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Abstract

In this thesis we treat a number of topics related to generation of finite groups with motivation

from their action on surfaces. The majority of our findings are presented in two chapters which

can be read independently. The first deals with Beauville groups which are automorphism groups

of the product of two Riemann surfaces with genus g > 1, subject to some further conditions.

When these two surfaces are isomorphic and transposed by elements of G we say these groups are

mixed, otherwise they are unmixed. We first examine the relationship between when an almost

simple group and its socle are unmixed Beauville groups and then go on to determine explicit

examples of several infinite families of mixed Beauville groups. In the second we determine the

Möbius function of the small Ree groups

2G2(3
2m+1

) = R(3

2m+1
), where m � 0, and use this to

enumerate various ordered generating n-tuples of these groups. We then apply this to questions

of the generation and asymptotic generation of the small Ree groups as well as interpretations in

other categories, such as the number of regular coverings of a surface with a given fundamental

group and whose covering group is isomorphic to R(3

2m+1
).
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Notation & Preliminaries

Groups and subsets of groups will be denoted with upper case italicised Latin or Greek script or

modern script font, G, H, �, C etc., whereas surfaces will be denoted with a cursive script font,

S , C , etc. Unless otherwise stated, groups appearing in definitions and results will be arbitrary.

Elements of a group are denoted with lower case italicised Latin script. For a group G and elements

x, y 2 G the inverse of x is denoted x�1, the conjugate of x by y is denoted xy = y�1xy and the

commutator of x and y is [x, y] = x�1y�1xy. We write H 6 G when H is a subgroup of G and

H < G if in addition H 6= G. If H is a normal subgroup of G we write H C G. The index of H in

G is denoted [G : H]. If S ✓ G is a subset of elements of G we write hSi to mean the subgroup of G

generated by the elements of S.

We use the following conventions for notation of elements of certain families of groups. The cyclic

group of order n is denoted Cn or more often simply as n, as in [27], when no confusion can arise.

We write Dn for the dihedral group of order n and Fn for the free group on n generators. We

follow [27] in using Artin’s single letter notation, Ln(q), Un(q), etc. for the simple classical groups.

We do this to avoid confusion between the frequently used notation for the alternating groups An

and the Chevalley notation for the simple linear groups An(q) and the simple unitary groups 2An(q).

This does introduce the similar notation Sn for the symmetric group on n letters and Sn(q) for the

simple symplectic group in dimension n, however it should be clear from the context which we mean.

We make use of ATLAS [27] notation throughout. References to conjugacy classes of groups

follows the ATLAS convention so that nX is a conjugacy class of elements of order n, labelled by a

letter X and ordered alphabetically in decreasing order by their centraliser order. Where we write,

for example in the case of L
2

(8) [27, p.6], 7ABC, we mean the union of conjugacy classes 7A, 7B

and 7C. Where we refer to the standard generators of a group we mean in the sense of [118]. These

are taken from [125] and were used extensively for calculations via their GAP package [124]. For two

groups, G,H, we denote the set of epimorphisms from G to H by Epi(G,H). Similarly, we denote

the set of homomorphisms from G to H by Hom(G,H). We say that a group G is n-generated if

there exists a subset S ✓ G of size n such that hSi = G, but no subset T ✓ G of size n� 1 such that

hT i = G. Equivalently, G is n-generated if Epi(Fn, G) 6= ? and Epi(Fn�1

, G) = ?.

10



Chapter 1

Introduction

The topics of this thesis are questions related to generation of finite groups with applications to

the theory of surfaces. In Chapter 2 we determine the existence and non-existence of almost simple

unmixed Beauville groups and the existence of a number of new infinite families of mixed Beauville

groups both of which arise from the construction of Beauville surfaces. In Chapter 3 we determine

the Möbius function of the small Ree groups, which, for a given small Ree group R(q) can be used

to determine the number of regular coverings of a topological space with covering group isomorphic

to R(q). We now discuss these topics in the context from which they arise.

1.1 Beauville groups

The study of Beauville surfaces and Beauville groups is split between algebraic geometers and group

theorists respectively. The author is not a specialist in algebraic geometry and we mostly consider

the group-theoretic point of view in this thesis, however, since their origin is from the algebraic

geometric point of view, the author feels this aspect should not be overlooked.

Beauville surfaces were introduced by Catanese in 2000 [20] motivated by an exercise given

by Beauville [12, Exercise X.13 (4)]. They were initially defined by Catanese [20, Definition 3.23]

as “rigid surfaces isogenous to a higher product” and their initial interest was to serve as “cheap

counterexamples to the Friedman–Morgan speculation” [9, p.3]. They are a class of surfaces of general

type, which is to say that they satisfy a technical condition that we shall not state here. We refer the

interested reader to [12, Chapters VII–IX] and [65, Section V.6] for the necessary algebraic geometric

background and an overview of the Enriques–Kodaira classification of surfaces to which this class

belongs. Furthermore we direct the interested reader to the various survey articles from the algebraic

geometric point of view that exist on Beauville surfaces [5, 9, 10]. In addition, there are a number of

survey articles covering the group theoretic aspect such as [16, 41,42,68].

We do not assume the definition of the terms “rigid” or “isogenous to a product” and so we take

as our definition that given by Bauer, Catanese and Grunewald in [6] which incorporates definitions

11



of these terms and also clarifies the di↵erence between unmixed and mixed Beauville surfaces.

Definition 1.1. A Beauville surface is a rigid surface which is isogenous to a product. That is,

a surface S = (C
1

⇥ C
2

)/G where for i = 1, 2,

1. Ci is a complex algebraic curve of genus at least 2,

2. G is a finite group acting freely on the product C
1

⇥ C
2

and faithfully on each Ci and

3. Ci/G ⇠= P1(C) with the projection Ci ! Ci/G ramified at 3 points.

The two cases are then as follows.

• Unmixed type — where the action of G does not interchange the two curves, and

• Mixed type — where C
1

and C
2

are isomorphic, the action of G interchanges the two factors

and G contains an index 2 subgroup, G0, not interchanging the factors.

Another reason for their interest arises from condition 3 of Definition 1.1 which, due to a cele-

brated theorem of Bely̆ı [14, Theorem 4], implies that the curves C
1

and C
2

can be defined over Q.

This then allows us to observe the behaviour of Beauville surfaces under the action of the absolute

Galois group, Gal(Q/Q). A number of interesting results in this direction have been obtained by

González-Diez and Torres-Teigell in [59] and extended by González-Diez, Jones and Torres-Teigell

in [58]. We highlight the connection to dessins d’enfants since the results of Chapter 3 also apply to

them.

These geometric definitions can then be expressed purely in group-theoretic terms and Catanese

already observes in [20] that “Classifying all the Beauville surfaces is then a problem in group theory.”

We begin by defining the following subset of a group, G.

Definition 1.2. Let G be a finite group. For x, y 2 G we denote by
P

(x, y) the set

X
(x, y) =

[

g2G

|G|[

i=1

{(xi)g, (yi)g, ((xy)i)g}.

Remark 1.3. It is common in the literature to see this set expressed in a variety of di↵erent but

equivalent forms.

1.1.1 Unmixed Beauville groups

The geometric conditions in Definition 1.1 can then be translated into the group-theoretic definition

of an unmixed Beauville group given in [6, Definition 3.1] as the following.

Definition 1.4. For G, a finite group, if there exists x
1

, y
1

, x
2

, y
2

2 G such that

1. hx
1

, y
1

i = hx
2

, y
2

i = G and

2.
P

(x
1

, y
1

) \P
(x

2

, y
2

) = {1},

12



then we say that (x
1

, y
1

;x
2

, y
2

) is an unmixed Beauville structure for G and that G admits

an unmixed Beauville structure, or simply that G is an unmixed Beauville group.

Remark 1.5. The connection between the geometric definition and the group-theoretic definition is

roughly as follows. Condition 1. in Definition 1.4 corresponds to Condition 3. in Defintion 1.1. The

vital connection is that if a finite group is 2-generated then it is a quotient of F
2

, the free group on

2-generators, which is the fundamental group of the thrice-punctured Riemann sphere. Condition 2.

in Definition 1.4 corresponds to the condition that G acts freely on the product C
1

⇥ C
2

. A more

precise account of the motivation behind this definition is given in [6, 7, 9,21].

Mixed Beauville groups are defined in an analogous way but, since their definition is a little more

involved, we postpone its statement until Chapter 2.

In the unmixed case Catanese proves in [20, Lemma 3.21] that the only abelian unmixed Beauville

groups are the groups Cn⇥Cn where n > 1 is coprime to 6, the case n = 5 being Beauville’s original

example as mentioned above. This then motivates the classification of non-abelian unmixed Beauville

groups. In the same paper [6, Section 5.4] Bauer, Catanese and Grunewald prove that the smallest

non-abelian simple group, the alternating group A
5

, is not an unmixed Beauville group, but for large

n, An does admit an unmixed Beauville structure [6, Proposition 3.8]. In a later paper [7, Theorem

7.19] the same authors prove that the symmetric group Sn for n � 7 also admits an unmixed

Beauville structure, although it relies on their proof of [7, Lemma 7.27] which does not hold in the

case n = 7. These results were improved by Fuertes and González-Diez who prove that An is an

unmixed Beauville group if and only if n � 6 [49, Theorem 1] and that Sn is an unmixed Beauville

group for n � 5 [49, Theorem 3]. Fuertes and González-Diez in fact prove something stronger, that

An for n � 7 and Sn for n � 5 admit “strongly real” Beauville structures, which we shall not define

here.

Remark 1.6. It should be noted that the generators given for S
8

in [49, Proposition 9] contain a

typo which appears to have first been picked up in [41] where it is also resolved.

Following their results, Bauer, Catanese and Grunewald then conjectured [6, Conjecture 1] that

with the exception of A
5

all non-abelian finite simple groups admit an unmixed Beauville structure.

This conjecture was verified for various families of non-abelian finite simple groups: the alternating

groups, as mentioned above; the families PSL
2

(q), Sz(2n) and R(3n) by Fuertes and Jones [51],

before being proved for su�ciently large non-abelian finite simple groups by Garion, Larsen and

Lubotzky [54]. These results were then extended to all non-abelian finite simple groups (except for

A
5

) by Guralnick and Malle [62] (using di↵erent methods to those of Garion, Larsen and Lubotzky)

and independently by Fairbairn, Magaard and Parker [45], who also extend these results to all non-

abelian finite quasi-simple groups, except for A
5

and SL
2

(5).

The case of almost simple unmixed Beauville groups, however, has been little explored. The only

known families of non-simple almost simple groups admitting Beauville structures are the afore-
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mentioned symmetric groups, the groups PGL
2

(q) with q � 5 [53, Theorem E] and the non-simple

almost simple groups with socle isomorphic to a sporadic group, except for 2F
4

(2) [43, Theorem 20].

1.1.2 Mixed Beauville groups

Examples of mixed Beauville groups in general seem to be much more elusive. In order to have an

element of order 2 interchanging our curves, all p-groups where p 6= 2 are immediately ruled out.

Furthermore, the requirement of having an index 2 subgroup rules out all simple groups except for

the cyclic group of order C
2

which is visibly not a mixed Beauville group. Furthermore, Bauer,

Catanese and Grunewald also show in [6, Theorem 4.3] that such an index 2 subgroup must be

non-abelian. Fuertes and González-Diez [49, Lemma 5] proved the following and used it to show that

the symmetric groups were also not mixed Beauville groups, but it also prohibits a number of other

families of almost simple groups.

Lemma 1.7. Let (C ⇥C )/G be a Beauville surface of mixed type and G0 the subgroup of G consisting

of the elements which preserve each of the factors; then the order of any element g 2 G\G0 is divisible

by 4.

Remark 1.8. Any group isomorphic to H where G 6 H 6 Aut(G) for G a non-abelian finite simple

group where Out(G) has odd order, such as the Suzuki, small Ree or large Ree groups, is also ruled

out from being a mixed Beauville group. However G = P⌃L
2

(p2) with p prime is not excluded by

this result.

More generally, Bauer, Catanese and Grunewald show [8] that the smallest mixed Beauville group

has order 28, and additionally that, of the 56092 groups of order 28, only two of them are mixed

Beauville groups. However, their method is less instructive since it is precisely to check computa-

tionally every group of order  28. Barker, Boston, Peyerimho↵ and Vdovina construct five new

examples of mixed Beauville 2-groups in [3] and an infinite family in [4]. As far as the author is

aware the aforementioned examples account for all previously known mixed Beauville groups. Aside

from these, Bauer, Catanese and Grunewald give a construction in [6] which reduces the problem of

finding mixed Beauville groups to finding a pair of generating triples for a particular subgroup, H,

subject to some modest constraints. The only examples they give are for An when n is large, and

SL
2

(p) for p 6= 2, 3, 5 or 17 [6, Proposition 4.6] although their argument also does not apply when

p = 7.

1.1.3 Results

In Chapter 2 with respect to unmixed Beauville groups, we investigate the following. What is the

relationship between non-abelian finite simple groups admitting an unmixed Beauville structure,

depending on whether their socle admits an unmixed Beauville group. A sample of these findings

are presented in the following table.
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G unmixed Aut(G) unmixed

G Beauville? Beauville?

A
5

⇥ X

A
6

X ⇥
An, n � 7 X X

L
2

(p), p odd X X

L
2

(p2), p odd X ⇥
Sz(82m+1) X ⇥
R(2432m+1) X ⇥

In particular, we find that there is little relationship between such a group and its socle, the pro-

totypical example being the case of the alternating group A
6

. As we shall see, of the five di↵erent

isomorphism types of groups with socle isomorphic to A
6

we find that A
6

, S
6

⇠= P⌃L
2

(9) and

PGL
2

(9) are unmixed Beauville groups, whereas L
2

(9)˙2 ⇠= M
10

and Aut(A
6

) ⇠= P�L
2

(9) are not.

We also determine a number of criteria that ensure a non-abelian finite almost simple group does

not admit an unmixed Beauville structure.

In the case of mixed Beauville groups, we determine a number of infinite families of new examples

of mixed Beauville groups. In order to do this, we introduce the definition of a “mixable Beauville

structure”, motivated by a construction of mixed Beauville groups due to Bauer, Catanese and

Grunewald, and show that given a mixable Beauville structure on a group, G, there is a natural way

of building a mixed Beauville group from this structure. We then prove the following.

Theorem 1.9. If G belongs to any of the following families of finite simple groups,

• the alternating groups, An, for n � 6,

• the projective special linear groups, L
2

(q), for q � 7 odd,

• the projective special linear groups, L
3

(q), for q � 2

• the projective unitary groups, U
3

(q), for q � 3,

• the projective symplectic groups, S
4

(q), for q � 3,

• the Suzuki groups, Sz(22m+1), for m � 1,

• the small Ree groups, R(32m+1), for m � 1,

• the exceptional groups, G
2

(q), for q � 3,

• the large Ree groups, 2F
4

(22m+1), for m � 1,

• the Steinberg triality groups, 3D
4

(q), for q � 2,

• the sporadic groups, or the Tits group 2F
4

(2)0,
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then G is a mixable Beauville group. In addition, if G belongs to any of these families, or is equal to

L
2

(2n) for n � 3, then G⇥G is a mixable Beauville group.

Remark 1.10. A necessary condition for a group G to admit a mixable Beauville structure is that

G can be generated by a pair of elements of even order. The case of L
2

(2n) is a genuine exception

which we treat in Section 2.5.1.

1.2 The Möbius function of a group

The Möbius function of a finite group has its origins in the generalised enumeration principle due

to Weisner [115] first and shortly followed by Hall’s independent discovery in [63]. Whereas Weisner

conisdered the problem in more generality, Hall was primarily concerned with Möbius inversion in

the lattice of subgroups of a finite group and so we mostly refer to Hall’s work. The motiviating

problem of [63] was to enumerate the number of ordered tuples of elements of a finite group, G,

which also generate G. We begin with the following definition.

Definition 1.11. Let G be a finite group and H 6 G a subgroup of G. Let X = {x
1

, . . . , xn} be an

ordered n-tuple of elements of G, satisfying a finite, possibly empty, family of relations, fi(X) = 1,

and let � = hX | fi(X)i. We call a summatory function of H the function �
�

(H) which counts

the number of ordered n-tuples of H satisfying the relations fi(X), and an Eulerian function of

H, �
�

(H), the function counting the number of such n-tuples which in addition generate H. In the

case where X has size n and there are no other relations, i.e. when � ⇠= Fn, we write �n(H) and

�n(G) for our summatory and Eulerian functions respectively.

The principle Hall uses is then as follows. For a finite group, G, given an n-tuple of elements of

G, they will generate a subgroup H 6 G, not necessarily equal to G. From this we can write the

following

�n(G) =
X

H6G

�n(H).

Since these are two functions defined on a lattice and taking values in an abelian group, we are able

to use Möbius inversion to give

�n(G) =
X

H6G

�n(H)µG(H)

where the Möbius function µG(H) is given by the formula

X

K>H

µG(K) =

8
>><

>>:

1 if H = G

0 otherwise.

Definition 1.12. The function µG(H) is called the Möbius function of H. We refer to the

collection of µG(H) for all H 6 G as the Möbius function of G and µG(1) as the Möbius

16



number of G. The inversion formula for G is the general form of the Eulerian function

�(G) =
X

H6G

�(H)µG(H)

where �(H) stands for the summatory function of H.

Remark 1.13. In the case that G is a cyclic group, �
1

(G) is precisely the Euler totient function

�(|G|). We denote this as usual by �(n) for a positive integer n.

A priori, it seems as though we might have to work through the entire subgroup lattice of G,

but since it is clear that µG(H) = µG(H 0) if H and H 0 are conjugate in G, we need only determine

µG(H) on a set of conjugacy class representatives of subgroups. In fact, due to the following theorem

of Hall, we need only determine µG(H) on a set of conjugacy class representatives of subgroups which

occur as the intersection of maximal subgroups.

Theorem 1.14 (Hall). If H 6 G then µG(H) = 0 unless H = G or H is an intersection of maximal

subgroups of G.

The theory of Möbius functions and enumeration in a general poset was later developed exten-

sively by Rota in [99] and this was shortly followed by a paper due to Crapo [29] which extends

Rota’s work by introducing the use of complements. In the specific case of the Möbius function of a

finite group we also draw the reader’s attention to the works of Kratzer and Thévenaz [75], Hawkes,

Isaacs and Özaydin [66] and Pahlings [90].

In general, determining the Möbius function of a finite group is a lengthy process, however,

a number of results are known which facilitate its determination. One must have a large amount

of information about the subgroup structure of G, including knowledge of its classes of maximal

subgroups. The following, which can already be found in Weisner [116, Theorem 1], is an immediate

consequence of the fact that if N is a normal subgroup of G, the subgroup lattice of the quotient

G/N is in bijective correspondence with the lattice of subgroups of G containing N .

Theorem 1.15 (Weisner, 1935). Let G be a group and let N C G be a normal subgroup of G. Then

µG(N) = µG/N (1).

In the case thatG is a soluble group, Kratzer and Thévenaz take this idea to its extreme conclusion

by relating µG(H) to the complements of factors of a fixed chief series of G [75, Theorem 2.6]. In

the case of nilpotent groups specifically, a combination of results due to Weisner [116, Section 3] and

Hall [63, Sections 2.7 and 2.8] essentially gives the Möbius function of any nilpotent group. These

results seem to have been reproved independently by Kratzer and Thévenaz in [75, Proposition 2.4],

generalising the work of Delsarte [31].

Theorem 1.16. Let G be a nilpotent group and H 6 G a subgroup of G.
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1. If H is not a normal subgroup of G, then µG(H) = 0.

2. If H C G and G/H is not a product of elementary abelian groups, then µG(H) = 0.

3. If H C G and

G/H =
rY

i=1

Cni
pi

(with pi prime), then

µG(H) =
rY

i=1

(�1)nip
(ni

2 )
i .

Remark 1.17. Kratzer and Thévenaz cite Rota and Delsarte in their paper, but neither Kratzer

and Thévenaz nor Delsarte make mention of the work of Weisner or Hall.

As well as the lattice of subgroups of a finite group, G, one can also consider the poset of conjugacy

classes of subgroups of G with ordering determined as follows. If [H] and [K] are conjugacy classes

of subgroup of G we have [H]  [K] if and only if K contains a conjugate of H in G. The Möbius

function of this poset is usually written �G(H) and the following result due to Pahlings [90] generalises

an earlier result due to Hawkes, Isaacs and Özyadin [66, Theorem 7.2].

Theorem 1.18. If G is a soluble group and H a subgroup, then

µG(H) = [NG0(H) : H \G0]�G(H).

Remark 1.19. As mentioned in [90], it was conjectured by Isaacs that this also holds in the case that

G is not soluble, however counterexamples were shown to exist by Bianchi, Mauri and Verardi [15].

Kratzer and Thévenaz also prove the following result which has implications for the Möbius

number of G [75, Theorem 3.1].

Theorem 1.20. If G is a group and H 6 G, then

µG(H)
[G : G0]

0

[NG(H) : H]
2 Z

where, for a positive integer n, n
0

is the largest positive divisor of n without square factors. In

particular, µG(1) is a multiple of |G|/[G : G0]
0

.

However, as they point out at the end of their paper: “It results from Theorem 3.1 that µG(1)

is a multiple of |G| if G is perfect. For example, µA5(1) = 60 = |A
5

|, µA6(1) = 720 = |A
6

|, but
µL2(7)

(1) = 0. Thus, contrary to the case of soluble groups, the behaviour of the Möbius function of

simple groups seems more di�cult to comprehend.” Their interest in Möbius numbers stems from two

sources: idempotents in the Burnside ring and their relation with certain homology groups, however,

that is not to say the two are not connected cf. the work of Bouc [17]. We note that the connection
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between Möbius numbers and Lefschetz numbers is also considered in Shareshian’s thesis [101] to

which we direct the interested reader, particularly, the reader who does not read French.

The connection to the Burnside ring of a group, G, is related via the table of marks of G, originally

introduced by Burnside [19], whose definition [90] we recall.

Definition 1.21. Let G be a group, let n be the number of conjugacy classes of subgroups of G and

fix a set of conjugacy class representatives of subgroups of G {H
1

= 1, H
2

, . . . , Hn = G} ordered such

that |Hi|  |Hj | when i  j. The table of marks of G is the n⇥n matrix where the (i, j)-the entry

is |FixG/Hi
(Hj)| where

FixG/Hi
= {gHi | g 2 G, xgHi = gHi for all x 2 Hj}.

As one might expect, there is a deep connection between the Möbius function of G and the table

of marks of G [90, 91]. This relationship then extends to properties of the Burnside ring of G for

which we direct the interested reader to the aforementioned paper of Kratzer and Thévenaz [75]

and Solomon [106]. Their relation to the homology and homotopy comes from considering the lattice

of subgroups of a finite group, G, as a simplicial complex. For more on the algebraic topological

considerations we direct the reader to the aforementioned papers and the references therein.

1.2.1 Applications of the Eulerian functions of a group

The Eulerian functions of a group are of natural interest to group theorists since they can be used

to answer questions of generation of G. However, the scope of this function was first broadened, as

far as the author is aware, through the work of Downs and Jones [33–38] in their application of it to

other categories. Recall the observation that for a finitely presented group, �, the Eulerian function

�
�

(G) counts the number of epimorphisms from � into G. A generating n-tuple of G satisfying the

relations of � is called a �-basis of G and corresponds to a normal subgroup N C � whose quotient

�/N ⇠= G. Hall shows [63, Theorem 1.4] that since the automorphism group of G acts semiregularly

on �-bases of G, the number of distinct normal subgroups N C � whose quotient is isomorphic to G

is given by d
�

(G) = �
�

(G)/|Aut(G)|.
Following this line of reasoning, Downs and Jones observed that if the normal subgroups of �

were in one-to-one correspondence with the regular objects of some category, K, then d
�

(G) could

be used to count the number of distinct regular objects in that category whose automorphism group

is isomorphic to G. For example, if X is a topological space with covering space X̃ and fundamental

group ⇡
1

(X) ⇠= �, then d
�

is the number of distinct regular covers of X having covering group

isomorphic to G [37].

One important case is when X is the thrice-punctured Riemann sphere P1(C) \ {0, 1,1} which

has ⇡
1

(X) ⇠= F
2

, the free group on 2 generators, and which, through Grothendieck’s dessins d’enfants

programme [61], is also related to the absolute Galois group. The quantity d
2

(G) then counts the
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number of distinct regular dessins having automorphism group isomorphic to G.

A number of other categories of maps are considered by Downs and Jones in [36]. In addition,

Jones uses a partial Möbius function of the small Ree groups to show that they are Hurwitz groups

for all q > 3 [67]. These were independently proved to be Hurwitz groups for all q > 3 originally

by Malle [83] using di↵erent techniques. In addition to this, Downs and Jones determine Eulerian

functions corresponding to Hecke groups, such as the modular group PSL
2

(Z), and apply them to

the problem of probabilistic generation of groups in [37].

1.2.2 Results

As far as the author is aware, the only families of finite simple groups for which the Möbius function

is known are as follows. The Möbius function of the simple groups L
2

(p), for p � 5, were originally

determined by Hall [63]. This was extended to the Möbius function of L
2

(q) and PGL
2

(q), for all

prime powers q � 5, by Downs [33]. Recently, Downs and Jones [38] have determined the Möbius

function for the simple Suzuki groups Sz(22m+1), where m > 0. It seems natural to then determine

the Möbius function of the small Ree groups, R(q), where q � 3 and the following is our main result

of Chapter 3.

Theorem 1.22. Let G = R(3n) be a simple small Ree group for a positive odd integer n > 1. If

H 6 G, then µG(H) = 0 unless H belongs to one of the following classes of subgroups of G.

Isomorphism for h|n
type of H 6 G and s.t. [G : NG(H)] µG(H)

R(3h) – |G|/33h(33h + 1)(3h � 1) µ(n/h)

3h +
p
3h+1 + 1: 6 – |G|/6(3h +

p
3h+1 + 1) �µ(n/h)

3h �
p
3h+1 + 1: 6 h > 1 |G|/6(3h �

p
3h+1 + 1) �µ(n/h)

(3h)1+1+1 : (3h � 1) – |G|/33h(3h � 1) �µ(n/h)

2⇥ L
2

(3h) h > 1 |G|/3h(32h � 1) �µ(n/h)

2⇥ (3h : 3

h�1

2

) h > 1 |G|/3h(3h � 1) µ(n/h)

(22 ⇥D
(3

h
+1)/2) : 3 h > 1 |G|/6(3h + 1) �µ(n/h)

22 ⇥D
(3

h
+1)/2 h > 1 |G|/6(3h + 1) 3µ(n/h)

2⇥ L
2

(3) – |G|/24 �2µ(n)

23 – |G|/168 21µ(n)

In addition to this we determine the Möbius function for R(3) and use these results to derive a

number of Eulerian functions for R(q) which we use to prove a number of results on generation and

asymptotic generation of the small Ree groups.
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Chapter 2

Beauville groups

In order to determine Beauville structures of either kind for a finite group G we give the following

definitions and lemmas which will be integral to our discussions. The following will be key.

Definition 2.1. Let G be a finite group and let x, y, z 2 G. A generating triple for G is a triple

(x, y, z) 2 G⇥G⇥G such that

1. xyz = 1, and;

2. hx, y, zi = G.

The type of a generating triple (x, y, z) is the triple (o(x), o(y), o(z)) and we define ⌫(x, y) :=

o(x)o(y)o(xy). If in addition we have that

1

o(x)
+

1

o(y)
+

1

o(z)
< 1,

then we say that (x, y, z) is a hyperbolic generating triple for G.

Remark 2.2. Bauer, Catanese and Grunewald prove in [6, Proposition 3.2] that, if a group G

admits an unmixed Beauville structure (x
1

, y
1

;x
2

, y
2

), then the generating triple (xi, yi, (xiyi)�1),

for i = 1, 2, must be hyperbolic.

Definition 2.3. Let G be a group and let (xi, yi, zi) be a generating triple for G for i = 1, 2. We call

these two triples equivalent if there exists an automorphism g 2 Aut(G) such that xg
1

= x
2

, yg
1

= y
2

and zg
1

= z
2

. If a pair of triples for G are not equivalent, they are inequivalent.

Remark 2.4. We recall from [63] that in order to find a generating triple for Gn, it is su�cient to

find n inequivalent generating triples for G.

We now prove a series of lemmas which will aid us in determining the generation or non-generation

of finite groups.

Lemma 2.5. Let G be a group. If (x, y, z) is a generating triple for G, then so are (y, z, x) and

(y, xy, z).
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Proof. The proof of this follows immediately from the fact that z = y�1x�1 and that xy = y�1xy.

Lemma 2.6. Let G be a group and let (x, y, z) be a generating triple for G. If gcd(o(x), o(y)) = 1,

then ((x, y), (y, xy), (z, z)) is a generating triple for G⇥G.

Proof. By Lemma 2.5, since (x, y, z) is a generating triple for G, then so is (y, xy, z). Then, since

the orders of x and y are coprime, we can generate the elements (x, 1G), (y, 1G), (1G, y) and (1G, xy)

which generate G⇥G.

Remark 2.7. The proof of the preceding lemma naturally generalises to any subset of elements in

a generating set whose orders are mutually coprime.

More generally we can prove the following.

Lemma 2.8. Let G be a group and let (xi, yi, zi) be a generating triple for G of type (li,mi, ni) for

i = 1, 2. If {l
1

,m
1

, n
1

} 6= {l
2

,m
2

, n
2

} then (x
1

, y
1

, z
1

) and (x
2

, y
2

, z
2

) are inequivalent generating

triples.

Proof. This follows from the fact that automorphisms preserve the order of an element.

Structure of the chapter

In Section 2.1 we examine the relationship between an almost simple group and its socle admitting

an unmixed Beauville structure. In Section 2.2 we briefly discuss topological invariants of Beauville

surfaces which can be recovered from their Beauville structure. In Section 2.3 we generalise the

construction due to Bauer, Catanese and Grunewald in [6, Lemma 4.4] of a mixed Beauville structure

that arises from a mixable Beauville structure for a perfect group. In Sections 2.4, 2.5 and 2.6 we

then determine mixable Beauville structures for various families of characteristically simple groups.

The main results of Sections 2.3–2.6 appear in [46].

2.1 Almost simple unmixed Beauville groups

As mentioned in Section 1, Beauville groups are either of unmixed or mixed type. Mixed Beauville

groups are treated in a later section, while in this section we deal exclusively with unmixed Beauville

structures. As such, any reference in this section to Beauville groups or Beauville structures are

understood to mean unmixed Beauville groups and unmixed Beauville structures. We now recall a

few necessary definitions.

Definition 2.9. Let G be a group. A minimal normal subgroup of G is a nontrivial normal

subgroup of G which does not contain any proper nontrivial subgroups which are normal in G. The

socle of G, soc(G), is the subgroup generated by all minimal normal subgroups of G.

Definition 2.10. We say that a group G is almost simple if there exists a non-abelian simple

group, H, such that H 6 G 6 Aut(H).
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We state the following lemma for completeness.

Lemma 2.11. Let G be a group and let H < G. If (x, y, z) is a generating triple for G, then at least

two elements of (x, y, z) must come from G \H.

Proof. Without loss of generality, if x, y 2 H, then z = (xy)�1 2 H and so hx, y, zi 6 H < G. It

follows that at most one element of (x, y, z) can belong to H.

In the following sections we exploit properties of the outer automorphism groups of finite simple

groups of Lie type to show that their corresponding almost simple groups do not admit unmixed

Beauville structures. The outer automorphism groups of the finite simple groups of Lie type can be

found in [120] and are summarised in [27, pg. xvi].

2.1.1 Outer automorphism groups that are not 2-generated

A necessary condition for a group, G, to admit a Beauville structure of unmixed type is that G must

be 2-generated.

Lemma 2.12. Let G be finite group and let N C G. If G/N is n-generated, then G is m-generated

where m � n.

Proof. Let G/N be n-generated and for a contradiction suppose that G is m-generated where m < n.

Let {x
1

, . . . , xm} be a generating set for G. The set {x
1

N, . . . , xmN} is then a generating set for

G/N and so G/N is m-generated, a contradiction, hence m � n.

Corollary 2.13. Let G be an almost simple group. If G/soc(G) is not 2-generated, then G does not

admit an unmixed Beauville structure.

