
ORBIT - Online Repository of Birkbeck Institutional Theses

Enabling Open Access to Birkbecks Research Degree output

Investigating the mechanisms underlying fixation dura-
tions during the first year of life: a computational ac-
count

http://bbktheses.da.ulcc.ac.uk/148/

Version: Full Version

Citation: Saez de Urabain, Irati R. (2015) Investigating the mechanisms under-
lying fixation durations during the first year of life: a computational account. PhD
thesis, Birkbeck, University of London.

c©2015 The Author(s)

All material available through ORBIT is protected by intellectual property law, including copyright law.

Any use made of the contents should comply with the relevant law.

Deposit guide
Contact: email

http://bbktheses.da.ulcc.ac.uk/148/
http://bbktheses.da.ulcc.ac.uk/faq.html
mailto:lib-eprints@bbk.ac.uk


 
 

 

 

 

INVESTIGATING THE MECHANISMS UNDERLYING 
FIXATION DURATIONS DURING THE FIRST YEAR OF 

LIFE: A COMPUTATIONAL ACCOUNT 
 

 

 

Irati R. Saez de Urabain  
 
 

A thesis submitted for the degree of  

Doctor of Philosophy 
 

 

Department of Psychological Sciences 

Birkbeck College 

University of London 
 

April 2015 

 



 2 

 

 

 

 

 

 

Para aquellos que nos dejaron y los que llegaron, 

para la abuela Asun y el pequeño Unax  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

 

 

 

Originality statement 

 

 

“I, Irati R. Saez de Urabain, declare that the work submitted in this thesis is my own.” 

 

Signed: ____________________________________  

April 15, 2015    



 4 

Abstract 

Infants’ eye-movements provide a window onto the development of cognitive functions over the 

first years of life. Despite considerable advances in the past decade, studying the mechanisms 

underlying infant fixation duration and saccadic control remains a challenge due to practical and 

technical constraints in infant testing. This thesis addresses these issues and investigates infant 

oculomotor control by presenting novel software and methods for dealing with low-quality infant 

data (GraFIX), a series of behavioural studies involving novel gaze-contingent and scene-

viewing paradigms, and computational modelling of fixation timing throughout development. In a 

cross-sectional study and two longitudinal studies, participants were eye-tracked while viewing 

dynamic and static complex scenes, and performed gap-overlap and double-step paradigms. 

Fixation data from these studies were modelled in a number of simulation studies with the 

CRISP model of fixation durations in adults in scene viewing. Empirical results showed how 

fixation durations decreased with age for all viewing conditions but at different rates. Individual 

differences between long- and short-lookers were found across visits and viewing conditions, 

with static images being the most stable viewing condition. Modelling results confirmed the 

CRISP theoretical framework’s applicability to infant data and highlighted the influence of both 

cognitive processing and the developmental state of the visuo-motor system on fixation 

durations during the first few months of life. More specifically, while the present work suggests 

that infant fixation durations reflect on-line perceptual and cognitive activity similarly to adults, 

the individual developmental state of the visuo-motor system still affects this relationship until 10 

months of age. Furthermore, results suggested that infants are already able to program 

saccades in two stages at 3.5 months: (1) an initial labile stage subject to cancellation and (2) a 

subsequent non-labile stage that cannot be cancelled. The length of the non-labile stage 

decreased relative to the labile stage especially from 3.5 to 5 months, indicating a greater ability 

to cancel saccade programs as infants grew older. In summary, the present work provides 

unprecedented insights into the development of fixation durations and saccadic control during 

the first year of life and demonstrates the benefits of mixing behavioural and computational 

approaches to investigate methodologically challenging research topics such as oculomotor 

control in infancy. 
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Thesis overview 

Chapter 1 provides the general literature background for this thesis, discussing past research 

on vision, visual orienting and visual attention. It particularly focuses on reviewing previous 

empirical work and theoretical and computational models investigating visual attention and the 

mechanisms underlying oculomotor control and fixation durations in infants and adults. 

Chapter 2 introduces the methods, experimental tools, and analytical techniques used in this 

thesis. 

Chapter 3 presents GraFIX, a new method and software to detect fixations in low and high 

quality eye-tracking data. Furthermore, this chapter includes a validation analysis comparing 

this method to previous approaches. 

Chapter 4 includes a cross-sectional study for which I analysed fixation durations and saccadic 

control in 6-month-old infants and adults that were presented with a battery of naturalistic and 

semi-naturalistic videos, and performed the gap-overlap and double-step paradigms. 

Chapter 5 includes three simulation studies investigating the mechanisms underlying fixation 

durations and saccadic control in 6-month-olds. For this purpose the fixation data from Chapter 

4 were modelled using the CRISP model of fixation durations in scene viewing (Nuthmann, 

Smith, Engbert, & Henderson, 2010). 

Chapter 6 includes two longitudinal studies and a study with adults that aim to investigate the 

development of fixation durations and saccadic control during the first year of life. For this 

purpose participants were presented with dynamic stimuli (naturalistic and abstract videos) and 

static images, and performed the gap-overlap paradigm. 

Chapter 7 includes three simulation studies that investigate the development of the mechanisms 

underlying fixation durations and saccadic control over the first year of life. For this purpose the 

CRISP model (Nuthmann et al., 2010) was used to model fixation data from Chapter 6. 

Chapter 8 includes a critical discussion of the findings of my experiments from a broader 

perspective. Furthermore, it examines the limitations of this work and how these might be 

addressed and overcome in the future. 



 20 

Chapter 1: Introduction 

1.1 General introduction 

From the first day of their life infants use their eyes to sample the world around and select the 

most relevant information in the environment, trying to disentangle all the mysteries that 

surround them. Even though at a first glance the process of moving our eyes from one point to 

another may seem a simple operation, it involves a number of attentional and cognitive 

processes, besides a very complex neural machinery that we have just started to understand.   

Developmental psychology has widely investigated the development of attentional and cognitive 

processes -such as memory, object perception or language acquisition- through the analysis of 

different aspects related to visual attention. For instance, in the infant literature it is very 

common to find habituation and familiarization paradigms, where the subject is repeatedly or 

continuously exposed to an event before he/she is presented with an unfamiliar object. The 

mean looking times to these objects is then measured and compared. Along with these studies, 

others have applied preferential looking paradigms, where infants are presented with two 

simultaneous objects or patterns and the duration and location of each look is measured and 

analysed. All these looking paradigms have been extensively used to investigate cognitive 

development and the psychological processes going on inside the infant’s brain. 

Questions related to how do infants modulate and control eye-movements are, however, poorly 

understood: What is in a look? Why, where and when do they move their eyes? What are the 

inner mechanisms underlying oculomotor control in infancy? And how do they develop over the 

first year of life?  

During active visual sampling eyes can remain stable at a visual location during what is known 

as a fixation, or can perform fast ballistic movements called saccadic eye-movements. It is 

during a fixation when visual encoding occurs while during a saccade visual sensitivity is 

suppressed (Matin, 1974; Ross, Morrone, Goldberg, & Burr, 2001). Interestingly, saccades are 

likely to be the most practiced motor skill throughout the first year of life. In fact, by 4 months 

infants have already made over 3 million eye-movements (M. H. Johnson, 2003), thus one 

could expect them to increase in efficiency rapidly during the first months of life. 
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Whilst most past research on eye-movements has been focused on where fixations land (e.g., 

Buswell, 1935; Itti & Koch, 2001; Loftus & Mackworth, 1978), there is a growing body of 

research investigating the durations of those fixations, particularly in human adults. For 

instance, a number of adult studies investigating fixation durations in scene perception have 

already shown how these types of eye-movements can be affected by factors such as the task 

(e.g., memorization vs. visual search; e.g., Henderson, Weeks Jr, & Hollingworth, 1999; 

Nuthmann et. al, 2010; Võ & Henderson, 2009), the visual characteristics of the stimulus (e.g., 

luminance, image degradation; e.g., Henderson, Nuthmann, & Luke, 2013; Loftus, 1985), the 

semantics of the scene (e.g., Henderson et al., 1999; Loftus & Mackworth, 1978; Võ & 

Henderson, 2009), or familiarity (e.g., Althoff & Cohen, 1999). These findings manifest the 

influence of perceptual and cognitive processing in adults’ fixations and demonstrate how the 

exhaustive measurement and analysis of fixation durations can give rise to new metrics that can 

help answering questions such as those related to the assessment of attention and information 

processing in more ecologically valid settings. 

Nevertheless, as a result of the numerous technical and practical constraints that testing infants 

involve (e.g., high degree of movement, lower data quality, not attending to the experimenter’s 

instructions), infant fixation durations and saccadic control are much less understood. In the 

present thesis I will first overcome some of the issues related to gathering and analysing eye-

tracking data from young infants, in order to then investigate the development of fixation 

durations and saccadic control during the first year of life.    

1.2 Aims and objectives 

In the present project I combine a series of behavioural  cross-sectional and longitudinal studies 

with computational modelling in order to investigate the development of fixation durations and 

the mechanisms underlying fixation durations and saccadic control during the first year of life. 

The specific aims for this project are: 

• to define a precise protocol for gathering usable eye-tracking data from infants and develop 

a method to detect and analyse fixation durations in low and high quality eye-tracking data 

from infants as well as adults (Chapters 2 and 3); 

• to investigate the factors influencing fixation durations and saccadic control in 6-month-olds 

and adults (Chapter 4); 
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• to investigate the unexplored mechanisms underlying fixation durations and saccadic 

control in infancy by determining the generalizability and potential limitations of extending 

the CRISP theoretical framework and computational model of fixation durations in adult 

scene-viewing (Nuthmann et al., 2010) to infants (Chapter 5); 

• to test specific developmental theories of oculomotor control by applying the CRISP model 

to data from 6-month-old infants. More specifically, I will investigate the extent to which 

fixation durations are influenced by the developmental state of the visuo-motor system and 

by visual and cognitive processing (Chapter 5); 

• to investigate the development of fixation durations and saccadic control during the first 

year of life through a series of longitudinal studies (Chapter 6); 

• to explore the mechanisms underlying the development of fixation durations and saccadic 

control during the first year of life applying the CRISP model to longitudinal data (Chapter 

7). 

The remainder of this introductory chapter reviews the background literature on eye-movements 

from infants and adults as well as previous empirical work and theoretical models investigating 

the mechanisms underlying oculomotor control and fixation durations. This chapter then 

discusses current computational models of visual attention on infants and adults.  

1.3 Vision, visual orienting, and visual attention 

The concept of “attention” has been the focus of vast research. In fact, the number of definitions 

it has acquired over time are multiple and may slightly vary from one domain of study to 

another. For instance, Findlay and Gilchrist (2003) defined it as the preferential processing of 

some items to the detriment of others. Mesulam (1981) presented a functional approach to 

attention where he suggested three general attentional processes: the selection of a target, the 

engagement of attention, and the controls that allow us to maintain and shift attention as 

required. The present thesis will take this functional view of attention.  

Attentional processes can be studied using a variety of methods such as behavioural  

approaches (analysis of eye-movements, analysis of facial expressions, reaction times, 

quantitative aspects of performance on a task, or counting the number of times the subject 

looks away from a central stimuli), physiological measures (heart rate, respiratory sinus 

arrhythmia, adrenocortical activity, or neurotransmitter activity), or neurological methods (ERP 
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studies, analysis of the effects of early cortical damage, or the study of developmental disorders 

of genetic origin). Additionally, since attention is the result of the interaction between a subject 

and its environment, it is essential to incorporate the context in which attention is observed into 

the equation (Ruff & Rothbart, 1996). For instance, it is important to differentiate the attentional 

responses measured in lab settings compared to those measured in naturalistic settings 

(Mesulam, 1981), or the attentional capabilities of a 6-month-old compared to a 12-month-old. 

In the realm of cognitive psychology, the term visual attention is commonly associated with 

visual selectivity (Findlay & Gilchrist, 2003). Selectivity and the processes underlying it are 

crucial in order to manage the vast amount of information and stimulation that is available in the 

environment (Ruff & Rothbart, 1996). Furthermore, attentional selection can be made in two 

separate ways. Overt attention is the term that describes attention resulting from the physical 

movement of the sensory organs towards the source of the attended sensory information. In 

terms of visual attention this involves rotating the eyes, head or torso. On the other hand, adults 

are also able of shifting their attention covertly, without moving their eyes or other sensory 

receptors (Findlay & Gilchrist, 2003; M. H. Johnson, 2011). Even though there are a number of 

measures that can indicate if an infant is attending to a particular object or location (e.g., 

reaching and other motor responses), this thesis will only be concerned with overt shifts of 

attention where visual selectivity involves redirecting the gaze to a new location in the visual 

field, or in other words, with visual orienting and the mechanisms underlying it. 

Visual orienting is the primary method for gathering information from the environment during the 

first year of life. From the moment they are born infants are able to move their eyes in order to 

select the most relevant information from their surroundings for further study and learning. By 

simply analysing infants’ gaze researchers are thus able to learn a great deal about cognitive 

development. In fact, the vast majority of the literature studying mental processes in infancy 

involves measures related to visual attention and selectivity such as habituation, familiarization, 

or preferential looking paradigms. Additionally, the study of visual orienting in infants also allows 

the examination of the effects of brain development on the integration between sensory input 

and motor output (M. H. Johnson, 2011).  

Despite the substantial literature on visual orienting in infants, the mechanisms underlying eye-

movement control are still poorly understood. Surely, most of the literature on the neural basis 
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of saccades comes from neuropsychological and neuroimaging studies of human adults or 

single-cell recordings and lesion studies in non-human primates (for a review see Andersen, 

Batista, Snyder, Buneo, & Cohen, 2000). In this section I will review the relevant literature on 

vision and visual orienting from adults and infants. 

1.3.1 Vision: The oculomotor system 

The repertory of eye-movements that humans are capable of making is relatively small and well 

defined. Interestingly, we share the most consistent pattern of eye-movements -commonly 

referred as the ‘saccade and fixate’ strategy- with a number of other species coming from 

various evolutionary backgrounds such as fish, flies, or birds (Land, 1999). The fovea is the 

small region of high acuity in the eye (with a diameter of 0.3° - 2°), and the location at which 

visual activity is centred (Findlay & Gilchrist, 2003; Land, 2009). The accuracy of vision is more 

degraded the further away from the fovea one moves.  

The angle of eccentricity refers to the angle between the visual axis where the fovea is directed 

and the peripheral location under consideration. Generally, the foveal region in adults is 

considered to have an angle of eccentricity of 1°, parafoveal region goes from 1° to 5°, and 

peripheral vision covers the rest of the visual field (Findlay & Gilchrist, 2003). The most 

important function of peripheral vision is to provide the appropriate information for subsequent 

orienting movements and foveal recognition (Findlay & Gilchrist, 2003). In infants, it has been a 

topic of debate whether the changes in visual abilities are due to limitations in the periphery – 

the structure of the eyes, lens or eye muscles-, or rather changes in the neural structures 

related to vision processing (M. H. Johnson, 2011). Nevertheless, in a study from Banks and 

Shannon (1993) comparing the morphology of neonatal photoreceptors and optics to that of 

adults, it was concluded that the development of the central nervous system pathway is an 

important contributing factor in the development of vision, even though much of the spatial and 

chromatic deficits found in neonates can be explained by optical and receptor immaturities. In 

this subsection I will review the current literature on the oculomotor system, eye-movements 

and oculomotor control in adults and infants. 
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1.3.1.1 Eye physiology, visual acuity and binocularity in adults and infants 

The human eyeball is supported and moved by six muscles: four rectus muscles (lateral, 

medial, superior, and inferior) that rotate the eyeball in the horizontal and vertical planes, and 

the two oblique muscles (superior and inferior) that rotate the eyeball around the visual axis, i.e. 

torsional rotation. These six muscles always work together, which means that any type of eye-

movement needs the action of all the eye muscles and a complex pattern of activation from the 

oculomotor nuclei.  

The specialized foveal region of the retina contains the highest density of photoreceptors 

(cones), besides other visual cells namely bipolar, horizontal, amacrine and ganglion cells. At 

the very centre of the foveal region there is a rod-free region only composed by cones, that has 

a diameter of less than one degree (Hirsch & Curcio, 1989).   

The photoreceptors are responsible for initiating the neural processing of the visual signal, 

sending it through the retina to the ganglion cells. It subsequently travels along the optic nerve 

to the visual cortex, through the lateral geniculate nucleus of the thalamus. Even though in 

primates this is considered to be the primary projection pathway, a number of other pathways -

such as the one that goes to the superior colliculus (a mid-brain region responsible for saccade 

programming)- emerge at the stage of the optic tract.  

Human newborns have poor eyesight which can be attributed to: poor contrast sensitivity –

defined as the minimum luminance required for detecting a visual target– visual acuity –defined 

as the smallest detail that can be detected– and chromatic discrimination –defined as the ability 

to distinguish targets based on their wavelength composition– (Banks & Shannon, 1993). 

Interestingly, the eye suffers a significant growth from birth to adolescence, particularly during 

the first year of life. This growth includes the distance from the cornea to the retina, the pupil, or 

the fovea, which keeps undergoing morphological changes until at least 4 years of age 

(Yuodelis & Hendrickson, 1986). For instance, the diameter of the rod-free zone decreases from 

about 5.4° at birth to 1° at adulthood (Banks & Shannon, 1993; Hirsch & Curcio, 1989).     

Visual acuity does not reach adult-like levels until at least the	
  third year of life (Atkinson, 2000). 

In fact, newborns are believed to have a fixed depth of focus (Salapatek, Bechtold, & Bushnell, 

1976), and in many cases, they even present some	
  degree of astigmatism (Atkinson, 2000). 

However, it is during	
   the first 3 to 4 months that the biggest changes in visual acuity,	
  contrast 
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sensitivity, and focusing ability (accommodation)	
  occur. This means that during the first months 

of life, infants	
  may have problems accommodating as a function of target	
  distance, and hence, 

they may not distinguish objects that are farther away than a certain distance (Salapatek et al., 

1976). 

Most primates, including humans, have a binocular central visual field that allows the integration 

of the information between the two eyes. This integration is thought to take place at the primary 

visual cortex, being the functional and anatomical structures observed in layer 4 important for 

this endeavour (M. H. Johnson, 2011). In infants, it has been argued that binocular vision does 

not develop until the end of the fourth month (Held, 1993), even though evidence for binocularity 

has been reported from around 3 months (for a review see Braddick & Atkinson, 2011). 

1.3.1.2 Classification of eye-movements 

In order to project the light reflected from an object of interest on to the fovea, it is essential to 

move our eyes. While our eyes are being relocated from one point to the next –during a 

saccade- we suffer a combination of blur and active suppression that makes visual perception 

difficult (Matin, 1974; Ross et al., 2001). Thus, it is essential to move our eyes as fast as 

possible, reaching speeds of 700°/sec in adulthood (Carpenter, 1988). It is only during the 

stationary eye-movements between saccades –called fixations- when visual information is 

processed. This is because the process of photoreception is slow, taking about 20 ms for a 

cone to respond to the light changes in the environment (Friedburg, Allen, Mason, & Lamb, 

2004). In this subsection, I will provide a brief account of the repertory of the individual eye-

movements available to humans. 

1.3.1.2.1 The stabilizing mechanisms: Body, head and eye-movements 

Target selection occurs as a consequence of the combination of body, head and eye-

movements. Nevertheless, frequently the selected target or our own body and head are moving 

in space so that for a fixation to be maintained powerful compensatory mechanisms are 

required. Visual stabilization is promoted by two primary systems, which are involuntary and 

automatic: the vesibulo-ocular (VOR) and optikinetic reflexes (OKR). In VOR, head rotation is 

compensated by generating an eye-movement equal and opposite to this rotation. On the other 

hand, in OKR, motion of the world relative to the eye is compensated by moving the eyes in the 

same direction as the external motion (for more details see Carpenter, 1988). The present 



 27 

project will not focus on these mechanisms and assumes that the head and torso are still 

relative to a static display. 

1.3.1.2.2 Saccadic eye-movements 

Saccades are the ballistic eye-movements that we make in order to relocate our gaze from one 

visual target to the next. Even though they can be voluntary, most saccades are performed 

below the level of conscious awareness (Findlay & Gilchrist, 2003).  Further, they can be 

triggered by external events –such as the appearance of a novel stimulus- but also by internal 

instructions. The typical reaction times for saccades -or saccade latencies- that are externally 

triggered range between 150 and 200 ms for adults (Land, 2009). Nevertheless, it is also 

possible to find reaction times ranging from 90 to 130 ms that are triggered by some particular 

attentional events. This type of eye-movements are known as express saccades (Land, 2009; 

see also section 1.3.2.1). 

 Saccade duration mainly depends on the saccadic amplitude (Carpenter, 1988; Hainline, 

Turkel, Abramov, Lemerise, & Harris, 1984), even though there may be other factors -such as 

age, drowsiness, or the use of certain drugs- influencing it (Findlay & Gilchrist, 2003).  

Saccadic suppression is the phenomenon occurring during a saccade where visibility is 

reduced. In adults, it starts around 50 ms before the saccade is initiated and ends around 100 

ms after the saccade has begun. This suppression is most evident on the magnocellular 

pathway (Burr, Morrone, & Ross, 1994) and helps preventing undesired activations as a 

consequence of the image motion generated by the saccade. 

The very short involuntary saccades are known as microsaccades and typically occur during 

prolonged visual fixations. The role of this type of eye-movements has been the focus of 

extensive research, where it has been argued that microsaccades correct displacements in the 

eye position, and relate to the control of binocular fixation disparity and attentional shifts (for a 

review see Rolfs, 2009).   

Infants are able to perform the ‘saccade and fixate’ strategy from their first day of life. 

Nevertheless, the saccadic dynamics do not reach adult-like levels until few months after birth 

(Atkinson, 2000). For instance, 1-month-olds have been reported to perform hypotonic 

saccades, or in other words, saccades that fall short of their targets after certain stimulus 

conditions (Aslin & Salapatek, 1975). Furthermore, the ability to perform a saccade in the 
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presence of distractors or multiple targets, and the latencies of these saccades change 

considerably with age and increase in efficiency rapidly during the first months of life. 

1.3.1.2.3 Fixations 

Fixations are defined as the periods between saccades when the eyes are stable and visual 

encoding occurs. Even though eyes are assumed to remain still during these periods, close 

inspection of the eyes demonstrates how they make continuous miniature movements 

(Ditchburn, 1973). Drifts are the slow motion movements that occur between microsaccades, 

while tremor is the small oscillation superimposed on drifts (Rolfs, 2009). 

Measuring and reporting fixation durations is common practice in experimental psychology, and 

can be used as an index of online cognitive processing demands (e.g., Martinez-Conde, 

Macknik, & Hubel, 2004; Martinez-Conde, 2005; Nuthmann et al., 2010; Smith & Henderson, 

2009; Tatler, Gilchrist, & Land, 2005). There is, in fact, a growing body of research that 

associates fixation durations with cognitive processes such as attention, information processing, 

memory and anticipation (Castelhano & Henderson, 2008; Kowler, 2011; Malcolm & 

Henderson, 2010; Rayner, Smith, Malcolm, & Henderson, 2009; Richardson, Dale, & Spivey, 

2007). The study of fixation durations is becoming increasingly important when investigating 

populations unable to follow the experimenter’s instructions such as infants (Bronson, 1994; 

Colombo & Cheatham, 2006; Frick, Colombo, & Saxon, 1999; Harris, Hainline, Abramov, 

Lemerise, & Camenzuli, 1988; Hunnius & Geuze, 2004b; Hunter & Richards, 2011; Richards & 

Holley, 1999) or other primates (Berg, Boehnke, Marino, Munoz, & Itti, 2009; Kano & 

Tomonaga, 2011a, 2011b). The past literature on fixations on human adults and infants will be 

reviewed in the sections 1.4 and 1.5 respectively.  

1.3.1.2.4 Smooth pursuit eye-movements 

We perform smooth pursuit eye-movements when tracking a small object moving relative to a 

static visual field, while OKR operates on large areas of the image (Land, 2009). Smooth pursuit 

is possible when the velocity of the object is under a threshold (15°/sec for adults), in which 

case the eyes perform smooth movements in order to keep the object of interest at the centre of 

the fovea. In case the velocity of the tracked object exceeds the threshold, the eyes will also 

perform saccades in order to compensate the object’s motion (Land, 2009). 
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Smooth pursuit eye-movements develop during the first 6 months of life (Aslin, 1981; Richards 

& Holley, 1999). Infants younger than 1 month present a very poor tracking of visual stimuli, 

only possible at relatively slow stimulus speeds, that involves saccadic eye-movements rather 

than smooth pursuit eye-movements (e.g., Aslin, 1981). On the other hand, OKN eye-

movements are present from birth, thus it can be argued that at least the kinetic mechanisms of 

smooth pursuit are reasonably mature in neonates (Atkinson, 2000). The present project will not 

focus on this type of eye-movements. For this reason the dynamic stimuli used in the 

experiments from Chapters 4 and 6 avoided elements eliciting this type of eye-movement.  

1.3.1.2.5 Vergence eye-movements 

The function of vergence eye-movements is to adjust the angle between the eyes to different 

distances in order to ensure that the image of an attended object is projected on to the 

corresponding parts of the left and right retina. These movements are smooth and typically 

slow, with a latency of about 160 ms in adults (Land, 2009). In infants, vergence eye-

movements do not develop until 10 to 16 weeks of age (Aslin, 1993). The present project will 

not be focused on this type of eye-movement. 

1.3.1.3 Mechanisms underlying saccadic control in adults 

The oculomotor system is thought to work at three main levels: the cerebral cortex, responsible 

for voluntary eye-movement control; midbrain structures such as the superior colliculus, 

responsible for saccade generation and input-driven exogenous eye-movements; and the nuclei 

of the brain stem, responsible for connecting the motor output that controls eye-muscles 

(Carpenter, 1988).  

The visual system is composed of different types of nerve cells. In the primate visual system, 

magnocellular (M) and parvocellular (P) cells separate into two distinct layers at the level of the 

lateral geniculate nucleus, originating magnocellular and parvocellolar parallel systems (Schiller, 

Logothetis, & Charles, 1991). Nevertheless, this separation of cells is also found in the retina, 

even though there is evidence suggesting that both streams converge in certain cortical areas 

(Ferrera, Nealey, & Maunsell, 1992).  

Ungerleider and Mishkin (1982) proposed a simplified account where two primary pathways 

were defined: The dorsal stream, which goes from the occipital to parietal cortex, and the 

ventral stream that runs from occipital to temporal cortex. Based on data from lesion studies, 
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they suggested that the ventral stream is responsible for visual identification and recognition of 

objects (what), while the dorsal stream takes care of visuospatial awareness or the localization 

of those objects (where). Even though it has been suggested that the M and P pathways map 

onto these cortical routes (Livingstone & Hubel, 1987), later research has probed these claims 

controversial (Merigan & Maunsell, 1993). 

Besides the main pathways discussed above, there are a number of other physiological 

pathways, such as the superior colliculus pathway, leaving the retina and projecting to different 

brain regions. Even though traditionally these secondary subcortical visual pathways have been 

thought to be responsible for ‘reflex eye-movements’, recent findings have demonstrated that in 

fact the fastest eye-movements make use of cortical pathways (Miles, 1998).  

Physiological pathways involved in saccadic eye-movements have two main characteristics: 

First, the stimulation of the area will produce orienting movements of the eyes and second, cells 

in the area will discharge prior to the production of a saccadic eye-movement (Schall, 1991). 

Figure 1-1 displays a schematic diagram with the main areas involved in saccadic eye-

movement generation (from Schall, 1995).  

 

Figure 1-1 Oculomotor output pathways involved in generating saccadic eye-movements. V1, 
visual cortical area; LIP, lateral intra parietal area; FEF, frontal eye fields; SEF, supplementary 
eye fileds; IML, internal medullary lamina; LGNd, dorsal lateral geniculate nucleus.  From 
(Schall, 1995). 
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Saccades can be elicited by electrical stimulation on cortical areas such as the lateral 

intraparietal area (LIP) in the posterior parietal cortex and the frontal eye fields (FEF) of the pre-

motor frontal cortex. Even though lesion studies in primates have suggested that no area is 

essential for saccadic generation (Schiller, 1998), the removal of the superior colliculus and the 

frontal eye fields supresses the ability to generate saccades (Schiller, 1985) . Other studies 

have also demonstrated that lesions to both the superior colliculus and the occipital cortex (V1) 

elicit the same kind of difficulties (Mohler & Wurtz, 1977). 

1.3.1.4 Mechanisms underlying saccadic control in infants: The 

development of visual pathways 

Even though the technical advances in the last decades -such as PET or fMRI techniques- have 

allowed the direct investigation of cortical activity, much of what we know about human saccadic 

system comes from patients with damage to cortical areas of the brain, or lesion studies on 

animals (Findlay & Gilchrist, 2003). Nevertheless, an essential source of information comes 

from developmental cognitive neuroscience. It is assumed that certain visual areas and 

pathways develop and mature at different developmental stages due to an interaction between 

genetically prewired programming and environmentally dependent learning (Atkinson, 2000; M. 

H. Johnson, 2011). The emergence of parallel behavioural  changes is then traced to the 

development of these neural structures. In the current subsection I will review the 

neuroanatomical models on the development of visual orienting and the literature on the 

mechanisms underlying saccadic control in infants. 

1.3.1.4.1 Bronson’s model 

Few neurophysiological models have attempted to explain the substantial development that the 

visuo-motor system experiences during the first postnatal months. Bronson's (1974) account, 

which was supported by a number of electrophysiological, neuroanatomical and behavioural 

studies, claimed that eye-movement control is primarily driven through the subcortical 

retinotectal visual pathway, and that it is only from 2 to 3 months of postnatal age when the 

cortical primary visual pathway starts playing a role in infant visually guided behaviour. 

Nevertheless, later research has demonstrated that there is some -though limited- cortical 

activity in newborn infants. In addition, it seems more likely that the transition from subcortical to 

cortical activity occurs gradually rather than in a single developmental stage (M. H. Johnson, 

2011). Bronson’s view was later extended by other researchers in order to account for new 
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evidence from neurophysiological research on monkeys and neuropsychological research with 

human adults revealing that there are multiple pathways involved in oculomotor control and 

attention shifts in the primate brain (Atkinson, 2000; M. H. Johnson, 1990, 2011).  

1.3.1.4.2 Johnson’s model 

M. H. Johnson (1990, 2011) presented a model grounded on Schiller’s neuroanatomical model 

of saccadic control for primates (for more details see Schiller, 1985, 1998). Johnson proposed a 

developmental sequence for the onset for the different visual pathways traced to the onset of 

visual orienting components, a perspective also known as the maturational view to the 

development of human brain function. In other words, he proposed that the characteristics of 

visual orienting at a particular age are determined by which of the pathways are functional, and 

that this directly depends on the maturational state of the primary visual cortex. 

 

Figure 1-2 This diagram shows some of the primary neural pathways and structures involved in 
visual orienting and attention. BS, brain stem; LGN, lateral geniculate nucleus; V1, V2 and V4, 
visual cortical areas; MT, middle temporal area; SC, superior colliculus; SN, substantia nigra; 
BG, basal ganglia; FEF, frontal eye fields. From (M. H. Johnson, 2011) 

 

Johnson discussed four brain pathways (see Figure 1-2) previously proposed by Schiller (1985): 

(1) The pathway from the eye to the superior colliculus, involved in the generation of rapid input-

driven eye-movements; (2) a cortical pathway that goes to the superior colliculus from the 
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primary visual cortex (V1) through the middle temporal area (MT), thought to be involved in 

motion detection and the smooth tracking of moving stimuli; (3) a cortical pathway that goes 

from V1 to other visual areas through the frontal eye fields (FEF), important for more complex 

forms of eye-movement planning such as anticipatory saccades or learning sequences of 

scanning patterns; and (4) a diffuse cortical projection to the superior colliculus via the basal 

ganglia and substantia nigra, thought to be involved in the regulation of the colliculus.  

Johnson (1990) argued for the following developmental sequence of onset: First (1), followed by 

(4), followed by (3), and finally (2). These predictions were initially made based on previous 

literature on developmental neuroanatomy and then backed with behavioural  experiments.  

According to this account newborns’ eye-movements are mainly driven by the subcortical 

pathway involving the superior colliculus, thought to be responsible for fast and input driven 

exogenous saccades. Evidence for this are for instance the studies on smooth pursuit in young 

infants, showing that newborns track moving objects by performing a series of short saccadic 

eye-movements that tend to land behind the movement of the stimulus (Aslin, 1981). 

Furthermore, newborn infants orient toward stimuli placed on the temporal visual field rather 

than on the nasal visual field (the half of the visual field of each eye closer to the nose; e.g., 

Lewis & Maurer, 1992). This behavioural  evidence fits with subcortical control of orienting (M. 

H. Johnson, 1990, 2011). 

At 1 month postnatal age the inhibitory pathway to the superior colliculus from the primary visual 

cortex that goes through the substantia nigra and basal ganglia prevents infants from 

consistently moving their eyes after a central stimulus is presented. In other words, as a 

consequence of this inhibitory mechanism infants find great difficulties disengaging their gaze 

from a stimulus in order to make an eye-movement to the next location, leading to very long 

fixation durations that could even last several minutes. This phenomenon is commonly known 

as “sticky fixation” or “obligatory attention” and has been frequently reported in the literature 

(e.g., Atkinson, 2000; Farroni, Simion, Umiltà, & Barba, 1999; Frick et al., 1999; M. H. Johnson, 

Posner, & Rothbart, 1991; M. H. Johnson, 2011).  

From 2 months of age “sticky fixation” begins to gradually diminish as a result of increasing 

cortical control over saccades. In addition, at this age infants start to present periods of smooth 

visual tracking, and become more sensitive to stimuli placed at the nasal visual field (Aslin, 
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1981). Johnson (1990, 2011) proposed that the appearance of this behaviour  concurs with the 

functioning of the cortical pathway involving MT.    

It is not until infants are 4 months old that the premotor areas of the frontal lobes, which contain 

the frontal eye fields (FEF), are mature enough to be able to systematically release the superior 

colliculus from the inhibition produced by the substantia nigra. As a result, “sticky fixation” is 

thought to fade by this age, even though some studies have suggested that it may last longer 

when looking at dynamic stimuli (Bronson, 1990; Hunnius & Geuze, 2004a). In addition, the 

development of the FEF pathway increases the infant’s ability to make anticipatory saccades 

(even when tracking a moving stimulus) and to learn sequences of looking patterns.  

1.3.2 Visual orienting and visual attention  

Visual orienting involves moving the eyes, head and body in response to, or in anticipation of, a 

new sensory stimulus (M. H. Johnson, 2011).  As it was described before, it is the fovea the 

region of the eye that presents the highest visual acuity, thus the orienting process implicates 

moving the body, head and eyes in order to locate the focus of interest in the centre of the 

fovea. In adults, for objects located at visual eccentricities of less than 20°, orienting can be 

achieved by simply moving our eyes. This region is known as the eye field. The head field 

covers areas beyond eccentricities of 20° but lower than 90°. In these cases orienting will also 

involve a head movement. For covering areas outside the head and eye fields, body 

movements are also necessary (Sanders, 1963).  

This thesis will only consider the orienting responses to objects in the eye field, or in other 

words, the orienting responses that exclusively involve saccadic eye-movements. The present 

section reviews the current literature on target-elicited saccade forms. This type of saccades 

occur when a target makes a sudden appearance in the parafoveal or peripheral regions of the 

visual fields generating a voluntary or automatic response (Findlay & Gilchrist, 2003).     

1.3.2.1 Factors affecting the latency of orienting saccades 

An extensive number of studies have investigated the orienting responses performed with the 

eyes alone. An essential way to measure the orienting response in target-elicited saccade 

paradigms is to evaluate reaction times, or in other words, the time lapses occurring between 

the appearance of the target and the moment when the eyes start to move. This periods are 

also known as latencies and represent the cumulative time taken by the brain processes that 



 35 

enable orienting (Findlay & Gilchrist, 2003). Consequently, saccade latencies can help 

understanding the brain processes underlying orienting responses.  

1.3.2.1.1 Measuring reaction times: Gap-overlap paradigm 

Latencies for target-elicited saccades can be studied by analysing the reaction times when a 

target that is being followed makes an unpredictable step movement. Saslow (1967) realised 

that the time lapse between the disappearance of the currently fixated stimulus and the 

appearance of the visual target affected saccade latencies. In order to investigate this effect, he 

designed an experiment where these two events were separated by a temporal offset: during 

the gap trials, the peripheral target appeared preceded by a gap period (e.g., 200 ms) after the 

central target disappeared. On the other hand, during the overlap trials the central stimulus did 

not disappear, or disappeared only after a predefined time lapse during which the peripheral 

target was also present (see Figure 1-3).  

 

Figure 1-3 Gap and overlap trials from the gap-overlap paradigm. In the gap condition, a 
peripheral target appears after the temporal gap that follows the central target’s disappearance. 
In the overlap condition, when the peripheral target appears the central target stays visible.   

 

He found that latencies for the gap condition were progressively shorter as the temporal offset 

increased, while for the overlap condition they become longer as the overlap time lapse 

increased. This effect is known as the gap effect and has been reproduced in a multitude of 

experiments presenting different variants for this paradigm (Atkinson, Hood, Wattam-Bell, & 

Braddick, 1992; Blaga & Colombo, 2006; Butcher, Kalverboer, & Geuze, 2000; Domsch, 

Lohaus, & Thomas, 2010; Elsabbagh et al., 2009, 2013; Farroni et al., 1999; Hood & Atkinson, 

1990, 1993; M. H. Johnson et al., 1991; Kano, Hirata, Call, & Tomonaga, 2011; Kano & 

Tomonaga, 2011b; Kikuchi et al., 2011; Kopecz, 1995; Reuter-Lorenz, Hughes, & Fendrich, 

1991). 
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It has been argued that the gap effect is the result of two general preparatory components: A 

general alerting component (present in any warning signal) and a disengagement effect (e.g., 

Reuter-Lorenz, Oonk, Barnes, & Hughes, 1995). In fact, the gap-overlap paradigm has been 

widely used in order to investigate the disengagement abilities and facilitation in young infants 

(Domsch et al., 2010; Farroni et al., 1999; M. H. Johnson et al., 1991). For more details about 

the gap-overlap paradigm go to Chapter 4.  

1.3.2.1.2 Disengaging visual attention 

The term “disengagement” has been defined as the difficulty generating an eye-movement after 

a fixation (M. H. Johnson, 1990). As it was discussed earlier, during the first months of life 

infants can present difficulties disengaging their gaze from a stimulus in order to move their 

eyes to another location (“sticky fixation”), which is manifested through longer reaction times 

and fixation durations. Thus, disengagement difficulties in infancy have been typically 

associated with a relative immaturity of the areas in the brain involved in eye-movement 

generation (e.g., the cortical pathway through the frontal eye fields, FEF; Butcher, Kalverboer, & 

Geuze, 2000; Matsuzawa & Shimojo, 1997), especially during the first 6 months of life when the 

neurological structures involved are thought to mature rapidly and get close to their adult form 

(Rothbart, Posner, & Rosicky, 1994). Nevertheless, disengagement can simply be the result of 

interrupting and shifting the current focal point (Kikuchi et al., 2011).   

The ability to disengage from a central target to shift the gaze to a peripheral one has been 

traditionally evaluated using the gap-overlap paradigm (Atkinson et al., 1992; Butcher et al., 

2000; Elsabbagh et al., 2009; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; M. H. Johnson 

et al., 1991). As it was described earlier, reaction times are usually faster on gap trials as 

compared to overlap trials. The paradigm sometimes includes baseline trials, where the 

peripheral target appears immediately after the central target disappears (Elsabbagh et al., 

2009; Wass, Porayska-Pomsta, & Johnson, 2011). In these cases disengagement latencies can 

be calculated by subtracting the baseline latencies from the overlap latencies.  

Besides the developmental state of the visual system, disengagement latencies can also be 

affected by the visual characteristics of the central stimulus. Kikuchi and colleagues (2011) 

investigated the disengagement from faces and objects in children aged 9 to 17 years. They 

found larger disengagement latencies and saccade-related event-related potentials (ERPs) 
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when children disengaged from faces, suggesting that the encoding and processing of the 

foveated stimulus plays a role in the ability to shift the gaze from a central target. For more 

details about disengagement go to Chapter 4. 

1.3.2.1.3 The properties of the central stimulus and the visual target 

Saccade latencies can be affected by the visual properties of the target, or even by the target 

location (Findlay & Gilchrist, 2003). Few studies have reported shorter latencies when orienting 

towards a bright target compared to a blurred one (e.g., Kalesnykas & Hallett, 1994). For 

instance, Reuter-Lorenz and colleagues (1991) investigated the effect of  the target luminance 

in saccadic latencies in the gap-overlap paradigm, and found a reduction in saccadic reaction 

times as a function of the target luminance.  

1.3.2.1.4 Express and anticipatory saccades                                                                                                                                                                                                                                                                                                                                                                                       

Fischer and Boch (1983) trained monkeys in the gap-overlap paradigm and measured saccadic 

latencies. Results showed a bimodal distribution of saccadic latencies where apart from the 

expected population of reaction times there was also a sub-population of saccades that 

presented very short latencies (80- 100 ms). Such short saccadic latencies are known as 

express saccades, and have also been found in humans (Fischer & Ramsperger, 1984). 

However, in human adults the latencies were slightly larger (100- 130 ms) and the bimodality in 

reaction time distributions was not that well defined.  

The properties and function of express saccades have been a focus of interest in the past 

years. Fischer and Weber (1993) argued that express saccades are visually guided by nature, 

but not anticipatory or predictive. On the other hand, anticipatory saccades were identified and 

distinguished from express saccades when applying a variety of paradigms such as the gap-

overlap or the anti-saccade task. For instance, in the gap-overlap paradigm anticipatory 

saccades were defined as those with reactions times below 85-90 ms in gap trials in adult 

participants.   

1.3.2.1.5 Variability in latencies 

Saccades performed repeatedly from a location A to a location B will never have exactly the 

same latency (Smeets & Hooge, 2003). In fact, the cumulative distributions of reaction times are 

positively skewed approximating a Gaussian distribution (Carpenter & Williams, 1995). The 

sources for this variability have been explored in a few studies (e.g., Harris et al., 1988; Smeets 
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& Hooge, 2003) where it has been argued that besides a number of factors related to the 

variability in peak velocity and amplitude of saccades, the main causes for the variability in 

reaction times are the variations in the neural processing.   

This phenomenon has also been approached from a computational modelling perspective 

(Carpenter & Williams, 1995): The cumulative distributions of reaction times can be explained 

with the LATER model (linear approach to threshold with ergodic rate), which includes a 

generative mechanism where a hypothetical variable increases at a linear rate until a given 

threshold is reached. The saccade will then be initiated being the time taken to reach the 

threshold the saccade latency. The model generates a distribution able to simulate typical 

reaction time distributions.  

Interestingly, the variability in fixation durations during a free viewing task is much higher and 

unpredictable than the variability in reaction times gathered from oculomotor paradigms such as 

the gap-overlap (Harris et al., 1988). This can be due to the changes in the amount of 

processing demanded by the different features of the stimulus. Furthermore, it has been 

reported that infant saccades are more variable than adult saccades (Hainline et al., 1984), 

probably as a result of the underdevelopment of the neural structures related to visual and 

cognitive processing during the first months of life. 

1.3.2.2 Saccade programming 

The programming of a target-elicited saccade involves a series of mechanisms such as those 

related to target selection, target location, or inhibitory control. For instance, when moving the 

eyes to a single target at eccentricities below 10°, the most common pattern is the programming 

of a single saccade that goes directly to the target. However, occasionally the saccade will fall 

close to the target and a subsequent corrective saccade will be performed in order to correct the 

initial error (e.g., Henson, 1979). When there is more than one possible target, inhibitory 

mechanisms play an essential role in the programming of a saccade. This subsection will review 

some of the relevant literature on saccade programming and the paradigms that have been 

traditionally used for its study.       

1.3.2.2.1 Labile and non-labile stage programming: The double-step paradigm 

In the double-step paradigm participants are instructed to fixate two consecutive targets, in 

order to investigate the effects of the time lapse between the second target step and the onset 
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of the saccade. Typically the targets appear at varying directions and time intervals with the 

view to avoid the observer predicting the stimulus properties. Some designs also include one-

step trials where a single target is presented.  

This paradigm has been widely employed in a variety of contexts (Becker & Jurgens, 1979; 

Gilmore & Johnson, 1997; Heide, Blankenburg, Zimmermann, & Kömpf, 1995; Senju et al., 

2011; Walker & McSorley, 2006). In research with adults, it has been typically applied in studies 

investigating saccade programming.  

Double-step trials can have three different outcomes (see Figure 1-4): (1) the observer performs 

two consecutive saccades to the first and the second target. This happens when the time lapse 

between the first and the second target’s appearances is long enough so that the saccade to 

the first target is already programmed when the second target appears. (2) The observer 

performs a single saccade directed to the second target. This occurs when the second target 

appears before the programming to the first target is completed. In these cases, the observer 

may still be able to cancel the saccade to the first target and start a new saccade program 

directed to the second one. (3) The observer makes a saccade to a location intermediate 

between the two target locations, followed by a second saccade directed to the second target.  

 

 

Figure 1-4 The picture above shows the three different possible outcomes from a double-step 
trial. 

 

Becker and Jurgens (1979) demonstrated that the most important factor to determine the 

outcome of a trial was the time lapse (D) between the second target step and the onset of the 
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response. In fact, the delay D also depends on two variables: D = R1 – τ. While R1 represents 

the reaction time, τ factors the interstep time between the first and the second target’s 

appearances, and is the only variable under the control of the experimenter. For large τ values 

the observer tended to perform two consecutive saccades to the first and the second target, 

while for small τ values, one saccade to the second target was executed. Interestingly, for a 

certain range of τ values the first saccade landed in a location between the first and the second 

target, showing a smooth transition between the two locations. 

Based on these findings, Becker and Jurgens (1979) proposed a two stage model of saccade 

generation: First, during the decision stage, the eyes move and their next location is 

determined; and second, the saccadic amplitude is calculated as a time average of the fixation 

error. Additionally, their results suggested that the preparatory processes of two different 

saccades may overlap in time.  

Parallel saccade programming is thought to occur in two stages: an initial labile stage during 

which the saccade is subject to cancellation, and a subsequent non-labile stage in which the 

program cannot be cancelled any longer. In other words, if the program of a new saccade starts 

while another saccadic program is on its labile stage, the first program is cancelled and the 

second saccade is executed, resulting in a longer fixation. On the other hand, if the saccadic 

program begins during the non-labile stage of the previous saccade programming, both 

saccades are executed one after another. Even though parallel programming of saccades has 

not been specifically investigated in infants, a few studies have examined saccade suppression 

by applying paradigms such as the anti-saccade task (M. H. Johnson et al., 1991; M. H. 

Johnson, 1995b; Nakagawa & Sukigara, 2007)).  

In infant literature, the double-step paradigm has been mainly used to identify the shift from 

retinotopic to spatiotopic coordinate systems (e.g., Gilmore & Johnson, 1997; Kaufman, 

Gilmore, & Johnson, 2006; Senju et al., 2011). For instance, Gilmore and Johnson (1997) 

applied the double-step paradigm to study the nature of the spatial representations that underlie 

simple visually guided actions in 3- and 7-month-old infants. They found that while 7-month-olds 

performed adult-like body-centred saccades, the younger group programmed the next saccade 

based on the target’s retinotopic location without incorporating the effects of displacements 

originated by previous saccades. Based on these results Gilmore and Johnson theorized that 
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retinotopic representations are the most primitive ones and consequently develop first. 

Additionally, they argued that body-centred or spatiotopic representations emerge during the 

first months of life probably through experience. For more details about the double-step 

paradigm and saccade cancellation in infants go to Chapters 4 and 5.  

1.3.2.2.2 Inhibitory control: The anti-saccade paradigm 

A fundamental mechanism of visual orienting is the ability to inhibit the responses to distractors 

or events in the environment with no immediate relevance. This ability has been investigated in 

a number of studies employing a variety of tasks, such as the anti-saccade paradigm. 

In the anti-saccade paradigm the subject is instructed to look to a position located in the 

opposite direction of the visual target being displayed. For this to happen, the subject needs to 

suppress or inhibit the natural tendency to make an orienting saccade to the target (Guitton, 

Buchtel, & Douglas, 1985). Thus, this task also serves to investigate the interaction of reflex and 

voluntary control of saccadic eye-movements. 

Adult participants tend to increase in efficiency with training and reduce the number of 

involuntary saccades to the target –called prosaccades– the more trials they perform 

(Evdokimidis et al., 2002). In addition, studies have shown that patients with frontal lobe 

damage have difficulties suppressing prosaccades and making volitional eye-movements 

(Walker, Husain, Hodgson, Harrison, & Kennard, 1998). This suggests that antisaccades 

require the frontal system to send a signal to the superior colliculus in order to inhibit the natural 

reflexive saccade before the antisaccade is programmed. Nonetheless, some studies have 

proposed that both antisaccades and prosaccades are programmed in parallel (Mokler & 

Fischer, 1999). Likewise, Walker and McSorley (2006) suggested that endogenous (“voluntary”) 

and stimulus-elicited (“reflexive”) saccades can also be programmed in parallel on a common 

motor map. 

Johnson (1995) developed a new version of the anti-saccade task for use with infants, in order 

to investigate the ability of 4-month-olds to inhibit automatic saccades. Evidently, infants do not 

respond to verbal instructions; thus, they were encouraged to look in the opposite direction of 

the cue by making the target stimulus visually more attractive than the first. After a number of 

training trials, the infants that are able to suppress saccades may start to inhibit their tendency 

to make a saccade to the cue (first stimulus) and program a saccade directed to the more 
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attractive second stimulus. Johnson found that 4-month-old infants were already able to inhibit 

saccades to a peripheral stimulus, implying maturation of the frontal eye fields (FEF) by this 

age.  

1.4 Fixations in scene perception in adults 

Gaze control in scene perception has been typically investigated through the study of two main 

aspects: the location where fixations land (fixation position or location) and the time-lapse 

during which the eyes remain still at a given location (fixation duration).  

When analysing eye-movements, an essential question that needs to be addressed is whether 

gaze is driven by the visual features of the external world (exogenous or bottom-up factors) or 

by the viewer’s internal thoughts or mechanisms (endogenous or top-down factors). Bottom-up 

accounts claim that eye-movements are guided by the properties of the visual input on the 

retina, and assume that oculomotor control ignores influences from higher cognitive processes 

and performs rather reflex-like eye-movements. Salience-based accounts of eye-movement 

control (reviewed later in this section) are based on this concept. On the other hand, top-down 

accounts assume that eye-movement control is driven by high level cognitive processes such 

as the viewing task or personal preferences (Land, 2009). Some researchers have proposed 

mixed control theories where eye-movements are driven by a combination of top-down and 

bottom-up factors (Connor, Egeth, & Yantis, 2004; Ogawa & Komatsu, 2004). Nevertheless, the 

extent to which each of these elements influence gaze control in certain settings is still a matter 

of debate (Land, 2009). In the following subsections I will review the current literature on gaze 

control in scene perception in human adults and show how top-down and bottom-up factors can 

influence both fixation locations and fixation durations.  

