallel, computing the result for

each target value along the way. A generic interpolation mechanism, unaware of the target’s

monotonicity, would require that each point be treated independently.

2.3.3.5 interpolateFunction(srcX,srcY,d,tgtX, params)

srcX DoubleArray x values of the interpolant. Must be monotonous along dimension d

srcY DoubleArray y values of the interpolant, same size as srcX

d Int dimension along which to interpolate

tgtX DoubleArray x values to which to interpolate. Must be monotonous along d

params Optional Params object with additional parameters.

returns DoubleArray

Takes srcX and srcY to be input and output values respectively of a function, and uses this

function as an interpolant to determine the output values at tgtX.

Interpolation is only performed along one dimension, d, and both source and target x

38

values must be monotonous, with the same direction of monotonicity, in this dimension.

If the input function is multi-dimensional then the interpolation is e�ectively performed

repeatedly for each point in dimensions other than d. Neither source nor target x values need

be identical for each of these points.

tgtXmay be either one-dimensional or have the same number of dimensions assrcX. In

the former case, the same target x values are evaluated for each point in the non-d dimensions

of srcX. In the latter case, the non-interpolated dimensions of tgtX must be of the same

size as those of srcX. In both cases the size of the target along the interpolated dimension is

not restricted.

The resulting array will be of the same size as srcX in the non-interpolated dimensions,

and the same size as tgtX in the interpolated one.

Params

Both interpolateFunction and interpolateFunctionAcross accept an op-

tional parameter of type Params. The additional options which can speci�ed using this

parameter are:

constrained

If constrained is set, then the domain of the hypothetical function being interpolated is

assumed to be constrained at the lower value of the source x values. Any target x values lying

below
9

this value are set to have the same y value as the �rst x value.

If constrained is not set, extrapolation is performed to �nd appropriate y values for target

x values lying below the �rst source x value.

9

‘Below’ here assumes that the interpolant is increasing. For decreasing functions, this would be ‘above’. Di-

rections in further statements are similarly assuming an increasing function and must be reversed in the opposite

case.

39

withDiscontinuities(discontinuities)

discontinuities a function of type (Array[Int])=>Iterator[Double]

The function discontinuities provides, for each index in the non-interpolated di-

mensions, an iterator over the discontinuities present in the function being interpolated.

Interpolation in the presence of discontinuities is discussed in Section 2.3.3.7.

preserveMonotonicity

This parameter, applicable only in the presence of discontinuities, speci�es that the interpo-

lation should not result in non-monotonicity around the discontinuities. See Section 2.3.3.7.

Example

val srcX = createArrayOfSize(5,2)

val srcY = createArrayOfSize(5,2)

srcX\0 << (1 to 5)

srcY\0 << (2 to (10,2)) // so y = 2x ...

srcY\1 += createArray(2,3) // ...+ 2(3) along column 0(1)

val targetX = createArrayOfSize(10,2)

targetX\0 << (5 to (50,5))

val res = interpolateFunction(srcX, srcY, 0, targetX)

// res contains y for x=(5,10,15,...,50) in both columns

40

2.3.3.6 interpolateFunctionAcross(srcX,srcY,d,tgtX,params,d1,d2,. . .)

d1,d2,. . . Dimensions of tgtX across which to replicate the interpolation

returns A DoubleArray

The parameters shared with interpolateFunction above are identical. The di�erence

between that method and this one is that this one allows tgtX to be of higher dimension

than srcX, and that the interpolation will be repeated for each grid point in those additional

dimensions. These additional dimensions must be speci�ed as d1,d2,. . . and need not

be successive or be the highest dimensions of tgtX.

2.3.3.7 Interpolation with Discontinuities

Commonly, and as a prerequisite for applying the mathematics necessary to solve a model,

functions encountered in economics are assumed to be both continuous and di�erentiable.

Such assumptions sometimes break down. An approximate solution to the model being anal-

ysed may nonetheless be feasible provided the failure of the assumptions is limited to a man-

ageable set of points.

Since the ModelSolver evaluates functions by interpolation, the interpolation mechanism

must be able to deal with points where continuity fails - in other words, with discontinuities.

That is precisely what the parameter withDiscontinuities described above achieves.

1 2 3 4
0

5

10

15

No Discontinuity
1 2 3 4

0

5

10

15

Discontinuity, Non-Monotonous
1 2 3 4

0

5

10

15

Discontinuity, Monotonous

Figure 2.1: The E�ective Shape of the Interpolant

41

The parameter identi�es points along each line of interpolation
10

at which the function

should not be assumed to be continuous. When the interpolation is performed, any target x

value which lies next to such a discontinuity, with no intervening points in srcX, will be

calculated as if the source function did not extend beyond the discontinuity. The resulting y

value will be found by extrapolation from the part of the source function lying prior to the

discontinuity.

Monotonicity

Many economic functions are assumed or required to be monotonous
11

. This monotonicity

is often important order to be able to �nd a solution to a model. The interpolation mecha-

nism must hence ensure that this property is preserved where necessary. In the presence of

discontinuities this requires special care.

Figure 2.1 illustrates the e�ect of the two parameters on the function de�ned bysrcX=(1,2,3,4),

srcY = (1,4,9,16). On the left there are no discontinuities. The central case has a

discontinuity at x = 2.15, but does not preserve monotonicity. The right-hand graph illus-

trates the same discontinuity, but with monotonicity being preserved. Note that this last case

depends also on which target points prior to the discontinuity are interpolated, because the

last such point determines the lowest possible y value attainable after the discontinuity.

2.4 The ModelSolver Library

The ModelSolver library builds on the Numerics library and aids a researcher in solving eco-

nomic models. It performs those tasks which are generic and provides the structure within

which the remaining, model-speci�c tasks are embedded. The source code for the ModelSolver

library is available online (Grasl, 2011a, 2014c).

10

The methods using this approach only perform 1-dimensional interpolation.

11

Often because they are the derivative of convex or concave functions.

42

2.4.1 How to Solve a Model

The overall solution algorithm, shown in Algorithm 2.1, is straightforward: the con�guration

is set up based on information such as command line parameters; a model is con�gured using

that con�guration; state and solvers are initialised; �nally, solvers are repeatedly called upon

to update the state until the convergence criteria are satis�ed.

Algorithm 2.1: The Overall Solution Algorithm

1 // Initialise configuration from inputs etc.

2 modelConfig = modelRunner.createConfig()

3

4 // Configure the model

5 model.setConfig(modelConfig)

6

7 // Get the initial state

8 state = model.initialState

9

10 // Get (configured) individual and aggregate solvers

11 individualSolver = model.individualSolverInstance

12 aggregateSolver = model.aggretaeSolverInstance

13

14 repeat

15 // Perform an individual iteration

16 individualSolver.performIteration(state)

17

18 // If the model says so...

19 if(model.shouldUpdateAggregates(state))

20

21 // ...update aggregate forecasts

22 aggregateSolver.updateAggregateTransition(state)

23 end

43

24

25 // Stop when the convergence criterion is smaller

26 // than the target

27 until(state.getConvergenceCriterion < target)

This overall algorithm is executed by code provided by the ModelSolver library. The

model-speci�c pieces of the code are provided by the user of the library in the form of sub-

classes or instances of the following six classes, seen as eponymous variables in the algorithm

above.

• TheModelRunner is the program’s entry point and initiates the process. This class

handles program arguments, sets up the con�guration and determines which instances

of other classes should be used.

• The ModelConfig holds the con�guration of the model. It is a mixture of generic

�elds, for example de�ning the variables in the model and their discretised representa-

tion, and model-speci�c �elds such as model parameters.

• The State holds the state of the computation as the model is solved. Some of that

state is imposed by the solvers below, some of it may be model-speci�c.

• TheIndividualProbemSolver solves individual agents’ optimisation prob-

lem.

• The AggregateProblemSolver �nds the aggregate law of motion.

• The Model controls common functionality required by the other classes, and some

decisions in the overall solution mechanism.

The remainder of this section provides more details on each of these classes, their purpose

and the functionality provided by the ModelSolver library. Sample Scala code shown is that

which solves the benchmark model as adapted by Krusell and Smith (1998) in the calibration

of Den Haan (2010b), labelled the KS model.

44

2.4.2 ModelRunner

ModelRunner is the main entry point into the program. The implementation of this class

de�nes what command line arguments the program will accept, processes those arguments to

create a Config object and also determines which Model class will be used.

The library provides an implementation with a standard set of functionality to solve and

simulate a model. The model-speci�c subclass must implement two functions: createCon-

fig to create a con�guration object, and getModelClass to identify which class holds

the model itself.

Other methods can be overridden to extend the functionality or to handle special cases.

Listing 2.1: The ModelRunner Implementation for the KS Model

object Runner extends ModelRunner[Model, Config, State] {

/**

* Override the default simulation mechanism to read pre-created shock

* sequence (from Den Haan et al 2010)

*/

override def simulateModel(

model: Model,

state: State,

periods: Int,

burnIn: Int,

stateDir: File,

simPath: String): SimulationResults[_, _] = {

// Read the data, and simulate the relevant shocks

var zStream = getClass.getResourceAsStream("/Z_Formatted.txt")

var shocksFromCSV = Numerics.instance().

readFormattedCSV[Integer](zStream).asInstanceOf[IntegerArray]

// Adjust the shocks because the numbering scheme differs from that

// in the data

var allShocks = createIntArrayOfSize(shocksFromCSV.size()(0), 2)

allShocks.at(-1, 0).fill(shocksFromCSV.add(Integer.valueOf(-1)))

45

val initialDist = model.initialDensity(state)

// Get an appropriate simulator for this model

val simulator = getSimulator((initialDist,0.asInstanceOf[Integer]))

return simulator.simulateShocks(initialDist, allShocks, model,

state, SimulationObserver.silent(), stateDir, simPath)

}

override def createConfig(commandLine: CommandLine): Config = {

val config = new Config()

// Initial Shock Levels (transient and permanent)

config.setInitialExogenousStates(createIntArray(0,0))

// Individual shocks (values actually not used)

config.setIndividualExogenousStates(

createArray(0.15, (1 - 0.15 * 0.05) / 0.95))

// For solving, use log-distributed points of individual wealth

config.setIndividualEndogenousStates(

nLogSequence(200, 250, 1))

// For Simulation, make the grid more dense and use even distribution

config.setIndividualEndogenousStatesForSimulation(

nLogSequence(200, 2001, 0))

// Create a capital grid with 15 points spaced around the mean 39.85, but

with the points closer to the mean a little

config.setAggregateEndogenousStates(pullToMean(

createArray(0.9 * 39.85 to (1.1 * 39.85, 15): _*), 0.2))

// Good and bad productivity levels for agg shock

config.setAggregateExogenousStates(createArray(.99d, 1.01d))

// No normalising (permanent) shock

config.setAggregateNormalisingExogenousStates(createArray(1d))

46

// Markov Transition from denHaan comparison paper

config.setExogenousStateTransiton(createArrayOfSize(2, 2, 2, 2, 1) << (

21d / 40d, 1d / 32d, 7d / 20d, 3d / 32d,

3d / 32d, 7d / 24d, 1d / 32d, 7d / 12d,

7d / 180d, 1d / 480d, 301d / 360d, 59d / 480d,

7d / 768d, 7d / 288d, 89d / 768d, 245d / 288d))

// Indicate where the initial state should be read from

setInitialStatePath("Solutions/KS_NA/state.mat")

// The distribution to be used for derivative aggregation

config.noAggRiskSteadyState = new DiscretisedDistribution(

new File("Solutions/KS_NA/ergodicDist.mat"))

config

}

override def getModelClass = classOf[Model]

}

2.4.3 ModelConfig

The ModelSolver library provides generic functionality for solving models. Each model has a

distinct set of variables with distinct relationships. The ModelConfig bridges the gap from

the speci�c model to the generic functionality.

Listing 2.2: The ModelCon�g Implementation for the KS Model

/**

* The Config class holds the configuration - some model specific fields and

* some generic ones, set up in the Runner

*/

class Config extends ModelConfigBase {

// Model-specific params

var growthRate: Double = 1

var discountRate: Double = 0.99

47

var unemploymentInsuranceRate = 0.15

var utilityFunction: UtilityFunction = new CRRAUtility(1.0)

var productionFunction: ProductionFunction =

new CobbDouglasProduction(.36, 1d-.36, .025)

var noAggRiskSteadyState: DiscretisedDistribution = _

// Expose defined variables, which have standard accessors, with meaningful

names

def individualCapitalLevels = getIndividualEndogenousStates()(0)

def individualCapitalLevelsForSimulation =

getIndividualEndogenousStatesForSimulation()(0)

def individualShockLevels = getIndividualExogenousStates()(0)

def aggregateCapitalLevels = getAggregateEndogenousStates()(0)

def aggregateProductivityShocks = getAggregateExogenousStates()(0)

def permanentAggregateShockLevels = getAggregateNormalisingExogenousStates()(0)

// Wealth is constrained at 0

override def isConstrained = true

// Defined the solvers to solve individual and aggregate probelms

override def getIndividualSolver = classOf[IM_EGM_Solver]

override def getAggregateProblemSolver = classOf[IM_DA_Solver]

}

2.4.3.1 Model Variables

A key piece of functionality provided by the ModelConfig base class is to set up the vari-

ables that are part of the model. This information is required by other parts of the library,

particularly the solvers.

Each variable is de�ned as a one-dimensional, monotonous array of values, which form the

grid points in the dimension of that variable. In some cases, often for shocks, the assumption

is that the variable is discrete and takes precisely those values; in other cases the variable is

assumed to be continuous and the grid points are the points at which the function value is

held, with interpolation determining intermediate points. The representation of the variable

in ModelConfig is identical regardless of this assumption

48

The con�guration de�nes the following di�erent types of variables:

• Individual endogenous states: Variables if individual agents which are driven by their

choice, but are determined prior to the period in which they take e�ect. An example is

individual capital holdings ki,t in the benchmark model.

• Individual exogenous states: Variables of individual agents which are driven by exoge-

nous processes and which are determined prior to the period in which they take e�ect.

An example is employment status ei,t in the benchmark model.

• Aggregate endogenous states: Aggregate variables which are endogenously determined

prior to the period in which they take e�ect. An example is aggregate capital Kt in the

benchmark model.

• Aggregate controls: Aggregate variables which are endogenously determined in the pe-

riod in which they take e�ect. An example is bond price in the extended model in

Chapter 3.

• Aggregate exogenous states: Aggregate variables which are driven by exogenous pro-

cesses and which are determined prior to the period in which they take e�ect. An ex-

ample is the productivity shock in the benchmark model.

• Aggregate exogenous normalising states: Aggregate variables which are driven by exoge-

nous processes, which are determined prior to the period in which they take e�ect and

which do not a�ect exogenous processes once they have taken e�ect. An example is the

permanent shock in the model of Carroll (2006).

The following discussion refers to these variable arrays as ~x,~e, ~X, ~C, ~E and
~N respectively.

Each of these is an unknown-length array of one-dimensional arrays.

Each type of variable is con�gured by calling an eponymous setter method, for example

setIndividualEndogenousStates(~x). An arbitrary number of each type of vari-

49

able can be con�gured, but speci�c solvers may only support a limited number of any given

type
12

.

Note that two types of variable which might have been expected are missing: individual

controls and individual exogenous normalising states. Individual controls can be used with

the library, but they represent an agent’s choices rather than determining them. Individual

controls therefore never appear as an input variable into functions the solvers use, and only

input variables form part of the grid and need to be con�gured. The models of Chapters 3

and 4 both have individual controls.

Individual exogenous normalising states might be used for variables such as permanent

idiosyncratic shocks. These cause the variance of the distribution of individual exogenous

states to grow inde�nitely over time. Both solution and simulation of the model under the

approach used by the ModelSolver library become impossible, so they are not supported.

The Grids

Functions used with the toolkit are represented as arrays which hold the value of the func-

tion at the grid points de�ned by its input variables, with an additional dimension at the end

determining the number of output variables for multivalued function. Since each type of func-

tion has di�erent inputs the size of the grid will also be di�erent, but the ModelSolver de�nes

certain rules which govern how grids are constructed.

Functions
13

arrange their inputs in the same order as the variable types are listed above.

The individual policy function governing the choice of next-period individual states, for ex-

ample, depends on all of the above variables, so the grid on which it is de�ned is of size

corresponding to the lengths of (~x,~e, ~X, ~C, ~E, ~N, length(~x)). In the benchmark model, if the

con�guration has 100 points for individual capital, 2 for individual employment status, 12 for

aggregate capital, 2 aggregate productivity states, then the grid for the individual policy rule

is of size (100, 2, 12, 2, 1). The �nal dimension is of length 1 because there is one individual

12

The solvers currently provided only support a single individual endogenous state.

13

This rule can be broken in rare cases where computational performance is strongly improved by doing so.

50

state, ki,t.

2.4.3.2 Exogenous Process

ModelConfig also holds the transition probabilities which determine how exogenous vari-

ables evolve. The probabilities are con�gured by passing an array of probabilities to se-

tExogenousStateTransiton. The array must have dimensions corresponding to the

lengths of (~e, ~E,~e, ~E, ~N), where the �rst two entries represent current period exogenous state

and the last three next period exogenous states.

2.4.3.3 Model-Speci�c Con�guration

Most models will also have model-speci�c con�guration parameters which are best main-

tained in this class, an instance of which is shared by the solvers and the model.

2.4.4 Model

The Model implementation controls the overall process of �nding the numerical solution:

initialState provides the initial starting point and shouldUpdateAggregates

is called each iteration after the individual decision rule has been updated and determines

whether the aggregate law of motion is updated. The solution algorithm terminates when the

convergence criterion, held in the State, becomes su�ciently small.

Both solvers have access to the Model class. It is therefore also a convenient location to

hold variables which constitute neither con�guration nor calculation state. One example is

pre-computed values for commonly performed operations on input grid variables, avoiding

costly repetitive calculations in each iteration.

Model also provides methods for constructing arrays for use as function grids, follow-

ing the ordering convention described in the previous section. createIndividual-

TransitionGrid in the benchmark model would, for example, create the array of size

(100, 2, 12, 2, 1) described above.

51

Listing 2.3: Extract from the Model Implementation for the KS Model

class Model extends AbstractModel[Config, State]() {

// These arrays are for convenience - they are constant and are used to

// calculate wages and returns

var employmentDistByProductivity: DoubleArray = _

var aggLabourByProductivity: DoubleArray = _

var wageRatiosbyProductivity: DoubleArray = _

var expectedL: DoubleArray = _

var expectedA: DoubleArray = _

var interestGrid: DoubleArray = _

var normalisedLiquidAssets: DoubleArray = _

var simNormalisedLiquidAssets: DoubleArray = _

override def initialise(): Unit = {

super.initialise()

// Prepare some values which do not change but are used often,

// held in the fields of this class

...

}

// Update aggregates in each iteration

override def shouldUpdateAggregates(state: State) = true

// Just the mean of the capital distribution

override def calculateAggregateStates(

distribution: SimState,

aggregateExogenousStates:

IntegerArray,

state: State) = Array(distribution.mean(

_config.getIndividualEndogenousStatesForSimulation().get(0)))

// Store the final distribution used for DA to start the sim with later

override def writeAdditional(state: State, writer: NumericsWriter) {

52

state.daDistributionByState(0).write(writer, "finalGradDensity")

}

/**

* Called by the Toolkit when reading state, this is overridden to convert

* non-agg-risk (NA) state into appropriate initial state with agg risk

*/

override def readAdditional(state: State, reader: NumericsReader): Unit = {

// If the policy that has been read has only one shock level it is an NA

// state - need to expand to fit with-agg-risk grid

if (state.getIndividualPolicy().size()(3) == 1) {

val indPolicy = createIndividualTransitionGrid()

indPolicy\(0,1,2) << state.getIndividualPolicy()($, $, $, 0, 0, 0)

state.setIndividualPolicy(indPolicy)

// Also need to initialise the aggregate transition, because the one

// read is the NA (constant) transition

initAggregateTransition(state)

}

// Calculate expectations from the aggregate transition

adjustExpectedAggregates(state)

}

/**

* Additional code which helps with initialisation omitted, see source

*/

...

/**

* Set up the starting state for the calculation

*/

override def initialState(): State = {

// Create a state object for this configuration

val state = new State(_config)

53

// State class needs these for interpolation

state.normalisedLiquidAssets = normalisedLiquidAssets

state.simLiquidAssets = simNormalisedLiquidAssets

// The end of period states are just the capital levels to be carried over

val simCapitalGrid = createSimulationGrid()

simCapitalGrid.across(0) <<

(_config.getIndividualEndogenousStatesForSimulation().get(0))

state.simCapitalGrid = simCapitalGrid

state.daDistributionByState = prepareDistributionsForGrad(

_config.noAggRiskSteadyState)

state

}

/**

* Adjusts the expected capital level for permanent shocks (in the next

* period) and also calculates expected prices given the expected factor

* inputs

*/

def afterAggregateExpectationUpdate(

oldVal: DoubleArray,

newVal: DoubleArray,

state: State) {

// Adjust for future permanent shocks

state.getExpectedAggregateStates\2 /=

_config.permanentAggregateShockLevels

// Update expected prices

val Array(w, r) =

(state.getExpectedAggregateStates() :: expectedL :: expectedA) :-> (

in => {

val Array(k,l,p) = in

54

Array(wage(p, k, l), grossInterest(p,k,l))

})

state.expectedR = r

state.expectedW = w

}

}

2.4.5 IndividualProblemSolver

The individual problem solution algorithm is assumed to be iterative. The method per-

formIteration of this interface is called by the Solver to update the solution to the

individual problem.

The base class is an interface leaving all the implementation to extensions. An extension

of IndividualProblemSolver which performs the method of endogenous gridpoints

(Carroll, 2006) is provided and described in Section 2.5.1.

2.4.6 AggregateProblemSolver

The method updateAggregateTransition of this interface is called by the Solver

whenever the aggregate law of motion needs to be updated.

The base class is an interface leaving all the implementation to extensions. Extensions

which perform the algorithm of Krusell and Smith (1998) and derivative aggregation (Chap-

ter 3) are provided. A model-speci�c implementation employing explicit aggregation (Den Haan

and Rendahl, 2010) is also provided for Chapter 3.

2.4.7 State

Instances of State hold the current state of the calculation. The interface de�nes methods

that are required by the framework code to access and update that state. getAggregate-

Transition, for example, provides the current version of the aggregate law of motion.

55

Two important methods are setIndividualError and setAggregateError,

which allow the solvers to update variables indicating how the solution is progressing. The

overall convergence criterion is calculated from these errors. By default, the model is consid-

ered solved when both values have been set to less than 1e− 6;

Implementations of this class are also the appropriate location for other, model-speci�c

information that changes as the calculation progresses. The framework provides methods for

writing this running state to disk.

Listing 2.4: The State Implementation for the KS Model

/**

* The State holds the state of the ongoing calculation is updated by

* Solver classes as well as model-specific code

*/

class State(config: Config) extends AbstractStateBase[Config](config)

with DerivAggCalcState[Config]

{

var normalisedLiquidAssets: DoubleArray = _

var simCapitalGrid: DoubleArray = _

var simLiquidAssets: DoubleArray = _

var expectedR: DoubleArray = _

var expectedW: DoubleArray = _

var daDistributionByState: Array[DiscretisedDistribution] = _

override def getIndividualPolicyForSimulation() = {

if (_individualTransitionForSimulation == null) {

_individualTransitionForSimulation =

interpolateFunction(normalisedLiquidAssets,

getIndividualPolicy(),

0,

simLiquidAssets,

params.constrained)

}

56

// Need to update the policy for the simulation grid, which is used by

// derivative aggregation

_individualTransitionForSimulation

}

override def getEndOfPeriodStatesForSimulation() = simCapitalGrid

// There is only one shock, and use that one to get the

def getDistributionForState(shockLevels: Array[Int]) =

daDistributionByState(shockLevels(0))

}

2.5 Algorithms

The classes introduced so far provide the framework for solving models with substantial het-

erogeneity and control the overall process. They do not assist in solving the individual or

aggregate problems, nor has simulation been discussed.

This section addresses those topics. It introduces a class which performs the generic parts

of the method of endogenous gridpoints of Carroll (2006) to solve individual problems, another

which does the same for derivative aggregation (see Chapter 3) to solve the aggregate problem

and a third which performs the algorithm of Krusell and Smith (1998).

The section also discusses the simulator, which simulates models with a distribution of

agents using the algorithm of Young (2010). The concluding discussion concerns aggregate

controls
14

and their handling by the ModelSolver Toolkit.

2.5.1 The Method of Endogenous Gridpoints

Some of the di�culty in solving models with heterogeneity among agents arises from the

need to determine the individuals’ policy functions for the range of feasible state values. Such

functions are commonly found using some form of value function iteration (Young, 2010, is an

14

Non-predetermined variables.

57

example), or by iterating on the Euler equation (for example Maliar et al., 2010). The former

requires an expensive optimisation step in each iteration, and the latter tends to converge

slowly. They are hence very time-consuming.

Carroll (2006) introduces an alternative algorithm which also iterates on the individual

problem, but reverses the direction of iteration. It assumes, in each iteration, that the future

individual policy function is known, and uses it to calculate the expectational part of the Euler

equation conditional on future states. This in turn implies the current-period value in that

equation. If the individual agent’s current period states can be determined from that value

analytically, then combining the three steps yields a mapping from future states to current

states. Inverting this mapping results in the next candidate for the individual decision rule.

The author called his method the Method of Endogenous Gridpoints.

The method requires the mapping from current states to current values in the Euler equa-

tion to be invertible. For models which satisfy that requirement it is signi�cantly faster than

alternative approaches. Indeed, in the comparison project of Den Haan (2010b) the two most

e�cient solutions to also provide relatively accurate results both use this approach. They are

at least 6 times faster than other solutions.

2.5.1.1 The Mathematics

In the case of the benchmark model described in Section 2.1, the policy function sought is the

household’s next period capital choice. From Eq. (2.11):

kt+1 = f(kt, et,Kt, At) (2.13)

The method iterates on versions f j , j ∈ N, of this policy function, from an initial guess f0.

It assumes that the households’ forecasting function for aggregate capital Kt+1 = F (Kt, At)

is known.

In Section 2.1, the households’ optimisation problem has already been reduced to the Euler

58

equation, Eq. (2.8):

βE
[
(ct+1)

−γ (1 + rt+1 − δ)
]

= (ct)
−γ − φt (2.14)

Rearranging the budget constraint and iterating it forward one period yields:

ct = (1 + rt − δ)kt + et − kt+1 (2.15)

⇒ ct+1 = (1 + rt+1 − δ)kt+1 + et+1 − kt+2 (2.16)

Substituting this into the Euler equation and replacing kt+2 with the assumed policy func-

tion f j then gives:

βE
[(
Rt+1kt+1 + et+1 − f j(kt+1, et+1,Kt+1, At+1)

)−γ
Rt+1

]
=

(Rtkt + et − kt+1)
−γ − φt (2.17)

where Rt ≡ (1 + rt − δ) (2.18)

Now consider the multiplier φt, and recall that the function to be found is f j+1
which

gives kt+1 as a function of current states. Whenever kt+1 > 0 the borrowing constraint does

not bind by de�nition, so that φt = 0. When kt+1 = 0, the value of f j+1
is already known and

is also 0, so φt is not required in this case. Thus φt can be safely dropped from the equation.