In order to show that an almost simple group, G, does not admit an unmixed Beauville structure,

by the preceding lemma and corollary it su�ces to show that there exists an epimorphic image of

G/soc(G) that is not 2-generated. In particular, in the following we show that the elementary abelian

group of order 8 is an epimorphic image of G. It is clear that this group is not 2-generated, but since

the Möbius function is the subject of Chapter 3, we point out that the Möbius function of 23 can

be determined by hand and used to show that |Epi(F
2

, 23)| = 0, where F
2

is the free group on 2

generators. For a more general result we refer the reader to the discussion in [43, p.55].

Lemma 2.14. If H is a classical group of type

1. Ln(p2f ) with n > 3 even and p 6= 2,

2. O+

2n(p
2f ) with n > 4 even and p 6= 2, or,

3. O+

2n(p
2f ) with n > 4 odd and p 6= 2,

then Aut(H) does not admit an unmixed Beauville structure.
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Proof. IfH is as in case (1), then Out(H) ⇠= 2f⇥D
2d [120, Theorem 3.2] where d = gcd(n+1, p2f�1).

If n and p are odd, then d is even and Out(H) contains a normal subgroup of shape f ⇥ d
2

whose

quotient is isomorphic to 23, which is not 2-generated. By Lemma 2.12, since since 23 is not 2-

generated, neither is Out(H) nor Aut(H).

If H is as in cases (2) or (3), Out(H) ⇠= 2f ⇥D
8

[120, p.75] and contains a normal subgroup of

shape f⇥2 ⇠= f⇥Z(D
8

) whose quotient is isomorphic to 23. As in case (1), this implies that Aut(H)

is not 2-generated.

Remark 2.15. After obtaining this result the author was made aware of the work of Dalla Volta

and Lucchini where they prove this result along with the converse [30, Corollary on p. 195]. Namely,

they show that if an almost simple group is 3-generated, then its socle must be isomorphic to one of

the groups listed in Lemma 2.14.

2.1.2 Non-split extensions

As discussed in Section 1.1, the determination of which alternating and symmetric groups admit

unmixed Beauville structures is due to Bauer, Catanese and Grunewald [6,7] and independently by

Fuertes and González-Diez in [49], apart from the errors discussed in Chapter 1. The automorphism

groups of the alternating groups An when n � 4 are given in [120, Section 2.4.1] and with the

exception of A
6

we have Aut(An) ⇠= Sn and Out(An) ⇠= C
2

. For completeness we mention the

smallest nontrivial alternating group is A
3

⇠= C
3

for which Aut(A
3

) ⇠= Out(A
3

) ⇠= C
2

. In the case of

A
6

there is an exceptional outer automorphism and Out(A
6

) is isomorphic to the Klein four-group,

see [27, p. 4] and the discussion in [120, Section 2.4.2], with full automorphism group isomorphic

to P�L
2

(9). This can be seen from the exceptional isomorphism between A
6

and L
2

(9) [120, p.52],

however this exceptional isomorphism is just as non-obvious. This gives us the following three non-

conjugate maximal normal subgroups of P�L
2

(9) with socle isomorphic to A
6

:

• the symmetric group S
6

⇠= P⌃L
2

(9);

• the projective general linear group PGL
2

(9), and;

• the non-split extension L
2

(9)˙2, isomorphic to the Mathieu group M
10

.

As also previously mentioned, it is known from the work of Garion [53] that PGL
2

(q) is an unmixed

Beauville group for q � 5; but what about M
10

and the general case of the non-split extension of

L
2

(p2n)˙2 for p 6= 2 and n � 1? The following lemma is necessary.

Lemma 2.16. Let G = L
2

(p2n)˙2 for p 6= 2 and n � 1. If g 2 G is an involution, then g 2 soc(G).

Proof. Let N = soc(G) and g 2 G \N be an outer automorphism of N . Note that g is the compo-

sition of a field automorphism of order 2 and a diagonal automorphism. If g is an involution, then

conjugation by g is equivalent to conjugation by the square of an element in PGL
2

(p2n). Since the

square of an element in PGL
2

(p2n) belongs to N , g 2 N .
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Lemma 2.17. If G = L
2

(p2n)˙2 for p 6= 2 and n � 1, then G does not admit an unmixed Beauville

structure.

Proof. Let (x, y, z) be a generating triple for G. By Lemmas 2.5 and 2.11 we can suppose without

loss of generality that x 2 G\L
2

(p2n). Since x has even order, some power of x belongs to the unique

conjugacy class of involutions in G. Hence G cannot admit an unmixed Beauville structure.

Remark 2.18. In the case where p = 2 the only non-trivial outer automorphisms of L
2

(2n), where

n � 1 is either odd or even, come from the field automorphisms. As such, any almost simple group,

G, with socle isomorphic to L
2

(2n) is isomorphic to the semi-direct product L
2

(2n) :m, with m

dividing n. Thus, when m is even there exist involutions in G\soc(G) and hence we cannot extend

the preceding lemmas in this section to the case p = 2. We discuss the case when m is odd in the

following section.

Corollary 2.19. The Mathieu group M
10

does not admit an unmixed Beauville structure.

We can extend this to show that for L
2

(p2n)˙22 for p 6= 2 is not an unmixed Beauville group.

Lemma 2.20. If � = L
2

(p2n)˙22 where p 6= 2 and n � 1, then � does not admit an unmixed

Beauville structure.

Proof. We suggestively denote the normal subgroups of � as follows. Let L ⇠= L
2

(p2n), G ⇠=
PGL

2

(p2n), ⌃ ⇠= L
2

(p2n) : 2 6 P⌃L
2

(p2n) and M ⇠= L
2

(p2n)˙2. By Lemma 2.11 at least two el-

ements of any generating triple for � must come from � \ L. A similar argument applies to each of

G, ⌃ and M . By Lemma 2.5, if (x, y, z) is a generating triple for �, then we can assume x 2 G \ L,
y 2 ⌃ \ L and z 2 M \ L. Finally, by Lemma 2.16, since z 2 M \ L, then some power of z be-

longs to the unique conjugacy class of involutions in L, hence � cannot admit an unmixed Beauville

structure.

Remark 2.21. The preceding lemmas exploit the combination of all involutions being conjugate in

L
2

(q) and there not existing involutions outside of the socle of L
2

(p2n)˙2. In general this situation does

not occur elsewhere with other finite simple groups of Lie type. For instance, the outer automorphism

group of L
3

(9) is the Klein four-group, but each of the three maximal normal subgroups of P�L
3

(9)

are split extensions by a cyclic group of order 2 and contain involutions outside of the socle [27, p.

78].

Remark 2.22. There appears to be little in the literature on the non-split extension of L
2

(p2n),

where p 6= 2. Gardiner, Praeger and Zhou describe them in detail in [52, Section 2] and also prove

that they act 3-transitively on their natural permutation representation of degree q+1 [52, Theorem

2.1]. The first appearance in the literature of their maximal subgroups appears to be due to Giudici

in [56].
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2.1.3 Split extensions

Lemma 2.23. Let G = H : f be an almost simple group with soc(G) = H, f ⇠= Out(H) and f > 1

a positive integer. If the order of H is coprime to f , then G does not admit an unmixed Beauville

structure.

Proof. In order to generate G, at least two elements must come from outside of H by Lemma 2.11

and must generate Out(H). Since cyclic subgroups of prime order dividing f are conjugate in G by

Sylow’s theorems, G does not admit an unmixed Beauville structure.

Remark 2.24. A more general result of the preceding lemma and its proof are due to unpublished

works of Magaard.

For the families of finite simple groups of Lie type without graph automorphisms, it is possible

to isolate cases of cyclic outer automorphism groups and make the following easy corollary.

Corollary 2.25. Let H be a finite simple group of Lie type isomorphic to L
2

(2f ); O
2n+1

(2f ) ⇠=
Sn(2f ) where n � 3; E

7

(2f ); E
8

(pf ) for all p � 2; F
4

(pf ), where p 6= 2, or; G
2

(pf ), where p 6= 3. If

f > 1 is coprime to |H| and G is such that H < G 6 Aut(H), then G does not admit an unmixed

Beauville structure.

Proof. In each case Out(H) consists only of field automorphisms and is cyclic of order f .

If in addition the type and characteristic of H are specified, it is straightforward to write down

such an f immediately. For example, since the order of a Suzuki group Sz(22m+1) is always coprime

to 3, the order of a small Ree group R(32m+1) is always coprime to 5 and the order of a large Ree

group 2F
4

(22m+1) is always coprime to 17, we have the following corollary.

Corollary 2.26. Let G be an almost simple group and n � 1. Suppose one of the following holds:

1. the order of G is divisible by 3 and soc(G) is isomorphic to the Suzuki group Sz(23n),

2. the order of G is divisible by 5 and soc(G) is isomorphic to the small Ree group R(35n), or;

3. the order of G is divisible by 17 and soc(G) is isomorphic to the large Ree group 2F
4

(217n).

Then G does not admit an unmixed Beauville structure.

Remark 2.27. We cannot extend this corollary to general automorphism groups of simple Suzuki,

small Ree or large Ree groups since, for example, Sz(25) : 5 is an unmixed Beauville group.

Remark 2.28. In the previous section we mention in Remark 2.18 that L
2

(pn) :m does not admit

an unmixed Beauville structure when m is even and divides n. In the case that m is odd and coprime

to |L
2

(p2n)| we can apply Lemma 2.23 to show that L
2

(2n) :m does not admit an unmixed Beauville

structure when m > 1.
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Lemma 2.29. Let G = P�L
2

(pp) where p 6= 2. Then G does not admit an unmixed Beauville

structure.

Proof. Let H = soc(G) ⇠= L
2

(pp). In order to generate G it is necessary to generate Out(H) ⇠= 2p,

hence some element of a generating triple (x, y, z) must project onto an element of order p in Out(H).

By Lemma 2.5, we can assume that x is such an element, so that p divides o(x). If x
1

, x
2

2 G \H
are elements of order p, then there exists g 2 G and 1  i  p� 1 such that (xi

1

)g = x
2

. Therefore,

there cannot exist an unmixed Beauville structure for G.

2.1.4 Examples

We conclude this section by determining unmixed Beauville structures for non-simple almost simple

groups whose socle is isomorphic to one of the sporadic groups or the Tits group. For each of these

groups we present in Table 2.1 words in their standard generators which can be checked in GAP [111]

to generate each group. That they are also unmixed Beauville structures can also be checked in GAP,

or from their character tables in [27].

Lemma 2.30. Let H be of one of the 12 sporadic groups with nontrivial outer automorphism group

or the Tits group, 2F
4

(2)0. If G = Aut(H), then G admits an unmixed Beauville structure.

Proof. Of the 26 sporadic groups, those which admit non-trivial outer automorphisms are as follows:

the Mathieu groups M
12

,M
22

; the Janko groups J
2

, J
3

; HS; M cL; He; Suz; O0N ; HN ; and the

Fischer groups Fi
22

, F i0
24

. In Table 2.1 we present words in the standard generators which provide

generating triples for the groups listed. In addition to their type we record the conjugacy classes

to which these elements belong, as given in [27]. In Table 2.2 we record the prime power maps of

elements in each generating triple from which it can be checked that such generating triples admit

an unmixed Beauville structure.

It can be quickly checked in GAP that the generating triples given for M
12

: 2, M
22

: 2, J
2

: 2,

2F
2

(2)0.2, HS : 2, J
3

: 2, M cL : 2, He : 2, Suz : 2 and Fi
22

: 2 generate their respective groups, and that

the elements have centraliser order as given in the table. It remains to prove generation of O0N : 2,

HN : 2 and Fi0
24

: 2. From the list of maximal subgroups of O0N : 2 we see that the only subgroups

containing elements of order 31 are isomorphic to O0N or 31: 30, neither of which contain elements

of order 22, and the only subgroups containing elements of order 19 are isomorphic to O0N or J
1

⇥2,

neither of which contain elements of order 56. From the list of maximal subgroups of HN : 2 we

see the only subgroups containing elements of order 19 are isomorphic to HN or U
3

(8) : 6, neither

of which contain elements of order 42, and the only subgroups containing elements of order 11 are

isomorphic to HN , S
12

or 4˙HS : 2, none of which contains elements of order 44. Generation by the

elements x
1

, y
1

for Fi0
24

: 2 can be checked in GAP in a reasonable amount of time and from the list

of maximal subgroups of Fi0
24

: 2 we have that the only subgroups that contain elements of order 29

are isomorphic to Fi0
24

or 29: 28, neither of which contains elements of order 54.
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To check that g 2 {xi, yi, xiyi} for i = 1, 2 in each case belongs to the stated conjugacy class,

either there is an unambiguous choice for elements of order o(g), or the order of CG(gn) for some

n � 1 can be computed in GAP in a reasonable amount of time. This completes the proof.

G x
1

y
1

x
2

y
2

Type

M
12

: 2 cd dc (cd)3d (x3

2

)d (12A, 12A, 3A; 10BC, 10BC, 8AB)

M
22

: 2 d dc (cd)2d (x2

2

)c (4C, 4C, 11AB; 10A, 5A, 14AB)

J
2

: 2 c d dcd (x3

2

)c (2C, 5AB, 14A; 24AB, 8B, 8A)

2F
2

(2)0.2 d dc (cd)2d (x
2

)d (4F, 4F, 6A; 16EF, 16EF, 16AD)

HS : 2 c d (cd)2c (x
2

)dd (2C, 5C, 30A; 20DE, 20DE, 8A)

J
3

: 2 c ((cd)3d)cdd cd dc (2B, 34AB, 9AC; 24AB, 24AB, 3A)

M cL : 2 cd dc cd((cd)2d)3 (x
2

)d (22AB, 22AB, 3B; 20AB, 20AB, 15AB)

He : 2 c cd2cd d dc (2B, 16AB, 16AB; 6C, 6C, 15A)

Suz : 2 c d cd2(cd)4 (x
2

)cdc (2C, 3B, 28A; 24F, 24F, 13AB)

O0N : 2 c dc cd(dc)2d2 (x5

2

)c (2B, 22A, 31AB; 56AD, 56AD, 19AC)

Fi
22

: 2 c (cd)5dcd d dc (2A, 8H, 18H; 18E, 18E, 21A)

HN : 2 cd ((cd)5)dd d2(cd)8dc (x
2

)c (42A, 42A, 19AB; 44AB, 44AB, 11A)

Fi0
24

: 2 d(dc)4 (d(dc)4)c cd3cd2 (x
2

)c (28CD, 28CD, 35A; 54A, 54A, 29AB)

Table 2.1: Words in the standard generators for the automorphism groups of the sporadic groups

and the Tits group.

Remark 2.31. It has subsequently been shown in [43] that the non-simple almost simple sporadic

groups (but not 2F
4

(2)) admit a strongly real Beauville structure, a slightly stronger condition.

2.2 Topological invariants of Beauville surfaces

Catanese’s original remark that “Classifying all the Beauville surfaces is then a problem in group

theory” extends not just to Beauville surfaces themselves, but to their topological invariants as

well. Although we are largely concerned with the group-theoretic properties of Beauville groups, any

discussion would be incomplete without consideration of the geometric and topological properties of

the surfaces to which they give rise. Here we determine a number of topological invariants which can

easily be determined from their Beauville structure.

Since many of these invariants are defined as dimensions of certain homology or cohomology rings

of various sheaves and divisors we make no attempt to define them here. Definitions can be found

in any standard text on the subject, such as [11] or [65]. Throughout we let S = (C
1

⇥ C
2

)/G be

a Beauville surface of either unmixed or mixed type and for i = 1, 2 let (xi, yi, zi) be a generating

triple for G of type (li,mi, ni) which admits such a construction as necessary.
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Prime classes of Prime classes of

G g 2 P
(x

1

, y
1

) g 2 P
(x

2

, y
2

)

M
12

: 2 2A, 3A, 3B 2B, 2C, 5A

M
22

: 2 2A, 11A, 11B 2B, 2C, 5A, 7A, 7B

J
2

: 2 2C, 5A, 5B, 7A 2A, 3A

2F
2

(2)0.2 2B, 3A 2A

HS : 2 2C, 3A, 5B, 5C 2A, 5A

J
3

: 2 2B, 3B, 17A, 17B 2A, 3A

M cL : 2 2B, 3B, 11A, 11B 2A, 3A, 5A

He : 2 2B 2C, 3A, 5A

Suz : 2 2B, 2C, 3B, 7A 2A, 3A, 13A, 13B

O0N : 2 2B, 11A, 31A, 31B 2A, 7A, 19A, 19B, 19C

Fi
22

: 2 2A, 2C, 2E, 3D 2D, 3A, 3B, 7A

HN : 2 2C, 3A, 7A, 19A, 19B 2A, 11A

Fi0
24

: 2 2B, 5A, 7A, 7B 2C, 3B, 29A, 29B

Table 2.2: Power maps for elements of generating triples in Table 2.1.

One of the most fundamental topological invariants of a curve C is its genus g(C ). Given our

Beauville surface S = (C
1

⇥ C
2

)/G, the genus gi = g(Ci) for i = 1, 2 can be determined from the

Riemann–Hurwitz formula [50, Section 2] and is given by

2gi � 2 = |G|
✓
1�

✓
1

li
+

1

mi
+

1

ni

◆◆
.

The Euler–Poincaré characteristic �(S ) can then be determined, in turn giving the Euler number

e(S ) and the self-intersection number K2

S of S as follows [20, Theorem 3.4]

�(S ) =
e(S )

4
=

K2

S

8
=

(g
1

� 1)(g
2

� 1)

|G| .

The irregularity q of any Beauville surface is known to be 0 [3, Section 2] and from this the geometric

genus pg of S can be determined and is given by [50, Section 4]

1� q + pg = �(S ).

Remark 2.32. We make mention here of the fact that several Beauville surfaces provide examples

of fake quadrics, roughly a surface whose Betti numbers are the same as P1(C) ⇥ P1(C) and have

geometric genus pg = 0 [107, Section 7]. The classification of Beauville surfaces that are also fake

quadrics was completed by Bauer, Catanese and Grunewald in [8, Sections 3 and 4]. The corre-

sponding groups are the unmixed Beauville group 52 and the two mixed Beauville groups of order
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256, which are described in detail in the same article.

The genus spectrum of a Beauville group, G, of either unmixed or mixed type was introduced by

Fuertes, González-Diez and Jaikin-Zapirain in [50] from which we take the following definition.

Definition 2.33. Let G be a finite group. Denote by Spec(G) the set of pairs of integers (g
1

, g
2

)

such that g
1

 g
2

and there exist curves C
1

,C
2

with g(Ci) = gi for i = 1, 2 which admit an action of

G such that S = (C
1

⇥ C
2

)/G is a Beauville surface.

The authors of [50] also determine theoretically Spec(G) for L
2

(7), S
5

and all abelian unmixed

Beauville groups [50, Section 4]. However, they mention that a similar theoretical determination of

Spec(G) for general G “will take too long to be included here”. From results of Garion [53, Theorems

D and E] it is also possible to recover Spec(G) for L
2

(q) where q � 7 and PGL
2

(q) where q � 5.

It is not too hard to see that Spec(G) is always finite. The authors of [50] make the observation

that gi  1+ |G|
2

by the Riemann–Hurwitz formula and also show [50, Theorem 9] that gi � 6. This

bounds the size of Spec(G) by

|Spec(G)|  min

⇢
(|G|� 5)2

8
,
d
2

(G)2

2

�

where d
2

(G) is the number of inequivalent generating pairs for G which is also finite.

It is possible to write a computer program to determine Spec(G). In Appendix A we include

such a program for determining the genus spectrum of an unmixed Beauville group along with the

genus spectrum for various simple and almost simple groups, G, in the case where Spec(G) is of a

modest size. For reference, we mention that it was possible to determine Spec(G) for the Mathieu

group M
23

, where |G| = 10, 200, 960, in approximately 94 hours of computer time. The computer

in question uses an Intel i5/2.7GHz processor with 8GB of RAM. Since |Spec(M
23

)| = 2518 we

do not present its genus spectrum in this thesis but the author can provide, on request, Spec(G)

where G is isomorphic to: the alternating group An for 6  n  10; the symmetric group Sn for

6  n  10; the linear groups L
2

(16) : 2, P⌃L
2

(25), P⌃L
2

(27), L
3

(3), P�L
3

(3), L
3

(4), or P�L
2

(q)

where q 2 {7, 8, 11, 13, 16, 17, 19, 23, 29}; the unitary groups U
3

(3), U
3

(4), U
4

(2) as well as U
3

(3) : 2;

the Suzuki group Sz(8); the Mathieu groups M
11

, M
12

, M
22

, M
23

as well as M
12

: 2 and M
22

: 2; or

the Janko groups J
1

and J
2

.

2.3 Mixed Beauville groups via mixable Beauville structures

Throughout this section we may refer to a mixed Beauville group or a mixed Beauville structure as

simply a Beauville structure. The examples we eventually construct will require the definition of a

perfect group, which we recall here, along with that of a mixed Beauville group as given by Bauer,

Catanese and Grunewald in [6, Definition 4.1].

30



Definition 2.34. Let G be a group. The derived subgroup of G, denoted G0, is the subgroup of G

generated by all commutators in G. A group is perfect if it equals its derived subgroup.

Definition 2.35. Let G be a finite group and let x, y 2 G. A mixed Beauville quadruple for G

is a quadruple (G0;x, y; g) consisting of a subgroup G0 of index 2 in G; of elements x, y 2 G0 and

of an element g 2 G such that

M1 G0 is generated by x and y;

M2 g 62 G0;

M3 for every � 2 G0 we have that (g�)2 62 ⌃(x, y) and

M4 ⌃(x, y) \ ⌃(xg, yg) = {1}.

If G has a mixed Beauville quadruple we say that G is a mixed Beauville group and call (G0;x, y; g)

a mixed Beauville structure for G.

Remark 2.36. The motivation for this definition is akin to that described in Remark 1.5. The

subgroup G0 consists of the elements of G which do not interchange the two curves, while conditions

M3. and M4. are those which ensure a free action of G on the product [6, Section 4].

In order to construct examples of mixed Beauville groups, Bauer, Catanese and Grunewald proved

the following [6, Lemma 4.5].

Lemma 2.37. Let H be a perfect finite group and let x
1

, y
1

, x
2

, y
2

2 H. Assume that

1. o(x
1

) and o(y
1

) are even;

2. hx
1

, y
1

i = H;

3. hx
2

, y
2

i = H;

4. ⌫(x
1

, y
1

) is coprime to ⌫(x
2

, y
2

).

Set G := (H ⇥H) : hgi where g is an element of order 4 that acts by interchanging the two factors;

G0 = H ⇥ H ⇥ hg2i; x := (x
1

, x
2

, g2) and y := (y
1

, y
2

, g2). Then (G0;x, y; g) is a mixed Beauville

structure for G.

Remark 2.38. Bauer, Catanese and Grunewald actually proved a similar result for any finite group,

H, but stronger conditions on x
1

and y
1

are needed when H is not perfect.

From this we make the following definition.

Definition 2.39. Let H be a perfect group. If there exists x
1

, y
1

, x
2

, y
2

2 H such that

1. o(x
1

) and o(y
1

) are even;

2. hx
1

, y
1

i = hx
2

, y
2

i = H, and;
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3. ⌫(x
1

, y
1

) is coprime to ⌫(x
2

, y
2

),

then we say that H is a mixable Beauville group and that (x
1

, y
1

;x
2

, y
2

) is a mixable Beauville

structure for H of type (o(x
1

), o(y
1

), o(x
1

y
1

); o(x
2

), o(y
2

), o(x
2

y
2

)). We say that (x
1

, y
1

, (x
1

y
1

)�1)

is an even triple for H and that (x
2

, y
2

, (x
2

y
2

)�1) is an odd triple for H.

In order to generalise Lemma 2.37 we recall the following. For a positive integer k let Q
4k be the

dicyclic group of order 4k with presentation

Q
4k = hp, q | p2k = q4 = 1, pq = p�1, pk = q2i.

Let G = (H ⇥H) :Q
4k with the action of Q

4k defined as follows. For (g
1

, g
2

) 2 H ⇥H let (g
1

, g
2

)p =

(g
1

, g
2

) and (g
1

, g
2

)q = (g
2

, g
1

). Then G0 = H ⇥H ⇥ hpi is a subgroup of index 2 inside G.

Theorem 2.40. Let H be a perfect finite group and let x
1

, y
1

, x
2

, y
2

2 H. Assume that

1. (x
1

, y
1

, (x
1

y
1

)�1) is an even triple for H;

2. (x
2

, y
2

, (x
2

y
2

)�1) is an odd triple for H, and;

3. (x
1

, y
1

;x
2

, y
2

) is a mixable Beauville structure for H.

Set k > 1 to be any integer that divides gcd(o(x
1

), o(y
1

)), G := (H ⇥H) :Q
4k with the action defined

above, G0 := H⇥H⇥hpi, x:=(x
1

, x
2

, p) and y := (y
1

, y
2

, p�1). Then (G0;x, y; q) is a mixed Beauville

structure for G.

Proof. We verify that the conditions of Definition 2.35 are satisfied. Since k divides ⌫(x
1

, y
1

) it is

coprime to ⌫(x
2

, y
2

) so we can generate the elements (1, x
2

, 1) and (1, y
2

, 1) allowing us to generate

the second factor. We can then produce the elements x0 = (x
1

, 1, p) and y0 = (y
1

, 1, p�1) allowing us

to generate, since H is perfect, the first factor. Since we can generate H ⇥H we can also generate

the third factor, hence we satisfy condition M1.

Now let g 2 G\G0 and � 2 G0. Then g� is of the form (h
1

, h
2

, qipj) for some h
1

, h
2

2 H, i = 1, 3

and 1  j  2k. Then

(g�)2 = (h
1

h
2

, h
2

h
1

, (qipj)2) = (h
1

h
2

, h
2

h
1

, pk).

For a contradiction, suppose that (g�)2 2 ⌃(x, y). Then since h
1

h
2

has the same order as h
2

h
1

condition 4 implies that (g�)2 = (1, 1, pk) 2 ⌃(x, y) if and only if k does not divide o(x) or k does

not divide o(y). Note that if (g�)2 were a power of xy by construction it would be 1G. Since by

hypothesis k divides gcd(o(x
1

), o(y
1

)) we satisfy conditions M2 and M3.

Finally, to show that condition M4 is satisfied, suppose g0 2 ⌃(x, y) \ ⌃(xg, yg) for g 2 G \G0.

Since conjugation by such an element g interchanges the first two factors of any element, we again

have from condition 4 that g0 is of the form (1, 1, pi) for some power of p, but from our previous

remarks it is clear that pi = 1H and so g0 = 1G.
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Remark 2.41. The proof of Theorem 2.40 is also a generalisation of the proof of Lemma 2.37. In

our proof we chose x := (x
1

, x
2

, p) and y := (y
1

, y
2

, p�1) but in principle we could have chosen the

third factor of x or y to be 1 and the third factor in their product xy to be p or p�1 as appropriate. If

we then require k to divide gcd(o(x), o(xy)) or gcd(o(xy), o(y)) as necessary this gives rise to further

examples of mixed Beauville groups.

Remark 2.42. Any mixable Beauville group is automatically an unmixed Beauville group and gives

rise to a mixed Beauville group by Lemma 2.37.

In the remaining sections of this chapter we determine mixable Beauville structures for various

families of perfect groups. In particular, we consider families of characteristically simple groups whose

definition, and important characterisation in the finite case, we state for completeness.

Definition 2.43. A characteristic subgroup of G is a subgroup H 6 G such that Hg = H for all

g 2 Aut(G). A group G is characteristically simple if it has no proper nontrivial characteristic

subgroups. A finite group is characteristically simple if and only if it is a direct product of isomorphic

simple groups [97, p. 85].

The study of unmixed Beauville structures for such groups was initiated by Jones in [70, 71].

2.4 Mixable Beauville structures for the alternating groups

We always consider An, the alternating group of degree n, under its natural permutation represen-

tation of degree n. We make heavy use of the following theorem due to Jordan.

Theorem 2.44 (Jordan). Let G be a primitive permutation group of finite degree n, containing a

cycle of prime length fixing at least three points. Then G > An.

Remark 2.45. A recent extension of this result due to Jones, along with a brief history of this

result, can be found in [69].

We recall that 2-transitivity implies primitivity and in general aim to show 2-transitivity towards

proving generation.

Lemma 2.46. The alternating group A
6

and A
6

⇥A
6

are mixable.

Proof. For our even triples we take the following elements of A
6

x
1

= (1, 2)(3, 4, 5, 6), y
1

= (1, 5, 6, 4)(2, 3), y0
1

= (1, 5, 6).

It can easily be checked in GAP that hx
1

, y
1

i = A
6

and these elements provide an even triple of

type (4, 4, 4) for A
6

. Similarly, hx
1

, y0
1

i = A
6

, yielding a triple of type (4, 4, 3), and the elements

(x
1

, x
1

), (y
1

, y0
1

) 2 A
6

⇥A
6

form an even triple of type (4, 4, 12) for A
6

⇥A
6

.
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For our odd triples let

x
2

= (1, 2, 3, 4, 5), y
2

= x(1,3,6)
2

= (2, 6, 4, 5, 3), y0
2

= x(1,2,3,4,6)
2

= (2, 3, 4, 6, 5).

It can similarly be checked that hx
2

, y
2

i = hx
2

, y0
2

i = A
6

and these elements provide in a similar way

odd triples for A
6

and A
6

⇥A
6

both of type (5, 5, 5). We then have a mixable Beauville structure of

type (4, 4, 4; 5, 5, 5) for A
6

and of type (4, 12, 12; 5, 5, 5) for A
6

⇥A
6

.

Lemma 2.47. The alternating group A
7

and A
7

⇥A
7

are mixable.

Proof. For our even triples we take the following elements of A
7

x
1

=(1, 2)(3, 4)(5, 6, 7), y
1

= (1, 2, 3)(4, 5)(6, 7),

x0
1

=(1, 6)(2, 4, 5)(3, 7), y0
1

= (1, 6, 2)(3, 7, 4).

It can easily be checked in GAP that x
1

, y
1

provide an even triple for A
7

of type (6, 6, 5) and that

(x
1

, x0
1

), (y
1

, y0
1

) provide an even triple for A
7

⇥A
7

of type (6, 6, 5).

For our odd triples let

x
2

= (1, 2, 3, 4, 5, 6, 7), y
2

= x(1,2,3)
2

= (1, 4, 5, 6, 7, 2, 3), y0
2

= x(1,3,2)
2

= (1, 2, 4, 5, 6, 7, 2).

Again, it can be checked that x
2

, y
2

provide an odd triple of type (7, 7, 7) forA
7

and that (x
2

, x
2

), (y
2

, y0
2

)

provide an odd triple also of type (7, 7, 7) for A
7

⇥ A
7

. We then have mixable Beauville structures

for A
7

and A
7

⇥A
7

both of type (6, 6, 5; 7, 7, 7).

Lemma 2.48. The alternating group A
2m and A

2m ⇥A
2m are mixable for m � 4.

Proof. For m � 4 let G = A
2m and consider the following elements of G

x
1

= (1, 2)(3, . . . , 2m),

y
1

= x(1,3,4)
1

= (1, 5, 6, . . . , 2m, 4)(2, 3),

x
1

y
1

= (1, 3)(2, 5, 7, . . . , 2m� 3, 2m� 1, 4, 6, 8, . . . , 2m).

The subgroup H
1

= hx
1

, y
1

i is visibly transitive and the elements

x2

1

= (3, 5, . . . , 2m� 1)(4, 6, . . . , 2m), y2
1

= (1, 6, 8, . . . , 2m)(5, 7, . . . , 2m� 1, 4),

fix the point 2 and act transitively on the remaining points. Finally, x2

1

y�2

1

= (1, 2m, 2m� 1, 3, 4) is

a cycle of length 5, which is prime, fixing at least three points for all m and so by Jordan’s Theorem

H
1

= G. This gives us our first even triple for G of type (2m� 2, 2m� 2, 2m� 2). For our second,

we show that there is a similar even triple which is inequivalent to the first under the action of
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Aut(G) = S
2m. Consider the elements

x0
1

= (1, 2)(3, . . . , 2m),

y0
1

= x0(1,4,3)
1

= (1, 3, 5, 6, . . . , 2m)(2, 4),

x0
1

y0
1

= (1, 4, 6, . . . , 2m, 5, 7, . . . , 2m� 1)(2, 3)

and note that x0
1

= x
1

. For the same argument as before we have that hx0
1

, y0
1

i = G. Now suppose

that (x
1

, y
1

, x
1

y
1

) is equivalent to (x0
1

, y0
1

, x0
1

y0
1

) for some g 2 Aut(G). This gives the equalities

hx2

1

, y2
1

ig = hx02
1

, y02
1

i and hx2

1

, (x
1

y
1

)2ig = hx02
1

, (x0
1

y0
1

)2i. From our previous arguments the first

equality implies that g : 2 7! 2, while the second equality implies that g : 1 7! 2, a contradiction.