1.4.1 Fixation locations  

Much of the earliest investigations on saccades and fixations were concerned about the 

sequences or patterns of eye-movements and their role. For instance, Stratton (1902) 

investigated the sequence of eye-movements when viewing simple symmetrical shapes, finding 

asymmetrical patterns of eye-movements when viewing such shapes. In an acclaimed study 

where observers had to look at pictorial material, Buswell (1935), found that besides the huge 

individual differences in all the measures, eye fixations concentrated in particular areas of a 

picture, such as the human figures. Furthermore, he also reported different patterns of eye-



 43 

movements when attending to different instructions. Later on, Yarbus (1967) extended 

Buswell’s work in a series of well-known studies. He gave observers different viewing tasks and 

investigated the scanning sequences they performed when viewing the same pictures. 

Interestingly, Yarbus found that scanning patterns were particularly sensitive to the mental task 

of the observer. 

Much of the pioneering work from Buswell and Yarbus highlighted many aspects of eye-

movement research –such as the influence of top-down and bottom-up factors in eye-

movement control- that still remain the subject of contemporary research and hence form the 

basis for the studies described in this section. 

1.4.1.1 Scanpaths 

The study of sequences or patterns of eye-movements still awakens considerable interest in 

vision researchers. Some researchers have argued that particular eye-movement sequences 

could be associated with particular visual patterns (e.g., Noton & Stark, 1971). For instance, 

Yarbus (1967) investigated individual differences in scanpaths by analysing the sequences of 

fixations made by the same subject that was tested looking at the same picture on four different 

occasions. Interestingly, even though the scan patters were very similar –showing fixation 

clusters within the same key areas such as human faces-, they were still not identical. In 

another study, Yarbus tested different observers viewing the same picture, and noticed that 

while the differences in fixation sequences varied more from one participant to another, they still 

followed a similar pattern. Nevertheless, even though to an extent it is possible to find certain 

regularities in the patterns of eye scanning, this claim may not always be true (Mannan, 

Ruddock, & Wooding, 1997).  

As a result of the research investigating scanpaths researchers developed some techniques to 

capture statistical regularities in the pattern of eye scanning have been developed (Ellis & Stark, 

1986). For instance, in a Markov process, the properties of the immediate preceding saccade 

constraint the probabilities of the one currently being programmed (Findlay & Gilchrist, 2003).      

1.4.1.2 Bottom-up control: Salience-based accounts of eye-movement 

control 

 The salient features of a scene are those that stand out and attract the attention of the viewer. 

Typically, an object or a part of a scene will be considered salient when it is bright, colourful, 
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contrasty, detail-containing, flashing, moving, or has other visual features that differentiate it 

from the rest of the scene (Land, 2009). 

Saliency has been widely studied through computational modelling approaches, where the pre-

attentive features of a scene region that contribute to its salience were computationally 

quantified and compared with empirical data (Borji & Itti, 2013; Itti & Koch, 2001; see the section 

1.6.1). Nevertheless, researchers have accepted that saliency is not the only factor that 

exclusively drives eye-movement control (e.g., Findlay & Gilchrist, 2003; Itti & Koch, 2001). In 

fact, a number of studies found that the empirical data containing fixation locations did not 

always coincide with the “hot spots” from a salience map (e.g., Parkhurst, Law, & Niebur, 2002). 

These findings suggest that even though saliency can still be a powerful index for predicting 

input-driven exogenous eye-movements there are still other higher level factors that can greatly 

influence oculomotor control. 

1.4.1.3 Top-down control: The influence of cognitive processes in eye-

movement control 

The participants from the studies described in the previous subsection were not instructed to 

perform any viewing task while they watched the experimental stimuli. During a “free viewing” 

task it is assumed that the viewer is not applying any specific visual strategy that involves higher 

level cognitive processes (endogenous or top-down factors). However, it seems unlikely that the 

viewer can “switch off” their mind during the task and perform eye-movements free of any 

cognitive influence. In fact, the lack of instructions may just give them the freedom to select their 

own visual strategy. 

As it was introduced earlier, Buswell (1935) and especially Yarbus (1967) focused much of their 

research on investigating the influence of top-down control in gaze allocation. They found that 

eye-movement control is not only influenced by the visual properties of the image, but also by 

top-down instructions from executive regions of the brain. More recent research have 

investigated the differences in eye-movement patterns between a free-viewing task and other 

tasks such as visual search (e.g., Henderson, Brockmole, Castelhano, & Mack, 2007; 

Underwood & Foulsham, 2006). These studies confirmed that while saliency models have some 

ability to predict eye-movement behaviour in a free-viewing task, they cannot predict the 

particularities of eye-movements under a visual strategy with the same ease.   
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Apart from the viewing task, there are other factors that can influence eye-movement control 

such as the scene context. A number of studies have shown the effect of the scene semantics 

(e.g., informative vs. non-informative objects, congruent vs. incongruent objects) in gaze 

allocation (e.g., Henderson et al., 1999; Loftus & Mackworth, 1978; Võ & Henderson, 2009). For 

instance, in a well-known study by Loftus and Mackworth (1978) it was reported that subjects 

fixated earlier, more often and with longer durations when there was an incongruent object in 

the scene (e.g., an octopus in a farm). These findings indicate that the scene is the responsible 

of providing the context for the objects on it and thus can be regarded as the schema that 

implements the framework in which objects are viewed. 

In sum, these findings suggest that gaze allocation is driven by both bottom-up and top-down 

control. However, the extent to which each factor influences eye-movements is still a subject 

that requires further investigation.  

1.4.2 Fixation durations  

Whilst most past research on eye-movements has been focused on where fixations land (e.g., 

Buswell, 1935; Itti & Koch, 2001; Loftus & Mackworth, 1978), there is a growing body of 

research investigating the durations of those fixations. Fixation durations have been associated 

with cognitive processes such as attention, information processing, memory and anticipation 

(Castelhano & Henderson, 2008; Kowler, 2011; Malcolm & Henderson, 2010; Rayner et al., 

2009; Richardson et al., 2007). While fixations may not be the only oculomotor events of 

interest to researchers measuring eye-movements (e.g., researchers investigating attentional 

shifts may be interested in raw-representations of saccadic or smooth pursuit trajectories), the 

majority of eye-movement research assumes that gaze allocation can be equated to visual 

encoding of high-spatial frequency foveal information and for this to happen the eyes need to be 

stable in a fixation (Rayner, 1998). 

Reading research in particular, has paid very special attention to the relationship between 

fixation durations and visual and cognitive processing revealing how fixation durations can be 

affected by low-level non-linguistic factors such as word length, as well as lexical, syntactic or 

discourse factors (Rayner, 1998). This relationship is also evident in the scene perception 

literature, even though the research carried out in this area has not been as extensive. Once 

again Buswell (1935) was the first making detailed measurements of fixation durations during 
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picture scanning. He found that fixation durations tended to be shorter at the beginning of the 

presentation, and increased with higher exposure. This finding has been replicated several 

times. For instance Antes (1974) reported a mean fixation duration of 215 ms at the beginning 

of the exposure that after few seconds increased to 310 ms. According to Buswell’s 

interpretation, viewers start looking at the most relevant areas of an image to subsequently 

analyse the details of localized regions. This view was later revised by Yarbus (1967), who 

claimed that the “additional time spent on perception is not used to examine the secondary 

elements, but to re-examine the most important elements”. 

Generally, when viewing pictures fixation durations form a positively skewed distribution with a 

mode at 230 ms, a mean of 330 ms, and fixation durations that go from 50 ms to 1000 ms 

approximately (Henderson & Hollingworth, 1999). As fixation locations, fixation durations can 

also be affected by both bottom-up and top-down control. For instance, a number of studies 

have shown that fixation durations can be affected by the visual characteristics of the stimulus 

such as luminance (Henderson et al., 2013; Loftus, 1985), or clutter (Henderson, Chanceaux, & 

Smith, 2009). In a recent study Henderson and colleagues (2013) applied a novel degradation 

gaze-contingent paradigm where the scenes were reduced in luminance only during saccades 

ending in critical fixations. Results demonstrated that fixation durations were at least partially 

under the direct influence of the point currently being fixated or under bottom-up control. All 

these findings validate the use of fixation durations as an index of online cognitive processing 

demands. 

On the other hand, some other studies have highlighted the influence the viewing task (such as 

search or memorization) or personal preferences can have in fixation durations (Rayner, 1998; 

Yarbus, 1967). As it was reviewed earlier, while some of the first studies were focused on how 

viewing task affects gaze location (e.g. Buswell, 1935), recent articles have also pointed out that 

fixation durations are generally shorter during visual search compared to memorization (e.g., 

Henderson et al., 1999; Nuthmann et al., 2010; Võ & Henderson, 2009). Besides the viewing 

task, factors such as the semantics of the scene (e.g., informative vs. non-informative objects, 

congruent vs. incongruent objects; e.g., Henderson et al., 1999; Loftus & Mackworth, 1978; Võ 

& Henderson, 2009), or familiarity (Althoff & Cohen, 1999) can also greatly affect fixation 

durations. Nevertheless, as for fixation locations, the extent to which top-down and bottom-up 

factors affect fixation durations is still poorly understood.  
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Some studies have also found that individual differences in fixation durations remain stable 

across different viewing conditions. Significant relationships have been reported between 

fixation durations during the viewing of line drawings, photographs, computer rendered scenes 

and faces (Andrews & Coppola, 1999; Castelhano & Henderson, 2008). 

Past research with animals as well as human adults have suggested that there are several 

oculomotor components that may individually affect fixation durations (Findlay & Walker, 1999; 

Nuthmann et al., 2010). One of these components is the oculomotor command to move to a 

peripheral target. It is thought to function based on the saliency computations that occur at the 

visual cortex and exerted via the brainstem circuitry including the superior colliculus (Becker & 

Jurgens, 1979; Findlay & Walker, 1999). Another component is related to the processing of 

visual information at the point being fixated, which is thought to function via the inhibitory control 

of eye-movements implemented in areas of the brain such as the frontal eye fields (FEF), the 

superior colliculus and the substantia nigra (Findlay & Walker, 1999). Additionally, past studies 

have suggested that internal saccade timing mechanisms also influence eye-movement control 

(Henderson & Pierce, 2008; Henderson & Smith, 2009; McAuley, Rothwell, & Marsden, 1999; 

Nuthmann et al., 2010). Some of these studies selectively manipulate global scene processing 

difficulty by employing the scene onset delay paradigm, whereby participants are presented with 

photographs of real-world scenes while performing a memory task. During the saccade just 

prior to the critical fixation the scene is substituted for an unpredictable amount of time with a 

blank screen. As the blank removes all visual content and the intended target of the prior 

saccade, if the eyes are under the direct control of the point currently being fixated they should 

remain in fixation until the scene returns. Results showed a bimodal distribution of durations of 

critical fixations where a population of fixations appeared to be longer despite the removal of the 

actual scene, while a second population terminated before the scene returned. These results 

support a mixed theory of eye-movement control showing how fixation durations can be under 

direct (i.e. demands of current fixation) and indirect control (e.g. attentional pre-setting, internal 

timing mechanisms and exogenous factors; Nuthmann et al., 2010). All these components have 

been satisfactorily modelled in human adults during simple psychophysical tasks (Carpenter & 

Williams, 1995), reading (Engbert, Longtin, & Kliegl, 2002; Engbert, Nuthmann, Richter, & 

Kliegl, 2005; Reichle, Pollatsek, Fisher, & Rayner, 1998; Reichle, Rayner, & Pollatsek, 2003) 

and scene viewing (Nuthmann et al., 2010; Trukenbrod & Engbert, 2014). 
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Some studies have also investigated within-participant variance in fixation durations. For 

instance, Benson, Castelhano, Au-Yeung, and Rayner (2012) showed how fixations from adults 

with autism spectrum disorder (ASD) were less influenced by the semantic content of the point 

being fixated. 

1.5 Fixations in infancy 

Looking has been widely used as an index of visual attention and a tool to study cognitive 

development in infants. For this purpose, researchers have traditionally analysed infants’ 

looking behaviour by applying paradigms such as habituation, familiarization or preferential 

looking (see also Chapter 2). A number of these studies have analysed and reported looking 

times –and not fixation durations-, defined as the periods that the infant expends looking at a 

particular area of interest (e.g., a face, the right side of the screen, the left side of the screen). 

To date, only few studies have analysed fixation durations and oculomotor control in infants. In 

this section I will first provide a broad overview of what we know about infants’ looking and 

visual attention and then I will describe the studies analysing fixation durations in infants. 

1.5.1 Looking times vs. fixation durations 

Looking time measures were first introduced by Robert Fantz in a series of pioneering studies 

(1956, 1963, 1964). Fantz (1963) found that infants are able to visually explore and selectively 

attend to particular stimuli (e.g., shapes or patterns) in their visual environment when they 

distinguish them. Moreover, Fantz (1964) found that infants become less interested (look less) 

in stimuli that are presented repeatedly while they showed more interest (look longer) in novel 

objects or events. These findings constituted the starting point for using looking time measures 

to investigate infant perceptual and cognitive abilities (Aslin, 2007). Since looking is a 

spontaneous behaviour easy to elicit in infants –unlike other techniques such as non-nutritive 

sucking rates-, this technique has become very popular and has been used for investigating a 

wide variety of subjects such as categorical learning (Quinn & Eimas, 1996), numerosity (Xu, 

2003), or impossible/possible events (Baillargeon, 1987) to name a few.  

Nevertheless, even though looking times measures helped shedding light into infants’ 

perceptual and cognitive abilities, they do not allow investigating the micro-dynamics of visual 

and cognitive processing. Studies reporting fixation durations are becoming increasingly 

important as a result of their potential to explain the mechanisms underlying visual processing 
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or to answer questions related to the assessment of attention and information processing in 

spontaneous unconstrained settings.  At this point it is important to mention that some of the 

studies using looking times as a measure have also used the term “fixation durations” to refer to 

them. These studies often use different criteria to define what a “fixation” constitutes (Colombo 

& Mitchell, 1990; Ruff & Rothbart, 1996). For instance, in some studies a fixation is defined as 

starting with any look to the stimulus and terminates with any clear look away from the stimulus 

(e.g., Courage, Reynolds, & Richards, 2006; Jankowski & Rose, 1997; McCall, Hogarty, 

Hamilton, & Vincent, 1973). Occasionally a relatively long minimum fixation length (e.g., 1 

second, while the length for most fixations in infants range from 300 to 800 ms) was also 

established (e.g., Colombo, Mitchell, O’Brien, & Horowitz, 1987; Shaddy & Colombo, 2004). 

Due to the coarse spatial and temporal measurement, this design presents obvious limitations if 

we are interested in investigating the micro-dynamics of visual processing and attentional 

control. When the visual stimuli from which the looking time is derived fills more of the visual 

field than 2 degrees (e.g., a face), the infant will most likely move their eyes within the stimulus 

to see elements of it in detail (e.g., eyes, mouth, nose). Each “look” to the stimulus will therefore 

constitute multiple fixations as they are defined in adults (Saez de Urabain, Johnson, & Smith, 

2014).  To avoid confusion in this thesis I will only use the term “fixation duration” to refer to the 

periods between saccades when the eyes are stable.      

1.5.2 The development of looking and visual attention during the first year 

Despite the poor visual acuity of newborn infants (see section 1.3.1.1), their looking behaviour is 

appreciably organized and selective (Ruff & Rothbart, 1996). Fantz (1963, 1964) discovered 

that newborns prefer patterned stimulation rather than plain fields of colour, and that they look 

longer at some patterns –such as those with large features and high contrast- than others. 

Furthermore, other studies have suggested that during their early days infants prefer looking at 

curved patterns as opposed to straight lines (Fantz & Miranda, 1975). 

Before 2 months of age, infants tend to visually scan certain parts of the external contours of 

stationary objects almost ignoring the internal features (Aslin & Salapatek, 1975). At this age, 

they may also find difficulties disengaging attention from a highly salient object (for more 

information about “sticky fixation” go to section 1.3.2.1.2). After 3 months these disengagement 

difficulties seem to fade out and infants start to be able to execute saccadic eye-movements 

more readily. 
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Around 2 to 3 months infants experience a big developmental transition during which their 

looking behaviour begins to change considerably (Ruff & Rothbart, 1996). From this age, infants 

start to stay awake for longer periods and hence spend significantly more time looking around 

(Wolff, 1987), gaining more and more experience at performing eye-movements. Some studies 

have shown that from 2 to 3 months infants are more likely to select particular patterns such as 

a face or bull’s-eyes, regardless of the visual features of the alternative patterns (e.g., a bright 

geometrical shape; Ruff & Turkewitz, 1975). For instance, Salapatek (1975) found that infants 

younger than 2 months preferred to look longer to squares as opposed to lines –probably 

because squares were visually more salient-, regardless of whether squares represented the 

majority or minority of elements of the pattern. On the other hand, infants older than 2 months 

preferred to look at the areas in the pattern that were discrepant, despite them being composed 

by squares or lines. Furthermore, Salapatek (1975) also found that their scanning patterns are 

more likely to include the internal as well as the external features of an object. These findings 

indicate that around 2 to 3 months infants start showing more interest for the novel stimulus as 

opposed to the visually salient one, which suggests that while before that age infants’ looking 

behaviour is predominantly driven by bottom-up or exogenous factors, from 2 to 3 months top-

down or endogenous factors start influencing infants’ visually guided actions.  

The developmental transition that happens from 2 to 3 months also has some implications on 

infants’ social behaviour. For instance, it has been reported that infants are more likely to make 

eye contact after 2 months of age (Keller & Gauda, 1987). As a result, their social experience 

increases being able to socially interact with other people such as their caregivers. Furthermore, 

it has been reported that during the first 4 months of life infants’ looking at adults during social 

interactions increases significantly (Lamb, Morrison, & Malkin, 1987). 

The transition at 2 to 3 months occurs in part due to the dramatic maturational changes in the 

visual and oculomotor system during the first 3 months of life (for more information go to section 

1.3.1.4). Besides the improved visual acuity of 3-month-old infants, the shift from subcortical to 

cortical areas of visual processing allows for more complex forms of visual orienting.   

The visual behaviour of infants from 3 to 9 months is increasingly influenced by experience. 

This is evident, for instance, in their ability to develop expectations based on the repetition of 

events (e.g., Johnson et al., 1991), or in the gradually decreasing looking times needed during 
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habituation and familiarization paradigms (Colombo, 1995). In addition, during this period 

infants’ selective attention is markedly affected by the novelty of events and objects, and by 

what some researchers have called the orienting/investigative system or the first attentional 

system, which becomes functional early in life and governs attention during the first year (for a 

wider review see Ruff & Rothbart, 1996).  

During the period from 3 to 9 months the visual and oculomotor systems continue their 

development. While visual acuity and binocularity have reached adult levels by 6 to 7 months 

(Aslin, 1987), other eye-movement related areas in the parietal cortex seem not to be fully 

functional until the end of the first year (Csibra, Tucker, & Johnson, 1998). Nevertheless, the 

posterior orienting network, though to be responsible for a number of processes including 

disengagement, shifting, and inhibition of return (M. H. Johnson et al., 1991; M. H. Johnson, 

1990), is assumed to be fully functional at around 6 months of age (Hood, 1993). 

The significant motor development that infants undergo from 3 to 9 months (Adolph & Berger, 

2006) is also essential to understand the development of visual orienting and selectivity. For 

instance, at around 5 months infants are able to reach, grasp, and manipulate objects more 

readily. Due to their poor locomotor abilities, by this age they are more likely to engage their 

visual attention with objects located within their reach. By 9 months infants have acquired a 

great experience manipulating as well as visually exploring novel objects in their environment.  

An important change that also happens around this time is the development of joint attention, 

which can be defined as “looking where someone else is looking” (Bakeman & Adamson, 1984; 

Butterworth, 2004; Ruff & Rothbart, 1996; Wurtz & Kirkham, 2010). Infants begin to share 

attention to the toys and objects with an adult, and learn to direct the gaze to a certain place 

based on social cues. Three to 4 months old infants are already able to follow “the looker’s” 

gaze, a behaviour that 6-month-olds can perform reliably under simple ideal conditions 

(Butterworth, 2004; Senju & Csibra, 2008; Wurtz & Kirkham, 2010). Interestingly, when gaze is 

the only social cue infants are not able to reliably follow it until they are 18 months old (Moore & 

Corkum, 1998). 

The next major transition point is considered to happen at around 9 months, as a result of the 

emergence of a number of new cognitive advances, including changes in memory (Fox, Kagan, 

& Weiskopf, 1979), the control of action (Diamond & Gilbert, 1989), or looking (Ruff & Rothbart, 
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1996). Several studies have reported a decrease in looking times –not fixation durations- from 3 

to 13 months of age, mainly as a consequence of faster learning and habituation (Colombo & 

Mitchell, 1990; Kagan et al., 1971; Lewis et al., 1969; Mayes & Kessen, 1989) . Interestingly, 

some of these studies also reported an increase in looking at around 13 months, perhaps due to 

the emergence of executive functions. Looking times have also been investigated during infant 

playing with toys, where very different trends were found as compared to the studies 

investigating looking times to objects presented in an experimental display. Ruff, Saltarelli, 

Capozzoli, and Dubiner (1992) found no change in looking over time when 5 to 11 months 

infants were let to play with single objects. Nevertheless, some other studies have reported an 

increase in looking times over the same age range when several objects were given to the 

infant simultaneously (Bakeman & Adamson, 1984; Ruff & Saltarelli, 1993). These opposing 

results from both contexts may suggest that while some influences of attention decline, others 

increase, probably as a result of the development of new cognitive and motor skills (Ruff & 

Rothbart, 1996). 

Moreover, the development of other cognitive domains such as social and emotional 

development can influence looking behaviour. For instance, from 9 to 12 months infants look 

more at their mothers’ face when they are at some distance in order to search for information, a 

behaviour also known as social referencing (Sorce, Emde, Campos, & Klinnert, 1985; Walden & 

Ogan, 1988). This can also be interpreted as a search for comfort due to a boost in attachment 

(Baldwin & Moses, 1996). Around the same time infants also develop a transient fear of 

strangers (Bronson, 1972) and some behavioural inhibition to novelty or challenge (Rothbart, 

1988). 

During the second half of the first year it is possible to observe some rudimentary elements of 

executive control that become more noticeable towards the end of the first year and beginning 

of the second (Ruff & Rothbart, 1996). For instance, Diamond (1985) found an age effect in 

infants from 6 to 12 months that performed the “A not B” task. In this task, after the infant has 

found an object at a location A, the object is shifted to a location B. Successful reactions from 

the infant involve adapting the response instead of repeating the previous action. Diamond 

found that younger infants were unable to successfully execute this task, not only because 

presumably they were not able to remember the correct location, but also because they were 

failing to inhibit the prime response. In a later study, Diamond and Goldman-Rakic (1989) 
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showed the importance of the development of dorsolateral prefrontal brain structures for the “A 

not B” task. Executive functions continue their development throughout the second year of life 

together with other cognitive functions, eliciting more complex forms of looking patterns (Ruff & 

Rothbart, 1996).  

1.5.3 Fixation durations in infancy 

As described earlier, the relationship between looking times and the development of cognitive 

and perceptual processes has been widely investigated (Aslin, 2007; Colombo et al., 1995, 

1991; Colombo, Mitchell, O’Brien, & Horowitz, 1987; Colombo, Richman, Shaddy, Greenhoot, & 

Maikranz, 2001; Colombo & Mitchell, 1990; Colombo, 1995; Sigman, Cohen, Beckwith, & 

Parmelee, 1986; Slater, 1995; see also Chapter 2). Nevertheless, not many studies have paid 

attention to the micro-dynamics of visual and cognitive processing, such as fixation durations 

and their underlying mechanisms. These investigations are becoming increasingly important 

especially in studies concerned with the assessment of attention and information processing in 

spontaneous unconstrained settings. 

There are few studies that have investigated the relationship between infant fixation durations 

and cognitive and perceptual processing. For instance, Harris et al. (1988) tested infants and 

adults in a free-viewing task, revealing that fixation durations decreased as the stimulus size 

increased (see also Hainline et al., 1984). However, this study did not address the extent to 

which the size of the visual stimulus can affect infants’ fixations at different developmental 

stages in infancy. Bronson (1990) investigated the development of visual scanning (and fixation 

durations) in a longitudinal study with infants from 2 to 14 weeks that were presented with a 

number of static, moving and flickering geometric figures. Besides finding more mature and 

accurate scanning strategies in older infants, he found that under flicker conditions older infants 

showed a higher proportion of longer fixations compared to other viewing conditions, which is a 

looking behaviour  more common in younger infants and has been commonly associated with 

the maturation of volitional eye-movement control (Atkinson, 2000; Bronson, 1990; Hood & 

Atkinson, 1993). Furthermore, when viewing static stimuli, 1 to 2 month infants showed a series 

of long fixations that were closer together. By 3 to 4 months infants showed a greater proportion 

of short fixations (< 500 ms) when looking at static stimuli (Bronson, 1994). Bronson also found 

that by 6 weeks, infant fixations are influenced by whether the look falls on a stimulus contour or 

not.  
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More recent studies have investigated infant scanning abilities when presented with familiar and 

non-familiar complex dynamic stimuli. Hunnius and Geuze (2004) eye-tracked a group of infants 

in a longitudinal study between the ages of 6 and 26 weeks. Participants were presented with a 

video of their mother’s face, and an abstract video. They found that infants only adapted their 

eye-movements according to the stimulus type from 14 weeks on, showing longer fixation 

durations for the abstract unfamiliar condition. Additionally, the median fixation duration did not 

stabilize before 18 weeks, which is slightly later than what has been reported for static stimuli 

(Bronson, 1990).  

Individual differences have also been the focus of some of the work investigating fixation 

durations in infants. For instance, Bronson (1994) tested 6 to 13 week old infants and found that 

decreases in visual attentiveness were associated with longer fixation durations while looking at 

static figures. In another more recent study, Wass and Smith (2014) presented 11-month-old 

infants with a battery of complex dynamic stimuli and non-complex static stimuli. They reported 

that individual differences in fixation durations were stable across different stimulus types and 

testing sessions with infants who demonstrated short average fixation durations during one visit 

also displaying relatively short fixations in a second visit a week later. Furthermore, reaction 

times gathered from the gap-overlap paradigm correlated with dynamic stimuli, but not with 

static stimuli for which measures of cognitive control and arousal were most predictive of 

performance. 

 As looking behaviour (Fagan III, 1984; see also Slater, 1995), fixation durations in infancy have 

also been associated with later intellectual function in childhood. For instance, in a recent study 

Papageorgiou and colleagues (2014) demonstrated that individual differences in fixation 

durations in early infancy can predict individual differences in temperament in childhood. These 

findings could ultimately lead to early intervention practices aiming to improve executive 

attention and potentially identify infants at risk of attentional disorders such as the attention 

deficit hyperactivity disorder (ADHD). 

These findings suggest that fixation durations in infancy can also reflect the cognitive and 

perceptual processing of the visual input, even though it is still unclear whether these factors 

have the same influence in infants and adults. In addition, fixation durations can be an indicatior 

of different cognitive or neural processes emerging at different developmental stages. 
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Pertaining to the type of stimuli used in experiments investigating eye-movements in infants, it is 

important to point out that, probably in an attempt to control the variables of the studies, most 

studies made use of very simple static or sometimes dynamic shapes as a stimuli (Bronson, 

1990, 1994; Colombo et al., 1995; Frick et al., 1999; but see Mallin & Richards, 2012; Wass & 

Smith, 2014). This approach has been often criticized arguing that these stimuli are not 

adequately representative of real-world experiences and thus do not have the same effect as 

the more naturalistic ones (Hunnius & Geuze, 2004a; Hunter & Richards, 2011; Neisser, 1976; 

Schmuckler, 2001). In fact, recent research such as the study by Mallin and Richards (2012) 

demonstrated the importance of real world stimuli regarding performance characteristics in an 

experiment with infants at 14, 20 and 26 weeks whereby the stimuli were created by using 

“Sesame Street” video clips.  

1.6 Modelling visual attention 

Computational models allow us to describe, predict and explain data that is itself unobservable 

(Lewandowsky & Farrell, 2011). This approach does not supplant more traditional behavioural 

methods, but rather complements them by investigating the mechanisms that are not directly 

accessible through experimentation (Braitenberg, 1984; Schlesinger & McMurray, 2012). One of 

the main advantages of computational modelling is then that they allow the easy manipulation of 

the mechanisms built into the model permitting the researcher to observe the consequences of 

such transformations. By doing this we can investigate the functioning of hypothesized 

mechanisms that could not be explored otherwise (Schlesinger & McMurray, 2012). 

Furthermore, models can start as simple constructs and progress into more complex forms.   

Apart from these advantages, Schlesinger and McMurray (2012) describe a number of reasons 

why psychological research, and developmental science in particular, can benefit from 

computational models. First, to build a model forces researchers to define theoretical constructs 

that could potentially be evaluated using behavioural studies. Secondly, models that do not 

work as expected can also be informative as they may reveal certain constraints that are 

important for the understanding of the phenomenon being studied (see Elman, 1993; McMurray, 

Aslin, & Toscano, 2009). Moreover, the most theoretically informative models can also be 

discarded if they fail to offer a clear explanation of their contribution. Thirdly, models can 

combine different levels of analysis. This point can be particularly important in developmental 

science since it is common to find explanations of developmental change that include 
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interactions between different domains such as genetics, neuroscience, or cognition (Elman et 

al., 1996; Mareschal et al., 2007; Westermann et al., 2007). Finally, models do not necessarily 

mimic real life. This means that models can be a great tool to investigate the effect of unnatural 

inputs, or other phenomena such as atypical development (Thomas, 2003).  

Whilst It is possible to select the best fitting model based on quantitative evaluation and 

intellectual and scholarly judgment (Lewandowsky & Farrell, 2011), most of the time a data set 

can be explained using several alternative models based on different perfectly valid hypothesis. 

Additionally, recent scientific articles have presented extended reviews on computational 

models of visual attention in general (Frintrop, Rome, & Christensen, 2010; Heinke & 

Humphreys, 2005), infant cognitive development (Mareschal, 2010; Schlesinger & McMurray, 

2012), or atypical development (Thomas, 2003), highlighting the importance of these methods 

for investigating visual attention and infant typical and atypical development. 

Computational models can be classified according to different criteria. For instance, models can 

be divided into symbolic (Klahr & MacWhinney, 1998; Klahr & Siegler, 1978; Newell, 1994) and 

sub-symbolic (Rumelhart & McClelland, 1985) models. Symbolic models are those that encode 

the units of information in a language-like format (Schlesinger & McMurray, 2012; see the 

production-system model, Klahr, Langley, & Neches, 1984). Bayesian networks are a very 

particular type of symbolic models, where explicit knowledge is acquired using the laws of 

rational probabilistic inference (Gopnik & Tenenbaum, 2007; Perfors, Tenenbaum, Griffiths, & 

Xu, 2011). Sub-symbolic models on the other hand are based on distributed representations. 

For example, connectionist models belong to this category (Elman, 1993; Elman et al., 1996; 

Mareschal & Shultz, 1996; Shultz, Mareschal, & Schmidt, 1994; Westermann, Ruh, & Plunkett, 

2009; Westermann & Ruh, 2012). Artificial neural networks are usually represented as a set of 

interconnected “neurons” or computing elements. Each of these elements receives an input that 

is weighed and transformed by a function (see Rumelhart, Hinton, & Williams, 1985) and then 

passed on to another neurons. The process terminates when the output neuron is activated and 

computes the resulting value. These network models could also be classified as adaptive 

models, since the internal structure of the model can change (in this case through changes in 

the strengths of the connections between units or changes in the architecture of the network; 

Schlesinger & McMurray, 2012), in opposition to static models where the internal structure 

remains the same. In the past few decades connectionist models have gained increased 
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popularity to study developmental change (Mareschal & Shultz, 1996; Mareschal, 2010; 

Schlesinger & McMurray, 2012; Westermann et al., 2009; Westermann & Ruh, 2012). For 

instance (Westermann & Ruh, 2012) used neural networks to investigate learning and 

processing the English past tense. In this adaptive model units and connections were added 

and removed during learning to develop a task specific final architecture.   

Two important aspects of gaze control are the location where fixations land (the “where” 

decision) and how long these fixations last (the “when” decision). Most current computational 

models are concerned with fixation locations (Borji & Itti, 2013), whereas there are only few 

models accounting for fixation durations (Engbert et al., 2005; Nuthmann et al., 2010; 

Trukenbrod & Engbert, 2014). In the remainder of this chapter I will first review the most 

relevant models concerned with fixation locations and fixation durations, and then I will move on 

to describing current computational models on visual attention in infants.  

1.6.1 Modelling fixation locations 

The locations where fixations land is an overt behavioural manifestation of selective attention, 

and for this reason has been extensively investigated in behavioural studies (Baddeley & Tatler, 

2006; Buswell, 1935; Findlay & Gilchrist, 2003; Tatler, Baddeley, et al., 2005; Underwood & 

Foulsham, 2006; Yarbus, 1967; see the section 1.4.1). Likewise, predicting where viewers fixate 

has been the focus of numerous studies in the realm of computational modelling (Borji & Itti, 

2013). The most popular hypothesis in the computational vision literature is the saliency 

hypothesis, which states that it is the bottom-up stimulus-based information generated from the 

image that drives the viewer’s attention and hence motivates the decision of where to fixate next 

(Itti & Koch, 2000, 2001; Land, 2009). In saliency models the pre-attentive features of a scene 

region that contribute to its salience are computationally quantified and validated against eye-

movements of human observers. Itti and Koch (2000, 2001) developed a saliency model able to 

identify a number of low-level visual features –such as colour, brightness and orientation– that 

are known to be extracted at the early stages of visual processing. Each of these low-level 

features produces a feature map that is then combined additively with the other feature maps 

creating a single salience map. This salience map will have “hot areas” that correspond to 

regions where a lot of visually relevant things are going on. Therefore, this model is only able to 

predict gaze allocation based on the visual features of the image (exogenous or bottom-up 

factors), without taking into account higher lever factors such as the visual task (endogenous or 
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top-down factors). Even though saliency is the only component of saccade initiation that has 

been modelled in a computationally satisfactory way (Land, 2009), researchers have accepted 

that saliency is not the only factor that exclusively drives eye-movement control (e.g., Findlay & 

Gilchrist, 2003; Itti & Koch, 2001). A number of studies found that the empirical data containing 

fixation locations did not always coincide with the “hot spots” from a salience map (e.g., 

Parkhurst, Law, & Niebur, 2002). Furthermore, the correlations between fixation selection and 

particular saliency features vary depending on the study: while some have found stronger 

correlations for contrast and edge information (Tatler, Baddeley, et al., 2005), others have found 

them for colour (Jost, Ouerhani, Wartburg, Müri, & Hügli, 2005). In accordance with these 

findings, recent studies have proposed that top-down guidance plays the primary role in gaze 

allocation and replace the concept of salience with an unprioritized input representation 

(Henderson et al., 2007; Henderson, Malcolm, & Schandl, 2009).  

Some other models, such as the contextual guidance model for object search in real-world 

scenes (Torralba, Oliva, Castelhano, & Henderson, 2006), combine both bottom-up and top-

down information. In this model gaze allocation is guided from a bottom-up salience 

computation modulated by contextual priors or task constraints (see also Navalpakkam & Itti, 

2005, 2006).  In the Findlay and Walker (1999) saccade generation model, the final saliency 

map is computed from separate topographically mapped channels for intrinsic salience (same 

as in Itti and Koch, 2000, 2001), search selection, peripheral visual evens such as sudden 

unexpected intrusions, and spatial selection. Interestingly, this model includes the two separate 

parallel pathways thought to be involved in saccade generation (see Figure 1-5), concerned 

with the spatial programming (the where component), and the temporal programming (the when 

component) of the saccadic eye-movement. The model accounts for a number of well-

established phenomena in target-elicited saccades, such as the gap effect, express saccades, 

the remote distractor effect, and the global effect (Findlay & Walker, 1999). 
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Figure 1-5 From Findlay and Walker (1999). Diagram indicating the information flow routes and 
competitive pathways in saccade generation. 

 

For a wider review on computational models of visual attention that compute saliency maps 

refer to (Borji & Itti, 2013). 

1.6.2 Modelling fixation durations 

Whilst many models investigating visual attention have examined where fixations land, very few 

models provide control mechanisms for the duration of fixations or aim to shed light on the 

mechanisms underlying saccade generation and the encoding of visual information. Most of the 

models that do exist were developed for the task of reading. Here, the two most advanced 

mathematical models are the E-Z Reader model (Reichle et al., 1998, 2003) and the SWIFT 

model of saccade generation during reading (Engbert et al., 2002, 2005). The E-Z Reader 

(Reichle et al., 1998, 2003) is a processing model that extends the work from Morrison (1984), 

and provides a theoretical framework for understanding how word identification, visual 

processing, attention and oculomotor control jointly determine when and where the eyes move 
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during reading. The model’s main two assumptions are: (1) a stage of word identification is the 

signal to move the eyes; and (2) attention is allocated from one word to the next in a strictly 

serial manner. The SWIFT model (Engbert et al., 2002, 2005), was developed to investigate the 

possibility of spatially distributed processing and to implement a general mechanism for all 

types of eye-movements observed in reading experiments (the E-Z reader is intended to be a 

“default” reading process since this model does not account for the many effects of higher-level 

linguistic processing on eye-movements). The SWIFT model is compatible with the general 

framework of generation of saccades developed by Findlay and Walker (1999) and includes 

concepts from the dynamic field theory of movement preparation by Erlhagen and Schöner 

(2002).  

Both E-Z Reader and SWIFT models implement the notion of saccade programming being 

completed in two stages, as suggested by results from double-step experiments (Becker & 

Jurgens, 1979). However, the two models differ with regard to the mechanisms that control 

fixation durations. While in the E-Z-Reader model what triggers a new saccade program is 

conceptualized to be lexical processing, in the SWIFT model it is implemented as a random 

timer. In the SWIFT model, lexical processing difficulty of the currently fixated word modulates 

fixation durations by inhibiting the timer so that it delays the initiation of the next saccade 

program. 

The mechanisms underlying saccadic control have also being explored by a few other models 

concerned with other domains of eye-movement research such as scene perception. For 

instance, the LATER model (linear approach to threshold with ergodic rate; Carpenter & 

Williams, 1995) attempted to explain cumulative distributions of reaction times. This model 

includes a generative mechanism where a hypothetical variable increases at a linear rate until a 

given threshold is reached. The saccade will then be initiated being the time taken to reach the 

threshold the saccade latency. The model generates a distribution able to simulate typical 

reaction time distributions.  

Building upon the idea of a random saccade timer (Engbert et al., 2002) the CRISP model is a 

computational model and a theoretical framework that accounts for fixation durations in adult 

scene viewing (Nuthmann et al., 2010). CRISP is a timer (C)ontrolled (R)andom-walk with 

(I)nhibition for (S)accade (P)lanning model (see also the ICAT model; Trukenbrod & Engbert, 
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2014). The model architecture can be summarized with the following three main assumptions 

on saccade timing and programming: (1) The accumulation of activity to a saccade threshold is 

implemented via a random walk process (Boccignone & Ferraro, 2004) and is responsible for 

generating inter-saccadic intervals and hence variations in fixation durations; (2) saccade 

programming occurs in two stages: an initial, labile stage that is subject to cancellation, and a 

later, non-labile stage; and (3) processing difficulty can inhibit saccade timing and programming 

in a moment-to-moment fashion. The latter can happen in two ways. First, in case of increased 

processing demands the random walk saccade timer slows down, which delays the initiation of 

a new saccade program and eventually leads to longer fixation durations. Secondly, processing 

difficulties can even cancel an ongoing labile saccade program, which extends the duration of 

the current fixation. For more details about the CRISP model’s architecture and theoretical 

assumptions go to Chapter 5. 

1.6.3 Modelling visual attention in infants 

Traditionally, developmental science has employed both observational methods as well as 

controlled empirical experiments in order to investigate child development.  Nevertheless in the 

past decades computational modelling has become an essential tool to investigate 

developmental change in infancy (for reviews see Mareschal, 2010; Schlesinger & McMurray, 

2012). Many of these models have focused on different aspects of cognitive development such 

as learning (Kemp, Perfors, & Tenenbaum, 2007; Klahr et al., 1984; Mareschal & Johnson, 

2002), language development (McMurray, Horst, & Samuelson, 2012; Rumelhart & McClelland, 

1985; Westermann et al., 2009; Westermann & Ruh, 2012) or memory (Mareschal & French, 

1997). 

Very few models, however, have investigated visual attention in infants. Some of these models 

have focused on habituation paradigms (Balkenius, 2000; Domsch et al., 2010; for a review see 

Sirois & Mareschal, 2002). For instance, Stanley (1976) used mathematical analysis and 

computer simulations in the form of functions in order to develop one of the first computational 

models of habituation. Many of the later models on habituation opted for the use of 

connectionist approaches (Sirois & Mareschal, 2002). 

Computational modelling has also been used to investigate visual selective attention 

(Schlesinger, Amso, & Johnson, 2007), information processing (Domsch et al., 2010), or gaze 
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following (Bugajska, Trafton, Fransen, & Harrison, 2009; Carlson & Triesch, 2004; Triesch, 

Teuscher, Deák, & Carlson, 2006). Carlson and Triesch (2004) presented a model that aimed to 

investigate if gaze following is a skill that infants acquire because they learn that monitoring 

their caregiver’s direction of gaze allows them to predict the interesting objects or events 

appearing in their environment.  Results not only confirmed this hypothesis, but also showed 

how plausible modifications of model parameters motivated by findings on developmental 

disorders lead to impairments in the learning of gaze following. Similarly, a number of other 

studies have shown the effectiveness of using computational models to study atypical 

development (Thomas, 2003).  

In another study by Mareschal, Plunkett, and Harris (1999) neural networks were also used to 

investigate why object permanence appears to develop earlier if measured by gaze behaviour  

as opposed to reaching. In this model, one sub-network controls gaze while another controls 

reaching. A third sub-network common to both controls object representations. Moreover, the 

Mareschal model includes dual-stream visual processing (dorsal and ventral pathways; 

Ungerleider & Mishkin, 1982), where the ventral sub-network simulates feature-based 

processing in the temporal cortex, and the dorsal sub-network simulates spatiotemporal 

processing in the parietal cortex. Results showed that the dorsal sub-network learns faster than 

the ventral one. Mareschal et al. hypothesized that the developmental advantage of gaze over 

reaching is a consequence of the earlier emergence of the dorsal pathway or the “where” 

system.  

While these and other studies helped shedding light onto the development of infant visual 

attention, to date no computational model has attempted to explain the specific mechanisms 

underlying saccadic control in infancy.  

1.7 Conclusion 

In this chapter I have discussed the background literature on vision, visual orienting, and visual 

attention in infants and adults as well as previous empirical work and theoretical and 

computational models investigating visual attention and the mechanisms underlying oculomotor 

control and fixation durations. 

As outlined earlier in this chapter, much of the research investigating gaze allocation (both 

behavioural and computational studies) has been focused on where fixations land (Baddeley & 
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Tatler, 2006; Borji & Itti, 2013; Buswell, 1935; Findlay & Gilchrist, 2003; Itti & Koch, 2000, 2001; 

Tatler, Baddeley, et al., 2005; Underwood & Foulsham, 2006; Yarbus, 1967), leaving the 

durations of those fixations aside. Nevertheless, a number of studies (also in the scene 

perception literature) and computational models (such as the CRISP model; Nuthmann et al., 

2010) have illustrated the relationship between fixation durations and visual-perceptual and 

cognitive processing (e.g., Castelhano & Henderson, 2008; Kowler, 2011; Malcolm & 

Henderson, 2010; Rayner et al., 2009; Richardson et al., 2007). Furthermore, some behavioural 

work and computational models have also attempted to explain the mechanisms underlying 

saccadic control and fixation durations in human adults (Engbert et al., 2005; Nuthmann et al., 

2010; Reichle et al., 1998, 2003; Trukenbrod & Engbert, 2014). In infants, however, as a result 

of the many technical and practical constraints, very few studies have attempted to explore 

these mechanisms and their development through the first year of life and thus the 

understanding of the development of infant oculomotor control is restricted (but see Bronson, 

1990, 1994; Hainline et al., 1984; Harris et al., 1988; Wass & Smith, 2014). 

In this thesis I will combine a series of behavioural cross-sectional and longitudinal studies with 

computational modelling in order to investigate the development of fixation durations and the 

mechanisms underlying fixation durations and saccadic control during the first year of life. For 

this purpose I will first analyse the factors influencing fixation durations and saccadic control in 

6-months-olds and adults that viewed dynamic naturalistic and semi-naturalistic scenes and 

performed various oculomotor paradigms (Chapter 4). This data will then be modelled using the 

CRISP model of fixation durations in scene viewing (Nuthmann et al., 2010) in order to 

investigate the unexplored mechanisms underlying fixation durations and saccadic control in 6-

month-olds (Chapter 5). Model simulations will allow investigating the extent to which the 

developmental state of the visuo-motor system and visual and cognitive processing influence 

fixation durations at this age. The longitudinal studies from Chapter 6 will investigate the 

development of fixation durations and saccadic control in groups of infants that were eye-

tracked throughout their first year of life while viewing dynamic and static material and 

performed the gap-overlap paradigm. Model simulations on this longitudinal data (Chapter 7) 

will serve to analyse how the mechanisms identified in the previous cross-sectional study 

(Charter 5) may develop during this period. Furthermore, in the next two chapters I will review 

some of the technical and practical limitations associated with recording and analysing infants’ 
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eye-movements, and I will introduce GraFIX (Saez de Urabain et al., 2014), a new method and 

software able to detect fixations in low and high quality eye-tracking data. 
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Chapter 2: General methodology: Eye-tracking in infancy 

2.1 Introduction  

In this thesis eye-movements where recorded using an eye-tracker. Even though eye-tracking is 

considered to be a precise measurement technique, infant testing entails a number of technical 

and practical constraints that need to be considered when performing an experiment. The first 

half of this chapter introduces general eye-tracking methodology and a description of the 

equipment and techniques used for recording the data presented on this thesis. The second half 

of this chapter describes the particularities and difficulties of measuring eye-movements in 

infants and the strategies used in this project to overcome some of these issues. 

2.2 Eye-tracking: General methodology  

The first attempts to measure eye-movements were developed in the late 1800s (Delabarre, 

1898; Huey, 1898). Even though few of the early approaches already applied some of the 

techniques used in current eye-trackers, such as the principle of photographing the reflection of 

an external light source from the fovea (Dodge & Cline, 1901), they were intrusive and not 

suitable to use in non-compliant populations. Moreover, data analysis was time consuming, 

often involving the coding of frame-by-frame videos. 

During the past decades and as a result of the development of video and computer 

technologies eye-tracking has seen an enormous progress. This has allowed researchers to 

address questions that could not be investigated before and thus has opened up entirely new 

approaches and areas of inquiry (Duchowski, 2007). In the realm of developmental psychology, 

researchers had to wait for the development of infant-friendly eye-tracking devices that allow a 

certain degree of head motion and record the participant’s gaze in a non-invasive manner. 

Before this happened infant researchers evaluated infant’s preferences, habituation or response 

to novelty by relying on human observers that had to code the duration (and location) of infant 

looking using stopwatches, event recorders or computer keyboards (Oakes, 2012). Current eye-

tracking studies can provide new insights into the emerging of cognitive, social and emotional 

processing in infancy (Oakes, 2012; Richardson & Johnson, 2008). For instance, a number of 

eye-tracking experiments has investigated topics such as language development (Young, 

Merin, Rogers, & Ozonoff, 2009), perceptual learning (Johnson, Slemmer, & Amso, 2004), 

memory (Richmond & Nelson, 2009), or face processing (Liu et al., 2011) to name a few.   
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Current eye-tracking devices are able to record eye-movements as well as gaze allocation at 

sampling rates that can go from 30 to over 1000 frames per second (Holmqvist et al., 2011).  

Most modern eye-trackers measure the movement of the eye using video processing software –

and even dedicated hardware- that implements the corneal-reflection technique, first developed 

by Salapatek, Kessen and Haith (Haith, 1969; Salapatek & Kessen, 1966). This technique is 

based on the recording of the location of near infra-red light reflected of the cornea (Feng, 2011; 

Gredebäck, Johnson, & von Hofsten, 2009). As a result of the spherical properties of the 

eyeball, the illumination of the infrared light creates a bright glint on the back of the cornea –also 

known as the first Purkinje image- that remains relatively stationary while the eye moves. It is 

this glint and its distance relative to the centre of the pupil that is used to estimate the gaze on 

the screen. Depending on the location of the light sources, the corneal reflection technique is 

classified as “black pupil” or “bright pupil”. When the light source is located on-camera-axis, or 

in other words, in front of the participant, the light is reflected from the retina and the recorded 

image displays a bright pupil. On the other hand when the light comes from the sides the eye 

image displays a dark pupil (see Figure 2-1). 

 

Figure 2-1 These images show how the eye image is captured when using corneal reflection 
techniques. The image on the left is from the bright pupil technique while the one on the right 
shows the dark pupil technique. 

 

According to an editorial comment by Oakes published in Infancy (2010), articles reporting eye-

tracking data should follow the next 8 guidelines: (1) describe the geometry of the testing 

situation and stimuli, (2) provide details about the eye-tracking system, (3) Fully describe the 

calibration procedure, (4) outline procedures to deal with missing data, (5) include details about 

how eye-movement data were processed, (6) specify data reduction procedures and 
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parameters, (7) provide information about how areas of interest (AOIs) were defined, and (8) 

provide complete information about exclusion criteria. These guidelines -with the exception of 

number 7 since this project does not include AOIs- will be addressed in this thesis, either in the 

present or in the following chapters.     

2.2.1 Hardware 

Eye-trackers are advanced physiological measuring systems (Holmqvist et al., 2011). Currently, 

there are a high variety of models from different manufacturers able to satisfy the user’s needs. 

For instance, depending on how the eye-tracker contacts the user one can classify these 

devices into two categories: Spatially fixed or static eye-trackers (e.g., Tobii TX300, EyeLink 

1000, SMI RED) and head-mounted eye-trackers (e.g., positive science eye-trackers, 

Ergoneers Dikablis glasses). While the first are widely used for lab-based experiments (e.g., 

Castelhano & Henderson, 2008; Mital, Smith, Hill, & Henderson, 2010; Nuthmann, Smith, 

Engbert, & Henderson, 2010; Papageorgiou et al., 2014; Tummeltshammer, Wu, Sobel, & 

Kirkham, 2014; Wu & Kirkham, 2010), head-mounted eye-tracking is becoming increasingly 

popular for doing research under more naturalistic and ecologically valid conditions. The 

difficulties of using these more intrusive devices go from measurement –the set-up often 

includes a hat with two attached scene and eye cameras, plus a belt or bag to carry the 

batteries- to analysis, which may involve a great deal of hand-coding (Aslin, 2012). Despite this 

there is an increasing number of articles that make use of head-mounted eye-trackers in 

human-adults (Land, Furneaux, & Gilchrist, 2002; Land & Lee, 1994; Land & Tatler, 2001), as 

well as in less compliant populations such as infants (Corbetta, Guan, & Williams, 2011; 

Franchak & Adolph, 2010; Franchak, Kretch, Soska, Babcock, & Adolph, 2010) or chimpanzees 

(Kano & Tomonaga, 2013). 