This allows for further rearrangement:

kt =
β

Rt

(
E
[(
Rt+1kt+1 + et+1 − f j(kt+1, et+1,Kt+1, At+1)

)−γ
Rt+1

])− 1
γ − et

Rt
(2.19)

Finally, substitute for Kt+1 using the assumed forecasting function:

59

kt =
β

Rt
(E [v(kt+1, et+1,Kt, At, At+1)])

− 1
γ − et

Rt
(2.20)

where

v(kt+1, et+1,Kt, At, At+1) = (2.21)(
Rt+1kt+1 + et+1 − f j(kt+1, et+1, F (Kt, At), At+1)

)−γ
Rt+1 (2.22)

Conditional on current and future states (kt+1, et+1,Kt, At, At+1), v(.) and hence the

term inside the expectation operator can be calculated. The expectation is over the future

exogenous states, whose probability distribution is known conditional on current exogenous

states et and At. Thus the last set of equations yields the function

kt = h(kt+1; et,Kt, At) (2.23)

where

h(kt+1; et,Kt, At) =
β

Rt

(
E
[
v(kt+1, et+1,Kt, At, At+1)

∣∣et, At])− 1
γ − et

Rt
(2.24)

If this function is invertible in its �rst parameter, then inverting it yields precisely the function

sought:

f j+1(kt; et,Kt, At) ≡ h−1(kt; et,Kt, At) (2.25)

Due to the borrowing constraint, the range of valid kt+1 does not extend below 0. If

h(0; e,K,A) = k0 > 0 for some (e,K,A), and under the assumption that h(.) is mono-

60

tonically increasing in kt+1, this formula will not de�ne f j+1(kt, e,K,A) for kt < k0. But

this is precisely the region where the borrowing constraint binds, so that f j+1(kt, e,K,A) =

0 ∀ kt < k0.

2.5.1.2 The Algorithm

The method of endogenous gridpoints is performed as follows:

Algorithm 2.2: The Method of Endogenous Gridpoints

1 Guess f0

2 j = 0

3 repeat

4 foreach (kt+1, et, Xt, At) on the grid

5 s = 0

6 foreach (et+1, At+1) on the grid

7 // Calculate the expected value, conditional on states

8 p = v(kt+1, f
j(kt+1, .), et+1, F (Kt, At), At+1)

9

10 // Calculate the expectation cumulatively,

11 // multiplying by the probability of each future state

12 s = s+ π(et, At, et+1, At+1)p

13 end

14

15 // Invert to get implied current endogenous state(s)

16 k = h−1(s, kt+1, et,Kt, At)

17

18 // Store that point in the next iteration of the mapping

19 f j+1(k, et,Kt, At) ≡ kt+1

20 end

21 j = j + 1

22

23 // Stop when successive iterations are sufficiently close

61

24 // by the chosen measure

25 until(||f j−1, f j || < εmax)

The subclassEGMIndividualProblemSolver of IndividualProblemSolver

performs those parts of the algorithm which can be automated. A model-speci�c extension

of that class must implement calculateFutureConditionalExpectations for

step (8), calculateImpliedStartOfPeriodState to perform step (16) and pro-

vide an initial guess for the individual policy in step (1). The following listing shows the

implementation for solving the individual problem of the benchmark model:

Listing 2.5: Solves the benchmark model’s individual problem using EGM

class IM_EGM_Solver(model: Model, config: Config)

extends EGMIndividualProblemSolver[Config, State, Model](model, config) {

// The end of period states are just the capital levels to be carried over

setEndOfPeriodStates(_model.createIndividualVariableGrid()\(0) <<

_config.individualCapitalLevels)

setStartOfPeriodStates(_model.normalisedLiquidAssets)

// This calculates the future part of the Euler equation, and is called

// once for each possible future stochastic state and current agg state

override def calculateFutureConditionalExpectations(

exogenousTransition: Array[Int],

currentAggs: Array[Int],

state: State): DoubleArray = {

val Array(_,currentAggStateIndex, futureIndStateIndex,

futureAggStateIndex, futurePermShockIndex) = exogenousTransition

val aggCapIndex = currentAggs(0)

/* Collect the data needed for the calculation

*/

//The expected future capital carried over for individuals in this state

val kpp = state.getExpectedIndividualTransition()(

currentAggStateIndex, futureAggStateIndex, futurePermShockIndex,

62

aggCapIndex, $, futureIndStateIndex)

//Collect expected future aggregates

val R = state.expectedR(currentAggStateIndex, futureAggStateIndex,

futurePermShockIndex, aggCapIndex, 0)

val w = state.expectedW(currentAggStateIndex, futureAggStateIndex,

futurePermShockIndex, aggCapIndex, 0) *

// Need to adjust the aggregate wage for the employment state

_model.wageRatiosbyProductivity(futureIndStateIndex,

futureAggStateIndex)

// Permanent shock

val perm = _config.permanentAggregateShockLevels(futurePermShockIndex)

/* Calculate the value of the euler condition conditional on the future

* states

*/

//First, calculate consumption as starting capital times interest plus

// wages minus ending capital

val individualCapitalLevels: DoubleArray = _config.individualCapitalLevels

// Apply interest and normalise by permanent shocks

val kpMult = R / perm

// Calculate consumption at this point

// !!! KPP is from the function interpolated to normalised grid

// Need not take the permanent shock into account yet again!

val c = (individualCapitalLevels :: kpp) -> (

(kp, kpp) => kp * kpMult + w - kpp * _config.growthRate)

// Need to normalize by growth and future permanent shock

val growthFactor = _config.growthRate * perm

/* Now determine the future euler value, i.e. the discounted marginal

* utility of consumption

*/

val fce = c -> (c => R *

_config.utilityFunction.marginalUtility(0, growthFactor * c))

63

// Return that value

fce

}

/**

* Given expectations over the future euler, determine the implied current

* liquid assets

*/

override def calculateImpliedStartOfPeriodState(

individualExpectations: JavaDoubleArray, state: State) = {

// The last dimension is of size 1, so select it away to match sizes

val impliedLiquidAssets = (individualExpectations :: _eopStates) ->

((futureEuler, kp) => {

// Invert implied marginal utility

val c = _config.utilityFunction.inverseMarginalUtility(

_config.discountRate * futureEuler)

/* USING THE GROWTH FACTOR HERE MEANS THAT kp is ’normalised’ by it */

// Liquid assets must be equal to consumption plus final capital

c + kp * _config.growthRate

})

impliedLiquidAssets

}

/**

* Overridden to reduce # of calcs

*/

override def updateError(

oldPolicy: JavaDoubleArray, newPolicy: JavaDoubleArray, state: State) {

if(state.getPeriod % 10 == 5) {

state.setIndividualError(

maximumRelativeDifferenceSpecial(newPolicy(20, $), oldPolicy(20, $)))

}

}

}

64

2.5.2 Derivative Aggregation

Chapter 3 presents a new algorithm, Derivative Aggregation, for updating the aggregate fore-

casting function from the individual policy functions. Derivative aggregation is fast and pro-

duces accurate forecasts, at least in the economies investigated in this thesis. The ModelSolver

library provides a class, DerivativeAggregationSolver, which performs much of

the computation necessary. Only three model speci�c methods need to be implemented: de-

riveAggregationByIndividualState,deriveAggregationByAggregat-

eState and deriveIndividualTransformationByTheta. In many cases these

methods will be quite straightforward to implement. Further details are in Chapter 3. The fol-

lowing listing presents the code necessary to solve the incomplete markets version of the

benchmark model:

Listing 2.6: Applies Derivative Aggregation to the Incomplete Markets Model

class IM_DA_Solver(model: Model, config: Config,

simulator: DiscretisedDistributionSimulator)

extends DefaultDASolver[Config, State, Model](model, config, simulator) {

// Use a log linear rather than a linear transition

useLogs(true)

// These grids needs to be the size of the simulation grid

// dF/dk = 1 (it is the mean)

setAggregationByIndividualStateDerivative(0, 0,

model.createSimulationGrid() << 1)

// dk/dK = k (proportional wealth increase)

setTransformationByIndStateDerivative(0, 0,

model.createSimulationGrid()\(0) <<

config.getIndividualEndogenousStatesForSimulation()(0))

}

65

2.5.3 The Algorithm of Krusell and Smith (1998)

The algorithm of Krusell and Smith was the �rst which allowed a model with heterogeneous,

rational agents and aggregate uncertainty to be solved. It is at the root of much of the literature

discussed in this thesis.

The algorithm is both straightforward to execute, and widely applicable. The drawback

of the algorithm is that it requires a signi�cant amount of simulation to solve a model, and

simulation is computationally expensive. With modern computers, however, a solution to the

benchmark model with incomplete markets, for example, can be found within approximately

4 minutes.

The method for updating the aggregate forecasting function given the individual policy

functions is:

1. Simulate the model for a number of periods, collecting aggregate state and control values

2. Discard some of the initial periods, allowing the economy to ‘settle down’

3. From the remaining data estimate forecasting functions for current controls and next-

period aggregate states given current aggregate states

An implementation of this algorithm is provided by the class KrusellSmithSolver.

An advantage of this class compared to derivative aggregation, for example, is that it does not

require any additional implementation.

Some aspects of the algorithm can be con�gured: the number of periods to simulate and

discard can be set; the forecasting function can be estimated as a linear or log-linear function;

the amount of damping can be adjusted; the algorithm can be con�gured to reuse the same

shock sequence in each iteration; and it can similarly be con�gured to start each iteration from

the distribution which resulted from the �nal step of the prior iteration. The following listing

shows how this solver can be used to solve the incomplete markets model:

Listing 2.7: A KrusselSmithSolver for the eponymous model

66

class IM_KS_Solver(model: Model, config: Config)

extends KrusellSmithSolver[Config, State, Model, DiscretisedDistribution](

/*Creating a new Simulator excludes the observers, which are not needed*/

model, config, new DiscretisedDistributionSimulatorImpl) {

setSimPeriods(1100)

setDiscardPeriods(100)

setNewWeight(.3)

useLogs(true)

keepDist(true)

addTransitionListener(

(oldVal: JavaDoubleArray,newVal: JavaDoubleArray,state: State) => {

state.setIndividualError(1) // Ensure individual problem is solved again

println(s"""${state.getAggregateCriterion}""")

})

}

2.5.4 Simulating Heterogeneous Agent Models

Having solved a model, economists commonly wish to simulate it. In some cases, such as the

incomplete markets model discussed in Section 2.6.3, interesting implications of the model

cannot be obtained from the solution directly and must be revealed through simulation. In

other cases, the impact of certain changes to exogenous variables is to be analysed. Many

algorithms for solving models (see, for example Krusell and Smith, 1998), themselves rely in

part on simulation. Any toolkit to solve such models must therefore provide for it.

Models that allow for heterogeneity among agents commonly assume a continuum of

agents. As discussed in Algan et al. (2008), this assumption is crucial even in terms of the

de�nition of aggregate state variables: it implies that the moments of individual agents’ re-

alisations of stochastic variables, conditional on aggregate stochastic states, are known from

the law of large numbers. They do not need to be considered as additional aggregate states.

The authors argue that a simulation procedure should replicate this behaviour. Simulation ap-

proaches which simulate individual agents may not satisfy this constraint even when a very

67

large number of agents are simulated. In simulations other than then very shortest the pro-

portion of agents with a given history of shocks will not be close to the value implied by the

law of large numbers.

Young (2010) develops a simulation algorithm which does satisfy the constraint. In this

approach, the continuous distribution of agents over their individual states is approximated

by a discretised distribution
15

over a time-invariant grid. In each simulation period, the full

distribution of individual shocks, conditional on the aggregate shock realisation, is applied

to the population at each point on this grid. Individual choices are calculated conditional on

those shocks and the population at the point is distributed to the points of the next-period

distribution based on the future individual states obtained.

Since the distribution grid is discrete but individual policy functions are continuous, it will

almost surely be the case that the individual future state calculated does not lie precisely on

a grid point. The author’s innovation is to redistribute the population of agents who choose

this state to the grid points either side of it, whilst ensuring that their mean state remains at

this value.

As an example, illustrated in Fig. 2.2, consider the following case in the benchmark model:

assume that a set of households of measure .1 hold capital 1 and are all employed, that the

probability of remaining employed in the next period is .8, the probability of unemployment

by implication .2. The capital grid consists of 6 points, {0, 1, . . . , 5}.

The individual policy function is such that employed households with capital 1 will choose

3.7 in the next period. The sub-population currently at 1 is therefore distributed as follows:

of the .08 with good fortune, .024 are assigned to capital level 3 and .056 to capital level 4,

ensuring that their average capital holdings remain at 3.7. Similarly, .02 su�er bad luck and

become unemployed and are distributed to the same grid points 3 and 4 with weights .006

and .014.

Repeating this procedure for each point in the current period distribution and taking the

15

The author calls it a ‘histogram’, but the simulation procedure implies point densities, so this thesis avoids the

term

68

0 1 2 3 4 5

0.1

0.006 0.014

0.024 0.056

H0.02L

H0.08L

employed
P = .8

unemployed
P = .2

current

future unemployed

future employed

3.7

Figure 2.2: The Simulation Mechanism (Young, 2010)

sum of contributions at each point of the future period yields next period’s distribution over

endogenous and exogenous individual states.

2.5.4.1 Dealing with Simulation Grid Over�ow

The grid on which the distribution is de�ned is, by necessity, �nite. The mechanism as il-

lustrated breaks down when some part of the population chooses a state that lies outside the

grid. It may be possible to avoid this issue by choosing a grid that is su�ciently large, but in

economies where the individual policy is such that the state may grow inde�nitely, and when

many periods are to be simulated, that is not possible.

Young (2010) does not address the problem
16

. Den Haan and Rendahl (2010), who also

use this simulation mechanism, choose to treat such a situation as if the policy choice were

between the two highest capital levels
17

. This is a numerically feasible approach, but it has

the undesirable e�ect that the contribution from any individual point which over�ows to the

16

The code accompanying the paper may be informative, but it is somewhat di�cult to follow.

17

Echoing the approach one would take in a linear extrapolation.

69

penultimate point in the distribution is negative.

The approach used in the simulator provided by the ModelSolver toolkit is as follows: All

parts of the population that extend beyond the grid are collected in one group
18

and assigned

a common state value equal to the mean for that population. This solution e�ectively adds

a grid point in each endogenous dimension, but where the value of that endogenous state is

variable (and indeed varies along the other dimensions).

4 5

0.2 0.1

H0.04L H0.02L0.06

H0.16L H0.08L0.24

P = .2

P = .8

P = .2

P = .8

current

future unemployed

future employed

5.2

Figure 2.3: Simulation Grid Over�ow

Continuing with the benchmark economy, Fig. 2.3 illustrates the over�ow mechanism.

Assume that in the current period .1 of the population are employed and hold capital 5, and

.2, also employed, hold 4. Assume the policy function yields future wealth of 5.4 and 5.1 for

the two groups.

In the next period there are then .08 future employed households with capital 5.4 from

the �rst group, and .16 with capital 5.1 from the second group. Combining the groups gives

a group of mass .24 with wealth 5.2. For the future unemployed a similar calculation yields a

18

To be precise, one group per exogenous individual state

70

group at the same wealth level of weight .06.

2.5.5 Aggregate Controls

Non-state aggregate variables, referred to as aggregate controls in this thesis, required care-

ful handling. Two related di�culties arise, both during simulation of the economy. First,

aggregate control values are determined in equilibrium in the period in which they a�ect in-

dividual choices, thus presenting a chicken and egg problem: individual choices determine

aggregate controls determine individual choices. Second, the equilibrium may not be directly

represented by the variable value which a�ects individual choice: in the model of Krusell

and Smith (1997), for example, the variable a�ecting individual choice is bond price but the

equilibrium condition states that net bond demand is zero.

Addressing the �rst point, Ríos-Rull (1997) presents two di�erent approaches. The �rst

constructs a forecasting function which forecasts the control value conditional on aggregate

states
19

, and assumes this forecast value is the realized equilibrium value during solution of

the individual problem and simulation. The aggregate controls obtained are thus forecasts

and not necessarily the correct value which follows from individual choices. The alternative

solves the individual problem conditional on aggregate controls, calculates individual choices

conditional on aggregate controls in each simulation period, and then determines the mar-

ket clearing control value using the equilibrium condition. This approach determines market

clearing values more accurately because it solves the equilibrium problem each period, but at

the cost of more computation. The ModelSolver library uses the latter approach.

The second problem is addressed below.

2.5.5.1 De�nition of Equilibrium Values

Aggregate controls are determined in equilibrium. It may be the case that the individual con-

trol
20

and the aggregate control are not directly related. This is the cases in the model of

19

This is analogous to the forecasts of future aggregate states.

20

Though it is not con�gured since it is not a ‘grid variable’, an individual control can be calculated and used as

part of the solution.

71

Krusell and Smith (1997): the individual control is ‘individual bond holdings’ which aggre-

gates to ‘net bond holdings’, which in turn must be 0 in equilibrium. The aggregate control

used in the individual decision rule, however, is ‘bond price’, since that is the variable that

individual households observe when making their decision. The ModelSolver library refers to

the equilibrium variable as the ‘determinant’.

This introduces two (sets of) variables,

Ct the aggregate control variables (bond price)

ECt ≡ EC(ωt, Ct, At) the aggregated individual controls (net bond demand, the ‘determinant’)

The individual policy function is then

fx ≡ fx(xi,t, ai,t, Xt, Ct, At)

where xi,t are individual endogenous states, ai,t individual exogenous states, Xt aggregate

states and At aggregate exogenous states.

Solving for equilibrium also requires knowledge of the target of the equilibrium variable,

which is expressed as a function of the control variable:

TCt ≡ TC(Ct)

so that the equilibrium condition is

EC(ωt, Ct, At) = TC(Ct) (2.26)

This latter de�nition allows for some �exibility: in the case of the model with bonds the func-

tion is identically 0, TCt ≡ 0, since net bond holdings must be 0.

72

As an alternative example, consider the case where Ct is aggregate labour supply. In that

case, ECt would be realised aggregate labour supply, and the two values would have to be

equal (i.e. the agents observe the labour supply, which is also the aggregated outcome of their

individual labour supply decisions). Hence TCt ≡ Ct.

The ModelConfig implementation provides method setControlTargets which

allowed TC(Ct) to be de�ned. Determinant values are only needed during simulation and

are calculated by the implementation of calculateControlDeterminants in the

model-speci�c subclass of Model.

2.6 Evaluating the ModelSolver Toolkit

The ModelSolver Toolkit utilises numerical methods to �nd approximate solutions which sat-

isfy model equations. The use of numerical methods raises the question of accuracy. This

question cannot be answered de�nitively because the numerical methods used are not fully

speci�ed, depending as they do on the algorithms employed, which the toolkit does not pre-

scribe.

This section approaches the question obliquely: rather than evaluating the accuracy of a

solution directly it compares it to solutions generated by existing tools, using models and al-

gorithms that have already been documented in the literature. In this way, both the numerical

result and the speed of execution can be compared.

Three di�erent calibrations of the benchmark model are evaluated, increasing in complex-

ity. The solutions obtained match their respective benchmarks closely, whilst the ModelSolver

performs relatively poorly at solving the less complex
21

problems but outperforms the alter-

native by a factor of six for the most complex calibration.

The source code which calculates these solutions, along with scripts which evaluate the

results, are available online (Grasl, 2014a).

21

The main reason is that the ModelSolver assumes the problems as complex.

73

2.6.1 The Deterministic Solution with Identical Households

The model is �rst solved under the assumptions that there is no uncertainty, that all exogenous

processes are constant and that all households are identical.

Assume, w.l.o.g., that At ≡ 1. The further assumption that all households are employed is

also justi�ed, since the only alternative of universal unemployment is not interesting. Hence

Lt ≡ 1.

In this case total income is wt l̄ and, since households are identical, it is shared equally

between all agents. Hence

et = wt l̄ (2.27)

2.6.1.1 The Analytical Solution

Solving Eq. (2.2) backwards yields

Pt = gtP0 (2.28)

for some initial productivity P0.

Assume that a balanced growth path exists s.t. kt = k0g
t

and ct = c0g
t
, and substitute

these into Eq. (2.8):

(c0g
t)−γ = β(c0g

t+1)−γ(1 + rt+1 − δ) (2.29)

74

and, by Eq. (2.3),

(c0g
t)−γ = β(c0g

t+1)−γ(1 + α

(
k0g

t+1

P0gt+1 l̄

)α−1
− δ) (2.30)

⇒ gγ = β(1 + α

(
k0
P0 l̄

)α−1
− δ) (2.31)

⇒ k0 = P0 l̄

(
gγ − β(1− δ)

αβ

) 1
α−1

(2.32)

2.6.1.2 The ModelSolver Solution

The �rst step toward �nding k0 using the ModelSolver computes a numerical approximation to

the individual savings decision over a range of input values. Since all households are identical

at all times, household wealth is equal to aggregate capital holdings. The law of motion of

aggregate capital is then just the individual policy function. k0 can be found as its �xed point.

The individual policy function is approximated on a grid over the input variables. During

the computation, individual and aggregate capital are considered as separate variables, despite

having to be identical in the solution. This is to facilitate reuse of the same code as the more

complex calibrations below, though it also allows the hypothetical impact of either variable

on the decision to be analysed in isolation.

There are 11 points in both the individual and aggregate capital dimensions, spaced evenly

around the analytical steady state. The policy function is found over this range of values using

the method of endogenous gridpoints (Carroll, 2006), and the �xed point of that policy function

where k = K is steady state capital.

2.6.1.3 Results

α β γ δ G P0 l̄ k0
1
3 0.98 1

2 0.025 1.025
1
4 1 1 17.98

Table 2.1: Parameters of the Economy

75

Table 2.1 shows a possible parametrisation of the problem described, along with the im-

plied value of steady state capital in the deterministic case, calculated using Eq. (2.32).

With the grid as described, the ModelSolver �nds the correct solution to within 1e − 15.

This indicates that the ModelSolver is capable of �nding a good solution, though the accuracy

is also partially a result of ex ante knowledge of the correct solution, since one of the grid

points is in fact the correct solution. Perturbing the grid from this position by 1.01% causes

the accuracy of the solution found to drop to 4e− 7.

2.6.2 Complete Markets with Aggregate Uncertainty

The second calibration adds aggregate uncertainty, but maintains homogeneity among house-

holds. Aggregate uncertainty is introduced by allowing At to vary following an exogenous

stochastic process. The process is set up, following King and Rebelo (1999), as an AR(1) pro-

cess in logs:

At = eεt (2.33)

where εt = ρεt−1 + ξt (2.34)

The parameter values are shown in Table 2.2.

ρ σξ σε(
22

)

0.979 0.0072 0.0353

Table 2.2: Parameters of the aggregate stochastic process

The ModelSolver solves the model on a grid of discrete points in the state space. It hence

requires a discrete, rather than a continuous, stochastic process. Tauchen (1986) �rst demon-

strated how to convert the latter to the former, and Kopecky and Suen (2010) introduced a

re�ned algorithm suitable for highly persistent stochastic processes. The solution presented

22

Note that σε is not a free parameter but is implied by the other parameters.

76

here uses the latter approach with 21 points in the aggregate exogenous state dimension.

The number of points in the individual and aggregate capital dimensions is increased to

31, with the range increased to 4 from the deterministic steady state in either direction. These

points are more tightly spaced around that steady state to provide the greatest grid density in

the area where the economy is likely to spend most of its time.

As a benchmark for comparison, the model is also solved in Dynare using both �rst and

second-order approximations.

2.6.2.1 Results

Figure 2.4 plots the laws of motion for aggregate capital in this economy generated by the

ModelSolver and the Dynare second-order approximation. Both are shown as percentage

deviations from the �rst-order approximation since the linear component would otherwise

dominate and obscure the di�erences. The plot on the left shows future aggregate capital as a

function of the exogenous productivity when the current capital is at the deterministic steady

state level. On the right, Kt+1 is plotted as a function of Kt when productivity is at its mean

value 1.

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
-0.05

0.00

0.05

0.10

0.15

0.20

logHAtL
-0.2 -0.1 0.0 0.1 0.2

-0.06

-0.04

-0.02

0.00

logHKt�K0L

Figure 2.4: t+1-Period Aggregate Capital

Solver (solid) and Dynare 2nd-order (dashed)

As deviation from Dynare linear solution

The graphs suggest that the two solutions are very similar. A numerical comparison con-

�rms this impression: On the aggregate grid used by the ModelSolver the point-by-point rela-

tive di�erence between the values ofKt+1 produced by the two approaches is everywhere less

77

than .056%. The two solution approaches are quite di�erent, so the similarity of the results is

remarkable.

One interesting �nding concerns precautionary savings: the model of this section di�ers

from that of the last section only in that it has uncertainty, so that households have a precau-

tionary savings motive in addition to the desire to smooth consumption. The precautionary

savings motive implies lower consumption given the same state of the economy, which in turn

implies greater savings and hence a higher future capital level. But the consumption-savings

decision is the only endogenous choice in this model, so the e�ect of precautionary savings

should be to unambiguously raise the �xed point of the capital transition function at the mean

level of productivity.

The �xed point of the aggregate law of motion for capital at productivity 1 is .002% higher

than the deterministic steady state in the ModelSolver solution. Dynare �nds it to be .0004%

lower.

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
-0.10

-0.05

0.00

0.05

0.10

logHAtL

lo
g

K
t+

1
So

lv
er

K
t+

1
D

yn
ar

e

Productivity

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.10

-0.05

0.00

0.05

0.10

logHkt�k0L

Capital

Figure 2.5: Scatter plot of (t+1)-period Di�erence between the Dynare and ModelSolver sim-

ulation results against t-period Productivity and Capital respectively

A further comparison of the two solutions is provided by simulating an identical series of

shocks from an identical starting point using each one. The simulation covers 10000 periods.

Figure 2.5 plots the di�erences in the aggregate capital produced against the prior period’s

shock (left) and aggregate capital. The mean relative di�erence is just .0072%, with the max-

imum below .1%. The graphs illustrate that the errors increase with distance from steady

state.

78

2.6.3 Incomplete Markets with Aggregate Uncertainty

In addition to the aggregate uncertainty described above, households may be exposed to unin-

surable idiosyncratic income risk. The model of Krusell and Smith (1998) extends the bench-

mark to include idiosyncratic employment shocks which, by assumption, households can not

insure against due to the absence of complete markets. This section solves that model in the

calibration of Den Haan (2010b).

Households can be either unemployed or employed in each period. All employed house-

holds earn the same wage and all unemployed households receive identical unemployment

bene�ts, at replacement rate µ of the employed households’ income. The government runs a

balanced budget and �nances unemployment bene�t by taxing labour income at rate τt.

The income process for individual households is hence dependent on their employment

state ait ∈ {0, 1}, where ait = 1 for an employed household and ait = 0 for an unemployed

household in period t.