Hence these two even triples are inequivalent under the action of the automorphism group of G and

so (x
1

, x0
1

), (y
1

, y0
1

) provide an even triple for G⇥G of type (2m� 2, 2m� 2, 2m� 2).

For our first odd triple consider the elements

x
2

= (1, 2, . . . , 2m� 1),

y
2

= x(1,2m,3)
2

= (1, 4, 5, . . . , 2m� 1, 2m, 2),

x
2

y
2

= (2, 3, 5, 7, . . . , 2m� 1, 4, 6, 8, . . . , 2m� 2, 2m)

and let H
2

= hx
2

, y
2

i. We clearly have transitivity and 2-transitivity, hence H
2

is primitive. Since

x
2

y�1

2

= (1, 2m, 2m� 1, 2, 3) is a cycle of length 5, which is prime, fixing at least three points for all

m, we can apply Jordan’s Theorem and we have that H
2

= G. For our second odd triple consider

the elements

x0
2

= (1, 2, . . . , 2m� 1),

y0
2

= x0(1,3,2m)

2

= (2, 2m, 4, . . . , 2m� 1, 3),

x0
2

y0
2

= (1, 2m, 4, 6, . . . , 2m� 2, 3, 5, . . . , 2m� 1)

and note that x0
2

= x
2

. It follows from a similar argument as before that hx0
2

, y0
2

i = G and so

now we show that (x
2

, y
2

, x
2

y
2

) is inequivalent to (x0
2

, y0
2

, x
2

y0
2

). Let g 2 Aut(G) and suppose that

xg
2

= x0
2

. Since x
2

= x0
2

, g 2 hx
2

i and from inspection of the fixed points of the elements of our odd

triples we have g : 3 7! 1 and g : 1 7! 2. But no such g exists in hx
2

i and so (x
2

, y
2

, (x
2

y
2

)�1) and

(x0
2

, y0
2

, (x0
2

y0
2

)�1) are inequivalent generating triples for G both of type (2m � 1, 2m � 1, 2m � 1).

Since gcd(2m� 2, 2m� 1) = 1 we have a mixable Beauville structure of type

(2m� 2, 2m� 2, 2m� 2; 2m� 1, 2m� 1, 2m� 1)

for both G and G⇥G.
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Lemma 2.49. The alternating group A
2m+1

and A
2m+1

⇥A
2m+1

are mixable for m � 4.

Proof. For m � 4 let G = A
2m+1

and consider the elements

x
1

= (1, 2)(3, 4)(5, . . . , 2m+ 1),

y
1

= (1, 2, . . . , 2m� 3)(2m� 2, 2m� 1)(2m, 2m+ 1),

x
1

y
1

= (1, 3, 5, . . . , 2m� 1, 2m+ 1, 6, 8, . . . , 2m� 4).

By considering the orbit of the point 5 the subgroup H
1

= hx
1

, y
1

i is visibly transitive and the

elements

y
1

x2

1

y�1

1

= (4, 6, 8, . . . , 2m, 5, 7, . . . , 2m� 5, 2m� 1, 2m+ 1),

x
1

y2
1

x�1

1

= (2, 4, 2m+ 1, 6, 8, . . . , 2m� 4, 1, 3, . . . , 2m� 5)

fix the point 2m� 3 and act transitively on the remaining points; hence H
1

acts primitively. Finally,

the element x
1

y�1

1

= (2, 2m � 3, 2m � 1, 2m + 1, 4) is a cycle of length 5, which is prime, fixing at

least three points for all m � 4 and so by Jordan’s Theorem H
1

= G. This gives our first even triple

of type (2(2m� 3), 2(2m� 3), 2m� 3) for G. For our second even triple, we manipulate the first in

the following way. Let

x0
1

= (1, 2m� 4, . . . , 6, 2m+ 1, 2m� 1, . . . , 3),

y0
1

= (1, 2)(3, 4)(5, . . . , 2m+ 1),

x0
1

y0
1

= (1, 2m� 3, . . . , 2)(2m� 2, 2m� 1)(2m, 2m+ 1).

Since y0
1

= x
1

and x0
1

y0
1

= y�1

1

it is clear that hx0
1

, y0
1

i = G. Note also that x0
1

= y�1

1

x�1

1

. Since

conjugation preserves cycle types we see that (x
1

, y
1

, x
1

y
1

) and (x0
1

, y0
1

, x0
1

y0
1

) are inequivalent. Then,

(x
1

, x0
1

), (y
1

, y0
1

) provide an even triple for G⇥G of type (2(2m� 3), 2(2m� 3), 2(2m� 3)).

For our first odd triple consider the elements

x
2

= (1, 2, . . . , 2m+ 1),

y
2

= x(1,2,3)
2

= (1, 4, 5, . . . , 2m, 2m+ 1, 2, 3),

x
2

y
2

= (1, 3, 5, . . . , 2m� 1, 2m+ 1, 4, 6, . . . , 2m� 2, 2m, 2).

The subgroup H
2

= hx
2

, y
2

i is visibly transitive while the elements

y�1

2

x2

2

= (1, 5, 6, . . . , 2m+ 1)(3, 4), x
2

y�1

2

= (1, 2m+ 1, 3)

fix the point 2 and act transitively on the remaining points, hence H
2

is primitive. Since H
2

also
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contains a cycle of length 3, which is prime, fixing at least three points, by Jordan’s Theorem we

have that H
2

= A
2m+1

. This gives us an odd triple of type (2m + 1, 2m + 1, 2m + 1) for G and so

since gcd(2(2m � 3), 2m + 1) = 1 it follows that (x
1

, y
1

;x
2

, y
2

) is a mixable Beauville structure for

A
2m+1

of type (2(2m � 3), 2(2m � 3), 2m � 3; 2m + 1, 2m + 1, 2m + 1). For our second odd triple

consider the cycles

x
2

= (1, 2, . . . , 2m� 1),

y
2

= x(1,2m,2,2m+1,3)
2

= (1, 4, 5, . . . , 2m� 1, 2m, 2m+ 1),

x
2

y
2

= (1, 2, 3, 5, . . . , 2m� 1, 4, 6, . . . , 2m, 2m+ 1)

and let H
2

= hx
2

, y
2

i. We visibly have transitivity and since the elements [x
2

, y
2

] = (1, 2m, 4, 5, 2),

x
2

[x
2

, y
2

] = (2, 3, 5, 6, . . . , 2m � 1, 2m, 4) stabilise the point 2m + 1 and act transitively on the

remaining points we also have 2-transitivity, hence primitivity. Since [x
2

, y
2

] is a cycle of length 5,

which is prime, fixing at least three points for m � 4 Jordan’s Theorem implies that H
2

= G and

this gives us an odd triple for G of type (2m� 1, 2m� 1, 2m� 1). Since the types of our odd triples

are distinct, by Lemma 2.8 they are inequivalent and so we have an odd triple for G ⇥ G. Since

2(2m� 3) is coprime to both 2m� 1 and 2m+1 we then have a mixable Beauville structure of type

(2(2m� 3), 2(2m� 3), 2(2m� 3); 4m2 � 1, 4m2 � 1, 4m2 � 1)

for G⇥G.

2.5 Mixable Beauville structures for low-rank finite groups

of Lie type

We make use of theorems due to Zsigmondy (generalising a theorem of Bang), Frobenius and Gow

which we include here for reference. Throughout this section q = pf will denote a prime power for a

positive integer f � 1.

Theorem 2.50 (Zsigmondy [127] or Bang [1], as appropriate). For any positive integer a > 1 and

n > 1 there is a prime number that divides an � 1 and does not divide ak � 1 for any positive integer

k < n, with the following exceptions:

1. a = 2 and n = 6; and

2. a+ 1 is a power of 2, and n = 2.

We denote a prime with such a property �n(a).

Remark 2.51. The case where a = 2, n > 1 and not equal to 6 was proven by Bang in [1] while the

general case was proven by Zsigmondy in [127]. We shall refer to this as Zsigmondy’s Theorem. A
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more recent account of a proof is given by Lüneburg in [82]. An even more recent account in English

is given by Roitman in [98].

The following well-known structure constant formula will be used extensively.

Theorem 2.52 (Frobenius [48]). Let G be a finite group and C
1

, C
2

, C
3

be conjugacy classes of G.

The number of (x, y, z) 2 C
1

⇥ C
2

⇥ C
3

such that xyz = 1 is denoted n(C
1

, C
2

, C
3

) and is equal to

n(C
1

, C
2

, C
3

) =
|C

1

||C
2

||C
3

|
|G|

X

�2Irr(G)

�(x)�(y)�(z)

�(1)

where x, y and z are representatives of C
1

, C
2

and C
3

repectively.

Definition 2.53. Let G be a group of Lie type defined over a field of characteristic p > 0, prime. A

semisimple element is one whose order is coprime to p. A semisimple element is regular if p does

not divide the order of its centraliser in G.

Theorem 2.54 (Gow [60]). Let G be a finite simple group of Lie type of characteristic p, and let g

be a non-identity semisimple element in G. Let L
1

and L
2

be any conjugacy classes of G consisting

of regular semisimple elements. Then g is expressible as a product xy, where x 2 L
1

and y 2 L
2

.

Remark 2.55. A slight generalisation of this result to quasisimple groups appears in [45, Theorem

2.6].

2.5.1 The projective special linear groups L2(q)

The projective special linear groups L
2

(q) are defined over fields of order q. They are simple when

q � 4 and have order q(q+ 1)(q� 1)/d where d = gcd(2, q+ 1). Their maximal subgroups are found

in Dickson [32] based on the work of Moore [87] and Wiman [126]. They are also treated by Mitchell

in [85]. Throughout this section we let

d = gcd(2, q + 1), q+ =
q + 1

d
and q� =

q � 1

d
.

There exists an exceptional isomorphism between the groups L
2

(4), L
2

(5) and A
5

[120, Section

3.3.5]. It is known that A
5

is not an unmixed Beauville group [6, Section 5.4] and so we begin with

the case q = 7.

Lemma 2.56. Let G = L
2

(7). Then Gn admits a mixable Beauville structure if and only if n = 1

or 2.

Proof. The maximal subgroups of G are known [27, p.2] and these are subgroups isomorphic to

S
4

or point stabilisers in the natural representation of G on eight points of shape 7: 3. Hyperbolic

generating triples cannot have type (3, 3, 3), since 1

3

+ 1

3

+ 1

3

⌅ 1 and similarly for generating triples of

types (2, 2, 2), (2, 2, 4) and (2, 4, 4). The number of generating triples of type (7, 7, 7) can be computed
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using GAP, but since it is equal to the order of Aut(G) we see from [63] that there is no generating

triple of type (7, 7, 7) for Gn when n > 1. Therefore, in order to generate Gn where n > 1 an odd

triple must consist of elements of orders 3 and 7 and an even triple must have type (4, 4, 4). Any such

even triple generates G since elements of order 4 are not contained in point stabilisers and inside a

subgroup isomorphic to S
4

the product of three elements of order 4 cannot be equal to the identity.

We can compute the number of such triples from the structure constants and since this is twice the

order of Aut(G) we have that there exist even triples of type (4, 4, 4) for G and for G⇥G. We then

see that this is the maximum number of direct copies of G for which there exists a mixable Beauville

structure.

For our odd triple we then take a triple of elements of type (7, 7, 3) which can be shown to exist

by computing their structure constants and are seen to generate G since if they were to belong to a

maximal subgroup then the product of two elements of order 7 would again have order 7. This gives

a mixable Beauville structure of type (4, 4, 4; 7, 7, 3) for G. Finally, we then have mixable Beauville

structures for G⇥G of type (4, 4, 4; 7, 7, 21) by Lemma 2.8 or alternatively of type (4, 4, 4; 7, 21, 21)

by Lemma 2.6.

Lemma 2.57. Let G = L
2

(2n) where n � 3. Then G does not admit a mixable Beauville structure.

Proof. The only elements of even order in G belong to the unique conjugacy class of involutions. If

x, y 2 G are involutions, then hx, yi is isomorphic to a dihedral group. In particular, there do not

exist even triples for G.

Remark 2.58. The restriction in the previous lemma does not apply to L
2

(2n)m where m > 1.

Lemma 2.59. Let G = L
2

(8). Then G⇥G admits a mixable Beauville structure.

Proof. It can easily be checked in GAP that for G there exist generating triples of types (2, 7, 7),

(3, 3, 9) and (3, 9, 9). The two odd triples are inequivalent by Lemma 2.8 and by Lemma 2.6 we have

that there exists a mixable Beauville structure of type (14, 14, 7; 3, 9, 9) for G⇥G.

Lemma 2.60. Let G = L
2

(9). Then both G and G⇥G admit a mixable Beauville structure.

Proof. This follows directly from the exceptional isomorphism L
2

(9) ⇠= A
6

[120, Section 3.3.5] and

Lemma 2.46.

We make use of the following Lemmas:

Lemma 2.61. Let G = L
2

(q) for q = 7, 8 or q � 11 and q = pf . Then, under the action of

Aut(G) ⇠= P�L
2

(q) the number of conjugacy classes of elements of order q+ in G is �(q+)/2f .

Proof. Elements of order q+ are conjugate to their inverse so there are �(q+)/2 conjugacy classes of

elements of order q+ in L
2

(q). The only outer automorphisms of G come from the diagonal auto-

morphisms and the field automorphisms, but since diagonal automorphisms do not fuse conjugacy
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classes of semisimple elements we examine the field automorphisms. These come from the action of

the Frobenius automorphism on the elements of the field Fq sending each entry of the matrix to its

p-th power. The only fixed points of this action are the elements of the prime subfield Fp and so, since

the entries on the diagonal of the elements of order q+ are not both contained in the prime subfield,

we have that the orbit under this action has length f , the order of the Frobenius automorphism. We

then get f conjugacy classes of elements of order q+ inside G fusing under this action. Hence under

the action of the full automorphism group there are �(q+)/2f conjugacy classes of elements of order

q+ in G.

Lemma 2.62. Let q = pf � 13, q 6= 27 be a prime power. Then �(q+) > 2f .

Proof. Let S = {pi, q+ � pi | 0  i  f � 1}. This set consists of 2f positive integers less than and

coprime to q+ and whose elements are distinct when q � 13. To this set we add k which depends on

q.

• When p = 2 we let k = 7 since for all f > 3, 7 /2 S and gcd(7, 2f + 1) = 1.

• When p = 3 we let k = 11 since for f > 3, 11 /2 S and gcd(11, 3f + 1) = 1.

• When p 6= 3 and q ⌘ 1 mod 4 we let k = q+ � 2. Since p 6= 3 we have k /2 S and since q+ is

odd we have gcd(k, q+) = 1.

• When p 6= 3 and q ⌘ 3 mod 4 then f must be odd. In the case f = 1, q+ = 2im where i > 0

and m is odd so that �(q+) = �(2i)�(m) = 2i�1�(m) > 2 since p > 11. In the case f > 2,

k = p�1

2

/2 S and is coprime to q+.

This completes the proof.

Lemma 2.63. Let G be the projective special linear group L
2

(q) where q � 7. Then,

1. there is a mixable Beauville structure for G⇥G, and;

2. when p 6= 2 there is also a mixable Beauville structure for G.

Proof. In light of Lemmas 2.56–2.60 we can assume that q � 11. Jones proves in [71] that generating

triples of type (p, q�, q�) exist for G when q � 11 and since gcd(p, q�) = 1 we immediately have, by

Lemma 2.6, a generating triple for G⇥G. We proceed to show that there exists a generating triple

(x, y, z) for G of type (q+, q+, q+). Note that p, q� and q+ are mutually coprime. The only maximal

subgroups containing elements of order q+ are the dihedral groups of order 2q+ which we denote

by Dq+ . By Gow’s Theorem, for a conjugacy class C of elements of order q+ there exist x, y, z 2 C

such that xyz = 1. Since inside Dq+ any conjugacy class of elements of order q+ contains only two

elements, x, y and z can not all be contained in the same maximal subgroup of G. Hence (x, y, z) is

a generating triple for G of type (q+, q+, q+). When the number of conjugacy classes of elements of

order q+ in G under the action of Aut(G) is strictly greater than 1 we can apply Gow’s Theorem
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a second time to give a generating triple of type (q+, q+, q+) for G⇥G. This follows from Lemmas

2.61 and 2.62 with the exceptions of q = 11 or 27. For G = L
2

(11) we have that a generating triple

of type (p, q�, q�) exists by [71] or alternatively the words ab and [a, b] in the standard generators

for G give an odd triple of type (11, 5, 5). In both cases we have, by Lemma 2.6, an odd triple of type

(55, 55, 5) for G ⇥ G. For our even triple, there exists a single conjugacy class of elements of order

6 [27, p. 7]. The structure constant n(6A, 6A, 6A) can easily be computed and is equal to twice the

order of Aut(G) so there exist even triples for G and G ⇥G. For G = L
2

(27) we take the words in

the standard generators (ab)2(abb)2 and ab
2

, yielding an even triple of type (2, 14, 7), and the words

b2, ba, yielding an odd triple of type (3, 3, 13). Again, by Lemma 2.6, these give a mixable Beauville

structure for G ⇥ G. Finally, we remark that when q ⌘ ±1 mod 4 we have that q� and q+ have

opposite parity and this determines the parity of our triples. When q ⌘ 1 mod 4, (p, q�, q�) becomes

our even triple, (q+, q+, q+) our odd triple, and vice versa when q ⌘ 3 mod 4.

2.5.2 The projective special linear groups L3(q)

The projective special linear groups L
3

(q) are defined over fields of order q. They are simple for

q � 2 and have order q3(q3 � 1)(q2 � 1)/d where d = (3, q � 1). The classification of their maximal

subgroups is due to Mitchell [85] in the case q is odd and to Hartley [64] in the case q is even. Their

character table was determined by Simpson and Sutherland Frame [105] whose results and notation

are used throughout. In particular, throughout this section we let

d = gcd(3, q � 1), t0 = (q2 + q + 1)/d and r = q � 1.

Lemma 2.64. Let G = L
3

(q) and q = pf � 3. Then the number of conjugacy classes of elements of

order t0 in G under the action of Aut(G) is �(t0)/6f where �(n) is Euler’s totient function.

Proof. From the character table of L
3

(q) we see that if g 2 G is an element of order t0, then g

is conjugate to gq and gq
2

, hence there are �(t0)/3 conjugacy classes of elements of order t0 in G.

The outer automorphism group of G is generated by a field automorphism of order f , a diagonal

automorphism of order d =gcd(3, q � 1) and a graph automorphism of order 2. Since elements of

order t0 are semisimple, and therefore diagonalisable, their conjugacy is preserved by the action of the

diagonal automorphism. The actions of the field and graph automorphisms then fuse 2f conjugacy

classes of elements of order t0. Under the action of Aut(G) there are thus �(t0)/6f conjugacy classes

of elements of order t0 in G.

Lemma 2.65. Let G = L
3

(q) for q = 3 or q � 5. Then there exists a generating triple of type

(t0, t0, t0) for G and for G⇥G.

Proof. From the list of maximal subgroups of G we see elements of order t0 are contained only in

subgroups of order 3t0 in which they generate a cyclic normal subgroup of order t0. If C is a conjugacy
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class of elements of order t0 and g 2 C, then C \ hgi = {g, gq, gq2}, partitioning C into |C|/3 disjoint

subsets of size 3. We now examine the structure constant. The contribution to n(C,C,C) from triples

which belong to a maximal subgroup of G is as follows. For each of the |C|/3 subsets of C of size

3, there are 6 possible combinations of these elements whose product is equal to the identity, so we

require that n(C,C,C)� 2|C| > 0. From the character table of G we have that

n(C,C,C) =
|C|3
|G|

0

@1� 1

q(q + 1)
+

1

q3
+

t0�1X

u=1

(⇣ut0 + ⇣uqt0 + ⇣uq
2

t0 )3

3(q � 1)2(q + 1)

1

A

where ⇣t0 is a primitive t0-th root of unity. From the triangle inequality we have |(⇣ut0+⇣uqt0 +⇣
uq2

t0 )|3  27

so we can bound n(C,C,C) from below and for q = 7 or q � 11 we have

n(C,C,C) � |C|3
|G|

✓
1� 1

q(q + 1)
+

1

q3
� 9(t0 � 1)

(q � 1)2(q + 1)

◆
> 2|C|.

For q = 3, 5, 8 or 9 direct computation of the structure constants in GAP shows that we can indeed

find a generating triple of the desired type for G.

In order to find an odd triple of type (t0, t0, t0) for G⇥G, by Lemma 2.64 it remains to show that

for q = 3 or q � 5, we have �(t0)/6f > 1. The case q = 3 can be checked by hand and for q � 5 we

have t0 � 19 and gcd(6, t0) = 1, so that 23i, 32i, 6i < p2i + pi + 1. The set

{1} [
f[

i=1

{2i, 22i, 23i, 3i, 32i, 6i}

then consists of 6f + 1 distinct positive integers less than and coprime to t0. This completes the

proof.

Lemma 2.66. Let G = L
3

(q) and q > 4 even. Then,

1. there exists a mixable Beauville structure for G of type (2, 4, s; t0, t0, t0), and;

2. there exists a mixable Beauville structure for G⇥G of type (2, 4s, 4s; t0, t0, t0),

where s divides q2 � 1 and is divisible by q + 1.

Proof. The existence of our odd triples for G and G ⇥ G was proven in Lemma 2.65, while the

existence of our even triples is due to [45, Lemma 4.5] and Lemma 2.6.

Lemma 2.67. Let G = L
3

(q) and q � 3 odd. Then, there exists a mixable Beauville structure for G

of type ✓
p,

q2 � 1

d
,
q2 � 1

d
; t0, t0, t0

◆
.

This also yields a mixable Beauville structure for G⇥G.

Proof. By Lemma 2.65 it remains to determine the existence of our even triples for G and G ⇥ G.

From the list of maximal subgroups [85] elements of order (q2 � 1)/d belong only to the stabilisers

42



of a point, the stabilisers of a line, or possibly one of a number of maximal subgroups of fixed order.

From the point-line duality of P2(q) point stabilisers and line stabilisers are isomorphic, but they

are not conjugate in G, hence we just consider maximal subgroups conjugate to point stabilisers.

Consider the following elements in their canonical representation as given in [105]

x =

2

66664

⇢k . .

. ��k .

. . ��qk

3

77775
, y =

2

66664

1 . .

1 1 .

. 1 1

3

77775
, xy =

2

66664

⇢k . .

��k ��k .

. ��qk ��qk

3

77775
,

where ⇢,� 2 Fq2 , ⇢
q�1 = 1, �q+1 = ⇢, k is chosen so that x has order (q2 � 1)/d and y has order

p. From the character of the natural permutation representation of G of degree q2 + q + 1, denoted

�
1

+ �qs in [105], we see that x and y each fix a single point. Let x and y act on the left of P2(q)

and note that x contains a minor which is diagonalisable over Fq2 but not over Fq, hence does not

stabilise points of the form [0: a : b] or [1 : a : b] where a, b 2 Fq. We then see that x stabilises the

point [1 : 0 : 0] and y stabilises the point [0 : 0 : 1], hence x and y are not contained in the same point

stabiliser of G. The characteristic polynomial of their product xy is

1� x(⇢k + �k + �qk) + x2(⇢k + ��k + ��qk)� x3

which is identical to that of x, from which we see that x and xy have the same order. It remains

to show that elements of order (q2 � 1)/d are not contained in any subgroup of G of fixed order.

These maximal subgroups exist for certain q and are isomorphic to L
2

(7), A
6

, M
10

or A
7

. Since

any element of these groups has order at most 8, and for q � 3 odd, (q2 � 1)/d � 13, we have that

(x, xy, y�1) is a generating triple for G of type ((q2 � 1)/d, p, (q2 � 1)/d). Since it is clear that q + 1

and p are both coprime to t0, by Lemma 2.6 this then yields an even generating triple for G of type

((q2 � 1)/d, p(q2 � 1)/d, p(q2 � 1)/d).

Lemma 2.68. The projective special linear group L
3

(q) and L
3

(q)⇥L
3

(q) admit a mixable Beauville

structure for q � 2.

Proof. We note the exceptional isomorphism between L
3

(2) and L
2

(7) [120, Section 3.12], which

was dealt with in Lemma 2.59. By Lemmas 2.66 and 2.67 it remains to prove our statement for

q = 4. Since explicit words in the standard generators for L
3

(4) do not appear on [125], we take the

following

a :=(3, 4, 5)(7, 9, 8)(10, 14, 18)(11, 17, 20)(12, 15, 21)(13, 16, 19);

b :=(1, 2, 6, 7, 11, 3, 10)(4, 14, 8, 15, 16, 20, 13)(5, 18, 9, 19, 21, 17, 12);

which are easily checked in GAP to generate G. The triple (a, b, ab) is then of type (3, 7, 7) which by
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Lemma 2.6 also yields an odd triple for G⇥G of type (21, 21, 7). For our even triple we let x := ab2,

y := [a, b2], which gives a generating triple of type (2, 4, 5) for G and a generating triple of type

(2, 20, 20) for G⇥G. This completes the proof.

2.5.3 The projective special unitary groups U3(q)

The projective special unitary groups U
3

(q) are defined over fields of order q2. They are simple for

q � 3 and have order q3(q3 + 1)(q2 � 1)/d where d = (3, q + 1). The classification of their maximal

subgroups is due to Mitchell [85] for q odd and to Hartley [64] for q even. Their character table was

determined by Simpson and Sutherland Frame [105] whose results and notation are used throughout.

In particular, throughout this section we let

d = gcd(3, q + 1), t0 = (q2 � q + 1)/d and r = q + 1.

Lemma 2.69. Let G = U
3

(q) for q � 3. Then the number of conjugacy classes of elements of order

t0 in G under the action of Aut(G) is �(t0)/6f .

Proof. Let g 2 G have order t0, then g is conjugate to g�q and gq
2

and so the number of conjugacy

classes of order t0 in G is �(t0)/3. Since elements of order t0 are semisimple, and therefore diagonalis-

able, diagonal automorphisms preserve their characteristic polynomials, and so preserve conjugacy.

The unitary groups do not admit outer graph automorphisms, and so only field automorphisms

fuse conjugacy classes of elements of order t0 since their diagonal entries do not all belong to the

prime subfield. Since the action of the field automorphism has orbit length 2f we have the desired

result.

Lemma 2.70. Let G = U
3

(q) for q = 7 or q � 9. Then there exists a generating triple of type

(t0, t0, t0) for G and for G⇥G.

Proof. Let C be a conjugacy class of elements of order t0 in G. When q � 7, elements of order

t0 are contained only in maximal subgroups of order 3t0 in which they generate a cyclic normal

cyclic subgroup. All other nontrivial elements of such a subgroup have order 3. In particular, cyclic

subgroups of order t0 belong to a unique maximal subgroup. We use the structure constants for G

to show that there exists a triple not contained entirely in a maximal subgroup of G. If g 2 C,

then C \ hgi = {g, g�q, gq
2} and so C is partitioned into |C|/3 subsets of size 3. In particular, the

intersection of a maximal subgroup of order 3t0 and C has order 3 and if (x, y, z) 2 {g, g�q, gq
2}3

is such that xyz = 1, then x, y and z are mutually distinct. The contribution to n(C,C,C) from

triples contained in maximal subgroups is then 2|C|. Using the formula for structure constants as

found in [48] we have that

n(C,C,C) =
|C|3
|G|

0

@1� 1

q(q � 1)
� 1

q3
�

t0�1X

u=1

(⇣ut0 + ⇣�uq
t0 + ⇣uq

2

t0 )3

3(q + 1)2(q � 1)

1

A
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where ⇣t0 is a primitive t0-th root of unity. From the triangle inequality we have |(⇣ut0+⇣�uq
t0 +⇣uq

2

t0 )|3 
27 so we can bound n(C,C,C) from below and for q � 8 the following inequality holds

n(C,C,C) � |C|3
|G|

✓
1� 1

q(q � 1)
� 1

q3
� 9(t0 � 1)

(q + 1)2(q � 1)

◆
> 2|C|.

For q = 7 direct computation of the structure constants shows that we can indeed find a generating

triple of the desired type.

By Lemma 2.69, in order to show there exists a generating triple of type (t0, t0, t0) for G ⇥ G,

it remains to show that �(t0) > 6f , since we can select generating triples for G belonging to two

conjugacy classes which are not equivalent by an automorphism of G to generate G⇥G. For q = 7, 9

it can be verified directly that �(t0) > 6f so we can assume q � 11. Note also that t0 is coprime to

6. In the case d = 1 we have 26 < (pf � 1)2 < t0, hence the set {1, 2, . . . , 26f} consists of 6f + 1

positive integers less than and coprime to t0, giving our inequality. In the case d = 3 we have

23f < pf (pf � 1)/3 < t0 and 34f�1 < (pf � 1)2/3 < t0, hence the set {1, 3, . . . , 34f�1, 2, . . . , 23f}
consists of 7f positive integers less than and coprime to t0, giving our inequality. This completes the

proof.

Lemma 2.71. Let G = U
3

(q) and q > 8 even. Then there exists a mixable Beauville structure for

G of type ✓
2, 4,

q2 � 1

c
; t0, t0, t0

◆
,

where c = gcd(3, q2 � 1). This also yields a mixable Beauville structure for G⇥G.

Proof. The existence of odd triples for G and for G⇥G is shown by Lemma 2.70. Our even triple for

G is due to [45, Lemma 4.20 and Theorem 4.22] and, by Lemma 2.6, since q2 � 1 is odd this yields

an even triple for G⇥G.

Lemma 2.72. Let G = U
3

(q) for q � 7 odd. Then there exists a mixable Beauville structure for G

of type (p, r, rs
d ; t0, t0, t0), where s = q � 1. This also yields a mixable Beauville structure for G⇥G.

Proof. By Lemma 2.70 we have an odd triple for G and G ⇥ G of type (t0, t0, t0) so we proceed to

show the existence of our even triples. Let C
7

be a conjugacy class of elements of order rs/d in G.

From the list of maximal subgroups of G, elements of order rs/d belong only to those corresponding

to stabilisers of isotropic points, stabilisers of non-isotropic points and possibly one of the maximal

subgroups of a fixed order which can occur is U
3

(q) for certain q. Stabilisers of isotropic points

have order q3rs/d whereas stabilisers of non-isotropic points have order qr2s/d. There exist 1 + d

conjugacy classes of elements of order p in G which are as follows. The unique conjugacy class, C
2

,

of elements whose centralisers have order q3r/d; and d conjugacy classes, C(l)
3

for 0  l  d � 1,

of elements whose centralisers have order q2. Since an element g of order p which stabilises a non-

isotropic point belongs to a subgroup of G isomorphic to SL
2

(q), the order of CG(g) is divisible by
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2p, hence g 2 C
2

. In particular, elements of C0

3

do not belong to stabilisers of non-isotropic points.