Whilst some of the spatially fixed eye-trackers require the participants keep their head still –

often by using a forehead and/or a chin-rest- during the measurement session, others, called 

remote eye-trackers, allow for head-movements within a certain area in front of the tracker also 

known as the head-box (Holmqvist et al., 2011). The state-of-the-art remote eye-trackers still 

provide lower-quality data than those that require head restrictions, mainly due to problems in 

gaze estimation models during head movement, or because the eye is generally filmed at lower 

resolutions (Holmqvist et al., 2011). These eye-trackers are, however, the only practical 
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alternative to test infants or other special populations that do not attend to experimental 

instructions.    

The number of samples per second is an important property of eye-trackers that is measured in 

hertz (Hz). For instance, a 300 Hz eye-tracker will provide gaze data 300 times per second. 

While sampling frequency needs to be high enough to be able to calculate certain eye-tracking 

measures (e.g., studies investigating microsaccades have sampling frequencies no lower than 

200 Hz), high-speed eye-trackers (e.g., > 500 Hz) are usually more intrusive for the participants, 

allow less head-movement, are more expensive, and produce larger data files (Holmqvist et al., 

2011). Because of this reason many of the eye-trackers that are currently used for studies with 

infants do not have very high sampling frequencies.  

Another critical feature of eye-trackers is the latency and temporal precision. Eye-tracker 

latency is the delay that happens from when the eye is recorded until the recording computer 

detects its signal. Even more important is the stimulus-synchronization latency, which arises in 

the interaction between the software being used for receiving the eye-tracker’s signal and the 

one for presenting the stimuli on the experimental display. It is essential to keep these latencies 

as low as possible, especially for studies that require precise synchronization to external 

devices such as EEG or fMRI, or when using gaze-contingencies (Holmqvist et al., 2011). The 

temporal precision, on the other hand, refers to the standard deviation of the eye-tracker’s 

latency, or in other words, the time interval between successive samples.  

For the studies presented in this thesis participants’ gaze was monitored using a Tobii TX300 

eye-tracker running in a sampling rate of 120 Hz. The sampling frequency was lowered to 

120Hz –rather than using the 300Hz that the Tobii TX300 allows- because it significantly 

improved the quality of the data. This particular eye-tracker model tolerates large head 

movements allowing the infants to move naturally in front of the stimuli presentation screen. 

More precisely, the freedom of head movement at 65 cm was within 37 x 17 cm (width x height), 

and the maximum head-movement speed was 50 cm/sec. The eye-tracker could recover gaze 

positions within 10-165 ms. The eye-tracker latency was reported to be less than 10ms. The 

stimuli were presented on a 23’’ wide screen TFT monitor set to 1024 x 768 pixels and attached 

to the eye-tracker unit. The sounds were played through stereo external speakers located at 
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both sides of the screen. Participant were monitored and recorded through an external video 

camera located under the Tobii screen by using the ScreenFlow screen-casting software.  

2.2.2  Software 

Most lab-based eye-tracking studies present the stimuli (e.g., still or dynamic images) on a 

monitor. For this to happen it is required to prepare the monitor-based experiment using one of 

the options available for this purpose.  

Many manufacturers provide software packages for the presentation of the stimuli (e.g., Tobii 

studio, SMI BeGaze) that are easy to integrate with their hardware. Nevertheless not even one 

of these packages provides support for all types of experiments. An alternative to the 

manufacturer’s software is the professional stimuli presentation software, such as E-Prime, 

Presentation or PsyScope. The main benefits of this software are the large user community and 

the fact that the templates for many simple experiments are already available online. On the 

other hand, integrating them with the hardware may not be straightforward and, as the 

manufacturer’s software, they do not support all types of experiments.  

When the study requires having a good control over the experimental events (e.g., developing 

gaze-contingencies; integrating the eye-tracking experiment with EEG equipment), the 

researcher can use a programming environment such as Matlab with the Psychophysics 

Toolbox (Brainard, 1997; Shukla, Wen, White, & Aslin, 2011) or Python with PsychoPy (Peirce, 

2007).   

The stimuli used in this thesis were presented using a MATLAB program (MATLAB version 

R2010a 32-bit) specially developed for the purposes of the experiments. This program made 

use of the T2T (Talk to Tobii) package and the Psychophysics Toolbox Version 3 (PTB-3; 

Brainard, 1997; Shukla et al., 2011). The stimulus synchronization latency when using T2T has 

been reported to be around 100 ms (Shukla et al., 2011). 

2.2.3 Calibration 

Before the experiment starts each participant needs to perform a calibration. Its main purpose is 

to adapt the parameters for the calculation of gaze direction to the participant’s eye and the 

particularities of the current testing session, such as the luminance of the room or the 

participant’s distance and angle with respect to the eye-tracker. Even in adult participants, the 

eyeball radius can vary by up to 10% and have different shapes, changing the geometrical 
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values necessary for calculating gaze direction (Hammoud, 2008). Differences between 

eyeballs can be even more obvious in infants, whose eyes are still undergoing development 

(Banks & Shannon, 1993; Yuodelis & Hendrickson, 1986). 

In a typical calibration procedure the participant needs to look at a number of predefined 

calibration points that appear subsequently on the experimental screen. Alternatively, when 

using head-mounted eye-trackers or other set-ups that do not use an experimental screen, 

points can be located at certain regions in the scene. Even though some of the systems that are 

currently being developed only require 1 or even none calibration points, usually participants are 

presented with 5, 9, or even 16 points (see Figure 2-2). Ideally, calibration points should be 

small and animated (Holmqvist et al., 2011).  

  

Figure 2-2 The image on the left-hand-side shows a typical 9 points adult calibration, while the 
image on the right-hand-side displays a typical infant 5 points calibration.  

 

The first step for performing a typical calibration procedure is to detect the participant’s eyes 

with the eye-tracker. Evidently, for this to happen the participant needs to be looking at the 

screen, which may not always be the case when testing non-compliant populations such as 

infants. It is essential for researchers to find a way to keep participants looking and happy 

during this process, which can occasionally take longer than expected (e.g., if the participant’s 

eyes are not easily detected by the eye-tracker). For instance, when testing infants a baby-

friendly video can be presented in the background while this procedure is performed (see Figure 

2-3). 
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Figure 2-3 Before the calibration procedure starts, the participant's eyes need to be detected. 
When testing infants a baby-friendly video can be presented on the background while infants 
are placed in front of the eye-tracker and their eyes are detected. 

 

Once the eyes are detected the calibration points are presented. Many calibration procedures 

display a diagram at the end of the procedure with the calibration points and the gaze data 

recorded during the proceeding. While this can be informative, it may not be sufficient to 

evaluate the calibration results accurately. Some researchers evaluate the calibration procedure 

by asking the participants to look at certain points in the screen and evaluating the offset 

between the points and the actual gaze. This is a technique that can work well when testing 

adults, but that cannot be used in populations that do not attend to experimental instructions. To 

learn more about the issues and strategies for performing and evaluating calibrations in infants 

continue reading through the next sections. 

For the experiments presented in this thesis, infants’ eyes were detected while watching a baby-

friendly video (see Figure 2-3) and then they where calibrated using a standard 5 points 

calibration with points displayed at the corners and the centre of the screen (see Figure 2-2, 

right hand-side; e.g., Addyman & Mareschal, 2010; Senju & Csibra, 2008; Tummeltshammer et 

al., 2014; Wu & Kirkham, 2010). The calibration points where comprised of a set of colourful 

images with a clear central point. The experimenter was able to press a key to move onto the 

next calibration point, giving the infant enough time to fixate each point. The calibration 

procedure was repeated if the infant did not look at all calibration points or if the data quality at 
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the end of the procedure was not good enough. Nevertheless, if the infant seemed too tired the 

calibration was not repeated. Figure 2-4 shows the flow diagram with the calibration procedure 

that was applied for the studies described in the present thesis. Although this proceeding 

intended to add consistency in the evaluation of the calibration procedures, there was still 

certain subjectivity when deciding if a calibration had to be accepted or not.   

 

 

Figure 2-4 Calibration procedure. First, the infants’ eyes were detected while they looked at a 
baby-friendly video. Infants were calibrated using a 5 points calibration. The calibration was 
repeated when infants did not look at the points consistently or if at the end of the procedure the 
data quality was not good enough. Nevertheless, if the infant seemed too tired the calibration 
was not repeated.  

 

2.2.4 Room set up  

The experiments described in this thesis were performed in a soundproof room with no natural 

light (see Figure 2-5). The space was divided into the control area and the infant area by using 

black panels. The control area included the computer where the MATLAB program was being 

executed, and the stimuli monitor, where the experimenter could see the same display the infant 

was seeing during the experiment. The infant area included the eye-tracker, the monitor 

attached to the eye-tracker, the stereo external speakers located at both sides of the screen, 

the video camera to monitor and record the participant, and the infant’s chair.   
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Infants were positioned 60 cm away from the eye-tracker either sat on their caregiver’s lap or 

strapped on a car seat, depending on what the caregiver reported was the infant’s preference. If 

no preference was reported they were placed on the car seat. If infants became fussy while 

sitting on the car seat they were moved onto the caregiver’s lap.  

 

Figure 2-5 Room set-up. Infants were seated either on their mothers lap or on a high-chair at 60 
cm from the eye-tracker. The experimenter stayed in a separated area of the room located 
behind the eye-tracker. 

 

2.2.5 Recruitment 

The infants were recruited via magazine advertisements, social networking media and flyers 

and added into the infant database from the Centre for Brain and Cognitive Development. 

Parents of the infants were called and asked to participate in the studies. Adult participants 

were recruited using the SONA system, where volunteers could sign themselves up for the 

studies. Each participant was assigned with a unique ID number. The author of this thesis 

tested all the subjects that participated in the experiments.  

2.2.6 Experimental procedure 

Infants came to the lab at times when the caregivers reported they would be happy, rested, and 

feed.  Families were welcomed in a reception where infants could play with toys and familiarize 
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with the experimenter and the lab setting. Upon arrival, the experimenter gave the caregiver a 

brief explanation of the study and its procedure while interacting with the infant. Caregivers 

were instructed to refrain from interacting with the infants during the experiment. Before entering 

the experimental room, the caregiver was asked to sign two consent forms (one for the 

caregiver and one for the lab).  

Upon entering the room infants were strapped into the car seat or sat on their caregiver’s lap 

(see Figure 2-6). In the later scenario, caregivers were showed how to hold the infant to prevent 

them from moving excessively and were asked to maintain this position throughout the 

experiment. Infant’s eyes were detected with the eye-tracker while they looked at a baby-

friendly video displayed on the experimental screen (see Figure 2-3). Often this process 

involved changing the infants’ position and/or the angle of the infant with respect to the eye-

tracker until the eyes were accurately detected. Afterwards, infants performed a 5 points 

calibration (please see the previous section for more details about this procedure). 

After the calibration, the experiment started. If during the experiment infants became inattentive 

the experimented shook a noisy toy located behind the eye-tracker (in the control area of the 

room) in order to attract their attention towards the experimental screen. If infants became fussy 

the experiment was stopped. 

When the session finished, the experimenter showed the caregiver what the infant fixated 

during the study. Families were given baby t-shirts or bags as gifts for their participation, and 

their travel expenses were reimbursed. 

 

Figure 2-6 Infant participating in the study. 
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2.3 Measuring eye-movements in infancy: Issues and strategies for 

testing young infants 

Recording the eye-movements of special populations such as infants or participants suffering 

from certain disorders (Karatekin, 2007) entail a number of issues that can seriously affect the 

quality of the eye-tracking data (for an extended review about eye-tracking data quality go to 

Chapter 3). For instance, participants suffering from Autism may present a high degree of head 

movement (Kelly, Walker, & Norbury, 2013), which can lower the spatial precision and the 

accuracy of the data. Similarly, in some populations –such as in Parkinson patients – the head 

motion can be constant and consistent across all the participants in the study.  

Infants constitute a group that can be particularly difficult to test in eye-tracking studies (Aslin & 

McMurray, 2004; Aslin, 2012; Gredebäck et al., 2009; Oakes, 2012; Richardson & Johnson, 

2008; Rommelse, der Stigchel, & Sergeant, 2008; Saez de Urabain et al., 2014).  The issues 

that make this group especially challenging to test are numerous: for instance, they do not 

respond to experimental instructions, they do not sit still, or their eye physiologies are still 

underdeveloped and can considerably vary from one subject to another. All these problems can 

interfere with the detection process affecting the quality of the eye-tracking data and thus the 

experimental results (Holmqvist, Nyström, & Mulvey, 2012). In this section I will review some of 

these issues and describe the strategies used within this thesis to minimize the impact of these 

problems in data quality. Nevertheless, even after using these testing strategies in some cases 

data quality was far from perfect. In Chapter 3 I introduce I new method and software able to 

deal with variable quality eye-tracking data. 

As other special populations, infants can also present a high degree of head movement, 

especially from 7 to 8 months of age when their locomotor abilities are rapidly improving 

(Adolph & Berger, 2006). For this reason systems that require a chin-rest or that provide a small 

head-box are not suitable for infants. Remote eye-trackers are thus the most popular alternative 

for infants. To avoid the use of a chin-rest these eye-trackers include some extra algorithms for 

the head position calculations that can interfere with the gaze estimation and hence affect 

spatial precision (Holmqvist et al., 2011; Kolakowski & Pelz, 2006).  

Nevertheless many of the eye-tracking difficulties and quality problems in infants derive from 

poor calibration procedures (Duchowski, 2007; Feng, 2011; Oakes, 2012). As described earlier, 
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traditionally infants are calibrated using 5 points calibrations where a colourful puppet is 

presented in each corner and centre of the screen, while adults usually perform a 9 points 

calibration following a series of small dots (see Figure 2-2).  

The first obvious problem occurs when the infant does not look at the calibration points when 

they are presented (Oakes, 2012). As a consequence, the offset calculation will be incorrect 

and the spatial accuracy will be affected in one or more areas of the screen. After a calibration 

is performed the eye-tracker software generates a diagram displaying the calibration points 

together with the gaze points recorded during the calibration procedure. Whilst in some cases 

this diagram can be informative, it still assumes the subject was gazing the calibration points 

when they where presented, which may not always be the case when testing infants. Frequently 

infants move their eyes towards a target with certain delay (even several seconds) after it was 

presented. A strategy to control for this issue is to play the gaze data online while the calibration 

is being performed. 

Adult participants are frequently asked to repeat the calibration procedure until the results are 

satisfactory. Infants’ interest in the points may decrease very quickly, and thus it may not be 

possible to perform as many calibrations as needed. To minimize these issues the researcher 

can regularly change the calibration stimuli (e.g., varying it in colours and/or shapes) and 

accompany the points’ presentation with attractive sounds. At other times, the calibration points 

are presented too briefly for the infant to move his/her eyes from one point to the next. This 

problem is more obvious in subjects younger than 4 months, as the neural structures implicated 

in oculomotor control are still underdeveloped (M. H. Johnson et al., 1991; M. H. Johnson, 

2011) and thus may present long disengagement latencies (“sticky fixations”; e.g., Hood & 

Atkinson, 1993). This tendency lessens as the infant develops and by around 4 months of age, 

they are able to shift their attention more rapidly and accurately from one point to another. Thus 

during the first months of life it is more likely infants won’t follow the calibration points if they are 

too quick. This problem can be solved by giving the researcher the possibility to decide when 

the next calibration point should appear, e.g., the researcher presses a button when the infant is 

looking to the current calibration point.  

Visual acuity does not reach adult like levels before the third year of life (Atkinson, 2000; see 

Chapter 1). In fact, during the first 3 to 4 months of life infants may have problems 
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accommodating as a function of target distance and hence they may not see objects (i.e. the 

calibration points) that are further away than a certain distance (Salapatek et al., 1976). Thus, 

for subjects younger than 3-4 months, the distance between the infant and the presentation 

screen needs to be considerably shorter (around 30-40 cm; Salapatek et al., 1976) than the 

distance that is recommended for most eye-tracking systems (around 60 cm; Holmqvist et al., 

2011). Changing the recommended distance will obviously affect the quality of the data.   

Another problem related to the calibration procedure is the size of the calibration points. As it 

was previously explained, infant calibration targets are usually bigger and visually more 

complex than the traditional adult targets. This means that even though it is possible to tell if the 

infant is foveating the correct object, we still cannot know which part of the object they are 

gazing. Once again this can lead to imprecise offset calculations. A way of minimizing this 

problem is to use calibration points that even though are bigger than the typical dots for adults, 

have a clear central point that is more likely to be gazed (e.g., a colourful spiral) or decreases in 

size down to a point (see Figure 2-2). 

A final problem related to the calibration procedure is the viewing angle between the eye-tracker 

and the participant. Wrong angles may produce higher offsets and inaccurate binocular 

disparities. Usually this problem can be solved repeating the calibration procedure once again 

changing the participant’s or the eye-tracker’s position each time. Nevertheless, infants do not 

respond to instructions and their attention span is considerably lower than adults’. Thus, 

repeating this procedure may not always be feasible. 

To date, even though some procedures have been developed for calibrating infants (Gredebäck 

et al., 2009), there is are still no standards for performing and evaluating a calibration procedure 

(Oakes, 2012; see also Frank, Vul, & Johnson, 2009) and thus it is up to the researcher to 

decide whether a calibration procedure was successful or not.  

As described earlier, most of the current eye-tracking systems use corneal reflection to estimate 

gaze, where the pupil is detected using bright or dark pupil techniques (Holmqvist et al., 2011). 

There are various reasons why the glint or the pupil can be unreliably detected or not detected 

at all (e.g., poor lighting conditions, different eye physiologies, wrong distance and/or angle 

between the participant and the eye-tracker). As a consequence the data quality can be 

seriously affected (poor spatial precision, missing points) and hence, it can complicate the 
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process of identifying fixations (Holmqvist et al., 2012). Infants’ eyelids can be particularly 

watery, especially during the first few months of life, and this can considerably interfere with the 

glint detection process. Usually bright pupil techniques are considered to be more accurate than 

dark pupil ones when dealing with certain eye physiologies like bright eyes or watery eyelids 

(Gredebäck et al., 2009). For this reason, when testing young infants, it is always a better 

choice to use eye-tracking systems that also include a bright pupil corneal reflection technique. 

Despite of this, for this thesis all the studies were performed using the black pupil technique, 

due to limitations with the eye-tracking system (Tobii TX300) that was used to test the 

participants.  

2.4 Conclusions 

In this chapter I have introduced general eye-tracking methodology and a description of the 

equipment and techniques used for recording the data presented on this thesis. Furthermore, in 

the second half of this chapter I described some of the particularities and difficulties of 

measuring eye-movements in infants and the strategies that were used throughout this project 

to overcome some of these issues. Nevertheless, whilst the actions taken during the testing 

sessions did improve the quality of the data gathered from the eye-tracker, it was still far from 

being optimal.  

The studies described in this thesis are directed to study the mechanisms underlying saccadic 

control and fixation durations in infants. Moreover, besides presenting a series of behavioural  

studies I use a computational modelling approach, for which it is essential to gather as many 

valid fixations as possible from the eye-tracking recordings. As a result of the highly variable 

data quality, existing fixation detection approaches can be highly time consuming (hand-coding) 

or imprecise (automatic detection). In the next chapter I present GraFIX, a new method and 

software that attempts to address this problem by using a two-step process in which eye-

tracking data is initially parsed by using velocity-based algorithms whose input parameters are 

adapted by the user, and then manipulated using the graphical interface, allowing accurate and 

rapid adjustments of the algorithms’ outcome.  
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Chapter 3: GraFIX, a new method for detecting fixations in low 

and high quality eye-tracking data 

The data from this chapter has been published in the article: 

Saez de Urabain, I.R. , Johnson, M.H., Smith, T.J., (2014) GraFIX: A semiautomatic approach 

for parsing low- and high-quality eye-tracking data. Behavior Research Methods. 

doi:10.3758/s13428-014-0456-0 

3.1 Introduction 

Recent articles (Holmqvist, Nyström, & Mulvey, 2012; Wass, Smith, & Johnson, 2013) have 

highlighted the substantial impact that low quality data can have on experimental measures. A 

poor eye-tracking recording can affect the validity of results, and sadly, it is still not common 

practice to report data quality measures or deeper descriptions of the fixation detection methods 

used (Holmqvist et al., 2011, 2012). This can alter the viability of research results and hence 

lead to problems replicating previous studies. 

The present thesis investigates fixation durations and the mechanisms underlying saccadic 

control in infants. Therefore, it is an essential part of this project to detect fixations as accurately 

as possible to avoid misleading results. Furthermore, the use of a computational modelling 

approach to analyse the data requires a high number of fixations per participant, which can be 

particularly challenging when testing infant populations, in part due to the low quality of their 

data. As it was described in Chapter 2, testing infants entails a number of difficulties (e.g., high 

degree of movement, unreliable eye detection, low spatial precision) that result in highly 

variable data quality and render existing fixation detection approaches highly time consuming 

(hand-coding) or imprecise (automatic detection). To address this problem I developed GraFIX, 

a novel semi-automatic method consisting of a two-step process in which eye-tracking data is 

initially parsed by using velocity-based algorithms whose input parameters are adapted by the 

user, and then manipulated using the graphical interface, allowing accurate and rapid 

adjustments of the algorithms’ outcome. The present algorithms (1) smooth the raw data, (2) 

interpolate missing data points, and (3) apply a number of criteria to automatically evaluate and 

remove artifactual fixations. The input parameters (e.g., velocity threshold, interpolation latency) 

can be easily manually adapted to fit each participant. Furthermore, the present software 
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includes visualization tools that facilitate the manual coding of fixations. I assessed this method 

by performing an inter-coder reliability analysis in two groups of infants presenting low and high 

quality data, and compared it with previous methods. Results revealed that the present 

approach gives rise to more reliable and stable measures in low and high quality data. 

To download the code, go to: http://sourceforge.net/projects/grafixfixationscoder/ 

3.2 What is data quality and why it is so important 

The raw data recovered from any eye-tracker includes a time stamp and the x and y 

coordinates for one eye (monocular systems) or both eyes (binocular systems). Fixations can 

be identified when these coordinates are relatively stable in a point (and hence the eyes’ 

velocity, defined as the rate of change in x and y coordinates from one gaze point to the next, is 

low); whereas saccades are flagged when the x and y coordinates are more variable in the 

scene and the eyes’ velocity exceeds a given threshold (see Figure 3-2). Additionally, other 

types of eye-movements can be detected in the raw data, such as smooth pursuit (Larsson, 

Nyström, & Stridh, 2013), or blinks (e.g., Morris, Blenkhorn, & Zaidi, 2002). In cases when the 

data quality and the sampling frequency are very high, it is even possible to identify very short 

fixational eye-movements such as microsaccades, glissades or tremor (Nyström & Holmqvist, 

2010).  

The quality of the raw data generated by the eye-tracker may vary depending on many different 

factors such as the eye-tracker model and manufacturer, the eye physiology, the calibration 

procedure, the position of the participant relative to the eye-tracker, the degree of head motion 

(Holmqvist et al., 2011, 2012), or even ethnicity (Blignaut & Wium, 2014). The term “data 

quality” entails different aspects affecting eye-tracking data, but not all these aspects will 

necessarily affect fixation detection equally.  

Low data quality can have major effects on both spatial and temporal accuracy of gaze 

measurements (see Figure 3-1). Spatial accuracy or offset refers to the difference in space 

between the detected gaze and the real gaze, and can be an important issue when analysing 

areas of interest (AOIs; Holmqvist et al., 2012). Apart from the vertical and horizontal accuracy 

that the eye-tracking systems report, aspects such as binocular disparity should also be taken 

into account, especially when studying special populations. For instance, we know that 

binocular disparity in young infants may be markedly larger than in adults (Appel & Campos, 
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1977; Yonas, Arterberry, & Granrud, 1987). However, it is also common to find infant data with 

very large disparities as a consequence of poor calibrations or incorrect angles between the 

eye-tracker and the participant. Often, it is possible to minimize the effects of poor accuracy in 

AOIs analysis by simply enlarging the regions of interest, or by quantifying and correcting the 

offset for each participant (Holmqvist et al., 2011, 2012). Frank, Vul, & Saxe (2012) designed an 

offline procedure to correct errors in calibration in order to increase the accuracy and include a 

measure that evaluates it. They presented their participants (infants from 3 to 30 months) with 

calibration points that appeared during the experiment and that were subsequently used to 

correct the offset. 

 

Figure 3-1 Spatial precision and accuracy. Spatial accuracy or offset refers to the difference in 
space between the detected gaze and the real gaze. On the other hand, spatial precision is 
defined as the consistency in detecting and calculating gaze points. The red point represents 
the visual target, while the blue dots are the gaze points.  

 

Nonetheless, a data set with a large offset can also present high spatial precision and thus still 

be suitable to detect fixations accurately. We refer to spatial precision as the consistency in 

detecting and calculating gaze points (see Figure 3-2). Data sets with relatively low spatial 

precision will present higher gaze velocities as a result of noise in the data, and this will 

complicate the process of detecting fixations accurately. Precision can be affected by individual 

factors that vary on a participant basis, (such as different eye physiologies, or the position of the 

subject relative to the eye cameras), environmental factors that change according to the 

experimental design (such as the lighting conditions of the room where the participants are 
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being tested) or the eye-tracking hardware and software (Holmqvist et al., 2011, 2012). The 

default spatial precision for a particular eye-tracker can be calculated by using an artificial eye. 

Additionally, there are a number of methods to calculate spatial precision (Holmqvist et al., 

2011, 2012), such as the root mean square (RMS) of inter-sample distances (commonly used 

by manufacturers) or the standard deviation, which measures the dispersion of each sample 

from a mean value. To see the effect that spatial precision has on the detection of fixations by a 

velocity-based algorithm, see Figure 3-2.  

 

Figure 3-2 Data from 3 infant subjects recorded with a Tobii TX300 at 120 Hz. The first and the 
second row show the raw and the smoothed data respectively. The red and the blue lines 
represent the data from the left and the right eyes respectively. The third row displays the 
fixations detected by a velocity-based algorithm (velocity threshold = 35º/sec), and the fourth 
the velocity calculated from the smoothed data. Subject 1 shows low precision data, which is 
very common in young infants. As a consequence, the fixations-parsing algorithm detected a 
number of physiologically implausible artifactual fixations. Subject 2 displays high precision data 
from infants. Although the algorithm was more accurate, due to the high velocity threshold, it 
merged together fixations that had short saccades in between (e.g., fixation 8).  Subject 3 
shows a participant that presents frequent missing data points.  

 

Likewise, data loss (often a consequence of unreliable detections of the pupil or the cornea 

reflection) is another issue that can considerably affect fixation detection (Holmqvist et al., 2011, 

2012; Wass et al., 2013). This also is highly dependent on individual and environmental factors 
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as well as on the eye-tracker hardware and software. These individual variations in the 

recordings from different subjects can lead to very different levels of data quality (accuracy, 

precision and data loss), even when participants have performed the same study under the 

same experimental conditions. This can in fact be a problematic issue when trying to 

standardize the procedure to analyse the eye-tracking data: do we use exactly the same 

protocol and values to analyse the data regardless the noise that each participant presents? Or 

would it be more appropriate to adapt it somehow?  

3.3 Previous methods for detecting fixations 

Fixations can be detected by an algorithm or by a person on a basis of the visual inspection of 

the raw eye-tracking data. Many eye-tracking manufacturers already provide smoothing and 

event detection tools. However, what these algorithms do to the data may still be unclear for 

many users, especially for those not particularly familiar with event detection techniques. 

Additionally, when the user chooses arbitrary input parameters without considering issues like 

data quality, the sampling frequency, or other aspects of the experimental design (e.g., it is not 

the same to detect small fixational eye-movements in reading research or to detect saccades in 

infants), the detection results can be gravely affected and hence the validity of the experimental 

outcomes can be questioned (Holmqvist et al., 2012).   

Event detection algorithms can be classified into two main groups: dispersion and duration 

algorithms; and velocity and acceleration algorithms (for more detailed reviews see Holmqvist et 

al., 2011). Dispersal-based algorithms use a minimum fixation duration threshold (e.g., 50 ms) 

and the positional information (dispersion) of the eye-tracking data in order to decide if 

consecutive points belong to the same fixation, in which case they are grouped together. If not 

they are assumed to be a saccade or a missing point. Dispersion can be measured according to 

different metrics (Blignaut, 2009) such as the distance between the points in the fixation that are 

the farthest apart  (Salvucci & Goldberg, 2000), the distance between two random points in a 

fixation  (e.g., Shic, Scassellati, & Chawarska, 2008), the distance between two points at the 

centre of a fixation (e.g., Shic et al., 2008), the standard deviation of x and y coordinates  (e.g., 

Anliker, 1976), or a minimum spanning tree of the points in a fixation (e.g., Salvucci & Goldberg, 

2000). Currently it is possible to find a number of commercial (e.g., SMI BeGaze) and non-

commercial implementations for these algorithms (e.g., Salvucci & Goldberg, 2000), which are 

mostly used to parse low-sampling rate data (< 200 Hz). On the other hand, the algorithms from 
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the second group calculate the velocity and/or acceleration for each point in order to detect 

events on the data. Velocity-based algorithms in particular, flag all the points whose velocity are 

over a threshold (e.g., 10-70 °/sec) as saccades, and define the time between two saccades as 

a fixation. Once again there are a number of commercial (e.g., Tobii, EyeLink) and non-

commercial variations (Nyström & Holmqvist, 2010; Smeets & Hooge, 2003; Stampe, 1993; 

Wass et al., 2013) for this type of event detection algorithms. These algorithms are commonly 

used in data collected at high sampling rates (e.g., >500 Hz). All these algorithms are very 

sensitive to noise and unless the collected data has a very high spatial precision the results will 

include a number of artifactual fixations. 

The use of event detection algorithms implies decisions about which thresholds should be 

selected in order to obtain optimal results. However, how these decisions are made, the range 

of parameters that can be manipulated, and whether they are reported in published papers is 

not yet standardized making it difficult to compare or replicate results from different studies. 

Komogortsev, Gobert, Jayarathna, and Gowda (2010) compared the performance of different 

velocity and dispersal based algorithms and presented a standardized scoring system for 

selecting a reasonable threshold value (velocity or dispersion threshold) for different algorithms. 

Nevertheless, this article did not take into account the individual differences in data quality 

across participants and/or trials.  

Most researchers tend to use the same input parameters for all the participants paying very little 

attention to these variations in data quality and the effects that selecting different thresholds 

may have on the data from different participants. Nyström and Holmqvist (2010) presented a 

new velocity-based algorithm for detecting fixations, saccades and glissades using an adaptive, 

data driven peak saccade detection threshold that selects the smallest velocity threshold that 

the noise level in data allows. The use of thresholds was motivated by physiological limitations 

of eye-movements. These algorithms already highlighted the importance of adapting the input 

parameters to different levels of noise. More recent approaches have attempted to remove the 

need of arbitrary thresholds by applying non-parametric methods that use cluster analysis for 

detecting fixations and saccades (König & Buffalo, 2014). Nevertheless these methods still do 

not solve the problem of accurately detecting fixations in data sets with relatively higher levels 

or noise, such as those from infants.  
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Wass and colleagues (2013) analysed standard dispersal based fixation detection algorithms 

and showed how results were highly influenced by inter-individual variations in data quality. 

Additionally, they went a step further to solve these problems developing new detection 

algorithms that include a number of post-hoc validation criteria to identify and eliminate fixations 

that may be artifactual. These algorithms already exclude many artifactual fixations that where 

included when using other velocity-based detection algorithms. However, any automatic 

approach for detecting fixations in data with a certain degree of noise is likely to produce 

artifactual fixations that are erroneously calculated and/or fixations that are not detected at all. 

An alternative to using automatic algorithms is to hand-code eye-movements based on the 

visual inspection of the data. For instance, developmental psychologists have traditionally 

studied infants’ attention and eye-movements by videotaping participants and hand-coding the 

direction of the gaze post-hoc (e.g., Elsabbagh et al., 2009; Harris, Hainline, Abramov, 

Lemerise, & Camenzuli, 1988). Also, it is a common practice when analysing the data from 

head-mounted eye-trackers to replay the scene and eye videos frame by frame and make 

annotations of the onsets and offsets of fixations on a separate file (e.g., Tatler et al., 2005). 

Obviously these techniques are highly time consuming and can limit the number of subjects that 

a researcher is able to test and code. 

With a view to avoid these problems, some researchers suggest to exclude all the participants 

whose spatial precision is over a predefined threshold (Holmqvist et al., 2011, 2012). This way 

the use of automatic algorithms should be relatively safe, though not perfect. However, 

excluding participants according to their data quality is a luxury that not every study can afford, 

like is the case of the infant studies presented in this thesis. As previously explained, the data 

quality for many experiments studying high-cost populations such as infants or special 

populations to whom access is limited may be consistently low. Using data quality as an 

inclusion criterion might result in many participants (or even all) being excluded. In cases of 

special populations, the data can be too valuable to be discarded.   

3.4 Introducing GraFIX 

GraFIX implements a two-step approach where fixations are initially parsed by using an 

adaptive velocity-based algorithm, before the algorithm’s outcome is hand-moderated using a 

graphical interface (see Figure 3-3). As it was described before, previous methods for detecting 
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fixations have adopted either a purely automatic approach or manual coding. Due to the high 

variability in data quality across participants and even within a single participant (e.g., as a 

result of moving the head throughout the eye-tracking session), the automatic detection 

algorithms can be remarkably unreliable. On the other hand, current hand-coding methods (e.g., 

coding fixations looking at the videos frame by frame) can be extremely time consuming and in 

some cases imprecise if coding low quality data sets.  

 

Figure 3-3 GraFIX application overview. This is the main window where the user is allowed to 
manipulate fixations. The eye-tracking data is displayed in its different formats (raw and 
smoothed data). Top section of window: X and y coordinates are presented on the vertical axis 
and time on the horizontal axis. Fixations can then be identified when both x and y coordinates 
do not present any displacement in the vertical axis, and saccades when there is a vertical 
displacement between two fixations accompanied by a velocity peak. Automatically detected 
fixations (orange rectangles) are displayed aligned with hand-moderated fixations (green 
rectangles), which are the ones that can be manipulated by selecting an action on the right-side 
of the screen (create, delete or merge fixations; code them as smooth pursuit), and mouse-
clicking on them. Further, GraFIX allows defining and indicating the sections where the user is 
interested in detecting fixations by displaying them on white or grey. 

 

The proposed method combines these two approaches together in order to detect fixations in a 

rapid manner, and obtain a fixation distribution with the lowest possible degree of noise. The 

current fixation detection algorithm includes a number of input parameters that can be easily 

adapted on a participant basis. Additionally it implements three post-hoc validation criteria that 

fix or remove many of the artifactual fixations generated by the velocity-based algorithm. The 

ultimate aim of adapting the input parameters and applying certain post-hoc validation criteria is 
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to obtain the most accurate outcome by the algorithms alone and thus reduce the hand-coding 

time during the subsequent step. Once the fixations have been automatically estimated, the 

researcher can evaluate them and fix those that were not accurately detected using the GraFIX 

graphical hand-coding tool.  

3.4.1 Software description 

GraFIX is a multiplatform application developed in C++ and QT frameworks that makes use of 

Armadillo C++ linear algebra library. It works with any binocular or monocular eye-tracking 

system that can record raw X/Y gaze coordinates, including SMI, EyeLink or Tobii eye-trackers.  

3.4.1.1 User interface 

GraFIX displays the eye-tracking coordinates in the raw and the smoothed data boxes (see 

Figure 3-3). It presents the x and y coordinates on the vertical axis and time on the horizontal 

axis. Fixations can then be identified when both x and y coordinates do not present any 

displacement in the vertical axis, and saccades when there is a vertical displacement between 

two fixations accompanied by a velocity peak (see Figure 3-3, velocity box). Occasionally our 

eyes move to smoothly pursue an object in the visual scene, and this type of eye-movement 

can be identified when there is a regular increasing or decreasing displacement in the vertical 

axis with low velocity and acceleration (not present in Figure 3-3).  

The main window consists of a number of boxes where the eye-tracking data and the 

application’s output is visualized in addition to all the necessary buttons used to manipulate 

fixations (see Figure 3-3). A brief explanation of these different components is included below.  

• Menu Bar. The menu bar allows access to different dialogs such as Project configuration, 

Visualizations or Automatic Detection of Fixations dialogs.  

• Raw data. The horizontal axis represents time while the vertical axis displays the position 

of subsequent gaze data-points (Each data-point consists of the x and y coordinates for the 

right and/or the left eyes.). For binocular systems the right and left eye coordinates are 

displayed (x-right = Red; x-left = Orange; y-right = Dark blue; y-left = Light blue). In case 

the system is monocular, the data from the second eye will simply not be displayed.   

• Smoothed data. As for the raw data, the horizontal axis represents time while the vertical 

axis displays the position of subsequent smoothed gaze data-points. Once the data is 

smoothed the resulting x and y coordinates are displayed. 
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• Pupil dilation. In cases where the eye-tracking system provides pupil dilation data, it is 

displayed in this box. Additionally, the average pupil dilation is calculated for each fixation. 

• Velocity. The horizontal axis represents time while the vertical axis displays the velocity for 

subsequent gaze data-points.  

• Missing data from left and right eyes. If there is a data-point missing for either of the eyes it 

is displayed in this box. 

• Automatically detected fixations. The orange boxes represent the fixations that are 

automatically detected by the automatic-detection algorithms. 

• Flags from the automatic-detection algorithm. During the automatic detection the data is 

interpolated and the post-hoc validation criteria is applied. The flags indicate which data-

points were affected by different algorithms.  

• The cursor’s current location. A horizontal line is displayed at the cursor’s location 

facilitating the accurate coding of fixations’ onsets and offsets. Additionally, the From label 

indicates the line in the raw file where the cursor is located. 

• Manually coded fixations. The green boxes represent the fixations that can be manipulated 

manually. Each fixation has a fixation number that matches the numbers from the first 

column at the fixations list. 

• Fixations list. This is a list of the fixations that are being manually coded (green boxes). 

The first column shows the fixation number, the second displays the line in the raw file 

where the fixation starts, the third displays the line in the raw file where the fixation ends, 

and finally the fourth column reveals the fixation duration in seconds.  

• Select the action button. In order to perform an action the corresponding option has to be 

selected. Once it is selected one will need to click and drag the cursor in order to create, 

delete or merge fixations. Moreover, it is possible to target smooth-pursuit fixations by 

selecting this option and dragging the cursor on top of the fixations that need to be coded. 

In order to add more precision to the task it is possible to enter in the textboxes the start 

and the end of the fixation that needs to be manipulated, and press Execute. This will 

execute the action currently selected using the specified start and end points.   

• Non-active segment. The portion of the screen in grey corresponds to the tasks in the 

experiment that do not need to be coded. 
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• Active segment.  The portion of the screen in white corresponds to the tasks in the 

experiment that need to be coded. 

3.4.1.2 Input files 

The raw input file is a csv file separated by commas with the following columns:  

[(1) Time in microseconds; (2) zeros; (3) relative gaze-point X left eye; (4) relative gaze-point Y 

left eye; (5) relative gaze-point X right eye; (6) relative gaze-point Y right eye; (7) pupil diameter 

left eye (optional); and (8) pupil diameter right eye (optional)] 

If the eye-tracking system is monocular all the columns corresponding to the second eye should 

be substituted with -1s.  

The segments input file indicates which parts of the experiment need to be coded. If the whole 

data file is the subject of interest, this file does not need to be included.  

The segments input file is a csv file separated by commas with the following columns:  

[(1) Segment id, which is an unique number for each row; (2) Row number in the raw file where 

the segment starts; (3) Row number in the raw file where the segment ends.] 

3.4.1.3 Output files  

File smooth_[subject number].csv This file is created when the data is smoothed. Each row 

corresponds to a data point from the raw file, thus both files have the same length. This file is a 

csv file separated by commas with the following columns:  

[(1) Time in microseconds; (2) zeros; (3) smoothed X coordinate; (4) smoothed Y coordinate; (5) 

velocity; (6) Is saccade flag: 0/1; (7) Is interpolated flag: 0/1; (8) post-hoc merge adjacent 

fixations flag: 0/1; (9) post-hoc RMS flag: 0/1; (10) post-hoc minimum fixation flag: 0/1] 

File fix_auto_[subject number].csv This is created when fixations are automatically 

estimated. Each row contains the information for one fixation. This file is a csv file separated by 

commas with the following columns:  

[(1) Row from the raw file where the fixation starts; (2) row from the raw file where the fixation 

ends; (3) duration in seconds; (4) Average X coordinate; (5) Average Y coordinate; (6) RMS; (7) 

Is smooth pursuit flag: 0/1; (8) Average pupil dilation] 
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File fix_all_[subject number].csv This file is generated when the first fixation is created and it 

is updated every time a fixation is manipulated. It is a csv file separated by commas with the 

following columns:  

[(1) Row from the raw file where the fixation starts; (2) row from the raw file where the fixation 

ends; (3) duration in seconds; (4) Average X coordinate; (5) Average Y coordinate; (6) RMS; (7) 

Is smooth pursuit flag: 0/1; (8) Average pupil dilation] 

3.5 Automatic detection of fixations 

The first action for the two-step approach is to parse the eye-tracking data using adaptive 

velocity-based algorithms. The present automatic detection algorithms (1) smooth the raw data, 

(2) interpolate missing data points, (3) calculate fixations using a velocity-based algorithm, and 

(4) apply a number of post-hoc validation criteria to evaluate and remove artifactual fixations 

(see Figure 3-4). 

 

Figure 3-4 GraFIX Automatic detection of fixations. This screen displays the input parameters 
for the automatic detection. It is possible to adapt the parameters by simply changing their 
values from the sliders. By pressing Estimate fixations GraFIX executes the detection 
algorithms and displays the results on the orange rectangles. Flags indicating which post-hoc 
validation criterion was executed are also displayed. This process is relatively fast and thus 
allows multiple, and easy adjustments of the parameters. Once the user is satisfied with the 
results, the detection can be accepted by pressing Accept estimation. This will copy the 
automatically detected fixations (orange) on the hand-modulated fixations area (green).  



 91 

The input parameters (e.g., velocity threshold, interpolation latency) can easily be manually 

adapted to fit the data from different participants that present different levels of data quality .The 

objective of these algorithms is to obtain the most accurate fixation detection for each 

participant and thus reduce the amount of time spent manually correcting fixations in the 

subsequent step. 

3.5.1 Smoothing the data 

GraFIX uses a bilateral filtering algorithm in order to decrease the noise levels from the raw 

data. The current version of the algorithm is based on previous implementations (Durand & 

Dorsey, 2002; Frank et al., 2009) that average the data for both eyes and eliminate the jitter 

while preserving saccades.  

If only one of the eyes is detected, GraFIX allows the user to decide if the detected eye will still 

be smoothed or the sample should be excluded. Previous researches have argued that when 

one eye is not detected, the data from the other eye may be unreliable (Wass et al., 2013). 

However, when the eye-tracking data comes from special populations such as infants, the fact 

that one of the eyes is not detected does not necessarily mean that the sample from the other 

eye is inaccurate. For instance, it can be the case that the infant is simply occluding one of 

his/her eyes with his/her hand causing difficulties for the accurate detection of both eyes. 

Occasionally these missing points could lead to inaccurate results regardless the inclusion or 

exclusion of the data (e.g., if one eye was occluded during a fixation). In the interest of obtaining 

the highest number of fixations, for this thesis I also include the fragments in the data where 

only one eye was detected.  

3.5.2 Interpolating smoothed data 

Occasionally a data set will present a number of short gaps of missing data where the eyes are 

not accurately detected. These gaps can range from 1 to even 150 milliseconds and may 

severely affect the detection of fixations. To address this problem I included an algorithm that 

interpolates short segments of missing data (see Figure 3-5).  

Clearly it is not necessary to interpolate every single segment of missing data: the algorithm will 

only fill the gaps that are shorter than a given threshold and that belong to a fixation, and not a 

saccade. The interpolation latency is the longest period of missing data that will be interpolated. 

This value may change depending on our data quality or the experimental design. For instance, 
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for the studies included in this thesis I used a interpolation latency of 60 ms since the shortest 

fixations that could be manually coded in the data were never longer than this value. 

Nevertheless, other researchers have also used interpolation latencies as long as 150 ms, 

arguing that the minimum time taken to program a saccade is 100-130 ms and hence this way it 

is possible to avoid interpolating through a complete saccade-fixation-saccade sequence (Wass 

et al., 2013).  

 

Figure 3-5 Interpolation. The sample from the left shows a fixation that has missing points. As a 
consequence, there are velocity peaks in the middle of the fixation. On the other hand the 
picture from the right shows the same sample after interpolating the missing points (the green 
dots on the smoothed data are the interpolated points). In this case the velocity calculation 
looks significantly cleaner.   

 

First, the interpolation algorithm flags all the samples in the data whose velocities lie over the 

velocity threshold as saccades, and the data segments between two saccades are targeted as 

fixations. The velocity threshold, which is also used and described in the forthcoming steps, can 

be set to meet the requirements of different data sets.  
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Secondly, when a gap longer than the interpolation latency is found, the algorithm finds the 

subsequent and previous fixations and calculates the mean Euclidean distances from a central 

point for each of them. When the difference between both Euclidean distances is smaller than 

the “Maximum displacement between the two ends of a fixation” value, the gap is interpolated. It 

is important to determine the correct “degree per pixel” parameter (in visual angle) in order to 

convert the degrees to pixels properly (the pseudocode for this algorithm is described in 

Appendix A). 

3.5.3 Velocity threshold and fixation detection 

As in previous velocity-based detection algorithms (e.g., Nyström & Holmqvist, 2010; Smeets & 

Hooge, 2003; Wass et al., 2013), all the samples whose velocities lie over a certain threshold 

are flagged as saccades and the data segments between two saccades are targeted as 

fixations. Choosing the right velocity threshold highly depends on the characteristics of the data 

that is being analysed, or on how short are the saccades that need to be detected (Holmqvist et 

al., 2011). For instance, low sampling rates will present some limitations when detecting very 

fast eye-movements such as microsaccades. Previous research has shown that saccades 

smaller than 10° cannot be detected with systems with a sampling rate of 60Hz and lower 

(Enright, 1998). This is because the peak velocity calculation may not be accurate enough if 

only very few samples of a saccade were recorded. The lower the sampling frequency, the 

lower the calculated velocities for short saccades will be. In these cases a fixation detection 

algorithm would merge the fixations before and after an undetected saccade and this would 

result in longer artifactual fixations. In order to reliably detect small saccades and reduce noise 

it is recommended to use high sampling frequencies and lower velocity thresholds.     

Nevertheless, data from special populations such as infants can still represent a challenge due 

to its low quality. Thus when the noise levels are higher, the velocity threshold should be 

increased accordingly in order to decrease the number of “false positive” saccades. This leads 

to the question of whether participants featuring different levels of data quality could be 

analysed together using the same input parameters. As suggested in previous research (Wass 

et al., 2013), different levels of noise can seriously affect the outcome from fixation detection 

algorithms. There are two opposing approaches that have been traditionally used to minimize 

this issue. Some researchers prefer to use exactly the same input parameters for all the 

participants (such as the velocity threshold) regardless the level of noise each participant 
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presents (Wass et al., 2013). Usually these parameters are set to fit the requirements for 

participants with high levels of noise. Consequently, the velocity threshold can be too high to 

detect relatively fast saccades, which could ultimately lead to the detection of long artifactual 

fixations. Moreover, these saccades would still remain undetected in very low precision data 

sets even after lowering the velocity threshold. On the other hand, it is possible to adapt the 

input parameters according to the level of noise on a participant-by-participant basis (e.g., 

Nyström & Holmqvist, 2010). Although the use of different velocity thresholds can lead to 

different outcomes from the detection algorithms, it is possible to remove a number of artifactual 

fixations (this is especially important in noisy data-sets) by also adapting the input parameters 

for the post-hoc validation criteria (explained below) and manually fixing the fixations that were 

not detected correctly. With current systems it will never be possible to remove all the noise, but 

researchers can minimize its effects and obtain the cleanest result for both low and high quality 

data.     

3.5.4 Post-hoc validation 

Once the data is smoothed and interpolated, fixations can be automatically calculated by 

executing the velocity-based algorithms described below. Additionally it is possible to apply a 

number of post-hoc validation criteria in order to manipulate the algorithm’s outcome and obtain 

the most accurate results. All the input parameters (including the velocity threshold described in 

the previous section) can be adapted on a participant-by-participant basis. This way it is 

possible to personalise the detection process to different subjects with different levels of data 

quality and reduce, to a certain degree, the insertion of noise by the algorithms. 

3.5.4.1 Merging adjacent fixations with similar location 

Occasionally, the detection algorithms can break down fixations with low precision into a 

number of smaller fixations. This is because one or more samples from a fixation may present a 

velocity peak that is higher than the defined velocity threshold and hence be mistakenly flagged 

as a saccade (see Figure 3-6, first column). As such, even fixations with high spatial precision 

can have few samples that were not accurately recorded and consequently will generate the 

same peaks in velocity as saccades. Therefore, this issue is of special concern in low spatial 

precision data sets, even though it can affect any eye-tracking recording.  
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Figure 3-6 Post-hoc validation examples.  We present different segments of data from one 
infant collected with a Tobii TX300 system at 120 Hz. The velocity threshold was set to 9º/sec. 
Sample 1 shows how as a consequence of the low precision in the data there are velocity peaks 
that pass the velocity threshold and hence are erroneously flagged as saccades. Merging 
adjacent fixations with similar location helps overcoming this problem. Sample 2 shows fixations 
with low precision that are deleted if they overcome a given RMS threshold. Sample 3 shows a 
number of very short artifactual fixations that are detected as a consequence of the poor 
precision in the data. The minimum fixation post-hoc validation criterion deletes all the fixations 
shorter than a given threshold.  

 

The present post-hoc validation algorithm merges adjacent fixations that are close in time and 

space (see Figure 3-6, first column). First the algorithm will select fixations that have a gap in 

between of less than 50 ms, and then it will evaluate if these fixations are also close enough in 

space. For this purpose the user is able to set up a threshold and define the maximum distance 

in degrees between two fixations. Thresholds for merging should depend on the sampling 

frequency, data quality, stimulus spacing, density of visual information, or even on the research 

question (e.g., studies investigating microsaccades may require very low thresholds). 

Participants that present low spatial precision, for instance, will require higher distance-
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thresholds than those with high precision samples. In high-precision data recorded with a high-

sampling rate such small displacements between fixations may actually represent 

microsaccades and therefore post-hoc merging of fixations should be avoided. 