Household income is then

eit = [(1− τt)ait + µ(1− ait)]l̄wt (2.35)

The per-period income tax rate τt is chosen to ensure that tax receipts exactly cover un-

employment bene�ts. If the unemployment rate is ut, this implies

(1− ut)(τt l̄wt) = ut(µl̄wt) (2.36)

τt = µ
ut

1− ut
(2.37)

Aggregate productivity also follows a two-state Markov process, with productivity levels

{.99, 1.01}. Unemployment is exogenous and is tied to the productivity process, with unem-

ployment levels of 10% and 4% at low and high productivity respectively.

79

The joint stochastic process governing the transition of aggregate productivity between

states, and of households between employment and unemployment, is chosen as follows: each

aggregate productivity level has mean duration of 8 periods; unemployment has a mean dura-

tion of 2.5 periods when productivity is low, and 1.5 periods when productivity is high. The

resulting probability transition matrix is shown in Table 2.3.

At+1 1− ξ 1 + ξ
ait+1 0 1 0 1

At ait

1− ξ 0 0.525 0.35 0.03125 0.09375
1 0.038889 0.836111 0.002083 0.122917

1 + ξ
0 0.09375 0.03125 0.291667 0.583333
1 0.009115 0.115885 0.024306 0.850694

Table 2.3: Transition Probabilities in the Baseline Case (Source: Den Haan et al., 2010)

The replacement rate of unemployment bene�t is set to .15 and the labour endowment

per worker is chosen so that aggregate labour supply is 1 in the bad state, implying l̄ = 1/0.9

2.6.3.1 Results

To evaluate the performance and accuracy of the ModelSolver in such a setting, the model

is solved using the Explicit Aggregation algorithm of Den Haan and Rendahl (2010). Their

original implementation in MATLAB serves as a benchmark against a re-implementation using

the ModelSolver Toolkit.

Run Matlab ModelSolver

1 1235 209
2 1334 215
3 1383 197

Average 1317 207

Table 2.4: Explicit Aggregation Solution, Solution Times (seconds)

The model is solved three times using each implementation, on the same machine and

with no other applications running. Both solutions are con�gured to run in a single thread.

80

The calibration solved is γ = 1, starting from a common initial guess.

Table 2.4 shows the times taken for all runs. The average time for the Matlab solution is

1317 seconds, with 207 seconds required by the ModelSolver-based version. Both solutions

were found in 422 steps.

Mean Di�erence Maximum Di�erence

Individual Policy 2.2e-8 8.8e-8
Aggregate Forecast 7.2e-9 2.5e-8

Table 2.5: Explicit Aggregation Solution, Relative Di�erences

Matlab vs ModelSolver

The resulting individual policy functions and aggregate capital forecasting rules are almost

identical. Table 2.5 shows the point-by-point comparison across the two functions’ grids. The

maximum errors for both lie below 1e-7. The threshold for ending the iterative process is

1e-6, so that either solution would be accepted by the other implementation as a legitimate

one relative to its own.

2.7 Future Work

2.7.1 Additional Algorithms

Section 2.5 introduced the algorithms provided by the ModelSolver Toolkit. Though these

algorithms are applicable to a variety of problems, as demonstrated in this thesis, they do

require models to satisfy certain constraints which may discount some models of interest. One

clear route for enhancing the toolkit is to provide implementations for additional algorithm,

such as value function iteration.

2.7.2 Function Objects

The ModelSolver uses DoubleArray objects extensively to represent mathematical func-

tions. The arrays hold the function values and thus de�ne the range of the function, but

81

provide no information regarding the domain. The latter, along with related information such

as the location of discontinuities, is implicit, and must be maintained by the calling code. This

is ine�cient, makes the code harder to work with and can give rise to errors. The ine�ciency

is compounded by the fact that many models have multiple functions with the same domain,

and where good behaviour breaks down at the same points.

The Numerics library class Function captures all this information. Objects of this type

provide many useful operations on functions, for example numeric di�erentiation. They are

used internally by the ModelSolver Toolkit, but are not yet exchanged with the model code.

Using this class more widely would improve the usability of the toolkit signi�cantly, especially

for models that are not quite as well-behaved as the one considered in this chapter.

2.7.3 Porting to Other Technologies

Both the Numerics library and the ModelSolver Toolkit have been in parallel development

since the inception of this project. After evaluating the suitability of both MATLAB and Math-

ematica to performing the task, and �nding them unsuitable in di�erent ways, Java and, later,

Scala where chosen as the implementation languages mostly due to the absence of other ob-

vious candidates, coupled with the author’s existing knowledge of these languages.

TheDoubleArray class in particular provides a relatively specialised and, hence, unique

way of working with functions approximated on grids. There is, however, no obvious imped-

iment to replicating this class in other languages. Such replication is not of bene�t in itself,

but would be worthwhile if a greater number of interested economists were familiar with the

target platform.

The Julia programming language (see Bezanson et al., 2014b), published subsequent to

commencement of this project, is gaining traction in the community of computational economists.

It might provide a more suitable platform for the ModelSolver Toolkit.

82

2.8 Conclusion

This chapter presented two libraries, the Numerics library and the ModelSolver library, which

together form the ModelSolver Toolkit. The Numerics library provides a class DoubleAr-

ray for working with large, multi-dimensional arrays of double values, and many associ-

ated operations and utilities which make working with such arrays straightforward. One key

use of DoubleArray is to hold values of functions de�ned by interpolation over a grid.

The ModelSolver library uses this paradigm extensively to provide implementations of the

common parts of algorithms used in solving models with substantial heterogeneity.

The toolkit was used to solve three di�erent calibrations of the stochastic growth model,

including the version �rst introduced by Krusell and Smith (1998). These solutions, provided

in the code accompanying the thesis, demonstrate the �exibility of the toolkit. The solutions

were compared to ones obtained from existing tools and were found to be accurate. In the

most complex case, the ModelSolver outperformed an equivalent solution in MATLAB by a

factor of 6.

83

3
Finding the Forecasting Function by

Derivative Aggregation

Any researcher interested in questions concerning the interaction of aggregate and individual

outcomes in the economy will, at some point, want to solve models that include both aggre-

gate and individual uncertainty. The latter gives rise to heterogeneity, which in turn implies

that the full state of the economy is a very high-dimensional structure. Models of this type do

not usually have analytical solutions. Standard perturbation-based methods are prohibitively

84

expensive with such high-dimensional problems, so other computational approaches are nec-

essary. Such methods have been available since at least the pioneering contribution of Krusell

and Smith (1998). There have been many re�nements to the available algorithms since, but

the solution of models with anything other than the most rudimentary structures remains

computationally expensive and slow.

This chapter presents a novel algorithm, termed ‘Derivative Aggregation’, for �nding a

forecasting function for the aggregate variables in such models. The algorithm calculates

derivatives of the forecasting function by using directional derivatives along curves in the set

of feasible distributions. Each curve captures the way in which the distribution changes as

one of the current period aggregates changes. The derivatives of the forecasting function are

found by aggregating derivatives of the individual policy functions along the curves.

The algorithm is presented in a very abstract form, and is in principle applicable to any

economy with a clear relationship between individual and aggregate states, but where indi-

vidual agents’ choices do not directly a�ect those of others. This chapter will argue both that

the mathematics underlying derivative aggregation describes why approximate aggregation
1

holds in some cases, and that in those cases where it does not hold the approach is nonethe-

less a reasonable way to determine a forecast rule that might be used by boundedly rational

agents.

To demonstrate the high level of accuracy and low computational cost of the approach it

is �rst used to solve the model described in Den Haan et al. (2010), allowing comparison with

other approaches. The solution is found more e�ciently and with accuracy comparable to the

Explicit Aggregation (XPA) algorithm of Den Haan and Rendahl (2010). The latter was found

to be one of the best in terms of accuracy and performance in Den Haan (2010b).

The algorithm also extends to more complex scenarios without substantial adjustment,

and at reasonable additional computational overhead. This is demonstrated by solving the

model of Krusell and Smith (1997), which includes an additional asset, a one period bond.

1

As de�ned in Krusell and Smith (1998) to mean that the aggregate forecasting rule predicts aggregates ‘almost

perfectly’

85

All the solutions developed for this chapter use the ModelSolver toolkit introduced in

Chapter 2. The toolkit includes a solver that automates the algorithm described here, and

which requires only very straightforward code to utilise. The code for the toolkit and the

models are available online.

The remainder of this chapter is structured as follows: Section 3.1 outlines some key as-

sumptions adopted throughout this chapter. Section 3.2 motivates the algorithm by consider-

ing a simpli�ed form of the benchmark model, solves the benchmark model and assesses the

solution. Section 3.3 explores some approaches to further improving the accuracy of forecasts.

Section 3.4 presents the mathematics of derivative aggregation for generic models in de-

tail. Section 3.5 solves the extended model with one period bonds. Section 3.6 discusses the

approach, and Section 3.7 concludes.

To ease presentation most of the mathematical and computational details are relegated to

appendices, rather than interrupting the �ow of the main body: Section A.1 contains proofs

of theorems and derivations, Appendix A.2 demonstrates the extension of the approach to

higher-order approximations, while Appendices A.3 and A.4 discuss the individual and aggre-

gate solutions to the model with bonds.

The source code which calculates all model solutions discussed in this chapter, along with

scripts which evaluate the results, are available online (Grasl, 2014a).

3.1 Assumptions

This chapter adopts all of the assumptions and concepts introduced in Section 2.2. The most

signi�cant of these assumptions is bounded rationality. This assumption in turn leads to the

application of the alternating solution approach.

The two alternating steps of the approach are to solve the household problem and to update

the forecasting function. Derivative aggregation, the method presented here, addresses the

latter. It does not change the approach for solving the household problem, which is solved

using the Method of Endogenous Gridpoints (Carroll, 2006) in all models discussed in this

86

chapter.

3.1.1 The Individual Policy Function

In the benchmark model presented in Section 2.1, a household must forecast future aggregate

capital in order to form expectations over the future prices that a�ect its decision. Under the

assumption of bounded rationality, it forms this forecast using only the current aggregate vari-

ables, productivity At and capital Kt, as inputs. By implication its decision is conditional on

these variables, rather than the full state of the economy St. The household’s policy function,

which determines its future capital holdings ki,t+1, takes the form

ki,t+1 = f(ki,t, ei,t, At,Kt) (3.1)

This policy function is assumed known when the Derivative Aggregation step is performed.

It is further assumed to be di�erentiable in the continuous variables kt and Kt almost every-

where.

3.1.2 The Set of Feasible Distributions Ω

The economy is populated by a continuum of households of measure 1, indexed by i. These

households have identical preferences and, at any given point in time, di�er only in their

employment state ei,t ∈ {0, 1}, where 0 means unemployed and 1 means employed
2
, and

wealth ki,t. The distribution of households over the two variables at time t, ωt, can be written

as

ωt = ωt : [0, 1]→ R× {0, 1} ≡ {(ki,t, ei,t) : i ∈ [0, 1]} (3.2)

2

Employment state is exogenous and hence has little impact on the algorithm, which is concerned with how

endogenous states develop. Much of the rest of the chapter ignores employment state and is implicitly conditional

on it.

87

Given the constraints of the economy, not all possible distributions can be realised. Let Ω

be the set of feasible distributions. Assume that this set is a convex subset of {ω : [0, 1] →

R× {0, 1}}, and that all ω ∈ Ω have �nite variance.

3.2 Solving the Benchmark Model

The benchmark model solved in this chapter is the �nal model solved in the previous chapter:

the stochastic growth model under the assumption of incomplete markets and idiosyncratic

employment shocks, �rst solved by Krusell and Smith (1998). This chapter continues to use

the parametrisation of Den Haan et al. (2010). Later sections of the paper will go on to solve

extensions of this model.

3.2.1 The Problem

The task at hand is to to determine a function which forecasts future aggregate capital Kt+1

given current capital Kt, conditional on a realisation of productivity At.

Household savings are the source of all capital, so aggregate capital in any period is the

sum of individual capital holdings:

Kt = K(ωt) =

∫ 1

0
ki,t di (3.3)

The level of aggregate capital in the next period, Kt+1, depends on the distribution ωt+1

in the next period. Given the current distribution ωt, ωt+1 is found by application of the

household policy function f(.) to each household in ωt. Therefore Kt+1 is given by

Kt+1(ωt) ≡ K(ωt+1) =

∫ 1

0
f(ki,t, ei,t, At,Kt) di (3.4)

Find an approximate rule for the future valueKt+1 in terms ofKt near a given point (K?
t , A

?
t)

88

for which the distribution ω? ∈ Ω, is known.

3.2.2 A Straightforward Approximation

As outlined above, aggregate capital Kt depends on the underlying distribution of individual

households over wealth. There are many distributions which yield any given value of Kt.

Without further assumptions it is likely that not all of these distributions will give rise to the

same value of Kt+1.

Putting aside this observation for the moment, assume that there were an exact but un-

known relationship Kt+1 = H(Kt)
3
. Then a common approach to approximating it would

be to choose a Taylor polynomial P (Kt), for example a �rst order expansion:

H(Kt) ≈ P (Kt) ≡ H(K?
t) +

dH

dKt

∣∣∣∣
K?
t

(Kt −K?
t) (3.5)

The household wealth levels k?i,t, their employment states e?i,t and the function f are known

by assumption. H(K?
t) = Kt+1(ω

?), so by Eq. (3.4)

H(K?
t) =

∫ 1

0
f(k?i,t, e

?
i,t, A

?
t ,K

?
t) di (3.6)

This implies

dH

dKt

∣∣∣∣
K?
t

=
d

dKt

∣∣∣∣
K?
t

(∫ 1

0
f(k?i,t, e

?
i,t, A

?
t ,K

?
t) di

)
(3.7)

and, dropping the point of di�erentiation for notational ease:

dP

dKt
=
dH

dKt
=

∫ 1

0

(
∂f

∂ki,t

dki,t
dKt

+
∂f

∂Kt

)
di (3.8)

Note that
dei,t
dKt

and
dAt
dKt

are 0 due to exogeneity, and
dKt
dKt

= 1.

f is known and, by assumption, di�erentiable in both ki,t andKt, so the partial derivatives

3

Only the relationship of Kt+1 to Kt is of interest at this point, so the explicit dependence of H on At is

ignored. The remainder of this section is conditional on a particular realisation of At.

89

can be calculated. But what of
dki,t
dKt

?

As de�ned in Eq. (3.3),Kt is the mean of the ki,t. The causal direction of change is from ki,t

to Kt, contrary to the partial derivative above. This makes the derivative counter-intuitive,

but does not cause problems mathematically.

More problematically, there are many underlying changes in the distributionωt, and hence

the individual ki,t, which could cause the same change inKt. For that reason,
dki,t
dKt

is in general

not well de�ned. The assumption of a function H which yields a unique and correct Kt+1 for

any Kt breaks down.

That H does not exist was known in advance. That is why the task at hand is to �nd an

approximate, not an exact, forecasting function. Equation (3.8) points to a possible approach:

identify a ‘representative’ set of
dki,t
dKt

, substitute them into the equation and calculate the gra-

dient.

Derivative aggregation proposes to perform the �rst part of this approach by constructing

a C ⊂ Ω such that, within C , the derivatives
dki,t
dKt

are well de�ned, and such that the polyno-

mial P obtained from using those derivatives in the equation is not just a good approximation

for H within C , but also provides a good forecast of Kt+1 obtained given any ωt ∈ Ω. Then

P is the forecasting function sought. The subset C is necessarily a curve, and it is constructed

below, after some further discussions regarding Eq. (3.8).

3.2.3 Exact Aggregation

There are two special cases when
dH
dKt

in Eq. (3.8) is uniquely identi�ed by the model:

First, it may be the case that both partial derivatives take the same value for all ki,t. Since

the integral over the
dki,t
dKt

must be 1 by Eq. (3.3),
dH
dKt

would simply be the sum of the two

partial derivatives. In this situation, a representative agent model with the same decision rules

as the disaggregated model is a perfect representation of the economy, since all households

react the same regardless of their individual state.

Second, it may be the case that for any Kt, there is a unique distribution ω ∈ Ω which

yieldsKt. The k?i,t and the
dki,t
dKt

are then uniquely identi�ed, so
dH
dKt

is too. A unique and precise

90

forecasting rule exists. It need not generally be the case, however, that this forecasting rule

is identical to the one derived from a representative-agent model with the same assumptions

on individual behaviour. Thus the economy has an exact aggregate analogue, but a micro-

founded model in which the representative agent has the same policy function as individuals

in the disaggregated model may not be accurate.

3.2.4 Approximate Aggregation

Relax the assumptions of identical partial derivatives or a unique distribution for a given Kt

a little and consider the �ndings of Carroll (2000) in this context. The author considers two

models:

The benchmark Krusell & Smith model has aggregate behaviour close to that of a represen-

tative agent model, but wealth is too concentrated around its mean value relative to empirical

observations. Aggregate co-movements do not match the data. This approximates the case

of identical partial derivatives above: because wealth is closely distributed around the mean,

the partial derivatives of individual decisions are close to their mean, so approximate aggrega-

tion holds and matches a representative agent model with those same partial derivatives quite

closely.

The extended model yields a wealth distribution which matches the empirically observed

one, including a signi�cant proportion of households with very low wealth. Aggregate eco-

nomic behaviour no longer matches that of an identically-calibrated representative agent

model because poor households have marginal propensities to consume - the partial deriva-

tives - far from the mean value. Approximate aggregation still holds because the wealth dis-

tribution only has a narrow range of realisations for any given Kt, approximating the second

case above.

Equation (3.8) makes it clear that if both the underlying distributions which yield a given

Kt and the partial derivatives of the individual policy rules vary widely then a good approxi-

mation will not be possible. Assuming that the approximation is possible, the equation implies

that �nding it requires �nding representative values of the derivatives
dki,t
dKt

.

91

3.2.5 A Graphical Illustration with Two Households

Consider the model with the number of households restricted to 2, indexed by {1, 2}. Aggre-

gate capital is given by Kt = k1,t + k2,t. The objective is to �nd a �rst order-polynomial in

Kt, P (Kt), which yields a good approximation of the future aggregate capital Kt+1 for any

current state of the economy.

Figure 3.1 illustrates the proposed procedure. There are only two households, so the en-

dogenous state of the economy can be represented as a point in the two-dimensional k1, k2

plane, shown in the top left graph. The shaded area is the feasible set of distributions Ω.

The �rst step is to identify a di�erentiable curve
4 C(θ) in Ω which approximately delin-

eates its centre, and along which Kt is strictly monotonic. θ ∈ [θ, θ̄] indexes the curve, but

has not economic meaning.

Each θ identi�es a point on the curve. Hence C(θ) de�nes a pair of coordinate functions

{k1,t(θ), k2,t(θ)}. Aggregating the two yields Kt(θ) = k1,t(θ) + k2,t(θ). This mapping is

strictly monotonous by assumption, and can thus be inverted to θ(Kt), shown at the top right.

By assumption, the households’ policy rule is known. ki,t+1(θ) = f(ki,t(θ), .) can thus be

calculated, and gives rise to Kt+1(θ) = f(k1,t(θ), .) + f(k2,t(θ), .), illustrated at bottom left.

Finally, the mapping θ(Kt) can be substituted into the mappingKt+1(θ) to yield a function

Kt+1 = H̃(Kt) ≡ Kt+1(θ(Kt)), which is represented in the bottom right quadrant.

How does H̃ relate to H in Eq. (3.8)? The functions are on the same domain and range,

so that H̃ can replace H in the equation. The inverted function θ(Kt) can also be substituted

into the coordinate functions to construct mappings {k1,t(Kt), k2,t(Kt)}. All the functions

derived from the curve C in this section inherit its assumed di�erentiability. Along the curve

C , therefore,
dki,t
dKt

are well-de�ned:

4

See Simon and Blume (1994), page 313, for a formal de�nition of a curve. A curve is a one-dimensional,

connected set which can be indexed by a real number.

92

Kt=K

Kt= K

Kt

Θ

Θ

Kt+1

Kt

Kt+1

Θ Θ

Θ

Θ

Kt K t

Kt K t

K t+1

Kt+1

K t+1

Kt+1

k1, t

k2, t

H
� HK tL

Ξ

CHΘL

W

Figure 3.1: An Illustration of the Two-Household Solution

The curve C(θ) runs along the centre of Ω in the direction of increasing Kt. Each

θ along the curve identi�es a unique Kt (top right) and a Kt+1 (bottom left). Since

the former relation is monotonic a mapping H̃ from Kt to Kt+1 results.

93

dki,t
dKt

=
dki,t
dθ

dθ

dKt
=

dki,t
dθ
dKt
dθ

(3.9)

The derivative in Eq. (3.8) can be calculated:

dP

dKt
=

∂f
∂k1,t

dk1,t
dθ + ∂f

∂k2,t

dk2,t
dθ

dKt
dθ

+
∂f

∂Kt

∣∣∣∣
k1,t

+
∂f

∂Kt

∣∣∣∣
k2,t

(3.10)

It is now straightforward to construct the Taylor polynomial P (Kt). This polynomial is the

approximate forecasting function sought.

3.2.6 Returning to the Full Distribution

The illustrated approach extends readily to the model with a continuum of households, rather

than two. C(θ) becomes a curve in an in�nite-dimensional space.

Before returning to the details, consider what this curve represents: in an informal way, a

point on the curve is the most likely distribution to arise which aggregates to its capital level

Kt. For two very close levels of aggregate capital, and again informally, these distributions are

likely to be very similar
5
, perhaps resulting from a di�erent aggregate shock some relatively

large number of periods in the past.

Since i has no economic meaning, assume without loss of generality that, in each distri-

bution along C , i orders the households by wealth. Each coordinate function then speci�es

how a particular percentile of the wealth distribution changes along C.

Further assume that if ki,t = kj,t at one point along the curve then this identity also holds

at other points along the curve. This assumption may seem innocuous at �rst glance since

households have identical preferences, but it is in fact almost certainly not literally true: for

example, as θ and hence Kt increases one would expect some, but not all, households at the

5

Similar in the sense that probability masses and probability densities, are close at all points.

94

borrowing limit to become unconstrained. Nonetheless, it is a useful simplifying assumption

because it allows the curve to be identi�ed in two steps:

1. Identify a point ω1 on the curve and, without loss of generality, assume that this point

corresponds to C(1) (i.e. ω1 = C(1)).

2. De�ne the curve through a function T : R2 → R s.t ki,t(θ) ≡ T (ki,t(1), θ).

3.2.7 Choosing a Curve

The curve C has only been discussed in informal terms, leaving the question of its selection

open. Derivative aggregation does not provide a precise answer to this question: selecting the

curve is a heuristic activity. Later sections do discuss some methods for discovering better

curves, but a researcher applying derivative aggregation must form at least an initial guess

based on his understanding of the model at hand.

With that in mind, consider the two steps introduced in the last section in the context of

the benchmark model.

3.2.7.1 The Reference Distribution

Step 1. calls for selection of a point which lies somewhere along the centre of the unknown

set Ω. In other words, a distribution that is average. The exogenous process for aggregate

productivity implies equal probability for high and low productivity periods. An average dis-

tribution results from an economic history which includes a roughly equal number of each

level of productivity, especially in more recent periods.

Absent a solution to the model, such a distribution can not be constructed directly. On the

other hand, a model with a similar structure of idiosyncratic shocks but no aggregate uncer-

tainty can be solved with known methods, since it does not require that an aggregate fore-

casting function be found. Individual households face greater risk from idiosyncratic shocks

than aggregate shocks in the benchmark model. Abstracting from the latter should not change

95

their behaviour to a signi�cant degree. The steady-state distribution of that model should be

quite similar to the average distribution sought.

This distribution is the initial choice for ω1
6
.

3.2.7.2 The Transformation

Consider that the economy is a standard production economy. A small variation in current

aggregate capital Kt is the result of a small variation in the history of economic shocks. Both

aggregate shocks and capital a�ect households through factor prices: the wage and the interest

rage. A slightly higher Kt means that, all other things being equal, all households received

slightly more income historically. The assumption that all households should presently also

have slightly more wealth is therefore not unreasonable.

Higher wages a�ect all households equally, whereas higher interest rates provide more

additional income for those households with higher wealth. More wealthy households also

already have higher consumption and, given the standard utility function exhibiting dimin-

ishing marginal utility, can be expected to spend less of any additional income on immediate

consumption. Thus the further assumption that the increase in household wealth resulting

from a marginally better history of aggregate shocks should increase with the wealth held

under the lower-shock scenario is also justi�ed.

Based on this reasoning, assume that the increase in wealth is proportional to the wealth

held, so that

T (ki,t, θ) = θki,t (3.11)

The calculation only requires dT/dθ rather than T itself, so in this case the input provided

is

6

Since the number of unemployed di�ers between the two aggregate states in the benchmark model, the no-

aggregate-risk model used has a level of unemployment lying between the two. The reference distributions - one

for each aggregate state - are constructed by adjusting the unemployment rate in the steady state solution of this

model.

96

dT (ki,t, θ)

dθ
= ki,t (3.12)

Recall that

Kt =

∫ 1

0
ki,t di ⇒ dKt

dθ
=

∫ 1

0
ki,t di = Kt (3.13)

The derivative of the polynomial is then:

dKt+1

dKt
=

dP

dKt
=

1

Kt

∫ 1

0

∂f

∂ki,t
ki,t di+

∫ 1

0

∂f

∂Kt

∣∣∣∣
ki,t

di (3.14)

The next section evaluates the solution of the model obtained by repeatedly updating,

until convergence, the aggregate forecasting function using the formula above to calculate its

gradient.

3.2.8 Assessing Performance and Accuracy

Den Haan (2010b) compared di�erent solution methodologies for heterogeneous agent mod-

els. He applied them to a particular calibration of the benchmark model and compared the

solution time and a number of metrics to evaluate the relative accuracy of solutions. He found

the Explicit Aggregation approach of Den Haan and Rendahl (2010) to provide the best com-

bination of speed and accuracy. This section presents the results from solving the model by

Derivative Aggregation under the same calibration
7

and compares a number of metrics to the

Explicit Aggregation solution.

7

The calibration of the model is documented in Section 2.6.3.

97

3.2.8.1 Solution Time

To perform the comparison under similar conditions the Explicit Aggregation algorithm was

implemented using the ModelSolver Toolkit, and the solutions were computed using the same

individual capital levels, individual shock levels and aggregate shock levels. The aggregate

capital levels di�er because Explicit Aggregation requires that they be separated into two

variables, the capital held by employed and unemployed agents, whereas Derivative Aggre-

gation uses only one variable for aggregate capital. The calculations were performed on the

same machine with no other user processes running.

Computing the solution using Explicit Aggregation required approximately 89 seconds.

The Derivative Aggregation approach took around 13 seconds.