There exists a conjugacy class, C
6

, of elements of order r whose centralisers have order r2/d. An

element of order r contained in the stabiliser of an isotropic point is contained in a cyclic subgroup

of order rs/d, hence rs/d must divide the order of its centraliser and so elements of C
6

are not

contained in the stabilisers of isotropic points. If (x, y, z) 2 C0

3

⇥ C
6

⇥ C
7

, then hx, y, zi = G. We

now determine the structure constant n(C0

3

, C
6

, C
7

) from the character table for G and we find

n(C0

3

, C
6

, C
7

) =
|C0

3

||C
6

||C
7

|
|G|

0

@1 +

r
d�1X

u=1

✏3u(✏3u + ✏6u + ✏(r�3)u)

t

1

A

where ✏ is a primitive r-th root of unity. Using the triangle inequality we can bound the absolute

value of the summation by 3q
q2�q+1

which, for q � 7, is strictly less than 1. In order to show that

such an (x, y, z) is not contained in any of the possible maximal subgroups of order 36, 72, 216 or

isomorphic to L
2

(7), A
6

, M
10

or A
7

we note that any element of such a group has order at most

8 < r unless r = 7. When r = 7, rs/d = 16 and so indeed hx, y, zi = G. It remains to show that

gcd(prsd , t0) = 1. Since it is clear that gcd(p, t0) = 1 it su�ces to show that gcd(rs, t0) = 1. We have

that t0d � s = q2 so t0 is coprime to s and since r2 � t0d = 3q and t0 is coprime to 3 we have that

t0 is coprime to r. By Lemma 2.6 this then yields an even triple of type (p(q + 1), p(q + 1), q2�1

d ) on

G⇥G.

Lemma 2.73. The projective special unitary group U
3

(q) and U
3

(q)⇥U
3

(q) admit a mixable Beauville

structure for q � 3.

Proof. In light of the preceding Lemmas in this section it remains only to check the cases U
3

(3),

U
3

(5) and U
3

(q) ⇥ U
3

(q) for q = 3, 4, 5 and 8. We present words in the standard generators that

can be easily checked to give suitable generating triples for G which, by Lemma 2.6, give mixable

Beauville structures for these cases. For G = U
3

(3) let

x
1

= [a, b2], y
1

= [a, b2]b, x0
1

= (babab2)3, y0
1

= [a, b2]b 2 G.

It can be checked that G = hx
1

, y
1

i = hx0
1

, y0
1

i where both triples have type (4, 4, 8) but in the former

triple x
1

, y
1

2 4C, whereas in the latter, x0
1

2 4AB, y0
1

2 4C. Since these two generating triples

are then inequivalent under the action of Aut(G) we have that (x
1

, x
2

), (y
1

, y
2

) 2 G ⇥ G yields a

generating triple of type (4, 4, 8) for G ⇥ G. For the odd triples we let x
2

= ab and y
2

= ba. These

produce a generating triple of type (7, 7, 3) which, by Lemma 2.6, gives a mixable Beauville structure

for G ⇥ G. For the remaining cases q = 4, 5 and 8 we present in Table 2.3 words in the standard

generators for G which, by Lemma 2.6, give a mixable Beauville structure for G and G ⇥ G where

necessary.
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q x
1

y
1

x
2

y
2

Type

4 a (ab)2 b [b, a] (2, 13, 13; 3, 5, 3)

5 a ab2 ab b3ab3 (3, 8, 8; 7, 7, 5)

8 a (ab)2 [a, b] [a, b]babab (2, 19, 19; 9, 9, 7)

Table 2.3: Mixable Beauville structures for G and G⇥G where G = U
3

(q), q = 4, 5 and 8.

2.5.4 The projective symplectic groups S4(q)

The projective symplectic groups S
4

(q) are defined over fields of order q. They are simple for q � 3

and have order q4(q4 � 1)(q2 � 1)/d where d = gcd(2, q � 1). The classification of their maximal

subgroups is for q odd is due to Mitchell [86]. The maximal subgroups of the symplectic group

Sp
4

(q) are given in [18, pp. 383–384] from which the maximal subgroups of the projective symplectic

groups S
4

(q) are determined by factoring out the centre Z = Z(Sp
4

(q)). We make use of the character

table of S
4

(q) for q odd which was determined by Shahabi and Mohtadifar [100] and whose notation

we use throughout.

Lemma 2.74. Let G be the projective symplectic group S
4

(q) where q � 8 is even. Then there exists

a mixable Beauville structure for G of type

(4, 4, q2 + 1; q2 � 1, q2 � 1, q + 1).

This also yields a mixable Beauville structure for G⇥G.

Proof. The existence of our even triple for G follows from [45, Lemma 4.26] and by Lemma 2.6 for

G ⇥G. The existence of our odd triple for G follows from [45, Lemma 4.24] and by Lemma 2.8 for

G⇥G. It is clear that we have gcd(4(q2+1), q2�1) = 1 and hence these are indeed mixable Beauville

structures for G and for G⇥G.

Lemma 2.75. Let G be the projective symplectic group S
4

(q) where q � 5 is odd. Then there exists

an odd triple of type ✓
q2 + 1

2
,
q2 + 1

2
,
q2 + 1

2

◆

for G and for G⇥G.

Proof. From the list of maximal subgroups of G elements of order (q2+1)/2 belong only to maximal

subgroups isomorphic to L = L
2

(q2) : 2 6 P⌃L
2

(q). Let B
1

denote a conjugacy class of elements of

order (q2 +1)/2 in G. We use the structure constants to determine n(B
1

, B
1

, B
1

). We then subtract

from this the number of triples of elements from B
1

contained in maximal subgroups isomorphic to

L, denoted n(B
1

, B
1

, B
1

)L. Our aim is then to show that

n(B
1

, B
1

, B
1

)� [G : L]n(B
1

, B
1

, B
1

)L
|Aut(G)| � 2,
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where [G : L] = [G : NG(L)] is the number of subgroups conjugate to L in G, in which case there are

at least 2 inequivalent generating triples, and hence there exist generating triples for G and G ⇥G

of the desired type. Let ⇣ be a primitive (q2 +1)-th root of unity and let R
1

be the set of (q2 � 1)/4

distinct positive integers, i, such that ⇣i, ⇣�i, ⇣qi and ⇣�qi are all distinct. We see from the character

table of G that the irreducible characters which take non-zero values on the conjugacy class B
1

are

those denoted ✓
9

; ✓
10

; �
1

(j), where j 2 R
1

is even; and the linear character, which is not printed in

the tables. We have that

n(B
1

, B
1

, B
1

) =
q8(q2 � 1)4

(q2 + 1)

0

@1 +
X

j2R1

(⇣j + ⇣�j + ⇣qj + ⇣�qj)3

(q2 � 1)2
� 1

q(1 + q)2
+

1

q(1� q)2
+

1

q4

1

A .

From the triangle inequality we can bound this in the following way.

n(B
1

, B
1

, B
1

) � q4(q2 � 1)2

(q2 + 1)
(q8 + 14q6 � 10q4 � 2q2 + 1).

We use CHEVIE [55] to compute the structure constant n(B
1

, B
1

, B
1

)L from the structure constants

of L
2

(q2) in the following way. Let C be a conjugacy class of elements of order (q2+1)/2 inside L
2

(q2)

and let C 0 be the conjugacy class in L
2

(q2) consisting of q-th powers of elements in C. Under the action

of L, C fuses with C 0 and, since the structure constant n(C,C,C)L2(q2) = 4|L
2

(q2)| is constant by

replacing any number of choices of C with C 0, we have n(B
1

, B
1

, B
1

)L = 23n(C,C,C)L2(q2) = 16|L|.
Putting all this together yields

n(B
1

, B
1

, B
1

)� [G : L]n(B
1

, B
1

, B
1

)L
|Aut(G)| � q8 + 14q6 � 26q4 � 34q2 � 15

2f(q2 + 1)2
,

the right hand side of which is greater than 2 when q � 5. This gives the desired result.

Lemma 2.76. Let G be the projective symplectic group S
4

(q) where q � 5 is odd. Then,

1. if q = p, then there exists an even triple for G and G⇥G of type (p, q + 1, p(q + 1)), and;

2. if q 6= p, then there exists an even triple for G and G⇥G of type (p2, q + 1, p(q + 1)).

Proof. Elements belonging to the conjugacy class A
41

have order p or p2, depending on whether

q = p or not, and their centraliser in G has order q2. A conjugacy class of elements of order q + 1

whose centraliser in G has order (q+1)2 can be chosen and is denoted B
4

, while a conjugacy class of

elements of order p(q + 1) can be chosen with centraliser in G of order q(q + 1) and is denoted C
21

.

Let x 2 A
41

, y 2 B
4

, z 2 C
21

and H = hx, y, zi. From examination of the list of maximal

subgroups as found in [18, p. 383] we see that maximal subfield subgroups and maximal subgroups

isomorphic to L
2

(q) or S
4

(q2) : 2 do not contain elements of order p(q + 1) and, since p(q + 1) � 30

when q � 5, H is not contained in any of the possible maximal subgroups of fixed order. An element

of order q+1 belonging to a parabolic subgroup will have centraliser in G of order divisible by q2�1
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and so neither class of parabolic subgroups contain elements conjugate to y in G. Maximal subgroups

isomorphic to (Sp
2

(q) o 2)/Z have centre of order 2 and so do not contain elements conjugate to x

in G. Finally, maximal subgroups of shape GL
2

(q).2/Z or GU
2

(q).2/Z do not contain elements of

order p2 and an element of order p belonging to either group has centraliser in G of order divisible

by (q � 1)/2 or (q + 1)/2 as appropriate, hence such subgroups do not contain elements conjugate

to x in G. It follows that H = G.

We now proceed to show that x, y and z can be chosen such their product is the identity

and that there are at least 2 inequivalent such triples. For this we compute the structure constant

n(A
41

, B
4

, C
21

). Let k, r 2 T
2

= {1, 2, . . . , (q � 1)/2},

s = (�1)
q�1
2 , ✏ = �s(s+

p
sq), ✏0 = �s(s�p

sq), ⌘q+1 = 1 and �j = ⌘j + ⌘�j ,

where ⌘ is a primitive root of unity. Note that ✏ + ✏0 = �2s and ✏✏0 = (1 � sq). The irreducible

characters on which all three of these classes take non-zero values are denoted in [100] as ✓
3

; ✓
3

✓
4

;

⇠0
21

(k) and ⇠0
22

(k) where k is odd; �⇠
1

(k), where k is even; �
4

(k, r) where k + r is even and k 6= r;

��
6

(k); and the linear character, which is not printed. From the character table we then have

g =
|A

41

||B
4

||C
21

|
|G| =

q5(q � 1)4(q2 + 1)2(q + 1)

8

and
n(A

41

, B
4

, C
21

)

g
= 1� 2

✏✏0(�1)
q+1
2

1

2

(1 + q2)
+

+
X

k odd

✏0(s�k � �k q�1
2
)(1 + �k✏)

1

2

(1� q)2(1 + q2)
+

X

k odd

✏(s�k � �k q�1
2
)(1 + �k✏0)

1

2

(1� q)2(1 + q2)
+

+
X

k even

(�k + �k q�1
2
)(1 + �k)

(1� q)(q2 + 1)
+

X

k+r even

k 6=r

(�k�r q�1
2

+ �r�k q�1
2
)(�k + �r)

(1� q)2(1 + q2)
+
X

k

�k�k q�1
2
�k

(1� q)(1 + q2)

where in each summation k sums over all elements of T
2

subject to the stated conditions. This

expression can be simplified to the following

8n(A
41

, B
4

, C
21

)

q5(q � 1)3(q2 + 1)(q + 1)
= (q2 + 1)(q � 1)+

+4(q � s)(q � 1)� 4
X

k odd

(�2

kq + �k�k q�1
2

+ �k)� s(�k�k q�1
2
q + �2

k + �k q�1
2
)

(q � 1)
+

+
X

k even

(�k + �k q�1
2
)(1 + �k) +

X

k+r even

k 6=r

(�k�r q�1
2

+ �r�k q�1
2
)(�k + �r)

(q � 1)
+
X

k

�k�k q�1
2
�k
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which, from noting that |�j |  2, in turn gives the bound

n(A
41

, B
4

, C
21

)

|Aut(G)| � q(q � 1)(q3 + 3q2 � 7q � 19)

16f(q + 1)
.

When q � 5, the right hand side is at least 2 and so there exist even triples of the stated types for

G and for G⇥G, hence the desired result.

Lemma 2.77. Let G be the projective symplectic group S
4

(q) where q � 3. Then G and G⇥G admit

mixable Beauville structures.

Proof. In light of the preceding lemmas it remains to show this for the cases q = 3 and q = 4. In

the case G = S
4

(3) the maximal subgroups, character table and permutation characters of necessary

maximal subgroups are given in [27, pp. 26–27]. From the permutation characters it can be seen that

elements from the conjugacy class 5A belong only to maximal subgroups isomorphic to A = 24 :A
5

or S = S
6

⇠= S
4

(2). In the case of G and S there is a unique conjugacy class of involutions and the

structure constants n(5A, 5A, 5A)G = 6028992 and n(5A, 5A, 5A)S = 7632 can be readily computed

in GAP. In the case of A there are two conjugacy classes of elements of order 5 and eventually

we compute the number of triples of elements of order 5 in A whose product is the identity as

n(5, 5, 5)A = 49152. Combining all of this we have

n(5A, 5A, 5A)G � 27n(5, 5, 5)A � 120n(5A, 5A, 5A)S
|Aut(G)| =

427

5
> 2

from which we see that there exist generating triples for G and G⇥G of type (5, 5, 5). The number

of inequivalent generating triples for G of type (5, 5, 5) can be computed directly in GAP and we

see that there are in fact 87 such triples. For our even triples we again turn to the permutation

characters and see that no maximal subgroup of G contains elements from each of the classes 4A,

4B and 9A. Either directly, or in GAP, the structure constant n(4A, 4B, 9A)/|Aut(G)| = 3 can be

computed so we have even triples for G and for G⇥G of of type (4, 4, 9). Again, this can be verified

in GAP and so we have a mixable structure for G and for G⇥G of type (4, 4, 9; 5, 5, 5).

In the case G = S
4

(4) the maximal subgroups, character table and permutation characters

of necessary maximal subgroups can be found in [27, pp. 44–45]. We note that elements of or-

der 17 belong only to maximal subgroups isomorphic to L = L
2

(16) : 2. The structure constant

n(17A, 17A, 17A)G = 188985600 can be computed directly or in GAP while the structure constant

n(17A, 17A, 17A)L = 32640 can also be computed directly in GAP. There are two classes of maximal

subgroups isomorphic to L in G, of index 120, and so we have

n(17A, 17A, 17A)G � 240n(17A, 17A, 17A)L
|Aut(G)| =

185

4
> 2,

hence there exists odd triples for S
4

(4) and S
4

(4) ⇥ S
4

(4) of type (17, 17, 17). For our even triples
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we again inspect the permutation characters and observe that no maximal subgroup of G contains

elements from each of the conjugacy classes 4A, 10A and 15C. We compute the structure constant

n(4A, 10A, 15C)/|Aut(G)| = 25 and see that there then exist generating triples for G and G⇥G of

type (4, 10, 15). This completes the proof.

2.5.5 The Suzuki groups Sz(22m+1)

The Suzuki groups 2B
2

(q) = Sz(q) were first constructed by Suzuki in [109] and are defined over

fields of order q = 22m+1 for m � 0. They have order q2(q � 1)(q2 + 1) and are simple when q > 2.

Their maximal subgroups were determined by Suzuki in [110] and can also be found in [120, Section

4.3.2].

Lemma 2.78. Let G be the Suzuki group Sz(q) for q > 2. Then

1. G admits a mixable Beauville structure of type (2, 4, 5; q � 1, n, n), and;

2. G⇥G admits a mixable Beauville structure of type (4, 10, 10;n(q � 1), n(q � 1), n)

where n = q ±p
2q + 1, whichever is coprime to 5.

Proof. In the proof of [51, Theorem 6.2] Fuertes and Jones prove that there exist generating triples

for G of types (2, 4, 5) and (q � 1, n, n). It is clear that gcd(10, n) = gcd(10, q � 1) = 1. Then, by

Lemma 2.6, we need only show that gcd(q � 1, n) = 1. If q � 1 and n share a common factor, then

so do q2 � 1 and q2 + 1 and similarly their di↵erence. Hence gcd(q � 1, n) divides 2, but since q � 1

is odd we have gcd(q � 1, n) = 1 as was to be shown.

2.5.6 The exceptional groups G2(q)

The exceptional groups G
2

(q) are defined over fields of order q � 2 and have order q6(q6�1)(q2�1).

They are simple for all prime powers q � 3 and their maximal subgroups were determined by

Cooperstein [28] for q even and Kleidman [73] for q odd. The maximal subgroups are summarised

in [120, Section 4.3.7]. Their conjugacy classes were determined by Enomoto [39] in the cases p = 2, 3

and Chang [22] in the case p � 5.

Lemma 2.79. Let G be the exceptional group G
2

(q) where q � 4 is even. Then,

1. if q = 4, G admits a mixable Beauville structure of type (8, 8, 7; 5, 5, 13);

2. if q � 8 and q ⌘ 1 mod 3, G admits a mixable Beauville structure of type

�
4, 4, q2 � q + 1; q + 1, q + 1, q2 + q + 1

�
,

and;
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3. if q � 8 and q ⌘ �1 mod 3, G admits a mixable Beauville structure of type

�
4, 4, q2 + q + 1; q � 1, q � 1, q2 � q + 1

�
.

Furthermore, each of these cases yields a mixable Beauville structure for G⇥G.

Proof. We treat the case q = 4 independently, since additional maximal subgroups arise in this case,

by presenting words in the standard generators of G
2

(4) which are easily checked in GAP. For our

odd triple x
1

= b and y
1

= ba gives a generating triple of type (5, 5, 13) for G and (5, 65, 65) for

G ⇥ G. For our even triple x
2

= (ab2(ab)2b)b and y
2

= xa
2

gives a generating triple of type (8, 8, 7)

for G and of type (8, 56, 56) for G ⇥ G. These words visibly provide a mixable Beauville structure

for G and G⇥G.

Now suppose that q � 8. We begin with the odd triples for all q � 8 and use results from the

character tables of SL
3

(q) and SU
3

(q) [114] throughout. From the list of conjugacy classes of G

elements of order q2 � q + 1 exist, are regular semisimple and belong only to maximal subgroups

isomorphic to SU
3

(q) : 2. Elements of order q�1 can be chosen so that their centraliser in G has order

(q � 1)2 in which case they are regular semisimple. Since the order of the centraliser of an element

of order q � 1 in SU
3

(q) is divisible by q2 � 1 such elements do not belong to maximal subgroups

isomorphic to SU
3

(q) : 2. Triples of type (q� 1, q� 1, q2 � q+1) exist by Gow’s Theorem and by the

previous discussion generate G. The proof for generating triples of type (q + 1, q + 1, q2 + q + 1) is

identical with the roles of SL
3

(q) : 2 and SU
3

(q) : 2 interchanged. Since gcd(q� 1, q2� q+1) = 1 and

gcd(q + 1, q2 + q + 1) = 1 we have our odd triples for G and G⇥G.

For our even triples we proceed as follows. In the case q ⌘ 1 mod 3, elements of order q2 � q + 1

exist as before. Elements of order 4 are conjugate in SU
3

(q) : 2 and so also in G, but G contains three

conjugacy classes of elements of order 4. We denote them 4A, 4B and 4C in decreasing order of the

size of their centraliser in G. If we let n = q2� q+1, then a calculation in CHEVIE shows that triples

of type (4A, 4C, nA) exist. Again, our argument is identical for the case q ⌘ �1 mod 3 with the roles

of SL
3

(q) : 2 and SU
3

(q) : 2 interchanged yielding an even triple of type (q+1, q+1, q2+ q+1). Since

q2 � q + 1 and q2 + q + 1 are odd, we have our even triples for G and for G⇥G.

It remains to show that gcd(q � 1, q2 + q + 1) = gcd(q + 1, q2 � q + 1) = 1. In the former case

any common factor must divide (q2 + q+1)� (q� 1)2 = 3q. Since q� 1 is odd and since elements of

order q � 1 are chosen when q ⌘ �1 mod 3, we have that gcd(q � 1, q2 + q + 1) = 1. The latter case

is proven analogously.

Remark 2.80. In the case that q = 2, there exists an isomorphism G
2

(2) ⇠= Aut(U
3

(3)) [120, Section

4.4.4], but this group is neither simple nor mixable since it contains an index 2 subgroup.

Lemma 2.81. Let G be the exceptional group G
2

(q) where q � 9 is odd. Then G admits a mixable
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Beauville structure of type

✓
q � 1

2
,
q � 1

2
,
q2 � q + 1

t
1

;
q + 1

2
,
q + 1

2
,
q2 + q + 1

t
2

◆

where t
1

= gcd(3, q + 1) and t
2

= gcd(3, q � 1). This also yields a mixable Beauville structure for

G⇥G.

Proof. We follow closely the construction given in [45, Section 5.7] but modify it slightly to ensure

we have a mixable Beauville structure. Let

k
1

=
q � 1

2
, k

2

=
q + 1

2
, k

3

=
q2 + q + 1

gcd(3, q � 1)
and k

6

=
q2 � q + 1

gcd(3, q + 1)
.

Note that gcd(k
1

, k
2

) = 1 and that either k
1

or k
2

is even. It is clear that gcd(k
3

, k
6

) = 1, gcd(k
2

, k
3

) =

1 and gcd(k
1

, k
6

) = 1. Both gcd(k
1

, k
3

) and gcd(k
2

, k
6

) divide 3, but since 9 does not divide k
3

or k
6

,

from our choices of k
1

, k
2

, k
3

and k
6

we have that these four numbers are pairwise coprime. From [22]

and [39] we see that there exist conjugacy classes of regular semisimple elements of all of these orders

for all odd q. From the character tables of SL
3

(q) and SU
3

(q) elements of orders k
1

and k
2

can be

chosen from the conjugacy class denoted C
6

for both in [105]. By Gow’s Theorem, there then exists

a pair of elements of order k
1

whose product has order k
6

, and a pair of elements of order k
2

whose

product has order k
3

. From the list of maximal subgroups, such triples of elements cannot belong to

a single maximal subgroup. Then, by the preceding arguments and Lemma 2.6 we have a mixable

Beauville structure for G and for G⇥G.

Lemma 2.82. Let G be the exceptional group G
2

(q) where q � 3. Then G and G⇥G admit mixable

Beauville structures.

Proof. In light of Lemmas 2.79 and 2.81 it remains to consider the cases q = 3, 5 or 7.

If q = 3 the following explicit words in the standard generators are easily checked in GAP to

admit a mixable Beauville structure. Our even triple is given by x
1

= a, y
1

= aba(bab)2, of type

(2, 7, 8), and our odd triple is given by x
2

= b, y
2

= ba, of type (3, 3, 13). By Lemma 2.6 these also

give mixable Beauville structures for G
2

(3)⇥G
2

(3).

When q = 5 we refer to the character table and permutation characters of G
2

(5) as given in [27, p.

114] where the maximal subgroups can also be found. The only maximal subgroups containing

elements of order 31 are isomorphic to L
3

(5) : 2 which does not contain elements of order 7. Since

elements of order 7 and of order 31 are both regular semisimple, by Gow’s Theorem there exists an

odd triple of type (7, 7, 31) for G
2

(5). For our even triple we let x, y 2 6C and use the structure

constants to show that we can find z 2 25A such that xyz = 1. We now prove that such a triple

generates G
2

(5). Maximal subgroups containing elements of order 25 belong to one of the two classes

of parabolic subgroups in G
2

(5). We denote their representatives as Pa
⇠= q1+4

+

:GL
2

(5) and Pb
⇠=

q2+3 :GL
2

(5). We denote the permutation character of Pa as �a = �
1

+�
5

+�
8

+�
11

and that of Pb
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as �b = �
1

+ �
5

+ �
9

+ �
11

. If g 2 6C, then �a(g) = �b(g) = 0 and thus elements from 6C are not

contained in subgroups isomorphic to Pa or Pb, hence we have an even triple of type (6, 6, 25). By

Lemma 2.6 this also yields a mixable Beauville structure for G
2

(5) ⇥ G
2

(5). It can also be verified

in GAP that such a triple exists.

Finally, in the case of q = 7, there exist conjugacy classes of regular semisimple elements of orders

8 and 19, as well as elements of orders 49 and 43. By Gow’s Theorem there exists a pair of elements

of order 8 whose product has order 9, and by computation in CHEVIE there exists a pair of elements

of order 49 whose product has order 43. From the list of maximal subgroups and by Lemma 2.6 we

have that these triples admit mixable Beauville structures for G
2

(7) and G
2

(7)⇥G
2

(7), completing

the proof.

2.5.7 The small Ree groups R(32m+1)

The small Ree groups 2G
2

(q) = R(q) were first announced by Ree in [94] and are defined over fields

of order q = 32m+1 for m � 0. They have order q3(q3 + 1)(q � 1) and are simple when q > 3. Their

maximal subgroups were determined by Levchuk and Nuzhin [77] when q > 3 and independently by

Kleidman [73] for all q. The maximal subgroups for q > 3 can also be found in [120, Section 4.5.3].

Their conjugacy classes and character table were determined by Ward [114].

Lemma 2.83. Let G be the small Ree group R(q) for q > 3. Then

1. G admits a mixable Beauville structure of type

✓
q + 1

2
,
q + 1

2
, q +

p
3q + 1;

q � 1

2
,
q � 1

2
, q �

p
3q + 1

◆
,

and;

2. G⇥G admits a mixable Beauville structure of type

✓
q + 1

2
,
q + 1

2
n+,

q + 1

2
n+;

q � 1

2
,
q � 1

2
n�,

q � 1

2
n�

◆

where n+ = q +
p
3q + 1 and n� = q �p

3q + 1.

Proof. Let G, q, n+ and n� be as in the hypotheses. From the character table of G we see that

regular semisimple elements of orders q+1

2

, q�1

2

, n+ and n� exist. By Gow’s Theorem we can find

elements x
1

, y
1

2 G, both of order q+1

2

, whose product has order n+, and elements x
2

, y
2

2 G, both

of order q�1

2

, whose product has order n�.

The only maximal subgroups of G containing elements of order n+ have order 6n+. Similarly, the

only maximal subgroups of G containing elements of order n� have order 6n�. Since n+ � (q+1) =
p
3q we have gcd( q+1

2

, n+) = 1 as neither is divisible by 3. Then, for q > 3 we have q+1

2

> 6 so

(x
1

, y
1

, x
1

y
1

) is indeed an even triple for G of type ( q+1

2

, q+1

2

, q +
p
3q + 1). Similarly, for q > 3 we
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have q�1

2

> 6 and n+n� + (q � 1) = q2, hence gcd( q�1

2

, n�) = 1 as both are coprime to 3. Note this

also implies that gcd(n+, q�1

2

) = 1. This gives us an odd triple for G of type ( q�1

2

, q�1

2

, q�p
3q+1).

It is clear that gcd( q+1

2

, q�1

2

) = 1 since their di↵erence is q and neither is divisible by 3. Similarly,

gcd(n+, n�) = 1 since their di↵erence is 2
p
3q and both are clearly coprime to 6. Since we have

already shown that gcd(n+, q�1

2

) = 1 it remains to show that gcd(n�, q+1

2

) = 1. We have (q + 1)�
n� =

p
3q and since neither is divisible by 3 we have a mixable Beauville structure for G. Finally,

by Lemma 2.6, since gcd( q+1

2

, n+) = 1 and gcd( q�1

2

, n�) = 1, we also have a mixable Beauville

structure for G⇥G.

2.5.8 The large Ree groups 2F4(2
2m+1)

The large Ree groups 2F
4

(q) were first announced by Ree in [95] and are defined over fields of order

q = 22m+1 for m � 0. They have order q12(q6 + 1)(q4 � 1)(q3 + 1)(q � 1) and are simple except for

the case q = 2 which has simple derived subgroup 2F
4

(2)0, known as the Tits group. We consider the

Tits group along with the sporadic groups in the next section. The maximal subgroups of the large

Ree groups were determined by Malle in [84] and can also be found in [120, Section 4.9.3]. Their

conjugacy classes were determined by Shinoda [104].

Lemma 2.84. Let G be the large Ree group 2F
4

(q) for q > 2. Then

1. G admits a mixable Beauville structure of type

✓
10, 10, n+;

q2 � 1

3
, n�, n�

◆
,

and;

2. G⇥G admits a mixable Beauville structure of type

✓
10, 10n+, 10n+;

q2 � 1

3
n�,

q2 � 1

3
n�, n�

◆

where n+ = q2 + q + 1 +
p
2q(q + 1) and n� = q2 + q + 1�p

2q(q + 1).

Proof. Let G, q, n+ and n� be as in the hypotheses. Elements of order 10 exist since G contains

maximal subgroups of the form Sz(q) o 2, as do elements of order q2�1

3

since G contains maximal

subgroups isomorphic to SU
3

(q) : 2 and since gcd(3, q + 1) = 3. The only maximal subgroups con-

taining elements of order n+ have order 12n+. Similarly, elements of order n� are only contained in

maximal subgroups of order 12n�.

Using the computer program CHEVIE it is possible to determine the structure constant for a pair

of elements of order 10 whose product is n+ and we see that such triples exist. Since n+n� = q4�q2+1

and q ⌘ ±2 mod 5 we have that gcd(10, n�) = gcd(10, n+) = 1. Then, since no maximal subgroup

contains both elements of order 10 and of order n+ this is indeed an even triple for G. From the
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list of conjugacy classes we see that elements of order q2�1

3

are semisimple and elements of order n�

are regular semisimple. Then by Gow’s Theorem there exists a pair of elements of order n� whose

product has order q2�1

3

. Since (n+n�) + (q2 � 1) = q4 any common factor of n� and q2�1

3

must

be a power of 2, but since n� and q2 � 1 are both odd we have gcd( q
2�1

3

, n�) = 1. Note that this

also implies gcd(n+, q2�1

3

) = 1. Then, since q2�1

3

> 12 for q > 2, we see that no maximal subgroup

contains both elements of order n� and of q2�1

3

. Hence odd triples of type ( q
2�1

3

, n�, n�) exist for

G. By Lemma 2.6 are also odd and even triples for G⇥G.

We have already shown that gcd(10, n�) = 1, gcd(n+, q2�1) = 1 and it is clear that gcd(10, q2�1

3

) =

1. Finally, let c = gcd(n+, n�) and note that c is odd. Since n+ � n� = 2
p
2q(q + 1), c must divide

q+ 1. Also, since n+ + n� = 2(q2 + q+ 1), c must also divide q2 + q+ 1. Therefore c must divide q2

and hence c = 1 so we have our desired mixable Beauville structures for G and G⇥G.

2.5.9 The Steinberg triality groups 3D4(q)

The Steinberg triality groups 3D
4

(q) are defined over fields of order q � 2 and are all simple.

They have order q12(q8 + q4 + 1)(q6 � 1)(q2 � 1) and their maximal subgroups were determined by

Kleidman [74]. Their maximal subgroups can also be found in [120, Section 4.6.5].

Lemma 2.85. Let G be the Steinberg triality group 3D
4

(2). Then both G and G⇥G admit a mixable

Beauville structure.

Proof. It can be verified using GAP that (a, (ab)3b2; ab, bab
2

), where a and b are the standard gen-

erators, is a mixable Beauville structure of type (2, 7, 28; 13, 9, 13) and by Lemma 2.6 this yields a

mixable Beauville structure of type (14, 14, 28; 117, 117, 13) for G⇥G.

Lemma 2.86. Let G be the Steinberg triality group 3D
4

(q) for q � 3. Then

1. for p = 2 there exists a mixable Beauville structure for G of type

(6, 6,�
12

(q);�
3

(q),�
3

(q),�
6

(q)),

and;

2. for p 6= 2 there exists a mixable Beauville structure for G of type

✓
q2 � 1

d
,
q2 � 1

d
,�

12

(q);�
3

(q),�
3

(q),�
6

(q)

◆
.

where d = gcd(3, q + 1). These also yield mixable Beauville structures for G⇥G.

Proof. Let G and d be as in the hypothesis. By [45, Lemma 5.24] for q > 2 there exists a generating

triple of type (�
3

(q),�
3

(q),�
6

(q)). We now turn to the even triples.
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For p = 2 one can verify using CHEVIE to compute the structure constants that there exist

pairs of elements of order 6 whose product has order �
12

(q) and it is clear from the list of maximal

subgroups that this is indeed an even triple for G. For p 6= 2 elements of order q2�1

d exist since G

contains subgroups isomorphic to SU(3, q). It can then be shown using CHEVIE that triples of type

( q
2�1

d , q2�1

d ,�
12

(q)) exist and from the list of maximal subgroups it can be shown that they generate

G. By Zsigmondy’s Theorem it is also clear that we have coprimeness for both Beauville structures.

By Lemma 2.6 we need only verify that gcd(6,�
12

(q)) = 1 for p = 2 to show that these yield

mixable Beauville structures for G⇥G. This is clear since �
12

(q) is both odd and coprime to q2 � 1

which is divisible by 3.