3.5.4.2 The root mean square (RMS) of inter-sample distances per 

fixations does not exceed a threshold 

Spatial precision is crucial for a correct detection of fixations (Holmqvist et al., 2011, 2012), in 

particular if the research interests rely on the study of very small fixational eye-movements such 

as microsaccades. Further, as explained in the sections above, in populations such as infants 

spatial precision can also be a major issue as a result of the many practical and technical 

difficulties of testing them (see Chapter 2).  

The current post-hoc validation criteria calculates the RMS for each fixation for both the vertical 

and horizontal axis together, and deletes all the fixations with a value above a given threshold 

(in degrees of visual angle; see Figure 3-6, second column). In high precision data sets the 

RMS can be smaller than 0.10º, while in low precision data sets it can be higher than 0.20º.  

3.5.4.3 Minimum fixation duration 

Especially in data sets with low spatial precision, the detection algorithms may mistakenly 

generate very short fixations. This is because the dispersion for some of the samples belonging 

to a fixation may be high enough to generate velocity peaks over the given threshold that will be 

flagged as saccades (see Figure 3-6, third column).   

 In order to avoid this problem GraFIX can delete all the fixations with a duration under a given 

threshold (e.g., 100 ms). In the event that a data set is very noisy the minimum fixation 

threshold should be set higher. This does not necessarily mean that it is not possible to find 

short fixations in our dataset: in case there are clean short fixations, they can also be manually 

coded after the automatic detection of fixations.  

3.5.5 Defining the right parameters for detecting fixations 

GraFIX is able to run the fixation detection algorithms and visualize the results very quickly. For 

instance, 30 minutes of data at a sampling frequency of 300 Hz can be parsed in less than a 

second (the processing speed also depends on the capabilities of the machine where the 

application is being executed). This permits the user to adjust the input parameters and 

evaluate their effect on the data in a rapid manner. In fact, it can be immensely helpful (for 
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novice users in particular) to be able to visualize each estimation and see how changing the 

input values described above will affect the detection of fixations.  

When the user acknowledges that the fixation detection is accurate enough, the estimation can 

be accepted and the manual inspection of the algorithms’ outcomes will start. At this point, the 

user can review all fixations and manipulate them in order to meet a chosen fixation detection 

criteria and reduce the noise in the data.   

The researcher can decide whether the input parameters for the event detection algorithms 

should remain the same for the entire data set or if they should change as a function of data 

quality. In case different parameters are used for different participants at different levels of data 

quality, it can be argued that as the results for these participants were calculated by using 

different criteria they should not be grouped together. We know, however, that the selection of 

certain input parameters will affect low and high quality data differently (see section 3.5.3) 

Therefore, even when the parameters remain the same for the entire data set they may affect 

the results from participants presenting high and low data quality differently.  For this reason it 

can also be argued that adapting the input parameters is a step to reduce the levels of noise for 

each participant’s results. Nonetheless, the algorithms alone, even after adapting the input 

parameters on a participant basis, are always subject to errors, particularly when processing 

low quality data. In order to fix some of these errors and achieve the cleanest results possible I 

also propose the manual adjustment of fixations.  

3.6 Manual adjustments of fixations 

Once the fixations have been automatically calculated, the user can examine and manipulate 

them in order to fix the algorithms’ outcome. Even the most accurate algorithms may generate a 

number of artifactual fixations that can corrupt the validity of the experimental results. This is 

because most of the times the data is assumed to have high spatial precision or at least to 

present similar levels of noise across the whole duration of the experiment, and this is not 

always the case. In fact, when working with populations such as infants it will rarely be the case.   

Fixations can be created, deleted or merged by simply clicking and dragging the mouse on the 

main screen. For instance, in order to create a fixation the user just needs to click the point on 

the screen where the fixation starts and drag the cursor until the point where the fixation ends. 

The tags From and To located at the upper right of the screen indicate the exact onset and 
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offset of the current fixation (see Figure 3-3). Once the fixation is created it will appear on the 

fixations list at the upper left of the screen. If a fixation A starts on the current fragment and 

ends on the next, we need to (1) create a first fixation whose onset fits with fixation A’s onset 

and drag the cursor a bit further than the end of the fixations box, (2) create a second fixation on 

the next fragment whose offset fits with fixation A’s offset, and (3) merge both fixations. 

Additionally, fixations can be coded as smooth pursuit once they are created. 

In general high quality data sets will not need as much manual adjustment, whereas low quality 

sets will require significantly more. I refer to the process of first parse fixations applying 

detection algorithms and then fix the outcome with the hand-coding tool as the two-step 

approach. The only difference between this method and hand-coding is that for the two-step 

approach the detection algorithms are first executed and their output is used as a starting point 

for doing the manual-coding. Thus, the results from the two-step approach and from a purely 

hand-coding approach should be approximately the same, while the coding-time will be 

considerably reduced with the proposed method (for more details go to the section 3.9.2). To 

demonstrate the time difference I coded a randomly selected subject both manually (using 

GraFIX hand-coding tools) and applying the two-step approach. The total length of the 

experiment was 18.5 minutes. I invested considerably more time hand-coding the data (51 

minutes) compared to applying the two-step approach (35 minutes). Still, these values are both 

considerably lower than the time that was required by previous hand-coding approaches (e.g., 

coding the same videos frame by frame could easily take several hours).   

 Evidently the amount of time that the researcher needs to expend coding depends on his/her 

expertise and on the characteristics of the data (e.g., data quality). Further, accurate detections 

will require less coding than inaccurate ones, and hence the coding time in these cases will be 

shorter. 

3.7 Visualizations 

Most of the time it is relatively easy to identify fixations by looking at the 2D representation of 

the x and y coordinates; however, when the coder is not entirely sure about coding a particular 

fixation it is very helpful to visualize the data in other formats.  

GraFIX allows the 2D visualization in real-time of the raw and smoothed data together with the 

IDs of the fixations that are being coded. Additionally, it is possible to include the stimuli in the 
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background for all the different tasks of the experiment. This permits a further evaluation of the 

fixations and facilitates the coding process, especially for novice coders.  

3.8 Pupil dilation 

GraFIX will also process the pupil dilation data in case it is provided. Once the pupil dilation 

data is included in the raw input file, it is automatically displayed on the main window. 

Furthermore, the visualization dialogs include the option to play the eye-tracking data together 

with pupil dilation. Each fixation that is created or modified by GraFIX includes the pupil dilation 

means.  

3.9 Software Validation 

GraFIX has been evaluated from four different perspectives. First, the agreement between two 

different raters was assessed using the intra-class correlation coefficient (ICC; Hallgren, 2012) 

in two groups of infants featuring low and high quality data. Secondly, hand-coding results were 

compared to the two-step approach (automatic detection + hand-coding), demonstrating that 

both techniques were generating exactly the same results. Thirdly, the outcome from GraFIX 

automatic algorithms was compared to the two-step approach. Finally, I compared hand-coding 

results with GraFIX automatic algorithms and previous automatic detection algorithms (the 

velocity-based algorithms from Wass, et. al, 2013; the adaptive velocity-based algorithms from 

Nyström and Holmqvist, 2010; and the I-VT filter velocity based algorithm as implemented in 

Tobii-studio 3.0.0).  

Additionally, GraFIX has been successfully used to code data from various monocular and 

binocular eye-tracking systems such as Tobii, Eye Link or SMI systems, at different sampling 

rates.  Even though using different eye-trackers does not affect the performance, high sampling 

rates may slow down the execution of the algorithms.  

3.9.1 Validation 1: Inter-coder reliability 

Manual coding always involves an evaluation of the degree of agreement between different 

raters. Data from a group of three infants with low spatial precision (RMS > 0.30° per infant; 20-

25 minutes of data each) and another group of three infants with high spatial precision data 

(RMS <0.13° per infant; 20-25 minutes of data each) was recorded using a Tobii TX300 eye-
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tracker at a sampling rate of 120Hz and Matlab (with Psychophysics Toolbox1 Version 2 and 

T2T2). Note that even though the spatial precision for the second group was relatively high, it 

was still data coming from infants and thus there was a high degree of head motion and 

frequent missing data points.  

An external coder with no eye-tracking experience and naive to expected outcomes was trained 

to code fixations from both groups. The second coder was the author for this thesis. The coders 

had to (1) run the automatic detection algorithms using the parameters from Table 3-1, and then 

(2) manipulate the resulting outcome in order to remove artifactual fixations or add those 

undetected by following the predefined guidelines. The input values for automatic detection 

were chosen after executing the algorithms with a wide range of values and evaluating the 

outcomes. The values from Table 3-1 may not necessarily be optimal in data sets with other 

characteristics, and may change for different participants, experiments and/or groups. I decided 

to have two sets of parameters for the two different groups in order to facilitate the process for 

the novice coder and to define some standards for the execution of the automatic detection 

algorithms. 

In order to keep the same standards across participants and coders it is essential to define strict 

guidelines about how to code the data. A fixation was coded when both the x and y coordinates 

were stable at one point or in other words, when the 2D representation of both x and y 

coordinates were displaying horizontal lines. If the detection of one eye was imprecise the data 

from the other eye was used. If the coder was not entirely sure about coding a particular fixation 

he/she was advised to leave it out. Saccades that were too short to be detected by the 

algorithms were also coded. Fixations that were cut by blinks and smooth pursuit eye-

movements (diagonal movement of the x/y trace) were deleted. These guidelines may change 

depending on the experimental design. For instance, if the researcher is particularly interested 

in smooth pursuit eye-movements, those would not be deleted. 

The inter-rater reliability between the means and the number of detected fixations was 

evaluated using the ICC (Hallgren, 2012). A strong agreement between the mean fixation 

durations was found for both the low quality data group (with an ICC of .967, p = 0.016) and the 

high quality data group (with an ICC of .887, p = 0.038). Additionally, I also found strong 

                                                        
1 See Psychophysics Toolbox documentation: http://psychtoolbox.org/ 
2 See T2T documentation: http://psy.ck.sissa.it/t2t/ 
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agreements in the number of fixations detected for low (with an ICC of .938, p = 0.037) and high 

quality data (with an ICC of .971, p = 0.009).  Interestingly, the agreement in the low quality 

group is slightly higher than in the high quality group. This may be because fixations that were 

not clear enough were not coded, and this can appear to be slightly more subjective in high 

quality data sets, where the data quality is a bit more variable across the time course of the 

experiment (due to head motion and/or data loss). Possibly, one coder was a bit more strict 

than the other removing a higher number of automatically detected fixations in the parts were 

the data was not optimal.  

This demonstrates that the manual coding can be highly reliable, even in low quality data sets.  

 

Table 3-1 Input parameters for high and low spatial precision data for the inter-coder reliability 
data. 

 High spatial 
precision 

Low spatial 
precision 

Interpolation latency (ms) 60 60 

Velocity threshold (°/sec) 9 20 

Maximum interpolation  displacement (°) 0.25 0.25 

Degree per pixel (°/pix) 0.0177 0.0177 

Maximum distance for merging adjacent fixations (°) 0.24 0.35 

Maximum time for merging adjacent fixations (ms) 50 50 

Maximum RMS per fixation (°) 0.24 0.21 

Minimum fixation duration (ms) 99 120 

 

3.9.2 Validation 2: Comparing hand-coding with the two-step approach 

In this section I demonstrate how the results generated by hand-coding are the same as those 

obtained applying the two-step approach, where the data is pre-processed using event-

detection algorithms before it is hand-coded.  
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As mentioned in previous sections, the main purpose of pre-processing the data before it is 

hand-coded is to speed up the process of detecting fixations: the more fixations the algorithms 

are able to detect accurately, the less time the coder will expend manually adjusting fixations 

afterwards. It can be argued, however, than having the results from the event detection 

algorithms as a basis to hand-code fixations can influence the coder’s decisions for accepting or 

deleting fixations. To demonstrate that this is not the case I compared results from hand-coding 

(using GraFIX coding tool, but without pre-processing the data beforehand) with results from the 

two-step approach. 

I used exactly the same data as in the previous section where two groups of infants featuring 

low and high quality data were analysed. One of the coders re-coded all the data using a purely 

hand-coding approach in order to compare it with results from the previous section coded with 

the two-step approach.  

The inter-rater reliability between the means and the number of detected fixations was 

evaluated using the ICC (Hallgren, 2012). All infants were included in the same analysis 

regardless their data quality. A strong agreement between mean fixation durations was found 

(with an ICC of .993, p < 0.001).  Additionally, I also found a strong agreement in the number of 

detected fixations (with an ICC of .994, p < 0.001).   

This analysis demonstrates that the results from a purely hand-coding approach and the two-

step approach are the same, thus both can be considered as close to a “ground-truth” 

identification of fixations as is possible. 

3.9.3 Validation 3: Comparing the automatic detection with the two-step approach 

In this section I compare GraFIX algorithms for the automatic detection of fixations with the two-

step approach where the algorithm’s outcome was also hand coded.  

I used exactly the same data as in the previous sections. In particular, I took exactly the same 

fixations calculated by one of the raters, which were coded using the two-step approach, and 

use it to compare it with the outcome from the algorithms alone. As it was demonstrated in the 

previous section, in terms of results the only difference between hand-coding and the two-step 

approach is that the second one is faster. In both cases the data is manipulated to reach the 

same criteria, thus the two-step approach could be considered a method to hand-code the data. 

The input values for the automatic detection algorithms were the same specified in Table 3-1. 
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For the high quality data group I found a strong agreement between the automatic and the hand 

coding both for mean fixation durations (with an ICC of .973, p = 0.019) and number of fixations 

(with an ICC of .966, p = 0.008). On the other hand, no significant agreements were found for 

the low quality data group for the means (with an ICC of 14.969, p = 0.849), even though there 

was an agreement in the number of detected fixations (with an ICC of .898, p = 0.073). This can 

also be seen in the means and standard deviations from Table 3-2: the values resulted from 

automatic algorithms and hand-coding in high precision data look quite similar, whereas it is not 

the case for low precision data. 

Figure 3-7 shows how the algorithms are able to accurately detect fixations in high spatial 

precision data (Figure 3-7, left), although even then few manual adjustments are advisable. On 

the contrary, low spatial precision data (Figure 3-7, right) needs major adjustments even though 

these algorithms alone can still capture the trend in the fixations duration distribution.  

 

Table 3-2 Automatic vs. Hand-coding: Fixation durations means and standard deviations in low 
and high spatial precision data. 

 High spatial precision Low spatial precision 

Automatic algorithms FDs 625.1 ± 847.8, (N = 2410) 552.2 ± 536.3, (N = 863) 

Two-step approach FDs 627.9 ± 866.2, (N = 2268) 489.9 ± 445.9, (N = 858) 

 

 

Figure 3-7  GraFIX automatic algorithms vs. Two-step approach (automatic detection + hand-
coding) in high (left) and low (right) quality data.  
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3.9.4 Validation 4: Comparing GraFIX to previous approaches 

In this section I compare the detection results from GraFIX (both the automatic algorithms and 

the hand-coding) with previous algorithms. In particular, I tested the fixation-parsing algorithms 

for low quality data described in Wass et al. (2013), the adaptive velocity-based algorithms from 

Nyström and Holmqvist (2010), and the I-VT filter (as implemented in Tobii Studio 3.0.0). The 

last two algorithms are not designed to deal with particularly low quality data, such as data 

recorded from infants. In fact, even though Nyström and Holmqvist (2010) adapt the velocity 

threshold according to the level of noise, they still maintain that the algorithm is suitable only for 

data collected from viewers with relatively stable heads while watching static stimuli3. This is 

obviously not the case for most data coming from infants and other special populations, which is 

likely to be much noisier than any of the recordings previously tested with these algorithms. 

However, given that these algorithms are considered a well-established method for event 

detection, I decided to include them in our comparison.  

I selected three infants that presented high precision data (RMS <0.13º per infant; 5-6 minutes 

of data each) and another three infants that presented low precision data (RMS > 0.25º per 

infant; 5-6 minutes of data each) from an experiment that was recorded using a Tobii TX300 

eye-tracker and Tobii Studio 3.0.0 at a sampling rate of 120Hz. Once again it is important to 

bear in mind that this is data from infants and thus it still presents a high degree of movement, 

variability in the levels of noise across the experiment and frequent missing data points, even in 

the high precision group. 

When possible, I used the same input parameters for the four algorithms (see Table 3-3). 

Nevertheless I still kept two sets of parameters for GraFIX automatic algorithms (for high 

precision and low precision data), as adapting the input values according to the data quality is 

still one of the main advantages of the present approach.  

 The parameters that I used for Wass et al. (2013) algorithms and the I-VT Filter were –if 

applicable- the same as for GraFIX algorithms in low quality data. This is because when there 

are subjects with various levels of noise it is a more common practice to use thresholds that 

rather fit the subjects with higher noise. The algorithms from Nyström and Holmqvist (2010) 

include an adaptive velocity threshold that is re-calculated every 10 seconds (I divided the data 

                                                        
3  See the README attached to the code the authors provide. 
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for each participant in 10 seconds chunks). The input parameters that are not reported in Table 

3-3, such as the blink acceleration threshold or the post-hoc validation inputs, were set to the 

values that were recommended in the original articles from Nyström and Holmqvist (2010) and 

Wass et al. (2013) respectively. 

Table 3-4 shows the means and the standard deviations obtained from the different algorithms 

and hand-coding and Figure 3-8 displays the graphs with all the fixation duration distributions 

from the four algorithms paired with the hand-coding distribution, which was coded by using the 

two-step approach. I assume that the algorithm that gets closer to the hand-coding distribution 

will be the one able to detect fixations more accurately. The differences between algorithms in 

both high and low precision groups are striking. Results for the high spatial precision group 

revealed differences in the means and also in the number of detected fixations. The I-VT filter in 

particular, presented an especially high number of detected fixations (N = 1199) compared to 

hand-coding (N = 973) that can be the result of mistakenly flagging very small fixations in 

segments that were slightly noisier (see Figure 3-8; First row, fourth column). Because of this 

reason the mean duration (M = 554.0 ms) are lower than the means for the other algorithms or 

for hand-coding. On the other hand, GraFIX and Wass et al. (2013) algorithms present means 

that are a bit above the hand-coding mean (M = 674.5 ms). An explanation for this can be 

related to the selection of the velocity thresholds and the sampling rate. As it has been 

previously mentioned, saccades with very small amplitudes may go undetected by velocity-

based algorithms, especially when the data is recorded at low sampling rates (<200). As a 

consequence, the fixations before and after these saccades will be merged together in a longer 

fixation. Obviously, at higher velocity thresholds it is more likely that fixations will be merged 

together. Since the velocity threshold for Wass et al. (2013) was higher (20°/sec) than for 

GraFIX algorithms (9°/sec) it is also not surprising that the mean for the first algorithms was still 

higher than for the proposed algorithms. The algorithms from Nyström and Holmqvist (2010) 

avoided this problem by adapting the velocity threshold according to the level of noise in the 

data. Even though they still capture the trend in the distribution, the data quality for the samples 

that were analysed (even for the high precision group) is probably too low for obtaining more 

accurate results from these algorithms. Eyeballing the graphs from Figure 3-8  (first row) it is 

possible to see how the fixation duration distribution produced by GraFIX algorithms had the 

closest resemblance to the hand-coding distribution in high precision data. 
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Results from the low spatial precision group revealed even higher differences between the four 

algorithms. As it can be seen in Table 3-4 and in the Figure 3-8 (Second row, fourth column), 

the problem that the I-VT filter presented in the high precision data was even more obvious 

here. Likewise, Nyström and Holmqvist (2010) algorithms did not manage to deal with such a 

high degree of noise (see Figure 3-8; Second row, third column). Looking at the graphs and the 

means it seems that due to the low precision in the data the velocity threshold that was 

calculated may have been too high. It is also interesting to see that even though the length of 

the recordings was approximately the same for the low and high quality groups, the number of 

detected fixations in low precision data was almost half the number of fixations detected in high 

precision data for GraFIX algorithms, Wass et al. (2013) algorithms, and hand-coding. Wass et 

al. (2013) algorithms exclude a high number of fixations with their post-hoc validation criteria, 

and this is probably why their algorithms still detect many less fixations than the algorithms that 

I propose. Once again GraFIX algorithms seem to resemble the hand-coding fixation duration 

distribution more accurately, even though they would still need manual adjustments (the two-

step approach) to be perfect. 

Overall, even though all the algorithms are far from perfect, results from GraFIX algorithms were 

the ones that more closely matched the hand-coding results. I believe that this is not only 

because the particularities of these algorithms but also because I am adapting the input 

parameters to different levels of noise. I would not recommend, however, the exclusive use of 

automatic detection algorithms unless the data quality is very high. Evidently, when the 

algorithms’ outcome is accurate, the time that needs to be invested in correcting artifactual 

fixations will be considerably lower.  

In sum, GraFIX seems to be an effective alternative to previous methods that will improve the 

quality of our results and the time invested coding eye-tracking data. 
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Figure 3-8 These graphs display the hand-coding (green; GraFIX two-step approach) fixations 
distribution paired with the distributions for the four different algorithms (red). I assumed that the 
algorithm that is closer to hand-coding is the one able to detect fixations more accurately.   
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Table 3-3 Input parameters for the automatic detection algorithms 

 GraFIX  

(high 
quality) 

GraFIX  

(low 
quality) 

Wass, 
Smith & 
Johnson 
(2013) 

Nyström 
& 
Holmqvist 
(2010) 

I-VT 
Filter  

Interpolation latency  (ms) 60  60  60  n.a. 60  

Velocity threshold (°/sec) 9 20 20 Adaptive 20 

Maximum interpolation  
displacement  (°) 0.25 0.25 n.a. n.a. n.a. 

Degree per pixel (°/pix) 0.0177 0.0177 0.0177 n.a. n.a. 

Maximum distance for 
merging adjacent fixations (°) 0.24 0.35 n.a. n.a. 0.35 

Maximum time for merging 
adjacent fixations (ms)  50  50  n.a. n.a. 50  

Maximum RMS per fixation 
(°) 0.24 0.35 n.a. n.a. n.a. 

Minimum fixation duration 
(ms) 99  120  100  100  100  

 

Table 3-4 Comparing detection algorithms with hand-coding: Fixation durations means and 
standard deviations in low and high spatial precision data 

 High spatial precision Low spatial precision 

Hand coding  674.5 ± 621.9, (N = 973) 657.3 ± 642.0, (N = 424) 

GraFIX Automatic algorithms  719.9 ± 696.4, (N = 954) 640.4 ± 589.3, (N = 505) 

Wass, Smith & Johnson (2013) 779.3 ± 826.5, (N = 676) 491.2 ± 490.2, (N = 229) 

Nyström & Holmqvist (2010) 571.2 ± 588.7, (N = 540) 1337.9 ± 1435.1, (N =103) 

I-VT Filter 554.0 ± 527.4, (N = 1199) 240.7 ± 169.0, (N = 1102) 
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3.10 Discussion 

In this chapter, I described a new method and software to parse fixations in low and high quality 

data. This method was used in all the studies described within this thesis. Previous fixation 

detection methods are based on either purely automatic approaches or manual coding of the 

eye-tracking data. The high variability in data quality across participants and even during the 

experiment can seriously affect the automatic detection algorithms and as a consequence their 

results can be remarkably unreliable. On the other hand, current hand-coding methods can be 

extremely time consuming and imprecise. The present method implements a two-step approach 

for detecting fixations, where the data is first parsed by using a new adaptive velocity-based 

algorithm specially designed to deal with low quality data, and second the algorithm’s outcome 

is manipulated with a view to fix the errors that the automatic process may have generated. 

GraFIX fixation detection algorithms go through a number of steps in order to parse fixations 

accurately. First, the raw data is smoothed by using a bilateral filtering algorithm (based on 

previous implementations from Durand & Dorsey, 2002; Frank et al., 2009). This algorithm 

averages the data for both eyes and eliminates the jitter while preserving saccades. Secondly, 

missing data points are interpolated in order to avoid the detection of artifactual fixations in the 

subsequent steps. I showed how these missing points generate peaks in velocity that can be 

mistakenly flagged as saccades. Thirdly, a velocity-based algorithm gives us an initial parsing of 

the data. However, the results from this algorithm may still include artifactual fixations. Finally, 

GraFIX executes three post-hoc validation algorithms aiming to fix and/or remove the artifactual 

fixations detected in the previous step. In particular, the post-hoc algorithms (1) merge adjacent 

fixations that are close in space and time, (2) remove all the fixations whose RMS is over a 

given threshold, and (3) delete all the fixations with shorter duration than the minimum fixation 

(in this order).  

GraFIX detection algorithms aim to obtain the most accurate fixation detection for each 

participant and thus reduce the amount of time the researcher has to spend correcting fixations 

in the subsequent step. Further, the hand-coding graphical tool alone - where the user simply 

needs to click on the screen to manipulate fixations- is already much faster than previous hand-

coding approaches (e.g., coding fixations analysing videos frame by frame). 
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I evaluated GraFIX from four different perspectives: (1) I used the ICC (Hallgren, 2012) in order 

to evaluate the agreement between two different researchers when coding two groups of infants 

featuring low and high quality data, (2) hand-coding was compared to the two-step approach 

demonstrating that both methods generate near identical results, (3) GraFIX automatic 

algorithms were compared to the two-step approach, and (4) GraFIX automatic algorithms were 

compared to previous automatic detection methods (the velocity-based algorithms from Wass et 

al., 2013, the adaptive velocity-based algorithms from Nyström and Holmqvist, 2010, and the I-

VT filter). Additionally, GraFIX was tested with data from different eye-tracking systems. Results 

from these analysis revealed that GraFIX automatic algorithms was the method that more 

closely matched hand-coding results, and that these algorithms alone can be a more reliable 

technique than other methods, overcoming some of the previous issues detecting fixation in low 

and high quality data. However, as demonstrated in this chapter, I strongly believe that given 

the nature of the infant data presented in this thesis any automatic algorithm should be used in 

combination with a later hand-coding approach. 

Many of the current detection algorithms, especially those commercially available, obscure the 

quality of the data and the fixation detection process. Consequently evaluating the reliability of 

results or checking how different parameters affect the fixation detection may become an 

arduous task. GraFIX allows the adaptation of the input parameters for the automatic algorithms 

(e.g., velocity threshold, interpolation latency) to fit the data from different participants that 

present different levels of data quality. As it was previously explained, choosing the right 

velocity threshold highly depends on the quality of the data, and the experimental design. 

Ideally the user will select low thresholds in order to be able to detect small fixational eye-

movements. However, the lower the data quality is, the higher the velocity threshold needs to 

be. If all the subjects are at very different levels of data quality, it can be worthwhile to adapt this 

value on a participant basis. Likewise, the rest of the parameters (such as the post-hoc 

validation parameters) should be adapted according to the subject’s data quality in the interest 

of obtaining the most accurate results. Additionally, the execution of the algorithms is fast and it 

displays all the information that is needed to precisely evaluate what the algorithms calculated 

(interpolation and post-hoc validation flags for each point, visualization of the results paired with 

the velocity and the raw and smoothed data.). This can enormously facilitate the correct 

selection of the input parameters for the detection algorithm.  
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Traditionally, all participants are grouped together and a single velocity threshold that is usually 

selected to fit low quality sets is chosen to parse all the data. I have shown how applying high 

velocity thresholds can be the reason why the algorithms detect artifactual long fixations. I 

believe that adapting the input parameters on a participant basis can avoid the detection of 

artifactual fixations and will lead to more accurate and reliable experimental results. However, it 

is still up to the researcher to decide whether they prefer to use the same parameters for all the 

participants, adapt the parameters on a participant basis, or rather have different input 

parameters for different groups of subjects featuring different levels of data quality (as I did in 

section 3.9). It is also a topic of debate for the field of eye-tracking as to how the parameters 

used to parse each subject’s data should be reported in publications, factored in to statistical 

analysis or standardised within populations and across labs. 

But, to which extent is it acceptable to group together participants with very different data 

quality? For instance, this can be an important issue in clinical group comparisons where one 

group may present considerably lower quality data than the other (e.g., ADHD children vs. 

control groups), when analysing different age groups (e.g., 3 month-olds vs. 14 month-olds), or 

even when comparing “long fixators” with “short fixators”. In low quality data there is less 

probability of finding clean long fixations that can be reliably detected, also when the data is 

hand-coded. This can lead to correlations between data quality and fixation durations where low 

quality data sets are more likely to present shorter fixations on average. To at least 

acknowledge these limitations in current eye-tracking studies, it would be advantageous to 

consistently report data quality measures and detailed descriptions of the detection methods, 

together with a data quality correlational analysis. Nevertheless, this still does not solve the 

problem.  

Another limitation is related to the way fixations are hand-coded. In the interest of improving the 

reproducibility of the experimental outcomes, it is essential to include precise guidelines to 

define how the fixations are being coded. Without these guidelines the inter-coder reliability 

loses its value.  

In sum, the proposed method and software proves to be a more reliable and accurate technique 

to parse fixations in low and high quality data, and overcomes many of the issues that previous 

methods presented. More accurate outcomes and reporting data quality measures and 
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descriptions of the detection methods in scientific papers can considerably improve the viability 

of research results and hence facilitate the replication of previous studies. This can have a big 

impact not only in research from populations that are particularly difficult to test and that 

typically present higher degrees of noise (such as infants, people in the Autism spectrum or 

ADHD patients), but also in subjects that simply do not reach certain data quality standards. In 

fact, nowadays we are experiencing an increase in the number of new low-cost eye-tracking 

systems that inherently suffer from data quality issues even with compliant participants. 

Additionally, GraFIX could also be adapted to code data from head-mounted eye-tracking 

systems by including the head-position and the eye and scene images.  

3.11 Conclusions 

In the present chapter I have presented GraFIX, a new method and software to detect fixations 

in low and high quality eye-tracking data. This method consists of a two-step process in which 

eye-tracking data is initially parsed by using velocity-based algorithms whose input parameters 

are adapted by the user, and then manipulated using the graphical interface, allowing accurate 

and rapid adjustments of the algorithms’ outcome. I assessed this method by performing an 

inter-coder reliability analysis in two groups of infants presenting low and high quality data, and 

compared it with previous methods. Results revealed that the present approach gives rise to 

more reliable and stable measures in low and high-quality data. 

GraFIX is the method that will be used for fixation detection in the upcoming chapters of this 

thesis, where I will investigate the development of saccadic control and fixation durations during 

the first year of life. 
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Chapter 4: Fixation durations in 6-month-old infants and adults 

4.1 Introduction 

Eye-movements are the earliest fine-motor skill to develop in infancy, and their progression to 

maturity provides a window onto the development of cognitive functions over the first years of 

life. The mechanisms underlying saccadic control in adults have been widely investigated 

through studying saccadic responses in simple oculomotor aiming tasks such as the gap-

overlap (Fischer & Boch, 1983; Fischer & Breitmeyer, 1987; Fischer & Ramsperger, 1984; M. H. 

Johnson et al., 1991; Saslow, 1967), the double-step (Becker & Jurgens, 1979; Findlay & 

Harris, 1984; Walker & McSorley, 2006; Westheimer, 1954) or the anti-saccade paradigms 

(Evdokimidis et al., 2002; Walker et al., 1998). Furthermore, a number of studies have 

investigated saccadic control and fixation durations in dynamic visual-cognitive tasks such as 

scene perception (Nuthmann & Henderson, 2012; Nuthmann et al., 2010; Walshe & Nuthmann, 

2013). Nevertheless, the practical and technical constraints that testing infants entails (see 

Chapters 2 and 3) have impeded equivalent research in infancy, leaving many questions about 

the development of saccadic control and fixation durations unanswered: what are the 

mechanisms underlying saccadic control and fixation durations in infancy? What are the factors 

responsible for the large variations in infant fixation duration distributions? 

Previous research has highlighted two main factors influencing fixation durations in infants: 

visual and cognitive processing (e.g., Bronson, 1990, 1994; Harris et al., 1988), and the 

developmental state of the visuo-motor system (“sticky fixation”; e.g., M. H. Johnson et al., 

1991). However, not knowing to which extent these factors affect fixation durations at different 

developmental stages poses a problem for the interpretation of results when investigating the 

development of cognitive functions over the first year of life. Furthermore, from previous 

research with adults we know that there are other mechanisms related to saccadic control that 

can influence fixation durations such as saccade cancellation (e.g., Nuthmann et al., 2010; 

Walshe & Nuthmann, 2013) or inhibition (Evdokimidis et al., 2002; McSorley, Haggard, & 

Walker, 2009; Walker & Benson, 2013; Walker et al., 1998). 

This chapter aims to shed light on some of these questions by investigating the factors 

modulating fixation durations and saccadic control in 6-month-old infants and adults when 

viewing complex dynamic stimuli and performing simple oculomotor tasks.  For this purpose I 
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report an empirical study in which 6-month-old infants and adults were presented with a set of 

customized naturalistic and non-naturalistic videos while eye-movements were recorded. All 

participants performed a gap-overlap task in order to measure their disengagement abilities, 

and a double-step task that aimed to investigate saccade cancellation in infants. 

 The data and results from this study will constitute the basis for exploring the mechanisms 

underlying saccadic control in the next chapter, where data will be modelled using the CRISP 

theoretical framework and computational model of fixation durations in adult scene-viewing 

(Nuthmann et al., 2010).  

4.2 Fixation durations and saccade latencies in adults 

The relationship between fixation durations and visual and cognitive processing is particularly 

well investigated in skilled adult reading. Corresponding research over the past decades has 

revealed how fixation durations are affected by both low-level non-linguistic variables such as 

word length as well as lexical, syntactic or discourse factors (Rayner, 1998). In recent years, the 

mechanisms that control the duration of fixations have also been investigated in the context of 

scene viewing. For instance, factors such as the viewing task (search vs. memorization; 

Henderson et al., 1999; Nuthmann et al., 2010; Võ & Henderson, 2009), the visual 

characteristics of the stimulus (e.g., luminance, image degradation; Henderson et al., 2013; 

Loftus, 1985), the semantics of the scene (e.g., Henderson et al., 1999; Loftus & Mackworth, 

1978; Võ & Henderson, 2009), or familiarity (e.g., Althoff & Cohen, 1999) can affect gaze control 

and fixation durations. From all this evidence it can be concluded that at least in adults visual 

and cognitive processing is associated with, and to an extent modulates, fixation durations (For 

more detailed information about fixation durations in adults see Chapter 1). 

With regard to terminology, fixation duration needs to be distinguished from saccade latency 

(see Chapter 1). Saccade latency describes the time needed to program an eye-movement 

(reaction times), whereas fixation durations are the time intervals between successive 

saccades. In dynamic visual-cognitive tasks like scene perception, longer saccade latencies are 

thus likely to be associated with longer fixation durations (Nuthmann et al., 2010). The 

mechanisms underlying saccadic control in adults have been greatly investigated studying 

saccadic responses in simple oculomotor aiming tasks, such as the double-step and the gap-

overlap paradigms.  
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4.3 Associations between fixation durations and visual and 

cognitive processing in infancy 

The mechanisms that modulate fixation durations in infants are much less understood. There is 

evidence that suggests how as early as 3- to 4-months infants’ looking behaviour can be 

influenced by cognitive factors related to the visual input. For example, Spelke (1990) used 

familiarization techniques to show how 3- and 4-month-olds were able to understand and apply 

perceptual properties of objects such as cohesion, or spatiotemporal continuity (see also Leslie 

& Keeble, 1987). Even though these studies demonstrated the relationship between cognitive 

processing and infants’ looking behaviour they did not investigate the micro-dynamics of visual 

and cognitive processing, such as fixation durations. This research is becoming increasingly 

important to investigate questions related to the assessment of attention and information 

processing in spontaneous unconstrained settings. 

Few studies have investigated the relationship between infant fixation durations and cognitive 

and information processing. Harris and collegues (1988) tested infants and adults in a free-

viewing task, revealing that fixation durations decreased as the stimulus size increased (see 

also Hainline et al., 1984). Bronson (1990) investigated the development of visual scanning 

(and fixation durations) in a longitudinal study with infants from 2 to 14 weeks and found more 

mature and accurate scanning strategies in older infants. Furthermore, he found that even the 

older groups showed a higher proportion of longer fixations when looking at flicker stimuli, which 

is a looking behaviour more common in younger infants (see also Bronson, 1994). More recent 

studies have investigated infant scanning abilities when presented with familiar and non-familiar 

complex dynamic stimuli. Hunnius and Geuze (2004) followed infants between the ages of 6 

and 26 weeks and presented them with a video of their mother’s face, and an abstract video. 

They found that infants only adapted their eye-movements according to the type of stimulus 

from 14 weeks on, showing longer mean fixation durations for the abstract unfamiliar condition. 

Results also showed that the median fixation duration did not stabilize before 18 weeks, which 

is slightly later than what has been reported for static stimuli (Bronson, 1990). Interestingly, 

Hunnius and Geuze (2004) opted for the use of more ecologically valid stimuli. The use of 

stimuli that are of limited ecological validity has been often addressed and criticized since the 

generalizability of the experimental results is uncertain (Hunnius & Geuze, 2004a; Neisser, 

1976; Schmuckler, 2001).     
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Fixation durations in infancy have also been associated with later intellectual function in 

childhood. In a recent study Papageorgiou and colleagues (2014) demonstrated that individual 

differences in fixation durations in early infancy predict differences in measures of temperament, 

behaviour  and attentional control in later childhood.  

These findings suggest that fixation durations in infancy can also reflect the visual and cognitive 

processing of the visual input, even though it is still unclear whether these factors have the 

same influence in infants and adults. In addition, fixation durations can be an indication of 

different cognitive or neural processes emerging at different developmental stages (For a wider 

review on fixation durations in infants go to Chapter 1).  

4.4 Disengagement and the neural mechanisms underlying eye-

movement control in infancy 

As described in Chapter 1, whilst the subcortical structures involved in saccadic generation are 

relatively developed at birth (e.g., superior colliculus), cortical pathways associated with the 

generation of more complex eye-movements (e.g., the frontal eye fields, FEF) remain 

underdeveloped until 3 to 4 months of age (Atkinson, 2000; Bronson, 1974; M. H. Johnson, 

1990, 2011).  

“Sticky fixation” is thought to occur due to problems with “disengagement”, defined as the 

difficulty generating an eye-movement after a fixation (M. H. Johnson, 1990). According to this 

disengagement may not only be due to a relative immaturity of the areas in the brain involved in 

eye-movement generation (e.g., the cortical pathway through the frontal eye fields, FEF) but 

also the result of interrupting and shifting the current focal point (Kikuchi et al., 2011; see 

Chapter 1). The ability to disengage from a central target to shift the gaze to a peripheral one 

has been traditionally evaluated using the gap-overlap paradigm, described in Chapter 1 

(Atkinson et al., 1992; Butcher et al., 2000; Elsabbagh et al., 2009; Farroni et al., 1999; Hood & 

Atkinson, 1990, 1993; M. H. Johnson et al., 1991). In infancy research, longer disengagement 

latencies have been typically associated with greater immaturity of the visual system (Atkinson, 

2000; Bronson, 1974; Frick et al., 1999; M. H. Johnson, 1990, 2011), particularly during the first 

6 months of life when the neurological structures involved are thought to develop rapidly and 

approach their adult form (Rothbart et al., 1994). Nevertheless, evidence from various 

neurophysiological and behavioural studies suggests that the neural mechanisms involved in 
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the execution of a saccade are still undergoing development or need to increase in efficiency by 

6 months postnatal age, despite hundreds of thousands of practice saccades. Butcher and 

colleagues (2000) evaluated the ability to shift gaze from a central to a peripheral stimulus from 

a group of infants that were tested from 6 to 26 weeks. They reported that even though infants 

were generally able to reliably disengage from a central stimulus from 16 weeks on, their 

efficiency was still increasing at 26 weeks, which suggests that at this age the attentional and 

oculomotor processes specific to shifting gaze are still developing (see also Hood & Atkinson, 

1993; Matsuzawa & Shimojo, 1997). In adults, it has been reported that the superior parietal 

lobe is involved in disengagement and saccade execution (Posner, 1988). Furthermore, a 

number of characteristic saccade-related potentials (SRPs) associated with the eye-movement 

related areas of the parietal cortex have been found to precede the onset of a saccade (for 

more details see Kurtzberg & Vaughan, 1982). Infant studies, however, have reported that at 6 

months these SRP components are weak, less synchronized to the saccade execution, or 

completely absent (Csibra, Tucker, & Johnson, 1998). These results suggest that while by 6 

months the frontal cortex (and hence the frontal eye fields, FEF) is already involved in eye-

movement control, other eye-movement related areas in the parietal cortex might still be in a 

“calibration phase”.  

4.5 Individual differences: Long vs. short lookers 

Disengagement has also been associated with aspects of visual processing such as looking 

times in a familiarization context (see Chapter 1), but not fixation durations (Frick et al., 1999; 

see also Blaga & Colombo, 2006). In these studies, the younger infants are the ones showing 

longer looking times and greater disengagement difficulties, which could explain the relationship 

between look duration and the developmental state of the visuo-motor system (e.g.,Colombo, 

1995; Johnson, 1990).  

Another hypothesis states that shorter looking times reflect more rapid encoding of visual 

information within and across ages (Colombo et al., 1987; Colombo, 1995), with a number of 

studies suggesting how short lookers are more efficient processors compared to long lookers 

(Colombo et al., 1991; Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 

1997) or present different strategies of visual intake (e.g., Colombo, Freeseman, Coldren, & 

Frick, 1995; Colombo et al., 1991). A recent study by Domsch, Lohaus, and Thomas (2010) 

investigated the joint influences of information processing and disengagement in look duration 
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within a habituation paradigm at 6 months. Using a computational modelling approach, they 

concluded that both factors are involved in infants’ looking behaviour  in visual habituation.  

Look duration has also been associated with later intellectual function and cognitive 

performance in childhood and adolescence (Colombo & Mitchell, 1990; Cuevas & Bell, 2013; 

Kavšek, 2004). Interestingly, whilst the correlation between look duration and cognitive 

performance during the first year of life has been reported to be negative—with short lookers 

showing better later cognitive performance (Colombo et al., 1995; Jankowski & Rose, 1997; 

Sigman et al., 1986; A Slater, 1995)—from 1 year on the correlation is reversed and longer 

lookers are associated with better cognitive function later on (Choi & Vaswani, 2014; Lawson & 

Ruff, 2004). This shift could be due to a change in the processes underlying look duration: 

during the first year of life—and particularly during the first 6 months—look duration may be 

predominantly affected by the developmental state of the visuo-motor system as well as by the 

speed of visual and cognitive processing. At ages beyond one year, however, look duration may 

reflect the ability to voluntarily sustain or maintain attention and the appearance of executive 

functions (Colombo, 2006).  

4.6 The two-step programming of saccades: The double-step 

paradigm 

The double-step paradigm has been widely used in adult research to investigate saccade 

programming (Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 2006; 

Westheimer, 1954), but so far it has only been used in infancy research to identify a shift from 

retinotopic to spatiotopic coordinate systems (e.g. Gilmore & Johnson, 1997; Kaufman, Gilmore, 

& Johnson, 2006; Senju et al., 2011; for more details see Chapter 1).  

In the original double-step paradigm, adult participants are instructed to follow a target while it 

makes two quick and successive movements or steps that are separated by a varying temporal 

gap (Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 2006; Westheimer, 

1954; see Chapter 1). Findings from these studies constituted the first evidence about the 

parallel programming of saccades in which saccade programming occurs in two stages: an 

initial labile stage during which the saccade is subject to cancellation, and a subsequent non-

labile stage in which the program cannot be cancelled. Becker and  Jurgens (1979) showed that 

participants’ performance is best predicted by the time D elapsing between the second target 
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step and the onset of the response. The delay D itself also depends on two variables: D = R1 – 

τ. While R1 represents the participant’s reaction time, τ factors the interstep time between the 

first and the second target’s appearances, and is the only variable under the control of the 

experimenter. If τ is short,4 participants tend to make only one eye-movement to the second, 

final location of the target. In such cases, the oculomotor system begins programming a 

saccade to the second target location, while the saccade program related to the first target 

location is still in its labile stage of development. In this situation the first program is cancelled 

and only the second program is executed, prolonging the duration of the saccade latency and 

hence the fixation. On the other hand, if τ is long (e.g., > 70-80 ms for adult subjects) 

participants tend to make two saccades. The first saccade is directed to the first shifted target 

location and the second to the second shifted location. This is because the second saccade 

program is initiated while the first program is already fully specified or in other words, is in its 

non-labile stage of development, when no longer can be altered. The general finding that 

saccades are programmed in two stages has been adopted in computational models of fixation 

behaviour in reading (e.g., Engbert, Longtin, & Kliegl, 2002; Reichle, Pollatsek, Fisher, & 

Rayner, 1998) and scene viewing (Nuthmann et al., 2010; Trukenbrod & Engbert, 2014). 

A more recent study by Walshe and Nuthmann (2013) adopted the double-step paradigm to a 

scene-viewing context and showed that saccade cancellation processes generalize to scene 

viewing and that cancelling a saccade prolongs fixation durations. Notably, the duration of the 

non-labile stage, which can be estimated from such data, was found to be longer in the scene-

viewing condition compared to a classic “static” double-step condition. In addition, there were 

considerable individual differences in the duration of the non-labile stage (Walshe & Nuthmann, 

2013).  

Nevertheless, even though there are studies suggesting that infants as young as 4 months are 

able to inhibit a saccade to a target location (Johnson, 1995; see Chapter 1), to date there is no 

empirical evidence demonstrating if infants program saccades in two-steps (labile and non-

labile stages), and that hence, are able to cancel a saccade program. 

                                                        
4 The second target appeared in close temporal proximity to the onset of the response saccade. 
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4.7 The current study 

For the current study I recorded the eye-movements of groups of 6-month-olds and adults who 

were presented with two different complex dynamic viewing conditions (naturalistic and semi-

naturalistic videos) and performed the gap-overlap (Atkinson et al., 1992; Butcher et al., 2000; 

Elsabbagh et al., 2009; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; M. H. Johnson et al., 

1991) and double-step (Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 

2006; Westheimer, 1954) paradigms. The free viewing tasks were used to analyse the micro-

dynamics of visual and cognitive processing during spontaneous orienting by measuring fixation 

durations. The gap-overlap task was used to measure participants’ disengagement abilities. 

Finally, the double-step paradigm was used to investigate saccade cancellation in infants. 

In particular, the present study aims to 

(a) explore age differences in fixation durations between 6-month-olds and adults. I predict 

differences in mean fixation durations across age groups (infants vs. adults), with infants 

showing longer mean fixation durations; 

(b) investigate the influence of the viewing condition—and hence of visual and cognitive 

processing—in fixation duration distributions. I predict differences in mean fixation 

durations across viewing conditions (naturalistic vs. semi-naturalistic videos); 

(c) examine the relationship between disengagement abilities—which can be indicative of the 

general development of the visuo-motor system—and fixation durations. I predict a positive 

relationship between fixation durations and disengagement latencies in both age groups, 

particularly in infants due to the underdeveloped state of their visuo-motor system; 

(d) explore individual differences in fixation durations in infants and adults. I predict a positive 

relationship between mean fixation durations in the naturalistic and non-naturalistic 

conditions for both infants and adults; 

(e) demonstrate that 6-month-old infants are able to cancel a saccade program. I predict 

longer reaction times in the double-step task when infants make a single saccade—

assuming in these cases a previous saccade program is being cancelled—compared to 

when they make two consecutive saccades. 
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4.8 Methods 

4.8.1 Participants 

In total, 18 typically developing 6-month-olds and 18 adults (10 female) with no known visual 

impairments participated in this experiment. Seven infants had to be excluded from the analysis 

due to data quality issues (N = 5) or fussiness (N = 2). Thus the analysis included 11 infants 

(mean age = 171.45 days, range = 150 to 191 days, 6 girls). Most infants (N = 10) were of 

Caucasian middle socioeconomic status. The infants were recruited via magazine 

advertisements, social networking media and flyers. Families were given baby t-shirts or bags 

as gifts for their participation. Adults were reimbursed for their participation. The study protocol 

was approved by the Birkbeck, Psychological Sciences Ethics Committee.  

4.8.2 Apparatus 

Participants’ gaze was monitored using a Tobii TX300 eye-tracker running in a sampling rate of 

120 Hz. This particular eye-tracker model tolerates large head movements allowing the infants 

to move naturally in front of the stimuli presentation screen. The stimuli were presented on a 

23’’ wide screen TFT monitor attached to the eye tracker unit by using a MATLAB program 

(MATLAB version R2010a 32-bit) specially developed for the purposes of the experiment. This 

program made use of the T2T (Talk to Tobii) package and the Psychophysics Toolbox Version 

3 (PTB-3) (Shukla et al., 2011). The sounds were played through stereo external speakers 

located at both sides of the screen. The participant was monitored and recorded through an 

external video camera located under the Tobii screen by using the ScreenFlow screen-casting 

software. The objects and figures for the gap-overlap and double-step paradigms were created 

using Adobe Photoshop CS6.  

4.8.3 Stimuli 

The spontaneous looking task included two different viewing conditions: the naturalistic 

condition whereby three people performed baby-friendly actions simultaneously or at different 

times; and the semi-naturalistic condition whereby the people were substituted with simple 

geometrical shapes (e.g., triangles, circles, rectangles) rotating simultaneously or at different 

times.  The two types of stimuli were presented in colour and had the same size.  
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4.8.3.1 Naturalistic videos 

Each naturalistic video lasted between 20 and 25 seconds and comprised three regions of 

interest (right, left and centre of the screen) in which three different volunteers performed a 

random baby-friendly action, e.g., waving a balloon or tossing a ball. The position of the right 

and the left elements corresponded to a visual angle of 18.26°. This design aims to uniformly 

distribute the semantic and motion information across the screen. Further, to have three large 

and well-defined areas of interest facilitates the areas of interest (AOI) analysis in low-quality 

data sets (see Figure 4-1).  

 

 

Figure 4-1 A frame from a randomly selected naturalistic video. 

 

The videos were recorded using five female volunteers wearing simple and colourful clothes. 

The set included 10 different videos where three of the volunteers were instructed to perform 10 

different actions (e.g., playing with a balloon, dancing). The volunteers could be either in an 

active state (they move and perform the correspondent action), or in an inactive state (they do 

not perform any action or movement). During the first second of each video all volunteers were 

in the inactive state. Subsequently the three volunteers enter the active state and start 

performing the correspondent action for about 3 to 5 seconds. After this period only one 
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volunteer at a time is active while the other two are in the inactive state. The videos were 

always presented in the same order. For a precise description of each video go to Appendix B.  

The naturalistic videos were recorded with a high-resolution camera and assembled and 

manipulated using Final Cut Pro X Version 10.0.5. Each volunteer was recorded individually in 

front of a green cloth (see Figure 4-2).  

 

 

Figure 4-2 Recording naturalistic videos using a green cloth as a background. 

 

The green background was subtracted by using the Mask and Keyer video filters. Further, the 

volunteers were positioned in their location (centre, right or left) and a naturalistic photo was 

added as a background. Each volunteer’s inactive states were controlled by using the hold Final 

Cut function, which freezes a selected frame for a concrete period of time. The music 

accompanying the naturalistic videos was comprised of fragments of instrumental songs from a 

group of Basque folk music called Oskorri.  