The computation of the aggregate forecasting function under Explicit Aggregation in this

model is trivial: at each point of the aggregate variable grid, the individual policy is evaluated

for an employed and an unemployed household under the assumption that the households

have wealth levels equal to the average for their employment status. Updating the forecasting

function under Derivative Aggregation is computationally more complex. The di�erence in

performance hence stems from two sources: �rst, the size of the grid is smaller using Deriva-

tive Aggregation because it does not require two aggregate variables. Second, the solution

converges in fewer steps, requiring just 225 for Derivative Aggregation compared to 423 for

Explicit Aggregation.

3.2.8.2 Aggregate Forecast Accuracy

10000 period ahead (%) 1 period ahead (%)
Time (s) Bias Mean Max Bias Mean Max R2

XPA 89 0.065 0.119 0.383 0.003 0.008 0.049 99.9992

DA 13 -0.054 0.077 0.391 -0.002 0.003 0.019 99.9998

Table 3.1: Compute Time and Forecast Accuracy

(XPA) Explicit Aggregation

(DA) Derivative Aggregation

Both Derivative Aggregation and Explicit Aggregation are methods for computing the ag-

98

gregate forecasting function
8
. The metrics of greatest interest therefore concern the accuracy

of aggregate forecasts produced.

To evaluate the forecasting functions, an identical sequence of 10000 shocks is simulated

using the individual policy rules produced by each solution. Subsequently, aggregate variables

are forecast over the long-term and the short-term: the long-term forecast predicts a sequence

of 10000 aggregate variables forecast from the starting point of the simulation, under the as-

sumption of the shock sequence simulated; the short-term forecast predicts the aggregates

for each period based on the simulated aggregates from the prior period, and is a sequence of

10000 one-period-ahead forecasts.

Table 3.1 presents the summary statistics of the forecast errors from the two solutions. On

average, both the long-term and short-term forecast errors resulting from Derivative Aggre-

gation are approximately 40% smaller than those obtained from Explicit Aggregation. Both

solutions show a bias in their forecasts which is relatively large relative to the average error.

Under the metric used by Krusell and Smith (1998) and many subsequent authors
9
, the R2

of

short-term forecast errors, both solutions perform well with values in excess of 0.99999.

The long-term forecast errors from both solutions around the point of their maximum
10

under Derivative Aggregation are shown in Fig. 3.2. The error of the Explicit Aggregation

solution is also relatively large at the maximum point. The errors decrease again rapidly. The

tendency of the values from Derivative Aggregation to lie below those of Explicit Aggregation

in this region is a re�ection of the opposing bias of the two time series.

Figure 3.3 shows a scatter plot of the short-term forecast errors against the capital levels

from which those forecasts were formed. Derivative Aggregation, in common with all other

approaches discussed, constructs a short-term forecasting function, so considering these er-

rors may yield insights into improving the solution. The plots illustrate that there is still a

8

Strictly speaking they are methods for computing the aggregate forecasting function implied by an individual

policy function, but used iteratively in conjunction with a method for calculating the individual policy function

they are used to compute the forecasting function

9

This metric is found to be an inadequate measure of the accuracy of the forecasting function in Den Haan

(2010a)

10

All maxima and means discussed refer to absolute numbers.

99

6400 6600 6800 7000 7200

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Period

Lo
ng

−
Te

rm
 F

or
ec

as
t E

rr
or

 (
%

)

Figure 3.2: Relative Errors in the Region Around the Maximum Error for DA (solid) and XPA

(dotted)

linear component remaining in the error, so the gradient was not calculated perfectly. Both

an inaccurate reference distribution and a poorly chosen transformation could contribute to

such an error.

The point at which the approximation is calculated is shown on the graphs as the large

dot. This point is neither in the middle of the range of Kt, nor is the forecast at that point

very accurate. This aspect of the solution is most likely due to a poorly chosen reference

distribution.

Later sections investigate approaches for improving both the reference distribution and

the transformation.

100

0.00 0.05 0.10

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Low Productivity

log(Kt K*)

F
or

ec
as

t E
rr

or
 (

%
)

●

0.00 0.05 0.10

High Productivity

log(Kt K*)

●

Figure 3.3: One-Period-Ahead Forecast Errors (%), Derivative Aggregation

The solid and dashed lines show a quadratic curve �tted to the errors and its linear component. The

large dot indicates the point at which the approximation was taken.

3.2.8.3 The Impact on Individual Outcomes

One interpretation of bounded rationality is utilitarian: households choose to restrict their

information set because doing so imposes very little cost. This interpretation requires that

the decisions households make using the approximate forecasting function are close to those

optimal under a true, full-information solution.

Den Haan (2010b) introduces the dynamic Euler-equation accuracy test to assess whether

or not this condition is met. The data for this test is calculated during the simulation described

above. For a single household, two alternative time-series of consumption and, by implication,

capital holdings are generated: �rst, the time series implied by the individual policy function

obtained as part of the solution; second, a time-series obtained by deriving consumption each

period from the Euler equation when expected consumption in the next period is calculated

based on the expected aggregates from the forecasting function in the next two periods
11

.

Table 3.2 presents summary statistics of the di�erence between the time series for the

11

A more complete description is in Section A.5.

101

k c
Bias Mean Max Bias Mean Max

XPA -0.052 0.052 0.109 -0.006 0.006 0.102

DA -0.052 0.052 0.107 -0.006 0.006 0.106

Table 3.2: Dynamic Euler Equation Errors (%)

(XPA) Explicit Aggregation

(DA) Derivative Aggregation

two solutions. The metrics are almost identical, re�ecting the shared approach to solving the

individual problem. The mean di�erence in consumption over the full length of the simulation

is only .006%, with the maximum di�erence at .1%. The households decisions using the

approximate forecasting function are indeed close to optimal.

3.3 Some Experiments to Improve the Solution

The results presented in the previous section compare well with those obtained from alterna-

tive approaches. Nonetheless, the analysis of forecast errors indicates that there is potential

for improvement, particularly in the heuristic choices made: the reference distribution is not

central in the range of Kt and does not produce a Kt+1 average for its Kt, and the forecast

errors have a remaining �rst-order component which is large relative to the spread of errors.

In other words, the curve C implied by the two choices does not lie in the middle of Ω.

A secondary consideration is that the errors also show a 2nd-order component, which

suggests that a �rst-order solution may not be optimal.

This section presents some ideas for improving the choices for the reference distribution

and the transformation, and goes on to evaluate solutions that apply those ideas as well as a

second-order approximation.

3.3.1 Discovering a Reference Distribution by Simulation

Simulating an economy with heterogeneous agents is computationally expensive. The results

from Den Haan (2010b) indicate that simulation-based solutions are much less e�cient than

102

those which avoid it, thus the absence of simulation in the approach presented so far is partly

responsible for its e�ciency.

On the other hand, the assumed reference distribution is not optimal and �nding a new one

requires some simulation. The �rst experiment introduces a small amount of simulation aimed

at improving the distribution. As already stated, the aim is to produce an average distribution.

In this economy each aggregate state occurs with equal probability
12

. The exogenous process

for aggregate productivity has a mean duration of 8 periods in each state. When the economy

is in a particular state, it is likely to have been in that state for a few periods.

Following this reasoning, the reference distributions used are updated as follows in each

iteration: the economy is simulated for 48 periods, starting from the reference distribution

of the last iteration, and alternating between aggregate states every 8 periods. The reference

distribution used to compute the derivatives for each aggregate state is sampled after four pe-

riods in that state toward the end of the simulation. The simulation in each iteration continues

from the �nal state of the prior iteration.

−0.05 0.00 0.05

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Low Productivity

log(Kt K*)

F
or

ec
as

t E
rr

or
 (

%
)

●

−0.05 0.00 0.05

High Productivity

log(Kt K*)

●

Figure 3.4: One-Period-Ahead Forecast Errors (%), Derivative Aggregation with Reference Dis-

tribution Discovery by Simulation

12

Unconditionally.

103

Figure 3.4 plots the forecast errors from simulating the resulting solution. The aim of

�nding an average distribution has been achieved: the point at which the approximation is

taken has indeed moved to a more central location in the range of Kt and produces a forecast

representative for its level of that variable.

Conversely, the aim of decreasing forecast errors has not been satis�ed. The errors at low

levels of Kt have increased in magnitude. Table 3.3 shows that the average forecast error has

also increased. This increase is accompanied by a corresponding increase in the bias.

The poorly-chosen reference distribution in the baseline solution was o�setting the e�ects

of the imperfect gradient and the absence of a quadratic approximation. Improving the choice

of distribution has counter-productive e�ects on accuracy.

10000 period ahead (%) 1 period ahead (%)
Time (s) Bias Mean Max Bias Mean Max R2

(1) 13 -0.054 0.077 0.391 -0.002 0.003 0.019 99.9998

(2) 57 -0.101 0.128 0.641 -0.004 0.005 0.028 99.9993

Table 3.3: Compute Time and Forecast Accuracy

(1) Derivative Aggregation

(2) DA with Distribution Improvement

3.3.2 Discovering a Transformation by Comparing Distributions

The purpose of the transformation T is to capture the relative rates of change of the wealth of

di�erent individual households as aggregate capital changes. During the simulation described

in the last experiment a number of distributions are generated with di�erent but quite close

levels of aggregate capital. By comparing those distributions a new transformation can be

constructed.

The procedure works as follows: Consider two distributions ωA = {kAi,t : i ∈ [0, 1]},

and ωB = {kBi,t : i ∈ [0, 1]}. To construct an equivalence between the indexes, assume

without loss of generality that i orders the households in each distribution by wealth. Further

assume that household i in distribution ωA is the same as household i in distribution ωB , but

after a slightly di�erent history. Finally, assume that the change in θ when moving from ωA

104

to ωB is 1. This assumption also imposes no loss of generality since θ is scale-free. Then

dT (ki,t, θ)/dθ ≈ kBi,t − kAi,t at ωA.

Figure 3.5 plots the derivative obtained by updating it in each iteration using this approach.

The initial assumption of a function linear in ki,t with intercept 0 was somewhat o� the mark:

at low ki,t the function is strongly curved, and extrapolating from the broadly linear section

at higher ki,t implies a non-zero intercept.

0 50 100 150 200

0
1

2
3

Low Productivity

ki

dk
i,t

dθ

0 50 100 150 200

High Productivity

ki,t

Figure 3.5: The Derivative of the Transformation,
dT
dθ , for Employed (solid) and Unemployed

(dashed) Households

At ki,t greater than approximately 150 the function is determined by linear extrapolation from lower

levels because the numerical method used to obtain the derivative breaks down at those wealth levels,

where the density of households is both very low and lumpy. Since the proportion of the population

in this region is less than .01% this imposition likely has very little e�ect.

Figure 3.6 plots the forecast errors from simulating the solution obtained using that deriva-

tive. The point of approximation remains central. In comparison to the corresponding plots

from the previous experiments (Figs. 3.3 and 3.4) the linear component of the curve �tted to

the errors has a visually lower gradient, suggesting that the �rst-order derivative has been

captured more accurately.

Table 3.4 shows the summary statistics, in comparison to those from the baseline exper-

iment. The mean error is elevated and the bias is substantially higher, though both have im-

105

−0.05 0.00 0.05

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Low Productivity

log(Kt K*)

F
or

ec
as

t E
rr

or
 (

%
)

●

−0.05 0.00 0.05

High Productivity

log(Kt K*)

●

Figure 3.6: One-Period-Ahead Forecast Errors (%), Derivative Aggregation with Reference Dis-

tribution and Transformation Discovery by Simulation

10000 period ahead (%) 1 period ahead (%)
Time (s) Bias Mean Max Bias Mean Max R2

(1) 13 -0.054 0.077 0.391 -0.002 0.003 0.019 99.9998

(2) 70 -0.077 0.084 0.285 -0.003 0.003 0.015 99.9998

Table 3.4: Compute Time and Forecast Accuracy

(1) Derivative Aggregation

(2) DA with Distribution & Transformation Improvement

proved compared to the previous experiment. The plot of errors suggests that the bias results

from the second-order component of the errors.

3.3.3 A Second-Order Approximation

The experiments above demonstrate that much of the remaining forecast inaccuracy stems

from second-order e�ects. Derivative Aggregation can be applied to �nd a polynomial ap-

proximation of any order. The theoretical section which follows presents the mathematics for

the second order approach.

The second order solution calculation assumes d2T (.)/dθ2 to be 0 everywhere, so that the

transformation remains linear. The numerical approach used for transformation discovery of

106

the �rst order does not extend well to second-order approximation. Other approaches remain

to be investigated.

Fig. 3.7 presents the forecast errors which result from simulating the solution of the model

using both distribution and transformation discovery and a second order approach. Visually,

the second order component is less pronounced relative to the last experiment, and the errors

appear more closely clustered around 0. Other aspects of the plot remain una�ected.

−0.05 0.00 0.05

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Low Productivity

log(Kt K*)

F
or

ec
as

t E
rr

or
 (

%
)

●

−0.05 0.00 0.05

High Productivity

log(Kt K*)

●

Figure 3.7: One-Period-Ahead Forecast Errors (%), Derivative Aggregation with 2nd-Order

Approximation and Transformation Improvement

The metrics in Table 3.5 con�rm this visual impression. The mean error is approximately

25% lower than in the baseline experiment, the bias has decreased by a similar absolute

amount, and the R2
has acquired an extra 9 to read 0.999999.

The table also highlights the cost: computation time increases by a factor of around 5.5

even with the small amount of simulation added to the solution approach. Each additional

improvement in solution accuracy comes at the cost of further compute time, although the

incremental cost of the second-order approximation itself is small.

107

10000 period ahead (%) 1 period ahead (%)
Time (s) Bias Mean Max Bias Mean Max R2

(1) 13 -0.054 0.077 0.391 -0.002 0.003 0.019 99.9998

(2) 57 -0.101 0.128 0.641 -0.004 0.005 0.028 99.9993

(3) 70 -0.077 0.084 0.285 -0.003 0.003 0.015 99.9998

(4) 74 -0.023 0.053 0.156 -0.001 0.002 0.008 99.9999

Table 3.5: Compute Time and Forecast Accuracy, Four experiments:

(1) Baseline Derivative Aggregation (DA)

(2) DA with Reference Distribution Discovery

(3) DA with Reference Distribution and Transformation Discovery

(4) 2nd-Order DA with Reference Distribution and Transformation Discovery

3.4 Generalising the Approach

The approach used above to solve the benchmark model is not speci�c to that model. It is ap-

plicable to a wide range of models having heterogeneous agents wishing to form, and act ac-

cording to, model-consistent expectations about aggregate quantities. This section �rst brie�y

outlines the generic form of models to which Derivative Aggregation can be applied, and then

presents the mathematical formulae for computing the aggregate forecasting functions. These

formulae are completely generic and can be implemented without knowledge of the model.

An implementation of AggregateProblemSolver which performs 1st or 2nd order

Derivative Aggregation is provided as part of the ModelSolver Toolkit presented in Chapter 2.

3.4.1 A Brief Digression on Notation

This section outlines the notation used to discuss models in the following sections.

An individual i in the economy may have both endogenous and exogenous states, identi-

�ed by xi and ai:

xi = (x1i , x
2
i , . . . , x

nx
i) (3.15)

ai = (a1i , a
2
i , . . . , a

na
i) (3.16)

108

A distribution ω describes the overall state of the economy, and is a mapping of individual

agents, identi�ed by their index, to their state variables. In the case of a continuum of agents:

ω : [0, 1]→ Rna+nx ≡ {(xi, ai) : i ∈ [0, 1]} (3.17)

Note that it is common to represent such a distribution instead as a probability density function

over the individual state space. Distributions as used here may, however, have non-zero point

probabilities, for instance at constraint boundaries. The notation above supports that, and the

mathematics used in this paper is easier to present in this form.

The economies discussed may have additional aggregate exogenous states A:

A = (A1, A2, . . . , AnA) (3.18)

Finally, the models will also specify aggregate endogenous variables, which are scalar func-

tions of the underlying distribution ω.

X = (X1, X2, . . . , XnX) (3.19)

where

Xj ≡ Xj(ω) ≡
∫ 1

0
F j(xi, X

−j) di (3.20)

for some F j : Rnx × Rj−1 → R (3.21)

Endogenous aggregates are de�ned in this way to allow for dependencies between aggregates

that are non-circular, accepting for example centred moments
13

.

13

There may also be an invertible scalar function g applied to the whole integral, so that Xj(ω) =

109

Note that all variables, aggregate or individual, may be indexed by the discrete time t to

indicate which period they apply to.

3.4.2 A Generic Model

Consider an economy populated by a continuum
14

of decision-making agents of measure 115
,

indexed by i ∈ [0, 1]. Time is discrete and indexed by t ∈ {0, 1, 2, · · · }. Economic activity

continues for a number of periods, and is subject to exogenous shocks both at the aggregate

and individual level. Agents are forward looking, taking potential future outcomes into con-

sideration when making decisions in the current period. All problems can be expressed and

solved recursively, so that only the two period form need be considered.

Agents must decide, one period in advance, on their vectors of private endogenous state

variables xi,t+1 given their current endogenous and exogenous state vectors xi,t and ai,t. Con-

ditional on these states, agents have identical preferences
16

.

Further assume that no agent is directly a�ected by any other agents’ private variables or

decisions, but that agents do take into account vectors of exogenous and endogenous aggregate

variables At and Xt respectively
17

.

Finally assume that there is a known, time-invariant stochastic process that governs the

joint transition of all individual and aggregate exogenous variables, and that the distribution

of agents over their states always has �nite variance.

g
(∫ 1

0
F j(xi, X

−j) di
)

. Presenting this function introduces additional complexity without adding to the argu-

ment, so it is omitted throughout. Allowing such a function caters, for example, for log-linear approximations in

the aggregates.

14

The method presented could also be applied to a countably in�nite or a �nite set of agents, but this paper

focuses only on the case of a continuum to simplify the exposition, particularly where integrals are used.

15

In principle the measure could be any size and vary over time, but restricting it to 1 simpli�es the exposition

here without losing any insight.

16

The exogenous states, as de�ned, allow for agents to have permanently di�erent states and hence for ex-ante

as well as ex-post heterogeneity, so that this conditional identity does not constrain the model in any way.

17

There are no constraining relationships between the cardinality of any of the vectors. There may, for example,

be more aggregate than individual endogenous variables.

110

3.4.3 The Forecasting Function

In an economy as described, individual agents follow a common, time-invariant policy func-

tion fx(.) which determines their future endogenous state given their current state and the

state of the aggregate economy:

xi,t+1 = fx(xi,t, ai,t, Xt, At) (3.22)

Agents are forward looking, so this rule takes possible future outcomes into account, and

agents must forecast all variables which determine those outcomes. As before, agents are

assumed to be boundedly rational: they forecast future aggregate states based on the restricted

information set of current aggregate states
18

. They are further assumed to seek a polynomial

form of this function. The forecasting function sought therefore takes the form

Xt+1 = P (Xt, At) (3.23)

where P is a polynomial in Xt. If At are continuous variables then P is also assumed to be a

polynomial in those variables, otherwise P is determined conditional on each possible value

of At.

3.4.4 The Overall Approach

As demonstrated for the case of a single aggregate variable in Section 3.2, this approach de-

termines an nth-order polynomial forecasting function by aggregating the derivatives of the

individual policy rules along a curve. In the more general case with nX aggregate states, the

domain of the polynomial P is nX -dimensional and the algorithm thus requires identi�cation

18

Aggregate states may include variables that are not directly relevant economically but help with forecasting,

such as moments of the individual state distribution.

111

of an nX -dimensional manifold
19

within Ω.

The overall approach is as follows:

1. Identify a point ω?, the reference distribution, approximately in the centre of Ω.

2. Identify a set of transformations T = {Tk : 1 ≤ k ≤ nX}, under each of which only

one of the current aggregate state variables changes. The curves mapped out by these

transformations e�ectively form the coordinate system of the manifold.

3. Calculate the derivatives of the polynomial P using the formulae derived in the next

section.

4. Construct the polynomial from the derivatives and the current and future aggregate

variables implied by the reference distribution.

3.4.5 The Mathematics

Proposition 1 details how the �rst order derivatives of P may be calculated:

Proposition 1. Let Tk(x, θk), Tk : Rnx × R → Rnx , be a parametrised transformation of

the individual endogenous variables. Denote by Tk(ω, θk) = {(Tk(xi, θk), ai) : (xi, ai) ∈

ω} the transformed distribution which results from applying Tk(., θk) to each individual in the

distribution ω.

Assume that

1. Xk changes under Tk(., θk), but all other aggregates do not:

X l (Tk(ω, θk)) = X l(ω) (∀ω ∈ Ω, θk ∈ R) ⇔ l 6= k

2. Tk(x, θk) is continuously di�erentiable in θk for all x ∈ Rnx and θk in some interval that

includes 1, at least as a boundary
19

A manifold is a topological space which locally resembles a Euclidean space at all points. In this cases, the

curves sought map precisely to the axes of the corresponding nx-dimensional Euclidean space.

112

3. Tk(., 1) is the identity:

Tk(x, 1) = x ∀x ∈ Rnx

and, by implication,

Tk(ω, 1) = ω ∀ω ∈ Ω

Then, for any distribution ω, as that distribution is transformed by Tk(., θk) for θk moving away

from 1, the derivative of the future aggregate state variable Xj
t+1 with respect to the current

aggregate state variable Xk
t is given by:

dXj
t+1

dX̃k
t

=

nx∑
s=1

∫ 1

0

(
∂F j(.)

∂xs

[
nx∑
r=1

∂fsx
∂x̃ri,t

dx̃ri,t

dX̃k
t

+
∂fsx
∂X̃k

t

])
di

+

j−1∑
s=1

∫ 1

0

(
∂F j

∂Xs

dXs
t+1

dX̃k
t

)
di (3.24)

where

dx̃ri,t

dX̃k
t

=

∂T rk (xi,t, 1)

∂θk
nx∑
s=1

∫ 1

0

∂F k(xl,t, X
−k)

∂xs
∂T sk (xl,t, 1)

∂θk
dl

(3.25)

and

x̃i,t ≡ Tk(xi,t, θk) (3.26)

X̃k
t ≡ Xk

t (Tk(ω, θk)) (3.27)

The proof is in Section A.1.

Note that all the partial derivatives in both equations of the proposition are of the ag-

gregation functions F j , the transformations Tj and the individual transition rule fx, and the

113

aggregation is performed over the distribution ω. The �rst two functions and the distribution

are parameters of the model and the solution approach, and fx is assumed known at the time

of calculation. The calculation of these partial derivatives and the subsequent integration are

straightforward numerical computations.

3.4.6 Exogenous Aggregates

In many models, among them the examples in this paper, exogenous aggregates take discrete

values. In those cases, the derivatives with respect to endogenous aggregates can be performed

conditional on the value of the exogenous variables.

With continuous exogenous aggregates, calculating derivatives of next-period endogenous

states with respect to the exogenous ones is straightforward, since a change in an exogenous

state does not necessitate a change in the underlying distribution. There is no need to identify a

transformation along which to calculate derivatives, and the only terms remaining in Eq. (3.24)

are those including derivatives with respect to the aggregate.

3.4.7 Higher-Order Approximations

Proposition 1 outlined the formulae for �rst order approximations using derivative aggrega-

tion. Both the proposition and the proof rely solely on elementary manipulation of derivatives,

and the approach can readily be extended to higher order approximations. The resulting for-

mulae are lengthy, and deriving problem-speci�c solutions from the aggregation functions and

transformations can also be cumbersome, but the higher order approach does not make the

computation signi�cantly more di�cult. Section 3.3 demonstrated the bene�ts of a second-

order solution. The general formulae for second-order approximations are derived in Ap-

pendix A.2, along with the speci�c solutions for the benchmark model.

114

3.5 Adding a One-Period Bond

The benchmark model is a relatively basic model of incomplete markets and heterogeneous

agents in that it allows investment in only one asset, risky capital. It is useful as a starting

point to demonstrate the methodology, particularly since there is a broad literature of existing

solutions that can be used for performance and accuracy comparisons.

This section adds a second asset, risk-free bonds, to the economy, and allows agents to

trade in these bonds among themselves. The structure of the model follows Krusell and Smith

(1997), but the model continues to use the calibration described above for all variables shared

by the two models.

3.5.1 The Extended Model

The production-side of the extended model economy is identical to that of the benchmark

model. The sole addition is that households may exchange one-period, risk-free bonds, pro-

viding a second channel for risk mitigation that counters aggregate uncertainty. Following

Krusell and Smith (1997), households continue to be constrained to non-negative capital hold-

ings and are also subject to a constraint b on borrowing in bonds, which prevents them from

building up arbitrary levels of debt.

This model hence adds a further constraint to the household problem, and also introduces

the requirement to �nd the equilibrium market-clearing bond price in each period, so that net

demand for bonds is 0.

3.5.1.1 The Household Problem

Household i’s problem is

115

max
{cit,kit+1,b

i
t+1}∞t=0

E

[∞∑
t=0

(
βt

(cit)
1−γ − 1

1− γ

)]
(3.28)

s.t. cit + kit+1 + ptb
i
t+1 = (1 + rt − δ)kit + bit + [(1− τt)l̄ait + µ(1− ait)]wt (3.29)

bit+1 ≥ −b (3.30)

kit+1 ≥ 0 (3.31)

where bit is the face value of bonds carried over from period t − 1 to period t by agent i

and pt is the market-clearing bond price in period t.

Solving the households’ maximisation problem yields two �rst-order conditions

βE
[(
cit+1

)−γ
(1 + rt+1 − δ)

]
=
(
cit
)−γ − φik,t (3.32)

βE
[(
cit+1

)−γ]
=
(
cit
)−γ

pt − φib,t (3.33)

where φik,t, φ
i
b,t ≥ 0 are the multipliers on the capital and bond borrowing constraints

respectively.

3.5.2 Solving the model

The addition of the second asset, bonds, adds signi�cantly to the di�culty of solving the model.

This added complexity arises both when solving the individual problem and when solving the

aggregate problem. In both cases an additional variable, bond holdings and the bond price

respectively, are introduced. In the case of the individual problem the method of endogenous

gridpoints, used in the benchmark model, which is very e�cient and hence contributes to the

rapid solution of the problem, becomes more di�cult to apply.

116

3.5.2.1 The Additional Variables

As explained in Krusell and Smith (1997), the addition of bond holdings as an individual vari-

able need not lead to an additional individual state variable. Since both assets are liquid and

incur no transaction costs, a household is indi�erent as to the composition of its portfolio at

the beginning of the period and only its overall wealth level a�ects its decision. Thus there

remains only one individual state variable, which is now individual total net wealth after in-

terest, and the composition of the portfolio becomes a control variable which must be found

but which does not appear as an input to the individual policy function.

Bond price is considered to be an aggregate control. The approach to working with aggre-

gate controls has already been discussed in Chapter 2. The speci�c changes to the derivative

aggregation mechanism are detailed in Appendix A.4.

3.5.2.2 Representing the Bond Price

An additional complication arises from having both aggregate capital, which a�ects the ex-

pected return on capital, and the bond price on the grid. The Euler conditions of the individual

problem, Eqs. (3.32) and (3.33), illustrate that the relationship between these two variables is

constrained. Since the solution approach attempts to solve the individual problem for each

possible combination of values of the aggregate variables on the grid, these combinations

must satisfy the constraint. If capital Kt and the bond price pt were included on the grid as

independent variables the constraint would be violated in some cases, for example when cap-

ital is very high, implying a low return on capital, but the bond price is very low, implying

a high return on bonds. To avoid this problem the bond price itself is not added to the grid.