2.6 Mixable Beauville structures for the sporadic groups

We present in Table 2.4 explicit mixable Beauville structures for the sporadic groups in terms of

words in the standard generators, except for the cases of the Baby Monster, B, and the Monster, M,

for which we simply show existence of such structures in the following Lemmas. The types of these

structures are given in Table 2.5.

Lemma 2.87. The Baby Monster B and B⇥ B admit mixable Beauville structures.

Proof. By [117, Theorem 2] there exists a generating triple of type (2, 3, 8) for B. Let

x = (ab)3(ba)4b(ba)2b2, y = xab2

be words in the standard generators. They both have order 47 and their product has order 55. From

the list of maximal subgroups of B (these are due to Wilson and can be found in [119] and [120, Table

5.7], however the latter omits the group O+

8

(3) :S
4

) we see that they generate B. This gives a mixable

Beauville structure of type (2, 3, 8; 47, 47, 55) for B and by Lemma 2.6 we have a mixable Beauville

structure of type (6, 6, 8; 47, 2585, 2585) for B⇥ B.

Lemma 2.88. The Monster M and M⇥M admit mixable Beauville structures.

Proof. Norton and Wilson [88, Theorem 21] show that the only maximal subgroups of the Mon-

ster which contain elements of order 94 are copies of 2˙B which do not contain elements of order

71. A computation of the structure constants then shows that an even triple of type (94, 94, 71)

exists. Finally, in [40] it is shown that there exists a generating triple of type (21, 39, 55) for M.

Therefore we have a mixable Beauville structure of type (94, 94, 71; 21, 39, 55) for M and of type

(94, 6674, 6674; 21, 2145, 2145) on M⇥M.

Finally, we have the following Lemma which completes the proof of Theorem 1.9.

Lemma 2.89. Let G be one of the 26 sporadic groups or the Tits group 2F
4

(2)0. Then there exists

a mixable Beauville structure for G and G⇥G.
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Proof. For G = B or M the existence of mixable Beauville structures follows from Lemmas 2.87 and

2.88. If G is one of M
11

, M
12

, J
1

, M
22

, J
2

, M
23

, 2F
4

(2)0, HS, J
3

, M
24

, McL, He, Ru, Suz, O0N , Co
3

,

Co
2

, Fi
22

, Fi
23

or Fi0
24

, then it can easily be checked in GAP that hx
1

, y
1

i = hx
2

, y
2

i = G for all

words appearing in Table 2.4. The remaining cases are HN , Ly, Th, Co
1

and J
4

. With the exception

of Th, in all cases x
1

and y
1

are the standard generators, so there is nothing to check. In the case

of Th there are no maximal subgroups containing elements of orders 10 and 13 hence hx
1

, y
1

i = Th.

Now we turn to the generating pairs x
2

, y
2

. From the list of maximal subgroups appearing in [27] the

following is easily checked. No maximal subgroup of HN contains elements of orders 5 and 19; no

maximal subgroup of Ly contains elements of orders 37 and 67; no maximal subgroup of Th contains

elements of orders 19 and 31; no maximal subgroup of Co
1

contains elements of orders 11, 13 and 23;

no maximal subgroup of J
4

contains elements of orders 23 and 43. Hence all pairs (x
2

, y
2

) generate

their respective groups.

With the exceptions of B and M, the types of all mixable Beauville structures for G as they

appear in Table 2.5 can easily be checked in GAP. The type for B follows from Lemma 2.87 and the

type for M follows from 2.88. In all cases except our even triple for J
2

it follows from Lemma 2.6

that such structures indeed extend to mixable Beauville structures for G ⇥G. In the case of J
2

we

let y0
1

= x(ba)2b2

1

and use GAP to show that o(x
1

y0
1

) = 10 and hx
1

, y0
1

i = J
2

. Letting x = (x
1

, x
1

), y =

(y
1

, y0
1

) 2 J
2

⇥J
2

we have by Lemma 2.8 an even triple for J
2

⇥J
2

of type (10, 10, 40). This completes

the proof.
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G x
1

y
1

x
2

y
2

M
11

ab(ab2)2 (x
1

)b (ab)5 [a, b]2

M
12

(ab)4ba(bab)2b xb2aba
1

ab ba

J
1

(ab)2(ba)3b2ab2 baba ab [a, b]

M
22

(ab)3b2ab2 ba(bab2)2a ab (ab)4b2ab2

J
2

ab(abab2)2ab2 xab2

1

ab ba

M
23

abab2 babab ab (abab)ba

2F
4

(2)0 (ab)3bab (x7

1

)baba ab ba

HS abab3 b3aba (ab)3b (x
2

)b

J
3

(ab)2(ba)3b2 xb
1

ab (ab)b

M
24

(ab)4b (x3

1

)b ab ba

McL ab2 bab ab (ab)b

He ab3 ab4 ab ba

Ru b b(ab)
5

(ab)2 (ba)2

Suz ab(abab2)2 xabab2

1

ab ba

O0N [a, b] ([a, b]2)bab ab2 (ab2)abab

Co
3

ab (ab)b
2

a(ab)2b(a2b)2b (x3

2

)baba

Co
2

a b ab(ab2)2b (x2

2

)bab
2

Fi
22

(ab)3b3 (x
1

)a b ba

HN a b [b, a] (ab)2b((ab)5(ab2)2)2

Ly a b abab3 x(ab)7

2

Th [a, b] [a, b](ba)
4b2 ababa (x5

2

)bab

Fi
23

a b ((ab)11b)3 xa
2

Co
1

a b [(ab)3, aba] [(ab)23, ab2]babab

J
4

a b a(bab)3(ab)2b xa
2

Fi0
24

ab ((ab)6b)15 b(ba)3 (x3

2

)bab

Table 2.4: Mixable strucutres (x
1

, y
1

;x
2

, y
2

) for G in terms of words in the standard generators.
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G Type of G Type of G⇥G

M
11

(8, 8, 5; 11, 3, 11) (8, 40, 40; 11, 33, 33)

M
12

(8, 8, 5; 11, 11, 3) (8, 40, 40; 11, 33, 33)

J
1

(10, 3, 10; 7, 19, 19) (10, 30, 30; 133, 133, 19)

M
22

(8, 8, 5; 11, 7, 7) (8, 40, 40; 77, 77, 7)

J
2

(10, 10, 8; 7, 7, 3) (10, 10, 40; 7, 21, 21)

M
23

(8, 8, 11; 23, 23, 7) (8, 88, 88; 23, 161, 161)

2F
4

(2)0 (8, 8, 5; 13, 13, 3) (8, 40, 40; 13, 39, 39)

HS (8, 8, 15; 7, 7, 11) (8, 120, 120; 7, 77, 77)

J
3

(8, 8, 5; 19, 19, 3) (8, 40, 40; 19, 57, 57)

M
24

(8, 8, 5; 23, 23, 3) (8, 40, 40; 23, 69, 69)

McL (12, 12, 7; 11, 11, 5) (84, 84, 12; 55, 55, 11)

He (8, 8, 5; 17, 17, 7) (8, 40, 40; 17, 119, 119)

Ru (4, 4, 29; 13, 13, 7) (4, 116, 116; 13, 91, 91)

Suz (8, 8, 7; 13, 13, 3) (8, 56, 56; 13, 39, 39)

O0N (12, 6, 31; 19, 19, 11) (12, 186, 186; 209, 209, 19)

Co
3

(14, 14, 5; 23, 23, 9) (14, 70, 70; 23, 207, 207)

Co
2

(2, 5, 28; 23, 23, 9) (10, 10, 28; 23, 207, 207)

Fi
22

(16, 16, 9; 13, 13, 11) (144, 144, 16; 143, 143, 13)

HN (2, 3, 22; 5, 19, 19) (6, 6, 22; 95, 95, 19)

Ly (2, 5, 14; 67, 67, 37) (10, 10, 14; 2479, 2479, 67)

Th (10, 10, 13; 19, 19, 31) (130, 130, 10; 589, 589, 19)

Fi
23

(2, 3, 28; 13, 13, 23) (6, 6, 28; 299, 299, 13)

Co
1

(2, 3, 40; 11, 13, 23) (6, 6, 40; 143, 143, 23)

J
4

(2, 4, 37; 43, 43, 23) (4, 74, 74; 989, 989, 43)

Fi0
24

(29, 4, 20; 33, 33, 23) (116, 116, 20; 759, 759, 33)

B (2, 3, 8; 47, 47, 55) (6, 6, 8; 47, 2585, 2585)

M (94, 94, 71; 21, 39, 55) (94, 6674, 6674; 21, 2145, 2145)

Table 2.5: Types of the mixable Beauville structures for G and G ⇥ G from the words in Table 2.4

and Lemmas 2.87 and 2.88.
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Chapter 3

The Möbius function of the small

Ree groups

‘Surely,’ said I, ‘surely that is

something at my window lattice;

Let me see then, what thereat is,

and this mystery explore —’

The Raven, Edgar Allan Poe

The existence of the small Ree groups was first announced in 1960 by Ree [94] who constructed

them shortly after in [96]. Ree observed that Suzuki’s original construction [109] of the Suzuki

groups Sz(22m+1) = 2B
2

(22m+1) for m > 0 could be interpreted in terms of Lie theory and applied

to the Chevalley groups of types G
2

[94] and F
4

[95] in certain characteristics. In the case of G
2

in

characteristic 3 the groups which arise are known as the small Ree groups and denoted by 2G
2

(q) =

R(q) where q = 32m+1 and m � 0.

The small Ree group R(q) can naturally be considered as a subgroup of L
7

(q) as in [77] or

as a subgroup of P⌦+

8

(q) as in [73]. For the purpose of determining all possible intersections of

maximal subgroups in R(q) this is quite unwieldy. Thankfully, Tits [112] determined the existence

of a natural 2-transitive permutation representation of R(q) of degree q3 + 1 , and it is with this

representation that we work. Tits’ construction, however, still relies on the Lie theory. A construction

of the small Ree groups that is Lie-free is due to recent work by Wilson [121–123]. In addition to

these constructions, the small Ree groups have an interpretation as a finite geometry for which we

direct the reader to [113, Section 7.7] and as the automorphism group of a 2 � (q3 + 1, q + 1, 1)

design [81].
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The classical Möbius function

We recall the classical Möbius function from number theory since it will be necessary for our calcu-

lations. For a positive integer n we define

µ(n) =

8
>><

>>:

(�1)d if n is the product of d distinct primes

0 if n > 1 and has a square factor greater than 1.

Remark 3.1. We recall the following classical fact about the Möbius function of a natural number,

since we make heavy use of it in our determination of the Möbius function. If n > 0 is a positive

integer, then

X

l|n
µ(l) =

8
>><

>>:

1 if n = 1

0 if n > 1

where l sums over all positive divisors of n.

Counting subgroups

In Section 3.3 we follow closely the style used by Downs [34] in order to calculate µG(H) for a

subgroup H 6 G of a group G. In order to enumerate overgroups conjugate to K in G of a fixed

subgroup H 6 G we take care since conjugacy in G is not necessarily preserved in K. The following

definitions will be necessary.

Definition 3.2. Let H 6 K be subgroups of G. We denote by ⌫K(H) the number of subgroups

conjugate to K in G that contain H. This is enumerated using the formula

nX

i=1

[G : NG(K)][K : NK(Hi)]

[G : NG(H)]
=

nX

i=1

|K||NG(Hi)|
|NG(K)||NK(Hi)|

where {H
1

, . . . , Hn} is a set of representatives from each conjugacy class in K of subgroups conjugate

to H in G.

Structure of the chapter

The classes of maximal subgroups of R(3) are di↵erent from those of R(q) when q > 3. As such, we

determine the Möbius function of R(3) in the first section and that of the simple small Ree groups

in the second and third sections. In the fourth section we use the Möbius function to determine

various Eulerian functions, as defined in Chapter 1, from which we prove a number of results on

the generation and probabilistic generation of the small Ree groups. In the last section we prove

some general results on Möbius functions and Eulerian functions. The main result of this chapter,

Theorem 1.22, appears in [92].
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3.1 The Möbius function of R(3)

There exists an exceptional isomorphism between the small Ree groupR(3) and P�L
2

(8) ⇠=Aut(L
2

(8))

[120, Section 4.5.4], hence it is possible to consider the permutation representation of R(3) on 9 points.

For continuity with the following sections, however, we consider R(3) in its natural permutation rep-

resentation of degree 28. The table of marks for R(3) exists in the GAP library from which it is

possible to recover its Möbius function, however since it is relatively straightforward to determine by

hand, and serves to illustrate our method, we include it here. The character table of L
2

(8) is given

in [27, p.6], and can also be found in the GAP library, from which it is possible to reconstruct the

character table for R(3), as well as listing its conjugacy classes of maximal subgroups. They are the

following.

1. R(3)0 ⇠= L
2

(8), the derived subgroup of R(3);

2. 23 : 7 : 3 ⇠= A�L
1

(8), the normaliser of a Sylow 2-subgroup;

3. 9 : 6, the normaliser of a Sylow 3-subgroup, and;

4. 7 : 6, the normaliser of a Sylow 7-subgroup.

Remark 3.3. The normaliser of a Sylow 3-subgroup is a point stabiliser in the degree 28 permuta-

tion representation of R(3) and hereafter we denote them as such. Similarly, the Sylow 7-subgroups

correspond to cyclic Hall subgroups of order q +
p
3q + 1 in the simple small Ree groups and we

denote them as Hall subgroups hereafter.

We now examine the possible intersections of pairs of maximal subgroups. The following is clear.

Lemma 3.4. Let M 6= R(3)0 be a maximal subgroup of R(3) and let H = M \R(3)0.

1. If M ⇠= 23 : 7 : 3, then H ⇠= 23 : 7.

2. If M ⇠= 9: 6, then H ⇠= 9: 2 ⇠= D
18

.

3. If M ⇠= 7: 6, then H ⇠= 7: 2 ⇠= D
14

.

The following is clear from inspection of the orders of the subgroups.

Lemma 3.5. The intersection of a point stabiliser with either a Sylow 2-subgroup normaliser or a

Hall subgroup normaliser is contained in a cyclic subgroup of order 6.

The following is also clear from the fact that the centraliser of an involution in R(3) is isomorphic

to 2⇥ L
2

(3).

Lemma 3.6. The intersection of a Sylow 2-subgroup normaliser with a Hall subgroup normaliser is

a subgroup of either a group isomorphic to 7: 3 or of a cyclic group of order 6.
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Remark 3.7. There is an exceptional isomorphism between L
2

(3) and A
4

[120, Section 3.3.1], but

in this context it is more appropriate to think of groups isomorphic to these as L
2

(3), and we denote

them as such hereafter.

The intersection of more than two maximal subgroups is dealt with in one of the cases listed in

the preceding lemmas. The only new case is the Hall subgroup itself which can equal the intersection

of the derived subgroup, a Sylow 2-subgroup normaliser and a Hall subgroup normaliser. We require

one final lemma.

Lemma 3.8. If H 6 R(3) is cyclic of order 3 and occurs as the intersection of a number of maximal

subgroups of R(3), then it is generated by an element from the conjugacy class 3B, that is, an element

of order 3 lying in the complement of the derived subgroup.

Proof. We prove this by contradiction. Assume that H is a cyclic subgroup of order 3 generated

by an element from the conjugacy class 3A and occurs as the intersection of maximal subgroups

in R(3). The only maximal subgroups which contain elements from the conjugacy class 3A are the

derived subgroup and a unique point stabiliser whose intersection, by Lemma 3.4, is isomorphic to

the dihedral group of order 18. Hence the result.

Remark 3.9. We denote by 3b a cyclic subgroup generated by an element from the conjugacy class

3B.

Since the list of conjugacy classes of subgroups of H 6 R(3) which occur as intersections of

maximal subgroups is relatively small, we can enumerate all containments between such subgroups

to determine µG(H). The necessary values are compiled in Table 3.1 from which the Möbius function

can be determined. In order to facilitate computation, conjugacy class representatives of subgroups

are presented in pairs, with H ⌦ R(3)0 succeeded by H \R(3)0.

This ultimately gives us the following.

Theorem 3.10. The inversion formula for R(3) is

�(R(3)) = �(R(3))� 9�(23 : 7 : 3)� 28�(9 : 6)� 36�(7 : 6) + 72�(7 : 3) + 504�(6)� 504�(3b)

��(L
2

(8)) + 9�(23 : 7) + 28�(9 : 2) + 36�(7 : 2)� 72�(7)� 504�(2) + 504�(1).

Remark 3.11. The Möbius function of L
2

(8) is known [34] and can be expressed a posteriori in

terms of the Möbius function of R(3) in the following way. For H 6 R(3), let H 0 = H \R(3)0. Then

⌫R(3)

(H)µR(3)

(H) = µ([H : H 0])⌫L2(8)
(H)µL2(8)

(H 0).

This behaviour can be described by Crapo’s complementation theorem [29, Theorem 3] and the group-

theoretic extension due to Pahlings [90, Lemma 1]. Compare this with the case of A
7

and S
7

. Their
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K R(3) L
2

(8) 9 : 6 9: 2 7: 6 7: 2 23 : 7 : 3 23 : 7 7 : 3 7 6 2 3b 1

µG(K) 1 -1 -1 1 -1 1 -1 1 2 -2 2 -8 -6 504

R(3) 1

L
2

(8) 1 1

9: 6 1 – 1

9: 2 1 1 1 1

7: 6 1 – – – 1

7: 2 1 1 – – 1 1

23 : 7 : 3 1 – – – – – 1

23 : 7 1 1 – – – – 1 1

7: 3 1 – – – 1 – 2 – 1

7 1 1 – – 1 1 2 2 1 1

6 1 – 1 – 1 – 1 – – – 1

2 1 1 4 4 4 4 1 1 – – 4 1

3b 1 – 1 – 3 – 3 – 3 – 3 – 1

1 1 1 28 28 36 36 9 9 36 36 252 63 84 1

Table 3.1: Table of values for ⌫K(H) with the isomorphism class of H in the left hand column.

Möbius functions are known [26] and we have the following. There are two conjugacy classes of

maximal subgroups isomorphic to L
2

(7) in A
7

and so µA7(L2

(7)) = �1. However, in Aut(A
7

) ⇠= S
7

the two conjugacy classes of subgroups of A
7

isomorphic to L
2

(7) fuse into a single class, hence there

is no subgroup H 6 S
7

such that H has an index 2 subgroup isomorphic to L
2

(7). Moreover, we have

µS7(L2

(7)) = 0.

3.2 The structure of the simple small Ree groups

We turn now to the simple small Ree groups. Throughout this section G = R(q) denotes a simple

small Ree group, q = 3n is an odd power of 3 with n > 1 and ⌦ is a set of size q3 + 1 on which R(q)

acts 2-transitively.

3.2.1 Conjugacy classes and centralisers of elements in R(q)

We begin by describing the conjugacy classes of elements of G and in particular the action of their

elements on ⌦. We assemble the necessary results from the character table of R(q), due to Ward [114],

as well as results from Levchuk and Nuzhin [77] and the summary given by Jones in [67].

The Sylow 2-subgroups of G are elementary abelian of order 8 and the normaliser of S 2 Syl
2

(G)

in G has shape 23 : 7 : 3 ⇠= A�L
1

(8). From this it follows that G contains no elements of order 4 and

that there is a unique conjugacy class of involutions in G. An involution in G is represented by t and
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fixes q + 1 points in ⌦, which we denote by ⌦t and refer to as the block of t. The centraliser in G

of t has shape 2 ⇥ L
2

(q) and acts 2-transitively on the block of t [81]. Any two distinct blocks can

intersect in at most one point and any two points belong to a unique block.

The Sylow 3-subgroups of G have order q3, exponent 9 and the normaliser of S 2 Syl
3

(G) in

G has shape q1+1+1 : (q � 1). Elements of order 3 fix a single point in ⌦ and fall into one of three

conjugacy classes, C0

3

, C+

3

and C�
3

. If g 2 C0

3

, then the centraliser of g in G has order q3 and g is

conjugate to its inverse. Elements belonging to C+

3

are denoted by u and their inverses belong to C�
3

.

We denote their union by C⇤
3

= C+

3

[C�
3

and the centraliser in G of u has order 2q2. Elements of order

6 fix a single point in ⌦ and fall into two conjugacy classes, C+

6

, C�
6

whose union we denote by C⇤
6

.

They are the commuting product of an involution with an element of C⇤
3

and hence we denote them

by tu. If tu 2 C+

6

, then its centraliser in G has order 2q and tu�1 2 C�
6

. Elements of order 9 also fix a

single point in ⌦ and fall into three conjugacy classes C0

9

, C+

9

and C�
9

. Elements belonging to C0

9

are

conjugate to their inverse where the inverse of an element in C+

9

belongs to C�
9

. If g 2 C0

9

[ C+

9

[ C�
9

then the centraliser in G of g has order 9 and g3 2 C0

3

.

The remaining elements of G are all semisimple and are best described in terms of the Hall

subgroups to which they belong. The Hall subgroups Ai, for i = 0, 1, 2, 3, are each cyclic, having the

following orders

|A
0

| = 1

2
(q � 1), |A

1

| = 1

4
(q + 1), |A

2

| = q �
p
3q + 1, |A

3

| = q +
p

3q + 1

so that G has order

|G| = 23q3|A
0

||A
1

||A
2

||A
3

|.

Elements of order k 6= 2 dividing q � 1 are conjugate to some power of tr, the commuting product

of an involution, t, with an element, r, belonging to a Hall subgroup A
0

. Such an element fixes two

points in ⌦ and |CG(tr)| = q � 1. The remaining elements of G do not fix any points in ⌦ and

have order k � 7 dividing q3 + 1 = (q + 1)(q � p
3q + 1)(q +

p
3q + 1). Elements of order 7 are

all conjugate and divide one of these three factors of q3 + 1 according to the value of q modulo 7.

Otherwise there are elements of order k > 7 dividing (q + 1)/2 conjugate to some power of ts, the

commuting product of an involution, t, with an element, s of a Hall subgroup, A
1

; elements, v, of

order dividing q �p
3q + 1; and elements, w, of order dividing q +

p
3q + 1. Their centralisers in G

have the following orders: |CG(ts)| = q + 1, |CG(v)| = q �p
3q + 1 and |CG(w)| = q +

p
3q + 1.

From Sylow’s Theorems and the fact that in R(q) a Hall subgroup is the centraliser of any Sylow

p-subgroup which it contains, we have that isomorphic Hall subgroups are conjugate in G. We make

the following definition which will be necessary.

Definition 3.12. Let q = 3n be an odd power of 3. For a positive divisor m of n we define

a
1

(m) = 3m + 1, a
2

(m) = 3m � 3
m+1

2 + 1, a
3

(m) = 3m + 3
m+1

2 + 1.
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We may simply write ai when m = n and if no confusion can arise.

3.2.2 Maximal subgroups

The maximal subgroups of the simple small Ree groups were determined by Levchuk and Nuzhin [77]

and independently by Kleidman [73]. They are conjugate to one of those listed in Table 3.2. In order

to determine their possible mutual intersections, we describe the action of the maximal subgroups

on ⌦.

Group Description

R(q1/p), p prime Maximal subfield subgroups

q1+1+1 : (q � 1) Parabolic subgroups

2⇥ L
2

(q) Involution centralisers

(22 ⇥D
(q+1)/2) : 3 Four-group normalisers

q �p
3q + 1: 6 Normalisers of a Hall subgroup A

2

q +
p
3q + 1: 6 Normalisers of a Hall subgroup A

3

Table 3.2: Conjugacy classes of maximal subgroups of the simple small Ree groups R(q).

Subfield subgroups

As shown by Tits in [112], the group R(q), where q = 3n, can be seen as the group of automorphisms

of a certain 6-dimensional projective variety defined over Fq consisting of q3 + 1 points. A subfield

subgroup is then conjugate to the group of automorphisms stabilising the points of this variety

defined over a subfield of Fq. If we let ⌦ denote the underlying set of 33n + 1 points of this variety,

then a subfield subgroup is isomorphic to R(3m) and stabilises 33m+1 points in ⌦, for m dividing n.

These subgroups are maximal when they are defined over maximal subfields of Fq, that is, when the

n/m is prime. We write Gm for a subgroup isomorphic to R(3m) and note that any two isomorphic

subfield subgroups are conjugate in G [77]. For a subfield subgroup Gm we write ⌦(m) for the set of

33m + 1 points in ⌦ stabilised by the Sylow 3-subgroups of Gm. The fixed points of elements of Gm

all belong to ⌦(m) with the exception of the blocks of the involutions in Gm which consist of 3m +1

points in ⌦(m) and 3n � 3m points in ⌦ \ ⌦(m).

Parabolic subgroups

The parabolic subgroups of G are the normalisers of the Sylow 3-subgroups. They consist of all

elements fixing a point ! 2 ⌦. As such we refer to them as point stabilisers, and the stabiliser of

the point ! 2 ⌦ is denoted by P!. Let S be a Sylow 3-subgroup of G. The centre of S is elementary

abelian of order q and nontrivial elements belong to the conjugacy class C0

3

. This is contained in an

elementary abelian normal subgroup of S of order q2. The elements of this normal subgroup that do
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not belong to Z(S) belong to C⇤
3

. All remaining elements of S have order 9 [114] and all remaining

elements of P! \ S have order 6 or a divisor of q � 1.

Involution centralisers

Let t 2 G be an involution, C = CG(t) its centraliser in G and ⌦t the block of t stabilised by C.

The action of the derived subgroup C 0 ⇠= L
2

(q) on ⌦t is the expected 2-transitive action of L
2

(q)

as its natural degree q + 1 permutation representation [81]. Elements of C of order 3 belong to C⇤
3

and fix a point in ⌦t, elements of order dividing q � 1 fix two points in ⌦t and elements of order

dividing (q + 1)/2 do not fix any points in ⌦t. It follows that any pair of commuting involutions

in G have disjoint blocks. If t
1

6= t
2

are non-commuting involutions in C, then their blocks are

also disjoint, since otherwise they would intersect in at most one point in ⌦t and be contained in

a point stabiliser. The only dihedral subgroups of a point stabiliser are isomorphic to D
6

and D
18

which, from the list of maximal subgroups of L
2

(q) [32] cannot occur. There can then be at most

(q3 + 1)/(q + 1) = q2 � q + 1 involutions in C. The involutions of C 0 ⇠= L
2

(q) are all conjugate and

so there are three conjugacy classes of involutions in C:

1. {t}, the central involution,

2. the q(q � 1)/2 involutions in L, and

3. the q(q � 1)/2 involutions in the coset tL

so that there are a total of q2 � q + 1 involutions in C and we see that for any ! 2 ⌦, ! belongs

to the block of one and only one involution in C. The blocks of the involutions in C then form a

disjoint partition of ⌦.

Four-group normalisers

The four-group normalisers of G can be built in two di↵erent ways.

• Let t
1

6= t
2

be commuting involutions in G with t
3

= t
1

t
2

. The four-group V = ht
1

, t
2

i is

centralised in G by a dihedral subgroup of shape D
(q+1)/2 and normalised by an element

u 2 C⇤
3

cyclically permuting the involutions in V . The normaliser in G of V is then N =

NG(V ) ⇠= (22 ⇥D
(q+1)/2) : 3.

• Alternatively, let hsi be a Hall subgroup conjugate to A
1

. The centraliser of hsi in G is a unique

four-group, V , and V ⇥hsi is normalised by an element, ⌧u, of order 6, where ⌧ commutes with

V and u normalises hsi.

A counting argument shows that hsi belongs to a unique four-group normaliser, whereas a four-group

belongs to 1+3(q+1)/2 four-group normalisers. To avoid confusion with the normalisers of the other

Hall subgroups, we refer to groups conjugate to N in G as four-group normalisers.
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There are four subgroups of N isomorphic to D
(q+1)/2. One of them is normal in N , which we

denote by D⌧ , the other three are conjugate in N and we denote a representative by D⌧ 0 . The three

conjugacy classes of involutions in NG(V ) are then the following:

1. the class consisting of the 3 involutions in V , namely t
1

, t
2

and t
3

,

2. the class of (q + 1)/4 involutions in D⌧ , whose representative we denote by ⌧ , and;

3. the class of 3(q+1)/4 involutions in the conjugates of D⌧ 0 in N, whose representative we denote

by ⌧ 0.

The centraliser of ⌧ in N is CN (⌧) ⇠= 2 ⇥ L
2

(3); conversely, if L is a subgroup of N isomorphic to

2⇥ L
2

(3), then its central involution is conjugate to ⌧ since the only conjugacy class of involutions

whose order is not divisible by 3 is that of ⌧ . The centraliser of ⌧ 0 in N is a Sylow 2-subgroup of

N which is a Sylow 2-subgroup of G and is thus elementary abelian of order 8. If V⌧ 0 6= V is a

four-group in N , then one and only one of its nontrivial involutions belongs to V , at most one of

its involutions is conjugate to ⌧ and at most one of its involutions is conjugate to ⌧ 0 since the order

of D⌧ is not divisible by 4. Thus, V⌧ 0 is conjugate in N to either hti, ti⌧i or hti, tj⌧i where i 6= j,

1  i, j  3 and ti⌧ and tj⌧ are both conjugate in N to ⌧ 0.

The geometric interpretation of N is then as follows. The nontrivial elements of V fix a mutually

disjoint triple of blocks in ⌦. In fact, any pair of involutions in N fixes a disjoint pair of blocks in

⌦, since all involutions belong to the centraliser of an involution in V . The orbits of s stabilise the

blocks of all involutions in N and since elements of order (q + 1)/2 are conjugate to the commuting

product of a nontrivial element of V with an element conjugate to ⌧ 0 we have that elements of order

(q + 1)/2 are composed of four cycles of length (q + 1)/4 and 2(q2 � q) cycles of length (q + 1)/2.

The fixed point of an element of N conjugate to u or u�1 belongs to the block of an involution

conjugate to ⌧ and, from above, we have that CN (⌧) acts doubly transitively on four of the points

in ⌦⌧ . Furthermore, the four conjugate cyclic subgroups of order 3 in CN (⌧) each stabilise one of

these four points. Elements conjugate to ⌧u or ⌧u�1 behave similarly to u or u�1.

Normalisers of Hall subgroups A
2

, A
3

The cyclic Hall subgroups, A
2

, A
3

, are normalised by cyclic subgroups of order 6. Let A = hai be

conjugate to a Hall subgroup A
2

or A
3

, and let N be its normaliser in G; the geometric picture

of NG(A2

) is analogous to that of NG(A3

). Since nontrivial elements of A do not fix any points in

⌦ and A is centralised only by the cyclic subgroup it generates, the action of A partitions ⌦ into

(q3 + 1)/|A| subsets of size |A|. If u 2 C⇤
3

normalises A, then there are |A| conjugates of u in N

and the fixed points of elements conjugate to u belong to a unique subset of this partition. For each

conjugate of u there is an involution t with which it commutes and so the fixed point of u belongs

to the block of t. The remaining elements in the block of t each belong to a unique orbit of a, since
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if an orbit of a contained more than one element of ⌦t then t would commute with a. As with the

four-group normalisers, elements conjugate to tu behave similarly to the elements conjugate to u.

3.3 The Möbius function of the simple small Ree groups

Throughout this section G = R(q) is a simple small Ree group, q = 3n is an odd power of 3 and

G acts 2-transitively on a set ⌦ of size q3 + 1, as described in the previous section. In order to

facilitate the determination of the Möbius function of G we would like to restrict ourselves to a small

number of classes of subgroups of G by proving that any subgroup, H, lying outside these classes has

µG(H) = 0. From Theorem 1.14 a necessary condition for a subgroup H of G to have µG(H) 6= 0 is

that H is the intersection of a number of maximal subgroups of G. However, as we shall see, there

are various classes of subgroups which can exist as intersections of maximal subgroups that also have

µG(H) = 0. In anticipation we define the collection of classes of subgroups of G appearing in Table

3.3 as MaxInt.