4.8.3.2 Semi-naturalistic videos 

In the semi-naturalistic condition (see Figure 4-3) the volunteers were substituted with simple 

geometrical shapes (coloured triangles, rectangles, circles, squares, pentagons, hexagons or 

ellipses) that rotate clockwise simultaneously or at different times. During the presentation of 

each video (1) the objects remain still for the first second, (2) the three objects rotate together 

for 5 seconds, (3) the three objects rotate subsequently for 3 seconds each, and (4) the three 

objects rotate together for another 4 seconds. The background music was the same as for the 

naturalistic stimuli. In total 12 semi-naturalistic videos were presented. The two extra videos 
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were added in order to compensate a possible decrease of attention to this condition towards 

the end of the experiment and to obtain the largest number of fixations possible.   

 

 

Figure 4-3 A frame from a randomly selected semi-naturalistic video. 

 

4.8.4 Gaze-contingent paradigms 

In a gaze-contingent paradigm the experimental events respond to the participant’s online gaze 

permitting the study of eye-movements in a truly interactive manner (McConkie & Rayner, 1975; 

Wass et al., 2011; Wilms et al., 2010). The current experimental design includes two gaze-

contingent tasks: the gap-overlap and the double-step paradigms. The contingencies were 

created by using the T2T (Talk to Tobii) functions (Shukla et al., 2011).  

4.8.4.1 Implementation of the gap-overlap paradigm  

As it was explained in Chapter 1, the gap-overlap paradigm investigates disengagement 

abilities and facilitation by measuring the time it takes for participants to move their eyes away 

from a central stimulus after a peripheral one is presented (Atkinson et al., 1992; Butcher et al., 

2000; Elsabbagh et al., 2009; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; M. H. Johnson 

et al., 1991). For the present implementation, the peripheral stimulus was always the same (a 

cloud), and the central stimulus as well as the background colour changed after every 12 trials 

(see  
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Figure 4-4). Each trial started with the presentation of a central stimulus. When the participant 

fixated the central stimulus, the peripheral target randomly appeared either on the right or left 

side of the screen (at 18° of visual angle).  

 

 

Figure 4-4 The central and peripheral stimuli used for the gap-overlap paradigm. 

 

Depending on the time when the central stimulus disappeared and the peripheral stimulus 

appeared the trials were flagged as overlap, baseline or gap. In the overlap condition the central 

stimulus stays visible during the presentation of the peripheral target until the end of each trial. 

In the baseline condition, the central stimulus disappears simultaneously after the peripheral 

target comes into view. And in the gap condition, the central stimulus disappears immediately 

after fixation, followed by a gap of 200 ms before presentation of the peripheral stimulus. When 

the participant looked at the peripheral stimulus a short animation was presented. If the 

participant did not look at the peripheral stimulus after 4 seconds, the next trial started (see 

Figure 4-5). The disengagement latencies were calculated by subtracting the baseline condition 

from the overlap condition. For the analysis presented in this thesis the gap trials were 

excluded. 

A total number of 72 trials were presented. Forty per cent of these trials were gap trials, 30% 

overlap trials and 30% baseline trials. They were presented in groups of 12 trials (iteration) and 

alternated with other tasks of the study. 
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Figure 4-5 Flow diagram for the gap-overlap paradigm.   

 

4.8.4.2 Implementation of the double-step paradigm 

The current study included a version of the double-step paradigm (see Chapter 1 and the 

introduction of the present chapter for more details) that aimed to investigate saccade 

cancellation in infants by comparing the reaction times for the trials in which the infant executed 

a single saccade to the second target –for which the saccade program to the first target was 

assumed to be cancelled, prolonging reaction times-, or two consecutive saccades to the first 

and the second targets. 

In previous adult studies participants were instructed to look at the second target if it was 

present. Further, the studies included around 576 trials per participant, which means that in total 

they obtained more than 10.000 saccadic responses (Becker & Jurgens, 1979). This allowed 

researchers to test different variations in the presentation of the stimuli and obtain distributions 

of reaction times with sufficient number of trials for different conditions. As a result of the 

difficulties of testing infant populations (e.g., they do not attend to experimental instructions; 

reduced attentive periods; for more information see Chapter 2), it is not possible to run such a 

high number of trials. For this reason the double-step task implemented for this chapter included 

a series of modifications to deal with the specificities of testing infants with this particular 

paradigm. 
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As explained earlier in this chapter (see also Chapter 1), in the double-step paradigm the 

presentation of a central stimulus is followed by the appearance of two sequential targets (see 

Figure 4-6). When the time during which the first target is present (τ) is long enough the 

participant is expected to execute a first saccade to the first target followed by a second one to 

the second target. On the other hand, when the presentation time of the first target (τ) is too 

short, it is hypothesized that the participant will cancel the current saccade program and 

execute a single saccade to the second target, prolonging the reaction time. Therefore, as for 

adults, in infants it is expected that saccade cancelation will prolong reaction times (e.g., 

Nuthmann et al., 2010; Walshe & Nuthmann, 2013).   

 

Figure 4-6 A trial for the double-step paradigm and its two possible outcomes. When the initial 
stimulus is presented, the participant makes an eye-movement to look at it (Si). In this moment, 
the first target is displayed for a τ period of time followed by the presentation of the second 
target. For the present implementation two possible outcomes are considered: (1) The 
participant executes a single saccade to the second target (S1). In this case it is hypothesized 
that they may be cancelling an initial saccade program directed to the first target, prolonging the 
reaction time (R). (2) The participant executes an initial saccade to the first target (S1) followed 
by a second saccade to the second target (S2). 

 

In the current version of the paradigm, the time during which the first target is present (τ) is 

calculated for each trial by using an adaptation of the Modified Binary Search (MOBS) 

thresholding algorithm (Anderson & Johnson, 2006; Tyrrell & Owens, 1988). This method, which 

is an adaptive and non-parametric technique used for identifying thresholds such as eyes 

resting states, allows to test the τ values that are most relevant for each participant. In 
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particular, the MOBS algorithm will try to identify the τ values where each participant will go from 

executing one to two saccades. For this purpose the MOBS algorithm calculates the next τ 

depending on the participant’s actions during the previous trials (e.g., the participant makes one 

saccade vs. two saccades for a particular τ value). For instance, if the infant tends to execute 

two saccades for a certain τ value, the next trials will test shorter τ values. 

The rules of the original MOBS algorithm do not allow a high number of errors. For instance, if a 

participant performs two saccades when the first target is presented for a period of 100 ms, the 

algorithm assumes that the threshold will be lower than this value and the program will rarely 

test the same τ value again. Certainly, these rules are too strict for testing infant populations, as 

a participant’s response can also be the consequence of other factors unrelated to oculomotor 

control, such as the infant not being interested in the task and systematically making a single 

saccade to the second target in every trial. Thus, a tested τ value could not simply be 

diminished, and the original MOBS algorithm had to be adapted. The adaptation for the MOBS 

algorithm implemented for the current study is described below: 

1. The minimum boundary is represented by a three elements “stack” called “low-stack”. The 

initial minimum values are [0,0,0]. 

2. The maximum boundary is represented by a three elements “stack” called “high-stack”. The 

initial minimum values are [200, 200, 200]. 

3. The current presentation time (τ) is the middle point between the top values at the “low-

stack” and the “high-stack”, unless 5 occurs. 

4. After each trial, one “stack” is updated.   

4.1. If the participant makes two saccades, each element from the “high-stack” is 

decreased, having the τ just presented on the highest position and losing the bottom 

element.  

4.2. If the participant makes one saccade, each element from the “low-stack” is decreased, 

having the τ just presented on the highest position and loosing the bottom element.  

5. If the participant presents the same response twice in a row: 

5.1. If the participant makes two consequent two saccades responses, the current 

presentation time (τ) is the top of the “low-stack”. If the response to this is inconsistent 
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with the previous response to the top time of the “low-stack”, the stack goes through a 

process of regression (6) 

5.2. If the participant makes two consequent one saccade responses, the current 

presentation time (τ) is the top of the “high-stack”. If the response to this is inconsistent 

with the previous response to the top time of the “high-stack”, the stack goes through a 

process of regression (6) 

6. Regression is the process whereby all the elements of one “stack” are moved up by one 

position. The bottom element of the “low-stack” would be reset to the minimum value, 0, and 

the bottom element of the “high- stack” would be resettled to the maximum value, 200. 

Regression occurs when:  

6.1. “Low-stack” regression:   

6.1.1.  The conditions specified in the step 5.1 appear to be present. 

6.1.2.  The participant makes two consecutive two-saccade responses and the previous 

two presentation times (τ-1 and τ-2) are equal to the “low-stack’s” top value. 

6.1.3.  The participant makes two consecutive two-saccade responses and the “low-

stack’s” top value is the initial maximum (200).  

6.1.4.  The participant makes two consecutive two-saccade responses and the 

difference between the previous presentation time (τ-1) and the current one (τ) is 

less than 10. 

6.2. “High-stack” regression: 

6.2.1.  The conditions specified in the step 5.2 appear to be present. 

6.2.2.  The participant makes two consecutive one-saccade responses and the previous 

two presentation times (τ-1 and τ-2) are equal to the “high-stack’s” top value. 

6.2.3.  The participant makes two consecutive one-saccade responses and the “high-

stack’s” top value is the initial minimum (200).  

6.2.4.  The participant makes two consecutive one-saccade responses and the 

difference between the previous presentation time (τ-1) and the current one (τ) is 

less than 10. 

Aiming to encourage infants to look at the second target when it appeared, the second target 

was visually more attractive than the first one (see Figure 4-7).   Additionally it changed after 

every 12 trials in order to keep infants interested for a longer period of time over a session of 72 
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trials. To prevent infants from predicting the targets’ next locations 25% of the trials were one-

step trials and the targets could randomly appear at the locations described in Table 4-1. 

 

 

 

 

 

 

Figure 4-7 The stimuli used for the double-step paradigm. 

 

Table 4-1 Locations were the double-step targets appeared. 

 
Central stimulus 

(Visual angle) 

Target 1 

(Visual angle) 

Target 2 

(Visual angle) 

Location 1 11.31° top 
14.57° right 14.57° left 

14.57° left 14.57° right 

Location 2 11.31° right 
14.57° top 14.57° bottom 

14.57° bottom 14.57° top 

Location 3 11.31° left 
14.57° top 14.57° bottom 

14.57° bottom 14.57° top 

Location 4  11.31° bottom 
14.57° right 14.57° left 

14.57° left 14.57° right 

 

The double step paradigm started with the presentation of an initial central stimulus that was 

presented randomly at one of the locations described in Table 4-1. When a participant looked at 

the initial stimulus, the first and the second targets were displayed (see Figure 4-7). When 

participant looked at the second target a short animation was presented. After each trial the 

MOBS algorithm calculated the next time lapse between the first and the second targets (τ) 
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based on a participant’s previous actions. Figure 4-8 displays the flow diagram showing the 

current implementation for the double-step paradigm. 

As in the gap-overlap paradigm, 72 trials were presented in groups of 12 trials that were 

alternated with other tasks of the study. The initial stimulus, the second target and the 

background image (a noise mask) changed after every 12 trials.   

 

 

Figure 4-8 Flow diagram for the double-step paradigm. 

 

4.8.5 Design and Procedure 

Participants were welcomed in a lab waiting room where infants acclimatised to the 

experimenter and the lab. Next, they were tested individually in a darkened room while sitting on 

a baby-chair located 60 cm away from the monitor. Prior to starting the experiment the infants 

were calibrated with a 5 point calibration. Infants were shown a moving puppet accompanied by 

a sound on each point of the screen and on the centre until the target was fixated. This process 

was repeated until the infant looked at the five points accurately (for more details see Chapter 

2). Adults were seated on a chair located 60 cm away from the monitor and also performed an 

infant 5 point calibration procedure. 
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The different tasks of the study were alternated in the following order: (1) twelve gap-overlap 

trials, (2) one naturalistic video presentation (20-25 seconds), (3) twelve double-step trials, and 

(4) one semi-naturalistic video presentation (20-25 seconds). This process was repeated 6 

times. Next, 6 additional iterations of naturalistic and semi-naturalistic videos were presented. In 

total, participants viewed 10 naturalistic videos, 12 semi-naturalistic videos, and performed 72 

gap-overlap trials, and 72 double-step trials. In case the infant became upset during the study 

the program was stopped (see Figure 4-9). The whole protocol took about 20 minutes to 

complete. 

 

Figure 4-9 Experimental protocol. 

 

4.9 Analysis 

4.9.1 Fixation detection and coding 

As described in Chapter 3, the quality of the raw eye-tracking data may vary depending on 

many different factors such as the eye-tracker model and manufacturer, or the eye physiology 

(Holmqvist et al., 2011, 2012; Saez de Urabain et al., 2014). Eye-tracking data coming from 

populations such as infants may contain considerably higher levels of noise compared to data 

from more compliant participants.  
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Fixations were detected using GraFIX, a semi-automatic approach for parsing low- and high-

quality eye-tracking data. The input is initially parsed by using velocity-based algorithms whose 

input parameters are adapted by the user, and then manipulated using the graphical interface, 

allowing accurate and rapid adjustments of the algorithms’ outcome (Saez de Urabain et al., 

2014). 

The procedure to code fixations was the same described in Chapter 3: the input parameters for 

the automatic detection algorithms were adapted according to the data quality for each 

participant and visit, having two different sets of parameters for participants featuring lower  

(>0.25° root mean square of inter-sample distances, RMS) or higher (<0.25° RMS) data quality 

(see Table 3-3). These parameters, chosen after executing the algorithms with a wide range of 

values and evaluating the outcomes, may not necessarily be optimal in data sets with other 

characteristics. Having only two sets of parameters rather than multiple options can facilitate the 

coding process (specially for novice users; (Saez de Urabain et al., 2014). In order to keep the 

same standards across participants and coders strict coding guidelines were defined. A fixation 

was coded when both the x and y coordinates were stable at one point, i.e. when the plots of 

both x and y coordinates against time were displaying horizontal lines. If the detection of one 

eye was imprecise the data from the other eye was used. If the coder was not entirely sure 

about coding a particular fixation they were advised to leave it out. Saccades that were too short 

to be detected by the algorithms were also coded. Fixations that were cut by blinks and smooth 

pursuit eye-movements (diagonal movement of the X/Y trace) were excluded. 

4.9.2 Data quality analysis 

As described in Chapter 3, spatial precision is defined as the consistency in detecting and 

calculating gaze points accurately. Low spatial precision can seriously affect the detection of 

fixations (Holmqvist et al., 2011, 2012) and hence it is essential to measure and report it.   

There are a number of methods to calculate spatial precision, such as the RMS (commonly 

used by manufacturers) or the standard deviation, which measures the dispersion of each 

sample from a mean value (see Chapter 3). For the present study, the RMS was calculated for 

each participant.  

In low quality data there is less probability of finding clean long fixations that can be reliably 

detected even if the data is hand-coded. For this reason one could expect to find negative 
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correlations between fixation durations and precision measures, where participants producing 

lower data quality would also feature proportionally shorter fixations.  

Correlational analysis between RMS values and fixation durations were run in order to ensure 

data quality was not interfering with the fixation detection method. There were no negative 

correlations between data quality and fixation durations for the 6-month-olds nor for the adults 

confirming that data quality did not affect the experimental results of the present study.  

4.9.3 Cross-validation  

4.9.3.1 Fixation durations 

Manual coding always involves an evaluation of the degree of agreement between different 

raters. An external coder naïve to the expected outcomes was trained to code fixations from 

infants featuring low and high quality data. The coder had to (1) run GraFIX automatic detection 

algorithms using the parameters described in Chapter 3, and (2) manipulate the resulting 

outcome in order to remove artifactual fixations or add those undetected by following the 

predefined guidelines described earlier. In total, the external coder coded 10 % of the data 

analysed for this study.  

The inter-rater reliability between the mean fixation durations was evaluated using the intra-

class correlation coefficient (ICC; Hallgren, 2012). An excellent agreement was found (with an 

ICC of .898, p = .05).  

4.9.3.2 Gap-overlap 

All trials from the gap-overlap paradigm in the group of infants were reviewed in order to 

manually exclude those where (1) the accuracy was not good enough to trigger the gaze-

contingencies, or (2) the infant looked away during the presentation of the peripheral stimulus. 

An external coder naïve to the expected outcomes evaluated the validity of the gap-overlap 

trials for 10% of the data from this study. 

Inter-rater reliability was measured using the Kappa statistic with a view to determine 

consistency among raters.  This analysis showed a strong agreement between the two coders, 

Kappa = .878 (p < .001), 95% CI (.833, .923). 
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4.9.4 Statistical analysis 

The mean fixation duration for each participant and viewing condition was calculated after 

excluding all fixations with a duration greater than two standard deviations from the initial mean. 

Hence, fixations included in the analysis accounted for about 95% of the set for each 

participant. This procedure was necessary to exclude very long or very short fixations on a 

participant basis rather than establishing a minimum and maximum fixation duration threshold 

for all participants together regardless of their age. Please note that this criterion was 

established in order to exclude those very long fixations (e.g., 10 seconds) that were rare and a 

consequence of the participant’s sleepiness rather than a result of a cognitive or neural process. 

This did not exclude the long fixations that are typical in infant populations. 

For the group of infants, the gap-overlap and double-step trials with latencies shorter than 200 

ms were excluded from the analysis because such fast eye-movements are considered to be 

eye-tracking errors or anticipatory saccades begun prior to stimulus onset (e.g., Canfield, 

Wilken, Schmerl, & Smith, 1995; Frick et al., 1999; Rose, Feldman, Jankowski, & Caro, 2002). 

On the other hand, for the group of adults the minimum latency was lowered to 80 ms since 

latencies below this value are considered to be anticipatory or express saccades (Fischer & 

Weber, 1993).  

Some gap-overlap studies also define a maximum latency limit (e.g., Elsabbagh et al., 2009; 

Johnson et al., 1991; Matsuzawa & Shimojo, 1997). However, given that our two groups are 

very apart in age, one can expect to find group and inter-individual differences in their 

disengagement abilities and reaction times. For this reason I decided to establish a 

conservative criterion excluding all the gap-overlap trials that were one standard deviation 

above each participant’s mean latency.  

To avoid misleading results, only the double-step trials in which the saccade was executed 

shortly after the second target appeared were included. 

4.10 Results 

4.10.1 Age differences 

An independent samples t-test showed how the group of adults (naturalistic: M = 327 ms, SD = 

.045; semi-naturalistic: M = 377 ms, SD = .069) showed significantly shorter mean fixation 

durations than the group of 6-month-olds (naturalistic: M = 644 ms, SD = .142; semi-naturalistic: 
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M = 724 ms, SD = .120) for both naturalistic (t(11.237) = 7.205, p < .001) and semi-naturalistic 

conditions (t(27) = 9.928, p < .001).  

4.10.2 Changes in fixation durations across viewing conditions 

Paired samples t-tests showed longer mean fixation durations for the semi-naturalistic condition 

(6-month-olds: M = 724 ms, SD = .120; adults: M = 377 ms, SD = .069) compared to the 

naturalistic condition (6-month-olds: M = 644 ms, SD = .142; adults: M = 327 ms, SD = .045), for 

both 6-month-olds (t(10) = -3.980, p = .003) and adults (t(17) = -3.912, p = .001; see Figure 

4-10).  

These results provide evidence that even though at 6 months infants’ oculomotor control may 

not have reached adult levels, infants’ fixation durations are already influenced by the viewing 

condition. Differences in fixation durations between the two age groups aside, infants 

responded in the same manner as adults, showing shorter mean fixation durations for the 

naturalistic stimuli compared to the semi-naturalistic ones.  

Figure 4-10 Mean fixation durations for the naturalistic and semi-naturalistic viewing conditions 

for infants and adults 

 

4.10.3 Fixation durations and disengagement 

Both age groups showed a very clear gap-effect (6-month-olds: t(10) = -4.795, p = 001; adults: 

t(17) = -6.004, p < .001). Disengagement was calculated for each participant by subtracting the 

baseline mean latency to the overlap mean latency.  
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Figure 4-11 Correlations between disengagement latencies and fixation durations in infants and 
adults 

 

High correlations were found for 6-month-olds between disengagement latencies and mean 

fixation durations in both naturalistic (r(11) = .836, p = .001) and semi-naturalistic conditions 

(r(11) = .851, p = .001). Moreover, there was a relationship between disengagement latencies 

and mean fixation durations in the naturalistic condition (r(18) = .471, p = .049) in the group of 

adults, but not between disengagement latencies and mean fixation durations in the semi-

naturalistic condition (r(18) = .251, p = .315; see Figure 4-11). These correlations were also 

calculated after applying log transformations for mean fixation durations in naturalistic and semi-

naturalistic stimuli in order to correct for the non-normal (ex-Gaussian) fixation duration 

distribution, and the same pattern was found. These results indicate the influence that the ability 

to disengage from a focal point may have on fixation durations. This influence was not only 

present at 6 months, but could also be seen to a lesser extent in adults. 

4.10.4 Individual differences in fixation durations 

Participants showing short or long mean fixation durations in one viewing condition also showed 

proportionally short or long mean fixation durations in the other condition, indicating stable 

individual differences in both 6-month-olds (r(11) = .882, p < .001) and adults (r(18) = .615, p = 

.007). 
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4.10.5 Double-step paradigm: Saccadic cancelation 

Results from the double-step paradigm were analysed by comparing the reaction times for the 

trials where the infant executed a single saccade to the second target, or two consecutive 

saccades to the first and the second targets. It was hypothesized that when infants performed a 

single saccade to the second target they could be cancelling the initial saccade program to the 

first target before starting the new saccade program to the second target, consequently 

prolonging the reaction time when moving their eyes away from the central target (see Figure 

4-12). According to this hypothesis, the reaction times from the trials in which the infant 

performed a single saccade should be longer than those found when two consecutive saccades 

were executed. To avoid misleading results, only the trials in which the saccade was executed 

shortly after the second target appeared were included.  

 

 

Figure 4-12 A saccade program is cancelled if the second target appears during its labile stage. 
When this happens, the reaction time is prolonged. If the second target appears during the non-
labile stage, the initial saccade program is executed followed by a second saccade to the 
second target. 

 

As predicted, reaction times when infants performed a single saccade to the second target (M = 

636 ms, SD = .136) were longer than when they executed two consecutive saccades to the first 

and the second targets (M = 548 ms, SD = .060; t(10) = 3.225, p = .009), suggesting that they 

were able to cancel a saccade program. 
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4.11 Discussion 

The study of fixation durations is becoming an increasingly important technique to investigate 

attentional and cognitive processes in unconstrained ecologically valid settings. Though fixation 

durations and scene perception in infancy are still largely unexplored, a few studies have 

highlighted how fixation durations can be influenced by perceptual and cognitive activity 

(Bronson, 1990, 1994; Harris et al., 1988) or by the developmental state of the visuo-motor 

system (“sticky fixation”; e.g., M. H. Johnson et al., 1991). It is still unclear, however, what the 

mechanisms underlying saccadic control in infancy are and the extent to which large variations 

in fixation duration distributions found during the first months of life are due to an 

underdeveloped visuo-motor system or the speed of visual and cognitive processing.  The 

present study aimed to shed light on these questions and contribute to a better understanding of 

the underlying mechanisms of eye-movement control at 6 months of age.   

For the present study, I recorded eye-movements from groups of 6-month-old infants and adults 

while they were presented with customized naturalistic and semi-naturalistic videos. All 

participants performed a gap-overlap task (Atkinson et al., 1992; Butcher et al., 2000; 

Elsabbagh et al., 2009; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; M. H. Johnson et al., 

1991) in order to measure their disengagement abilities, and a double-step task (Becker & 

Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 2006; Westheimer, 1954) aiming to 

investigate saccade cancellation in 6-month-old infants. The goals for this study were (a) to 

explore age differences in fixation durations between 6-month-old infants and adults, (b) to 

investigate the influence of the viewing condition—and hence visual and cognitive processing—

in fixation duration distributions, (c) to examine the relationship between disengagement 

abilities—which can be indicative of the general development of the visuo-motor system—and 

fixation durations, (d) to explore individual differences in fixation durations in 6-month-olds and 

adults, and (e) to demonstrate that 6-month-olds are able to cancel a saccade program. These 

results will form the basis for modelling the data in the next chapter.  

As predicted, results showed age differences in mean fixation durations between 6-month-olds 

and adults, where the group of adults displayed significantly shorter mean fixation durations 

compared to the group of infants (prediction a). These differences could be due to differences in 

the developmental state of the visuo-motor system and/or a consequence of age variations in 

visual and cognitive processing speed. In line with previous findings I found stable individual 
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differences across viewing conditions in both infants and adults (prediction d). In other words, 

infants showing long or short mean fixation durations in one viewing condition also showed 

proportionally long or short fixations in the other condition. These findings suggest that 6-month-

old infants already have a well developed top-down control that modulates gaze allocation. 

Additionally, results revealed significant differences in mean fixation durations between 

naturalistic and semi-naturalistic viewing conditions for both age groups (prediction b). These 

results fit with previous findings (e.g., Hunnius & Geuze, 2004) demonstrating that also at 6 

months the characteristics of the visual stimuli—and hence visual and cognitive processing—

influence fixation durations. Interestingly, infants and adults showed shorter mean fixation 

durations for the naturalistic condition, which was visually and semantically more complex as 

compared to the semi-naturalistic condition, in which very simple geometrical shapes were 

presented. This raises the question of whether longer fixation durations are reflecting the higher 

cognitive requirements of processing a more complex visual stimulus, or if on the other hand 

they are not necessarily reflecting any cognitive activity related to the stimulus being viewed. To 

explain the shorter fixation durations in the naturalistic condition one could argue that the visual 

competition in the naturalistic condition is much higher than in the semi-naturalistic condition, 

thus the viewer needs to execute more and faster eye-movements in order to capture all the 

competing semantic and perceptual aspects of the scene. According to this hypothesis fixation 

durations would not only be affected by the processing of the current focal point, but also by the 

online requirements of the scene or the visual task (e.g., Henderson et al., 1999; Nuthmann et 

al., 2010; Võ & Henderson, 2009). On the other hand, according to a second hypothesis very 

long fixations (e.g., > 2 secs), would not necessarily reflect perceptual activity or cognitive 

processing and consequently these results—for which such long fixations are included—would 

not be definitive. In fact, some infant researchers have argued that measures of look duration 

do not reflect information processing directly (Courage et al., 2006; Reynolds & Richards, 

2007). According to Reynolds and Richards (2007), who measured look duration together with 

heart-rate, it is only in the portion of looking that happens during the heart-rate defined phase of 

sustained attention when the infants engage in actively processing the information. Even though 

these studies measured look duration, it could be the case that the same is true for fixation 

durations. Based on this, studies investigating adults’ oculomotor control have traditionally 

excluded the long fixations that can sometimes be found in the data (Inhoff & Radach, 1998). 
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Nevetherless, these long fixations can be very common in infants, presumably due to difficulties 

disengaging from a visual stimulus, or less experience processing perceptual and cognitive 

information. For the present analysis the exclusion criteria for long fixations were applied on a 

participant basis rather than selecting a random cut-off threshold for all participants, regardless 

of their individual performance. More precisely, the fixations included in the analysis accounted 

for about 95% of the set for each participant, allowing the subjects with longer (or shorter) 

fixations on average to maintain most of their long (or short) fixations. The fact that results also 

showed individual differences between short and long lookers in both age groups make the first 

hypothesis—infant fixation durations reflect the processing of the current focal point as well as 

the online requirements of the scene —plausible. Nevertheless, at this point the second 

hypothesis – fixation durations do not necessarily reflect information processing directly – 

cannot be diminished. 

Strong correlations were found between disengagement latencies and fixation durations in 

infants for both naturalistic and semi-naturalistic viewing conditions (prediction c). In adults, a 

weaker though significant correlation was found for the naturalistic condition. The strong 

correlations in the infant group might be due to an underdeveloped visuo-motor system. In 

infants, saccade planning and execution is greatly affected by the development of the frontal 

eye fields (FEF) and other neural structures such as some areas of the parietal cortex. Thus, 

infants showing more difficulties disengaging are believed to be those with a less developed 

visuo-motor system and with longer mean fixation durations. This would not explain, however, 

the correlations that, though reduced, still exist in the adult group for the naturalistic condition. 

These results suggest that disengagement is not only a consequence of an underdeveloped 

visuo-motor system, but that it also affects saccade execution as a function of the 

characteristics of the visual stimuli being processed. Consequently, disengagement could be 

used to quantify the stimulus dependency of fixation durations. These results fit with the findings 

from a study by Kikuchi and colleagues (2011) who found larger disengagement latencies and 

saccade-related event-related potentials (ERPs) when children disengaged from faces, 

suggesting that the encoding and processing of the foveated stimulus plays a role in the ability 

to shift the gaze from a central target. 

Whilst the double-step paradigm has been widely used in adult research to investigate saccade 

programming (see Chapter 1; Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & 
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McSorley, 2006; Westheimer, 1954), in infancy research it has only been applied to identify the 

shift from retinotopic to spatiotopic coordinate systems (Gilmore & Johnson, 1997; Kaufman et 

al., 2006; Senju et al., 2011). Technical and practical constraints in infant testing constitute a 

significant difficulty for investigating the development of saccade programming. For instance, in 

previous studies using the double-step task with adults each participant performed around 576 

trials, which means that, in total, more than 10.000 saccadic responses could be recorded 

(Becker & Jurgens, 1979). This allowed researchers to test different variations in the 

presentation of the stimuli and obtain distributions of reaction times for different conditions in a 

single study. Furthermore, since adult participants were instructed to look to the second target 

when it appeared, the researcher could be certain that the task was being accomplished. For 

obvious reasons, the studies with infants are comprised of a small number of trials that are not 

always valid, and consequently, to date it has not been possible to reproduce the adult findings 

on saccade programing in infant populations. The present study included a version of the 

double-step paradigm that aimed to overcome some of the issues found in infant studies. The 

main variation compared with previous implementations of the paradigm was the use of an 

adaptation of the MOBS thresholding algorithm (Anderson & Johnson, 2006; Tyrrell & Owens, 

1988) in order to calculate the time lapse during which the first target is present (τ) for each trial. 

This method allows focusing on testing the τ values that are most relevant for each individual 

participant, reducing the total number of trials that need to be executed. Infants were also 

encouraged to look at the second target by displaying a visually more attractive stimulus and 

presenting a short animation when it was gazed. Finally, predictive saccades were avoided by 

presenting the targets at various random. Based on previous findings from adult studies arguing 

that saccade cancellation prolongs reaction times (e.g., Nuthmann et al., 2010; Walshe & 

Nuthmann, 2013), I hypothesized that reaction times from the trials in which a single saccade 

was executed would be larger than those in which two consecutive saccades were performed. 

This is because in the occasions infants performed a single saccade to the second target it was 

assumed they were cancelling the initial saccade program to the first target before starting a 

new saccade program to the second target, thus the ultimate reaction time would be comprised 

of the duration for the initial, cancelled saccade program and the duration for the second 

saccade program to the second target. Results supported this hypothesis, suggesting that 6-

month-old infants are able to cancel a saccade program (prediction e). Nevertheless, not 

enough data was collected in order to further investigate—as it was done in the studies with 
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adults—the notion of the two-step saccade programming based on the effects of the time τ 

elapsing between the initial saccade and the second target step. Even though these results are 

encouraging, more research is needed in order to disentangle the mechanisms behind saccade 

programming in infancy. 

4.12 Conclusions 

 In sum, in this chapter I presented an empirical study that highlighted the developmental 

differences in eye-movement control between infants and adults, and helped shedding light on 

some of the factors affecting fixation durations and saccadic control in infancy. The specific 

mechanisms underlying saccadic control in 6-month-olds, or the extent to which different factors 

affect fixation durations and saccadic control at this age remains undetermined.  

In the next chapter I will model the present empirical data in order to investigate the 

mechanisms underlying fixation durations and saccadic control in infancy. More specifically, in 

the next chapter I present three simulation studies that will test whether the data from infants 

can be explained by a single model architecture (CRISP: Nuthmann & Henderson, 2012; 

Nuthmann et al., 2010), with age-specific and task-specific influences realized by differences in 

parameter settings. The model simulations will also be used to test specific developmental 

hypotheses on oculomotor control at 6 months of age. In particular, I will examine if fixation 

durations at 6-months are affected by developmental aspects of the visuo-motor system and/or 

by visual and cognitive processing.  
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Chapter 5: Investigating the mechanisms underlying fixation 

durations in 6-month-olds: A computational account 

5.1 Introduction 

In the previous chapter I investigated the factors modulating fixation durations and saccadic 

control in 6-month-old infants and adults when viewing complex dynamic stimuli and performing 

simple oculomotor tasks such as the gap-overlap paradigm (e.g., Fischer & Boch, 1983; Fischer 

& Breitmeyer, 1987; Fischer & Ramsperger, 1984; Saslow, 1967) or the double-step paradigm 

(Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 2006; Westheimer, 

1954). Results revealed differences in mean fixation durations across age groups (6-month-olds 

vs. adults) and viewing conditions (naturalistic vs. semi-naturalistic videos), and a relationship—

particularly evident in the group of infants—between the ability to disengage from a focal point 

and mean fixation durations. As shown in the differences across viewing conditions, these 

findings suggest that infant fixation durations reflect on-line perceptual and cognitive activity in a 

similar way to adults, but that the individual developmental state of the visuo-motor system still 

affects this relationship at 6 months, as implied by the high correlations between 

disengagement latencies and mean fixation durations in infants. Moreover, results from the 

double-step paradigm suggest that by 6 months of age infants are able to reliably cancel a 

saccade program. Even though these empirical findings disclosed some of the factors affecting 

fixation durations and saccadic control in 6-month-olds, the behavioural nature of the study did 

not allow investigating the precise mechanisms underlying oculomotor control in infancy.  

The present chapter aims to utilize a theoretical framework and computational model of fixation 

durations in scenes and determine its generalizability to infants (CRISP: Nuthmann & 

Henderson, 2012; Nuthmann et. al, 2010), in order to investigate previously unexplored 

mechanisms underlying oculomotor control in 6-month-olds. Notably, the model assumes that 

saccades are programmed in two stages, an initial labile phase during which saccade programs 

can be altered or cancelled and a subsequent non-labile phase in which programs cannot be 

cancelled. Whether infant saccadic programming operates via these two phases is not known. 

In addition, the CRISP model will be used to test specific developmental hypotheses on 

oculomotor control at 6 months of age. In the present chapter I will examine to which extent 

fixation durations at this age are affected by developmental aspects of the visuo-motor system 
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and/or by visual and cognitive processing. I also analyse the CRISP model’s limitations when 

applied to infant data. For this purpose I describe three simulation studies where I will model the 

fixation duration data from 6-month-old infants and adults presented in Chapter 4, in which 

participants viewed naturalistic and semi-naturalistic dynamic scenes. These studies will test 

whether the data from both infants and adults can be explained by a single model architecture, 

with age-specific and task-specific influences realized by differences in parameter settings 

(Nuthmann et al., 2010). In the following sections I will introduce the background literature on 

modelling fixation durations with CRISP. 

5.2 Modelling fixation durations with CRISP 

Empirical studies alone may be insufficient to answer questions related to the extent to which 

longer fixation durations reflect a less developed visuo-motor system, or differences in the 

speed of visual and cognitive processing. By explaining the empirical data and predicting 

possible outcomes computational models of visual attention provide us with another perspective 

that can help disentangle questions about the mechanisms underlying eye-movement control in 

adults and infants (Schlesinger & McMurray, 2012).      

Most current models of visual attention have focused on explaining where viewers fixate (for a 

review see Borji & Itti, 2013). Many of these models have implemented various versions of the 

visual saliency hypothesis, where bottom-up factors such as the colour or the luminance of the 

scene, drive gaze allocation (Itti & Koch, 2000, 2001). More recent theories, however, have 

highlighted the fact that visual attention may be primarily driven by top-down factors such as the 

viewers task (Henderson et al., 2007).  

In comparison, only a few models provide control mechanisms for the duration of fixations to 

shed light on the mechanisms underlying saccade generation and the encoding of visual 

information. Most of these models were developed for the task of reading. Here, the two most 

advanced models are the E-Z Reader model (Reichle et al., 1998, 2003) and the SWIFT model 

of saccade generation during reading (Engbert et al., 2002, 2005). Both models implement the 

notion of saccade programming being completed in two stages, as suggested by results from 

double-step experiments (Becker & Jurgens, 1979; see also Chapters 1 and 4). However, the 

two models differ with regard to the mechanisms that control fixation durations. What triggers a 

new saccade program is conceptualized to be lexical processing (E-Z Reader) or a random 
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timer (SWIFT). In the SWIFT model, lexical processing difficulty of the currently fixated word 

modulates fixation durations by inhibiting the timer so that it delays the initiation of the next 

saccade program. 

Building upon the idea of a random saccade timer (Engbert et al., 2002) the CRISP model is a 

computational model and a theoretical framework that accounts for fixation durations in adult 

scene viewing (Nuthmann et al., 2010). CRISP is a timer (C)ontrolled (R)andom-walk with 

(I)nhibition for (S)accade (P)lanning model (see  Figure 5-1 for a model overview).  

 

Figure 5-1 The CRISP Model overview. From Nuthmann et al. (2010). 

 

The model architecture can be summarized with the following three main assumptions on 

saccade timing and programming:  

(1) The accumulation of activity to a saccade threshold is implemented via a random walk 

process (Boccignone & Ferraro, 2004) and is responsible for generating inter-saccadic intervals 

and hence variations in fixation durations.  

(2) Saccade programming occurs in two stages: an initial, labile stage that is subject to 

cancellation, and a later, non-labile stage (see Chapters 1 and 4).   

(3) Processing difficulty can inhibit saccade timing and programming in a moment-to-moment 

fashion. The latter can happen in two ways. First, in case of increased processing demands the 
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random walk saccade timer slows down, which delays the initiation of a new saccade program 

and eventually leads to longer fixation durations. Secondly, processing difficulties can even 

cancel an ongoing labile saccade program, which extends the duration of the current fixation.  

Figure 5-2 From Nuthmann et al., 2010, summarizes the CRISP model’s architecture by 

displaying its temporal scheme on saccade timing and saccade programming.  

 

 

Figure 5-2 From Nuthmann et al. (2010). Temporal scheme of saccade timing and saccade 
programming in CRISP.  The random walk timing signal accumulates until it reaches a 
threshold, where a new saccade program is initiated. Each saccade program is composed by 
an initial labile stage (τlab), during which it is subject to cancelation, and a subsequent non-labile 
stage (τlab), where the saccade program can no longer be cancelled. After the non-labile stage, 
the saccade is executed (τex). Fixations start after a saccade is executed and end with the 
execution of the subsequent saccade. The random walk timing signal for the current saccade 
may not have reached its threshold before the saccade was executed (see the fixation that lasts 
307 ms). This will prolong the duration of the subsequent fixation.  	
  

 

The random walk timing signal accumulates towards a threshold and when it is reached a new 

saccade program is initiated. Each saccade program starts with its labile stage (τlab), during 
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which it can be probabilistically cancelled, followed by its non-labile stage (τnlab), where the 

saccade program can no longer be cancelled. Once this point is reached, the saccade is 

executed (τex). Fixations occur during the time lapse between two consecutive saccade 

executions. Occasionally, when the random walk timing signal does not reach its threshold 

before the saccade is executed (see Figure 5-2, the fixation that lasts 307 ms), the duration for 

the subsequent saccade is prolonged. Another source for increasing fixation durations is 

saccade cancelation (see Figure 5-2, the fixation that lasts 339 ms). In these cases the ultimate 

duration of the fixation includes the time lapse for the cancelled saccade program and the 

program that was executed (Nuthmann et al., 2010; Walshe & Nuthmann, 2013; see also 

Chapter 4). 

Mathematically, in its basic form the CRIPS model comprises five parameters related to 

saccade timing and programming (tsac, N, τlab, τnlab, τex). This model still includes fewer 

parameters than other models that also investigate eye-movement control such as the E-Z 

Reader model (Reichle et al., 1998, 2003), the SWIFT model (Engbert et al., 2005) or the ICAT 

model (Trukenbrod & Engbert, 2014). The random walk timing signal accumulates toward a 

threshold, and once the threshold is reached, a new saccade program is initiated. The transition 

rate for the random walk’s increments determines how fast the process of saccade timing 

operates. The transition rate r1 is defined as 

 

Equation 1 

𝑟1 =
𝑁
𝑡𝑠𝑎𝑐

 

where tsac is the mean duration of the timing signal (i.e., the mean time interval between two 

commands to initiate a saccade program). N denotes the number of states the random walk 

process can adopt and determines the variance of the timing signal; a low N leads to high 

variance and thus broad fixation duration distributions. The random walk is implemented as a 

discrete-state continuous-time Markov process with exponentially distributed waiting times 

between elementary transitions (for further details, see Nuthmann et al., 2010).  

Furthermore, saccade latency lsac is derived as the sum of the implemented saccade 

programming stages, i.e., 
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Equation 2 

𝑙𝑠𝑎𝑐 =   𝜏𝑙𝑎𝑏 +   τ𝑛𝑙𝑎𝑏     

where τlab and τnlab denote the average duration of the labile and non-labile phases, 

respectively. At the end of the non-labile saccade programming stage, the saccade is executed 

(with average duration τex). Saccade programming processes are assumed to be stochastic in 

nature. Therefore, for each realization of the model simulation, parameter values for the 

different saccade programming phases (τlab, τnlab, and τex) are drawn from gamma distributions. 

This introduces unsystematic variability in the duration of saccade programming stages. The 

mean parameter value for the saccade execution stage (τex) could be estimated from the mean 

saccade duration in the empirical data. For the remaining parameters, best-fitting values can be 

determined using an optimization technique such as genetic algorithms. It is important to ensure 

that the range of possible values for each parameter is psychologically and/or 

neurophysiologically plausible. In its implementation, the model generates sequences of 

saccades and fixations, whereby fixation durations are the time intervals between successive 

saccades (excluding saccade execution). 

5.3 Modelling infant fixation durations with CRISP: Theoretical 

assumptions 

In the past decades few computational models have attempted to explain cognitive 

development in infancy (Mareschal, 2010; Schlesinger & McMurray, 2012). Even though some 

of these models have investigated different aspects of visual orienting in infancy such as gaze 

following (Bugajska et al., 2009; Carlson & Triesch, 2004; Triesch et al., 2006), visual selective 

attention (Schlesinger et al., 2007) or familiarization (Domsch et al., 2010; Mareschal, 2010; 

Sirois & Mareschal, 2002), to date no computational model has attempted to explain the specific 

mechanisms underlying saccadic control in infancy (see Chapter 1).  

As outlined in Chapter 4, it has been reported how infant fixation durations can be affected by 

developmental aspects of the visuo-motor system, or by the speed of visual and cognitive 

processing. As a result one can expect to find more variability in fixation durations in infants 

compared to adults, or in other words, more positively skewed distributions of fixation durations 
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(Harris et al., 1988). The CRISP model (Nuthmann et al., 2010) represents a theoretical 

framework that may help to disentangle some of the questions introduced in Chapter 4 and at 

the beginning of this chapter: What are the mechanisms underlying saccadic control in early 

infancy? To which extent is the variability in fixation durations a consequence of developmental 

aspects of the visuo-motor system and/or the speed of visual-cognitive processing? 

In this section, I revisit CRISP’s theoretical assumptions and input parameters with the specific 

aim to explore whether they are, in principle, applicable to infant data and in what way age 

differences (infants vs. adults) could be represented by certain differences in parameter 

settings. From the perspective of age-specific influences on fixation durations, the following 

CRISP parameters contribute toward systematic differences in fixation durations: (1) the mean 

(tsac) and variance (i.e., number of states N) of the random walk timing signal, (2) the mean 

duration of the labile saccade program (τlab), and (3) the mean duration of the non-labile 

saccade program (τnlab) (see Nuthmann et al., 2010). 

a) Random walk timing signal  

The CRISP model assumes that saccade programs are initiated according to some preferred 

idiosyncratic mean rate (Engbert et al., 2002) and based on this it implements a rhythmic 

saccade timer that is responsible for generating variations in fixation durations (Nuthmann et al., 

2010). All living things are subject to spontaneous fluctuations of physiological and behavioural 

processes that maintain complex organisms in a fairly stable state (Wolff, 1991). Further, 

evidence suggests that the central nervous system as well as the oculomotor system are 

rhythmic in nature (McAuley et al., 1999). The temporal organization of spontaneous 

movements has also been studied in newborn infants, where it was found that the fluctuations in 

movement over time were not random but rather rhythmic (Robertson, 1982). The same can be 

interpreted when investigating saccadic eye-movements during the first month of life, which are 

believed to be mainly under subcortical control and hence are rapid and input-driven (Atkinson, 

2000; M. H. Johnson, 1995b, 2011).  

b) Random walk timing and speed of processing 

In CRISP, decreases in processing speed and increases in processing difficulty will slow down 

the random walk saccade timer. This delays the initiation of a new saccade program, which in 

turn leads to longer fixation durations. For the present simulations, it is reasonable to assume 
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that the mean and variance of the random walk process underlying the initiation of a new 

saccade program are different for infants compared to adults. Specifically, CRISP would capture 

a slower speed of visual-cognitive processing in infants by a higher mean value tsac for the 

random walk timing signal. In addition, following previous viewing-task simulations with the 

CRISP model (scene memorization vs. search: Nuthmann et al., 2010; scene viewing vs. 

reading: Nuthmann & Henderson, 2012), I allow both parameters of saccade timing (tsac and N) 

to vary across viewing conditions. In sum, I predict that these values will vary across viewing 

conditions and age groups and hence will be indicative of the speed of visual and cognitive 

processing. 

c) Two-stage saccade programming. 

In CRISP, once the random walk process reaches threshold, a new saccade program is 

initiated. Saccade programming is completed in two stages: an initial, labile stage that is subject 

to cancellation and an ensuing, non-labile stage in which the program can no longer be 

cancelled (see Chapters 1 and 4). The notion of the two-stage saccade programming is 

motivated by findings from double-step experiments (e.g., Becker & Jurgens, 1979), which used 

much simpler situations than scene viewing. 

To date, no study has specifically investigated the two-step notion of saccade programming in 

infants (but see Chapter 4). However, the ability to inhibit a saccade has been investigated by 

using the anti-saccade paradigm (e.g., M. H. Johnson, 1995; see Chapter 1). In this task, after 

the appearance of a central stimulus a cue appears either on the left or right side. The infant is 

encouraged to look in the opposite direction by subsequently presenting a more attractive object 

at this location. Johnson (1995) found that by 4 months, infants were able to, after a training 

period, reliably inhibit the saccade to the cue and move their eyes to the second more attractive 

target instead. Interestingly, the ability to inhibit a saccade programming concurs with the major 

development of the premotor areas of the frontal lobes -which contain the frontal eye fields 

(FEF)- that occurs from 3 to 4 months (Atkinson, 2000; Bronson, 1974; Frick et al., 1999; M. H. 

Johnson, 1990, 2011). These findings suggest that saccade cancellation and hence the two 

stages of saccade programming may be present already by 4 months. Thus, assuming that 

infants may not be able to systematically cancel a saccade before 4 months, one could expect 

the non-labile program to be longer than the labile program before this age. From 4 months 

onwards, I predict (1) a relative increase of the labile stage with respect to the non-labile stage 
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program, and (2) a gradual decrease in the absolute times for both labile and non-labile 

programs as the infant’s saccadic control increases in efficiency. Furthermore, research has 

shown that even by 6 months infant saccadic control is not as efficient as in adult participants 

(Butcher et al., 2000; Csibra, Tucker, & Johnson, 2001; see Chapter 4), thus both labile and 

non-labile stages are likely to be longer at this age compared to adults. Moreover, results from 

the double-step paradigm described in Chapter 4 suggested that 6-month-old infants are able to 

reliably cancel a saccade program.  

Under the assumption that both the existence and duration of the labile (τlab) and non-labile 

(τnlab) stages of saccade programing are subject to developmental changes in the visuo-motor 

system, I will treat them as an indicator of the system’s developmental state. Longer labile and 

non-labile stages will, on average, generate longer fixation durations. 

As outlined earlier in this chapter, CRISP introduces stochastic (i.e., unsystematic) variability in 

the durations of the labile and non-labile stages in that, for each simulated saccade program, 

individual durations are drawn from gamma distributions with means τlab and τnlab, respectively. 

The question arises whether there are additional systematic age-dependent and/or task/viewing 

condition-dependent differences in the duration of saccade programming stages. Moreover, 

there is evidence suggesting that saccade programming and hence saccade latencies could be 

affected by various exogenous factors such as those observed in the gap-overlap paradigm (M. 

H. Johnson et al., 1991; Kopecz, 1995; Matsuzawa & Shimojo, 1997), or endogenous factors 

such as those emerging from certain task instructions (Castelhano, Mack, & Henderson, 2009; 

Nuthmann et al., 2010). However, for reasons of model parsimony I assumed that saccade 

programming parameters do not vary across viewing conditions within a given age group.  

5.4 The current studies 

The current chapter includes three simulation studies with the CRISP model (Nuthmann et al., 

2010) where the fixation durations data from Chapter 4 were modelled. The overarching goal 

was to establish a theoretical framework able to explain the unexplored mechanisms underlying 

oculomotor control in 6-month-olds, by demonstrating the generalizability of the CRISP 

theoretical framework to data from 6-month-olds, and more particularly, for the first time 

introducing the two-step notion of saccade programming in infants. In addition, simulation 
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studies 2 and 3 were used to test specific developmental theories on saccadic control and 

explore the limitations of the CRISP adult theoretical framework when applied to infant data.  

In simulation study 1 the empirical data from adults and infants were modelled and compared. 

In simulation study 2, data from two groups of infants with long and short disengagement 

latencies were modelled. Finally, using this data simulation study 3 included a series of studies, 

in which certain input parameters were held constant across the two infant groups while others 

were allowed to vary in order to test different theoretical assumptions.  

The goal of simulation study 1 was to: (a) demonstrate the CRISP model and theoretical 

framework’s generalizability –such as the two-step notion of saccade programming– to data 

from 6-month-old infants and (b) analyse the differences between infant and adult simulations 

by means of differences in the model’s input parameters. Simulation studies 2 and 3 tested 

particular developmental theories on saccadic control. More specifically, these studies explored 

whether (c) fixation durations in infancy are influenced by the developmental state of the visuo-

motor system and/or by visual and cognitive processing speed. Given that difficulty in 

disengagement is commonly associated with poorer developmental states of the visual system, 

I hypothesized that the absolute and relative values for the labile and especially non-labile 

stages of saccade programming would be prolonged in infants with longer disengagement 

latencies. 

5.5 Simulation study 1: Baseline  

The goal of the first simulation was to test the CRISP model’s generalizability to fixation-

duration data from 6-month-old infants, which includes the two-step notion of saccade 

programming. Furthermore, I analysed the age differences and the influence of the material 

viewed on fixation durations during scene viewing in both infants and adults. 