Instead, the position of the bond price in the interval between its theoretical minimum and

maximum conditional on the expected returns to capital is used. Risk aversion implies that the

risk-free return on bonds cannot exceed the risky unconditional expected return on capital,

whilst individual rationality implies that it cannot be below the worst-case return on capital.

117

Thus the additional aggregate grid variable is

st ∈ (0, 1) s.t. pt = stEt[Rt+1] + (1− st)Et[Rt+1|At+1 = .99] (3.34)

3.5.2.3 Solving the Individual Problem

Carroll (2006)’s method of endogenous gridpoints can no longer be applied without modi-

�cation to this model. The solution here uses an extension of that method which has not

previously been documented in the literature. That extension utilises the Euler conditions

Eqs. (3.32) and (3.33), along with the fact that the aggregate productivity process only allows

for two possible states in each period. The method is explained in detail in Appendix A.3.

3.5.3 Calibration

For all variables shared with the benchmark model the same calibration is maintained. The

only additional exogenous value is the individual borrowing limit, b, for which the value of

2.4 is taken from Krusell and Smith (1997).

3.5.4 The Distribution for Derivative Aggregation

The steady-state distribution of the model with no aggregate risk does not yield a good solution

in this case. The mean error of the aggregate capital forecast is 1%. The bias is .9%, indicating

that the point at which the approximation is taken is not close to the distributions realised in

the �nal simulation.

I adjusted the algorithm to simulate 24 periods during each iteration of derivative aggre-

gation, alternating between 8 periods, the expected duration, in each state. In this way, as the

solution converges, the simulations performed are using a more accurate approximation of

the �nal individual transition rules, and so the distribution used converges to a point that lies

within Ω.

118

3.5.5 The Solution

The solution is found in approximately 12 minutes. Whilst this is a signi�cant increase on

the benchmark model, much of the additional computation time is explained by two factors:

�rstly the additional simulations necessary to �nd the reference distribution, which consume

approximately half of the entire time, and secondly the addition of the extra dimension, bond

price, to the individual problem. The grid over which the solution is calculated has 9 points in

that dimension, directly increasing the number of computations required by that factor. The

rest of the increase is caused by the additional calculations required to solve for bond holdings

and capital in the individual problem. Notwithstanding the increase in computation time, the

solution is found su�ciently quickly to apply this methodology even when the model must

be solved many times to estimate its parameters, for example.

In terms of accuracy, the algorithm continues to deliver extremely good results. Table 3.6

presents the statistics for the aggregate forecast. The minimum and maximum forecast errors

for the aggregate capital level over a 10000 period simulation are qualitatively identical to

those of the benchmark model. Bond prices are predicted with even greater precision.

An interesting outcome regarding bond prices is that the aggregate variable chosen to

represent it is not forecast very well either by derivative aggregation or by a rule estimated on

the simulation results. The choice of the aggregate non-state variable, which makes the bond

price conditional on aggregate capital via expected returns, captures almost all of the variation

of the bond price by aggregate capital level. The forecasting rule, containing only capital, can

therefore not predict the aggregate variable very well. Nonetheless, the bond price, which

actually a�ects individual choices, is forecast very accurately.

The statistics for the individual Euler equation error in Table 3.7 show that the mean error

has increased by a factor of around 2 relative to the benchmark model. The maximum errors

have increased dramatically, but in the case of the most important variable, consumption, this

is the result of an extreme outlier. The second highest error is 1.4%, and over the 10000 period

simulation, only 20 values are higher than the maximum of the benchmark model. Given the

119

greater complexity of the model, the increased mean error is to be expected.

10000 period ahead (%) 1 period ahead (%)
Bias Mean Max Bias Mean Max R2

K -0.061 0.074 0.279 -0.002 0.003 0.015 99.9998

p -0.001 0.002 0.006 -0.000 0.000 0.000 99.9999

Table 3.6: Forecast Accuracy, Incomplete Markets with Bonds

−0.05 0.00 0.05

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Low Productivity

log(Kt K*)

F
or

ec
as

t E
rr

or
 (

%
)

●

−0.05 0.00 0.05

High Productivity

log(Kt K*)

●

Figure 3.8: One-Period-Ahead Forecast Errors (%), Incomplete Markets with Bonds

Bias Mean Max

k -0.002 0.035 1.275

b 0.006 0.081 11.600

c 0.001 0.007 16.338

Table 3.7: Dynamic Euler Equation Errors (%), Incomplete Markets with Bonds

3.6 Discussion

3.6.1 Derivative Aggregation and Approximate Aggregation

Section 3.2 demonstrated how the forecasting rules for a model exhibiting approximate aggre-

gation can be found by derivative aggregation, conditional on the existence of an appropriate

120

curve in the space of distributions. The examples solved show that such curves do exist and

can be identi�ed, at least in those models.

The section also demonstrated that the mathematics underlying derivative aggregation

gives some insight into when approximate, or indeed exact, aggregation do or do not hold.

This is a point which would bene�t from further research. The mathematics laid out here,

in conjunction with an understanding of the microeconomic in�uences in a model, may very

well provide a great deal of insight in advance as to how accurate an aggregate solution to a

model is likely to be.

3.6.2 When Approximate Aggregation Does Not Hold

When approximate aggregation does not hold, at least with a small error
20

, there is no function

H(.) such that H(Xt) yields an ‘almost perfect’ description of Xt+1. By implication, there is

no solution approach that will produce highly accurate forecast rules based only on aggregate

variables. Since aggregates are fairly broadly de�ned to cover almost any integrated function

over the individual states, the only remaining option that will deliver a rational-expectations

solution is to include the full distribution as a state variable in the individual problem. Such

problems can generally not be solved.

Young (2010) argues that forecast rules found under approximate aggregation are su�-

ciently accurate to consider the solutions fully, rather than boundedly, rational. Reversing the

direction of this argument, it implies that economies where approximate aggregation does not

hold are exactly those where a boundedly-rational individual decision rule must su�ce.

As shown in earlier sections, the failure of approximate aggregation implies that there is

no consistent dxi,t/dXt. The distribution of individual states can change in various ways,

yet cause the same change in the aggregate state. Economic models do not tend to produce

arbitrary changes, however, and provided the approach is mathematically feasible, it should

still be possible to �nd a suitable set of aggregates and transformations which capture the

20

Under the de�nition provided approximate aggregation will always hold for some ξ, but only small values of

ξ are really of interest.

121

principal directions of variation. Derivative aggregation is still a reasonable approach to �nd

as good a forecast as possible.

3.6.3 Finding Appropriate Curves

The success of derivative aggregation relies on the ability to identify suitable curves in the

set of possible distributions along which the aggregation can be performed. In all the cases

presented here, the curves used were fairly straightforward choices. Experiments with other,

radically di�erent choices have, however, shown that the choice of curve strongly a�ects the

accuracy of the results. It may not always be the case that good curves are easy to identify, par-

ticularly when using aggregates more complex than the mean of individual states. Moreover,

it is not clear whether any particular choice is optimal or not.

The choice of curves, or alternatively the reference distributionω? and the transformations

T , are a topic for further research. The curves should delineate the most representative set

of distributions among those that occur in the model. Since the distributions are generated

by the individual policy function fx, the main ingredient required to understand the curves is

present in each iteration. There may be better algorithmic approaches to updating the curves

than that already presented.

It is also true that understanding the relationship between aggregate and individual state

changes is in large part the reason for solving such models. Assuming some knowledge of

those changes in advance, as is necessary to identify the curves, may seem counter-productive.

However, the microeconomic foundations of the model do, at least, yield some insights, as was

demonstrated in the sample models. Models without aggregate risk, or indeed with ‘rule-of-

thumb’ aggregate forecasting rules, are much easier to solve, and experiments with both can

improve understanding.

3.6.4 Other Limitations

The approach presented in this chapter does have some restrictions and they have not been

discussed in detail. Many are shared by other approaches. Primarily, the individual policy

122

must be di�erentiable in both individual and aggregate states. Models where this function is

discontinuous or non-di�erentiable can not be solved using derivative aggregation.

The chapter has also not focused on limitations caused by the iterative nature of the overall

algorithm. There is no guarantee that the solution will converge, and, as is the case with most

numerical approaches, choosing appropriate initial conditions can be both crucial to success

and di�cult.

3.6.5 Implementation

One bene�t of derivative aggregation is that it is a very ‘mechanical’ process that requires

few inputs. The solutions presented in this chapter were all computed using the Deriva-

tiveAggregationSolver which is part of the toolkit introduced in Chapter 2. Very

little additional programming is necessary: the solver only requires the derivatives of the

transformations, dT/dθ, and the derivatives of the aggregations, dF/dx and dF/dX , as in-

puts. The source code for both models and toolkit is available on-line.

3.7 Conclusion

This chapter has presented an algorithm, referred to as Derivative Aggregation, for �nding

an approximate forecasting rule for aggregate variables in models with heterogeneous agents

and aggregate uncertainty. The approach was shown to yield an accurate solution whenever

approximate aggregation holds, but this chapter has also argued that it can �nd a boundedly-

rational forecasting rule when the model does not have a very accurate aggregate approxima-

tion.

The key insight is that since aggregate states are most commonly integrals, or functions

of integrals, over individual states, derivatives of and with respect to the former can be de-

termined from the latter. Perhaps more than other algorithms, Derivative Aggregation em-

phasises the nature of the relationships between individual action and aggregate outcomes.

In principle it is suitable for a wide range of models. The primary requirements are that the

123

problem can be expressed recursively, and that individual agents must not directly a�ect each

other, as in a network model for example. In common with prior approaches, the accuracy of

the solution also depends crucially on how well a parsimonious set of variables can forecast

future aggregate states.

The article went on to solve both the model of Krusell and Smith (1998) and its extension

in Krusell and Smith (1997). The solution to the baseline model demonstrated that the ap-

proach is quick and provides accurate solutions, and is superior in both dimensions to Explicit

Aggregation (see Den Haan and Rendahl, 2010). The latter was used for as a benchmark since

it was found to be one of the best in the comparison project of Den Haan (2010b).

The second model adds a one-period bond as a second asset. It demonstrated that the

approach continues to perform well with additional aggregate variables.

The toolkit presented in Chapter 2 provides a class for applying derivative aggregation.

124

4
Matching with Heterogeneous Firms

4.1 Introduction

Firms di�er in size. One measure of this di�erence is the number of workers a �rm employs.

This measure is imperfectly correlated with other measures of size such as revenue, pro�t or

market capitalisation
1
, but the distribution found under all measures share a common quali-

tative character: they are closely approximated by the Zipf distribution (Axtell, 2001).

1

For example in January 2016, Apple Inc. was the largest US �rm by market capitalisation ($540 Bn) and had

110,000 employees. The largest employer was Walmart with 2,200,000 employees and a market capitalisation of

$220 Bn. (Source: Google Finance)

125

The widely used real business cycle model (see, for example, King and Rebelo, 1999) ab-

stracts from this di�erence in �rm sizes by assuming a representative �rm. Even the model of

Mortensen and Pissarides (1994), explicitly constructed to study the dynamics of employment,

assumes that �rms are all of identical size: 1. This model can not reproduce some of the key

business cycle facts related to employment (see Shimer, 2005). But �rm size matters when

it comes to posting vacancies: a �rm’s target size depends primarily on market conditions,

so other things being equal a smaller �rm will post more vacancies; and non-linear vacancy

posting costs will cause the number of vacancies posted to appear in the �rm’s optimality

conditions, further a�ecting �rm behaviour.

This chapter departs from the assumption of a representative �rm by considering an econ-

omy populated by a continuum of �rms which may di�er in the number of workers they

employ. These �rms also su�er idiosyncratic demand shocks.

The model discussed is solved using the ModelSolver Toolkit presented in Chapter 2. All

source code is available online (Grasl, 2014b).

4.2 Related Literature

There is a long history of papers considering economies with �rm size heterogeneity. Hopen-

hayn (1992), for example, considers long run equilibrium in a model of an industry with hetero-

geneous �rms subject to idiosyncratic productivity shocks. Wages and prices are exogenous

to each �rm and the labour market is frictionless, so �rms have no endogenous state. In this

environment, the author is able to prove existence and uniqueness of a static equilibrium. The

model in this paper di�ers in that labour costs and prices are endogenous to the �rm, and

labour market frictions mean that �rm size is an endogenous state.

There is a more recent, growing literature which consider theoretical models of frictional

labour markets in a setting with �rm-size heterogeneity. The general framework allows for a

rich degree of variation in models: wages can be determined by bargaining or posted by �rms;

�rms may be able to lay o� workers or only experience exogenous quits; �rms may be able

126

to exit the market and new �rms enter; and the cost of any size adjustment itself allows for a

large number of di�erent speci�cations.

Felbermayr et al. (2011) introduce search frictions into a trade model in which �rms are

subject to di�ering, but constant, productivity levels. Firm employment is an endogenous

state, but the exogenous state does not change. The paper focuses on long-run equilibrium,

and the time-invariant state of each �rm allows for a closed form solution to the model. The

paper shares with the model in this chapter the nature of competition in the product market:

both adopt the speci�cation of Dixit and Stiglitz (1977).

Acemoglu and Hawkins (2014) consider a continuous-time model populated by discretely-

sized �rms with heterogeneous, but constant, productivity. Both job separation and exit are

exogenous. Vacancy-posting costs are quadratic in the number of vacancies posted and wages

are bargained continuously. Their analysis �nds that the model generates a greater degree of

persistence in unemployment and market tightness than the benchmark Mortensen-Pissarides

model. The model studied here uses a similar cost structure but adds time-variation in �rms’

exogenous state, endogenous redundancies and exit.

Elsby and Michaels (2013) study a discrete-time model with linear vacancy costs, cost-

free redundancies and continuous wage bargaining. There is no �rm entry or exit. They are

able to derive analytical expressions for a number of variables of interest, including the wage

and the adjustment of the employment distribution between periods. This tractability is at

least in part due to the absence of redundancy costs and exogenous job separation. Their

numerical analysis �nds that the model exhibits persistence in market tightness despite the

linear cost structure. They also �nd that they can account for empirical observations on �rm-

size distribution and growth rates, though the required �rm productivity shocks are Pareto-

distributed, and variation in idiosyncratic productivity also has a permanent component.

Fujita and Nakajima (2016) consider a similar economy, adding job-to-job transitions but

abstracting from workers’ bargaining power. They demonstrate that it then accounts for the

cyclical properties of both job �ows and worker �ows.

In settings with directed search, where wages are posted by �rms competing for applicants

127

rather than determined by bargaining, both Kaas and Kircher (2015) and Schaal (2012) consider

multi-worker �rms. The setting provides greater tractability because the wages of existing

employees need not be renegotiated, removing much of the dependency of individual decisions

on the �rm-size distribution.

4.3 Model

4.3.1 In Relation to Literature

The model constructed in this chapter builds on the literature outlined above by combining

aspects of the di�erent models. The most signi�cant departure from the majority of the liter-

ature on search friction with heterogeneous �rms is the use of monopolistic competition and

idiosyncratic demand shocks, rather than decreasing returns to scale production technology

and productivity shock. The former speci�cation is common in the wider literature on �rm

heterogeneity (see, for example, Luttmer, 2007).

The model is most closely related to Elsby and Michaels (2013), adding entry and exit and

making redundancies costly. The message of Carroll (2000), albeit in a very di�erent setting,

is that meaningful results about the impact of heterogeneity on a model economy require an

empirically accurate distribution of agents; the message of Axtell (2001) is that most �rms are

of size 0. A study of �rm-size heterogeneity must consider entry and exit. Cooper et al. (2007)

�nd that redundancy costs are empirically an equally good �t for the data as hiring costs.

A further important di�erence is the structure of remuneration: much of the literature on

wage bargaining in search models, including Elsby and Michaels (2013) and Acemoglu and

Hawkins (2014), use the set-up of Stole and Zwiebel (1996) in which wages are determined

by continuous negotiation over marginal gains. With endogenous redundancies such rene-

gotiations are possible only if redundancies are costless; costly redundancies imply that the

expected marginal pro�t of a �rm laying o� workers is negative, so the wage bargain leads

to a negative pay-o� for workers. Whilst this may be theoretically feasible in an environ-

ment with commitment, experiments conducted whilst writing this chapter suggest that the

128

resulting model cannot be solved. The model here follows the literature in determining the

remuneration of new hires through Nash bargaining over the expected marginal surplus, but

changes the timing of payments: the workers’ share of the expected surplus is paid upon re-

cruitment as a sign-up bonus. Per-period wages are kept at a level which leaves the worker

indi�erent between working and unemployment
2
. This set-up does not directly a�ect �rms’

vacancy posting behaviour since bargaining is still over the same value
3
, but does a�ect the

�ring decision through the lower wage.

4.3.2 A Brief Preview

Time is discrete. The economy is populated by a measure m of �rms and a unit measure of

people. Each �rm employs workers as its only input and uses a common production tech-

nology. People not employed by any �rm receive bene�ts and search for employment, whilst

employed people are compensated for their labour. There is a government which taxes �rm

production at source.

Though the production technology used by all �rms is identical, they produce di�eren-

tiated goods subject to di�ering levels of demand. This �rm-speci�c demand level may also

change over time. In the absence of either money or a storage technology, �rms sell their en-

tire after-tax output each period, and each person spends their entire wage on an appropriate

consumption bundle given their income and prices. All people, as well as the government,

share identical preferences over the consumption goods. Each person aims to maximise life-

time income.

Each period, a �xed proportion of employees leave each �rm for unspeci�ed reasons. In

addition, �rms aim to maximise discounted expected pro�ts and may adjust the size of their

workforce in pursuit of that aim. If they wish to grow they must post costly vacancies which

are matched to unemployed people searching for work. If they wish to reduce their size they

2

The wage paid to workers by a �rm making redundancies in Elsby and Michaels (2013) has the same property,

which is a direct result of the assumption of cost-free redundancies.

3

Firms are risk neutral, so the fact that uncertainty over future outcomes has been internalised by the �rm does

not concern it.

129

may make some of their employees redundant, which also incurs costs. A �rm which chooses

to make all its employees redundant exits the market.

New �rms may enter the economy but must pay a �xed entry fee to do so. Entering �rms

are of size 0 and the level of demand for their goods is only established once they have entered

the market.

4.3.3 Firms

There is a continuum of �rms of measure m, indexed by i ∈ (0,m), each of which produces

a unique good, also simply labelled i.

4.3.3.1 Production

Firms use a single input, labour, and share a constant returns to scale production technology.

In each period t, �rm i uses its employees, li,t, to produce output subject to the production

function

yi,t = Xli,t (4.1)

where X is a constant aggregate productivity factor. There is no storage technology, so

�rms wish to sell their entire produce each period. The �rm-speci�c demand curve, derived

in the next section, supports this transaction at price pi,t.

4.3.3.2 Labour Costs

Following the common approach in matching models (see Pissarides, 2000, Chapter 1) �rms

and newly-employed workers engage in generalised Nash bargaining to determine the new

employee’s remuneration. As Shimer (2005) points out, this approach does not determine the

distribution of wage payments over the duration of employment, only their total expected

value when the employment relationship is entered. In the current model, �rms’ ability to lay

o� workers means that the widely adopted convention of continuously renegotiated wages

130

is problematic
4
. Instead, workers’ remuneration is split into two parts: �rms pay all their

workers the common wage wt, which is chosen so that employees are indi�erent between

working and unemployment. In addition, new hires receive a sign-on bonus bi,t, which is paid

in their �rst period of employment and chosen through Nash bargaining.

The reasons for this structure were discussed above: in the presence of costly redundan-

cies, continuously negotiated wages may lead to worker utility below that of unemployment.

Experiments showed that such a speci�cation cannot be solved.

The payment structure is interesting in that it transfers all the risk from workers, tradi-

tionally considered risk averse, to the �rm, traditionally considered risk neutral. Empirically,

on the other hand, length of employment with a �rm has a mild positive e�ect on a workers

remuneration (Williams, 2009).

The �rm is also subject to taxation on output at a time varying proportional rate τt. This

is paid directly in the �rm’s goods.

4.3.3.3 Firm Size Adjustment

A �rm starts each period with a predetermined size li,t. All of these workers participate in

the production process during the period. A �xed proportion s of the workers then leave the

�rm for reasons beyond its control. In addition, the �rm may choose to make ri,t workers

redundant, at cost cr(ri,t, li,t).

A �rm may also attract additional workers for the next period by posting vacancies vt

at cost cv(vi,t, li,t). The actual number of new workers the �rm will hire as a result of these

vacancies is q(θt)vi,t, where θt is market tightness and q(θt) the probability of a vacancy being

matched, as speci�ed below. q(θt) depends only on aggregate variables and is taken as given

by the �rm.

Both redundancy and vacancy posting costs are assumed to be strictly increasing, concave

4

The problems arise from two sources: continuously renegotiated wages in the presence of possible negative

surpluses imply that employees would be better o� quitting rather than staying; and with redundancies the prob-

ability of losing a job is endogenous and not necessarily monotonous in �rm size, leading to non-well-behaved

value functions.

131

and 0 at 0:

ck(0, .) = 0 k ∈ {v, r} (4.2)

ck1(x, .) > 0 k ∈ {v, r},∀x > 0 (4.3)

ck11(x, .) ≥ 0 k ∈ {v, r},∀x ≥ 0 (4.4)

Taking exogenous leavers and the �rm’s choices into account, it’s workforce evolves ac-

cording to the law of motion

li,t+1 = (1− s)li,t − ri,t + q(θt)vi,t (4.5)

4.3.3.4 Pro�t

Each �rm maximises expected lifetime pro�ts, where future pro�ts are discounted at rate δ.

Its value function in period t can therefore be expressed as

F (li,t, xi,t;At) = max
li,t+1,vi,t,ri,t

(pi,tX(1− τt)− wt)li,t − cr(ri,t, li,t)− cv(vi,t, li,t)

− δvi,tq(θt)bi,t+1 + δE [F (li,t+1, xi,t+1;At+1)] (4.6)

s.t. li,t+1 = (1− s)li,t − ri,t + q(θt)vi,t (4.7)

where At is a vector of aggregate variables which a�ect current or future market conditions

and are hence taken into account by the �rm.

Note that, though the bonus bi,t+1 for new employees is paid in the period in which they

start working, it is determined in the period when the match is made and is thus known one

period in advance. Structuring the bonus payments as above in the value function avoids the

need for an extra state variable.

132

4.3.3.5 Entry and Exit

Entry

New �rms are free to enter the market, but this entry incurs start-up costs Cs. The new �rm

enters the market with no employees and with an unknown demand level. The level of demand

for the �rm’s goods is realised once the entry decision has been made and is drawn according

to the steady-state density function of the Markov process for that variable, conditional on

the aggregate state. The free entry condition requires that the cost Cs is equal to the expected

value of the entering �rm.

Exit

Firms can also exit the market, and will do so if it is in their interest. A �rm must pay the

redundancy cost for its entire workforce if it chooses to exit. This cost must be balanced

against the value of remaining in the market, and means that some �rms will remain in the

market despite their value being negative.

4.3.4 People

There is a continuum of people of measure 1. Each person aims to maximise lifetime income

and spends all such income each period on an optimal consumption bundle given prices and

preferences, which are shared by all people. These preferences are of the Dixit-Stiglitz (Dixit

and Stiglitz, 1977) form and hence admit to aggregation (see Acemoglu, 2008, Chapter 5). Con-

sumption can thus be considered in aggregate.

4.3.4.1 Consumption

Consumption behaviour is similar to that described in Benhabib et al. (2015): demand for

particular goods varies exogenously both across �rms and across time. The representative

consumer’s problem is

133

max
{ci,t}1i=0

(∫ 1

0
εi,t(ci,t + φ)

γ−1
γ di

) γ
γ−1

s.t. It =

∫ 1

0
ci,tpi,t di (4.8)

where the variables are

εi,t Demand level for good i at time t

ci,t Consumption of good i at time t

pi,t Price of good i at time t

It Total income of the economy at time t

εi,t is exogenous.

The solution to this problem, derived in Section B.1, is

pi,t = Φtεi,t

(
Ct

ci,t + φ

) 1
γ

(4.9)

where Ct =

(∫ 1

0
εi,t(ci,t + φ)

γ−1
γ di

) γ
γ−1

(4.10)

Pt =

∫ 1

0
pi,t di (4.11)

Φt =
It + φPt
Ct

(4.12)

There is no money in this economy. All transactions are transfers of units of production,

the value of which is proportional to Φt by Eq. (4.9). This also applies to It and Pt, so that Φt

is simply a scaling factor (see 4.12). Without loss of generality assume Φt = 1 ∀t.

Note that the parameter φ is necessary to allow for �rm exit: if φ = 0 then the price for

any good, given in equation Eq. (4.9), tends to positive in�nity as its supply drops toward 0.

Thus no �rm would ever exit the market, however low its demand shock.

Each person aims to maximise her lifetime income subject to the discount rate δ. She can

either be employed or unemployed in any period, but this status is exogenous.

134

4.3.4.2 Unemployment

An unemployed person is in the labour market and receives unemployment bene�t z per

period. She is matched to a posted vacancy with probability f(θt), which depends only on

aggregates and is taken as given by the individual. She is equally likely to be matched to any

posted vacancy, so that the expected value of �nding a job this period is

Wt =

∫ 1

0

(
vj,t
Vt
E[Nj,t+1]

)
dj (4.13)

where vj,t are the vacancies posted by �rm j, Vt ≡
∫m
0 vj,t dj is the total number of

vacancies posted, and Nj,t+1 is the value of �nding a job with �rm j.

The value of being unemployed in period t, Ut, is therefore

Ut = z + δE [f(θt)Wt + (1− f(θt))Ut+1] (4.14)

4.3.4.3 Finding a Job

An unemployed person who is matched with a vacancy at �rm i in period t will be paid the

sign-up bonus bi,t+1 in period t+1. In addition, she will receive the same remuneration as any

other employee of the �rm from that period onward. The expected value of this remuneration,

de�ned in the next section, is E[Wi,t+1]. Thus the value of �nding that job, Ni,t, is

Ni,t+1 = bi,t+1 + E[Wi,t+1] (4.15)

4.3.4.4 Employment

An employee of �rm i in period t earns wage wt and will continue to work at that �rm in

the next period with probability (1− s− ri,t
li,t

). With probability (s+
ri,t
li,t

), the employee and

the �rm will separate at the outset of period t + 1. The former employee will join the pool

135

of job-seekers in the labour market
5
. The wage is chosen so that the employee is indi�erent

between employment and unemployment, thus having no incentive to quit.