Isomorphism

Class type Description

R(l) R(3l) Subfield subgroups

P(l) (3l)1+1+1 : (3l � 1) Parabolic subgroups in R(3l)

C t(l) 2⇥ L
2

(3l) Involution centralisers in R(3l), l > 1

C

!
t (l) 2⇥ (3l : 3

l�1

2

) Point stabilisers of elements of C t(l), l > 1

F (l) 3l Sylow 3-subgroups of elements of C t(l), l > 1

C

0

(l) 3l � 1 Centralisers of Hall subgroups A
1

in R(3l), l > 1

NV (l) (22 ⇥D
(3

l
+1)/2) : 3 Four-group normalisers in R(3l), l > 1

N

2

(l) a
2

(l) : 6 Normalisers of Hall subgroups A
2

in R(3l), l > 1

N

3

(l) a
3

(l) : 6 Normalisers of Hall subgroups A
3

in R(3l)

C V (l) 22 ⇥D
(3

l
+1)/2 Four-group centralisers in R(3l), l > 1

D

2

(l) D
2a2(l) Normal dihedral subgroups of elements of NV (l), l > 1

D

3

(l) D
2a3(l) Normal dihedral subgroups of elements of NV (l)

C t(1) 2⇥ L
2

(3) Involution centralisers in R(3)

E 23 Sylow 2-subgroups of G

V 22 Four-groups

C

⇤
6

6 Cyclic subgroups of order 6 generated by tu 2 C+

6

C

⇤
3

3 Cyclic subgroups of order 3 generated by u 2 C+

3

C

2

2 Cyclic subgroups of order 2

I 1 The identity subgroup

Table 3.3: The disjoint subsets of MaxInt. Each subset consists of subgroups of G for all l dividing

n unless otherwise stated.
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Remark 3.13. For classes appearing in Table 3.3, where we omit the (l) by writing, for example

P , we mean those elements for which l = n or in the case of R, the maximal subfield subgroups. In

certain classes we have made exclusions to avoid the following repetitions

NV (1) = C t(1), C V (1) = E , C

!
t (1) = C

⇤
6

, F (1) = C

⇤
3

, D

2

(1) = C

0

(1) = C

2

.

In particular, the list is ordered so that no element of a class appears in more than one class.

Furthermore, no element of any class of MaxInt is a subgroup of any element of a successive class

in the stated ordering with the possible exceptions of elements of N
2

(l) being subgroups of elements

of N
3

(l) and elements of D
2

(l) being subgroups of elements of D
3

(l).

Our aim is to then prove the following lemma.

Lemma 3.14. Let G be a simple small Ree group and let H 6 G. If µG(H) 6= 0, then H 2 MaxInt.

3.3.1 Conjugacy classes and normalisers of subgroups in R(q)

An important step in determining the inversion formula of a group is to determine the conjugacy

classes of contributing subgroups along with their sizes. The following results are also necessary in

enumerating containments between subgroups in MaxInt. Since they are logically independent from

determining the Möbius function of G and will be used along the way to proving Lemma 3.14, we

state them first.

Lemma 3.15. Elements of R(l) [P(l) [C t(l) [C t(1) [C

!
t (l) [NV (l) [N

2

(l) [N

3

(l) are self-

normalising in G.

Proof. If H 2 R(l), then H is contained only in larger subfield subgroups, all of which are simple,

hence NG(H) = H. If H ⇠= (3h)1+1+1 : (3h � 1) 2 P(l), then H is self-normalising in G for the

following reason. The Sylow 3-subgroup S 6 H is characteristic in H and since the normaliser in G of

S is equal toH, we have NG(H) = H. IfH ⇠= 2⇥L
2

(3h) 2 C t(l)[C t(1) orH ⇠= 2⇥(3h : 3

h�1

2

) 2 C

!
t ,

then the normaliser ofH in Gmust fix its central involution and so NG(H) 6 2⇥L
2

(q). Since subfield

subgroups are self-normalising in L
2

(q) and since subgroups of L
2

(q) isomorphic to 3h : 3

h�1

2

are also

self-normalising in L
2

(q), we have that NG(H) = H in each case. If H 2 NV (l)[N

2

(l)[N

3

(l), then

H contains a characteristic subgroup, A, of order (3h + 1)/4, 3h �
p
3h+1 + 1 or 3h +

p
3h+1 + 1 as

appropriate, which is normalised by a cyclic subgroup of order 6. The normaliser in G of H must

also then normalise the subgroup A : 6, but, since elements whose order is a strict multiple of |A| do
not normalise A : 6, we have NG(H) is equal to H.

Lemma 3.16. Elements of C V (l) are normalised in G by elements of NV (l).

Proof. If H ⇠= 22 ⇥ D
(3

h
+1)/2 2 C V (l), then the normaliser in G of H must fix its characteristic

normal subgroup of order (3h + 1)/4, as well as its normal four-group. From this it follows that

NG(H) ⇠= (22 ⇥D
(3

h
+1)/2) : 3 2 NV (l).
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Lemma 3.17. Elements of D i(l) are normalised in G by a subgroup isomorphic to (22⇥D
2ai(l)) : 3,

where i = 2, 3.

Proof. If D 2 D

2

(l) [D

3

(l) is isomorphic to D
2a2(h) or D2a3(h) then D is contained in the normal

dihedral subgroup of order (q + 1)/2 in a four-group normaliser, N . Hence, the normal subgroup

of D of order a
2

(h) or a
3

(h), as appropriate, is characteristic in N , and is normalised in N by an

element of order 3. The normaliser in G of H is then isomorphic to (22 ⇥D
2ai(l)) : 3, as claimed.

If H 2 E [V [C

2

[ I , then the normaliser of H in G is clear or has already been established.

This leaves the following lemma to prove.

Lemma 3.18. Let H 6 R(q), where q = 3n, and H 2 F (l) [C

0

(l) [C

⇤
6

[C

⇤
3

.

1. If H ⇠= 3h 2 F (l) [C

⇤
3

, then NG(H) ⇠= q1+1 : (3h � 1).

2. If H ⇠= 3h � 1 2 C

0

(l), then NG(H) ⇠= D
2(q�1)

.

3. If H ⇠= 6 2 C

⇤
6

, then NG(H) ⇠= 2⇥ q.

Proof. We determine the normaliser in G of H by beginning with its centraliser in G.

1. If H ⇠= 3h 2 F (l), then the nontrivial elements of H belong to C⇤
3

with |H \ C+

3

| = |H \ C�
3

| =
(3h�1)/2. Let S 2 Syl

3

(G) be the unique Sylow 3-subgroup to which H belongs and let h 2 H

be nontrivial. The centraliser in G of H is contained in CG(h) which has order 2q2. Since H

belongs to the elementary abelian normal subgroup of order q2 in S and since H belongs to an

involution centraliser, we have |CG(H)| = 2q2. The elements normalising but not centralising

H in G are of order (3h�1)/2 and belong to the subgroup of G isomorphic to L
2

(3h) containing

H. Hence the full normaliser in G of H has size q2(q � 1).

2. If H ⇠= 3h � 1 2 C

0

(l), then the normaliser of H in G must fix the unique central involution

in H and so NG(H) 6 2 ⇥ L
2

(q). The normaliser in L
2

(q) of an element of order (q � 1)/2 is

dihedral of order q � 1 from which is follows that NG(H) ⇠= 2⇥Dq�1

⇠= D
2(q�1)

.

3. If H ⇠= 6 2 C

⇤
6

, then as in the previous case, the normaliser in G of H must fix the unique

involution of H and so NG(H) 6 2 ⇥ L
2

(q). Since the normaliser in L
2

(q) of an element of

order 3 is its Sylow 3-subgroup, we have NG(H) ⇠= 2⇥ q.

This completes the proof.

The following will aid us in determining the conjugacy classes of subgroups in MaxInt.

Lemma 3.19. Let G be a simple small Ree group and let R(l) be the set of subfield subgroups of G.

If Gm, Gk 2 R(l) are isomorphic, then they are conjugate in G.

Proof. The proof of this can be found in [77].
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Lemma 3.20. Isomorphic elements of MaxInt are conjugate in G.

Proof. By Lemma 3.19 isomorphic elements of R(l) are conjugate in G. Since maximal subgroups

of G are conjugate in G if they are isomorphic it follows that isomorphic elements of P(l)[C t(l)[
C t(1) [ NV (l) [ N

2

(l) [ N

3

(l) are also conjugate in G. The conjugacy of isomorphic elements of

E[V[C
2

is immediate from their conjugacy within the normaliser of a Sylow 2-subgroup of G [114]

and from the preceding statements it follows that isomorphic elements of C V (l)[D

2

(l)[D

3

(l) are

conjugate. Isomorphic elements of C
0

(l) [C

⇤
6

[C

⇤
3

[ I are generated by conjugate elements in G

and so isomorphic subgroups belonging to these classes are conjugate in G. Elements of C!
t (l) are

involution centralisers of elements in P(l) and since involutions are conjugate in each element of

P(l), isomorphic elements of C!
t (l) are conjugate in G. Finally, since elements of F (l) are the Sylow

3-subgroups of conjugate elements of C t(l), we have that isomorphic elements of F (l) are conjugate

in G. This completes the proof.

3.3.2 Intersections of maximal subgroups

We begin by proving a number of auxiliary results which determine how pairs of maximal subgroups

intersect. Throughout this section G = R(q) denotes a simple small Ree group acting 2-transitively

on ⌦, a set of size q3 +1, as described above. We let ! 2 ⌦ and P! 2 P denote the stabiliser of ! in

G. We let t 2 G denote an involution, C = CG(t) 2 C t its centraliser in G and ⌦t the points in ⌦

fixed by t. A subfield subgroup is denoted by Gm 2 R(l), where m divides n, and ⌦(m) denotes the

33m + 1 points in ⌦ stabilised by the Sylow 3-subgroups of Gm. A four-group of G is denoted by V

and the normaliser in G of V is denoted by N = NG(V ) 2 NV .

Intersections with parabolic subgroups

From our discussion on the action of elements of G on ⌦, intersections with parabolic subgroups are

relatively straightforward to determine.

Lemma 3.21. Let P! 2 P , let M 6= P! be a maximal subgroup of G and let H = M \ P!.

1. If M 2 R is a maximal subfield subgroup, then H 2 P(l) [C

2

[ I .

2. If M 2 P \ {P!}, then H 2 C

0

.

3. If M 2 C t, then H 2 C

!
t [C

2

.

4. If M 2 NV [N

2

[N

3

, then H 2 C

⇤
6

[C

⇤
3

[C

2

[ I .

Proof. (1) Let Gm 2 R be a maximal subfield subgroup. If ! 2 ⌦(m) then the intersection of Gm

with P! is the stabiliser of ! in Gm, belonging to P(l). If ! /2 ⌦(m) and H /2 I , then ! lies in the

block of a unique involution in Gm, in which case H 2 C

2

.

(2) The Sylow 3-subgroups of G have trivial intersection and anything lying in two distinct parabolic
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subgroups must pointwise fix two points, hence H 2 C

0

.

(3) If ! 2 ⌦t then H is isomorphic to the direct product of hti with a point stabiliser in L
2

(q), hence

H ⇠= 2 ⇥ (q : q�1

2

) 2 C

!
t . Otherwise, since ! belongs to the block of exactly one involution of M , if

! /2 ⌦t, then H 2 C

2

.

(4) This follows from comparison of the orders of these groups.

Intersections with maximal subfield subgroups

In the case of the maximal subfield subgroups, their intersection is a little less well-behaved in certain

cases. From analysis using GAP it can be shown that when G = R(27) a number of possibilities

arise for the intersection of two subgroups isomorphic to R(3). This list includes subgroups we might

not naturally expect, such as those of shape 3, 32, 9 or 3 ⇥ S
3

. In order not to have to deal with

these cases we prove the following lemmas which allow us to immediately rule out a large class of

subgroups H 6 G which occur as the intersection of maximal subgroups, but have µG(H) = 0.

In order to determine them, we use the preceding lemmas in this section to determine the Möbius

function of a number of classes of subgroups in MaxInt. We first prove the following partial result

on the intersection of maximal subfield subgroups.

Lemma 3.22. Let Gm1 , Gm2 2 R be maximal subfield subgroups of G. If |⌦(m
1

)\⌦(m
2

)| � 3, then

Gm1 \Gm2 2 R(l).

Proof. Let ⌦(m
1

,m
2

) = ⌦(m
1

) \ ⌦(m
2

), let !
1

,!
2

and !
3

be three distinct elements of ⌦(m
1

,m
2

)

and let ti be the unique involution fixing !j and !k pointwise where 1  i, j, k  3 are distinct. The

subgroup T = ht
1

, t
2

, t
3

i is not contained in a parabolic subgroup of G and furthermore, since any

pair of involutions contained in an involution centraliser or a four-group or Hall subgroup normaliser

have disjoint blocks, we have that L
2

(8) 6 T 6 Gm0 where m
0

divides gcd(m
1

,m
2

). Since subgroups

isomorphic to L
2

(8) are contained in a unique subgroup isomorphic to R(3), which is a subgroup of

both Gm1 and Gm2 , we have that H 2 R(l).

In the subsequent lemmas we summarise the calculation of each µG(H) in a table where we

record the overgroups K > H contributing to µG(H) according to their isomorphism type. These

correspond to the classes of MaxInt. The subgroups H generally occur for each positive divisor h

of n and their overgroups occur for k dividing n such that h divides k. Any extra conditions are

recorded in the table. We record the normaliser in K of H in order to aid computation of ⌫K(H),

the number of overgroups of H conjugate to K in G.

Lemma 3.23. If H ⇠= R(3h) 2 R(l), then µG(H) = µ(n/h).

Proof. Let H be as in the hypotheses. If M is a maximal subgroup of G containing H, then M

is a maximal subfield subgroup. A counting argument then shows that for a subfield subgroup

R(3h), the subfield subgroups which contain it are in one-to-one correspondence with the elements
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of the lattice of positive divisors of n/h. This is summarised in Table 3.4 from which we see that

µG(H) = µ(n/h).

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – R(3k) 1 µ(n/k)

Table 3.4: H ⇠= R(3h) 2 R(l)

Lemma 3.24. If H ⇠= (3h)1+1+1 : (3h � 1) 2 P(l), then µG(H) = �µ(n/h).

Proof. Let H be as in the hypotheses. Since H contains elements from the conjugacy classes C
0

,

the only maximal subgroups containing H are maximal subfield subgroups or a unique parabolic

subgroup. By Lemma 3.21 and since H is self normalising in G, for each positive divisor h|k|n the

only subgroups of G containing H are a unique element in R(l) and a unique element in P(l). We

present this in Table 3.5 from which we see that µG(H) = �µ(n/h).

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – (3h)1+1+1 : (3h � 1) 1 µ(n/k)

(3k)1+1+1 : (3k � 1) k > h (3h)1+1+1 : (3h � 1) 1 �µ(n/k)

Table 3.5: H ⇠= (3h)1+1+1 : (3h � 1) 2 P(l)

Lemma 3.25. If H 6 P! and H \ C0

3

6= ?, then µG(H) 6= 0 if and only if H 2 P(l).

Proof. Let H be as in the hypotheses. By Lemma 3.24 we can assume that H /2 P(l). Note that if

M 6= P! is any other maximal subgroup of G containing H, then M is a maximal subfield subgroup.

Also note that if H is contained in any subfield subgroup, Gm, not necessarily maximal, then the

normaliser of H in Gm is equal to the normaliser of H in Gm \P! 2 P(l). We proceed by induction

on H. Suppose that H is contained in P!, but no other element of P(l). This implies that H is not

contained in any element of R(l) \ {G} and the only contributions to the Möbius function of H are

those of G and P!, which cancel, and so µG(H) = 0. Now, suppose H is as in our hypothesis and

maximal so that our hypothesis is true for all overgroups of H. A counting argument shows that for

each divisor k of n, the number of subgroups of G, conjugate to Gk, that contain H is equal to the

number of subgroups (3k)1+1+1 : (3k � 1) 2 P(l) that contain H. As such, the Möbius function of H

cancels at each divisor and we have µG(H) = 0. This completes the induction step.

Before proving the following lemma we make an important observation. Let Gm be a subfield

subgroup of G. A Hall subgroup of G conjugate to Ai, where 1  i  3, is not necessarily contained

in a Hall subgroup of Gm of order ai(m). We have more to say on this in the sequel, for now consider
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the particular case when G = R(33m). A subfield subgroup Gm 6 G contains elements of Hall

subgroups of Gm of orders a
1

(m)/4, a
2

(m) or a
3

(m), but each of these elements is contained in some

Hall subgroup of G conjugate to A
1

of order (33m + 1)/4. The centraliser in Gm of such an element

will then either be cyclic of order 6 or conjugate to 2⇥ L
2

(3) depending on whether i = 1, 2 or 3.

Lemma 3.26. The intersection of a maximal subfield subgroup and an involution centraliser belongs

to C t(l) [C t(1) [ F (l) [D

2

(l) [D

3

(l) [V [C

⇤
3

[C

2

[ I .

Proof. Let Gm 2 R and let H = Gm \ C. If |⌦t \ ⌦(m)| � 2, then t 2 Gm and H is the centraliser

in Gm of t and belongs to C t(l) [C t(1). If ⌦t \ ⌦(m) = {!}, then H is a subgroup of the Sylow

3-subgroup of C since any other element of C that stabilises more than one point in ⌦t stabilises

more than one point in ⌦(m). Hence H 2 F (l) [C

⇤
3

[ I .

Suppose now that ⌦t \ ⌦(m) = ?. Then t /2 Gm and H is isomorphic to a subgroup of L
2

(q)

not containing elements of order 3, or dividing (q � 1)/2, hence H is a subgroup of Dq+1

[32]. If

H does not contain elements of order k > 2 dividing (q + 1)/4 then H 6 V for some V 2 V and

belongs to our list. If there exists s 2 H of order k, then k divides a
1

(m)/4 or a
2

(m/3)a
3

(m/3)

depending on whether 3 divides m or not. In the former case, the involutions which commute with s

belong to Gm, contradicting our assumption, so that s /2 H. In the latter case, the involutions which

commute with s do not belong to Gm, but hsi is normalised in Gm by an element of order 6. The

involutions which normalise hsi in Gm then belong to H, but not the elements of order 3, hence H

is isomorphic to D
2a2(m/3) or D2a3(m/3). Furthermore, since hsi is normalised by an element of order

3, H is contained in the normal dihedral subgroup of order (q+1)/2 of a four-group normaliser.

Lemma 3.27. If H ⇠= 2⇥ L
2

(3h) 2 C t(l), then µG(H) = �µ(n/h).

Proof. Let H be as in the hypothesis. The only maximal subgroups of G containing H are those

in R(l) and in C t(l). Since elements of C t(l) are self-normalising, for each divisor h|k|n there is a

unique element in R(l) and in C t(l) containing H. This is presented in Table 3.6 and from this we

have that µG(H) = �µ(n/h).

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – 2⇥ L
2

(3h) 1 µ(n/k)

2⇥ L
2

(3k) k > h 2⇥ L
2

(3h) 1 �µ(n/k)

Table 3.6: H ⇠= 2⇥ L
2

(3h) 2 C t(l)

Lemma 3.28. If H ⇠= 2⇥ (3h : 3

h�1

2

) 2 C

!
t (l), then µG(H) = µ(n/h).

Proof. Let H be as in the hypotheses. Since the order of H is divisible by 9 the only maximal

subgroups of G containing H are maximal subfield subgroups, a unique parabolic subgroup and a
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unique involution centraliser. By Lemmas 3.21, 3.22 and 3.26 if K 2 MaxInt contains H, then

K 2 R(l) [P(l) [C t(l) [C

!
t . Since H is self-normalising in each subgroup which contains it, the

enumeration of overgroups of H contributing to its Möbius function is as given in Table 3.7 from

which we deduce that µG(H) = µ(n/h).

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – 2⇥ (3h : 3

h�1

2

) 1 µ(n/k)

(3k)1+1+1 : (3k � 1) – 2⇥ (3h : 3

h�1

2

) 1 �µ(n/k)

2⇥ L
2

(3k) – 2⇥ (3h : 3

h�1

2

) 1 �µ(n/k)

2⇥ (3k : 3

k�1

2

) k > h 2⇥ (3h : 3

h�1

2

) 1 µ(n/k)

Table 3.7: H ⇠= 2⇥ (3h : 3

h�1

2

) 2 C

!
t (l)

Lemma 3.29. If 32 6 H < K ⇠= 2⇥ (3k : 3

k�1

2

) 2 C

!
t (l), then µG(H) = 0.

Proof. Let H 6 R(3n) be as in the hypotheses. The Sylow 3-subgroup of H has order 2  h  k

for some h not necessarily dividing n and its non-trivial elements belong to C⇤
3

. If M is a maximal

subgroup of G containing H, then M is a maximal subfield subgroup, an involution centraliser or

a unique parabolic subgroup. By Lemmas 3.21, 3.22, 3.26, the subgroups which contribute to the

Möbius function of H belong to R(l) [ P(l) [ C t(l) [ C

!
t . In analogy with the proof of Lemma

3.25, if P 2 P(l) and Gm 2 R are such that H 6 P 6 Gm, then NP (H) = NGm
(H). Since

µG(P ) = �µG(Gm), the contribution from each of these such groups cancel. A similar argument

applies to elements of C t and C

!
t . From this it follows that µG(H) = 0.

The preceding lemmas give the following corollary which allows us to complete our analysis of

the potential intersections between maximal subfield subgroups.

Corollary 3.30. If H 6 P! 2 P and H /2 P(l)[C

!
t (l)[C

0

(l)[E [V [C

⇤
6

[C

⇤
3

[C

2

[ I , then

µG(H) = 0.

Lemma 3.31. If H 6 G is equal to the intersection of two distinct maximal subfield subgroups and

µG(H) 6= 0, then H 2 MaxInt.

Proof. Let Gm 6= Gk be maximal subfield subgroups of G and let d = gcd(m, k). Let H = Gm \Gk

and let ⌦(m, k) denote the intersection ⌦(m)\⌦(k). We suppose that H /2 I and determine possible

intersections according to |⌦(m, k)|. By Lemma 3.22 it remains to prove the case when |⌦(m, k)|  2.

If ⌦(m, k) = ?, then any nontrivial element of H is an involution and H is a subgroup of an element

of E , all of which belong to MaxInt. Hence we can assume that ⌦(m, k) 6= ?. If ⌦(m, k) = {!},
then H 6 P! and by Corollary 3.30 H 2 MaxInt.
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Now suppose that |⌦(m, k)| = 2. There is a unique Hall subgroup conjugate to A
0

stabilising

⌦(m, k) pointwise and containing H. Note that H does not contain elements which interchange

the points in ⌦(m, k) since otherwise H would contain a dihedral subgroup of order 2(3d0 � 1)

where d
0

divides d. Such subgroups are contained only in subfield subgroups, involution centralisers

or four-group normalisers, and in either case we would have |⌦(m, k)| > 2. We then have that

H ⇠= 3d � 1 2 C

0

(l) [C

2

⇢ MaxInt.

Intersections with involution centralisers, four-group and Hall subgroup normalisers

We now determine the intersections between the remaining possible pairs of maximal subgroups.

Lemma 3.32. The intersection of two distinct involution centralisers belongs to C V [F[V[C
2

[I .

Proof. Let t0 6= t be an involution in G, let Ct0 = CG(t0) and let H = C \ Ct0 . We classify possible

intersections according to the bound |⌦t \ ⌦t0 |  1.

Suppose ⌦t \⌦t0 = {!}. If h 2 H is nontrivial, then h 2 C⇤
3

and belongs to the Sylow 3-subgroup

of C stabilising !. Similarly for Ct0 and so H 2 F [ I .

Now suppose that ⌦t \ ⌦t0 = ?. If t0 2 C, then H = C \ C 0 = CG(ht, t0i) 2 C V , so suppose

that t0 /2 C. Elements of order 3 or order dividing (q � 1)/2 do not then belong to H since such

elements fix at least one point in ⌦t \ ⌦t0 . If s 2 C is an element of order k > 2 dividing (q + 1)/4,

then its centraliser in G is equal to its centraliser in C and is isomorphic to hsi ⇥ 22, then, since

t0 /2 C, elements of order k cannot belong to C \ C 0 and H is then a subgroup of a four-group and

so H 2 V [C

2

[ I .

Lemma 3.33. The intersection of an involution centraliser with a four-group normaliser belongs to

C V [C t(1) [E [C

⇤
3

[ I .

Proof. There are three conjugacy classes of involutions in N and so the intersection H = N \ C =

CN (t) is equal to the centraliser in N of t. If t 2 V then the centraliser of t in N is equal to the

centraliser of V in N and belongs to C V . The unique subgroup of order (q + 1)/4 generated by

hsi belongs to a unique four-group normaliser and only belongs to H when t 2 V . Hence, all other

cases are isomorphic to subgroups of N/hsi ⇠= 2 ⇥ L
2

(3). Recall that we denote a subgroup of N

isomorphic to D
(q+1)/2 by D⌧ if it is normal in N and D⌧ 0 otherwise and if t 2 N \ V then t 2 D⌧

or t belongs to a conjugate of D⌧ 0 . If t 2 D⌧ , then H 2 C t(1), otherwise, if t 2 D⌧ 0 , then H 2 E .

Finally, if t /2 N then H is isomorphic to a subgroup of 2⇥L
2

(3) which does not contain its central

involution or its normal four-group, hence is an element of C ⇤
3

[ I .

We are now in a position to prove the following.

Lemma 3.34. If H ⇠= 3h � 1 2 C

0

(l), then µG(H) = 0.

Proof. LetH be as in the hypotheses. IfM is a maximal subgroup containingH, thenM is a maximal

subfield subgroup, unique for each divisor k such that h|k|n, one of two parabolic subgroups or a
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unique involution centraliser. By Lemmas 3.21, 3.26, 3.31 and 3.32, the subgroups which contribute

to the Möbius function of H are as they appear in Table 3.8. We see that for each k the contributions

from the first pair of classes cancel with one another, as do the contributions from the second pair

of classes, giving µG(H) = 0.

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – D
2(3

k�1)

1 µ(n/k)

2⇥ L
2

(3k) – D
2(3

k�1)

1 �µ(n/k)

(3k)1+1+1 : 3k � 1 – 3k � 1 2 �µ(n/k)

2⇥ (3k : 3

k�1

2

) – 3k � 1 2 µ(n/k)

3k � 1 k > h 3k � 1 1 0

Table 3.8: H ⇠= 3h � 1 2 C

0

(l)

We now proceed to determine containments between Hall subgroup normalisers of subfield sub-

groups. Since hhi is cyclic we need only prove the following number theoretic lemma in order to aid

the accurate determination of the overgroups of such an intersection.

Lemma 3.35. Let l be a positive factor of n > 2 an odd natural number. Then ai(l) divides one and

only one of a
1

(n), a
2

(n) or a
3

(n) for each i = 1, 2, 3.

Proof. Let l and n be as in the hypothesis and 1  i, j  3. It is clear that for a fixed l we have

gcd(ai(l), aj(l)) = 1 for i 6= j and so the ai(l) divide at most one of the ai. Also, a
1

(l) divides a
1

and

if 3 divides n/l then a
1

is divisible by a
1

(l)a
2

(l)a
3

(l), so assume that i = 2 or 3 and that n/l ⌘ ±1

mod 3. Consider the values of a
2

(l) and a
3

(l) modulo a
2,3(l) := a

2

(l)a
3

(l) = 32l�3l+1. We have that

a
1

(l)a
2,3(l) = 33l + 1 and so 33l ⌘ �1 mod a

2,3(l) which gives us the following chain of congruences

3n ⌘ (�1)3n�3l ⌘ (�1)23n�6l ⌘ · · · ⌘ (�1)k3n�3kl mod a
2,3(l)

where 0  n� 3kl < 3l, from which it follows that

3n ⌘

8
>><

>>:

(�1)
n�l
3l 3l = 3l mod a

2,3(l), if (n/l) ⌘ 1 mod 3

(�1)
n�2l
3l 32l = �32l mod a

2,3(l), if (n/l) ⌘ �1 mod 3.

Similarly, we have

3
n+1
2 ⌘ · · · ⌘ (�1)k3

n+1
2 �3kl mod a

2,3(l)
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where this time 0  n+1

2

� 3kl < 3l. Eventually we find

3
n+1
2 ⌘

8
>><

>>:

(�1)
n�l
6l 3

l+1
2 mod a

2,3(l), if (n/l) ⌘ 1 mod 3

(�1)
n�5l
6l 3

5l+1
2 mod a

2,3(l), if (n/l) ⌘ �1 mod 3.

It can then be easily verified that

n� l

6l
⌘ n� 5l

6l
⌘

8
>><

>>:

0 mod 2 if (n/l) ⌘ 1 mod 4

1 mod 2 if (n/l) ⌘ 3 mod 4.

Assembling these results, along with the observation that

⌥3
5l+1

2 � 32l + 1 = (3l + 1± 3
l+1
2 )(3l+1 � 3l + 1⌥ (3

3l+1
2 + 3

l+3
2 � 2.3

l+1
2 )),

we finally arrive at the following

3n ± 3
n+1
2 + 1 ⌘

8
>><

>>:

3l ± 3
l+1
2 + 1 mod a

2,3(l) if (n/l) ⌘ ±1 mod 12

3l ⌥ 3
l+1
2 + 1 mod a

2,3(l) if (n/l) ⌘ ±5 mod 12.

This completes the proof.

Lemma 3.36. The intersection of an element of NV [N

2

[N

3

with a maximal subfield subgroup

belongs to NV (l) [N

2

(l) [N

3

(l) [C

⇤
6

[C

⇤
3

[C

2

[ I .

Proof. Let Gm be a maximal subfield subgroup and let a generate any Hall subgroup conjugate to

Ai, where i = 1, 2, 3. If a 2 Gm, then the intersection is equal to the normaliser in Gm of a which

belongs to NV (l)[N

2

(l)[N

3

(l). If a /2 Gm then, since the centraliser in G of a is uniquely contained

in its normaliser in G, we have that the intersection is a subgroup of NG(a)/CG(a) ⇠= C
6

, and so is

a subgroup of an element of C ⇤
6

.

Lemma 3.37. The intersection of two distinct four-group normalisers belongs to C t(1)[E [C

⇤
6

[
C

⇤
3

[C

2

[ I .

Proof. Recall that the normaliser of a four-group is equal to the normaliser of the unique Hall sub-

group conjugate to A
1

with which is commutes and that this Hall subgroup belongs to a unique

four-group normaliser. The quotient of a four-group normaliser by its normal Hall subgroup is iso-

morphic to 2⇥ L
2

(3) and so the intersection of two distinct four-group normalisers is isomorphic to

a subgroup of 2⇥ L
2

(3).

Let N be the normaliser of a four-group V in G and let V 0 6= V be a four-group in G. If V 6 N

then N \ NG(V 0) is the normaliser of a four group in N and isomorphic to 23 or 2 ⇥ L
2

(3). If V
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is not contained in N then the intersection N \ NG(V 0) is isomorphic to a subgroup of L
2

(3) not

containing a four-group and is hence a subgroup of a cyclic group of order 6.

Lemma 3.38. Let N 2 N

2

[N

3

. If M 2 C t [NV [N

2

[N

3

, then N \M 2 C

⇤
6

[C

⇤
3

[C

2

[ I .

Proof. This follows from comparison of the orders of the various groups and since distinct cyclic Hall

subgroups have trivial intersection and belong to a unique Hall subgroup normaliser in G.

We have now proved the following.

Lemma 3.39. If H 6 G is equal to the intersection of a pair of maximal subgroups of G and

µG(H) 6= 0, then H 2 MaxInt.

The proof of Lemma 3.14 and the Möbius function of the remaining subgroups

We now proceed to show that arbitrary intersections of maximal subgroups of G do not yield new

subgroups by proving Lemma 3.14

Proof of Lemma 3.14. Let H /2 MaxInt be a subgroup of G that occurs as the intersection of a

number of maximal subgroups of G, let µG(H) 6= 0 and let M be the set of maximal subgroups

containing H. From the preceding lemmas we can assume |M| > 2 and by Corollary 3.30 we can

assume that H is not contained in a parabolic subgroup of G and so M \P = ?.

If M contains more than two elements from NV [N

2

[N

3

then, by Lemmas 3.37 and 3.38, H is

isomorphic to a subgroup of 2⇥L
2

(3) and the only such subgroups not already contained in MaxInt

are isomorphic to L
2

(3). Hence we can assume that M \ (N
2

[N

3

) = ?. To show that subgroups

isomorphic to L
2

(3) do not appear on our list, suppose that M is maximal and contains H ⇠= L
2

(3).