5.5.1 Behavioural data  

For the current simulation study the infant and adult data from Chapter 4 for both naturalistic 

and semi-naturalistic viewing conditions were modelled. In this subsection I will summarize the 

results that are relevant for the present simulation study. Significant differences between mean 

fixation durations were found across viewing conditions and age groups. In particular, the group 

of adults presented significantly shorter mean fixation durations than the group of 6-month-olds 

for both naturalistic and semi-naturalistic conditions. The semi-naturalistic condition displayed 
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longer mean fixation durations compared to the naturalistic condition, for both 6-month-olds and 

adults. Participants showing short or long mean fixation durations in one viewing condition also 

showed short or long mean fixation durations in the other condition, indicating stable individual 

differences in both age groups. These results provided empirical evidence that even though at 6 

months infants’ oculomotor control may not have reached adult levels, infants’ fixation durations 

are already influenced by the viewing condition. Differences in fixation durations between the 

two age groups aside, infants responded in the same manner as adults, showing shorter mean 

fixation durations for the naturalistic stimuli compared to the semi-naturalistic ones. The 

empirical data set was comprised of 12315 adult fixations (Nnaturalistic = 5949; Nsemi-naturalistic = 

6366) and 2675 infant fixations (Nnaturalistic = 1447; Nsemi-naturalistic = 1228). 

5.5.2 Model adjustments 

The goal of these simulations was to test the CRISP model’s generalizability to infant data. To 

this end, the same model architecture was applied to both the infant and adult data. Thus, 

model generalizability was analysed in the restricted sense of parameter changes, which is a 

more stringent test than adding new parameters to the model (Nuthmann & Engbert, 2009). 

Based on the theoretical and empirical considerations outlined at the introduction of this 

chapter, it was decided which model parameters were allowed to vary across age groups and/or 

viewing conditions. 

As explained earlier, the mean (tsac) and variance (N, number of states) of the random walk 

timing signal define the transition rate (r1, see Equation 1) for the random walk process, which 

determines how fast the process of saccade timing operates. For the present simulations I 

allowed the parameters tsac and N to vary across different viewing conditions and age groups. 

Parameter estimates for the different conditions serve as an index for the speed of visual and 

cognitive processing. 

When the model simulates a given saccade program, the durations of the labile, non-labile and 

execution stages are drawn from gamma distributions (see also Engbert et al., 2005; Reichle et 

al., 1998). For example, the actual time required to complete the labile saccadic programming 

stage is sampled from a gamma distribution with µ = τlab and σ = σγ × µ. The means of the 

gamma distributions (µ) are either free or fixed parameters (Nuthmann et al., 2010), whereas 

the relation between the standard deviation and mean (σγ) is fixed (e.g., at 0.33 or 0.25, 



 155 

Nuthmann et al., 2010). As outlined above, the means for the labile and non-labile stages are 

free parameters, which I allow to vary across age groups while they are constant for viewing 

conditions within a given age group. The parameter for the standard deviation of the gamma 

distributions (σγ) is a fixed parameter. To accommodate the higher variability generally observed 

in infant data compared to adult data, it was set to 0.33 for the infant data and 0.25 for the adult 

data. These values were adopted from previous model simulations (Engbert et al., 2005; 

Nuthmann et al., 2010; Reichle et al., 1998, 2003). 

Finally, I treat the mean duration of saccade execution (tex) as a fixed parameter. This is a 

parameter that directly depends on the saccadic amplitude (Hainline et al., 1984). For adults I 

adopted a parameter value used in previous CRISP simulations (tex = 37 ms, simulation study 2 

in Nuthmann et al., 2010). For the infant simulations I slightly increased this parameter value (tex 

= 50 ms). Hainline and colleagues (1984) investigated the relationship between saccadic 

amplitude and velocity in infants and adults. They reported that the average peak velocity for a 

10º saccade for infants or adults was around 250-300 °/sec, which leads to mean saccade 

durations of 33-40 ms. Most of the saccade amplitudes from our study were less than 5°. 

According the Hainline and colleagues’ (1984) main-sequence plots, it can be seen that at 

around 5º, peak velocities can reach 100-150 °/sec which would lead to saccade durations of 

around 33-50 ms. These results fit with the values we used for the saccade execution 

parameter. Each model simulation replicates the results from 10 fictive participants.   

5.5.3 Modelling results 

Free parameters were estimated using a genetic algorithm optimization technique that was 

used in previous simulation studies with the CRISP model (simulation study 2 in Nuthmann & 

Henderson, 2012; Nuthmann et al., 2010). For each age group, a total of six free parameters 

were fitted: the mean durations for the labile and non-labile stages of programming; the mean 

and variance of the random walk timing signal for the naturalistic condition; and the mean and 

variance of the random walk timing signal for the semi-naturalistic condition. The ranges for 

estimating these values were based on previous oculomotor research from infants and adults, 

even though I used relatively wide ranges (especially for the group of adults). The genetic 

algorithm estimated the input parameters by minimizing a goodness-of-fit measure and by 

evaluating how much the simulated data differed from the empirical data. The parameter values 
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generating the simulations that best resembled the empirical distributions are described in Table 

5-1.  

 

Table 5-1 Best-fitting parameters for simulation study 1 

 Parameter Symbol Range Naturalistic Semi-naturalistic 

Infants  

Saccade programming      

      Labile stage (ms) τlab 200-400 385 

      Non-labile stage (ms) τnlab 30-120 62 

      Standard deviation (ms) σ --- 0.33 

Saccade timing      

Mean (ms) tsac 200-650 458 496 

Variance  N 5-20 20 5 

Saccade execution  tex --- 50 

Error  E --- 4.275 3.718 

Error cumulative 
distribution  Ec --- 4.093 9.821 

Adults  

Saccade programming      

       Labile stage (ms) τlab 150-350 224 

       Non-labile stage (ms) τnlab 30-50 37 

       Standard deviation (ms) σ --- 0.25 

Saccade timing      

Mean (ms) tsac 150-650 253 271 

Variance  N 5-20 20 10 

Saccade execution tex --- 37 

Error E --- 4.513 6.042 

Error cumulative 
distribution Ec --- 6.758 4.248 

 

The goodness-of-fit measure (E) was calculated by assessing how much the simulated data 

diverged from the empirical data. For this purpose fixation duration distributions and mean 

fixation durations were compared and the errors were added together (see Nuthmann et al., 

2010, Appendix B). The parameters displaying the best fit were selected following the next 

procedure. First, the deviation between the two distributions was measured by calculating the 
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mean-root-square error. For each viewing condition, fixation duration distributions were 

calculated from 46 bins with bin centres ranging from 80 to 6000 milliseconds, in steps of 130 

milliseconds. Secondly, the difference between the means was evaluated by the mean-squared 

normalized error for average fixation durations (Reichle et al., 1998). As a result of the long tail 

and the high skewedness of the fixation duration distributions presented in this chapter, the 

simulation with the lower E did not necessarily indicate the best fit. Results were considered a 

good fit when the simulation captured the peak and the tail of the distribution. The fixation 

duration distributions disclosed in this chapter included particularly long fixations (>2 secs) that 

are typically excluded from the analysis when studying adults (Nuthmann et al., 2010). These 

long fixations, however, are not uncommon in young infants and can in fact be revealing when 

studying the development of oculomotor control. I decided to include these fixations for both age 

groups in order to maintain consistency in the analysis despite the additional difficulties this 

entails when fitting the data with the genetic algorithm. For instance, when the empirical 

distribution has a long tail the simulation that resembles the peak and the tail of the distribution 

best is not necessarily the one that shows the lower E: in these cases, mean fixation durations 

for the empirical and simulated distributions can still be far apart, which increases the E value. 

Thus when the distribution includes long fixations this will affect the parameter estimation from 

the genetic algorithm. To overcome this issue I selected the set of parameters that (1) fitted the 

peak and the tail of the empirical distribution, and (2) presented the best goodness-of-fit 

measure.  

Additionally, I report the mean-root-square error of the cumulative distributions (Ec). This 

function, which gives more weight to the peak of the distribution when calculating the error, 

constitutes an additional source for evaluating the disparity between distributions. The 

goodness-of-fit measure for the genetic algorithm was also evaluated using this formula, but 

results did not vary significantly.   

As for the empirical data, the model simulations showed significant differences in fixation 

durations across viewing conditions and age groups. In particular, the simulations for the group 

of adults presented significantly shorter mean fixation durations than the group of 6-month-olds 

for both naturalistic (t(13.177) = 53.781, p < .001) and semi-naturalistic conditions (t(18) = 

40.460, p < .001). The semi-naturalistic condition displayed longer mean fixation durations 

compared to the naturalistic condition, for both 6-month-olds (t(9) = -8.131, p < .001) and adults 



 158 

(t(9) = -5.858, p < .001). Furthermore, the group of adults displayed significantly shorter mean 

labile stages (t(18) = 100.050, p < .001) and non-labile stages (t(18) = 160.543, p < .001) as 

compared to the group of infants. The results of the simulations are summarized in Figure 5-3. 

 

Figure 5-3 Simulation study 1: Simulations paired with the empirical data. 

 

The two right panels show the data from adult observers, which are captured very well by the 

model simulations. Specifically, the simulated data reproduced the characteristic positive skew 

in fixation duration distributions. Compared to the adult data, the fixation duration distributions 

for the 6 month-olds are much noisier, partly due to the fewer number of fixations. For the infant 

data, the modal portion of the distribution is clearly shifted towards longer fixation durations, and 

the tail of the distribution is increased. These overall trends are captured well by the simulated 

data. Table 5-1 displays the best-fitting parameters for adults and infants.  
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Results evidence differences between age groups in both saccade timing and saccade 

programming parameters, with the infant group displaying considerably higher values (see 

Table 5-1). With respect to saccade timing parameters, the mean values for the random walk 

timer from the infants group (naturalistic = 458 ms; semi-naturalistic = 496 ms) almost doubles 

the values for adults (naturalistic = 253 ms; semi-naturalistic = 271 ms). The saccade timing 

variance (number of steps for the random walk, N), on the other hand, do not seem to vary that 

much across age groups, especially for the naturalistic condition where N is 20 for both infants 

and adults. This can be a side effect of the model trying to accommodate the very long fixations 

(> 2 secs) that were included in the analysis, since higher N values will lead to wider 

distributions (see Appendix A in Nuthmann et al., 2010). The striking differences in saccade 

timing parameters between infants and adults evidence how visual and cognitive processing 

speed is considerably slower for 6-month-olds, which prolongs the duration of fixations. 

Additionally, the model shows that the differences between the naturalistic and semi-naturalistic 

distributions are mainly due to a lower mean value for the random walk timer and the difference 

in the saccade timing variance (number of steps for the random walk; see Table 5-1).  

Pertaining to saccade programming parameters, the simulation results can be summarized as 

follows. First, there was no relative increase in the duration of the labile stage with respect to 

the non-labile stage when comparing infants and adults (the labile stage takes up 86.13% of 

saccade programming time in infants and 85.82% in adults). Second, there was a gradual 

decrease with age in the absolute durations of both labile and non-labile saccade programming 

stages (see Table 5-1). These results suggest that even though two-stage saccade 

programming is fully functioning at 6 months, it must develop further in order to reach adult-like 

levels. 

From this simulation study I can conclude that the CRISP model’s architecture can be applied to 

infant data, even though the model in its original form has difficulty in dealing with the very long 

fixations common in infants (> 2 secs). The simulation results suggest that at 6 months saccade 

programming occurs in two stages (the labile and non-labile stages), which constitutes the first 

evidence for the two-step notion of saccade programming in infants. Furthermore, the CRISP 

model was able to capture the differences in fixation durations that resulted from the 

presentation of different viewing conditions in both age groups, which shows that the influence 
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of cognitive processing in fixation durations can be reproduced by adapting the random walk 

timer of the saccade generator. 

Regarding age differences, the discrepancies in both saccade programming values (labile and 

non-labile stages) and saccade timing values (mean of the random walk timing signal) between 

infants and adults are compelling, suggesting that at 6 months, fixation durations can still 

require further development of the visuo-motor system to reach adult levels.   

5.6 Simulation study 2: Modelling participants showing long and 

short disengagement latencies 

The previous simulation study demonstrated the CRISP model’s generalizability to infants. This 

allows testing in subsequent studies particular developmental theories by applying the model. 

This simulation study aims to compare the differences in fixation durations between infants 

showing increased disengagement difficulties and those whose latencies were closer to adults. 

As discussed in Chapters 1 and 4, long disengagement latencies in early infancy are associated 

with a poorer development of the visual system. I also assume that infants with less developed 

visuo-motor systems, i.e. infants with longer disengagement latencies, will present longer labile 

and/or non-labile stages. This assumption is based on past research using the anti-saccade 

paradigm, which suggested that infants younger than 3-4 months were not able to readily inhibit 

a saccade program to the wrong target -and hence, cancel a saccade (e.g., M. H. Johnson, 

1995). Comparing the modelling results and parameter estimates for infants with varying 

disengagement abilities allows for exploring whether the differences in mean fixation durations 

between the two groups are due to developmental aspects of the visuo-motor system (saccade 

programming) or rather variations in the speed of visual and cognitive processing (saccade 

timing). 

5.6.1 Behavioural data 

For the present simulation study I modelled the infant data presented in Chapter 4 for the 

naturalistic and semi-naturalistic viewing conditions. In this subsection I will summarize the 

results that are relevant for the present simulation study. High correlations were found for 6-

month-olds between disengagement latencies and mean fixation durations in both naturalistic 

and semi-naturalistic conditions. Moreover, there was a relationship between disengagement 

latencies and fixation durations in the naturalistic condition in the group of adults, but not 
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between disengagement latencies and the semi-naturalistic condition. These results highlighted 

the influence that the ability to disengage from a focal point may have on fixation durations, 

which was not only present at 6 months, but could also be seen to a lesser extent in adults. 

The model simulations were restricted to the infant data and aimed at comparing data from 

infants with larger or smaller disengagement difficulties as these infants should demonstrate the 

most interesting differences in model parameters. Gathering a large amount of data from the 

same infant entails some technical and practical difficulties (see Chapters 2 and 3). Due to the 

low number of fixations gathered from each infant it was not possible to model participants 

individually. For this reason I decided to select two groups of three infants. This was the 

minimum number of participants needed to obtain an acceptable number of fixations in order to 

model the data efficiently (> 200 fixations per condition). The long disengagement (LongD) 

group was comprised of the three infants with the longest disengagement latencies (all of them 

above the mean). In contrast, the short disengagement (ShortD) group included the three 

infants with the shortest disengagement latencies (all of them below the mean). As a result of 

the correlations between disengagement latencies and fixation durations, the infants with long 

(or short) disengagement latencies also showed long (or short) fixation durations.  

The data from the LongD group was comprised of 486 fixations (Nnaturalistic = 274; Nsemi-

naturalistic = 212). The mean fixation duration was 819.5 ms (Mnaturalistic = .778, SDnaturalistic = .152; 

Msemi-naturalistic = .862, SDsemi-naturalistic = .105) and the mean disengagement latency 502 ms (SD = 

.137). 

The ShortD group included 1094 fixations (Nnaturalistic = 614; Nsemi-naturalistic = 480). The mean 

fixation duration was 570 ms (Mnaturalistic = .505, SDnaturalistic = .108; Msemi-naturalistic = .635, SDsemi-

naturalistic = .113) and the mean disengagement latency 87 ms (SD = .029). An independent 

samples t-test showed significant differences in disengagement latencies when comparing 

LongD and ShortD groups (t(4) = 5.139, p = .007). 

5.6.2 Model adjustments 

The model adjustments and assumptions were exactly the same as those described in 

simulation study 1. 
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5.6.3 Modelling results 

The best-fitting values for free model parameters were again determined with the same genetic 

algorithm optimization technique described for simulation study 1. Figure 5-4 displays the 

empirical and simulated fixation duration distributions for the LongD (left panels) and ShortD 

(right panels) groups and the two viewing conditions (top: naturalistic video, bottom: semi-

naturalistic videos).  

 

Figure 5-4 Simulation study 2: Simulations paired with the empirical data 

 

The reduced number of fixations for the LongD group led to rather noisy empirical fixation 

duration distributions (red lines). Yet it is evident from the data that, for the LongD group, the 

modal portion of the distribution was shifted toward longer fixation durations, and the tail of the 

distribution was somewhat increased, with a larger proportion of the data lying in the tail; this 
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was more pronounced for the naturalistic videos than for the semi-naturalistic ones. Overall, the 

computational model simulations were able to capture the group differences in fixation duration 

distributions for the LongD and ShortD groups reasonably well. However, the CRISP model 

performed worse on the more irregular LongD data as compared to the ShortD data, as is 

evident from the larger deviation measures (see “Error” in Table 5-2).  

 

Table 5-2 Best-fitting parameters for simulation study 2 

Parameter Symbol Range 

LongD ShortD 

Nat Non-nat Nat 
Non-

nat 

Saccade Programming       

    Labile stage (ms) τlab 200-400 400 322 

    Non-labile stage (ms) τnlab 30-120 103 40 

    Std (ms) σ --- 0.33 

Saccade timing       

    Mean (ms) tsac 200-650 560 648 437 466 

    Variance N 5-20 10 10 20 6 

Saccade execution tex --- 50 

Error E --- 14.641 23.684 11.643 12.747 

Error cumulative distribution Ec --- 4.244 8.680 4.950 3.715 

 

Reducing the number of participants by grouping them according to their disengagement 

abilities revealed some limitations of the CRISP model in simulating infants’ fixations. Even 

though the peak and the tail of the distributions were efficiently captured by CRISP, there were 

a number of long fixations (> 2 seconds), particularly evident in the LongD group that were not 

captured by the model. These long fixations have traditionally been associated with 

disengagement difficulties (see Chapters 1 and 4). The fact that most of these very long 

fixations were found in the LongD group supports this hypothesis. 

Analysis of model parameters (Table 5-2) offers the intriguing possibility of exploring at what 

level the differences in fixation durations between the two groups primarily originate – at the 
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level of saccade timing, saccade programming, or both? As outlined before, I consider saccade 

timing parameters as an indicator for the speed of visual-cognitive processing, whereas 

saccade programming parameters serve as an index for the development of the visuo-motor 

system.  

The model simulations suggested a higher mean value for the random walk timing signal for the 

LongD group compared to the ShortD group regardless of the viewing condition. This suggests 

that infants with LongD are slower at processing the visual information required for triggering a 

saccade program, contributing to the greater prevalence of long fixations in this group. 

On the other hand, Table 5-2 also shows differences in saccade programming parameters 

between both groups. In the CRISP model, at the transition from a labile to a non-labile stage of 

saccade programming a “point of no return” is passed. Interestingly, for the ShortD group the 

labile stage covers 88.95% of the total saccade programming time, while for the LongD group it 

covers 79.52% only. In relative terms at least, this leaves more time for the modification or 

cancellation of saccade programs for infants in the ShortD group, which may be indicative of a 

more developed visuo-motor system.  Furthermore, the model simulations suggested that while 

the non-labile stage program is already as short as for adults in the ShortD group (40 ms), it is 

still prolonged for the LongD group (103 ms). These results suggest that even though the neural 

structures involved in saccade programming (e.g., the frontal eye fields, FEF) are thought to be 

in place at 6 months, at least in some infants they may still not be developed enough to perform 

adult-like on-line control of eye-movements. Furthermore, both groups show relatively long 

labile stages, which means that even the ShortD group may still be going through a “calibration 

phase” that will lead to more efficient adult-like eye-movements later on. The differences 

between the two groups are striking, providing evidence for large variability in saccadic control 

across infants from the same age group.  

In sum, according to these simulations with the CRISP model, fixation durations at 6 months are 

influenced by both the speed of visual and cognitive processing, and by developmental aspects 

of visual and cognitive processing. This second factor is particularly evident for the group that 

showed higher disengagement difficulties and could be responsible for the programming of 

particularly long fixations. Furthermore, the ability to disengage from a focal point seems to 

greatly influence fixation duration distributions and hence the parameters of the model. These 
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findings are in agreement with past research reporting that looking behaviour  within a 

habituation paradigm was affected by both information processing and disengagement (Domsch 

et al., 2010).  

5.7 Simulation study 3: The individual contributions of saccade 

timing and saccade programming 

In the previous simulation study I compared the empirical results and simulations from infants 

showing large difficulties disengaging with those who did not. Results suggested that long 

fixation durations at 6 months are a consequence of both the developmental state of the visuo-

motor system and the speed of visual and cognitive processing. In particular, infants with more 

difficulties disengaging showed increased saccade programming and saccade timing 

parameters and hence a lower developmental state of the visuo-motor system and slower 

processing. In this section I present four simulations that aim to explain the individual 

contributions of both sets of parameters and the relationship between the developmental state 

of the visuo-motor system and visual and cognitive processing speed in both LongD and ShortD 

groups.  

5.7.1 Behavioural data 

The behavioural data was exactly the same as described in simulation study 2, though I only 

analysed the data from the naturalistic condition. 

5.7.2 Model adjustments 

To determine the individual contribution of saccade programming and saccade timing model 

parameters in fixation duration distributions from LongD and ShortD groups, I ran two types of 

simulations estimating different sets of parameters: I simulated the data for the naturalistic 

condition for the LongD and ShortD groups by (1) estimating the saccade programming 

parameters (mean durations of labile and non-labile stages) and maintaining saccade timing 

parameters fixed and by (2) estimating saccade timing parameters and maintaining saccade 

programming parameters fixed. Simulations were analysed and only considered valid if they 

fitted the empirical data well (capturing the mode and the tail of the distribution) and if the 

estimated parameters were neurophysiologically plausible.  
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5.7.3 Modelling results 

As in previous simulations, parameters were estimated with a genetic algorithm. The values for 

the fixed parameters were taken from the results obtained in simulation study 1 (see Table 5-1), 

in which all infants were modelled together. The possible ranges for estimating parameters were 

wider than in the previous simulation studies in order to also allow physiologically implausible 

values. The limitations of the fitting procedure, previously encountered in simulation study 2, 

were more pronounced for these simulations, where only one set of parameters was allowed to 

vary. As a consequence, it could happen that a parameter set that had the lowest error 

according to the genetic algorithm5 did not fit the peak and the tail of the distribution very 

accurately. In this case, the set of parameters was adjusted manually (Table 5-3).  

 

Table 5-3 Best-fitting parameters for simulation study 3. The grey boxes indicate those 
simulations that fitted the empirical data and that were physiologically plausible. 

Parameter Symbol 
Estimating sacc. programming Estimating sacc. timing 

Range LongD ShortD Range LongD ShortD 

Saccade Programming        

    Labile stage (ms) τlab 200-600 420 328 --- 385 

    Non-labile stage(ms) τnlab 30-300 110 42 --- 62 

    Std (ms) σ --- 0.33 --- 0.33 

Saccade timing        

    Mean (ms) tsac --- 458 200-800 590 460 

    Variance N --- 20 5-20 15 20 

Saccade execution tex --- 50 --- 50 

Error E --- 20.047 9.806 --- 34.03 49.48 

Error cumulative 

distribution 
Ec --- 70.469 5.010 --- 

17.26

1 
94.975 

 

 

 

                                                        
5 Genetic algorithms do not always find the optimal, best-fitting solution. 
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Figure 5-5 depicts the empirical and simulated fixation duration distributions for the various 

conditions. 

 

Figure 5-5 Simulation study 3: Left column: empirical data (fixations on naturalistic stimuli only) 
paired with the simulations after estimating the saccade programming parameters and keeping 
saccade timing constant. Right column: empirical data paired with the simulations after 
estimating saccade timing parameters and keeping saccade programming constant.  

  

Inspection by eye suggests that the best model fit was obtained for the ShortD group when 

allowing the saccade programming parameters but not the saccade timing parameters to differ 

between the two groups (Figure 5-5, bottom-left). Consequently, allowing only the saccade 

timing parameters to vary (Figure 5-5, bottom-right) did not achieve a good fit for the ShortD 

distribution. For the LongD group, the opposite pattern was found: the fit was better when the 

saccade timing parameters were allowed to vary (Figure 5-5, upper-right) but not the saccade 
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programming parameters (Figure 5-5, upper-right). These results show that both ShortD and 

LongD groups need a particular combination of saccade-programming and saccade timing 

parameters for achieving a good fit. This suggests that the developmental state of the visuo-

motor system (i.e. saccade programming) and visual and cognitive processing speed (i.e. 

saccade timing) are linked together, such that infants with a less developed visuo-motor system 

could also be slower processors. 

Comparing the parameters for ShortD and LongD valid simulations (grey-shaded cells in Table 

5-3) it becomes apparent that the largest differences were seen in values for saccade timing 

parameters (random walk parameters), while values for saccade programming parameters 

(labile and non-labile stages), though still larger for the LongD group, did not suffer a radical 

change. This suggests that even though developmental aspects of visual processing still affect 

fixation durations at 6 months (as seen in the increased saccade programming parameters from 

the LongD group), it is visual and cognitive processing speed that generates the largest 

differences between the two groups.  

5.8 Discussion 

Even though the results from the empirical study presented in Chapter 4 already highlighted the 

influence of both developmental factors and cognitive processing in fixation durations, it did not 

explain which mechanisms are responsible for the variations in saccadic control in infancy, and 

questions such as the extent to which the variations in fixation duration distributions in infancy 

are due to developmental aspects of the visuo-motor system and/or visual and cognitive 

processing speed. Investigating these issues using more traditional psychophysical experiments 

can be challenging if not unworkable due to the practical and current technological limitations 

that testing infants entails (see Chapter 2). On the other hand, computational modelling allows 

us to describe, predict and explain data that is itself unobservable (Lewandowsky & Farrell, 

2011).    

The goal of this chapter was to investigate the unexplored mechanisms underlying saccadic 

control and fixation durations in infancy by determining the generalizability and potential 

limitations of extending the CRISP theoretical framework and computational model of fixation 

durations in adult scene-viewing (Nuthmann et al., 2010) to infants. The CRISP model was used 

to investigate the underlying mechanisms modulating fixation durations in 6-month-olds and test 
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specific developmental theories of oculomotor control by applying the model to the empirical 

fixation-duration data described in Chapter 4. 

Simulation study 1 confirmed that the CRISP model and theoretical framework is able to capture 

the trends observed in empirical fixation-duration data from 6 month-old infants. This also 

suggests that at 6 months saccade programming occurs in two stages (the labile and non-labile 

stages), which constitutes the first evidence for the two-step notion of saccade programming in 

infants. Additionally, this study explored the influence of the viewing condition on mean fixation 

durations during scene viewing in infants and adults. Age differences were examined by 

exploring differences in model parameters for the two age groups. CRISP fit both the infant and 

adult data well (Figure 5-3), even though the very long fixations found in infants produced 

additional difficulties when modelling the data. Comparisons between the parameters estimated 

for different age groups suggested that both saccade timing and saccade programming (labile 

and non-labile stages) are considerably slowed down at 6 months compared to adults. This 

suggests that at 6 months fixation duration may still be affected by the development of the 

visuo-motor system as well as by the efficiency of visual and cognitive processing. Moreover, as 

in previous CRISP simulations (Nuthmann et al., 2010), task differences for both age groups 

were captured by adjusting how fast the random walk timer operates. 

Simulation study 2 aimed to apply the CRISP model to investigate specific developmental 

theories. In particular, this study aimed to explore the differences in fixation durations between 

infants with large (LongD group) and short (ShortD group) disengagement latencies. A specific 

goal was to test whether the differences in fixation durations were primarily due to an 

underdevelopment in the visuo-motor system, the speed of visual and cognitive processing, or 

both. I assumed that the group of infants with longer disengagement latencies would be the one 

presenting a less developed visuo-motor system. Based on previous research on the inhibition 

of saccades in infants (e.g., M. H. Johnson, 1995), I reasoned that infants with larger 

disengagement difficulties may also present longer saccade latencies, with both labile and non-

labile phases being prolonged. Results from this study evidenced differences in saccadic control 

between the LongD and ShortD groups. The model simulations revealed differences between 

the ShortD and LongD groups in both saccade timing as well as saccade programming 

parameters. The LongD group presented considerably larger saccade timing parameters than 

the ShortD group, evidencing the influence of visual and cognitive processing on fixation 



 170 

durations. At the same time, differences in saccade programming –in both labile and non-labile 

stages- highlighted the effect of the developmental state of the visuo-motor system on infant 

oculomotor control. Interestingly, while the duration of the non-labile stage was already at an 

adult level in the ShortD group (40 ms), it was still considerably prolonged for the LongD group 

(103 ms). These results indicate that even though the neural structures involved in eye-

movement control (e.g., the frontal eye fields, FEF) are supposed to be in place by 6 months, 

they may still be going through a “calibration phase” that will lead to more efficient adult-like 

eye-movement behaviour later on (Csibra et al., 1998). In sum, findings from this simulation 

suggested that fixation durations at 6 months may be both affected by the speed of visual and 

cognitive processing and by developmental aspects of the visuo-motor system, with the latter 

being particularly prominent in infants with disengagement difficulties. These results are in line 

with findings from Domsch and colleagues (2010), reporting that looking behaviour within a 

habituation paradigm was affected by both information processing and disengagement. 

Simulation study 2 also highlighted the limitations of the CRISP model when simulating fixation 

durations from infants. In adults, very long fixation durations (> 2 secs) are fairly uncommon and 

tend to be discarded from the analysis, the rationale being that such long fixations may not be 

indicative of any perceptual activity or information processing (Inhoff & Radach, 1998). Young 

infants, however, can present a number of very long fixations that are mainly assumed to be a 

consequence of disengagement difficulties (“sticky fixation”; Atkinson, 2000; Farroni et al., 1999; 

Frick et al., 1999; M. H. Johnson, 2011). For this reason I decided not to discard long fixations 

from data analysis for any of the age groups. The model simulations were able to capture the 

trends in fixation duration distributions as expressed in the mode and the slope of the 

distribution. Perhaps not suprisingly, they did not capture the very long fixations present in the 

tail of the distribution. The fact that this problem was more evident in the LongD group may 

suggest that these fixations were a consequence of poor disengagement abilities. To 

accommodate this, future work should extend the model by including a “disengagement 

component” able to stocastically prolong certain fixations and simulate the long tails found in 

infants with disengagement difficulties. This, however, raises the question of whether 

disengagement should prolong the labile or the non-labile stage of saccade programming. 

Disengagement difficulties are though to be a consequence of problems triggering an eye-

movement after a fixation. According to this, the disengagement component should rather 
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influence the non-labile stage of saccade programming, since it is at the end of this stage when 

a saccade is executed. Nevertheless, as our results from Chapter 4 have shown, 

disengagement abilities are stimulus dependent and can also affect adult populations, which 

suggests that the labile-stage of saccade programming should also be affected.    

Simulation study 3 presented four simulations in order to explore the individual contributions of 

both sets of parameters (saccade programming and saccade timing) and the relationship 

between the developmental state of the visuo-motor system and visual and cognitive processing 

speed in both LongD and ShortD groups. Results suggest that the main factor affecting infant 

saccadic control at this age is visual and cognitive processing. The differences in speed of 

processing between groups of infants that differ in their ability to dissengage from a visual target 

could indicate a relationship between the developmental state of the visuo-motor system and 

information processing, so that infants with a less developed visuo-motor system would also be 

the slower processors. While the model simulations allowed for an initial exploration of these 

theoretical possibilities, it is clear that more empirical and computational research is needed to 

clarify these issues. 

Even though the present studies helped to shed light on the mechanisms and processes 

underlying eye-movements in 6-month-old infants, the causes that explain the large individual 

differences between short and long lookers are still unknown. For instance, from a skill learning 

perspective, it could be argued that infants with shorter fixation durations will generate a larger 

number of saccades per day, and as a consequence, they will become more skilled in this 

aspect of motor control compared to other infants. In order to test this hypothesis, future 

simulations may consider factoring a “learning component” into the model. 

The present chapter was also concerned with differences in overall fixation duration 

distributions in infants as opposed to adults, and with the global effects of the viewing condition. 

A related issue concerns the degree to which fixation durations are under the direct moment-to-

moment control of the current visual stimulus. Previous simulations with the CRISP model have 

investigated this issue by applying the scene onset delay paradigm, which selectively 

manipulates global scene processing difficulty (see Chapter 1). The empirical data and model 

simulations showed that fixation durations are, at least partly, influenced by the current visual 

stimulus (Nuthmann et al., 2010). Such an exhaustive investigation has still not been possible in 
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infants due to a number of constrains (e.g., data quality, high degree of movement, the use of 

systems with lower sampling frequency). Nevertheless, in the future the CRISP model could be 

applied to investigate the influence of endogenous and exogenous factors in eye-movement 

control in infancy with the expectation that direct control (i.e. endogenous factors) may increase 

over the first year of life, mirroring frontal cortex development. 

5.9 Conclusions 

In summary, the present chapter demonstrated the generalizability of the CRISP theoretical 

framework to data from 6-month-old infants. Perhaps one of the most critical contributions of 

this framework to the infant literature is the postulation of the two-step notion of saccade 

programming, where saccades are programmed in an initial labile stage that is subject to 

cancellation, and a later, non-labile stage. Additionally, simulation studies 2 and 3 were used to 

test the extent to which the developmental state of the visuo-motor system and visual and 

cognitive processing affect fixation durations at 6 months, with results suggesting that while 

both factors influence oculomotor control at this age it is visual and cognitive processing which 

causes the biggest effect.  

In the present and the previous chapter I have investigated the stability in fixation durations 

within a single testing session. Whilst cross-sectional studies can tell us about the 

developmental state of in this case the oculomotor system in a particular moment, they are not 

the best tool to explain developmental change. 

In the next two chapters I will present longitudinal data in order to explore the trajectories of the 

same infants at different points in time during the first year of life and test some of the 

hypothesis made in this chapter that were not possible to test in a cross-sectional study. How 

do fixation durations develop over the first year of life? How do saccade processing and 

saccade timing parameters develop over the first year of life? 
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Chapter	
  6: The	
  development	
  of	
   fixation	
  durations	
   in	
  dynamic	
  and	
  static	
  

complex	
  scenes:	
  longitudinal	
  studies	
  

6.1 Introduction  

In the previous two chapters I investigated the factors modulating saccadic control and fixation 

durations in 6-month-old infants and adults when viewing complex dynamic stimuli and 

performing simple oculomotor tasks such as the gap-overlap paradigm (Atkinson et al., 1992; 

Butcher et al., 2000; Elsabbagh et al., 2009; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; 

M. H. Johnson et al., 1991) or the double-step paradigm (Becker & Jurgens, 1979; Findlay & 

Harris, 1984; Walker & McSorley, 2006; Westheimer, 1954). Results from the empirical study 

described in Chapter 4 revealed differences in mean fixation durations across age groups (6-

month-olds vs. adults) and viewing conditions (naturalistic vs. semi-naturalistic videos), and a 

relationship—particularly evident in the group of infants—between the ability to disengage from 

a focal point and mean fixation durations. As shown in the differences across viewing 

conditions, these findings suggest that infant fixation durations reflect on-line perceptual and 

cognitive activity in a similar way to adults, but that the individual developmental state of the 

visuo-motor system still affects this relationship at 6 months, as implied by the high correlations 

between disengagement latencies and mean fixation durations in infants. Moreover, results 

from the double-step paradigm suggest that by 6 months of age infants are able to reliably 

cancel a saccade program. Additionally, in Chapter 5 I investigated the unexplored mechanisms 

underlying saccadic control and fixation durations in 6-month-olds by determining the 

generalizability and potential limitations of extending the CRISP theoretical framework and 

computational model of fixation durations in adult scene-viewing (Nuthmann et al., 2010) to 

infants. Perhaps one of the most critical contributions of this framework to the infant literature 

was the two-step notion of saccade programming, where saccades are programmed in an initial 

labile stage that is subject to cancellation, and a later, non-labile stage. In this chapter I also 

investigated the extent to which the developmental state of the visuo-motor system and visual 

and cognitive processing affect fixation durations at 6 months, with results suggesting that while 

both factors influence oculomotor control at this age it is visual and cognitive processing what 

causes the biggest effect. The studies described in Chapters 4 and 5 investigated the stability in 

fixation durations within a single testing session. Whilst cross-sectional studies can tell us about 
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the developmental state of in this case the oculomotor system in a particular moment, they are 

not the best tool to explain developmental change. 

In the present chapter I present two longitudinal studies and a study with adult participants that 

aim to investigate the development of fixation durations and saccadic control over the first year 

of life when viewing a battery of dynamic and static stimuli and performing the gap-overlap 

paradigm. This design will also allow exploring individual differences across different viewing 

conditions and visits.    

The data and results from these studies will constitute the basis for exploring the development 

of the mechanisms underlying saccadic control during the first year in the next chapter, where 

data will be modelled using the CRISP theoretical framework and computational model of 

fixation durations in adult scene-viewing (Nuthmann et al., 2010).  

6.2 The developmental change in looking times, fixation durations, 

and reaction times  

Even though the developmental course of look duration is non linear across infancy and 

toddlerhood (Colombo, 2001; Ruff & Rothbart, 1996), many studies have reported a decrease in 

look duration during the first year of life (Colombo & Mitchell, 1990; Kagan et al., 1971; M. Lewis 

et al., 1969; Mayes & Kessen, 1989; Shaddy & Colombo, 2004). Interestingly, some of these 

studies also reported an increase in looking at around 13 months (Kagan et al., 1971; M. Lewis 

et al., 1969), perhaps due to the emergence of executive functions. The decrease in looking 

times during the first year could be the result of an improvement in processing efficiency 

(Colombo et al., 1991), the disengagement of attention (Atkinson, 2000; Bronson, 1974; Frick et 

al., 1999; M. H. Johnson, 1990, 2011), and/or advances in memory capacity – in either 

encoding, storage, retrieval, or some combination of these processes (Colombo, 1993). On the 

other hand, some have also reported different trends in look duration trajectories for different 

stimulus types (Courage et al., 2006; Frank, Amso, & Johnson, 2014; Frank et al., 2009; 

Shaddy & Colombo, 2004). For instance, Courage, Reynolds, and Richards (2006) investigated 

the development of look duration as a function of age and stimulus type in 14- to 52-week-old 

infants that were presented with a battery of static and dynamic versions of faces, Sesame 

Street material and achromatic patterns. They found that while look duration decreased 

significantly from 14 to 26 weeks for all types of stimuli, from 26 weeks on the course of look 
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duration diverged according to the stimulus type. When the older infants viewed the achromatic 

static patterns, their look duration continued to decline and/or it reached a point where it did not 

decline nor increase. On the contrary, look duration significantly increased for the Sesame 

Street material and the faces, in a way that their performance from 14 to 52 weeks was better 

described by a quadratic function. Similar trends have been found when investigating infants 

looking at faces (Frank et al., 2014, 2009) or looking times during infant playing with toys. Ruff, 

Saltarelli, Capozzoli, and Dubiner (1992) found no change in looking over time when 5 to 11 

months infants were let to play with single objects. Nevertheless, some other studies have 

reported an increase in looking times over the same age range when several objects were given 

to the infant simultaneously (Bakeman & Adamson, 1984; Ruff & Saltarelli, 1993). These 

opposing results where looking times decrease or increase according to the stimulus type may 

suggest that while some influences on attention decline, others increase, probably as a result of 

the development of new cognitive and motor skills (Ruff & Rothbart, 1996). 

As described in Chapter 1, while few studies have specifically investigated fixation duration 

trajectories in infancy, some have used fixation duration measures to investigate the 

development of visual scanning of static and dynamic stimuli. For instance, Bronson (1994) 

analysed the visual scanning patterns of 6–13 week old infants when they were presented with 

static geometric figures. Besides the gradually decreasing fixation durations, he found that 

infants’ scanning is initially salience-driven, and that it is progressively replaced by volitional 

control over the choice of saccadic targets. In another study (Bronson, 1990), he studied the 

scanning patterns of 2–14 week-old infants when presented with simple dynamic and static 

shapes. Even though as infants grew older they were increasingly more likely to fixate the 

different features of the static shapes, they still had difficulties disengaging their attention when 

the stimulus was flickering. 

Similar findings have been reported in a number of more recent studies using stimuli that are 

more ecologically valid than static pictures or drawings. Note that the use of stimuli that are of 

limited ecological validity has been often addressed and criticized since the generalizability of 

the experimental results is uncertain (Hunnius & Geuze, 2004a; Hunter & Richards, 2011; 

Neisser, 1976; Schmuckler, 2001). Hunnius and Geuze (2004a) analysed in a longitudinal study 

the scanning patterns of 10 infants between the ages of 6 and 26 weeks that were presented 

with a video of their mother’s face and an abstract stimulus. Their results show a clear 
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developmental progression with scanning patterns stabilizing at around 18 weeks, which is 

slightly later than what is usually reported for the scanning of static images. From 14 weeks on 

they also found stable differences between the median fixation durations of the two stimuli. 

Interestingly, the fact that they used more ecologically valid and visually complex stimuli made a 

difference in the results: infants spent more time looking at the mouth than with less realistic 

stimuli (e.g., the drawing of a face), and much less time looking at the edge of the face. Note 

that studies using reverse correlation methods have identified the corners of the mouth as a 

primary locus of emotional content in faces (Kontsevich & Tyler, 2004).  

Few studies have also investigated the developmental trajectories of reaction times as an 

indicator of information processing. For instance, Canfield, Wilken, Schmerl, and Smith (1995) 

used the visual expectation paradigm in order to study continuity in reaction times, anticipation, 

and off-task behaviour  between the ages of 4 and 6 months. Besides reporting strong stability 

in reaction times, their results showed a decrease from 4 to 6 months. In another study, 

Butcher, Kalverboer, and Geuze (2000) tested the same infants from 6 to 26 weeks in their 

ability to shift their gaze from a central to a peripheral stimulus during competition and non-

competition trials. They found that the latency on non-competition trials decreased from 8 to 16 

weeks, while for competition trials latencies continued decreasing until 26 weeks.  

6.3 Individual differences in looking times, fixation durations and 

reaction times 

Many studies have reported individual differences in looking times and have speculated about 

the differences between short and long lookers (Colombo et al., 1995, 1991; Colombo & 

Mitchell, 1990; Colombo, 1995; Cuevas & Bell, 2013; Jankowski & Rose, 1997). Some have 

hypothesized that shorter looking times reflect more rapid encoding of visual information within 

and across ages (Colombo et al., 1987; Colombo, 1995), with a number of studies suggesting 

how short lookers are more efficient processors compared to long lookers (Colombo et al., 

1991; Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 1997) or present 

different strategies of visual intake (Colombo et al., 1995, 1991).  

Individual differences have also been the focus of some of the work investigating reaction times 

(Butcher et al., 2000; Canfield et al., 1995) and fixation durations in infants. For instance, 

Bronson (1994) tested 6- to 13-week-old infants and found that decreases in visual 
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attentiveness were associated with longer fixation durations while looking at static figures. In 

another more recent study, Wass and Smith (2014) presented 11-month-old infants with a 

battery of complex dynamic stimuli and non-complex static stimuli. They reported that individual 

differences in fixation durations were stable across different stimulus types and testing sessions 

(but note that all testing sessions happened within 15 days). Furthermore, reaction times 

gathered from the gap-overlap paradigm correlated with dynamic stimuli, but not with static 

stimuli for which measures of cognitive control and arousal were most predictive of 

performance. 

Look duration has been associated with later intellectual function and cognitive performance in 

childhood and adolescence (see Chapters 1 and 4; Choi & Vaswani, 2014; Colombo et al., 

1995; Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 1997; Kavšek, 2004; 

Lawson & Ruff, 2004; Sigman, Cohen, Beckwith, & Parmelee, 1986; Slater, 1995). Likewise, 

recently Papageorgiou and colleagues (2014) investigated the relationship between fixation 

durations and later intellectual function in childhood. They demonstrated that individual 

differences in fixation durations in early infancy can predict individual differences in 

temperament and behaviour in childhood 

 Fagan III (1984) and Bornstein and Sigman (1986) argued that the stability in look duration is 

mediated by stable individual differences in speed or efficiency of information processing. This 

means that infants who habituate more quickly, have shorter looking times, or look longer at 

novel stimuli are demonstrating faster processing efficiency compared with other infants, which 

means that more information can be processed in a given unit of time. This gives them an 

advantage over their peers to perform better in ability tests during childhood (Canfield & Ceci, 

1992).  

A second hypothesis states that the stability in look duration is mediated by stable individual 

differences in memory capacity, in either encoding, storage, retrieval or a combination of these 

processes (Colombo, 1993). According to this hypothesis, infants that show better memory 

capacity will have quicker habituations and will show higher levels of recognition memory for the 

familiar stimulus, thus showing a preference for the novel one. To date, both theories seem to 

be feasible and not mutually exclusive, as proposed by studies investigating continuity in 

infancy and early childhood (Colombo, 1993; Jacobson et al., 1992).   



 178 

6.4 Ex-Gaussian modelling 

Generally, adult fixation durations when viewing pictures form a positively skewed distribution 

with a mode at 230 ms, a mean of 330 ms, and fixation durations that go from 50 ms to 1000 

ms approximately (Henderson & Hollingworth, 1999). Infant fixation duration distributions have 

also been reported to be highly skewed and definitely not normally distributed (Harris et al., 

1988). For this reason, means may not necessarily be representative of fixation duration 

distributions.  

With the view to solve this issue some studies have reported means and standard deviations, or 

median fixation durations (Hunnius, Geuze, & van Geert, 2006; Hunnius & Geuze, 2004a, 

2004b). More recent studies from reading research (Glaholt, Rayner, & Reingold, n.d.; Reingold 

& Rayner, 2006; Staub & Benatar, 2013) have used the ex-Gaussian function to fit fixation data. 

Interestingly, it has been reported that the ex-Gaussian function provides a very good fit to 

several empirical reaction time distributions (Hockley, 1984; Ratcliff & Murdock, 1976).  

The increasing popularity of the ex-Gaussian function lies in the fact that it is theoretically 

justified and that it provides parameter values that are easy to interpret (Lacouture & 

Cousineau, 2008). The ex-Gaussian function is the convolution of two additive processes, a 

Gaussian (normal) function and an exponential function (Lacouture & Cousineau, 2008). It has 

three parameters, μ, σ and τ. The first two (μ, σ) correspond to the mean and standard deviation 

of the Gaussian component of the distribution, and can be interpreted as localization and 

variability indicators respectively. On the other hand the third parameter (τ) is the mean of the 

exponential component, and corresponds to the right “tail” of the distribution, with larger τ-s	
  

representing more skewed distributions. A more skewed fixation duration distribution shows 

more variability in the data. In this chapter distributions of fixation durations will be fitted using 

the ex-Gaussian distribution. 

6.5 Current studies 

In the present chapter I present two longitudinal studies and a study with adults. For the first 

longitudinal study, all infants completed three visits that were scheduled every 6 weeks at 3.5, 5 

and 6.5 months calculated from the due date. For the second longitudinal study, infants were 

tested every 8 weeks at approximately 6, 8, 10 and 12 months. 
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All participants from all studies were eye-tracked while they were presented with two different 

complex dynamic viewing conditions (naturalistic and abstract videos), a static condition 

(complex static images) and performed the gap-overlap paradigm (Atkinson et al., 1992; 

Butcher et al., 2000; Elsabbagh et al., 2009; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; 

M. H. Johnson et al., 1991). The free viewing tasks were used to analyse the micro-dynamics of 

visual and cognitive processing during spontaneous orienting by measuring fixation durations. 

The gap-overlap task was used to measure participants’ disengagement abilities. 

In particular, the studies described in this chapter aim to 

a) describe fixation duration trajectories for different types of stimuli during the first and the 

second half of the first year; 

b) analyse the differences in the processing of dynamic and static stimuli during the first 

year; 

c) explore individual differences in fixation durations across visits and stimulus types; 

d) explore the relationship between fixation durations and disengagement latencies during 

the first year; 

e) analyse the differences in fixation durations between infants and adults when viewing 

static and dynamic complex stimuli. 

 

Results for the three studies will be discussed at the end of this chapter. 

6.6 Longitudinal study 1: Three to 6 month-olds 

6.6.1 Methods 

6.6.1.1 Participants 

In total, 12 typically developing infants (7 girls, 5 boys) participated in the longitudinal study. An 

additional 2 infants were excluded from the analysis due to their low quality data in at least two 

of the visits. 

All infants scored within their age range on the Bayley Scales of Infant Development (Bayley, 

1993). All infants completed three visits that were scheduled every 6 weeks at 3.5, 5 and 6.5 

months calculated from their due date. Mean ages were 101.46 days (SD = 4.46), 144 days (SD 

= 4.39), and 186.31 (SD = 4.85). Visits were scheduled at times of the day when the caregiver 
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considered the infant was going to be most alert. In case the measurement session was not 

successful due to the infant being unhappy or other technical issues, another visit was 

scheduled as promptly as possible during the next 7 days. 

Most infants (N = 10) were of white middle socioeconomic status. The infants were recruited via 

magazine advertisements, social networking media, and flyers. Families were given baby t-

shirts or bags as gifts for their participation. The study protocol was approved by the Birkbeck, 

Psychological Sciences Ethics Committee. Table 6-1 shows the age of each participant at the 

times of visit.  

 

Table 6-1 Information about the visits for the longitudinal study from 3 to 6 months 

Subject	
   Gender	
   Age	
  Visit	
  1	
  (Days)	
   Age	
  Visit	
  2	
  (Days)	
   Age	
  Visit	
  3	
  (Days)	
  

1 Girl 109 153 192 

2 Girl 98 140 179 

3 Girl 105 147 188 

4 Boy 104 146 188 

5 Girl 101 143 190 

6 Boy 107 146 190 

7 Girl 94 140 182 

8 Girl 97 139 184 

9 Boy 98 141 181 

10 Boy 98 140 183 

11 Girl 101 143 184 

12 Boy 101 143 185 

 

6.6.1.2 Apparatus 

The apparatus was identical to the one described in Chapter 4. 



 181 

6.6.1.3 Stimuli 

The spontaneous looking task included (1) 15 customized naturalistic videos in which three 

people performed baby-friendly actions, (2) 15 abstract videos created from the first set of 

naturalistic videos, and (3) 15 static complex images. The three types of stimuli were presented 

in colour and had the same size. For a precise description of each of the stimulus used for this 

study go to Appendix C. 

6.6.1.3.1 Naturalistic videos 

Fifteen naturalistic videos were created following the same procedure described for the cross-

sectional study in Chapter 4. In fact, the present battery includes 9 of the videos described in 

Chapter 4 and 6 new ones. One of the previous naturalistic videos was excluded from this 

design because it was eliciting smooth pursuit eye-movements. Figure 6-1 (left side) shows a 

frame from one randomly selected naturalistic video. 

 

 

Figure 6-1 Frames from a naturalistic video and the abstract video that was constructed from it. 

 

6.6.1.3.1 Abstract videos 

The abstract videos were derived from the naturalistic videos by applying a number of distortion 

filters from Final Cut Pro X Version 10.0.5. The resulting videos presented the same dynamics 

and maintained equal low-level visual features, such as colour or luminance, as the naturalistic 

videos. On the other hand, they lacked the semantic content and the familiarity that the 

naturalistic videos contain. Figure 6-1 shows a frame from one randomly selected abstract video 

paired with the naturalistic video from which it was constructed.  
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6.6.1.3.2 Static complex images 

Fifteen static images were presented for 7 seconds each. The images not only presented high 

complexity in terms of their semantic and social content but also in terms of low-level visual 

features such as colour, contrast, and luminance. In fact, all the images contained bright and 

high contrast colours and displayed different scenarios including one or several characters. 