The value of being employed by �rm i in period t, Wi,t, can therefore be expressed as
6

Wi,t = wt + δE

[(
1− s− ri,t

li,t

)
Wi,t+1 +

(
s+

ri,t
li,t

)
Ut+1

]
(4.16)

The presence of ri,t in this equation
7

is the reason that the model is not well-behaved in

the presence of costly redundancies and continuous wage renegotiation. When a �rm makes

costly redundancies it chooses a size at which its future marginal value is negative, equal in

size to the marginal cost of redundancies. ThereforeE[Wi,t+1−Ui,t+1] would also be negative,

leaving a positive product of ri,t in the equation above. The surplus of being employed at a

�rm laying workers o� is increasing in the proportion of lay-o�s.

Elsby and Michaels (2013) avoid this conundrum by making redundancies costless, so that

E[Wi,t+1 − Ut+1] = 0 when redundancies are made, and ri,t drops out of this equation. By

changing the timing of payments, the speci�cation in this chapter achieves the same e�ect.

Since the wage is chosen so that the employee is indi�erent between staying in employ-

ment and unemployment, Wi,t = Ut. Therefore Ut+1 = Wi,t+1, so the above reduces to

Wi,t = wt + δE[Ui,t+1] (4.17)

⇒ Ut = wt + δE[Ui,t+1] (4.18)

Eq. (4.14)⇒ z + δE [f(θt)Wt + (1− f(θt))Ut+1] = wt + δE[Ui,t+1] (4.19)

⇒ wt = z + δf(θt)E [Wt − Ut+1] (4.20)

The expected value of a new job in general, Wt, can now be further simpli�ed:

5

In this set-up a worker separating from a �rm spends at least one period unemployed. This may be acceptable

in the Hagedorn and Manovskii (2008) speci�cation, which uses a weekly period, but would be less good in a

Shimer (2005) calibration, which is using quarterly periods.

6

Individual values are of course also conditional on the aggregate state, but for ease of exposition this is not

shown here

7

To be precise, the equivalent equation, in which the wage is also �rm-speci�c.

136

Wt =

∫ m

0

(
vj,t
Vt
E[Nj,t+1]

)
dj (4.21)

Eq. (4.15)⇒ Wt =

∫ m

0

vj,t
Vt

(bj,t+1 + E[Wj,t+1]) dj (4.22)

Wj,t+1 = Ut+1 ⇒ Wt =
1

Vt

∫ m

0
vj,tbj,t+1 dj +

E[Ut+1])

Vt

∫ m

0
vj,t dj (4.23)

Vt ≡
∫ m

0
vj,t dj ⇒ Wt =

1

Vt

∫ m

0
vj,tbj,t+1 dj + E[Ut+1] (4.24)

Substituting this back into the wage equation Eq. (4.20):

wt = z + δ
f(θt)

Vt

∫ 1

0
vj,tbj,t+1 dj (4.25)

4.3.5 The Employment Relationship

4.3.5.1 Aggregate Labour Market Variables

So far the discussion has concerned individual actors in the economy: �rms and people. Aggre-

gating the individual variables discussed gives rise to the aggregate labour market variables:

Aggregate Employment Lt: Lt =

∫ m

0
li,t di (4.26)

Unemployment Ut: Ut = 1− Lt (4.27)

Aggregate Vacancies Vt: Vt =

∫ m

0
vi,t di (4.28)

An additional derived variable is useful as a labour market indicator:

Market Tightness θt: θt =
Vt
Ut

(4.29)

137

4.3.5.2 Matching

Unemployed people are matched to vacancies using the matching function introduced by den

Haan et al. (2000). The number of matches Mt is given by

Mt ≡M(Ut, Vt) =
UtVt

(U ιt + V ι
t)

1
ι

(4.30)

⇒ Mt =
UtVt

Ut

(
1 +

(
Vt
Ut

)ι) 1
ι

(4.31)

⇒ Mt =
Vt

(1 + θιt)
1
ι

(4.32)

This gives rise to the probabilities of a vacancy being matched and of �nding a job:

Probability of a vacancy being matched: q(θt) ≡
Mt

Vt
= (1 + θιt)

− 1
ι (4.33)

Probability of �nding a job: f(θt) ≡
Mt

Ut
= θt(1 + θιt)

− 1
ι (4.34)

4.3.5.3 Timing of Events

The sequence of events each period is:

1. Firm and, if applicable, aggregate shocks are realized

2. Firms post vacancies

3. Firms engage in production

4. The government collects taxes

5. Firms pay workers, government pays unemployment bene�ts and goods are exchanged

to form consumption bundles

6. Workers are matched to vacancies and redundancies are announced

7. Bonuses for the next period are negotiated

138

The �nal step is important: bonuses are negotiated one period in advance and before next-

period shocks are known.

4.3.5.4 Bargaining

The sign-up bonuses are determined through generalized Nash bargaining over the joint sur-

plus between each individual new employee and her employer. The employee has bargaining

power β.

Firm Surplus

The surplus Sfi,t+1 which accrues to the �rm from the marginal new employee has three com-

ponents: the expected bene�t to the �rm of that employee in the next period, which is the

�rm’s expected marginal value; the sign-up bonus that must be paid to the employee; and

the change in the sign-up bonus due to the q(θt)vi,t other new employees as a result of the

additional one:

Sfi,t = δ(E [F1(lt+1, .)]− (bi,t+1 +
∂bi,t+1

∂li,t+1
q(θt)vi,t)) (4.35)

New Employees’ Surplus

The new employee’s surplus, Swi,t+1, is the value of having found the job over unemployment:

Swi,t = δ(Ni,t − E[Ut+1]) (4.36)

Eq. (4.15)⇒ Swi,t = δ(bi,t+1 + δE[Wi,t+1]− δE[Ut+1]) (4.37)

Wi,t+1 = Ut+1 ⇒ Swi,t = δbi,t+1 (4.38)

139

Surplus Splitting

The standard outcome of the Nash bargain means that the surpluses will satisfy

βSfi,t = (1− β)Swi,t (4.39)

4.38,4.35⇒ β

(
E[F1(lt+1, .)]− (bi,t +

∂bi,t+1

∂li,t+1
q(θt)vi,t)

)
= (1− β)bi,t+1 (4.40)

⇒ bi,t+1 + β
∂bi,t+1

∂li,t+1
q(θt)vi,t = βE[F1(lt+1, .)] (4.41)

4.4 The Solution

4.4.1 The Firms’ Problem

The �rms’ problem is

F (li,t, xi,t, wi,t;At) = max
li,t+1,vi,t,ri,t

(pi,tX(1− τt)− wt)li,t − cv(vi,t, li,t)− cr(ri,t, li,t)−

− δvi,tq(θt)bi,t+1 + δE [F (li,t+1, xi,t+1;At+1)] (4.42)

s.t. li,t+1 = (1− s)li,t + q(θt)vi,t − ri,t (4.43)

vi,t ≥ 0, ri,t ≥ 0, li,t+1 ≥ 0 (4.44)

where the price pi,t is endogenous and may vary with li,t.

The Lagrangian for this problem is

L = (pi,tX(1− τt)− wt)li,t − cv(vi,t, li,t)− cr(ri,t, li,t)− δvi,tq(θt)bi,t+1

+ δE [F (li,t+1, pi,t+1;At+1)] + λi,t((1− s)li,t + q(θt)vi,t − ri,t − li,t+1)

(4.45)

140

The �rst order conditions with respect to vi,t are:

vi,t ≥ 0,

−cv1(vi,t, li,t)− δq(θt)
(
bi,t+1 + vi,t

∂bi,t
∂vi,t

)
+ λi,tq(θt) ≤ 0,

vi,t(−cv1(vi,t, li,t)− δq(θt)
(
bi,t+1 + vi,t

∂bi,t
∂vi,t

)
+ λi,tq(θt)) = 0

⇒ vi,t = 0

or

λi,t − δ
(
bi,t+1 + vi,t

∂bi,t+1

∂vi,t

)
=
cv1(vi,t, li,t)

q(θt)
(4.46)

The �rst order conditions with respect to ri,t are:

ri,t ≥ 0, −cr1(ri,t, li,t)− λi,t ≤ 0, ri,t(−cr1(ri,t, li,t)− λi,tq(θt)) = 0

⇒ ri,t = 0

or

λi,t = −cr1(ri,t, li,t) (4.47)

The �rst order conditions with respect to li,t+1 are:

li,t+1 ≥ 0, δE[F1(li,t+1, .)]− λi,t ≤ 0, li,t+1(δE[F1(li,t+1, .)]− λi,t) = 0

⇒ li,t+1 = 0

or

λi,t = δE[F1(li,t+1, .)] (4.48)

The envelope theorem for constrained maximisation implies that

141

F1(li,t, pi,t;At) =
∂L
∂li,t

= X(1− τt)
(
∂pi,t
∂li,t

li,t + pi,t

)
− wt

−cv2(vi,t, li,t)− cr2(ri,t, li,t) + (1− s)λi,t (4.49)

Iterating this forward one period yields

F1(li,t+1, pi,t+1;At) = X(1− τt)
(
∂pi,t+1

∂li,t+1
li,t+1 + pi,t+1

)
− wt

−cv2(vi,t+1, li,t+1)− cr2(ri,t+1, li,t+1) + (1− s)λi,t+1

(4.50)

4.4.1.1 Some immediate consequences

Assume that cv1(v, .) ≥ 0, cr1(r, .) > 0 and that bi,t+1 + vi,t
∂bi,t
∂vi,t

> 0.

Then

From Eq. (4.46): vi,t > 0⇒ λi,t > 0 (4.51)

From Eq. (4.47): ri,t > 0⇒ λi,t < 0 (4.52)

Hence

vi,tri,t = 0 (4.53)

A �rm does not both make employees redundant and post vacancies.

4.4.1.2 The Exit Condition

As stated in Section 4.3, a �rm that chooses to exit the market must pay the redundancy cost

for its entire workforce. A consequence of this requirement is that the value calculation and

hence the marginal conditions of the �rm do not change, further implying that �rst-order

142

conditions must still be satis�ed. In other words, exit will occur if the optimal choice of future

�rm size is 0.

Consider the �rst-order conditions for li,t+1 and ri,t for the exiting �rm:

(4.48)⇒ λi,t ≥ δE[F1(0, .)] (4.54)

(4.47)⇒ λi,t = −cr1((1− s)li,t, li,t) (4.55)

⇒ cr1((1− s)li,t, li,t) ≤ −E[F1(0, .)] (4.56)

In conjunction they imply that a �rm will exit if the marginal cost of doing so is less than

the negative expected marginal value of a size 0 �rm, conditional on current �rm-exogenous

variables. Convexity of cr(., .) further implies that if the conditions above hold for a particular

l∗i,t, then they will hold for any li,t < l∗i,t, again conditional on exogenous states.

In summary, for any given level of �rm demand, all �rms smaller than some threshold

value will exit, and all larger �rms will not. If the threshold is 0, none of the �rms at that

demand level exit. This matches the �ndings of Samaniego (2006).

4.4.2 The Sign-Up Bonus

Surplus splitting yielded equation Eq. (4.41) for the sign-up bonus:

bi,t+1 + βvi,tq(θt)
∂bi,t+1

∂li,t+1
= βE[F1(lt+1, .)] (4.57)

Substituting Eq. (4.48) into Eq. (4.46) yields:

δE[F1(li,t+1, .)]− δ
(
bi,t+1 + vi,t

∂bi,t+1

∂vi,t

)
=
cv1(vi,t, li,t)

q(θt)
(4.58)

⇒ bi,t+1 + vi,t
∂bi,t+1

∂vi,t
= E[F1(li,t+1, .)]−

cv1(vi,t, li,t)

δq(θt)
(4.59)

143

But
dli,t+1

dvi,t
= q(θt), so this becomes

bi,t+1 + vi,tq(θt)
∂bi,t+1

∂li,t+1
= E[F1(li,t+1, .)]−

cv1(vi,t, li,t)

δq(θt)
(4.60)

Combining this with the Eq. (4.57) yields

(1− β)bi,t+1 = β
cv1(vi,t, li,t)

δq(θt)
(4.61)

⇒ bi,t+1 =
β

(1− β)δq(θt)
cv1(vi,t, li,t) (4.62)

4.4.3 Size Adjustment Costs

4.4.3.1 A Brief Thought Experiment

Assume that both cv(v, l) and cr(r, l) are linear in their �rst arguments, and do not change

with the second. The �rst observation is that the sign-up bonus, Eq. (4.62), is independent of

the �rm’s decision. It takes a common value across all �rms.

Considering equations Eqs. (4.46) and (4.47) further reveals that there is then at most one

value of λi,t which can satisfy each constraint for any given combination of �rm-exogenous

states. λi,t indicates the expected marginal �rm value and depends only on li,t+1 and the �rm-

exogenous state. For any given level of exogenous states, �rms below a certain size threshold

would all post vacancies to attain that size, and �rms above a second, higher, threshold would

choose redundancies to attain that. Firms in-between can satisfy neither constraint and will

not adjust their size endogenously, shrinking only by the exogenous mechanism.

Considering only vacancies, Acemoglu and Hawkins (2014) called the resulting �rm size

dynamics ‘bang bang’: as soon as a �rm’s target size changes as a result of an exogenous shock

the �rm adjusts its size to the optimal one. Since almost all �rms adjust instantly, aggregate

employment also adjusts very rapidly. As Fujita and Ramey (2007) discuss, this behaviour does

not match empirical observations. Kaas and Kircher (2015) also discuss non-linear recruitment

costs, and how they might arise for example through time spend recruiting which is lost to

144

production.

4.4.3.2 Quadratic Costs

Acemoglu and Hawkins (2014) instead choose a quadratic form for the vacancy posting cost.

This chapter extends the assumption to redundancy costs.

Assumption 1 (Quadratic Costs). Both vacancy posting and redundancy costs are quadratic:

cv(v, l) =
1

2
νvv

2
(4.63)

cr(r, l) =
1

2
νrr

2
(4.64)

Under this assumption,

cv1(v, l) = νvv (4.65)

cr1(r, l) = νrr (4.66)

Substituting the former into Eq. (4.62), the sign-up bonus a �rm must pay its newly hired

employees becomes:

bi,t+1 =
βνv

(1− β)δq(θt)
vi,t (4.67)

This in turn can be substituted into the wage equation Eq. (4.25) to give

wt = z + δ
βνv

(1− β)δq(θt)

f(θt)

Vt

∫ 1

0
v2j,t dj (4.68)

⇒ wt = z +
βνv

1− β
V2
t

Ut
(4.69)

145

where

V2
t =

∫ 1

0
v2j,t dj (4.70)

The quadratic costs and the sign-up bonus Eq. (4.67) can also be substituted into the �rst

order condition for vi,t, Eq. (4.46):

λi,t − δ
(
bi,t+1 + vi,t

∂bi,t+1

∂vi,t

)
=
cv1(vi,t, li,t)

q(θt)
(4.71)

⇒ λi,t − δ
(

βνv
(1− β)δq(θt)

vi,t + vi,t
βνv

(1− β)δq(θt)

)
=
νvvi,t
q(θt)

(4.72)

⇒ λi,t = vi,t
νv
q(θt)

(
1 +

2β

1− β

)
(4.73)

⇒ vi,t =
1− β

νv(1 + β)
q(θt)λi,t (4.74)

Similarly for, ri,t:

ri,t = −λi,t
νr

(4.75)

The non-linear costs mean that one of the �rst order conditions always binds. This facil-

itates application of the reverse-time recursive solution approach: the expectation of a �rm’s

future choice of vacancies or redundancies determines the expectation of the marginal value it

expects two periods ahead, so that expectations of marginal values do not need to be calculated

independently.

4.5 Computing the Solution

The solution is calculated using the framework introduced in Chapter 2. This section outlines

the variables used and calculations performed.

146

4.5.1 The Variable Grid

The full variable grid has the following variables, further described in Table 4.1:

(li,t, εi,t, Lt, Yt, Vt,V
2
t , τt)

Variable Aggregation Description
Individual Endogenous States
li,t Firm size

Individual Exogenous States
εm,t Firm-speci�c demand

Aggregate Endogenous States
Lt

∫m
0 li,t di Employment

Yt

(∫m
0 εi,t(Xli,t + φ)

γ−1
γ di

) γ
γ−1

Output, which equals consumption

Aggregate Controls
Vt

∫m
0 vi,t di Total vacancies

V2
t

∫m
0 v2i,t di Second moment of vacancies

Aggregate Exogenous States
τt Rate of tax on output

Table 4.1: Grid Variables

Additional variables of interest which do not constitute a grid dimension are the �rm’s

control variables, �rm vacancies vi,t and �rm redundancies ri,t, and the measure of entering

�rms, Et.

4.5.2 The Firms’ Problem

The individual agents of interest are �rms. The �rms’ problem is amenable to solution by the

Method of Endogenous Gridpoints (Carroll, 2006), so the solution extends EGMIndividu-

alProblemSolver.

4.5.2.1 Computing the Expectations

The �rst step of each iteration is to compute the expectation of the �rms discounted marginal

value, conditional on given realisations of the exogenous states and aggregate variables, and

147

an assumption of �rms’ policy functions.

F1(li,t+1, εi,t+1;At) = X(1− τt)
(
∂pi,t+1

∂li,t+1
li,t+1 + pi,t+1

)
− wt + (1− s)λi,t+1 (4.76)

Since a �rm’s entire output,Xli,t+1, is consumed each period the prices must be calculated

from the demand curve at that point:

Eq. (4.9)⇒ pi,t = εi,t

(
Ct

ci,t + φ

) 1
γ

(4.77)

ci,t = Xli,t ⇒ pi,t = εi,t

(
Ct

Xli,t + φ

) 1
γ

(4.78)

⇒ pi,t+1 = εi,t+1

(
Ct+1

Xli,t+1 + φ

) 1
γ

(4.79)

⇒ ∂pi,t+1

∂li,t+1
li,t+1 + pi,t+1 = εi,t+1C

1
γ

t+1 (Xli,t+1 + φ)
− 1
γ
−1

(
(Xli,t+1 + φ)− 1

γ
Xli,t+1

)
(4.80)

⇒ ∂pi,t+1

∂li,t+1
li,t+1 + pi,t+1 = εi,t+1C

1
γ

t+1 (Xli,t+1 + φ)
− 1
γ
−1

((
1− 1

γ

)
Xli,t+1 + φ

)
(4.81)

Let l(lt+1) ≡ (Xli,t+1 + φ
((

1− 1
γ

)
Xli,t+1 + φ

)
. This function depends only on the

individual expected states, which are on-grid and so do not change from iteration to iteration.

Then

∂pi,t+1

∂li,t+1
li,t+1 + pi,t+1 = εi,t+1C

1
γ

t+1l(lt+1) (4.82)

Also note that an assumed version of the �rms’ policy function exists, so that there is a

function li,t+2(li,t+1, .) where the other parameters are exogenous to the �rm. Given this, the

implied endogenous change undertaken by the �rm can be calculated:

148

∆(li,t+1, .) = li,t+2(li,t+1, .)− (1− s)li,t+1 (4.83)

Using this, the �rst order conditions Eqs. (4.74) and (4.75) can be used to determine λi,t+1:

λ(li,t+1, .) =


1+β
1−β

νv
q(θt)2

∆(li,t+1, .) if ∆(li,t+1, .) > 0

−νr∆(li,t+1) otherwise

(4.84)

From these functions, F1(li,t+1, .) can easily be calculated:

F1(li,t+1, εi,t+1;At) = X(1− τt)εi,t+1C
1
γ

t+1l(lt+1)− wt + (1− s)λ(li,t+1, .) (4.85)

4.5.2.2 Computing Implied li,t

From the expectations above, which are conditional on future outcomes, the framework au-

tomatically calculates the expectations conditional only on current exogenous individual and

aggregate states. The next step is to determine the current state, li,t, implied by those expec-

tations, which were calculated at li,t+1.

The process is straightforward: as shown above, a positive expected marginal value implies

that a �rm will post vacancies but no redundancies, and a negative one the inverse. Given the

expected discounted marginal value λi,t(li,t+1, .), the chosen size adjustment and hence the

implied current state li,t follows from the �rst order conditions:

li,t =
1

1− s

li,t+1 + λi,t(li,t+1, .)×


−1−β

1+β
q(θt)2

νv
if λi,t(li,t+1, .) > 0

1
νr

otherwise

 (4.86)

149

The implied li,t may be less than 0 if the expected marginal value of a �rm is su�ciently

positive. As when the individual savings problem is solved using this method, the negative

values do not represent a problem: it simply means that, all other variables being equal, a �rm

of size 0 would choose an li,t+1 greater than the value a negative li,t was obtained from. The

subsequent interpolation, performed by the framework, will correctly handle this case.

4.5.3 The Steady State With No Aggregate Uncertainty

This economy presents the conundrum common to economies with individual agents, aggre-

gate variables and model-consistent expectations, already encountered in Chapters 2 and 3:

the �rms choices depend on expectations of future aggregate variables, which in turn depend

on �rms choices.

The method used to calculate such a steady state in earlier chapters can not be used here:

the models in those chapters had no non-state aggregate variables
8
.

In the absence of aggregate uncertainty, because the number of �rms is su�cient for the

law of large numbers to apply, a reasonable expectation is that the economy should converge

to a steady state in which the �rm-size distribution, and consequently all aggregate variables,

are constant. This section discusses how that constant state is determined.

4.5.3.1 Assumption of Current Aggregate Variables

A naive approach to �nding such a steady state might proceed as follows:

1. Guess values for aggregate variables

2. Solve the individual problem assuming those values for all periods

3. Simulate the resulting policies until the distribution converges

4. Compare the resulting aggregates to the guess

8

For the model with bonds this is only true in the absence of aggregate uncertainty since bonds and equity are

equivalent

150

5. Update the guess and repeat until they match

This approach does not work. Since constant aggregate values are assumed when calcu-

lating the individual policies, constant policies are used during simulation: �rms’ actions do

not react to realised market conditions. The absence of this self-correcting mechanism means

that the simulated economy often behaves unrealistically, for example achieving employment

of 0 or greater than 1.

In this economy, �rm actions are sensitive to θt and there is a hard upper bound of 1 on

employment. The proposed solution method does not allow for these features, so aggregates

tend to diverge and, often, overshoot full employment.

As an extreme but illustration example, consider the case where the chosen assumption is

that Lt = 0 ∀t. The �rms assume low market tightness, a high probability of a vacancy being

matched and hence post many vacancies. During simulation Lt rises, but �rms continue to

operate under the illusion that it is 0 and keep posting many vacancies, and under a reasonable

calibration, the realised Lt eventually exceeds 1 - more people are employed than exist.

4.5.3.2 Allowing for Feedback

To avoid this problem, the second and third steps of the solution method are adjusted:

1. Guess values for aggregate variables

2. Solve the individual problem assuming those values for all periods, but allowing for

variation in Lt in the current period around that assumed state

3. Simulate the resulting policies until the distribution converges, choosing the �rm policy

conditional on the realised value of Lt in each simulation period

4. Compare the resulting aggregates to the guess

5. Update the guess and repeat until they match

A numerical Newton-method is used to determine the �xed point at which assumed and

realised aggregates are within the chosen margin of error.

151

4.5.4 Computing the Transition Path

At a high level, the perfect-foresight transition path is determined as follows:

1. Choose the steady-state policies of the end calibration as the initial guess for individual

policies

2. Starting from the steady-state distribution of the starting calibration, simulate using the

policies until convergence, collecting realised aggregates each period

3. Solve backwards for the policies in each simulated period, starting from the end calibra-

tion steady-state policies

4. The generated sequence of policies is the new guess; if it is su�ciently close to the old

guess, stop; otherwise, repeat from step 2.

This approach assumes that the �nal, realised steady state will be the one found during the

steady-state computation for the end calibration. In other words, that the starting point does

not matter. The assumption is found to be correct to a high degree of numerical accuracy.

During the computation it also transpired that allowing the number of periods solved to

decrease between iterations causes instability. The algorithm was adjusted so that the number

of periods solved can never decrease, even in the event that a steady state is found more

quickly.

4.6 Parameters

The model’s parameters, along with the values used in the numerical exercises that follow, are

shown in Table 4.2.

The parameters common to the models in this paper and that of Hagedorn and Manovskii

(2008) are taken from that paper, largely because the starting point for this project was the

literature deriving from Shimer (2005), of which the former contribution is part. The shared

parameters are δ, β, ι, s and z.

152

Parameter Value Parameter Value

δ 0.99
1
12 νv 6

β .052 νr 4
z 0.955 σ .085
γ 5 ρ .99
φ .001 ι .407
τ 42.48% s .0081

Table 4.2: Parameter values used

The tax rate τ in the benchmark model is chosen to approximate total government rev-

enues in advanced economies. The OECD average value for this measure was 42.48% in 2014

(OECD, 2014).

The other parameter values are chosen somewhat arbitrarily to yield a model which can

be solved and has a non-trivial solution. The main aims were to achieve a relatively wide

distribution of �rm sizes and some level of entry and exit in steady state.

γ and φ are parameters in the utility function which control how strongly prices react

to changes in production and, consequently, demand levels. The elasticity of substitution
9 γ

must be relatively high, otherwise consumers are very price sensitive and even large demand

shocks for individual goods would only yield small additional production. φ is set relatively

small so as to stay ‘close’ to a solution without φ, whilst still allowing �rms with poor demand

to choose 0 production, and hence exit.

The values of the size adjustment cost parameters, νv and νr , were found by repeated

upward adjustment to prevent the largest �rms from growing beyond the maximum grid size.

The exogenous process for idiosyncratic demand is calibrated as follows:

log(εi,t) = ρ log(εi,t−1) + ξi,t ξi,t
i.i.d.∼ N(0, σ) (4.87)

The auto-correlation ρ and standard deviation of innovations σ are chosen to yield a some-

9

Whilst by a strict de�nition of consumption γ is not precisely the elasticity of substitution, de�ning consump-

tion of good i as ĉi = ci + φ restores that interpretation (see Acemoglu, 2008).

153

what persistent process and a sizable spread in �rm sizes. This continuous process is approx-

imated by 11 discrete states using the Rouwenhorst method (see Kopecky and Suen, 2010).

It should be noted that all these parameters strongly a�ect the number of vacancies and

redundancies �rms post. The �rst two a�ect the bene�t derived from size adjustment, the sec-

ond two the cost of size adjustment and the �nal pair the uncertainty over optimal size. There

are therefore strong interactions between the e�ects of these parameters. A full calibration

exercise to uncover these relationships and, more importantly, the e�ects of the parameters

on other economic measures, is beyond the scope of this chapter. The computational e�ort

required is considerable, since it would involve yet another layer of numeric root-�nding or

optimisation.

4.7 Results

4.7.1 Aggregate Outcomes

Table 4.3 presents the main economic aggregates in steady state in the benchmark calibration.

Variable Value Variable Value

L 0.893 f(θ) 0.168

U 0.107 V 0.028

Y 2.467 Exiting Firms 0.010

V 0.091 Entry Tax 98.623

R 0.011 Mean Value 140.700

θ 0.851 w 1.042

q(θ) 0.197 Mean Bonus 0.530

Table 4.3: Aggregate Variables in Steady State, Benchmark

The market tightness θ is 0.851, somewhat higher than the value of 0.634 targeted by the

calibration of Hagedorn and Manovskii (2008)
10

. As a consequence, the probability of �nding

a job, f(θ), is also higher (0.168 vs. 0.139) and the probability of �lling a vacancy, q(θ), lower

10

The target value was also calculated by the authors from quarterly job-�nding and vacancy-�lling rates, de-

spite the model period being 1/12th of a quarter. The actual target value for θ should be .139/.266 = .523 when

weekly probabilities are used.