Then M 2 M ⇢ R [C t [NV . By the argument in the proof of Lemma 3.22, if M contains at least

two maximal subfield subgroups, then their intersection must be an element of R(l) and so we can

assume that M \R consists of a single subfield subgroup isomorphic to R(3). By Lemma 3.32 we

can assume that M contains at most one involution centraliser. By Lemma 3.26 we may assume that

H is equal to the intersection of M
0

⇠= 2 ⇥ L
2

(3) with a number of elements from NV . Since the

normaliser of a four-group contained in M
0

is either M
0

or is isomorphic to its elementary abelian

Sylow 2-group of order 8 we have that H /2 MaxInt.

If M ⇢ R [C t [N

2

or M ⇢ R [C t [N

3

, then by Lemmas 3.26, 3.36 and 3.38 H 2 MaxInt.

Hence, we can assume that M ⇢ R [C t [NV contains at most one element from R and at most

one element from NV . Moreover, by Lemma 3.36 again we can assume M ⇢ C t [ NV (l). Finally,

by Lemmas 3.32 and 3.33, H 2 MaxInt, a contradiction. This completes the proof.

It now remains to determine the Möbius function for elements of the remaining classes.

Lemma 3.40. If H ⇠= (22 ⇥D
(3

h
+1)/2) : 3 2 NV (l), then µG(H) = �µ(n/h).
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Proof. Let H be as in the hypothesis. The only maximal subgroups of G containing H are maximal

subfield subgroups, and the normaliser of the normal four-group in H. From the calculations in Table

3.9 we find that µG(H) = �µ(n/k).

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – (22 ⇥D
(3

h
+1)/2) : 3 1 µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > h (22 ⇥D

(3

h
+1)/2) : 3 1 �µ(n/k)

Table 3.9: H ⇠= (22 ⇥D
(3

h
+1)/2) : 3 2 NV (l)

Lemma 3.41. If H ⇠= 3h�3
h+1
2 +1: 6 or 3h+3

h+1
2 +1: 6 2 N

2

(l)[N

3

(l), then µG(H) = �µ(n/h).

Proof. Let H be as in the hypothesis. By Lemma 3.35, for each divisor k such that h|k|n there is a

unique element from NV (l) [N

2

(l) [N

3

(l) containing H. Similarly, there is a unique element from

R(l) for each such k. These contributions cancel and we present the calculations for H 2 N

2

(l) in

Table 3.10, the calculations for H 2 N

3

(l) are similar. We are then left with µG(H) = �µG(R(3h)) =

�µ(n/h).

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – H 1 µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3

k
h ⌘ 0 mod 3 H 1 �µ(n/k)

3k +
p
3k+1 + 1: 6 k

h ⌘ ±5 mod 12 H 1 �µ(n/k)

3k �
p
3k+1 + 1: 6 k > h, k

h ⌘ ±1 mod 12 H 1 �µ(n/k)

Table 3.10: H ⇠= 3h � 3
h+1
2 + 1: 6 2 N

2

(l)

Lemma 3.42. If H ⇠= 22 ⇥D
(3

h
+1)/2 2 C V (l), then µG(H) = 3µ(n/h).

Proof. Let H be as in the hypotheses. For each divisor k such that h|k|n, H belongs a unique element

of R(l) and a unique element of Nv(l). The contributions from each of these groups cancel, as

shown in Table 3.11, and the remaining contributions from the involution centralisers give µG(H) =

3µ(n/h).

Lemma 3.43. If H ⇠= D
2a2(h) or D

2a3(h) 2 D

2

(l) [D

3

(l), then µG(H) = 0.

Proof. Let H be as in the hypotheses and note that these subgroups arise when h is such that 3h|n.
The overgroups of H for a divisor k such that h|k|n are dependent on the parity of k

h modulo 3. We

present the case H 2 D

2

(l) in Table 3.12, the case H 2 D

3

(l) is similar. From the table it is clear

that for each divisor k, the contributions to µG(H) cancel with one another and so µG(H) = 0.
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Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – (22 ⇥D
(3

h
+1)/2) : 3 1 µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 – (22 ⇥D

(3

h
+1)/2) : 3 1 �µ(n/k)

2⇥ L
2

(3k) – 22 ⇥D
(3

h
+1)/2 3 �µ(n/k)

22 ⇥D
(3

k
+1)/2 k > h 22 ⇥D

(3

h
+1)/2 1 3µ(n/k)

Table 3.11: H ⇠= 22 ⇥D
(3

h
+1)/2 2 C V (l)

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) k
h ⌘ 0 mod 3 (22 ⇥H) : 3 1 µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3

k
h ⌘ 0 mod 3 (22 ⇥H) : 3 1 �µ(n/k)

2⇥ L
2

(3k) k
h ⌘ 0 mod 3 22 ⇥H 3 �µ(n/k)

22 ⇥D
(3

k
+1)/2

k
h ⌘ 0 mod 3 22 ⇥H 1 3µ(n/k)

R(3k) k
h ⌘ ±1 mod 3 H : 3 4 µ(n/k)

3k +
p
3k+1 + 1: 6 k

h ⌘ ±5 mod 12 H : 3 4 �µ(n/k)

3k �
p
3k+1 + 1: 6 k

h ⌘ ±1 mod 12 H : 3 4 �µ(n/k)

Table 3.12: H ⇠= D
2a2(h) 2 D

2

(l)

Lemma 3.44. If H ⇠= 2⇥ L
2

(3), then µG(H) = �2µ(n).

Proof. Subgroups isomorphic to H are self-normalising in G and so for each k such that k divides n

belong to a unique element of each of R(l), C t(l) and NV (l). Since n > 1, the summation over the

R(3k) is equal to the summation over positive divisors of k which is equal to 0. For the same reason

the remainder of the remaining two classes, as shown in Table 3.13, give µG(H) = �2µ(n).

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – 2⇥ L
2

(3) 1 µ(n/k)

2⇥ L
2

(3k) h > 1 2⇥ L
2

(3) 1 �µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 h > 1 2⇥ L

2

(3) 1 �µ(n/k)

Table 3.13: H ⇠= 2⇥ L
2

(3) 2 C t(1)

Lemma 3.45. If H ⇠= 23 2 E , then µG(H) = 21µ(n).

Proof. As presented in Table 3.14, the summation over the R(3k) equates to 0, as does the total

summation of the succeeding three lines. From the final line we then have that µG(23) = 21µ(n).

Lemma 3.46. If H ⇠= 22 2 V, then µG(H) = 0.
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Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – 23 : 7 : 3 1 µ(n/k)

2⇥ L
2

(3k) k > 1 2⇥ L
2

(3) 7 �µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 2⇥ L

2

(3) 7 �µ(n/k)

2⇥ L
2

(3) – 2⇥ L
2

(3) 7 �2µ(n)

22 ⇥D
(3

k
+1)/2 k > 1 23 7 3µ(n/k)

Table 3.14: H ⇠= 23 2 E

Proof. Four-groups are conjugate in G but not necessarily conjugate in subgroups of G. Where this

is the case, in the NK(H) column in Table 3.15 the number in parentheses denotes the number of

conjugacy classes of V whose normaliser in K is of the specified isomorphism type. This quantity is

incorporated into the entry in the ⌫K(H) column. In order to make verification of the arithmetic a

little easier, we have separated contributions from overgroups isomorphic to K according to whether

the contribution depends on k or not. In the cases where there is no dependence on k the usual

properties of the classical Möbius function leave us a few terms to tidy up and we eventually find

that µG(22) = 0.

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – (22 ⇥D
(3

k
+1)/2) : 3 (3n + 1)/(3k + 1) µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 (22 ⇥D

(3

k
+1)/2) : 3 (3n + 1)/(3k + 1) �µ(n/k)

22 ⇥D
(3

k
+1)/2 k > 1 22 ⇥D

(3

k
+1)/2 (3n + 1)/(3k + 1) 3µ(n/k)

2⇥ L
2

(3k) k > 1 22 ⇥D
(3

k
+1)/2 3(3n + 1)/(3k + 1) �µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 (2) 23 3(3n + 1)/2 �µ(n/k)

22 ⇥D
(3

k
+1)/2 k > 1 (6) 23 3(3n + 1)/2 3µ(n/k)

2⇥ L
2

(3k) k > 1 (1) 23, (1) 2⇥ L
2

(3) 3n + 1 �µ(n/k)

2⇥ L
2

(3) – (2) 23, (1) 2⇥ L
2

(3) 7(3n + 1)/4 �2µ(n)

23 – (7) 23 (3n + 1)/4 21µ(n)

Table 3.15: H ⇠= 22 2 V

Lemma 3.47. If H 2 C

6

[C

⇤
3

[C

2

[ I , then µG(H) = 0.

Proof. In the case H 2 C

⇤
6

[ C

⇤
3

it is clear, but tedious, from the enumerations in Tables 3.16

and 3.17 that µG(H) = 0. In the case that H 2 C

2

, where in some subgroups the elements of

order 2 split into multiple conjugacy classes, we present this in Table 3.18 in such a way as to make

the calculations easier to check. Eventually, as in the case H 2 I in Table 3.19. Again, after some

calculation we see that µG(H) = 0 in both of these cases.
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Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – 2⇥ 3k 3n�k µ(n/k)

(3k)1+1+1 : 3k � 1 – 2⇥ 3k 3n�k �µ(n/k)

2⇥ L
2

(3k) k > 1 2⇥ 3k 3n�k �µ(n/k)

2⇥ (3k : 3

k�1

2

) k > 1 2⇥ 3k 3n�k µ(n/k)

3k +
p
3k+1 + 1: 6 – 6 3n�1 �µ(n/k)

3k �
p
3k+1 + 1: 6 k > 1 6 3n�1 �µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 6 3n�1 �µ(n/k)

2⇥ L
2

(3) – 6 3n�1 �2µ(n)

Table 3.16: H ⇠= htui 2 C

⇤
6

Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – 3k ⇥ (3k : 2) 32(n�k) µ(n/k)

(3k)1+1+1 : (3k � 1) – 3k ⇥ (3k : 2) 32(n�k) �µ(n/k)

2⇥ L
2

(3k) k > 1 2⇥ 3k 32n�k �µ(n/k)

2⇥ (3k : 3

k�1

2

) k > 1 2⇥ 3k 32n�k µ(n/k)

3k +
p
3k+1 + 1: 6 – 6 32n�1 �µ(n/k)

3k �
p
3k+1 + 1: 6 k > 1 6 32n�1 �µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 6 32n�1 �µ(n/k)

2⇥ L
2

(3) – 6 32n�1 �2µ(n)

Table 3.17: H ⇠= hui 2 C

⇤
3

Remark 3.48. It follows that the Möbius number of a small Ree group, G, is equal to 0 when G is

simple, or |G0| when G = R(3). This is consistent with Theorem 1.20.

This completes the proof of Theorem 1.22. In the case when G = R(27) the full subgroup

lattice and Möbius function has been determined by Connor and Leemans [25] and, from personal

correspondence with Leemans in October 2014, it was noted that apart from a few errors, such as

their µG(2⇥ (33 : 13)) = 0, their calculations agree with ours.

3.4 Eulerian functions of the small Ree groups

In this section we determine various Eulerian functions associated with the small Ree groups and

use them to prove a number of results regarding generation and asymptotic generation of the small

Ree groups. Recall that �n(G) denotes the number of ordered n-tuples of elements of G and �n(G)

is the number of those n-tuples of elements which also generate G. We introduce another summatory
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Isomorphism type for k|n
of overgroup K and s.t. NK(H) ⌫K(H) µG(K)

R(3k) – 2⇥ L
2

(3k) 3n(32n � 1)/3k(32k � 1) µ(n/k)

2⇥ L
2

(3k) k > 1 2⇥ L
2

(3k) 3n(32n � 1)/3k(32k � 1) �µ(n/k)

(3k)1+1+1 : (3k � 1) – 2⇥ (3k : 3

k�1

2

) 3n(32n � 1)/3k(3k � 1) �µ(n/k)

2⇥ (3k : 3

k�1

2

) k > 1 2⇥ (3k : 3

k�1

2

) 3n(32n � 1)/3k(3k � 1) µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 22 ⇥D

(3

k
+1)/2 3n(32n � 1)/2(3k + 1) �µ(n/k)

22 ⇥D
(3

k
+1)/2 k > 1 (3) 22 ⇥D

(3

k
+1)/2 3n(32n � 1)/2(3k + 1) 3µ(n/k)

2⇥ L
2

(3k) k > 1 (2) 22 ⇥D
(3

k
+1)/2 3n(32n � 1)/(3k + 1) �µ(n/k)

3k +
p
3k+1 + 1: 6 – 6 3n�1(32n � 1)/2 �µ(n/k)

3k �
p
3k+1 + 1: 6 k > 1 6 3n�1(32n � 1)/2 �µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 (1) 23, (1) 2⇥ L

2

(3) 3n�1(32n � 1)/2 �µ(n/k)

22 ⇥D
(3

k
+1)/2 k > 1 (4) 23 3n�1(32n � 1)/2 3µ(n/k)

2⇥ L
2

(3) – (2) 23, (1) 2⇥ L
2

(3) 7.3n�1(32n � 1)/8 �2µ(n)

23 – (7) 23 3n�1(32n � 1)/8 21µ(n)

Table 3.18: H ⇠= hti 2 C

2

Isomorphism type for k|n
of overgroup K and s.t. ⌫K(H) µG(K)

R(3k) – |G|/33k(33k + 1)(3k � 1) µ(n/k)

3k +
p
3k+1 + 1: 6 – |G|/6(3k +

p
3k+1 + 1) �µ(n/k)

3k �
p
3k+1 + 1: 6 k > 1 |G|/6(3k �

p
3k+1 + 1) �µ(n/k)

(3k)1+1+1 : (3k � 1) – |G|/33k(3k � 1) �µ(n/k)

2⇥ L
2

(3k) k > 1 |G|/3k(32k � 1) �µ(n/k)

2⇥ (3k : 3

k�1

2

) k > 1 |G|/3k(3k � 1) µ(n/k)

(22 ⇥D
(3

k
+1)/2) : 3 k > 1 |G|/6(3k + 1) �µ(n/k)

22 ⇥D
(3

k
+1)/2 k > 1 |G|/6(3k + 1) 3µ(n/k)

2⇥ L
2

(3) – |G|/24 �2µ(n)

23 – |G|/168 21µ(n)

Table 3.19: H 2 I

function and corresponding Eulerian function as follows.

Definition 3.49. Let G be a finite group and (k
1

, . . . , kn) be an ordered n-tuple of elements from

N>0

. The summatory function �k1,...,kn(G) counts the number of ordered n-tuples of elements of G,

(x
1

, . . . , xn) 2 Gn, such that o(xi) = ki for 1  i  n. By abuse of notation we may write ki = 1
to mean we allow any element of G in the i-th position. The corresponding Eulerian function is

�k1,...,kn(G). We say that G is (k
1

, . . . , kn)-generated if �k1,...,kn 6= 0.
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Remark 3.50. Let � be the group

� = hx
1

, . . . , xn | xk1
1

= · · · = xkn
n = 1i,

where any relation x1
i = 1 for 1  i  n is ignored. For a finite group G the quantity �k1,...,kn

(G)

corresponds to the number of smooth epimorphisms from � to G.

Definition 3.51. The Hecke group Hn, for n 2 N>0

[ {1}, is the group generated by one element

of order 2, one element of order n and no other relations. In particular, the Hecke group H
3

is iso-

morphic to the modular group PSL
2

(Z). We write ⌘n(G) = �
2,n(G) for their corresponding Eulerian

function.

Definition 3.52. We use the following to denote the number of torsion-free normal subgroups of

the appropriate finitely presented group whose quotient is isomorphic to G.

dn(G) =
�n(G)

|Aut(G)| , dk1,...,kn
=
�k1,...,kn

|Aut(G)| and hn =
⌘n

|Aut(G)| .

In order to determine these Eulerian functions we require the following definition.

Definition 3.53. Let G be a finite group and n a positive integer. We write |G|n for the number of

elements of G having order n. By abuse of notation we write |G|1 = |G|. We then have the relation

�k1,...,kn
(G) =

nY

i=1

|G|ki
.

3.4.1 Enumerations of Epi(�, R(3))

Throughout this subsection G = R(3). We present in Table 3.20 values for |H|n for all subgroups

H 6 G such that µG(H) 6= 0 and n such that there exists g 2 G of order n. In the cases of R(3) and

L
2

(8) these are determined from their character tables [27, p. 6] whereas for the remaining subgroups

these values are easily determined.

From the inversion formula of R(3), as given in Theorem 3.10, and the values in Table 3.20 it

is then routine to evaluate certain specific Eulerian functions of G which we give in the following

corollary.

Corollary 3.54. Let G be the small Ree group R(3). Then,

1. d
2

(G) = 1136,

2. h
3

(G) = 2,

3. h
6

(G) = 14, and;

4. h
9

(G) = 12,
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H |H|
2

|H|
3

|H|
6

|H|
7

|H|
9

⌫G(H)µG(H)

R(3) 63 224 504 216 504 1

L
2

(8) 63 56 – 216 168 -1

23 : 7 : 3 7 56 56 48 – -9

23 : 7 7 – – 48 – 9

9: 6 9 8 18 – 18 -28

D
18

9 2 – – 6 28

7: 6 7 14 14 6 – -36

D
14

7 – – 6 – 36

7: 3 – 14 – 6 – 72

C
7

– – – 6 – -72

C
6

1 2 2 – – 504

C
2

1 – – – – -504

C⇤
3

– 2 – – – -504

Table 3.20: Values of |H|n for nontrivial subgroups of R(3) with µG(H) 6= 0.

d
3,3(G) d

3,6(G) d
3,7(G) d

3,9(G) d
6,6(G) d

6,7(G) d
6,9(G) d

7,9(G) d
9,9(G)

16 50 10 66 140 54 162 48 144

Table 3.21: Evaluation of da,b(R(3)).

in addition we have the values presented in Table 3.21.

Remark 3.55. We note that G cannot be (2, 7)-generated or (7, 7)-generated since all elements of

order 2 or 7 belong to R(3)0.

3.4.2 Free groups & Hecke groups

We now turn to the case where G = R(3n) is an arbitrary simple small Ree group. In Tables 3.22

and 3.23 we present the values of |H|n for n 2 {2, 3, 6, 7, 9} and H 6 G with µG(H) 6= 0. These are

easily determined from the conjugacy classes of G as found in [114].

From these values it is routine, but tedious, to determine a number of Eulerian functions for a

simple small Ree group. We present a number of such functions as the following corollary to Theorem

1.22.
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Isomorphism

type of H 6 G |H|
2

|H|
3

|H|
6

R(3h) 32h(32h � 3h + 1) (33h + 1)(32h � 1) 32h(33h + 1)(3h � 1)

3h +
p
3h+1 + 1: 6 3h +

p
3h+1 + 1 2(3h +

p
3h+1 + 1) 2(3h +

p
3h+1 + 1)

3h �
p
3h+1 + 1: 6 3h �

p
3h+1 + 1 2(3h �

p
3h+1 + 1) 2(3h �

p
3h+1 + 1)

(3h)1+1+1 : 3h � 1 32h 32h � 1 32h(3h � 1)

2⇥ L
2

(3h) 32h � 3h + 1 32h � 1 32h � 1

2⇥ (3h : 3

h�1

2

) 1 3h � 1 3h � 1

(22 ⇥D
(3

h
+1)/2) : 3 3h + 4 2(3h + 1) 2(3h + 1)

22 ⇥D
(3

h
+1)/2 3h + 4 – –

2⇥ L
2

(3) 7 8 8

23 7 – –

Table 3.22: Values of |H|n for n = 2, 3 or 6.

Isomorphism |H|
7

type of H 6 G 7|a
1

(h) 7|a
2

(h) 7|a
3

(h) |H|
9

R(3h) |H|/a
1

(h) |H|/a
2

(h) |H|/a
3

(h) 32h(33h + 1)(3h � 1)

(3h)1+1+1 : 3h � 1 – – – 32h(3h � 1)

2⇥ L
2

(3h) 3h+1(3h � 1) – – –

(22 ⇥D
(3

h
+1)/2) : 3 6 – – –

22 ⇥D
(3

h
+1)/2 6 – – –

3h �
p
3h+1 + 1: 6 – 6 – –

3h +
p
3h+1 + 1: 6 – – 6 –

Table 3.23: Values of |H|n for n = 7 or 9.

Corollary 3.56. Let G = R(3n) be a simple small Ree group. Then,

�
2

(G) = |G|
X

l|n
µ
⇣n
l

⌘
(3l � 1)(36l � 32l � 16), �

2,2,2(G) = |G|
X

l|n
µ
⇣n
l

⌘
3l(32l � 3l + 1)2,

�
2,1(G) = |G|

X

l|n
µ
⇣n
l

⌘
(3l � 1)(33l � 3l � 2), �

3,3(G) = |G|
X

l|n
µ
⇣n
l

⌘
3l(32l + 3l � 4),

�
3,1(G) = |G|

X

l|n
µ
⇣n
l

⌘
(3l � 1)(34l � 33l � 3l � 4), ⌘

3

(G) = |G|
X

l|n
µ
⇣n
l

⌘
(3l � 1)2,

�
6,1(G) = |G|

X

l|n
µ
⇣n
l

⌘
(3l � 1)(35l � 3l � 6), ⌘

6

(G) = |G|
X

l|n
µ
⇣n
l

⌘
3l(32l � 3l � 2),

�
9,1(G) = |G|

X

l|n
µ
⇣n
l

⌘
35l(3l � 1), ⌘

9

(G) = |G|
X

l|n
µ
⇣n
l

⌘
32l(3l � 1)
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and, for the Hecke group H
7

we have

⌘
7

(G) = |G|
X

l|n
µ
⇣n
l

⌘
g(l) where g(l) =

8
>>>>>><

>>>>>>:

32la
2

(l)� 1 if l ⌘ ±1 mod 12

33l � 2.32l + 5 if l ⌘ ±3 mod 12

32la
3

(l)� 1 if l ⌘ ±5 mod 12.

Remark 3.57. The automorphism group of G = R(3n) has order n|G| from which the values of

d
2

(G), etc. can easily be determined.

Remark 3.58. The quantity d
2

(G) has a number of other interpretations, a few of which we mention

here.

• if G is simple, this is equal to the largest positive integer, d, such that Gd can be 2-generated [63],

• in Grothendieck’s theory of dessins d’enfants [61] this is equal to the number of distinct regular

dessins with automorphism group isomorphic to G,

• the number of oriented hypermaps having automorphism group isomorphic to G [36].

We evaluate d
2

(R(3n)) for the first few values of n and give these in Table 3.24.

G d
2

(G)

R(3) 1 136

R(33) 3 357 637 312

R(35) 9 965 130 790 521 984

R(37) 34 169 987 177 353 651 660 608

R(39) 127 166 774 444 890 319 085 083 766 720

Table 3.24: Values of d
2

(G) for R(q), q  39.

Remark 3.59. The quantities d
2

(G), d
2,1(G) and d

2,2,2(G) are of interest in the study of regular

maps as they correspond to the number of orientably regular hypermaps, orientably regular maps and,

respectively, regular hypermaps having automorphism group isomorphic to G. We refer the reader

to [36,37] for more details.

It is known that the simple small Ree groups are quotients of the modular group PSL
2

(Z) [67,83];

with the Möbius function we can say a little more.

Corollary 3.60. Let G = R(3n) be a simple small Ree group. If d is a positive integer such that

d  h
3

(G) =
⌘
3

(G)

|Aut(G)| =
1

n

X

l|n
µ
⇣n
l

⌘
(3l � 1)2,

then Gd can be (2, 3)-generated.
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G h
3

(G)

R(3) 2

R(33) 224

R(35) 11 712

R(37) 682 656

R(39) 43 042 272

Table 3.25: Values of h
3

(G) for R(q), q  39.

We evaluate h
3

(R(3n)) for the first few values of n and give these in Table 3.25.

Remark 3.61. We note that the Möbius function can also be used to determine the number of

Hurwitz triples of G, that is generating sets hx, y, zi such that x2 = y3 = z7 = xyz = 1. From this,

the number of distinct Hurwitz curves with automorphism group isomorphic to R(3n) can also be

found. Groups for which such a generating set occurs are known as Hurwitz groups and their study

is well documented, see [23,24] for Conder’s surveys of this area. We shall say no more about them

here since it was proven by Malle [83] and independently by Jones [67] using a restricted form of

Möbius inversion that the simple small Ree groups are Hurwitz groups.

3.4.3 Asymptotic results

The Möbius function can also be used to prove results on asymptotic generation of groups. In the

case of probabilistic generation of finite simple groups we direct the interested reader to the recent

survey by Liebeck [79]. We begin with the following definition.

Definition 3.62. Let G be a group. We denote by Pa,b(G) the probability that a randomly chosen

element of order a and a randomly chosen element of order b generate G. More generally we define

Pk1,...,kn(G) =
�k1,...,kn

(G)

�k1,...,kn(G)

where k
1

, . . . , kn 2 N>0

[ {1}.

The following result due to Kantor and Lubotzky [72, Proposition 4] was proved using proba-

bilistic arguments to enumerate pairs of elements which are contained in a maximal subgroup. We

present an independent proof using the Möbius function.

Corollary 3.63 (Kantor–Lubotzky ’90). Let G = R(3n) be a small Ree group. Then P1,1 ! 1 as

|G| ! 1.

Proof. From Corollary 3.56 we have that

P1,1(G) =
�
2

(G)

|G|2 =
1

|G|
X

l|n
µ
⇣n
l

⌘
(3l � 1)(36l � 32l � 16).
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Since this tends to 1 as |G| ! 1, we have the desired result.

The following results due to Liebeck and Shalev [80, Theorems 1.1 and 1.2] can be proven using

a similar argument.

Corollary 3.64 (Liebeck–Shalev, ’96). Let G = R(3n) be a simple small Ree group. Then

1. P
2,1(G) ! 1 as |G| ! 1 and

2. P
3,1(G) ! 1 as |G| ! 1.

We can prove a number of additional results on asymptotic results using Tables 3.22 and 3.23

and the results in Corollary 3.56.

Corollary 3.65. Let G = R(3n) be a simple small Ree group and (k
1

, . . . , kn) an n-tuple of positive

integers. Then, each of

P
2,3(G), P

3,3(G), P
2,2,2(G),

P
2,6(G), P

2,7(G), P
2,9(G),

P
6,1(G) and P

9,1(G),

tend to 1 as |G| ! 1.

3.5 General results on the Möbius and Eulerian functions

When considering the Möbius function of a group G a natural subgroup to consider is the Frattini

subgroup of G whose definition we now recall.

Definition 3.66. Let G be a finite group. We denote by �(G) the Frattini subgroup of G, that is,

the intersection of all maximal subgroups of G.

Remark 3.67. The Frattini subgroup of G is a characteristic subgroup of G and so for a subgroup

H 6 G, if �(G) 6 H, then �(G) C H. For brevity we denote H/�(G) by H
�

.

From Theorem 1.14 it is immediate that if H ↵ �(G), then µG(H) = 0. Hall already makes the

point [63, Paragraph 3.7] that given the Möbius functions of A
4

, S
4

and A
5

, the Möbius functions of

their double covers 2.A
4

, 2.S
4

and 2.A
5

, respectively, can be “written down at once from that of the

corresponding factor group”. We can generalise this by proving a corollary to the following lemma

of Pahlings [90, Lemma 1].

Lemma 3.68 (Pahlings). If H is a subgroup of G and N C G and

HH(G,N) = {K 6 G | H 6 K,G = KN and K \HN = H}
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then

µG(H) = µG/N (HN/N)
X

K2HH(G,N)

µG(K).

Corollary 3.69. Let G be a finite group, let H 6 G be a subgroup of G and �(G) be the Frattini

subgroup of G. Then

µG(H) = µG�(H�

).

We can then extend this to give the following result on the relationship between certain Eulerian

functions of G and G
�

.

Corollary 3.70. Let G be a finite group. Then

�n(G) = �n(G�

)|�(G)|n.

Proof. From our previous observations and from the definition we have the following.

�n(G) =
X

H6G

µG(H)�n(H) =
X

H�6G�

µG�(H�

)|H|n

=
X

H�6G�

µG�(H�

)|H
�

|n|�(G)|n = �n(G�

)|�(G)|n.

The first and fourth equalities are simply the definition of �n(G), by Lemma 3.68 we have the second

equality and the third equality is clear.

Remark 3.71. In principle, this corollary can be generalised to Eulerian functions involving |H|n
where n is coprime to |�(G)|, but for an arbitrary positive integer n > 1, dividing |G|, the relationship
between |H|n and |H

�

|n is not as straightforward.
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Appendix A

The genus spectrum of a group

A.1 Program

The following is a computer program for GAP to determine the genus spectrum of a group, G. As

a by-product this also determines whether G is an unmixed Beauville group or not.

We begin by declaring in GAP the group whose genus spectrum we wish to determine as G. The

following declares a few preliminary objects and writes the conjugacy classes of G to memory as

lists. It goes without saying that it must be possible to hold the conjugacy classes of G in memory

as lists. On a 2.7GHz i5/Intel computer with 8GB of RAM this has been possible for groups as big

as M
23

, whose order is 10,200,960, with a runtime of about 96 hours.

g:=Size(G);;

cl:= ConjugacyClasses(G);; n:=Size(cl);;

class :=[];; GenTrips :=[];;

for i in [1..n] do

Add(class ,AsList(cl[i]));;

od;

Each conjugacy class Ci of G is then stored in some order as class[i]. The following loop then

determines all ordered triples (i,j,k) such that there exists a generating triple (x, y, z) for G with

x 2 Ci, y 2 Cj and z 2 Ck. It then adds these triples to the list GenTrips.

for i in [1..n] do

catch :=[];

x:=class[i][1];;

for j in [i..n] do

for j2 in [1.. Size(class[j])] do

y:=class[j][j2];;
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z:= Inverse(x*y);;

for k in [j..n] do

if z in class[k] then trip :=[i,j,k];;

if trip in GenTrips then else

if g=Size(Group(x,y)) then

Add(GenTrips ,trip );; Add(catch ,k);

fi;

fi; break;

fi;

if Difference ([j..n],catch )=[] then

catch :=[]; break;

fi;

od;

od;

od;

od;

The purpose of the “catch” is to record when there exists a triple “(i,j,k)” for j  k  n and

break when either such a triple already exists or we have representatives for all k. Note that we check

whether x and y generate G only when necessary to reduce the runtime. The following then writes to

memory, for each (x,y,z) the ordered pair BeauS:=[BeauSig,gen] consisting of the set BeauSig of

all powers of x, y and z minus the identity and gen which is determined from the Riemann–Hurwitz

formula as described in Section 2.2. Note that we do not take our actual generating triple, we take

the first element from the conjugacy class in which each element of our triple appears. Since we

eventually compare conjugacy in G, this is su�cient.

gt:=Size(GenTrips );;

BeauS :=[];;

for b in [1..gt] do

BeauSigma :=[];;

x:=class[GenTrips[b][1]][1];; l:=Order(x);;

y:=class[GenTrips[b][2]][1];; m:=Order(y);;

z:=class[GenTrips[b][3]][1];; n:=Order(z);;

mu:=1/l+1/m+1/n;; gen:=Size(G)*(1-mu )/2+1;;
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for i in [1..l-1] do Add(BeauSigma ,x^i);; od;

for i in [1..m-1] do Add(BeauSigma ,y^i);; od;

for i in [1..n-1] do Add(BeauSigma ,z^i);; od;

Add(BeauS ,[BeauSigma ,gen ]);;

od;

The following loop compares each generating triple to see whether they determine an unmixed

Beauville structure, in which case it adds the ordered pair of their genera to the list Genera, omitting

repeats, along with the geometric genus. The purpose of the diver subloop is as follows. Since for

each triple we have taken the first element of the conjugacy class to which that element belongs,

this allows us to quickly weed out incompatible structures by simply checking the intersection of

their BeauSigma sets. If their intersection is empty, we then follow through and check whether any

element from one triple is conjugate to an element of the other.