Figure 6-2 shows a randomly selected static image.  

 

Figure 6-2 One of the static images used in the experiment. 

 

6.6.1.4 Gaze-contingent paradigms 

The current experiment includes the gap-overlap gaze-contingent task. The contingencies were 

created by using the T2T (Talk to Tobii) functions (Shukla et al., 2011). The design for this task 

was the same described in Chapter 4.  

For the present study, a total number of 72 trials were presented. Forty per cent of these trials 

were overlap trials, 30% gap trials and 30% baseline trials. They were presented in groups of 12 

trials (one iteration) and alternated with other tasks of the study. The peripheral stimulus was 

always the same (a cloud), and the central stimulus and the background colour changed after 

every 12 trials.  

Disengagement latencies were calculated by subtracting mean baseline latencies to mean 

overlap latencies. For the analysis presented in this thesis the gap trials were excluded.   

6.6.1.5 Design and Procedure 

Infants and caregivers were welcomed in a lab waiting room where the infants acclimated to the 

experimenter and the lab. After this, they were tested individually in a small-darkened room 

while sitting on a baby-chair located 60cm away from the monitor or on their mother’s lap. Prior 
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to starting the experiment the infants were calibrated with a 5 points calibration procedure (see 

Chapter 2). Once the eye-tracking study was completed, the experimenter evaluated the infant’s 

gross-motor development using the Bayley Scales of Infant Development (Bayley, 1993). 

The different tasks of the study were alternated: (1) thirteen gap overlap trials, (2) one abstract 

video presentation (20-25 seconds), (3) one static image presentation (7 seconds), (4) and one 

naturalistic video presentation (20-25 seconds). This process was repeated 6 times. Next, an 

additional 9 iterations of (1) abstract videos, (2) static images, and (3) naturalistic videos were 

presented. The order for the videos and the static images was always the same. In total, the 

infants viewed 15 naturalistic videos, 15 abstract videos, and 15 static images, and performed a 

maximum of 78 gap-overlap trials. In the case the infant became upset during the procedure the 

study was stopped. This procedure was the same for all infants and visits (within subjects 

design).  

 

Figure 6-3 Experimental protocol. 

 

6.6.2 Analysis 

6.6.2.1 Fixation detection and coding 

The fixation detection procedure was exactly the same as the one described in Chapter 4. 
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6.6.2.2 Data quality analysis 

As in Chapter 4, spatial precision was measured with the root mean square (RMS) of inter-

sample distances. The RMS was calculated per participant and visit. The mean RMS-s were 

0.34° (SD = .16) for the first visit, 0.25° (SD = .09) for the second visit, and 0.17° (SD = .06) for 

the last visit.  

A one-way ANOVA was used to test for the age effect in data quality. The degrees of freedom 

of the F test were corrected according to the Greenhouse-Geisser method. A significant effect 

was found showing that RMS decreased with age, F (1.255,13.809) = 12.454, p = .002. 

Additionally, correlational analysis between RMS-s and fixation durations were run for each age 

point in order to ensure data quality was not interfering with the fixation detection method. No 

correlations were found between data quality and spatial precision for any of the visits (see 

Table 6-2).  

 

Table 6-2 Correlations between fixation durations and RMS in the three visits. 

 Visit 1 Visit 2 Visit 3 

Fixation 

durations vs. 

RMS 

Pearson  -.230 -.388 -.468 

Sig. (2-tailed) .472 .212 .125 

N 12 12 12 
 

6.6.2.3 Cross-validation  

6.6.2.3.1 Fixation durations 

An external coder that was naive to expected outcomes was trained to code fixations from 

infants featuring low and high quality data. The coder had to (1) run GraFIX automatic detection 

algorithms using the parameters described in Chapter 3 (see Table 3-3), and then (2) 

manipulate the resulting outcome in order to remove artifactual fixations or add those 

undetected by following the predefined guidelines described in Chapter 4. In total, the external 

coder coded the 20 % of the data from the infants that participated in this study.  

The inter-rater reliability between the means and the number of detected fixations was 

evaluated using the ICC (Hallgren, 2012). A strong agreement between the mean fixation 
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durations was found (with an ICC of .831, p = .007). Additionally, there was also an agreement 

in the number of fixations detected (with an ICC of .774, p = .004). 

6.6.2.3.2 Gap-overlap 

All the trials from the gap-overlap paradigm were reviewed in order to manually exclude those 

where (1) the accuracy was not good enough to trigger the gaze-contingencies, or (2) the 

infants looked away during the presentation of the peripheral stimulus. An external coder that 

was naïve to the expected outcomes evaluated the validity of the gap-overlap trials for 20% of 

the infants that participated in this study. 

Interrater reliability was measured using the Kappa statistic with a view to determine 

consistency among raters.  This analysis showed a strong agreement between the two coders, 

Kappa = .809 (p <.001), 95% CI (0.727, 0.891). 

6.6.2.4 Statistical analysis 

The mean fixation duration and the ex-Gaussian components for each participant and viewing 

condition were calculated (see Lacouture & Cousineau, 2008) after excluding all fixations with a 

duration that was two standard deviations above or below the initial mean. Hence, the fixations 

that were included in the analysis were those that accounted for about the 95 % of the set for 

each participant. This exclusion was performed in order to exclude very long or very short 

fixations on a participant basis. An alternative method is to establish maximum and minimum 

fixation thresholds for different age groups. In this case, due to the exploratory nature of this 

study in infants, these thresholds would have to be selected arbitrarily. For this reason I opted 

for the method that would preserve most of the fixations from each participant in the analysis. 

In the gap-overlap paradigm only the first 40 trials were included in the analysis (10-15 trials per 

condition). This was to avoid the trials where infants could be predicting the location of the next 

target. Trials with latencies shorter than 200 ms were also excluded from the analysis, as in 

infant studies such fast eye-movements are considered to be eye-tracking errors or anticipatory 

saccades begun prior to stimulus onset (Canfield et al., 1995; Frick et al., 1999; S. A. Rose, 

Feldman, & Jankowski, 2002). Some studies also define a maximum latency limit (Elsabbagh et 

al., 2009; M. H. Johnson et al., 1991; Matsuzawa & Shimojo, 1997). However, since this study 

explores the variations in fixation durations in longitudinal data, one can expect to find visit and 

inter-individual differences in their disengagement abilities and reaction times. For this reason I 
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decided to establish a conservative criterion on a participant basis and exclude all the trials that 

were one standard deviation above the participant’s mean latency (same as in Chapter 4). 

Disengagement latencies were calculated by subtracting the baseline mean latencies to the 

overlap mean latencies.   

For the correlational analysis, a logarithmic transformation was applied to all the measures for 

fixation durations. The justification for this transformation has rested on the fact that fixation 

duration distributions are substantially skewed and the sample size is rather moderate.  Thus, 

the logarithmic transformation was used to induce symmetry on the data. 

6.6.2.4.1 The analysis of longitudinal variations in fixation durations 

The longitudinal variations in fixation durations were analysed using repeated measures 

analyses of variances (ANOVAs). This analysis was possible considering that there were no 

missing points for any of the infants and visits. 

This procedure was used in order to examine whether (1) fixation durations changed with age, 

(2) the viewing condition influenced fixation duration trajectories, and (3) the viewing conditions 

influenced fixation durations at each visit. 

Three (visit) x 3 (stimulus) mixed ANOVAs were used to explore the overall age variations in 

fixation durations. Further, independent one-way ANOVAs were used in order to investigate the 

differences between different stimulus types and their independent longitudinal trajectories. In 

the cases where the correlation matrices between the different measurement points were 

heterogeneous the degrees of freedom of the F test were corrected according to the 

Greenhouse-Geisser method. Post-hoc pairwise comparisons were calculated based on 

Bonferroni correction.  

6.6.3 Results 

6.6.3.1 The development of fixation durations 

6.6.3.1.1 Age effect: Fixation duration trajectories for different viewing 

conditions  

A mixed 3 x 3 ANOVA revealed a significant main age effect in mean fixation durations 

(F(2,22)= 14.911, p < .001, pη2= .575) and a stimulus type effect (F(1.169, 12.862)= 78.939, p < 

.001, pη2= .878). Pairwise comparisons revealed significant differences in mean fixation 

durations between the first (M = 592 ms, SD = .017) and the second visits (M = 539 ms, SD = 
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.025, p = .012) but not between the second and the third visits (M = 523 ms, SD = .020, p = 

.710). Furthermore, there was an interaction effect between age and stimulus type (F(4,44)= 

10.738, p < .001, pη2= .494). For a graphical visualization of the data see Figure 6-4. 

 

Figure 6-4 Longitudinal study 1: Fixation durations histograms for the means and the ex-
Gaussian components. 

 

The interaction between age and stimulus type was examined running three additional ANOVAs 

that examined the age effect on each stimulus type independently. Mean fixation durations 

decreased with age in naturalistic videos (F(2,22)=33.047, p < .001, pη2= .750) and static 

images (F(1.448,15.924)=21.468, p < .001, pη2= .661), but not in abstract videos. Post hoc t-

tests revealed significant differences between the three visits for the naturalistic videos (visit 

one: M = 681 ms, SD = .050; visit two: M = 565 ms, SD = .091; visit three: M = 515 ms, SD = 

.070; visit one – visit two: p = .002; visit two – visit three: p = .068) and the static images (visit 

one: M = 402 ms, SD = .061; visit two: M = 357 ms, SD = .033; visit three: M = 328 ms, SD = 

.031; visit one – visit two: p = .022; visit two – visit three: p = .008). 

In order to investigate and explain the origin of the effects described above further analyses 

were performed using the ex-Gaussian components (µ, σ, and τ) for the fixation duration 

distributions instead of the means. A mixed 3 x 3 ANOVA revealed a significant main stimulus 
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type effect in µ fixation durations (F(2,22)=4.514, p = .023, pη2= .291), but not significant age 

effect was found. Further, there was a significant interaction between age and stimulus type 

(F(4,44)=4.465, p = .004, pη2= .289). Three additional ANOVAs investigated this interaction 

independently revealing that µ fixation durations decreased with age in static images 

(F(2,22)=4.671, p = .020, pη2= .298), but not in naturalistic or abstract videos where no 

significant effects were found. Pairwise comparisons showed significant differences in µ fixation 

durations in static images between visit one (M = 278 ms, SD =.044) and visit three (M = 235 

ms, SD =.042, p = .049). 

A mixed 3 x 3 ANOVA revealed an interaction between age and stimulus type for σ fixation 

durations (F(4,44)=3.595, p = .013, pη2= .246), even though no main age or stimulus type 

effects were found. Three additional ANOVAs investigated this interaction independently 

revealing a marginally significant effect suggesting that σ fixation durations decreased with age 

in static images (F(2,22)=3.173, p = .062, pη2= .224), but not in naturalistic or abstract videos 

where no significant effects were found. However, post hoc pairwise comparisons showed no 

significant differences between σ fixation durations between the different visits for any of the 

viewing conditions. 

The results for τ analysis were very similar to the ones obtained from the means. A mixed 3 x 3 

ANOVA revealed a significant main age effect in τ fixation durations (F(2,22)=7.166, p = .004, 

pη2= .394) and a main effect of stimulus type (F(1.175, 12.930)=75.377, p < .001, pη2= .873). 

Pairwise comparisons revealed significant differences in τ fixation durations between the first (M 

= 343 ms, SD = .017) and the second (M = 289 ms, SD = .025, p = .012) visits but not between 

the second and the third (M = 287 ms, SD = .024, p = 1.000). Furthermore, there was an 

interaction effect between age and stimulus type (F(4,44)= 10.945, p < .001, pη2= .499). 

As in previous analysis, three additional ANOVAs independently investigated the effect of age in 

τ fixation durations for each stimulus type. τ fixation durations decreased with age in naturalistic 

videos (F(2,22)=32.872, p < .001, pη2= .749) but not in abstract videos. A marginal effect was 

found for static images suggesting that τ also decreased with age for this viewing condition 

(F(2.22)=2.935, p = .074, pη2= .211). Post hoc t-test revealed significant differences between 

the first (M = 440 ms, SD = .019) and the second visits (M = 299 ms, SD = .024, p < .001) for 
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the naturalistic videos. However, there were no differences in τ between any of the visits in the 

static images condition. 

6.6.3.1.2 Differences in fixation durations between stimulus types at different 

visits 

A one-way ANOVA revealed a significant effect of stimulus type on mean fixation durations at 

visit one, F(1.210, 13.315) = 65.310 , p < .001, pη2= .856. Post hoc paired comparisons 

revealed that static images elicited significantly shorter fixations (M = 402 ms, SD = .061) than 

naturalistic videos (M = 681 ms, SD = .050, p < .001), or abstract videos (M = 694 ms, SD = 

.121, p < .001). However, no significant differences were found between the mean fixation 

durations in naturalistic and abstract videos at this visit. 

A significant effect of stimulus type on mean fixation durations was found at visits two (F(1.315, 

14.462) = 43.630 , p < .001,  pη2= .799) and three (F(1.200, 13.205) = 73.130 , p < .001, pη2= 

.869). Paired comparisons showed significant effects between all the three conditions at both 

visit two (Naturalistic videos: M = 565 ms, SD = .026; abstract videos: M = 695 ms, SD = .050; 

static images: M = 357 ms, SD = 009; all p < .05) and visit three (Naturalistic videos: M = 515 

ms, SD = .020; abstract videos: M = 727 ms, SD = .043; static images: M = 328 ms, SD = 009; 

all p < .001).  

In order to further understand the effects described above, the ex-Gaussian components (µ, σ, 

and τ) for the fixation duration distributions were also analysed. A significant effect of stimulus 

type on µ fixation durations was found at visit one (F(2, 22) = 18.775 , p < .001,  pη2= .631). 

Paired comparisons showed that µ fixation durations were significantly longer for static images 

(M = 278 ms, SD = .013) compared to naturalistic (M = 241 ms, SD = .014, p = .010) or abstract 

videos (M = 230 ms, SD = .010, p < .001). A marginally significant effect of stimulus type on µ 

fixation durations was found at visit two (F(2, 22) = 2.766 , p = .085,  pη2= .201), even though 

post hoc t-tests showed no differences between the three viewing conditions. No effects were 

found for visit three, suggesting a greater stabilization on eye-movement control at this age 

point.  

A significant effect of stimulus type on σ fixation durations was found at visit one (F(2, 22) = 

5.675, p = .010,  pη2= .340). Pairwise comparisons showed a significant effect between static 

images (M = 68 ms, SD = .008) and naturalistic (M = 52 ms, SD = .008; p = .50) and abstract 
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stimuli (M = 50 ms, SD = .009; p = .004). Nevertheless, no differences between both dynamic 

conditions were found. 

The results for τ were very similar to the ones obtained for mean fixation durations. Significant 

effects of stimulus type on τ fixation durations were found at visit one (F(1.256, 13.817) = 

79.774, p < .001, pη2= .879), visit two (F(1.349,14.839) = 45.755, p < .001, pη2= .806), and visit 

three (F(1.211, 13.325) = 54.347, p < .001, pη2= .832). Pairwise comparisons showed that τ in 

static images at visit one (M = 124 ms, SD = .012) was significantly shorter than in the two 

dynamic conditions (naturalistic: M = 440 ms, SD = .019, p < .001; abstract: M = 464 ms, SD = 

.036, p < .001). Nonetheless, no differences were found between naturalistic and abstract 

videos at visit one. At visits two (naturalistic: M = 299 ms, SD = .024; abstract: M = 465 ms, SD 

= .050; static: M = 104 ms, SD = .013; all p < .010) and three (naturalistic: M = 269 ms, SD = 

.023; abstract: M = 499 ms, SD = .052; static: M = 94 ms, SD = .008, all p < .001), however, 

there were significant differences between all three viewing conditions.  

6.6.3.1.3 Distributions of fixation durations 

Typically, distributions of fixation durations are positively skewed both in infants and adults 

(Harris et al., 1988). This effect is more evident in younger infants as a result of the higher 

variability in fixation durations that they present (see Chapters 4 and 5). Figure 6-5 shows the 

distributions of fixation durations and their ex-Gaussian fittings for all the visits and viewing 

conditions described in this study. These distributions include the data from all the participants 

in the study. More precisely, the first visit distribution includes 1905 fixations for the naturalistic 

condition, 1993 fixations for the abstract condition, and 1393 fixations for the static condition; 

the second visit distribution includes 3119 fixations for the naturalistic condition, 2722 fixations 

for the abstract condition, and 2037 fixations for the static condition; finally, the third visit 

distribution includes 3261 fixations for the naturalistic condition, 2071 fixations for the abstract 

condition, and 2011 fixations for the static condition. 
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Figure 6-5 Longitudinal study 1: Distributions of fixation durations and the ex-Gaussian fitting for 
the three visits. 

 

The visual inspection of these graphs reasserts the results from the previous section: While at 

visit one naturalistic and abstract distributions of fixation durations follow the same pattern, 

fixation durations for static images already show a much higher proportion of shorter fixations 

(<= 0.5 seconds, see Table 6-3) and less variability. From the second visit on, the differences 

between naturalistic and abstract distributions start being noticeable and become more evident 

at visit three. The percentage of short fixations (<= 0.5 seconds) increases over time for 

naturalistic and static conditions, while it remains the same for the abstract condition (see Table 

6-3). This is evident in the increase in the peak (or the mode) of the naturalistic and static 

distributions over time and their decreasing slope. The percentage of very long fixations (>= 2.5 

seconds) decreases for the naturalistic condition whereas for the abstract conditions it remains 
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stable across visits. No long fixations were detected for the static images condition for any of 

the visits.  

Table 6-3 Long and short fixations. Descriptive statistics and percentages. 

 
Naturalistic Abstract Static 

<= 0.5 secs >= 2.5 secs <= 0.5 secs >= 2.5 secs <= 0.5 secs >= 2.5 secs 

 
Visit 1 N 897 6 958 24 1112 0 

M 0.351 2.657 0.350 2.84 0.341 --- 

SD 0.092 0.140 0.093 0.282 0.088 --- 

% 47.09 0.32 48.07 1.21 79.83 0 

 
Visit 2 N 1759 4 1356 39 1804 0 

M 0.356 2.775 0.346 3.139 0.325 --- 

SD 0.088 0.278 0.094 0.63 0.085 --- 

% 56.40 0.12 49.81 1.43 88.56 0 

 
Visit 3 N 2017 0 1035 50 1861 0 

M 0.345 --- 0.351 3.147 0.310 --- 

SD 0.089 --- 0.093 0.560 0.084 --- 

% 61.85 0 49.98 2.41 92.84 0 

 

6.6.3.2  Individual differences across viewing conditions and visits 

6.6.3.2.1 Across viewing conditions  

As explained in the introduction of this chapter, even though few studies have investigated 

individual differences in fixation durations in infancy (Papageorgiou et al., 2014; Wass & Smith, 

2014), none of them analysed this stability through the first year of life. Table 6-4 shows the 

correlations and pairwise comparisons between mean fixation durations from the different 

viewing conditions for the three different visits. This table can be interpreted based on the 

following statements: 

• Significant correlation + non-significant t-test: The fixation duration distributions for both 

viewing conditions are similar. 

• Significant correlation + significant t-test: Even though mean fixation durations are 

significantly different they still correlate. These results reflect individual differences, i.e. one 

individual’s mean fixation durations is consistently lower than another’s. 
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• Non-significant correlation + non-significant t-test:  Mean fixation durations for both 

conditions are not significantly different but do not correlate. The measures may not be 

stable enough to draw strong conclusions. 

• Not significant correlation + significant t-test: Even though mean fixation durations are 

significantly different there is no relation between them. 

 

Table 6-4 Correlations and pairwise comparisons between viewing conditions at different visits. 
All t-tests have been corrected with Bonferroni correction. 

 Visit 1 Visit 2 Visit 3 

 

Mean Naturalistic X 
Abstract 

Pearson Corr. r(12) = -.001, p = .998 r(12) = .718, p = .009 r(12) = .631 , p = .028 

T-test t(11) = .342, p = 1.000  t(11) = 3.341, p = .020 t(11) = 6.015, p < .001 

 

Mean Naturalistic 
X Static 

Pearson Corr. r(12) = .438, p = .154 r(12) = .744, p = .006 r(12) = .654, p = .021 

T-test t(11) = 16.485 , p < .001 t(11) = 10.110 , p < .001 t(11) = 11.734 , p < .001 

 

Mean Abstract X 
Static 

Pearson Corr. r(12) = .621, p = .031 r(12) = .575, p = .050 r(12) = .250, p = .432 

T-test t(11) = 10.543 , p < .001 t(11) = 7.450 , p < .001 t(11) = 9.489 , p < .001 

 

At visit one it is already possible to find individual differences on mean fixation durations 

between abstract videos and static images (see Table 6-4). The relation between naturalistic 

videos and static images seems to follow the same tendency, even though the correlation is still 

not significant. The analysis between mean fixation durations on naturalistic and abstract 

videos, however, reveals no correlations or significant differences, which suggest that these two 

measures may still not be stabilized at this age point. These findings can be better explained by 

looking at the graphs (Figure 6-6, first column), where it is possible to see how some infants 

already presented longer mean fixation durations for the abstract videos compared to 

naturalistic videos (this trend will be more obvious at visit two) while others showed the opposite 

pattern, or no differences at all. This explains the lack of correlations and significant differences 

between these two measures and suggests that from 3 to 4 months infants may be going 

through a transitional age where the abstract stimuli starts to generate more interest.  
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At visit two individual differences were found between the means for all the viewing conditions 

(see Table 6-4). These results evidence a gain in top-down control from the previous visit.  

At visit three, individual differences were found between naturalistic and abstract videos (see 

Table 6-4), as well as between naturalistic videos and static images. Surprisingly, no individual 

differences were found between abstract videos and static images (see Figure 6-6).  

 

Figure 6-6 Longitudinal study 1: Individual differences across viewing conditions for the three 
visits. 

 

6.6.3.2.2 Across age 

Correlations were found between all the visits for almost all the viewing conditions (see Table 

6-5). Nevertheless, the correlation between visits one and two for the naturalistic condition was 

still not significant. 

Table 6-5 Correlations between different visits. 

 Naturalistic Abstract Static 

Means. Visits 1 X 2   r(12) = .405, p = .191  r(12) = .841** , p = .001 r(12) = .635* , p = .026 

Means. Visits 2 X 3   r(12) = .753** , p = .005 r(12) = .787** , p = .002 r(12) = .698* , p = .012 
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Abstract videos displayed the strongest correlations between the three different assessments, 

where mean fixation durations highly correlated across the three different visits (see Table 6-5). 

Figure 6-7 displays the graphs with all the individual means for each viewing condition across 

age.  

 

Figure 6-7 Longitudinal study 1: Individual differences across visits for the three viewing 
conditions. 

 

The graphs show that the trajectories for fixation durations in abstract videos are very stable 

across visits. In other words, infants that presented fixations of a certain duration for abstract 

videos during the first assessment also tended to display fixations of a very similar duration on 

the forthcoming visits. Furthermore, infants displayed a high range of mean fixation durations for 

this viewing condition with some infants that presented relatively short fixation durations across 

visits (e.g., 509 ms) compared to others with longer durations (e.g., 887 ms). This stability is 

also consistent with previously reported results (section 6.6.3.1) that revealed no age effect in 

mean fixation durations for abstract stimuli.  

Mean fixation durations in static images also present high stability across all the assessments. 

Further, previously reported results showed how fixation durations in static images decreased 

with age. That means that infants that fixated longer (or shorter) during the first assessment, 

also fixated proportionally longer (or shorter) in later assessments.   
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Naturalistic videos did not present high stability across visits. Even though there were positive 

correlations between the second and the third visits, no relationship was found between mean 

fixation durations on the first and the second visits.  

6.6.3.3 The influence of disengagement in fixation durations 

A gap-overlap effect was found in all the visits (visit one: t(11) = 3.964, p = .002; visit two: t(11) 

= 4.968, p < .001; visit three: t(11) = 4.297, p = .001).  

A one way ANOVA showed that disengagement latencies diminished with age (F(2, 22) = 

5.683, p = .010,  pη2= .341). Post-hoc pairwise comparisons showed a decrease in 

disengagement latencies from visit two (M = 264 ms, SD = .056) to visit three (M = 113 ms, SD 

= .034; p = .009).  

Gap (F(1.236, 13.599) = 8.436 , p = .009,  pη2= .434), and overlap (F(1.356, 14.919) = 6.080 , p 

= .019,  pη2= .356) latencies also diminished with age, while no effect was found for the 

baseline condition. Pairwise comparisons showed a significant decrease for gap latencies from 

visit 1 (M = 581 ms, SD = .026) to visit 2 (M = 469 ms, SD = .022; p = .020), and another 

significant decrease for the overlap latencies from visit 2 (M = 771 ms, SD = .059) to visit 3 (M = 

602 ms, SD = .033; p = .008). 

6.6.3.4 Correlations between disengagement latencies and fixation 

durations 

There were no significant correlations between disengagement latencies and mean fixation 

durations at visits one and three (see Table 6-6). However, at visit two disengagement latencies 

correlated with mean fixation durations for naturalistic videos (r(12) = .652 , p = .021) and static 

images (r(12) = .649, p = .022). 

Table 6-6 Correlations between disengagement latencies and mean fixation durations. 

 Visit 1 Visit 2 Visit 3 

Naturalistic x disengagement r(12) = .133, p = .681  r(12) = .652 , p = .021 r(12) = .280, p = .378 

Abstract x disengagement r(12) = -.024, p = .940  r(12) = .254 , p = .426 r(12) = .335, p = .287 

Static x disengagement r(12) = .272, p = .392  r(12) = .649, p = .022 r(12) = .070, p = .829 
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6.7  Longitudinal study 2: Six to 12 month-olds 

6.7.1 Methods 

6.7.1.1 Participants 

In total, 19 typically developing infants (9 girls, 10 boys) participated in this longitudinal study. 

An additional infant was excluded from the analysis due to excessive interaction with the 

caregiver during the testing sessions and data quality issues. 

All infants scored within their age range on the Bayley Scales of Infant Development (Bayley, 

1993). Infants were tested every 8 weeks at approximately 6, 8, 10 and 12 months calculated 

from the due date. Fifteen of the infants carried out all four measurement sessions; three infants 

completed three sessions; one infant completed two sessions. Visits were excluded when data 

quality issues were found or when the infants did not provide enough fixations (50 fixations) for 

each task.  

Mean ages were 192.53 days (SD = 11.673), 249.37 days (SD = 11.955), 304.47 days (SD = 

12.365), and 359.84 (SD = 12.829). Visits were scheduled at times of the day when the 

caregiver considered the infant was going to be most alert. In case the measurement session 

was not successful due to the infant being unhappy or other technical issues, another visit was 

scheduled as promptly as possible during the next 7 days. 

Most infants (N = 13) were of white middle socioeconomic status. The infants were recruited via 

magazine advertisements, social networking media, and flyers. Families were given baby t-

shirts or bags as gifts for their participation. The study protocol was approved by the Birkbeck, 

Psychological Sciences Ethics Committee. Table 6-7 shows the age of each participant at the 

time of visit.  
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Table 6-7 Information about the visits for the longitudinal study from 3 to 6 months 

Subject	
   Gender	
   Age	
  Visit	
  1	
  (Days)	
   Age	
  Visit	
  2	
  (Days)	
   Age	
  Visit	
  3	
  (Days)	
   Age	
  Visit	
  4	
  (Days) Visits	
  	
  

1 Boy 184 245 298 354 1,2,3,4 

2 Boy 195 249 305 361 1,2,4 

3 Boy 197 254 310 367 1,2,3,4 

4 Boy 203 259 315 371 1,2,3,4 

5 Girl 200 254 309 364 1,2,3,4 

6 Girl 173 229 285 341 1,2,3,4 

7 Girl 207 266 322 375 1,2,3,4 

8 Girl 199 259 319 378 1,3,4 

9 Boy 183 238 294 348 1,2,3,4 

10 Boy 181 237 293 348 1,3,4 

11 Girl 210 266 324 374 1,2,3,4 

12 Girl 207 263 315 375 3,4 

13 Boy 252 310 368 252 1,2,3,4 

14 Boy  245 300 357 245 1,2,3,4 

15 Boy 255 304 360 255 1,2,3,4 

16 Girl  255 304 360 255 1,2,3,4 

17 Boy 251 307 358 251 1,2,3,4 

18 Girl 237 294 348 237 1,2,3,4 

19 Girl 224 277 330 224 1,2,3,4 
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6.7.1.2 Apparatus, stimuli, gaze-contingent paradigms and design and 

procedure 

The apparatus was identical to the one described in Chapter 4. The stimuli, gaze contingent 

paradigms, and the design and procedure were identical to what was described in sections 

6.6.1.3, 6.6.1.4, and 6.6.1.5 respectively. 

6.7.2 Analysis 

6.7.2.1 Fixation detection and coding 

The fixation detection method and coding was identical to the one described in section 6.6.2.1. 

6.7.2.2 Data- quality analysis 

As in section 6.6.2.3, spatial precision was measured per participant and visit by calculating the 

RMS. The mean RMS-s were .26° (SD = .09) for the first visit, .26° (SD = .09) for the second 

visit, .24° (SD = .10) for the third visit, and .21° (SD = .08) for the last visit.  

A one-way ANOVA showed no age effect in data quality (F (3,42) = 2.281, p = .093). 

Additionally, correlational analysis between RMS-s and fixation durations were run for each age 

point in order to ensure data quality was not interfering with the fixation detection method. No 

correlations were found between data quality and spatial precision for any of the visits (see 

Table 6-8).  

Table 6-8 Correlations between fixation durations and RMS in the four visits. 

 Visit 1 Visit 2 Visit 3 Visit 4 

Fixation durations 
vs. RMS 

Pearson  .293 -.042 .297 -.228 

Sig. (2-tailed) .238 .870 .264 .348 

N 18 18 16 19 

 

6.7.2.3 Cross-validation 

6.7.2.3.1 Fixation durations 

The process of cross-validating fixations was the same described in section 6.6.2.3.1. In total, 

the external coder coded 20 % of the data from the infants that participated in this study.  

The inter-rater reliability between the means and the number of detected fixations was 

evaluated using the ICC (Hallgren, 2012). A strong agreement between the mean fixation 
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durations was found (with an ICC of .908, p < .001). Additionally, there was also an agreement 

in the number of fixations detected (with an ICC of .953, p < .001). 

6.7.2.3.2 Gap-overlap 

The process of cross-validating the gap-overlap trials was the same described in section 

6.6.2.3.2. An external coder that was naïve to the expected outcomes evaluated the validity of 

the gap-overlap trials for the 20% of the infants that participated in this study. 

Interrater reliability was measured using the Kappa statistic with a view to determine 

consistency among raters.  This analysis showed a strong agreement between the two coders, 

Kappa = .891 (p <.001), 95% CI (0.869, 0.913). 

6.7.2.4 Statistical analysis 

The general statistical analysis was the same described in section 6.6.2.4.  

6.7.2.4.1 The analysis of longitudinal variations in fixation durations 

• Multiple imputation and ANOVAs 

Unlike the previous cohort, the data for the present cohort is missing at random. The 

percentage of missing values was 5.36% for visit one (N=1), 15.79% for visit two (N=3), 5.36% 

for visit three (N=1), and 0% for visit four (N=0).  

Analysis methods such as ANOVAs, require the use of additional techniques that deal with the 

missing data. The most common technique is listwise deletion, which involves the removal of all 

the data from those subjects with even a single missing data point. However, decreasing the 

effective sample size also decreases the power of the analysis and can potentially cause bias in 

the results. Other methods such as imputation techniques maintain the number of subjects by 

replacing missing data with a substituted value. For instance, when performing a single 

imputation the missing value can be replaced with the mean of the variable for all other cases. 

In these cases, even though the sample size and hence the power of the analysis is maintained, 

a correlational analysis may not be as reliable.  

The ANOVA analysis was performed using a multiple imputation technique that aimed to 

maintain the statistical power. The technique used is called the Markov chain Monte Carlo 

(MCMC; Schafer, 1997) procedure and implements the Gibbs Sampler fully conditional 

specification (FCS) method (Van Buuren, Boshuizen, & Knook, 1999; Van Buuren, 2007). 
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Multiple imputation involves three main steps: (1) the selected method -MCMC- generates a 

number of plausible synthetic values or imputations (m) for each missing data point, which leads 

to m complete data sets; (2) each of the imputed data sets is analysed by the selected statistical 

method (e.g., t-test, ANOVA) generating a number (m) of slightly different and plausible results; 

and (3) the m estimates are pooled into a single estimate that combines the variations within 

and across the m imputed data sets. MCMC methods assume multivariate normality and are 

used to generate pseudorandom draws from multidimensional and otherwise intractable 

probability distributions via Markov chains. Markov chains are sequences of random variables in 

which the distribution of each element depends on the value of the previous one (Yuan, 2010). 

One of the benefits of this technique is that it is able to estimate missing values without making 

assumptions about expected distributions across the “population” of observations. Furthermore, 

it is especially suited for small datasets with a relatively small amount of missing data. The 

present MCMC method was programmed to compute 10 imputations.  

The longitudinal variations in fixation durations for each of the imputed data sets were analysed 

using 3 (stimulus) x 4 (visit) mixed ANOVAs. Further, independent one-way ANOVAs were used 

in order to investigate the differences between different stimulus types and their independent 

longitudinal trajectories. Results were pooled together by calculating the means from the 

ANOVAs estimates from each imputation. In the cases where the correlation matrices between 

the different measurement points were heterogeneous the degrees of freedom of the F test 

were corrected according to the Greenhouse-Geisser method. Post-hoc pairwise comparisons 

were calculated based on Bonferroni correction.  

This procedure was used to examine whether (1) fixation durations changed with age, (2) the 

viewing condition influenced fixation duration trajectories, and (3) the viewing conditions 

influenced fixation durations at each visit. 

• Linear Mixed Models (LMM) 

The longitudinal variations of fixation durations for each viewing condition were also evaluated 

using linear mixed models (LMM; e.g., West, 2009). This inquiry aimed to reassure the results 

obtained with the ANOVAs and explain whether the data could also be described by a model 

that allows for inter-infant differences.  
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This type of multilevel model implements a regression procedure that allows for the analysis of 

individual changes across observations and the study of the relationships of variables in data 

sets with some type of dependency caused by a hierarchical study design. In a longitudinal 

design, the repeated measures are regarded as “nested” within individuals. These models 

present a number of advantages relative to other techniques used for the analysis of 

longitudinal data. For instance, they are able to accommodate unbalanced data sets with 

missing data points, which are very common in a longitudinal design.  

Another advantage of LMMs over other techniques is that they permit the inclusion of fixed and 

random effects for the intercept and slope coefficients. Fixed effects are the constant regression 

coefficients associated either with the continuous covariates or the categorical factors where all 

the possible values are present in the data (e.g., gender). The levels of these factors will not 

vary for other theoretical replications of the study. On the other hand, random effects are those 

that will randomly vary for each study replication and allow different subjects to have unique 

trajectories.  

The present LMMs evaluated the fixation duration trajectories for the different stimulus types 

including age as a fixed and a random effect. Furthermore, a random effect associated with the 

intercept for each subject was also included, in order to allow for different subjects to have 

different intercepts. The denominator degrees of freedom when fitting the LMM were computed 

using the Satterthwaite approximation method. For the longitudinal study described in section 

6.6 a LMM analysis was not possible due to the low number of participants. 

6.7.3 Results 

6.7.3.1 The development of fixation durations 

6.7.3.1.1 Multiple imputation 

The ANOVA analyses described in this section were performed using the MCMC multiple 

imputation technique. First, ten plausible synthetic values or imputations were generated for 

each missing data point, leading to 10 different data sets. Secondly, each data set was 

analysed with the corresponding ANOVA, which generated 10 slightly different and plausible 

results. Finally, the 10 estimates were pooled into a single estimate by calculating their means, 

combining the variations within and across the 10 imputed data sets.  



 203 

Appendix D shows the descriptive statistics for mean fixation durations and the ex-Gaussian 

components (µ, σ, and τ) for the original data set, the data sets generated with the MCMC 

multiple imputation technique, and the pooled data.  

6.7.3.1.2 Age effect: Fixation duration trajectories for different viewing 

conditions 

A mixed 3 x 4 ANOVA revealed a significant main age effect in mean fixation durations 

(F(1.980, 35.647)= 5.817, p = .0147, pη2= . 0.241) and a stimulus type effect (F(1.09, 19.603)= 

108.406, p < .001, pη2= . 0.856). Pairwise comparisons revealed significant differences in mean 

fixation durations between the second (M = 526 ms, SD = .024) and the third (M = 466 ms, SD 

= .017; p = 0.052), the first (M = 543 ms, SD = .022) and the third (p = .008), and the first and 

the fourth (M = 493 ms, SD = .016; p = .019) visits. Furthermore, there was a marginally 

significant interaction effect between age and stimulus type (F(2.381, 42.854)= 2.805, p = . 

0.084, pη2= . 0.134; See Figure 6-8).  

 

Figure 6-8 Longitudinal study 2: Fixation durations histograms for the means and the ex-
Gaussian components. 

 

The interaction between age and stimulus type was examined running three additional ANOVAs 

that examined the age effect on each stimulus type independently. Mean fixation durations 
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decreased with age in naturalistic videos (F(3,54)=12.976, p < .001, pη2= .409) and abstract 

videos (F(3,54)=3.363, p = .047, pη2= .156) but not in static images. Post hoc t-test revealed 

marginally significant differences for naturalistic videos between the first (M = 514 ms, SD = 

.013) and second visits (M = 477 ms, SD = .013; p = .078), and second and third (M = 448 ms, 

SD = .012; p = .052) visits. For abstract videos, there were marginally significant differences 

between the second (M = 780 ms, SD = .063) and the third (M = 661 ms, SD = .039; p = .083) 

visits, and significant differences between the first (M = 794 ms, SD = .053) and the third visits 

(p = .029).   

In order to investigate and explain the origin of the effects described above further analyses 

were performed using the ex-Gaussian components (µ, σ, and τ) for the fixation duration 

distributions instead of the means. A mixed 3 x 4 ANOVA revealed a marginally significant main 

age effect in µ fixation durations (F(1.867,33.607)=3.017, p = .089, pη2= .142), but not 

significant stimulus type effect was found. Moreover, there was a significant interaction between 

age and stimulus type (F(6,108)=3.369, p = .022, pη2= .156). Three additional ANOVAs 

investigated this interaction independently revealing that µ fixation durations decreased with age 

for naturalistic videos (F(1.844,33.192)=8.200, p = .007, pη2= .305), but not for abstract videos 

or static images where no significant effects were found. Pairwise comparisons showed 

significant differences in µ fixation durations in naturalistic videos between the first (M = 233 ms, 

SD = .011) and the second visits (M = 214 ms, SD =.009, p = .034). 

A mixed 3 x 4 ANOVA revealed an age effect for σ fixation durations (F(3,54)=5.891, p = .002, 

pη2= .247). Furthermore, an interaction between age and stimulus type was found 

(F(3.581,64.464)=3.049, p = .020, pη2= .144). Post-hoc pairwise comparisons showed 

significant differences between the first (M = 60 ms, SD = .006) and the second visits (M = 45 

ms, SD =.004, p = .008). Three additional ANOVAs investigated the age and stimulus type 

interaction in σ fixation durations independently revealing a significant age effect in naturalistic 

videos (F(3,54) = 12.861, p < .001, pη2= .415) and a marginally significant effect in abstract 

videos (F(3,54) = 2.347, p = .085, pη2= .115). On the other hand, no effects were found for 

static images. Post-hoc pairwise comparisons revealed significant differences in σ fixation 

durations for naturalistic videos between the first (M = 69 ms, SD =.006) and the second visits 

(M = 51 ms, SD =.006; p = .013), and a marginally significant effect for abstract videos between 

the third (M = 49 ms, SD =.006) and the fourth visits (M = 33 ms, SD =.005; p = .055). 
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A mixed 3 x 4 ANOVA showed significant age (F(3,54) = 2.982, p = .047, pη2= .142)  and 

stimulus effects (F(1.057,19.032) = 112.292, p < .001, pη2= .857) in τ fixation durations. 

Nevertheless, no interaction effect was found. Post-hoc pairwise comparisons showed 

significant differences between τ fixation durations at visits one (M = 322 ms, SD = .023) and 

three (M = 262 ms, SD = .017; p = .026). 

This same analysis was also performed with the LMM procedure. A LMM revealed an age effect 

on mean fixation durations for naturalistic videos, with the estimated fixed effect being -.026. 

This suggests that for each visit there was an estimated decrease on fixation durations of .026 

ms, and that this fixed effect is significantly different from 0 based on the t-test (t(17.568) = -

5.412, p < .001). A marginally significant age effect in mean fixation durations was also found 

for abstract videos (t(17.565) = -1.809, p = .088), with an estimated fixed effect of -.028. No age 

effect was found for the static images condition.  

As before, further analyses were performed using the ex-Gaussian components (µ, σ, and τ) for 

the fixation duration distributions instead of the means. A LMM revealed a marginally significant 

age effect for µ fixation durations in naturalistic videos (t(1.356) = -4.628, p = .086) with an 

estimated fixed effect of -.013. Nevertheless, no age effects were found for the other viewing 

conditions.  

LMMs showed a decrease in σ fixation durations for naturalistic videos (t(15.009) = -5.025, p < 

.001) with an estimated fixed effect of -.009. A marginal age effect was also found for the 

abstract condition (t(17.096) = -1.853, p = .081) with an estimated fixed effect of -.006. No age 

effect was found for the static images condition. 

Finally, the age effect for τ fixation durations was analysed. Even though no age effects were 

found for the naturalistic and abstract videos, a marginally significant age effect was found for 

static images (t(24.546) = 1.773, p = .089) indicating that τ  fixation durations increased with age 

with an estimated fixed effect of .004.The results obtained with the LMM procedure resembled 

those obtained in the previous ANOVAs analysis using multiple imputation.  
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6.7.3.1.3 Differences in fixation durations between stimulus types at different 

visits 

Three one-way ANOVAs revealed significant effects of stimulus type on mean fixation durations 

at visits one (F(1.098,19.753) = 71.423, p <.001, pη2= .791), two (F(1.072, 19.303) = 45.853, p 

< .001, pη2= .711), three (F(1.152, 20.738) = 67.565, p < .001, pη2= .785) and four (F(1.117, 

20.114) = 87.43, p < .001, pη2= .829). Post-hoc pairwise comparisons showed significant 

differences in mean fixation durations between all viewing conditions in visits one (Naturalistic 

videos: M = 514 ms, SD = .013; abstract videos: M = 794 ms, SD = .053; static images: M = 328 

ms, SD = .009; all p < .001), two (Naturalistic videos: M = 477 ms, SD = .013; abstract videos: 

M = 780 ms, SD = .063; static images: M = 320 ms, SD = .009; all p < .001), three (Naturalistic 

videos: M = 448 ms, SD = .012; abstract videos: M = 661 ms, SD = .039; static images: M = 322 

ms, SD = .009; all p < .001), and four (Naturalistic videos: M = 446 ms, SD = .013; abstract 

videos: M = 699 ms, SD = .036; static images: M = 334 ms, SD = .001; all p < .001).  

In order to further understand the effects described above, the ex-Gaussian components (µ, σ, 

and τ) for the fixation duration distributions were also analysed. A significant effect of stimulus 

type on µ fixation durations was found at visit one (F(2,36) = 5.825, p = .016, pη2= .241). This 

same effect was marginally significant at visit two (F(2,36) = 4.321, p = .062, pη2= .791), and 

disappeared at visits three and four. Post-hoc pairwise comparisons revealed significant 

differences between naturalistic and abstract videos at visits one (naturalistic videos: M = 250 

ms, SD = .012; abstract videos: M = 215 ms, SD = .014; p = .002) and two (naturalistic videos: 

M = 221 ms, SD = .009; abstract videos: M = 203 ms, SD = .012; p = .038). 

Significant effects of stimulus type on σ fixation durations were found at visits one (F(2,36) = 

3.900, p = .046, pη2= .177) and four (F(2,36) = 4.368, p = .020, pη2= .195). Post-hoc pairwise 

comparisons at visit one revealed significant differences between naturalistic (M = 72 ms, SD = 

.006) and abstract videos (M = 55 ms, SD = .009; p = .029), and between naturalistic videos 

and static images (M = 54 ms, SD = .004; p = .005). On the other hand, at visit four significant 

differences between abstract videos (M = 33 ms, SD = .005) and static images were found (M = 

50 ms, SD = .006; p = .017).  

The results for τ analysis resembled the ones obtained from the means. Three one-way 

ANOVAs revealed significant effects of stimulus type on τ fixation durations at visits one 
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(F(1.054,18.971) = 64.679, p <.001, pη2= .779), two (F(1.076,19.369) = 39.209, p < .001, pη2= 

.630), three (F(1.121,20.180) = 69.260, p < .001, pη2= .791) and four (F(1.116, 20.084) = 73.79, 

p < .001, pη2= .804). Post-hoc pairwise comparisons showed significant differences in τ fixation 

durations between all viewing conditions in visits one (Naturalistic videos: M = 269 ms, SD = 

.013; abstract videos: M = 597 ms, SD = .058; static images: M = 99 ms, SD = .007; all p < 

.001), two (Naturalistic videos: M = 259 ms, SD = .014; abstract videos: M = 561 ms, SD = 72 

ms; static images: M = 110 ms, SD = .009; all p < .005), three (Naturalistic videos: M = 235 ms, 

SD = .012; abstract videos: M = 448 ms, SD = .039; static images: M = 104 ms, SD = .008; all p 

< .001), and four (Naturalistic videos: M = 242 ms, SD = .013; abstract videos: M = 502 ms, SD 

= .039; static images: M = 113 ms, SD = .006; all p < .001).  

6.7.3.1.4 Distributions of fixation durations 

As described before, distributions of fixation durations are positively skewed both in infants and 

adults (Harris et al., 1988). Figure 6-9 shows the distributions of fixation durations and their ex-

Gaussian fittings for all the visits and viewing conditions described in this study.  

 

Figure 6-9 Longitudinal study 2: Distributions of fixation durations and their ex-Gaussian fittings 
for the four visits. 
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These distributions include the data from all the participants in the study. More precisely, the 

first visit distribution includes 4901 fixations for the naturalistic condition, 3148 fixations for the 

abstract condition, and 2712 fixations for the static condition; the second visit distribution 

includes 4635 fixations for the naturalistic condition, 2498 fixations for the abstract condition, 

and 2646 fixations for the static condition; the third visit distribution includes 5191 fixations for 

the naturalistic condition, 3031 fixations for the abstract condition, and 3158 fixations for the 

static condition; finally, the fourth visit distribution includes 5311 fixations for the naturalistic 

condition, 2797 fixations for the abstract condition, and 2899 fixations for the static condition 

(see Table 6-9). 

Table 6-9 Long and short fixations. Descriptive statistics and percentages. 

 
Naturalistic Abstract Static 

<=0.5secs >= 2.5 secs <=0.5secs >= 2.5 secs <=0.5secs >= 2.5 secs 

 
Visit 1 N 3044 0 1534 114 2539 0 

M 0.338 --- 0.342 3.550 0.294 --- 

SD 0.098 --- 0.105 0.901 0.092 --- 

% 62.11 0 48.73 3.62 93.62 0 

 
Visit 2 N 3194 0 1283 87 2468 0 

M 0.329 --- 0.339 3.707 0.294 --- 

SD 0.092 --- 0.096 1.041 0.085 --- 

% 68.91 0 51.36 3.48 93.27 0 

 
Visit 3 N 3699 0 1652 56 2932 0 

M 0.327 --- 0.346 3.500 0.297 --- 

SD 0.091 --- 0.095 0.929 0.086 --- 

% 71.26 0 54.50 1.848 92.84 0 

 
Visit 4 N 3797 0 1521 76 2601 0 

M 0.318 --- 0.339 3.283 0.300 --- 

SD 0.090 --- 0.094 0.574 0.088 --- 

% 71.49 0 54.38 2.72 89.72 0 

 

The visual inspection of these graphs reasserts the results from the previous section: The 

percentage of short fixations (<= 0.5) seems to increase from visit one to three for naturalistic 

and to a lesser extent for abstract videos. On the other hand, these values remained rather 
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stable for the static images condition. Very long fixations were only found in the abstract videos 

condition. 

6.7.3.2 Individual differences across viewing conditions and age 

6.7.3.2.1 Across viewing conditions  

The results from the correlational analysis were interpreted following the same criteria described 

in section 6.6.3.2. Correlations and pairwise comparisons were calculated after excluding the 

missing points, thus the results from the t-tests described in this section may slightly differ from 

the ones reported earlier when missing values were imputed. Furthermore, all t-tests were 

corrected with Bonferroni adjusted alpha values.  

Table 6-10 shows the correlations and pairwise comparisons between mean fixation durations 

from the different viewing conditions for all visits. Results revealed significant differences 

between mean fixation durations in all viewing conditions for all the visits, few significant 

correlations at visits one, three, and four, and marginally significant correlations at visits one, 

two, and three (see Table 6-10). Therefore, these results evidence individual differences in 

mean fixation durations for some of the viewing conditions and visits, but not for all.  

With the view to further investigate these results the same analysis was performed using the ex-

Gaussian components (µ, σ, and τ). Table 6-11, 6-12 and 6-13 display the correlations and 

pairwise comparisons for µ, σ, and τ components for all visits. Results from the τ component 

resembled those observed for mean fixation durations, thus this suggests that the lack of 

stability across all viewing conditions is due to the variability in fixation duration distributions and 

the differences in the slope of the distribution across viewing conditions. 
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Table 6-10 Individual differences for mean fixation durations. This table shows the correlations 
and pairwise comparisons between viewing conditions at different visits. All t-tests have been 
corrected with Bonferroni correction. 

 Visit 1 Visit 2 Visit 3 Visit 4 

Mean 
Nat. X 
Abs. 

Pearson 
Corr. r(18) = .673, p = .002 r(16) = .430, p = .097 r(18) = .568, p = .014 r(19) = .355, p = . 135 

T-test t(17) = 6.504, p < .001 t(15) = 6.296, p < .001 t(17) = 6.584, p < .001 t(18) = 7.373, p < .001 

Mean 
Nat. X 
Static 

Pearson 
Corr. r(18) = .418, p = . 084 r(16) = .246, p = .358 r(18) = .424, p = . 079 r(19) = .702, p = .001 

T-test t(17) = 15.700, p  < .001 t(15) = 11.473, p < .001 t(17) = 11.664, p < .001 t(18) = 11.840, p < .001 

Mean 
Abs. X 
Static 

Pearson 
Corr. r(18) =.319, p = . 197 r(16) = .042, p = . 877 r(18) = .270, p = .279 r(19) = .375, p = .114 

T-test t(17) = 9.625, p < .001 t(15) = 8.907, p < .001 t(17) =9.444, p < .001 t(18) = 10.847, p < .001 

 

Table 6-11 Individual differences for µ fixation durations. This table shows the correlations and 
pairwise comparisons between viewing conditions at different visits. All t-tests have been 
corrected with Bonferroni correction. 

 Visit 1 Visit 2 Visit 3 Visit 4 

Mean 
Nat. X 
Abs. 