154

(0.197 vs. 0.226). Nonetheless, given the possible range of the numbers the fact that they are

so close without calibration is remarkable.

The value used for the exogenous separation rate s = 0.0081 was chosen to match the

empirically observed total separation rate. The endogenous redundancy rate R = 0.011 adds

to the these separations and, by extension, this economy has a far higher separation rate

than is seen in the data. Choosing a lower s would most likely result in a higher R since

exogenous separation allows �rms to be less active in making people redundant. Addressing

this mismatch must, therefore, be part of a wider calibration e�ort.

Employee remuneration is also interesting: the wage w is 1.042 and the average sign-up

bonus paid is 0.530. The average probability of an employee losing her job, s+R, is 0.019, so

a new employee will expect to receive wages for 52 periods
11

on average. The total remuner-

ation derived from wages far exceeds that of the average sign-up bonus, which represents the

entire surplus derived from having a job. This is a result of the high ratio of z to productivity,

coupled with low worker bargaining power.

4.7.2 The Distribution of Firms

Figure 4.1 plots the distributions of �rms over exogenous demand levels and endogenous �rm

size.

The distribution by demand illustrates the e�ect of entry and exit: only �rms at the lower

end of the demand spectrum exit the market, but entering �rms draw demand levels distributed

in accordance with the steady state of the Markov process for idiosyncratic demand. Low-

demand �rms are displaced by new �rms, some of which experience high demand. As a result

the economy has a higher proportion of high demand �rms relative to the Markov process.

The distribution by size, on the other hand, is strongly skewed toward 0, with a very thin

tail toward the top end. The distribution is not smooth, which is a result of the discretised

shock distribution
12

. Tables 4.4 and 4.5 show the estimated parameters and standard errors

11

A mere coincidence.

12

Section B.2 presents the distributions of the model with an identical calibration but 51 levels in the demand

distribution, rather than 11. It is smoother.

155

of the size distribution under the assumption of the distribution being log-normal or Pareto

respectively. The log-normal distribution is a better �t, with an AIC of 3095 compared to 5694

for the Pareto model, contradicting empirical results for the �rm size distribution (see Axtell,

2001).

Restricting the estimation to the tail of the distribution, the �t of the Pareto distribution

improves relative to that of the log-normal one. For �rms greater than 0.5 in size, the Pareto

distribution has a marginally better AIC than the log-normal, 5656 vs. 5674, though the Pareto

parameter of 1.92 is no longer close to the empirically observed value of 1.27 (Axtell, 2001).

Estimate Std. Error

m -1.03 0.03

sd 1.47 0.02

Table 4.4: Estimated Parameters of Size Distribution as a Log-Normal Distribution

Estimate Std. Error

α 1.23 0.01

Table 4.5: Estimated Parameters of Size Distribution as a Power-Law Distribution

4.7.3 Firms’ Policies and Outcomes

Figure 4.2 plots �rms vacancy-posting and redundancy policies, �rm value and the �rms’ sign-

up bonus against �rm size.

4.7.4 A Change in Tax Policy

4.7.4.1 The Steady-State After Adjustment

This section investigates the e�ect of a change in tax policy: the government raises the tax rate

by 1% to 43.48%. The government also adjusts the market entry fee to maintain a measure 1

of �rms throughout
13

.

13

This aspect of the experiment is by necessity rather than choice: dealing with variable market entry is di�cult

and beyond the scope of this project. This point is discussed further in Section 4.8.

156

●● ● ●

●

●

●

●

●

●

●

0 1 2 3 4 5 6

0.
00

0.
10

0.
20

0.
30

Demand

P
ro

po
rt

io
n

of
 F

ir
m

s

●

●

Shock Process
Realised Distribution

●
●

●

●

●

●

●

●

●

●
●

0 5 10 15

0.
00

0.
05

0.
10

0.
15

Firm Size

P
ro

po
rt

io
n

of
 F

ir
m

s

Figure 4.1: The Distribution of Firms by Level of Demand (top) and Size

The top graph illustrates the e�ect of exit and entry: though the shock process has a log-normally

distributed steady state, after exit and entry there are more �rms toward the top end of the distribu-

tion. Despite this, the �rm size distribution is heavily skewed toward 0.

Note: The largest �rms is of size 18.22, but the tail is very thin.

157

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

Vacancies Posted

state$indStatesSim[[1]]$x.1

zero−growth

0 5 10 15 20

−
20

0
0

20
0

60
0

10
00

Firm Value

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Redundancies Posted

state$indStatesSim[[1]]$x.1

r

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Sign−up Bonus

bo
nu

s

Figure 4.2: Firm-Speci�c Policies and Outcomes, By Size

The graphs are plotted for each of the levels of demand a �rm can experience. For redundancies, the

order from top to bottom is from least to greatest demand; for the other variables the situation is

reversed.

158

First, consider the new steady state, presented in Table 4.6. The 1% increase in the tax on

�rm output has reduced employment by 0.7%, mainly through its impact on vacancies posted,

V , which have decreased from 0.091 to 0.089. Both R and the proportion of �rms exiting the

economy each period have not changed signi�cantly.

The value of �rms has decreased on average as a result of the need to dedicate more output

to taxation. Since the same also applies for newly entered �rms, the entry tax charged to

maintain a steady population of �rms of measure 1 has also decreased, from 98.6 to 96.0.

Variable Value Variable Value

L 0.886 f(θ) 0.160

U 0.114 V 0.027

Y 2.466 Exiting Firms 0.010

V 0.089 Entry Tax 95.961

R 0.011 Mean Value 136.983

θ 0.781 w 1.034

q(θ) 0.205 Mean Bonus 0.506

Table 4.6: Aggregate Variables in Steady State, High-Tax Scenario

4.7.4.2 The Transition Path

Figure 4.3 displays the development of the main aggregate variables during the �rst 30 periods

after the government changes its policy. V and, as a consequence, θ, are jump variables and

react strongly to the initial shock. Both variables continue to change thereafter, but now in

opposite directions as the gradual adjustment of the �rm size distribution causes U to adjust

more rapidly than V after the initial shock.

This economy replicates the persistence of market tightness observed in Acemoglu and

Hawkins (2014), but it does so even in this scenario where the measure of �rms is constant. In

addition θ is strongly pro-cyclical since U and V adjust in opposite directions in response to

the shock.

159

0 5 10 15 20 25 30

−
10

−
5

0
5

Time

P
er

ce
nt

 D
ev

ia
tio

n

●

●

●

●
●

●
● ●

●

●

●

●

●
●

● ●

●

●

U
V
θ
Y

Figure 4.3: Aggregates During The Transition from Low to High Tax Regime

160

4.8 Discussion And Further Work

This chapter has presented a generalization of the standard random search model of unem-

ployment in which �rms experience di�ering levels of demand and, as a result, di�er in size.

Firms can engage in both costly hiring and �ring, incumbent �rms can exit the market and

new �rms can enter.

Some of the contribution of this work is technical: it demonstrates that the toolkit intro-

duced in Chapter 2 can be used to solve models with heterogeneity in which multiple aggregate

variables in�uence individual agents’ behaviour. It has also used the Method of Endogenous

Gridpoints (Carroll, 2006) in a setting other than that for which it was �rst developed.

On the economic side, the model introduces a novel approach to surplus splitting in an

economy with Nash bargaining: the employee’s share of the surplus is paid as a sign-up bonus

and wages are set to make the employee indi�erent between remaining in work and becom-

ing unemployed. This approach allows the �rms’ problem to be solved with both endogenous

redundancies and non-trivial surplus sharing, which is not possible under a continuously rene-

gotiated wage.

4.8.1 Entry and Aggregate Shocks

Two interesting aspects of the model economy have not been fully studied in this chapter:

�rm entry and aggregate shocks. The exclusion of both aspects stems from the same issue: at

present, the level of entry and vacancies can not be jointly resolved in equilibrium.

Entry should be resolved via its impact on vacancies: the more new �rms enter, the more

vacancies they will post, which is expected to decrease the value of each entering �rm due to

greater competition. An equilibrium is reached when entering �rms’ value matches the entry

cost. This mechanism fails because, in the current implementation, �rm value barely varies

in aggregate vacancies, and the variation it does have is in the ‘wrong’ direction: �rm value

is rising in vacancies so the more �rms enter the more valuable they get, leading to unlimited

entry.

161

One cause of this issue is that expectations do not vary in aggregate vacancies. By the

terminology of this paper, vacancies are an ‘aggregate control’. The default
14

behaviour of the

ModelSolver Toolkit is that expectations do not depend on aggregate controls. This behaviour

is a logical extension of individual behaviour to aggregates: just as a �rm, given its current

state, determines both its current controls and its future state from them, so current aggregate

states determine the level of current aggregate controls and future aggregate states. It is also an

assumption widely followed in the literature since at least Krusell and Smith (1997). Unlike the

bond price and aggregate capital in that model, however, aggregate vacancies directly
15

a�ect

future aggregate employment. Expectations must hence vary by the number of aggregate

vacancies.

The solution approach for �nding the steady state without aggregate risk, outlined earlier,

avoids the problem by assuming that vacancies are in equilibrium at a pre-determined level,

and that entry will always match exit. It then adjusts the assumed level of vacancies repeatedly

until the �rst assumption is met, and forces the second assumption to be met by setting the

entry cost at the appropriate level.

Both calculating a transition path with a constant entry cost and a variable total measure

of �rms, and simulating a model which allows for aggregate uncertainty, require vacancies

and entry to be determined in equilibrium. To perform these calculations, expectations must

depend on vacancies.

The toolkit has been extended to allow for aggregate controls to a�ect expectations in some

processes, for example in the method of endogenous gridpoints. This work is not complete

and bears higher computational cost and many potential pitfalls with it. First experiments

suggest it does address the problem.

14

Until recently, only.

15

In the sense of appearing in the algebraic equation which determines future aggregate employment given

current aggregate variables.

162

4.8.2 Further Work

A key further step is to perform a full calibration exercise. Parameters in the model were

taken from the literature on economies that are not precisely equivalent, or chosen somewhat

arbitrarily. As a result, some aspects of the solution do not match stylized facts of the economy

well: most obviously, s+R is too high relative to the observed separation rate.

163

5
Discussion

This thesis has considered theoretical macroeconomic models with substantial heterogeneity.

It has introduced a software library which helps to solve such models, a new technique for

solving such models, and �nally a new instance of such a model which aims to address ques-

tions concerning the interaction of �rm size heterogeneity with frictions in the labour market

and wage bargaining. All three areas o�er signi�cant scope for future work.

164

5.1 The ModelSolver Toolkit

5.1.1 Computational Performance

The experiments in Chapter 2 demonstrated that the ModelSolver Toolkit computes a model

solution quickly relative to hand-crafted Matlab code.

One reason for this comparatively high level of performance is that the underlying tech-

nology, the Java VM, is faster than Matlab (Aruoba and Fernández-Villaverde, 2014).

A further reason is that the toolkit was designed explicitly to take advantage of multi-

ple cores when running array operations. This parallelisation automatically follows array

dimensions, which many economic problems can bene�t from. A common feature of solving

economic models is that functions are constrained or expected to be well-behaved in certain

inputs, which translate to dimensions in the ModelSolver toolkit. When an operation is per-

formed along such a dimension, the toolkit allows the operation to be run for each point in

the other dimensions in parallel. In the method of endogenous gridpoints, the calculation of

the expectational part of the Euler equation is performed in this way, along the dimension of

the individual state. Because all aggregates and exogenous variables are equal for an agent

in any of those states, these only need to be determined once in each parallel call. Since the

constraints apply along this dimension they can also be easily considered under this approach.

5.1.2 Ease of Use

The real test of a model-solving technology is now ‘how fast does it run’ but ‘how quickly can

a model be implemented’. Researchers are likely to spend many hours writing the solution

before they run it.

The Scala programming language o�ers a powerful combination of features: it runs on a

fast platform which executes compiled code, but if o�ers rich language features for expressing

domain-speci�c concepts in an intuitive way. The ModelSolver Toolkit takes advantage of

these features to allow economists to work with familiar concepts, such as multi-dimensional

165

arrays, using familiar notation. There is scope for further improvement, as outlined below.

It is di�cult to compare ease of use directly. The lines of code that need to be written is

similar to the hand-crafted Matlab solution: both the minimal incomplete markets example

and the code written for Den Haan and Rendahl (2010) have around 360 lines of functional

code. Many of the lines in the ModelSolver version are ‘boilerplate’ such as class or method

headers. These models are very simple, and the hand-coded solution is likely to grow by

more than the ModelSolver one as the model gets more complex. Implementing the solution

for Chapter 4 was quite quick once the appropriate mathematics had been found. Given the

relatively large number of variables, all the variations in their behaviour
1
, a manual solution

would have been time-consuming .

5.1.3 Comparable Solutions

5.1.3.1 HARK

There is an existing open-source, researcher-led e�ort to build a toolkit for solving economic

models in the form of HARK (Carroll et al., 2016). As stated in the introduction, this work has

only recently come to my attention. Its goals, essentially identical to those of the ModelSolver

Toolkit, are stated in the manual:

. . . But modellers whose questions require explicit structural modelling involving

non-trivial kinds of heterogeneity (that is, heterogeneity that cannot simply be ag-

gregated away) are mostly still stuck in the bad old days.

The ultimate goal of the HARK project is to �x these problems.

HARK and the ModelSolver Toolkit share some similarities: the separation between indi-

vidual and aggregate problems, and the provision of tools such as interpolators for assistance

in solving the problems. Both also require a signi�cant amount of programming at present.

HARK uses python and builds on the numpy and scipy libraries, both of which are popular

within the scienti�c community.

1

An aggregate state, a control with contemporaneous impact and a control with impact only via expectations.

166

Based on the sample models provided it appears that HARK is not quite as capable as the

ModelSolver Toolkit as it stands. On the other hand, it has been presented at conferences and

thus received the �rst exposure to the wider community of researchers. Some collaboration

and exchange of ideas may be fruitful.

5.1.4 Potential Improvements

5.1.4.1 Greater Flexibility

Models with heterogeneous agents vary to a great degree, not only in the types of agents they

may consider but also in the techniques necessary to solve them. The model of Chapter 4

can not yet be solved under the assumption of aggregate uncertainty using the ModelSolver

Toolkit, highlighting the fact that a single approach is not applicable to all such models. Ex-

tending the toolkit to cover more cases will make it useful to a greater number of researchers

and, more importantly, encourage a greater number of researchers to consider heterogene-

ity in their research. One way of performing such extensions is to provide additional solvers

which work better in scenarios where, for example, the method of endogenous gridpoints can

not be applied.

Any such extension should be driven by ‘exogenous shocks’ in the form of interest from,

and perhaps contributions by, the research community.

5.1.4.2 A Modelling Language

An aspect of Dynare (Adjemian et al., 2011) which contributes to its ease of use is the fact that

little programming is necessary. Models are speci�ed in a custom language designed for that

purpose and which leans heavily on mathematical notation.

A zero-programming approach to solving heterogeneous agent models is perhaps not fea-

sible due to wide variety of such models. A well-designed modelling language, used to express

the individual solution equations and the aggregation functions, may nonetheless be a pow-

erful additional tool in the toolkit. The equations solving all the models in this thesis contain

167

relatively simple algebra, and a consistent meaning of symbols such as that laid out in Sec-

tion 3.4.1 would allow those equations to be expressed in a common notation. Programming

may only be necessary for handling special cases, such as the separation of bond and capital

holdings in Section 3.5.

5.1.4.3 Graphical Processors

Certain aspects of scienti�c computing have bene�ted greatly from the ability to attain a very

high level of parallelisation using graphical processors. This technology has been used in

economics (Aldrich et al., 2011). The tools presented here do not use this approach. The com-

plexity of solution algorithms may render an e�ective, general model-solving toolkit using

graphical processors, which have strong restrictions on how input data is presented, impos-

sible to implement. The approach is worth investigating, however, especially if a modelling

language is used and the translation to runnable code hides the complexity of working with

graphical processors.

5.2 Derivative Aggregation

Chapter 3 introduced the method of Derivative Aggregation for updating the aggregate fore-

casting function in a model with heterogeneous agents and aggregate uncertainty. It was

shown to deliver a function with forecasting accuracy comparable to other solutions in the

literature, but requiring less compute time.

5.2.1 E�ciency

The method is e�cient in the sense that it requires little compute time relative to the canonical

approach of Krusell and Smith (1998). The primary reason for this e�ciency is that it requires

very little simulation: the Krusell-Smith approach requires around 600 simulation steps in each

iteration of updating the forecasting function, Derivative Aggregation just 2. Simulation is a

very expensive step in models with heterogeneous agents, so avoiding it reduces the required

168

compute time dramatically.

5.2.2 Few Constraints

The method places few constraints on models. The principal constraint is that there should

be a clear relationship between individual and aggregate variables which can be expressed

in the form presented in Section 3.4.1. This lack of constraints is the reason it performs well

relative to Den Haan and Rendahl (2010): in that approach, individual and aggregate variables

must be related in a speci�c way which, in the sample model, requires the addition of a second

aggregate state variable, increasing the number of dimensions and hence the computational

complexity.

The Krusell-Smith approach imposes even fewer constraints: only that there be a relatively

stable relationship between current aggregate states and both current aggregate controls and

future aggregate states. There may be models amenable to solution by the Krusell-Smith al-

gorithm to which Derivative Aggregation can not be applied.

5.2.3 Theoretical Insight

The key equation of derivative aggregation is Eq. (3.8), restated here:

dKt+1

dKt
=

∫ 1

0

(
∂f

∂ki,t

dki,t
dKt

+
∂f

∂Kt

)
di (5.1)

It speci�es how the derivative of the aggregate forecasting function is calculated from

the derivatives of the individual policy function and a function approximating the change in

contemporaneous individual states as the aggregate state changes.

The equation also demonstrates when exact or approximate aggregation hold. Exact ag-

gregation requires either that both partial derivatives are identical across all agents i, or that

dki,t
dKt

is unique. The former will occur exactly only in the case of representative agent or a triv-

ial policy function, the later implies that for each level of Kt there is exactly one underlying

distribution of ki,t. Approximate aggregation holds when the derivative
dki,t
dKt

does not vary

169

widely, implying that the set of realised distributions of the economy is relatively tight around

the mean for each possible aggregate state value.

Further contemplation of these cases may yield valuable insights. There is also scope for

further research into whether the relationship can be applied to yield insights into which

models allow approximate aggregation and which do not.

5.3 Matching, Bargaining and Heterogeneous Agents

Chapter 4 o�ers the clearest scope for further research. The �rst goal is to address the problem

of calculating �rm entry in equilibrium. This would enable solution of both a transition path

with endogenous entry, and a version of the model with aggregate uncertainty. An analysis

of the interaction of job creation and destruction, �rm entry and exit and employment in this

economy should follow.

The impact of modelling choices, particularly the structure of remuneration and of size

adjustment costs, should be subjected to further analysis. What other choices are possible

whilst still allowing the model to be solved? What is the impact of these alternatives?

Finally, the model should be brought to the data. There is a wealth of both aggregate and

�rm-level data regarding hiring and �ring, and investigating the �t of both sets to the model,

and particularly how they interact, is an interesting future project.

170

Bibliography

Acemoglu, D. (2008). Introduction to modern economic growth. Princeton University Press.

Acemoglu, D. and Hawkins, W. B. (2014). Search with multi-worker �rms. Theoretical Eco-

nomics, 9(3):583–628.

Adjemian, S., Bastani, H., Juillard, M., Mihoubi, F., Perendia, G., Ratto, M., and Villemot, S.

(2011). Dynare: Reference manual, version 4. Technical report, Dynare Working Papers 1,

CEPREMAP.

Aiyagari, S. R. (1994). Uninsured idiosyncratic risk and aggregate saving. The Quarterly Journal

of Economics, pages 659–684.

Aldrich, E. M., Fernández-Villaverde, J., Gallant, A. R., and Rubio-Ramírez, J. F. (2011). Tapping

the supercomputer under your desk: Solving dynamic equilibrium models with graphics

processors. Journal of Economic Dynamics and Control, 35(3):386–393.

Algan, Y., Allais, O., and Den Haan, W. J. (2008). Solving heterogeneous-agent models with

parameterized cross-sectional distributions. Journal of Economic Dynamics and Control,

32(3):875–908.

An, S., Chang, Y., and Kim, S.-B. (2009). Can a representative-agent model represent a

heterogeneous-agent economy. American Economic Journal: Macroeconomics, pages 29–54.

Aruoba, S. B. and Fernández-Villaverde, J. (2014). A Comparison of Programming Languages

in Economics. Technical report, National Bureau of Economic Research.

171

Axtell, R. L. (2001). Zipf distribution of us �rm sizes. Science, 293(5536):1818–1820.

Benhabib, J., Wang, P., and Wen, Y. (2015). Sentiments and aggregate demand �uctuations.

Econometrica, 83(2):549–585.

Bezanson, J., Chen, J., Karpinski, S., Shah, V., and Edelman, A. (2014a). Array operators using

multiple dispatch: A design methodology for array implementations in dynamic languages.

In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Com-

pilers for Array Programming, page 56. ACM.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2014b). Julia: A fresh approach to

numerical computing. CoRR, abs/1411.1607.

Brock, W. A. and Hommes, C. H. (1997). A rational route to randomness. Econometrica: Journal

of the Econometric Society, pages 1059–1095.

Carroll, C. D. (2000). Requiem for the representative consumer? aggregate implications of

microeconomic consumption behavior. The American Economic Review, 90(2):110–115.

Carroll, C. D. (2006). The method of endogenous gridpoints for solving dynamic stochastic

optimization problems. Economics letters, 91(3):312–320.

Carroll, C. D., Kaufman, A. M., Low, D. C., Palmer, N. M., and White, M. N. (2016). Hark:

Heterogeneous agents resources and toolkit.

Cooper, R., Haltiwanger, J., and Willis, J. L. (2007). Search frictions: Matching aggregate and

establishment observations. Journal of Monetary Economics, 54:56–78.

Den Haan, W. J. (2010a). Assessing the accuracy of the aggregate law of motion in models

with heterogeneous agents. Journal of Economic Dynamics and Control, 34(1):79–99.

Den Haan, W. J. (2010b). Comparison of solutions to the incomplete markets model with

aggregate uncertainty. Journal of Economic Dynamics and Control, 34(1):4–27.

172

Den Haan, W. J., Judd, K. L., and Juillard, M. (2010). Computational suite of models with

heterogeneous agents: Incomplete markets and aggregate uncertainty. Journal of Economic

Dynamics and Control, 34(1):1–3.

den Haan, W. J., Ramey, G., and Watson, J. (2000). Job destruction and propagation of shocks.

American Economic Review, 90(3):482–498.

Den Haan, W. J. and Rendahl, P. (2010). Solving the incomplete markets model with aggregate

uncertainty using explicit aggregation. Journal of Economic Dynamics and Control, 34(1):69–

78.

Dixit, A. K. and Stiglitz, J. E. (1977). Monopolistic competition and optimum product diversity.

The American Economic Review, 67(3):297–308.

Elsby, M. W. and Michaels, R. (2013). Marginal jobs, heterogeneous �rms, and unemployment

�ows. American Economic Journal: Macroeconomics, 5(1):1–48.

Felbermayr, G., Prat, J., and Schmerer, H.-J. (2011). Globalization and labor market outcomes:

wage bargaining, search frictions, and �rm heterogeneity. Journal of Economic Theory,

146(1):39–73.

Fujita, S. and Nakajima, M. (2016). Worker �ows and job �ows: A quantitative investigation.

Review of Economic Dynamics.

Fujita, S. and Ramey, G. (2007). Job matching and propagation. Journal of Economic dynamics

and control, 31(11):3671–3698.

Grasl, T. (2011a). The modelsolver library. https://bitbucket.org/modelsolver/modelsolver.

Grasl, T. (2011b). The numerics library. https://bitbucket.org/modelsolver/numerics.

Grasl, T. (2014a). Incomplete marketes - scala. https://bitbucket.org/modelsolver/

incomplete-markets-scala.

Grasl, T. (2014b). Matching model. https://bitbucket.org/modelsolver/matching-model.

173

https://bitbucket.org/modelsolver/modelsolver
https://bitbucket.org/modelsolver/numerics
https://bitbucket.org/modelsolver/incomplete-markets-scala
https://bitbucket.org/modelsolver/incomplete-markets-scala
https://bitbucket.org/modelsolver/matching-model

Grasl, T. (2014c). Modelsolver-scala. https://bitbucket.org/modelsolver/modelsolver-scala.

Grasl, T. (2014d). Numerics-scala. https://bitbucket.org/modelsolver/numerics-scala.

Grasl, T. (2016). The art of the possible - accompanying code. https://modelsolver.bitbucket.

io/phd/.

Hagedorn, M. and Manovskii, I. (2008). The cyclical behavior of equilibrium unemployment

and vacancies revisited. The American Economic Review, 98(4):1692–1706.

Hopenhayn, H. A. (1992). Entry, exit, and �rm dynamics in long run equilibrium. Econometrica:

Journal of the Econometric Society, pages 1127–1150.

İmrohoroğlu, A. (1992). The welfare cost of in�ation under imperfect insurance. Journal of

Economic Dynamics and Control, 16(1):79–91.

Kaas, L. and Kircher, P. (2015). E�cient �rm dynamics in a frictional labor market. The

American Economic Review, 105(10):3030–3060.

Keynes, J. M. (1936). The General theory of employment, interest and money. Palgrave Macmil-

lan.

King, R. G. and Rebelo, S. T. (1999). Resuscitating real business cycles. Handbook of macroeco-

nomics, 1:927–1007.

Kopecky, K. A. and Suen, R. M. H. (2010). Finite state markov-chain approximations to highly

persistent processes. Review of Economic Dynamics, 13(3):701–714.

Krusell, P. and Smith, A. A. (1997). Income and wealth heterogeneity, portfolio choice, and

equilibrium asset returns. Macroeconomic dynamics, 1(02):387–422.

Krusell, P. and Smith, A. A. (1998). Income and wealth heterogeneity in the macroeconomy.

Journal of Political Economy, 106(5):867–896.

174

https://bitbucket.org/modelsolver/modelsolver-scala
https://bitbucket.org/modelsolver/numerics-scala
https://modelsolver.bitbucket.io/phd/
https://modelsolver.bitbucket.io/phd/

Krusell, P. and Smith, A. A. (2006). Quantitative macroeconomic models with heterogeneous

agents. Econometric Society Monographs, 41:298.

Kydland, F. E. and Prescott, E. C. (1982). Time to build and aggregate �uctuations. Economet-

rica: Journal of the Econometric Society, pages 1345–1370.

Lucas, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester conference

series on public policy, volume 1, pages 19–46. North-Holland.