Genera :=[];

for p in [1..gt -1] do np:=Size(BeauS[p][1]);

for q in [p+1..gt] do nq:=Size(BeauS[q][1]);

if Intersection(GenTrips[p],GenTrips[q])=[] then

if Intersection(BeauS[p][1], BeauS[q][1])=[] then

diver :=0;

for i in [1..np] do

for j in [1..nq] do

if IsConjugate(G,BeauS[p][1][i],BeauS[q][1][j])= true then

diver :=1;

fi;

od;

od;

if diver =0 then

list :=[ BeauS[p][2], BeauS[q][2]]; Sort(list);

if Intersection(Genera ,[list ])=[] then

Add(Genera ,list);
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fi;

fi;

fi;

fi;

od;

od;

The following then prints out the genus spectrum of G.

Sort(Genera );; N:=Size(Genera );;

for i in [1..N] do

Add(Genera[i],(( Genera[i][1] -1)*( Genera[i][2] -1)/g)-1);

Print(Genera[i]); Display (" ");

od;

Remark A.1. In the case where G is an almost simple group this program can naturally be modified

to exclude the case where two of the generators are chosen from soc(G) to reduce the runtime.

A.2 The genus spectrum of some finite almost simple groups

The genus spectrum of A
6

can be recovered from [53]. We include it here for comparison along

with the genus spectrum of S
6

, A
7

and S
7

. The orders of the genus specrta of A
8

and S
8

are 259

and 723 respectively and so we do not print them here. For the almost simple groups with socle

isomorphic to a finite simple group of Lie type we include a few cases whose genus spectra has a

modest size. We note that the genus spectrum of L
2

(q) and PGL
2

(q) can be reconstructed from

the work of Garion [53] and so do not include them here. The genus spectrum of the remaining

cases of almost simple groups with socle isomorphic to L
2

(q), where q  32, admitting an unmixed

Beauville structure are presented in this section. Of the almost simple groups with socle isomorphic

to a sporadic group we include only the Mathieu Group M
11

since the genus spectrum of the next

smallest sporadic simple group, M
12

, has order 749.
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g
1

16 25 46 46

g
2

73 46 49 73

pg 2 2 5 8

Table A.1: Genus spectrum of A
6

g
1

49 91 91 121 151

g
2

91 121 169 169 169

pg 5 14 20 27 34

Table A.2: Genus spectrum of S
6
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g
1

136 136 136 169 169 169 169 169 169 169 169 169 169

g
2

169 337 505 241 271 316 346 421 451 481 526 556 586

pg 8 17 26 15 17 20 22 27 29 31 34 36 38

g
1

169 169 169 169 211 211 211 211 211 211 241 241 241

g
2

631 661 691 721 409 481 505 577 649 721 316 337 379

pg 41 43 45 47 33 39 41 47 53 59 29 31 35

g
1

241 241 271 271 274 274 316 316 316 316 316 316 316

g
2

442 505 337 505 481 721 337 409 481 505 577 649 721

pg 41 47 35 53 51 77 41 50 59 62 71 80 89

g
1

337 337 337 337 337 337 337 337 337 337 337 346 379

g
2

346 421 451 481 526 556 586 631 661 691 721 505 481

pg 45 55 59 63 69 73 77 83 87 91 95 68 71

g
1

379 409 409 409 421 421 421 421 421 442 442 451 481

g
2

721 421 526 631 481 505 577 649 721 481 721 505 484

pg 107 67 84 101 79 83 95 107 119 83 125 89 91

g
1

481 481 481 481 481 484 505 505 505 505 505 505 505

g
2

505 526 547 589 631 721 526 556 586 631 661 691 721

pg 95 99 103 111 119 137 104 110 116 125 131 137 143

g
1

526 526 526 547 577 589 631 631

g
2

577 649 721 721 631 721 649 721

pg 119 134 149 155 143 167 161 179

Table A.3: Genus spectrum of A
7
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g
1

169 169 169 169 169 169 169 169 211 211 211 211

g
2

841 901 1051 1261 1321 1471 1681 1741 649 1177 1321 1345

pg 27 29 34 41 43 48 55 57 26 48 54 55

g
1

211 211 211 271 271 271 271 337 337 337 337 337

g
2

1489 1513 1657 1009 1177 1345 1513 691 841 901 1051 1111

pg 61 62 68 53 62 71 80 45 55 59 69 73

g
1

337 337 337 337 337 337 421 421 421 421 421 421

g
2

1261 1321 1471 1531 1681 1741 649 1177 1321 1345 1489 1513

pg 83 87 97 101 111 115 53 97 109 111 123 125

g
1

421 481 481 481 481 481 481 481 481 481 481 481

g
2

1657 757 799 841 1009 1051 1135 1177 1219 1261 1345 1387

pg 137 71 75 79 95 99 107 111 115 119 127 131

g
1

481 481 481 481 481 481 481 505 505 505 505 505

g
2

1429 1471 1513 1555 1597 1639 1681 841 901 1051 1261 1321

pg 135 139 143 147 151 155 159 83 89 104 125 131

g
1

505 505 505 631 631 631 631 631 631 631 649 649

g
2

1471 1681 1741 649 1177 1321 1345 1489 1513 1657 841 1051

pg 146 167 173 80 146 164 167 185 188 206 107 134

g
1

649 649 649 691 691 691 757 757 799 799 841 841

g
2

1261 1471 1681 841 1177 1513 841 1321 841 1321 841 901

pg 161 188 215 114 160 206 125 197 132 208 139 149

Table A.4: Genus spectrum of S
7

, continued on Table A.5
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g
1

841 841 841 841 841 841 841 841 841 841 841

g
2

1009 1051 1111 1135 1177 1219 1261 1279 1321 1345 1387

pg 167 174 184 188 195 202 209 212 219 223 230

g
1

841 841 841 841 841 841 841 841 841 841 841

g
2

1429 1471 1489 1513 1531 1555 1597 1639 1657 1681 1699

pg 237 244 247 251 254 258 265 272 275 279 282

g
1

841 901 901 901 901 967 1009 1009 1009 1009 1009

g
2

1741 1009 1177 1345 1513 1321 1051 1261 1321 1471 1681

pg 289 179 209 239 269 252 209 251 263 293 335

g
1

1009 1051 1051 1051 1051 1051 1051 1111 1111 1111 1135

g
2

1741 1177 1321 1345 1489 1513 1657 1177 1345 1513 1321

pg 347 244 274 279 309 314 344 258 295 332 296

g
1

1177 1177 1177 1177 1177 1177 1219 1261 1261 1261 1261

g
2

1261 1321 1471 1531 1681 1741 1321 1321 1345 1489 1513

pg 293 307 342 356 391 405 318 329 335 371 377

g
1

1261 1321 1321 1321 1321 1321 1321 1321 1321 1321 1345

g
2

1657 1345 1387 1429 1471 1513 1555 1597 1639 1681 1471

pg 413 351 362 373 384 395 406 417 428 439 391

g
1

1345 1345 1471 1471 1471 1489 1513 1513 1513 1657

g
2

1681 1741 1489 1513 1657 1681 1531 1681 1741 1681

pg 447 463 433 440 482 495 458 503 521 551

Table A.5: Genus spectrum of S
7

continued
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g
1

127 127 127 253 253 253 271 271 337 337 379 379 397

g
2

337 481 505 337 481 505 337 505 379 397 481 505 505

pg 27 39 41 55 79 83 59 89 83 87 119 125 131

Table A.6: Genus spectrum of P�L
2

(8) ⇠= R(3)

g
1

681 681 681 1121 1225 1225 1361 1633 1801 1801 1801 1801 1801

g
2

1393 2449 3025 1225 1361 2481 1801 1801 1905 2177 2449 2721 2993

pg 115 203 251 167 203 371 299 359 419 479 539 599 659

Table A.7: Genus spectrum of L
2

(16) : 2 ⇠= O�
4

(4)

g
1

2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041

g
2

2721 3265 3537 3601 3809 4081 4625 4897 4961 5169 5441 5985

pg 339 407 441 449 475 509 577 611 619 645 679 747

g
1

2041 2041 2721 2721 2721 3265 3265 3265 3401 3537 3537 3601

g
2

6257 6321 4081 4489 5641 3401 4081 5641 3601 4081 5641 4081

pg 781 789 679 747 939 679 815 1127 749 883 1221 899

g
1

3601 3601 3809 3809 4081 4081 4081 4081 4081 4081 4081 4081

g
2

4489 5577 4081 5641 4081 4489 4625 4897 4961 5169 5441 5641

pg 989 1229 951 1315 1019 1121 1155 1223 1239 1291 1359 1409

g
1

4081 4081 4081 4489 4489 4489 4625 4897 5169 5441 5641 5641

g
2

5985 6257 6321 4961 5441 6321 5641 5641 5641 5641 5985 6257

pg 1495 1563 1579 1363 1495 1737 1597 1691 1785 1879 2067 2161

Table A.8: Genus spectrum of P�L
2

(16)
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g
1

651 651 651 1171 1171 1171 1171 1171 1171 1171 1171 1171 1171

g
2

2521 4681 5641 2001 2521 2601 3121 3641 4161 4601 4681 5121 5641

pg 104 194 234 149 188 194 233 272 311 344 350 383 422

g
1

1301 1301 1301 1351 1351 1351 1351 1351 1821 1821 1821 1951 1951

g
2

2521 4681 5641 2601 3121 3641 4161 4681 2521 4681 5641 2001 2521

pg 209 389 469 224 269 314 359 404 293 545 657 249 314

g
1

1951 1951 1951 1951 1951 1951 1951 1951 2001 2001 2001 2001 2001

g
2

2601 3121 3641 4161 4601 4681 5121 5641 2341 3121 3511 4291 4681

pg 324 389 454 519 574 584 639 704 299 399 449 549 599

g
1

2341 2341 2341 2341 2341 2341 2341 2341 2341 2471 2471 2471 2521

g
2

2521 2601 3121 3641 4161 4601 4681 5121 5641 2521 4681 5641 2601

pg 377 389 467 545 623 689 701 767 845 398 740 892 419

g
1

2521 2521 2521 2521 2521 2521 2521 2521 2521 2521 2521 2521 2521

g
2

2991 3121 3251 3511 3641 3771 3901 4161 4291 4421 4551 4681 4941

pg 482 503 524 566 587 608 629 671 692 713 734 755 797

Table A.9: Genus spectrum of P⌃L
2

(25), continued on Table A.10
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g
1

2521 2521 2601 2601 2601 2601 2601 2601 2601 2991 2991 3121 3121

g
2

5071 5591 3121 3301 3511 4291 4471 4681 5641 4681 5641 3121 3301

pg 818 902 519 549 584 714 744 779 939 896 1080 623 659

g
1

3121 3121 3121 3121 3121 3121 3121 3121 3121 3251 3251 3301 3301

g
2

3511 3641 4161 4291 4471 4601 4681 5121 5641 4681 5641 3641 4161

pg 701 727 831 857 893 919 935 1023 1127 974 1174 769 879

g
1

3301 3511 3511 3511 3511 3511 3511 3641 3641 3641 3641 3771 3771

g
2

4681 3641 4161 4601 4681 5121 5641 4291 4471 4681 5641 4681 5641

pg 989 818 935 1034 1052 1151 1268 1000 1042 1091 1315 1130 1362

g
1

3901 3901 3951 4161 4161 4161 4161 4291 4291 4291 4291 4421 4421

g
2

4681 5641 4681 4291 4471 4681 5641 4601 4681 5121 5641 4681 5641

pg 1169 1409 1184 1143 1191 1247 1503 1264 1286 1407 1550 1325 1597

g
1

4471 4551 4551 4601 4681 4681 4681 4681 4681 4681 4941 5071 5591

g
2

4681 4681 5641 4681 4681 4941 5071 5121 5591 5641 5641 5641 5641

pg 1340 1364 1644 1379 1403 1481 1520 1535 1676 1691 1785 1832 2020

Table A.10: Genus spectrum of P⌃L
2

(25) continued
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g
1

2458 2458 2458 2458 2809 2809 2809 2809 3781

g
2

6553 9361 9829 10333 4096 6553 9829 10333 4096

pg 545 779 818 860 389 623 935 983 524

g
1

3781 3781 3781 3781 3862 3862 3862 4915 4915

g
2

6553 9361 9829 10414 6553 9829 10333 6553 9361

pg 839 1199 1259 1334 857 1286 1352 1091 1559

g
1

4915 4915 5266 5266 5266 6238 6238 6238 6319

g
2

9829 10333 6553 9829 10333 6553 9361 9829 6553

pg 1637 1721 1169 1754 1844 1385 1979 2078 1403

g
1

6319 6319 6553 6553 6553 6553 7372 7372 7372

g
2

9829 10333 7372 7723 8695 8776 9361 9829 10333

pg 2105 2213 1637 1715 1931 1949 2339 2456 2582

g
1

7723 7723 8695 8695 8776 8776

g
2

9829 10333 9361 9829 9829 10333

pg 2573 2705 2759 2897 2924 3074

Table A.11: Genus spectrum of P⌃L
2

(27)
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g
1

235 235 469 469 586 586 703 703 703

g
2

1441 2161 1441 2161 1441 2161 721 1441 2161

pg 59 89 119 179 149 224 89 179 269

g
1

721 721 721 721 721 721 721 721 721

g
2

820 937 1054 1171 1288 1405 1522 1639 1756

pg 104 119 134 149 164 179 194 209 224

g
1

820 820 937 937 1054 1054 1171 1171 1288

g
2

1441 2161 1441 2161 1441 2161 1141 2161 1441

pg 209 314 239 359 269 404 299 449 329

g
1

1288 1405 1405 1441 1441 1441 1522 1639 1756

g
2

2161 1441 2161 1522 1639 1756 2161 2161 2161

pg 494 359 539 389 419 449 584 629 674

Table A.12: Genus spectrum of L
3

(3)

g
1

1405 1405 1405 1441 1441 1441 1441 1441 1441 1441 1441

g
2

1441 1873 3313 1639 1873 2107 2341 2575 2809 3043 3277

pg 179 233 413 209 239 269 299 329 359 389 419

g
1

1441 1441 1441 1639 1639 1873 1873 1873 1873 1873 1873

g
2

3511 3745 3979 1873 3313 1873 2107 2341 2377 2575 2809

pg 449 479 509 272 482 311 350 389 395 428 467

g
1

1873 1873 1873 1873 1873 1873 1873 1873 1873 1873 2107

g
2

3043 3079 3277 3313 3511 3745 3781 3979 4015 4249 3313

pg 506 512 545 551 584 623 629 662 668 707 620

g
1

2341 2575 2809 3043 3277 3313 3313 3313

g
2

3313 3313 3313 3313 3313 3511 3745 3979

pg 689 758 827 896 965 1034 1103 1172

Table A.13: Genus spectrum of P�L
3

(3)
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g
1

505 577 577 577 577 577 577 577 577 577 577

g
2

1729 631 883 1009 1135 1261 1387 1513 1639 1765 1891

pg 143 59 83 95 107 119 131 143 155 167 179

g
1

577 577 577 631 631 757 883 883 1009 1009 1135

g
2

2017 2143 2269 1153 1729 1729 1153 1729 1153 1729 1153

pg 191 203 215 119 179 215 167 251 191 287 215

g
1

1135 1153 1153 1153 1153 1153 1153 1153 1153 1153 1261

g
2

1729 1261 1387 1513 1639 1765 1891 2017 2143 2269 1729

pg 323 239 263 287 311 335 359 383 407 431 359

g
1

1387 1513 1639 1729 1729 1729 1729 1729

g
2

1729 1729 1729 1765 1891 2017 2143 2269

pg 395 431 467 503 539 575 611 647

Table A.14: Genus spectrum of U
3

(3)

g
1

1153 1153 1153 1153 1153 1153 1153 1153 1153 1153 1153

g
2

1765 2017 2269 2521 2773 3025 3277 3529 3781 4033 4285

pg 167 191 215 239 263 287 311 335 359 383 407

g
1

1153 1765 1765 2017 2017 2017 2017 2017 2017 2017 2017

g
2

4537 2017 3169 2017 2161 2269 2521 2773 2917 3025 3169

pg 431 293 461 335 359 377 419 461 485 503 527

g
1

2017 2017 2017 2017 2017 2017 2017 2017 2017 2269 2521

g
2

3277 3529 3673 3781 3925 4033 4177 4285 4537 3169 3169

pg 545 587 611 629 653 671 695 713 755 593 659

g
1

2773 3025 3169 3169 3169 3169 3169 3169

g
2

3169 3169 3277 3529 3781 4033 4285 4537

pg 725 791 857 923 989 1055 1121 1187

Table A.15: Genus spectrum of P�U
3

(3)
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g
1

1009 1009 1009 1081 1081 1081 1345 1345 1345 1345 1345

g
2

1921 3841 5761 1345 2689 4033 2161 2521 3601 4681 5761

pg 95 191 287 71 143 215 143 167 239 311 383

g
1

1681 1681 1681 1681 1921 1921 1921 1921 2161 2161 2185

g
2

4033 4609 5185 5761 2521 3025 3529 4033 2689 4033 5761

pg 335 383 431 479 239 287 335 383 287 431 623

g
1

2521 2521 2521 2521 2521 2521 2521 2689 2689 2689 2761

g
2

2689 3265 3841 4033 4609 5185 5761 3601 4681 5761 4033

pg 335 407 479 503 575 647 719 479 623 767 551

g
1

3025 3025 3529 3529 3601 3841 4033 4033

g
2

3841 5761 3841 5761 4033 4033 4681 5761

pg 575 863 671 1007 719 767 935 1151

Table A.16: Genus spectrum of L
3

(4)
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g
1

729 729 729 729 1457 1457 1457 1457 1561 1561 1561

g
2

8321 9281 10241 11201 8321 9281 10241 11201 5825 7617 9409

pg 207 231 255 279 415 463 511 559 311 407 503

g
1

1561 2289 2521 2521 2521 2521 3121 3121 3121 3121 3249

g
2

11201 11201 5825 6657 7489 8321 5825 7617 9409 11201 8321

pg 599 879 503 575 647 719 623 815 1007 1199 927

g
1

3641 3641 3641 3641 3641 3641 3641 3641 3641 3641 4081

g
2

5825 6657 7489 7617 8321 8449 9281 9409 10241 11201 5825

pg 727 831 935 951 1039 1055 1159 1175 1279 1399 815

g
1

4369 4369 4369 4369 5041 5041 5041 5041 5097 5097 5097

g
2

8321 9281 10241 11201 5825 6657 7489 8321 8321 9281 10241

pg 1247 1391 1535 1679 1007 1151 1295 1439 1455 1623 1791

g
1

5097 5201 5201 5201 5201 5825 5825 5825 5825 5825 5825

g
2

11201 5825 7617 9409 11201 6161 6761 7721 8321 8681 9281

pg 1959 1039 1359 1679 1999 1231 1351 1543 1663 1735 1855

g
1

5825 5825 5929 6161 6161 6161 6657 6657 6761 6761 6761

g
2

10241 11201 11201 6657 7489 8321 8681 11201 7617 9409 11201

pg 2047 2239 2279 1407 1583 1759 1983 2559 1767 2183 2599

g
1

6889 7489 7489 7617 8321 8321 8321

g
2

8321 8681 11201 8321 8681 9409 11201

pg 1967 2231 2879 2175 2479 2687 3199

Table A.17: Genus spectrum of Sz(8)
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g
1

631 694 694 826 826 826 826 859 961 991 991 991 991

g
2

1585 1921 2881 1585 2017 2449 2881 2881 1585 1489 1585 1921 2017

pg 125 167 251 164 209 254 299 311 191 185 197 239 251

g
1

991 991 1126 1156 1156 1156 1156 1189 1189 1261 1291 1321 1321

g
2

2449 2881 1585 1585 2017 2449 2881 1921 2881 1585 1585 1585 2017

pg 305 359 224 230 293 356 419 287 431 251 257 263 335

g
1

1321 1321 1354 1387 1387 1486 1486 1486 1486 1486 1486 1489 1489

g
2

2449 2881 2881 1921 2881 1489 1585 1921 2017 2449 2881 1981 2476

pg 407 479 491 335 503 278 296 359 377 458 539 371 464

g
1

1519 1585 1585 1585 1585 1585 1585 1585 1585 1585 1585 1585 1585

g
2

2881 1621 1651 1786 1816 1921 1951 1981 2116 2146 2251 2281 2311

pg 551 323 329 356 362 383 389 395 422 428 449 455 461

g
1

1585 1585 1585 1585 1585 1585 1651 1651 1651 1684 1684 1717 1816

g
2

2446 2476 2581 2611 2746 2881 2017 2449 2881 1921 2881 2881 2017

pg 488 494 515 521 548 575 419 509 599 407 611 623 461

g
1

1816 1816 1849 1882 1882 1921 1921 1921 1981 1981 1981 2014 2017

g
2

2449 2881 2881 1921 2881 1981 2179 2476 2017 2449 2881 2881 2146

pg 560 659 671 455 683 479 527 599 503 611 719 731 545

g
1

2017 2017 2146 2146 2179 2311 2311 2449 2476

g
2

2311 2476 2449 2881 2881 2449 2881 2476 2881

pg 587 629 662 779 791 713 839 764 899

Table A.18: Genus spectrum of M
11

110



Appendix B

Future research

B.1 Beauville groups

B.1.1 Mixable Beauville groups

The results of Chapter 2 naturally throw open a number of questions and conjectures for further

work related to Beauville groups. In light of Theorem 1.9 it seems natural to conjecture the following.

Conjecture B.1. If G is a non-abelian finite simple group not isomorphic to PSL
2

(2n) for n � 2,

then G is a mixable Beauville group.

The remaining cases to consider are finite simple groups of Lie type having rank n � 3 with the

exceptions of types 2F
4

(2n) and 3D
4

(q). The main obstructions faced in proving Theorem 1.9 were

scarcity of prime divisors, notably in the cases J
2

and L
2

(q), and determining even triples in the

even characteristic cases. As the rank of n grows the order obstruction should disappear; in the cases

of 2F
4

(2n) and 3D
4

(2n) the existence of elements of even order which were not 2-elements facilitated

the determination of even triples. Furthermore the existence and properties of Singer cycles suggest

that in even or odd characteristic one can always find a generating triple consisting of Singer cycles.

It seems plausible, then, that this conjecture should be true. A related question is then the following.

Question B.2. If G is a simple group then for which n is Gn a mixable Beauville group?

Here, n is clearly bounded by d
2

(G); moreover, the author suspects the real bound is significantly

lower. A case in point is G = L
2

(7); by Lemma 2.56 Gn is a mixable Beauville group only for

n = 1, 2. This falls far short of d
2

(G) = 57 which can be calculated in GAP or derived from its

Möbius function [63]. This is most certainly largely due to the coprimeness restriction which raises

the following question.

Question B.3. Can the coprimeness condition in Theorem 2.40 be weakened?

In [70,71] Jones uses the notion of p-fullness in order to determine unmixed Beauville structures

where the products of the orders of each generating triple are not coprime. Could p-fullness be utilised
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to provide a construction compatible with Theorem 2.40? Moreover, can the original construction

itself be generalised?

Question B.4. In the “mixable” construction G := (Hn) :Q
4k, where H is a perfect group, n = 2

and k depends on the mixable structure of H can either of these conditions be generalised?

It is certainly true that H can be generalised, as in Bauer, Catanese and Grunewald’s original

construction, but for which n and K ⇠= G/Hn can a mixed Beauville group be constructed. From

the necessary condition that G must be 2-generated we can at least say that K must be 2-generated.

Beyond the topics raised in the thesis, there is a plethora of open questions in the wider world

of Beauville groups. We draw a few questions, largely chosen for their interest to the author, from

the various existing survey articles [2, 41, 68].

B.1.2 Beauville p-groups

As far as the author is aware, all hitherto known mixed Beauville groups are those discussed in

Chapter 1. We mention that the infinite family of mixed Beauville 2-groups appearing in [4] also

yields an infinite family of unmixed Beauville 2-groups. We now turn to the unmixed case. It is

immediate from the definition that for a group G to admit an unmixed Beauville structure it is

su�cient for there to exist a pair of generating triples (x
1

, y
1

, (x
1

y
1

)�1) and (x
2

, y
2

, (x
2

y
2

)�1) for

G such that ⌫(x
1

, y
1

) is coprime to ⌫(x
2

, y
2

). This reduces the case of determining which nilpotent

groups are unmixed Beauville groups to determining which p-groups are unmixed Beauville groups.

Unmixed Beauville p-groups of order at most p4 have been classified in addition to a number of results

regarding those of order at most p6 by Barker, Boston and Fairbairn [2]. In addition, they construct

an infinite family of unmixed Beauville groups of order p3 for p � 7 with an explicit presentation.

Since, as mentioned in Chapter 1, the abelian unmixed Beauville groups are known [20, Lemma

3.21], we turn to non-abelian unmixed Beauville groups. A number of infinite families of unmixed

Beauville groups are known due to the work of Fernández-Alcober and Gül [47], González-Diez and

Jaikin-Zapirain [57] and Stix and Vdovina [108].

A more striking question to explore is the relationship between the position of a p-group in the

so-called ‘O’Brien tree’ [89] and its status as an unmixed Beauville group. Boston has initiated the

study in this vein but as far as the author is aware there are yet to be any conclusive results. We

direct the reader to Boston’s survey article [16] for further information.

B.1.3 Strongly real Beauville groups

One last problem is that of determining ‘strongly real’ Beauville groups which are unmixed Beauville

groups whose Beauville structure satisfies an additional technical condition which we take from

[49, Criterion B].
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Definition B.5. Let G be a group and let (x
1

, y
1

;x
2

, y
2

) be an unmixed Beauville structure for G.

We say that G is strongly real if there exists  2 Aut(G) and �i 2 G (i = 1, 2) such that

 (xi)
�i = x�1

i and  (yi)
�i = y�1

i

for i = 1, 2.

For the geometric significance of this problem we refer the reader to [7, Section 7] and [9]. It

was conjectured by Catanese that almost all finite simple groups admit a strongly real Beauville

structure [6, Conjecture 3] and much work has been done on the determination of groups admitting

strongly real Beauville structures [40,49,51]. We refer the interested reader to [41,43] and the survey

article [42, Section 5] for the state of play on this topic.

B.2 Möbius functions and related problems

B.2.1 More Möbius functions

Naturally, one might consider determining the Möbius function for other families of non-abelian

finite simple groups and, where possible, their automorphism groups.

• Sporadic groups — The subgroup lattice and table of marks for a large number of sporadic

groups, as well as the Tits group, are known. The history of their discovery is documented

by Connor and Leemans in [26] who also maintain a website [25] where the list of conjugacy

classes of subgroups of all almost simple groups of order less than 1, 000, 000 in [27] appears.

In some cases this also includes their Möbius function.

• Finite simple groups of Lie type — In the case of the finite simple groups of Lie type, the well

tempered nature of the conjugacy classes of their maximal subgroups aids one in determining

their Möbius function. Ideally one would like to determine the Möbius function of G in the

case where G has a relatively small number of classes of maximal subgroups. Hence, the most

natural candidates to tackle next would be the groups PSU
3

(q) and PSL
3

(q). Despite the

large number of classes of maximal subgroups in the large Ree groups [84], many of them

are p-local and much of the work can be done based on the greatest common divisor of their

orders. However, since their Sylow 2-subgroups do not have trivial intersection, as the Sylow

3-subgroups do in the case of the small Ree groups, it will take some work to determine their

possible intersections.

• Alternating groups — In the case of the alternating and symmetric groups a general formula

for the Möbius function in terms of n seems completely out of reach due to the wild variation

of the maximal subgroups appearing in these groups. Even the determination of the Möbius
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number of these groups becomes a hard problem when n has at least two prime divisors, as

visible in the work of Shareshian [101,102].

Beyond the determination of more Möbius functions, given the various general results on the

Möbius function, one might hope to have more general results on the various Eulerian functions.

Although again, as mentioned in Chapter 3, given the disparity between summatory functions of

subgroups of G and subgroups of quotients of G, this will be a more awkward problem.

Related to the Möbius function of a lattice is its dual µ̄
1

(H) for a subgroup H 6 G, which, as far

as the author is aware, appears to have been little investigated. The dual of the Möbius function is

described in [63, Section 2.4] and we have relations such as µ̄
1

(1) = µG(G) = 1, µG(1) = µ̄
1

(G) and

µG(p) = �1 for cyclic subgroups of prime order. In general, determining this function for a group

would be even more awkward than determining the usual Möbius function since one needs to know

which subgroups are generated by all pairs of elements of prime order. It is not immediately obvious

that there should be any nontrivial connection between the usual Möbius function and its dual, but

it seems worth investigating.

B.2.2 Other properties of subgroup lattices

The subgroup lattice of a finite group is by definition a poset and so can be considered as a simplicial

complex, hence one can consider its homotopy type and its homology. A corollary to Quillen’s

Fiber Lemma, which we do not state here and is all but stated in [93], is the following. If a poset

contains a unique maximal or minimal element, then it is contractible [93, Section 1.5]. As such,

one normally considers the order complex of the subgroup lattice, see for example [66, Section 9].

Essentially, if L(G) denotes the lattice of subgroups of a group G, the order complex L̄ = L̄(G) is

the poset L \ {1, G}. Another corollary of Quillen’s Fiber Lemma is that L is homotopy equivalent

to the subcomplex consisting of those subgroups which are intersections of a maximal number of

subgroups. In order to determine the homotopy type of L̄ one needs then only consider nontrivial

subgroups which occur as intersections of maximal subgroups. In the case where G is a soluble group

the homotopy type of L̄ is that of a bouquet of equidimensional spheres [76, Corollaire 4.10]. An

extension of this is due to Shareshian [103] where the homotopy type of the minimal simple groups

are also determined.

Question B.6. What is the homotopy type of the subgroup lattice of a small Ree group?

In this thesis we have determined all subgroups of a small Ree group which can occur as the

intersection of a number of maximal subgroups with the exception of those H which occur as the

intersection of subfield subgroups which intersect in a parabolic subgroup. However, we know such

subgroups have µG(H) = 0. If H 6 G is not the intersection of a number of maximal subgroups,

then µG(H) = 0 and there exists H 6 K < G where K is the intersection of all maximal subgroups

of G containing H. From the Quillen Fiber Lemma, the sublattice of the order complex induced
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between H and K is contractible, so we can “ignore” H. The author is unaware of a result which

states that if µG(H) = 0, then H can be “ignored” and suspects it not to be true in general. As

such, more work needs to be done on the intersection of maximal subgroups of the small Ree groups

before the homotopy type of its order complex can be determined.

B.2.3 Maximal subgroups

Given the natural relationship between the maximal subgroups of a group, G, and its Möbius func-

tion, a natural question to explore would be a partial converse.

Question B.7. Suppose G is a group for which an incomplete list of maximal subgroups is known,

is it possible to determine information about the remaining possible maximal subgroups of G using

the Möbius function?

It is an open question whether there exist maximal subgroups of the Monster M with socle

isomorphic to U
3

(8), however, if such subgroups were to exist, then their Möbius function would be

�1. Could this information be used, in conjunction with a suitable Eulerian function, to constrain

the existence of such maximal subgroups? The number of known classes of maximal subgroups make

it too infeasible to try to determine as much of the full Möbius function as possible. However, could

a sensible choice of � be employed so that Epi(�, H) = 0 for a large number of classes of maximal

subgroups of M? If we let � = �(19, 19, 21), the triangle group with presentation

�(19, 19, 21) = hx, y, z | x19 = y19 = z21 = xyz = 1i,

the only maximal subgroups of M, known or unknown, apart from the class in question, containing

elements of order 19 and 21 are isomorphic to one of [27, 125]

2.B, 22.2E
6

(2) :S
3

, S
3

⇥ Th, (D
10

⇥HN).2 or (A
5

⇥ U
3

(8) : 3) : 2.

We can even rule out the last class since for such groups the structure constant n(19, 19, 21) = 0.

Moreover, we know that
|Epi(�,M)|
|Aut(M)|

must be a non-negative integer. Could such information be used to prove the non-existence of maximal

subgroups?
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[31] S. Delsarte, Fonctions de Möbius sur les groupes abeliens finis, Ann. of Math. (2) 49 (1948), no. 3, 600–609.

[32] L. E. Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications, Inc., New York,

1958.

[33] M. Downs, Möbius inversion of some classical groups and an application to the enumeration of regular maps,

Ph.D. Thesis, University of Southampton, Southampton, 1988.
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