Luttmer, E. G. (2007). Selection, growth, and the size distribution of �rms. The Quarterly

Journal of Economics, pages 1103–1144.

Maliar, L., Maliar, S., and Valli, F. (2010). Solving the incomplete markets model with aggregate

uncertainty using the Krusell–Smith algorithm. Journal of Economic Dynamics and Control,

34(1):42–49.

Mankiw, N. G. (2006). The macroeconomist as scientist and engineer. The Journal of Economic

Perspectives, 20(4):29–46.

Mortensen, D. T. and Pissarides, C. A. (1994). Job creation and job destruction in the theory of

unemployment. The review of economic studies, 61(3):397–415.

Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica:

Journal of the Econometric Society, pages 315–335.

OECD (2014). General government revenue. http://http://www.oecd-ilibrary.org/governance/

general-government-revenue/indicator/english_b68b04ae-en. Accessed: 2016-07-03.

Pissarides, C. A. (2000). Equilibrium unemployment theory. MIT press.

Reiter, M. (2009). Solving heterogeneous-agent models by projection and perturbation. Journal

of Economic Dynamics and Control, 33(3):649–665.

Reiter, M. (2010). Solving the incomplete markets model with aggregate uncertainty by back-

ward induction. Journal of Economic Dynamics and Control, 34(1):28–35.

175

http://http://www.oecd-ilibrary.org/governance/general-government-revenue/indicator/english_b68b04ae-en
http://http://www.oecd-ilibrary.org/governance/general-government-revenue/indicator/english_b68b04ae-en

Ríos-Rull, J.-V. (1995). Models with heterogeneous agents. Frontiers of business cycle research,

pages 98–125.

Ríos-Rull, J.-V. (1997). Computation of equilibria in heterogeneous agent models. Federal reserve

bank.

Samaniego, R. M. (2006). Do �ring costs a�ect the incidence of �rm bankruptcy? Macroeco-

nomic Dynamics, 10(04):467–501.

Schaal, E. (2012). Uncertainty, productivity and unemployment in the great recession.

Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies. Ameri-

can economic review, pages 25–49.

Simon, C. P. and Blume, L. (1994). Mathematics for economists, volume 7. Norton New York.

Simon, H. A. (1972). Theories of bounded rationality. Decision and organization, 1(1):161–176.

Stole, L. A. and Zwiebel, J. (1996). Intra-�rm bargaining under non-binding contracts. The

Review of Economic Studies, 63(3):375–410.

Tauchen, G. (1986). Finite state markov-chain approximations to univariate and vector au-

toregressions. Economics letters, 20(2):177–181.

Taylor, J. B. and Uhlig, H. (1990). Solving nonlinear stochastic growth models: A comparison

of alternative solution methods. Journal of Business & Economic Statistics, 8(1):1–17.

Williams, N. (2009). Seniority, experience, and wages in the uk. Labour Economics, 16(3):272–

283.

Young, E. R. (2010). Solving the incomplete markets model with aggregate uncertainty using

the Krusell–Smith algorithm and non-stochastic simulations. Journal of Economic Dynamics

and Control, 34(1):36–41.

176

Appendices

177

A
Derivative Aggregation

A.1 Mathematical Appendix

A.1.1 Proof of Proposition 1

The proofs of the two equations of the theorem proceed independently:

Proof of 3.24.

178

From Eq. (3.20):

Xj
t+1 =

∫
F j(xi,t+1, X

−j
t+1) di

=

∫
F j
(
fx(xi,t, ai,t, Xt, At), X

−j
t+1

)
di (A.1)

So if the distribution is transformed according to Tk in period t, and using X̃ l
t+1 to denote

next period aggregate variables that result from applying the transition in this period:

X̃j
t+1 =

∫
F j
(
fx(x̃i,t, ai,t, X̃t, At), X̃

−j
t+1

)
di

=

∫
F j
(
fx(Tk(xi,t, θk), ai,t, X̃t, At), X̃

−j
t+1

)
di (A.2)

Taking the derivative w.r.t θk

dX̃j
t+1

dθk
=

d

dθk

∫
F j
(
fx(Tk(xi,t, θk), ai,t, X̃t, At), X̃

−j
t+1

)
di

=

∫ [nx∑
s=1

(
∂F j(.)

∂xs
df sx(T (xi,t, θk), ai,t, X̃t, At)

dθk

)
+

j−1∑
s=1

(
∂F j(.)

∂Xs

dX̃s
t+1

dθk

)]
di

=

nx∑
s=1

∫ (
∂F j(.)

∂xs

[
nx∑
r=1

∂fsx(.)

∂xr
dx̃ri,t
dθk

+
∂fsx(.)

∂Xk

dX̃k
t

dθk

])
di +

j−1∑
s=1

∫ (
∂F j(.)

∂Xs

dX̃s
t+1

dθk

)
di

(A.3)

By the chain rule,

dX̃j
t+1

dX̃k
t

=
dX̃j

t+1

dθk

dθk

dX̃k
t

so that

dX̃j
t+1

dX̃k
t

=

nx∑
s=1

∫ (
∂F j(.)

∂xs

[
nx∑
r=1

∂fsx(.)

∂xr
dx̃ri,t

dX̃k
t

+
∂fsx(.)

∂Xk

])
di +

j−1∑
s=1

∫ (
∂F j(.)

∂Xs

dX̃s
t+1

dX̃k
t

)
di

(A.4)

179

where there is only one derivative of fx with respect to aggregates since Tk leaves aggregates

other than k unchanged by condition (1) of the theorem.

But Tk(ω, 1) = ω by condition (3), so evaluating the derivative at θk = 1 yields the desired

result.

Proof of 3.25.

Under the transformation, by de�nition

dx̃ri,t
dθk

=
∂

∂θk
(T rk (xi,t, θk))

Also note that, since other aggregates are invariant under Tk,the transformed X̃k
t is

X̃k
t =

∫
F k(Tk(xl,t, θk), X

−k) dl

so that:

dX̃k
t

dθk
=

d

dθk

(∫
F k(Tk(xl,t, θk), X

−k) dl

)
=

∫
d

dθk

(
F k(Tk(xl,t, θk), X

−k)
)
dl

=

∫ nx∑
s=1

((
∂

∂xs
F k(Tk(xl,t, θk), X

−k)

)(
d

dθk
T sk (xl,t, θk)

))
dl

=

nx∑
s=1

∫
∂F k(Tk(xl,t, θk), X

−k)

∂xs
dT sk (xl,t, θk)

dθk
dl

180

Combining the two derivatives results in:

dx̃ri,t

dX̃k
t

=
dx̃ri,t
dθk

dθk

dX̃k
t

=
dx̃ri,t
dθk

(
dX̃k

t

dθk

)−1

=
∂Tk(xi,t, θk)

∂θk

(
nx∑
s=1

∫
∂F k(Tk(xl,t, θk))

∂xs
∂T sk (xl,t, θk)

∂θk
dl

)−1

=

∂T k(xi,t,θk)
∂θk∑nx

s=1

∫ (∂F k(Tk(xl,t,θk))
∂xs

∂T s
k (xl,t,θk)
∂θk

)
dl

But Tk(ω, 1) = ω by condition (3) of the theorem, so evaluating the derivative at θk = 1 yields

the derivative at ω, the untransformed distribution �

A.2 Extension to 2nd derivative

The derivative aggregation can be extended to second and higher order derivatives. This sec-

tion demonstrates the second derivative. In order to calculate a cross partial derivative w.r.t.

di�erent aggregates it is necessary to consider both relevant transformations being applied

simultaneously. For straight double derivatives this is not necessary. The mathematics pre-

sented below is identical in both cases

181

For this section, de�ne x̃ and X̃k
to mean:

x̃ = Th(Tk(x, θk), θh)

X̃k =

∫ 1

0
F k(Th(Tk(xi, θk), θh), a,X−k)di

X̃h =

∫ 1

0
F h(Th(Tk(xi, θk), θh), a,X−h)di

Note that, because Tk, Th are identity transformations when their parameters are 1, and all

derivatives are determined at that value, these de�nitions do not change the value of X̃k, X̃h

or their �rst derivatives from that in prior sections. Only when the second derivative is needed

to they come into play.

This implies

X̃j
t+1 =

∫
F j
(
fx(x̃i,t, ai,t, X̃t, At), X̃

−j
t+1

)
di

=

∫
F j
(
fx(Th(Tk(xi,t, θk), θh), ai,t, X̃t, At), X̃

−j
t+1

)
di

so that:

d2X̃j
t+1

dX̃h
t dX̃

k
t

=
d

dX̃h
t

(
nx∑
s=1

∫ (
∂F j(.)

∂xs

[
nx∑
r=1

∂fsx(.)

∂xr
dx̃ri,t

dX̃k
t

+
∂fsx(.)

∂Xk

])
di

+

j−1∑
s=1

∫ (
∂F j(.)

∂Xs

dX̃s
t+1

dX̃k
t

)
di

)

Consider the derivative with respect to X̃h
t of each term above:

d

dX̃h
t

(
∂F j(.)

∂xs

)
=

d

dX̃h
t

(
∂F j(fx(x̃i,t, ai,t, X̃t, At), X̃

−j
t+1)

∂xs

)

=

nx∑
u=1

(
∂2F j(.)

∂xs∂xu

[
nx∑
r=1

∂fux (.)

∂xr
dx̃ri,t

dX̃h
t

+
∂fux (.)

∂Xh

])
+

j−1∑
u=1

(
∂2F j(.)

∂xs∂Xu

dX̃u
t+1

dX̃h
t

)

182

where there is only one derivative with respect to aggregates because Th leaves other aggs

unchanged.

d

dX̃h
t

(
∂fsx(.)

∂xr

)
=

d

dX̃h
t

(
∂fsx(x̃i,t, ai,t, X̃t, At)

∂xr

)

=

nx∑
u=1

(
∂2fsx(.)

∂xr∂xu
dx̃ui,t

dX̃h
t

)
+

∂2fsx(.)

∂xr∂Xh

d

dX̃h
t

(
dx̃ri,t

dX̃k
t

)
=

d2x̃ri,t

dX̃h
t dX̃

k
t

d

dX̃h
t

(
∂fsx(.)

∂Xk

)
=

d

dX̃h
t

(
∂fsx(x̃i,t, ai,t, X̃t, At)

∂Xk

)

=

nx∑
u=1

(
∂2fsx(.)

∂Xk∂xu
dx̃ui,t

dX̃h
t

)
+

∂2fsx(.)

∂Xk∂Xh

d

dX̃h
t

(
∂F j(.)

∂Xs

)
=

d

dX̃h
t

(
∂F j(fx(x̃i,t, ai,t, X̃t, At), X̃

−j
t+1)

∂Xs

)

=

nx∑
u=1

(
∂2F j(.)

∂Xs∂xu

[
nx∑
r=1

∂fux (.)

∂xr
dx̃ri,t

dX̃h
t

+
∂fux (.)

∂Xh

])
+

j−1∑
u=1

∫ (
∂2F j(.)

∂Xs∂Xu

dX̃u
t+1

dX̃h
t

)
di

d

dX̃h
t

(
dX̃s

t+1

dX̃k
t

)
=

d2X̃s
t+1

dX̃h
t dX̃

k
t

Combining the terms yields a lengthy and complicated equation involving a number of sums,

without adding any substance to the argument. If the method needs to be applied, it is likely

more straightforward to calculate the sums individually and then apply the formula for the

overall derivative above.

As before, all the partial derivatives in the equations above are of functions fx and F k,

which are known at the time of the calculation. The only quantities present that have not yet

been calculated are

d2X̃s
t+1

dX̃h
t dX̃

k
t

, which is recursively provided by this calculation, and

d2x̃ri,t
dX̃h

t dX̃
k
t

,

which is derived below.

183

A.2.1 Deriving d2x̃ri,t
dX̃h

t dX̃
k
t

d2x̃ri,t

dX̃h
t dX̃

k
t

=
d

dX̃h
t

(
dx̃ri,t

dX̃k
t

)
(A.5)

=
d

dX̃h
t

(
dx̃ri,t
dθk

dθk

dX̃k
t

)
(A.6)

=
d

dX̃h
t

(
dx̃ri,t
dθk

)
dθk

dX̃k
t

+
dx̃ri,t
dθk

d

dX̃h
t

(
dθk

dX̃k
t

)
by the product rule: (A.7)

=
dθh

dX̃h
t

d

dθh

(
dx̃ri,t
dθk

)
dθk

dX̃k
t

+
dx̃ri,t
dθk

dθh

dX̃h
t

d

dθh

(
dθk

dX̃k
t

)
(A.8)

=
d2x̃ri,t
dθh dθk

dθh

dX̃h
t

dθk

dX̃k
t

+
dx̃ri,t
dθk

dθh

dX̃h
t

d

dθh

[dX̃k
t

dθk

]−1 (A.9)

=
d2x̃ri,t
dθh dθk

dθh

dX̃h
t

dθk

dX̃k
t

−
dx̃ri,t
dθk

dθh

dX̃h
t

(
dX̃k

t

dθk

)−2
d2X̃k

t

dθh dθk
(A.10)

=

(
dX̃h

t

dθh

dX̃k
t

dθk

)−1(
d2x̃ri,t
dθh dθk

−
dx̃ri,t

dX̃k
t

d2X̃k
t

dθh dθk

)
(A.11)

The �rst term of this sum is straightforward to calculate, since x̃ is de�ned in terms of the

two transformations containing θh, θk, and the second two multiplicands have already been

calculated in the course of obtaining the �rst derivatives.

The second additive term depends more closely on the speci�c aggregates, transformations

and values of k and h.

When k = h, it is the double derivative of X̃k with respect to its parameter θk, and should

be relatively straightforward to calculate.

When k 6= h, it is the cross partial derivative of X̃k
w.r.t to both parameters θh and θk.

Though the �rst condition of Proposition 1 requires that the change in θh does not a�ect X̃k,

it could a�ect the value that θk must take to achieve a given X̃k, and by extension the rate of

change of the latter with respect to the former. Absence ofXh in the formula for the previously

obtained �rst derivative
dX̃k

dθk
does not imply that transforming the distribution according to

Th does not a�ect the value, because other terms may be a�ected. Hence, this term may or

184

may not be zero.

A.3 Solving the Individual Problem with Bonds

Ignoring constraint multipliers, Eqs. (3.32) and (3.33) together imply

Et

[(
cit+1

)−γ
(1 + rt+1 − δ)

]
= Et

[(
cit+1

)−γ] 1

pt
(A.12)

The aggregate productivity process allows only possible values, At ∈ {A−, A+} where A− is

the bad state and A+ the good state. Denoting by π−,t+1, π+,t+1 the probability of being in a

good or bad state respectively in the next period, and byE−,t, E+,t the corresponding current

period expectations conditional on those outcomes, Eq. (A.12) yields

π−,t+1E−,t

[(
cit+1

)−γ]
R−,t+1 + π+,t+1E+,t

[(
cit+1

)−γ]
R+,t+1

= π−,t+1E−,t

[(
cit+1

)−γ] 1

pt
+ π+,t+1E+,t

[(
cit+1

)−γ] 1

pt

⇒ E+,t

[(
cit+1

)−γ]
= E−,t

[(
cit+1

)−γ] π−,t+1

π+,t+1

R−,t+1 − 1
p

1
p −R+,t+1

(A.13)

The solution approach utilises this equation as follows:

1. As in the �rst step of the method of endogenous gridpoints, future marginal utility of

consumption is calculated conditional on realised future aggregate shocks, both indi-

vidual and aggregate

2. Summing across possible individual states, multiplied by their probabilities, gives the

expectations E+,t and E−,t above as functions of household wealth xt+1 after interest

payments on the grid

3. Inverting one of the functions allows identi�cation of x+,t+1, the wealth held in the

good state, as a function of x−,t+1, the wealth held in the bad state.

185

4. Wealth is carried over as a combination of capital and bonds, and hence equates to

xt+1 = Rt+1kt+1 + bt+1 (A.14)

which implies

x+,t+1 = R+,t+1kt+1 + bt+1 (A.15)

x−,t+1 = R−,t+1kt+1 + bt+1 (A.16)

so that

kt+1 =
x+,t+1 − x−,t+1

R+,t+1 −R−,t+1
(A.17)

From this we can identify kt+1 and bt+1 corresponding to future wealth holdings. If

they both satisfy the constraint, this step is complete. Otherwise, adjust the values to

satisfy the constraint.

5. These functions map capital and bond holdings to the exogenous grid of future wealth

after interest. But these variables also determine the current wealth not consumed,

and together with the standard inter-temporal Euler condition, which yields current

consumption, identify the endogenous grid of current wealth levels that correspond to

expected future wealth levels.

6. Finally, having identi�ed the current wealth corresponding to each future current wealth

level, and the corresponding split between capital and bonds, the algorithm has arrived

at kt+1 and bt+1 as functions of xt.

A.3.1 Impact on Simulation Methodology

It should be noted that this approach yields policies for capital and bonds carried over at the

end of the period in terms of household wealth after interest held at the beginning of the

186

period. Because, during simulation, the wealth after interest in t + 1 can only be calculated

knowing Rt+1, simulation is much more onerous in this model than in the benchmark model.

Rather than directly interpolating the household wealth transition function, it is necessary to

interpolate the capital and bond policies, calculate future aggregate capital from the former,

use that to determine the future interest rate and then calculate future household wealth levels

after interest by multiplying the capital with realised returns and adding bonds.

A.4 Dealing with Aggregate Controls

Aggregate controls in the model do not a�ect the mathematics of the algorithm directly, since

they can be substituted out of the equations as is common in other approaches. As outlined in

Chapter 2, however, the algorithm in this paper solves the individual problem conditional also

on the value of the non-state aggregate variable, bond price in this case. One consequence of

this decision is that the implementation of the algorithm must take that variable into account

when performing derivative aggregation.

A.4.1 Performing Derivative Aggregation

The dependence of the individual transition function on the aggregate controls means that,

when the aggregate derivatives are calculated using the formulae derived in Section 3.4, the

resulting derivatives will be speci�c to a particular value of the aggregate controls. The deriva-

tives then need to be adjusted for the dependence of the aggregate controls on the aggregate

states.

To simplify exposition, this section presents the mathematics for a single state and control.

It extends naturally to the case with multiple instance of both variables.

At+1 = H(At, Ct) for some (unknown) function H (A.18)

⇒ dAt+1

dAt
=
∂H

∂A
+
∂H

∂C

dCt
dAt

(A.19)

187

∂H
∂A is the value calculated for

dAt+1

dAt
in the case with no controls, and the second term is

the adjustment for the presence of controls. The �rst multiplicand is the aggregation of the

derivatives of the individual transition as the aggregate control changes.

To derive the second multiplicand, consider that Ct in this case is the equilibrium value.

Taking the derivative of Eq. (2.26) by At yields:

∂EC

∂ω

dωt
dAt

+
∂EC

∂A
+
∂EC

∂C

dCt
dAt

=
dTC

dC

dCt
dAt

(A.20)

⇒ dCt
dAt

=
∂EC

∂ω
dωt
dAt

+ ∂EC

∂A

dTC

dC −
∂EC

∂C

(A.21)

Here,
dwt
dAt

has already been calculated to perform derivative aggregation without controls,

the derivatives ofEC are aggregations of the derivatives of the individual control policy func-

tions, aggregated over ωt, and TC is a known function so that the derivative can easily be

calculated.

Substituting Eq. (A.21) into Eq. (A.19) yields the full formula for calculating the deriva-

tive of the future aggregate with respect to the current aggregate when control variables are

present.

Moreover, the result of Eq. (A.21) is also used to calculate the expected future control values

from the expected future aggregate values.

A.5 Metrics

The metrics uses to assess how closely the agents’ forecasts �t actual outcomes are taken from

Den Haan (2010b).

A.5.1 Aggregate Error

The �rst metric performs two simulations: �rst, a distribution of individuals is simulated over

the 10000 periods, and the aggregates arrived at are calculated. Then the same sequence of

188

shocks is used to generate a time series of aggregates implied purely by the aggregate forecast

rule provided in the solution, starting from the same aggregate state. This second time series

is e�ectively what the agents in period 1 would forecast up to 10000 periods ahead, given a

known shock sequence, whilst the �rst time series provides the actual outcomes. The mean

and maximum percentage di�erence between these time series provide a good indication of

how well the aggregate transition rule forecasts the economy over long time horizons.

A.5.2 Dynamic Euler Equation Error

The second test, generating the Dynamic Euler Equation Error, is performed in conjunction

with the �rst simulation described above. During this simulation, a sample individual is sim-

ulated using two methods: �rst, using the individual transition rule from the solution. Then

by using that rule only to calculate the conditional expectation of future consumption, and

deriving current consumption and hence future wealth directly from the Euler equation and

the budget constraint. The two time series are again compared. This test indicates how well

the individual decision rule derived matches the actual decisions that agents would take if they

solved the problem in each period.

189

B
Matching

B.1 Solving the Consumption Problem

The representative family’s consumption problem is

max
{ci,t}1i=0

(∫ 1

0
εi,t(ci,t + φ)

γ−1
γ di

) γ
γ−1

s.t. It =

∫ 1

0
ci,tpi,tdi (B.1)

The Lagrangian for this problem is

190

L =

(∫ 1

0
εi,t(ci,t + φ)

γ−1
γ di

) γ
γ−1

+ λt

(
It −

∫ 1

0
ci,tpi,tdi

)
(B.2)

yielding �rst order conditions with respect to each ci,t of

dL
dci,t

= 0⇒ γ

γ − 1

(∫ 1

0
εi,t(ci,t + φ)

γ−1
γ di

) 1
γ−1

εi,t
γ − 1

γ
(ci,t + φ)

− 1
γ − λtpi,t = 0 (B.3)

Letting

Ct =

(∫ 1

0
εi,t(ci,t + φ)

γ−1
γ di

) γ
γ−1

(B.4)

this reduces to

pi,t = λ−1t εi,t

(
Ct

ci,t + φ

) 1
γ

(B.5)

But then:

(ci,t + φ)pi,t = λ−1t εi,tC
1
γ

t (ci,t + φ)
1− 1

γ (B.6)

⇒
∫ 1

0
(ci,t + φ)pi,t di =

∫ 1

0
λ−1t εi,tC

1
γ

t (ci,t + φ)
1− 1

γ di (B.7)

⇒ It + φ

∫ 1

0
pi,t di = λ−1t C

1
γ

t

∫ 1

0
εi,t(ci,t + φ)

1− 1
γ di (B.8)

⇒ It + φPt = λ−1t C
1
γ

t C
γ−1
γ

t (B.9)

where Pt =

∫ 1

0
pi,t di (B.10)

⇒ λ−1t =
It + φPt
Ct

(B.11)

191

Substituting this into Eq. (B.5) leads to

pi,t =
It + φPt
Ct

εi,t

(
Ct

ci,t + φ

) 1
γ

(B.12)

B.2 A ‘Wider’ Shock Distribution

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ●

0 2 4 6 8

0.
00

0.
02

0.
04

0.
06

Demand

P
ro

po
rt

io
n

of
 F

ir
m

s

●●●●●●●
●●
●●
●
●
●
●
●
●

●

●

●

●

●
●
●
●●●●●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Firm Size

P
ro

po
rt

io
n

of
 F

ir
m

s

Figure B.1: Firm Distributions with 51 Demand Levels

192

	Contents
	List of Tables
	List of Figures
	Introduction
	Does heterogeneity matter?
	Dynamic Stochastic General Equilibrium Models
	Investigating the Impact of Heterogeneity
	Developing the Techniques

	Accompanying Code

	The ModelSolver Toolkit
	The Benchmark Model
	The Production Technology
	Households
	The State of the Economy
	Uncertainty and Insurance Markets
	The Solution

	Concepts and Algorithms
	Bounded Rationality and Approximate Aggregation
	Alternating Solution
	Interleaved Iteration
	Rectangular Grid Approximation

	The Numerics Library
	Multi-Threading
	DoubleArray
	Interpolation

	The ModelSolver Library
	How to Solve a Model
	ModelRunner
	ModelConfig
	Model
	IndividualProblemSolver
	AggregateProblemSolver
	State

	Algorithms
	The Method of Endogenous Gridpoints
	Derivative Aggregation
	The Algorithm of krusell1998income
	Simulating Heterogeneous Agent Models
	Aggregate Controls

	Evaluating the ModelSolver Toolkit
	The Deterministic Solution with Identical Households
	Complete Markets with Aggregate Uncertainty
	Incomplete Markets with Aggregate Uncertainty

	Future Work
	Additional Algorithms
	Function Objects
	Porting to Other Technologies

	Conclusion

	Finding the Forecasting Function by Derivative Aggregation
	Assumptions
	The Individual Policy Function
	The Set of Feasible Distributions

	Solving the Benchmark Model
	The Problem
	A Straightforward Approximation
	Exact Aggregation
	Approximate Aggregation
	A Graphical Illustration with Two Households
	Returning to the Full Distribution
	Choosing a Curve
	Assessing Performance and Accuracy

	Some Experiments to Improve the Solution
	Discovering a Reference Distribution by Simulation
	Discovering a Transformation by Comparing Distributions
	A Second-Order Approximation

	Generalising the Approach
	A Brief Digression on Notation
	A Generic Model
	The Forecasting Function
	The Overall Approach
	The Mathematics
	Exogenous Aggregates
	Higher-Order Approximations

	Adding a One-Period Bond
	The Extended Model
	Solving the model
	Calibration
	The Distribution for Derivative Aggregation
	The Solution

	Discussion
	Derivative Aggregation and Approximate Aggregation
	When Approximate Aggregation Does Not Hold
	Finding Appropriate Curves
	Other Limitations
	Implementation

	Conclusion

	Matching with Heterogeneous Firms
	Introduction
	Related Literature
	Model
	In Relation to Literature
	A Brief Preview
	Firms
	People
	The Employment Relationship

	The Solution
	The Firms' Problem
	The Sign-Up Bonus
	Size Adjustment Costs

	Computing the Solution
	The Variable Grid
	The Firms' Problem
	The Steady State With No Aggregate Uncertainty
	Computing the Transition Path

	Parameters
	Results
	Aggregate Outcomes
	The Distribution of Firms
	Firms' Policies and Outcomes
	A Change in Tax Policy

	Discussion And Further Work
	Entry and Aggregate Shocks
	Further Work

	Discussion
	The ModelSolver Toolkit
	Computational Performance
	Ease of Use
	Comparable Solutions
	Potential Improvements

	Derivative Aggregation
	Efficiency
	Few Constraints
	Theoretical Insight

	Matching, Bargaining and Heterogeneous Agents

	Bibliography
	Appendices
	Derivative Aggregation
	Mathematical Appendix
	Proof of da:thm:derivAgg

	Extension to 2nd derivative
	Deriving d2i,trdth dtk

	Solving the Individual Problem with Bonds
	Impact on Simulation Methodology

	Dealing with Aggregate Controls
	Performing Derivative Aggregation

	Metrics
	Aggregate Error
	Dynamic Euler Equation Error

	Matching
	Solving the Consumption Problem
	A `Wider' Shock Distribution