Pearson 
Corr. r(18) = .735, p = .001 r(16) = .722, p = .002 r(18) = .439, p = .068 r(19) = .701, p = .001 

T-test t(17) = 3.988, p = .012  t(15) = 2.198, p =.528  t(17) = -.338, p = 1.000 t(18) = .533, p = 1.000 

Mean 
Nat. X 
Static 

Pearson 
Corr. r(18) = .607, p = .008 r(16) = .803, p < .001 r(18) = .582, p = .011 r(19) = .473, p = .041 

T-test t(17) = 2.395, p = .336  t(15) = .956, p = 1.000  t(17) = .164, p = 1.000 t(18) = 1.750, p = 1.000  

Mean 
Abs. X 
Static 

Pearson 
Corr. r(18) = .711, p = .001 r(16) = .697, p = .003 r(18) = .327, p = .185 r(19) = .631, p = .004 

T-test t(17) = 1.303, p =1.000  t(15) = 1.566, p = 1.000 t(17) = .417, p = 1.000 t(18) = 1.629, p = 1.000 

 

Table 6-12 Individual differences for σ fixation durations. This table shows the correlations and 
pairwise comparisons between viewing conditions at different visits. All t-tests have been 
corrected with Bonferroni correction. 

 Visit 1 Visit 2 Visit 3 Visit 4 

Mean 
Nat. X 
Abs. 

Pearson 
Corr. r(15) = .648, p = .009 r(15) = .574, p = .025 r(17) = .405, p = .107 r(19) = .384, p = .142 

T-test t(17) = 2.512, p = .264  t(15) = .378, p = 1.000 t(17) = .599, p = 1.000 t(18) = .951, p = 1.000 

Mean 
Nat. X 
Static 

Pearson 
Corr. r(18) = .507, p = .032 r(16) = .448, p = .082 r(18) = .096, p = .704 r(19) = .239, p = .324 

T-test t(17) = 3.012, p = .096  t(15) = .769, p = 1.000 t(17) = .343, p = 1.000 t(18) = 1.931, p = .828  

Mean 
Abs. X 
Static 

Pearson 
Corr. r(15) = .885, p < .001 r(15) = .406, p = .133 r(17) = -.355 p = .162 r(19) = .382, p = .144 

T-test t(17) = .091, p = 1.000  t(15) = .169, p = 1.000 t(17) = .665, p = 1.000 t(18) = 2.632, p = .204  
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Table 6-13 Individual differences for τ fixation durations. This table shows the correlations and 
pairwise comparisons between viewing conditions at different visits. All t-tests have been 
corrected with Bonferroni correction. 

 Visit 1 Visit 2 Visit 3 Visit 4 

Mean 
Nat. X 
Abs. 

Pearson 
Corr. r(18) = .717, p = .001 r(16) = .393, p = .132 r(18) = .532, p = .023 r(19) = .216, p = .373 

T-test t(17) = 6.901, p  < .001 t(15) = 6.375, p  < .001  t(17) = 6.424, p < .001 t(18) = 6.717, p  < .001 

Mean 
Nat. X 
Static 

Pearson 
Corr. r(18) = .001, p = .997 r(16) = -.006, p = .982 r(18) = .358, p = .145 r(19) = .495, p = .031 

T-test t(17) = 12.642, p  < .001 t(15) = 11.068, p  < .001 t(17) = 11.413, p < .001 t(18) = 11.856, p  < .001 

Mean 
Abs. X 
Static 

Pearson 
Corr. r(18) = -.220, p = .380 r(16) = -.159, p = .555 r(18) = .156, p = .535 r(19) = -.071, p = .773 

T-test t(17) = 8.820, p  < .001 t(15) = 8.772, p  < .001 t(17) = 8.882, p < .001 t(18) = 9.807, p  < .001 

 

6.7.3.2.2 Across age 

Correlations were found between all the visits for all viewing conditions (see Table 6-14). Static 

images displayed the strongest longitudinal correlations between the four different 

assessments. Figure 6-10 displays the graphs with all the individual means for each viewing 

condition across age. The graphs show that the trajectories for fixation durations in static 

images are very stable across visits. In other words, infants that presented fixations of a certain 

duration for static images during the first assessment also tended to display fixations of a very 

similar duration on the forthcoming visits.  

 

Table 6-14 Correlations between different visits. 

 Naturalistic Abstract Static 

 Means. Visits 1 X 2  r(16) = .714, p = .002  r(16) = .708, p = .002  r(16) = .915, p < .001  

Means. Visits 2 X 3   r(15) = .554, p = .032  r(15) = .513, p = .050  r(15) = .924, p < .001  

Means. Visits 3 X 4   r(18) = .800, p < .001  r(18) = .626, p = .005  r(18) = .803, p < .001  
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Figure 6-10 Longitudinal study 2: Individual differences across visits for the four viewing 
conditions. 

 

6.7.3.3 The influence of disengagement in fixation durations 

A gap-overlap effect was found for all visits (visit one: t(17) = 5.231, p < .001; visit two: t(15) = 

5.006, p < .001; visit three: t(17) = 4.710, p < .001; visit four: t(18) = 6.832, p < .001).  

A one-way ANOVA showed no age effect in disengagement latencies. Nevertheless, gap 

latencies decreased with age (F(3,54) = 3.141, p = .033, pη2= .149). Pairwise comparisons 

showed a significant decrease from visit 2 (M = 454 ms, SD = .014) to visit 4 (M = 419 ms, SD = 

.009; p = .030). 

6.7.3.4 Correlations between disengagement latencies and fixation 

durations 

Disengagement latencies significantly correlated with mean fixation durations in naturalistic 

videos at visit two (r(16) = .583, p = .018), and with abstract videos at visit three (r(18) = .488, p 

= .040). See all correlations in Table 6-15. 
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Table 6-15 Correlations between disengagement latencies and mean fixation durations. 

 Visit 1 Visit 2 Visit 3 Visit 4 

Naturalistic x 
disengagement r(18) = .198, p = .431  r(16) = .583, p = .018  r(18) = .320, p = .196  r(19) = .061, p = .805  

Abstract x 
disengagement r(18) = .379, p = .121  r(16) = .398, p = .127  r(18) = .488, p = .040  r(19) = .314, p = .190  

Static x 
disengagement r(18) = .422, p = .081  r(16) = .005, p = .986  r(18) = .310, p = .210  r(19) = .089, p = .716  

  

6.8 Study 3: Adults 

6.8.1 Methods 

6.8.1.1 Participants 

Twenty adults participated for payment (ten male; mean age 26.7 years, range 18 - 38). All 

participants had normal or corrected to normal vision and were naive with respect to the 

purposes of the study. The study protocol was approved by the Birkbeck, Psychological 

Sciences Ethics Committee.  

6.8.1.1 Apparatus, stimuli, and gaze-contingent paradigms  

The apparatus was identical to the one described in Chapter 4. The stimuli, and the gaze 

contingent paradigms, were identical to what was described in sections 6.6.1.3, and 6.6.1.4 

respectively. 

6.8.1.2 Design and procedure 

Participants were told to look at the screen freely without any instructions. They were tested 

individually in a small-darkened room while sitting on a chair located 60 cm away from the 

monitor. Participants were calibrated with the same 5 point infant calibration described in 

Chapter 2 and section 6.6.1.5. The calibration was repeated until the tracking was satisfactory. 

The study design was the same described in section 6.6.1.5.  

6.8.2 Analysis 

6.8.2.1 Fixation detection and coding 

The fixation detection method and coding was identical to the one described in section 6.6.2.1 

6.8.2.2 Data- quality 

As in sections 6.6.2.2 and 6.7.2.2, spatial precision was measured for each participant by 

calculating the RMS. The mean RMS was .14° (SD = .03).  
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A correlational analysis between RMS-s and fixation durations was run in order to ensure data 

quality was not interfering with the fixation detection method. No significant correlations were 

found between data quality and spatial precision. 

6.8.2.3 Cross-validation 

6.8.2.3.1 Fixation durations 

The process of cross-validating fixations was the same described in section 6.6.2.3.1. In total, 

the external coder coded 20 % of the data from this study.  

The inter-rater reliability between the means and the number of detected fixations was 

evaluated using the ICC. A strong agreement between the mean fixation durations was found 

(with an ICC of .871, p = .04). Additionally, there was also an agreement in the number of 

fixations detected (with an ICC of .761, p = .005). 

6.8.2.3.2 Gap-overlap 

Adult participants were instructed to look at the screen during the experiment, thus all the trials 

stated when the participant looked at the central stimulus and ended when they looked at the 

peripheral one. For this reason trials were not manually reviewed as in the previous studies with 

infants. 

6.8.2.4 Statistical analysis 

As in the studies described earlier, the mean fixation duration and the ex-Gaussian components 

for each participant and viewing condition were calculated after excluding all fixations with a 

duration that was two standard deviations above or below the initial mean. Hence, the fixations 

that were included in the analysis were those that accounted for about the 95 % of the set for 

each participant. This exclusion was performed in order to exclude very long or very short 

fixations on a participant basis rather than establishing a minimum and maximum fixation 

duration threshold for all the participants together.  

The gap-overlap trials with latencies shorter than 80 ms were excluded from the analysis since 

latencies below this value are considered to be anticipatory or express saccades (Fischer & 

Weber, 1993). As in the studies described earlier, all the trials that were one standard deviation 

above the mean latency were excluded. 
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The differences in fixation durations across viewing conditions were analysed using one-way 

ANOVAs. In the cases were the correlation matrices between the different measurement points 

were heterogeneous the degrees of freedom of the F test were corrected according to the 

Greenhouse-Geisser method. Post-hoc pairwise comparisons were calculated based on 

Bonferroni correction. 

For the correlational analysis, a logarithmic transformation was applied to all the values in the 

data set. The justification for this transformation has rested on the fact that all these distributions 

are substantially skewed and the sample size is rather moderate. Thus, the logarithmic 

transformation is used to induce symmetry on the data. 

6.8.3 Results 

6.8.3.1 Differences in fixation durations across viewing conditions 

A one-way ANOVA revealed a significant effect of stimulus type on mean fixation durations 

(F(1.245,26.646)= 94.771, p < .001, pη2= .833). Post-hoc pairwise comparisons showed 

significant differences between all viewing conditions (Naturalistic: M = 318 ms, SD = .009; 

abstract: M = 441 ms, SD = .020; static: M = 252 ms, SD = .007; all p < .001; See Figure 6-11). 

Figure 6-11 Adults study: Mean fixation durations and the ex-Gaussian components for all 
viewing conditions in adults. 
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In order to investigate and explain the origin of the effects described above further analysis 

were performed using the ex-Gaussian components (µ, σ, and τ) for the fixation duration 

distributions instead of the means. A one-way ANOVA revealed a significant effect of stimulus 

type on µ fixation durations (F(2, 38)= 21.727, p < .001, pη2= .533). Pairwise comparisons 

showed significant differences between naturalistic (M = 136 ms, SD = .003) and abstract 

videos (M = 160 ms, SD = .005; p < .001), naturalistic videos and static images (M = 162 ms, 

SD = .003; p < .001), but not between abstract videos and static images.  

A one-way ANOVA showed a significant effect on σ fixation durations (F(2, 38)= 7.616, p = 

.002, pη2= .286). As for µ fixation durations analysis, pairwise comparisons showed significant 

differences between naturalistic (M = 25 ms, SD = .003) and abstract videos (M = 37 ms, SD = 

.003; p = .014), naturalistic videos and static images (M = 38 ms, SD = .002; p < .007), but not 

between abstract videos and static images.  

Results analysing the differences in τ fixation durations resembled those observed for the 

means. A one-way ANOVA showed a significant effect on τ fixation durations (F(1.454, 

27.624)= 74.909, p < .001, pη2= .798). Post-hoc pairwise comparisons showed significant 

differences between all viewing conditions (Naturalistic: M = 184 ms, SD = .011; abstract: M = 

281 ms, SD = .021; static: M = 89 ms, SD = .007; all p < .001). 

6.8.3.2 Individual differences across viewing conditions 

Mean fixation durations for all viewing conditions correlated with each other (see Table 6-16). 

Furthermore, pairwise comparisons showed significant differences between all viewing 

conditions. These results evidence individual differences in mean fixation durations between 

short and long lookers. 

 

Table 6-16 This table shows the correlations and pairwise comparisons between viewing 
conditions for adults. All t-tests have been corrected with Bonferroni correction. 

 Mean naturalistic X Abstract Mean naturalistic X Static Mean abstract X Static 

Pearson Corr. r(20) = .823, p < .001 r(20) = .583, p = .007 r(20) = .553, p = .012 

T-test t(19) = -8.614, p < .001 t(19) = 8.638, p < .001 t(19) = 10.560, p < .001 
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6.8.3.3 The influence of disengagement in fixation durations 

A t-test showed a gap-overlap effect on the adults group (t(19) = 3.978, p = .001). No 

correlations were found between disengagement latencies and mean fixation durations for any 

of the viewing conditions (see Table 6-17). 

 

Table 6-17 Correlations between disengagement latencies and mean fixation durations for 
adults. 

 Adults 

Naturalistic x disengagement r(20) = .222, p = .347 

Abstract x disengagement r(20) = .334, p = .150 

Static x disengagement r(20) = -.117, p = .622 

 

6.8.3.4 Comparing adult and infant fixation durations 

As the results from the three studies described in this chapter have shown, whilst generally 

fixation durations tended to decrease during the first year of life, this decrease did not happen at 

the same rate for all viewing conditions. Furthermore, the ex-Gaussian component that seemed 

to resemble mean fixation duration results best was the exponential τ component, suggesting 

that it is the variation in the tail of the distribution that is mostly responsible for the mean fixation 

durations change across viewing conditions. In this section I analyse whether infant fixation 

durations had reached adult levels at 12 months. 

In this section, I compared mean fixation durations in 12-month-olds and adults. Results 

showed age differences in mean fixation durations (F(1.163, 43.026) = 166.300, p < .001, pη2= 

.818) as well as a stimulus and age interaction (F(1.163, 43.026) = 17.060, p < .001, pη2= .316). 

Pairwise comparisons revealed significant differences between both age groups for all viewing 

conditions (all p < .001). Similarly, the ex-Gaussian components µ (F(1.682, 62.223) = 11.512 , 

p < .001, pη2= .237), σ (F(2,74) = 6.896 , p = .002, pη2= .157), and τ (F(1.229,45.482) = 

135.313 , p < .001, pη2= .785) were shorter for adults as compared to 12-month-olds. There 

was a marginally significant interaction between µ fixation durations and stimulus type (F(1.682, 

62.223) = 2.759 , p = .080, pη2= .069). Significant interaction effects were found for σ fixation 

durations  (F(2,74) = 3.768 , p = .028, pη2= .092) and τ fixation durations (F(1.229,45.482) = 

17.512 , p < .001, pη2= .321). Pairwise comparisons showed a significant decrease for all ex-



 218 

Gaussian components in all viewing conditions (all p < .050), with the exception of the σ 

component for shapes and static images (see Figure 6-12). 

 

Figure 6-12 Longitudinal trajectories of fixation durations (means and ex-Gaussian components) 
for the two longitudinal studies and adults.  

 

6.9 Discussion 

The development of look duration across infancy and toddlerhood has been widely investigated 

in a number of studies. While many of these studies have reported a decrease in look duration 

during the first year of life (Colombo & Mitchell, 1990; Kagan et al., 1971; M. Lewis et al., 1969; 

Mayes & Kessen, 1989; Shaddy & Colombo, 2004), others found different trends in look 

duration trajectories for different stimulus types (Courage et al., 2006; Frank et al., 2014, 2009; 

Shaddy & Colombo, 2004). Results from the second group of studies seemed to indicate that 

more complex forms of visual stimuli elicited an increase in looking times during the second half 

of the first year. Furthermore, looking times have also been the focus of many studies 

investigating individual differences in infancy and childhood (Colombo et al., 1995, 1991; 

Colombo & Mitchell, 1990; Colombo, 1995; Cuevas & Bell, 2013; Jankowski & Rose, 1997).  

In contrast, little research has been concerned with fixation duration trajectories in infancy or on 

individual differences in such measures (but see Bronson, 1994; Hunnius & Geuze, 2004a; 
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Papageorgiou et al., 2014; Wass & Smith, 2014). Such investigations are not only important to 

understand the development of saccadic control in infancy, but also to study the mechanisms 

underlying fixation durations and visual processing during the first years of life. Furthermore, 

fixation durations in infancy have been proven to be a useful tool to investigate continuity in 

infancy and childhood (Papageorgiou et al., 2014). 

In this chapter I have presented two longitudinal studies and a study with adult participants that 

aimed to investigate the development of fixation durations and saccadic control over the first 

year of life when viewing a battery of dynamic and static stimuli and performing the gap-overlap 

paradigm. Furthermore, the data from these studies revealed individual differences across 

viewing conditions and visits. In this section I will review and discuss the results from these 

studies. 

6.9.1 Fixation duration trajectories for dynamic and static complex scenes 

With the studies presented in this chapter I aimed to describe fixation duration trajectories for 

different types of stimuli during the first and the second half of the first year, and analyse the 

differences in the processing of dynamic and static stimuli during this period. 

Results showed an overall decrease in mean fixation durations over the first and the second 

half of the first year of life. Nevertheless, different viewing conditions showed different 

trajectories in mean fixation durations, evidencing the influence of cognitive and visual 

processing in saccadic control even in the group with the youngest infants (3.5 months). During 

the first half of the first year, results showed a significant decrease in mean fixation durations for 

naturalistic videos and static images, but not for the abstract videos that remained fairly stable. 

From 6 months on, mean fixation durations continued to decrease for naturalistic videos 

(especially from 6 to 10 months), as well as for abstract videos (from 8 to 10 months). In 

contrast, during the same period mean fixation durations for static stimuli seemed to have 

reached certain stability and did not decrease. Interestingly, from 10 to 12 months mean fixation 

durations did not decrease nor increase for any of the viewing conditions. The comparison 

between mean fixation durations for the 12-month-olds and adults revealed significant 

differences for all the viewing conditions, confirming that saccadic control and fixation durations 

still did not reach adult levels at the end of the first year. 
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The decrease in mean fixation durations during the first half of the first year resemble the 

findings from studies investigating looking times during the same period (Colombo & Mitchell, 

1990; Kagan et al., 1971; M. Lewis et al., 1969; Mayes & Kessen, 1989; Shaddy & Colombo, 

2004). The significant decrease in disengagement latencies and reaction times that I found 

during this period (these results are discussed later in this chapter) suggests the decrease in 

mean fixation durations can -to an extent- be explained by the improvement in the 

disengagement of attention that happens as a result of the development of the frontal cortical 

structures concerned with saccade planning and execution (Atkinson, 2000; Bronson, 1974; 

Frick et al., 1999; M. H. Johnson, 1990, 2011).  

Some studies investigating looking times during the second half of the first year of life found that 

for more complex forms of visual intake (e.g., complex dynamic stimuli, looking at faces, playing 

with multiple toys) looking times tend to increase (Courage et al., 2006; Frank et al., 2014, 

2009; Shaddy & Colombo, 2004). The results presented in this chapter did not show any 

increase for any of the viewing conditions, even though the stimuli presented was fairly 

complex, both in terms of the semantic and social content and the low level visual features of 

the scene such as colour or luminance. This supports the claim that studies using looking times 

may not be measuring the same processes as those using fixation durations. While looking 

times can be indicative of selective attention, measuring fixation durations may add a level of 

precision in the analysis of the processes underlying eye-movements. Nevertheless the present 

study was not designed to specifically look at the differences between these measures thus 

these conclusions are still speculative.  

The decrease in fixation durations during the second half of the first year could be due to the 

advances in memory functions –in either encoding, storage, retrieval, or some combination of 

these processes- that occur during this period (Baillargeon & Graber, 1988; Cohen & Gelber, 

1975; Colombo, 1993; Richmond & Nelson, 2009; Ross-sheehy, Oakes, & Luck, 2003; Ruff & 

Rothbart, 1996). For instance, short-term memory, which appears to be strongly dependent on 

the functioning of regions on the prefrontal cortex (Miller, Erickson, & Desimone, 1996; Rowe, 

Toni, Josephs, Frackowiak, & Passingham, 2000; E. E. Smith & Jonides, 1997), suffers a major 

development during the second half of the first year (Ross-sheehy et al., 2003) presumably as a 

consequence of the dramatic development of prefrontal functioning that happens during this 

period (Bell, 1998; M. H. Johnson, 1995a; Nelson, 1995). 
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Another factor that may explain the decrease in fixation durations during the first and the 

second half of the first year is the improvement in processing efficiency (Colombo et al., 1991). 

Infants get more and more experience processing visual information and this may undeniably 

improve their capacity for visual and cognitive encoding. 

Interestingly, fixation durations in the abstract videos did not suffer any substantial change 

during the first half of the year, which, as suggested in previous studies that also used abstract 

videos of faces and found similar results (Hunnius & Geuze, 2004a), may be due to the novelty 

of the stimuli. During the first half of the first year infants gain increased experience at looking at 

faces, and as a consequence they may need less time to process social content as they get 

older. This can also explain the decrease in fixation durations for the naturalistic and the static 

conditions during this period, since both conditions display social scenes. On the other hand, 

the abstract condition remains novel across visits. During the second half of the first year there 

was a decrease in mean fixation durations for the abstract condition, more particularly from 8 to 

10 months. This coincides with the advances in memory capacity that occur during this period 

(Baillargeon & Graber, 1988; Cohen & Gelber, 1975; Colombo, 1993; Richmond & Nelson, 

2009; Ross-sheehy et al., 2003; Ruff & Rothbart, 1996).  

Fixation duration distributions have been reported to be highly skewed in adults and more 

particularly in infants (Harris et al., 1988). Because of this reason, reporting other measures 

beyond the means –such as the ex-Gaussian components- can add an extra level of precision 

and help disentangling some of the effects that the experimental manipulations have on the 

data. For the studies presented in this chapter I calculated the ex-Gaussian components (µ, σ, 

and τ) for each fixation duration distribution (Lacouture & Cousineau, 2008). The most obvious 

finding is that the main component that modulates mean fixation durations is the exponential τ 

component. Higher τ values represent more positively skewed distributions and hence indicate 

more variability in the data. This suggests that the differences in mean fixation durations are 

mainly a consequence of the variability in the distributions, and hence infants flagged as short 

or long lookers are not necessarily the ones with shorter or longer fixations, but those with more 

or less variability in their fixation duration distributions. For instance, a distribution that has a low 

µ and high τ, indicate that while the infant was able to reliably move her/his eyes relatively fast, 

he/she still presented high variability in fixation durations, maybe due to the stimulus demands 

or other factors.  
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During the first half of the first year µ fixation durations –the mean from the Gaussian fitting, 

representing the peak of the distribution- only decreased for the static condition, while no age 

effect was found for any of the dynamic conditions. The σ component –the standard deviation of 

the Gaussian fitting, representing the variation or dispersion from the average- showed similar –

but not statistically significant- trends. These results suggest that fixation durations are 

stabilizing for the static condition during this period. From 6 months onwards, although there 

was an overall decrease in µ and σ fixation durations, these components only decreased for the 

naturalistic condition from 6 to 8 months and remained fairly stable after this.  

Interestingly, the LMM showed an almost significant increase in τ fixation durations for static 

images during the second half of the first year. An explanation for this effect could be the 

emergence of very elementary executive functions (Cuevas & Bell, 2013). Some of the studies 

that found an increase in looking times at about 13 months have speculated that this increase 

could be a consequence of the emergence of executive functions at the end of the first year 

(Kagan et al., 1971; M. Lewis et al., 1969; Ruff & Rothbart, 1996). Nevertheless, some recent 

studies have also analysed the emergence of elementary executive functions during the second 

half of the first year (Cuevas & Bell, 2013), which could also explain the slight increase in mean 

fixation durations in static images and not dynamic scenes, where information processing is 

more complex and eye-movements take longer to stabilize (Hunnius & Geuze, 2004a). 

The differences in fixation durations between the three viewing conditions were also analysed at 

each visit. At 3.5 months, infants showed significantly shorter mean fixation durations for the 

static condition as compared to the two dynamic conditions (naturalistic and abstract videos). In 

turn, at this age no differences were found between the means or ex-Gaussian components 

from these two dynamic viewing conditions, which displayed the same low-level visual features 

but different semantic and social content. Infants from 5 months on and adults presented 

differences in mean fixation durations between all viewing conditions. The fact that at 3.5 

months infants could only differentiate between viewing conditions presenting different low-level 

visual features evidences how at this age infant saccadic control is mainly driven by bottom-up 

factors such as colour or luminance. As they gain more top-down control they start being able to 

differentiate between the two dynamic conditions containing the same bottom-up information 

(from the 5 months visit).  
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Furthermore, mean fixation durations for static images were significantly shorter than for the 

other dynamic conditions, both for infants –in all the visits- and adults. Visual information is 

processed through several neural pathways that become functional at different developmental 

stages (see Chapter 1; Atkinson, 2000; M. H. Johnson, 2011). The cortical pathway that goes to 

the superior colliculus from the primary visual cortex (V1) through the middle temporal area 

(MT), is thought to be involved in motion detection and the smooth tracking of moving stimuli 

(M. H. Johnson, 1990, 2011; Schiller, 1985, 1998) and is already functioning at about 2 months 

of age (M. H. Johnson, 1990, 2011). Dynamic visual information is thus also processed through 

the MT pathway –which presumably is not involved in the processing of static visual 

information-, leading to prolonged fixation durations. Additionally, a dynamic scene may contain 

more semantic content that needs to be processed -such as the understanding of the actions 

that the different characters are performing- that can prolong fixation durations.  

From 5 months on mean fixation durations for the abstract videos were significantly longer than 

for the remaining viewing conditions. Besides the novelty effect that I have discussed earlier, 

prolonged fixation durations in the abstract condition can also be explained as a result of the 

higher demands in cognitive and perceptual processing that a novel stimuli may elicit (see 

discussion from Chapter 4).  

6.9.2 Individual differences in fixation durations over the first year of life 

A number of studies have investigated individual differences in looking times (Colombo et al., 

1995, 1991; Colombo & Mitchell, 1990; Colombo, 1995; Cuevas & Bell, 2013; Jankowski & 

Rose, 1997) and their use as a predictor for later cognitive and intellectual function in childhood 

and adolescence (see Chapters 1 and 4; Choi & Vaswani, 2014; Colombo et al., 1995; Colombo 

& Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 1997; Kavšek, 2004; Lawson & Ruff, 

2004; Sigman et al., 1986; A Slater, 1995). Nevertheless, few studies have analysed individual 

differences in infant fixation durations (but see Papageorgiou et al., 2014; Wass & Smith, 2014). 

The studies presented in this chapter also served to explore individual differences in fixation 

durations across visits and stimulus types. In the first longitudinal study individual differences 

were found across all the visits (3.5, 5 and 6 months) for almost all the viewing conditions. 

Correlations were not found, however, for mean fixation durations in naturalistic videos between 

the 3.5 and 5 months visits. Interestingly, abstract videos displayed the stronger correlations 
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across the three different assessments, followed by static images. In the second longitudinal 

study individual differences were found across all the visits (6, 8, 10 and 12 months) for all 

viewing conditions, showing a great stability in fixation durations during the second half of the 

first year. During this period, static images displayed the strongest correlations between the four 

different assessments. These results evidence the increase in top-down control from 3.5 to 5 

months and demonstrate certain stability in fixation durations from a very early age.  

Individual differences were also analysed for each visit by looking at the stability across viewing 

conditions. Even though correlations were found in all visits, not all viewing conditions 

correlated with each other in every visit. At 3.5 months fixation durations in naturalistic videos 

did not correlate with the other two viewing conditions, whereas there was a correlation between 

fixation durations in abstract videos and static images. As described earlier, the correlations for 

the naturalistic condition between 3.5 and 5 months were not significant. Looking at the graphs 

from Figure 6-7 it is possible to identify two different trends in the naturalistic condition at this 

age: while mean fixation durations decreased from 3.5 to 5 months for some of the infants, they 

remained stable for others. As I have explained earlier, during this period the frontal neural 

structures concerned with saccade planning and execution are developing rapidly (Atkinson, 

2000; Bronson, 1974; Frick et al., 1999; M. H. Johnson, 1990, 2011), thus it is not surprising to 

find more variability in fixation durations at this transitional age. On the other hand, results 

suggest a period of stability at 5 and 6 months, where high correlations were found between all 

viewing conditions, with the exception of abstract videos and static images at 6 months. 

Results from the second longitudinal study revealed few significant correlations at 6 months 

(naturalistic x abstract), 10 months, (naturalistic x abstract) and 12 months (naturalistic x static), 

and marginally significant correlations at 6 months (naturalistic x static), 8 months (naturalistic x 

abstract), and 10 months (naturalistic x static). Therefore, these results indicate individual 

differences in mean fixation durations for some of the viewing conditions and visits, but not for 

all, suggesting that saccadic control and fixation durations are still undergoing important 

changes during the first year of life and still have not reached stability. In the third study with 

adult participants strong correlations were found between fixation durations for all viewing 

conditions.   
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6.9.3 Reaction times and disengagement latencies over the first year of life 

In this chapter I also explored the development of reaction times and disengagement latencies 

during the first year of life and analysed their relationship with fixation durations during this 

period. 

Not surprisingly, as in previous studies using the gap-overlap paradigm (Atkinson et al., 1992; 

Blaga & Colombo, 2006; Butcher et al., 2000; Domsch et al., 2010; Elsabbagh et al., 2009, 

2013; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; M. H. Johnson et al., 1991; Kano et 

al., 2011; Kano & Tomonaga, 2011b; Kikuchi et al., 2011; Kopecz, 1995; Reuter-Lorenz et al., 

1991) the gap effect was found for all visits in infants and adults. 

During the first half of the first year disengagement latencies diminished with age. Furthermore, 

reaction times for the gap and overlap conditions also decreased during this period. These 

findings go in line with previous research reporting improvements in the ability to disengage 

(e.g., Butcher et al., 2000; Matsuzawa & Shimojo, 1997) during the first half of the first year as a 

result of the development of the frontal structures concerned with saccade planning and 

execution (Atkinson, 2000; Bronson, 1974; Frick et al., 1999; M. H. Johnson, 1990, 2011). On 

the other hand, during the second half of the first year results did not show any age effect in 

disengagement latencies, even though there was a decrease in reaction times for the gap 

condition. This suggests that while their ability to disengage already reached stability during the 

first half of the first year saccadic programming and execution still continued to increase in 

efficiency from 6 months on. 

The correlations between mean fixation durations and disengagement latencies were not very 

stable for any of the visits –including adults-, even though there were a few positive correlations 

for some of the viewing conditions and visits. More precisely, there were no significant 

correlations between disengagement latencies and mean fixation durations at 3.5 and 6 months 

(first longitudinal study), even though some of the correlations were close to significant. 

However, at 5 months disengagement latencies correlated with mean fixation durations for 

naturalistic videos and static images. In the second longitudinal study disengagement latencies 

significantly correlated with mean fixation durations in naturalistic videos at 8 months and with 

abstract videos at 10 months. In adults there were no correlations between disengagement 

latencies and fixation durations for any of the conditions. These results are rather surprising and 
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contradict the findings reported in the cross-sectional study from Chapter 4, where correlations 

were found for 6-month-olds and adults. The main difference between the present studies and 

the cross-sectional study from Chapter 4 is the double-step paradigm, which was removed from 

the design of the studies described in the present chapter. Having the gap-overlap and the 

double-step in the same design may have made the targets less predictable than they were for 

the present studies, where infants and adults were most likely predicting the appearance of the 

next target. 

6.10 Conclusions 

In sum, in the present chapter I presented two longitudinal studies and a study with adult 

participants with the view to investigate the development of fixation durations and saccadic 

control over the first year of life when viewing a battery of dynamic and static stimuli and 

performing the gap-overlap paradigm. With these studies I aimed to describe fixation duration 

trajectories for different types of stimuli (dynamic and static) during the first year of life as well as 

to explore individual differences in fixation durations across visits and stimulus types. 

Additionally, I investigated the relationship between fixation durations and disengagement 

latencies during the first year.  

Results showed an overall decrease in mean fixation durations even though different viewing 

conditions decreased at different rates and times. This decrease could be explained by an 

improvement in processing efficiency (Colombo et al., 1991), the improvements in 

disengagement abilities during the first 6 months (Atkinson, 2000; Bronson, 1974; Frick et al., 

1999; M. H. Johnson, 1990, 2011), and/or the advances in memory capacity that occur during 

the second half of the first year (Colombo, 1993). Unlike some of the studies investigating the 

development of looking times when viewing more complex forms of visual stimuli (Courage et 

al., 2006; Frank et al., 2014, 2009; Shaddy & Colombo, 2004), mean fixation durations did not 

increase for any of the viewing conditions. Results also showed individual differences across 

visits and viewing conditions, even though they did not appear to be as stable as the ones found 

in adults. 

In the next chapter I will use the CRISP computational model (Nuthmann et al., 2010) to model 

the present empirical data in order to investigate the development of the mechanisms 

underlying fixation durations and saccadic control during the first year of life. More specifically, 
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the simulations from the next chapter are directed to investigate the development of saccade 

timing and saccade programming in young infants. Additionally, I include a simulation study that 

investigates different developmental trajectories in saccade timing and saccade programming 

for infants presenting long and short mean fixation durations. 
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Chapter 7: Modelling longitudinal fixation duration trajectories   

7.1 Introduction 

In Chapter 5 I investigated the unexplored mechanisms underlying saccadic control in infancy 

by determining the generalizability and potential limitations of extending the CRISP theoretical 

framework and computational model of fixation durations in adult scene-viewing (Nuthmann et 

al., 2010) to infants. The CRISP model was used to investigate the underlying mechanisms 

modulating fixation durations in 6-month-old infants and adults (see also Chapter 4). As this 

generalizability was confirmed, it was implied that at 6 months saccades are also programmed 

in two stages, an initial labile phase during which saccade programs can be altered or cancelled 

and a subsequent non-labile phase in which programs cannot be cancelled. In addition, the 

CRISP model was used to examine the extent to which fixation durations at 6 months are 

affected by developmental aspects of the visuo-motor system and/or by visual and cognitive 

processing, with results suggesting that the main factor affecting infant saccadic control at this 

age may already be visual and cognitive processing, even though the developmental state of 

the visuo-motor system still appears to be affecting infants’ saccadic control. Nevertheless, due 

to the cross-sectional nature of the design these results only provide insight into a particular 

point in time and hence the developmental changes that both saccade timing and saccade 

programming undergo over the first year of life had to be hypothesized. With the view to 

investigate the development of fixation durations and saccadic control over the first year of life, 

in Chapter 6 I presented two longitudinal studies (the first group of infants was tested at 

approximately 3.5, 5 and 6.5 months, and the second at 6, 8, 10 and 12 months) and a study 

with adult participants. In these studies eye-movements were monitored while participants 

looked at dynamic and static complex stimuli, and performed the gap-overlap paradigm. In each 

assessment infants and adults were presented with: (1) a set of naturalistic videos in which 

three people performed baby-friendly actions, (2) a set of abstract videos created from the first 

set, and (3) static complex images. 

The goal of the present chapter is to investigate the development of saccade timing and 

saccade programming parameters during the first year of life by modelling fixation data from the 

longitudinal studies presented in Chapter 6. Additionally, this chapter includes a simulation 

study that investigates different developmental trajectories for saccade timing and saccade 

programming parameters in two infants presenting long and short mean fixation durations. 
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For a literature review on the development of saccadic control and fixation durations in infancy 

go to Chapters 1, 4, 5 and 6.   

7.2 Modelling longitudinal data with the CRISP model 

The CRISP model architecture and theoretical assumptions were described in Chapter 5. In 

order to revisit the CRISP model architecture, in the following lines I include the model’s three 

main assumptions on saccade timing and programming:  

(1) The accumulation of activity to a saccade threshold is implemented via a random walk 

process and is responsible for generating inter-saccadic intervals and hence variations in 

fixation durations.  

(2) Saccade programming occurs in two stages: an initial, labile stage that is subject to 

cancellation, and a later, non-labile stage.   

(3) Processing difficulty can inhibit saccade timing and programming in a moment-to-moment 

fashion. The latter can happen in two ways. First, in case of increased processing demands the 

random walk saccade timer slows down, which delays the initiation of a new saccade program 

and eventually leads to longer fixation durations. Secondly, processing difficulties can even 

cancel an ongoing labile saccade program, which extends the duration of the current fixation.  

The following CRISP parameters contribute toward systematic differences in fixation durations: 

(1) the mean (tsac) and variance (i.e., number of states N) of the random walk timing signal, (2) 

the mean duration of the labile saccade program (τlab), and (3) the mean duration of the non-

labile saccade program (τnlab) (see Nuthmann et al., 2010). 

In Chapter 5, some of the aspects related to the development of saccade timing and saccade 

programming parameters had to be hypothesized due to the cross-sectional nature of the study. 

In the present chapter I aim to explore and confirm these hypothesis: 

a) Random walk timing and speed of processing. 

In Chapter 6 results showed an overall decrease in mean fixation durations over the first year of 

life, especially during the first half of the year.  

In CRISP, decreases in processing speed and increases in processing difficulty will slow down 

the random walk saccade timer. This delays the initiation of a new saccade program, which in 
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turn leads to longer fixation durations. As I argued in Chapter 5, saccade timing parameters can 

be indicative of information processing and thus I assumed that as infants get older they would 

show a decrease in the mean values for the random walk timer. Whilst the differences in 

saccade timing parameters between 6-month-olds and adults were evident, this assumption 

could not be tested with a cross-sectional design. In this chapter I will explore whether as 

expected, the mean values for the random walk timer decrease –and hence processing 

efficiency increase- across the first year of life, and more particularly during the second half of 

the first year as infants’ memory capacity develops (Baillargeon & Graber, 1988; Cohen & 

Gelber, 1975; Colombo, 1993; Richmond & Nelson, 2009; Ross-sheehy et al., 2003; Ruff & 

Rothbart, 1996). 

b) Two-stage saccade programming. 

In CRISP, saccade programming is completed in two stages: an initial, labile stage that is 

subject to cancellation and a subsequent non-labile stage in which the program can no longer 

be cancelled (see Chapters 1,4 and 5). The notion of the two-stage saccade programming is 

motivated by findings from double-step experiments (e.g., Becker & Jurgens, 1979). 

While the two-step notion of saccade programming has never been specifically investigated in 

behavioural studies with infants, results from the simulation studies from Chapter 5 suggested 

that as for adults, 6-month-old infants may also program saccades in two consecutive stages. 

Nevertheless the development of the saccade programming parameters (the labile and the non-

labile stages) had to be hypothesized based on previous findings from the anti-saccade 

paradigm (e.g., M. H. Johnson, 1995; see Chapter 1), which suggested that by 4 months infants 

can reliably inhibit the saccade to a first target in order to move their eyes to a second more 

attractive target. This ability to inhibit a saccade program coincides with the development of the 

premotor areas of the frontal lobes that occurs from 3 to 4 months (Atkinson, 2000; Bronson, 

1974; Frick et al., 1999; M. H. Johnson, 1990, 2011), and suggests that by this age infants 

should be able to cancel a saccade program, and hence program saccades in two stages (see 

also findings from Chapter 4 on saccade cancellation at 6 months).  

Since infants’ ability to cancel a saccade may not be efficient enough before 4 months, it could 

be the case that the non-labile program is longer than the labile program before this age. In 

Chapter 5 I predicted that from 4 months onwards there would be (1) a relative increase of the 
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labile stage with respect to the non-labile stage program, and (2) a gradual decrease in the 

absolute times for both labile and non-labile programs as the infant’s saccadic control increases 

in efficiency. Additionally, research has shown that by 6 months infant saccadic control has not 

reached adult levels (Butcher, Kalverboer, & Geuze, 2000; Csibra, Tucker, & Johnson, 2001; 

see also Chapter 4), thus both labile and non-labile stages are likely to be longer at this age 

compared to adults.  

The simulation studies presented in this chapter will serve to test these assumptions.  

7.3 The current studies 

In the present chapter I describe three simulation studies with the CRISP model (Nuthmann et 

al., 2010) in which fixation data from Chapter 6 were modelled. The overarching goal was to 

explore the trajectories for saccade timing and saccade programming parameters over the first 

year of life and to investigate how these trajectories would differ for short and long lookers. 

In simulation study 1, fixations from the naturalistic condition from the first longitudinal study 

described in Chapter 6 were modelled. In this study, infants from 3 to 6 months were eye-

tracked in three consecutive visits (3.5, 5 and 6.5 months) while looking at dynamic and static 

complex scenes and performing the gap-overlap paradigm. This simulation study aimed to (a) 

explore the development of saccade timing and saccade programming parameters during the 

first half of the first year, a period during which the frontal structures concerned with saccade 

programming and execution are developing rapidly (Atkinson, 2000; Bronson, 1974; Frick et al., 

1999; M. H. Johnson, 1990, 2011).  In simulation study 2 fixations from the naturalistic condition 

from the second longitudinal study described in Chapter 6 (with visits at 6, 8, 10 and 12 months) 

were modelled. The goal for this simulation study was to (b) explore the development of 

saccade timing and saccade programming during the second half of the first year. Finally, 

simulation study 3 aimed to investigate the trajectories for saccade timing and saccade 

programming parameters in infants classified as long and short lookers. As it was described 

earlier in this thesis (see Chapter 4), during the first year of life long lookers have been 

associated with greater disengagement difficulties (Frick et al., 1999; see also Blaga & 

Colombo, 2006) or poorer processing speed (Colombo et al., 1991; Colombo & Mitchell, 1990; 

Cuevas & Bell, 2013; Jankowski & Rose, 1997), thus I expected to find a delayed trajectory in 
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saccade timing and/or saccade programming parameters for long lookers compared to short 

lookers.  

7.4 Simulation study 1: Three to 6 months 

The goal of the present simulation study was to investigate the developmental changes on the 

mechanisms underlying saccadic control in a group of infants that was tested at 3.5, 5 and 6 

months (see longitudinal study 1 from Chapter 6), a period during which infants go through 

major changes in areas of the brain involved in eye-movement generation (e.g., the frontal eye 

fields, FEF), consequently improving their ability to disengage from a focal point (Atkinson, 

2000; Bronson, 1974; Frick et al., 1999; M. H. Johnson, 1990, 2011). More specifically, these 

simulations served to investigate the development of saccade timing and saccade programming 

parameters during this developmental stage, and to test some of the hypothesis made in 

Chapter 5 where fixation durations from 6-month-olds and adults were modelled (see 

Introduction from this chapter).  

7.4.1 Behavioural data  

For the current simulation study, fixation data from the first longitudinal study described in 

Chapter 6 were modelled. In this study, a group of infants was eye-tracked at 3.5, 5 and 6.5 

months (every 6 weeks) while looking at a battery of dynamic and static complex scenes and 

performed the gap-overlap paradigm. With the view to reduce the number of free parameters in 

the model simulations only the naturalistic viewing condition was included in the present 

analysis. 

The statistical analysis showed an overall decrease in mean fixation durations over the first half 

of the first year, with different viewing conditions displaying different fixation duration trajectories 

(see section 6.6.3.1). In particular, mean fixation durations in the naturalistic condition 

significantly decreased over this period. Furthermore, at the same time disengagement 

latencies as well as gap reaction times diminished with age, evidencing the maturational 

changes that the frontal structures responsible for saccade programming and execution 

undergo during this period (see section 6.6.3.3). 

The empirical data set was comprised of 1920 fixations at 3.5 months, 3133 fixations at 5 

months and 3210 fixations at 6.5 months. The differences in the number of fixations across 
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ages were mainly a consequence of the amount of time infants at different ages looked at the 

stimuli. 

7.4.2 Model adjustments 

The model adjustments and assumptions were exactly the same as those described in the 

simulation study 1 from Chapter 5. 

Each model simulation replicates the results from 10 fictive participants thus it is possible to 

perform a statistical analysis on the simulated data. Nevertheless, since the CRISP model does 

not generate individual differences the variations between fictive participants are minimal and 

the significance of the statistical analysis does not necessarily explain the results. Still, the 

statistical analysis is used as a way of explaining the data in a more rigorous way than just 

commenting on the model parameters. The longitudinal variations in mean fixation durations 

and saccade programming parameters were analysed using repeated measures ANOVAs. In 

the cases where the correlation matrices between the different measurement points were 

heterogeneous the degrees of freedom of the F test were corrected according to the 

Greenhouse-Geisser method. Post-hoc pairwise comparisons were calculated based on 

Bonferroni correction. 

7.4.3 Modelling results 

The genetic algorithm optimization technique that was used in previous simulation studies with 

the CRISP model (simulation study 2 in Nuthmann & Henderson, 2012; Nuthmann et al., 2010; 

see also Chapter 5) was the procedure used to estimate free parameters. This technique 

estimates the input parameters minimizing a goodness-of-fit measure and evaluating how much 

the simulated data differs from the empirical data. For each visit, a total of four free parameters 

were fit: the mean durations for the labile and non-labile stages of saccade programming; and 

the mean and variance of the random walk timing signal for the naturalistic condition. The 

ranges for estimating these values were based on the same principles described in Chapter 5. 

Each visit was modelled independently. For more information about the particularities of the 

genetic algorithm optimization technique and the goodness-of-fit function used for these 

simulations see simulation study 1 from Chapter 5. 



 234 

Figure 7-1 displays fixation duration distributions for the empirical data paired with the simulated 

data. Despite the very skewed fixation duration distributions –particularly at 3.5 months- the 

model seems to fit the empirical data well (see Figure 7-1 and errors from Table 7-1).  

 

Figure 7-1 Simulation study 1. Simulations paired with empirical data for the naturalistic 
condition on the three visits. 

 

The parameter values that best resembled the empirical distributions for the three visits are 

described in Table 7-1. 
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Table 7-1 Simulation study 1. Best fitting parameters. 

Parameter Symbol Range 3.5  
months 

5 
months 

6.5  
months 

Saccade timing     

      Mean (ms)  tsac 200-650 443 440 506 

       Variance N 5-20 20 20 18 

       Saccade execution tex --- 50 50 50 

Saccade programming     

      Labile stage (ms) tlab 30-400 363 353 329 

      Non-labile stage (ms) tnlab 30-350 342 83 62 

      Standard deviation (ms) σ --- 0.33 0.33 0.33 

Error E --- 9.620 2.644 2.054 

Error cumulative distribution Ec --- 10.284 2.809 3.195 

 

The statistical analysis performed on the simulated data resembled the empirical findings. Mean 

fixation durations for the naturalistic condition decreased with age (F(2,18)= 294.941, p < .001, 

pη2= .970) both from 3.5 (M = 563 ms, SD = .004) to 5 months (M = 490 ms, SD = .002; p < 

.001) and from 5 to 6.5 months (M = 461 ms, SD = .003; p < .001).  

Additionally, age effects were statistically analysed for saccade programming parameters. This 

analysis was possible since for each realization of the model simulation –and hence, for each 

fixation-, parameter values for the different saccade programming phases (τlab, τnlab, and τex) 

were drawn from gamma distributions, introducing unsystematic variability in the duration of 

saccade programming stages. As predicted, there was a gradual decrease in the absolute times 

for both labile and non-labile programs during this period. In particular, the labile stage 

decreased (F(2,18)= 216.175, p < .001, pη2= .960) both from 3.5 (M = 311 ms, SD = .590) to 5 

months (M = 308 ms, SD = 1.101; p = .025) and from 5 to 6.5 months (M = 292 ms, SD = .670; 

p < .001). Similarly, the non-labile stage also decreased (F(2,18)= 27574.214, p < .001, pη2= 

1.000) from 3.5 (M = 335 ms, SD = 1.518) to 5 months (M = 83 ms, SD = .249; p < .001) and 

from 5 to 6.5 months (M = 62 ms, SD = .234; p < .001). Moreover, further statistical analyses 

also showed a relative increase of the labile stage with respect to the non-labile stage program 

(F(2,18)= 35103.135, p < .001, pη2= 1.000). Specifically, at 3.5 months the non-labile stage 

constituted 51.829 % (SD = .125) of the saccade program and it decreased to the 21.244 % (SD 

= .077) at 5 months (p < .001). Whilst not at the same rate, the proportion of the non-labile 
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stage with respect to the labile stage continued to decrease and at 6.5 months the non-labile 

stage constituted the 17.511 % (SD = .074) of the saccade program (p < .001).  

Saccade timing parameters could not be statistically analysed the same way as saccade 

programming parameters. As explained earlier, in CRISP, decreases in processing speed and 

increases in processing difficulty will slow down the random walk saccade timer delaying the 

initiation of a new saccade program and hence leading to longer fixation durations. Saccade 

timing parameters are used to calculate the rate of the diffusion process for the random walk 

(see Chapter 5) and the number of steps needed for the random walk timing signal to progress 

and reach a threshold, where a new saccade program is initiated. This means that the model 

does not provide a saccade timing “value” per fixation, and thus these parameters need to be 

analysed by examining the best-fitting parameters from Table 7-1. Results showed how the 

mean values for the random walk timer did not change from 3.5 (443 ms) to 5 months (440 ms), 

but increased considerably from 5 to 6.5 months (506 ms).  

7.5 Simulation study 2: Six to 12 months 

The goal of the present simulation study was to investigate the developmental changes on the 

mechanisms underlying saccadic control in a group of infants that was tested at 6, 8, 10 and 12 

months (see longitudinal study 2 from Chapter 6). More specifically, the present simulations 

investigated the development of saccade timing and saccade programming parameters during 

the second half of the first year by testing some of the hypothesis made in Chapter 5 where 

fixation durations from 6-month-olds and adults were modelled (see Introduction from this 

chapter).  

7.5.1 Behavioural data  

For the current simulation study, fixation data from the second longitudinal study described in 

Chapter 6 were modelled. As for the previous simulation study, only the naturalistic viewing 

condition was included in the analysis. The results from the behavioural studies showed an 

overall decrease in mean fixation durations over the second half of the first year of life. During 

this period mean fixation durations continued to decrease for naturalistic videos, especially from 

6 to 10 months. From 10 to 12 months mean fixation durations did not change. The comparison 

between mean fixation durations for the 12-month-olds and adults revealed significant 
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differences for all the viewing conditions, suggesting that saccadic control and fixation durations 

still did not reach adult levels at the end of the first year. 

The empirical data set was comprised of 5037 fixations at 6 months, 4738 fixations at 8 months, 

5256 fixations at 10 months and 5447 fixations at 12 months. The differences in the number of 

fixations across ages were mainly a consequence of the amount of time infants at different ages 

looked at the stimuli. 

7.5.2 Model adjustments 

The model adjustments and assumptions were exactly the same as those described previously 

in this chapter. 

7.5.3 Modelling results 

The model’s free parameters were estimated using the genetic algorithm optimization technique 

described earlier in this chapter (see simulation study 1, or the simulation studies from Chapter 

5). As for the simulation study 1, for each visit a total of four free parameters were fit: the mean 

durations for the labile and non-labile stages of saccade programming; and the mean and 

variance of the random walk timing signal for the naturalistic condition. The ranges for 

estimating these values were based on the same principles described in Chapter 5. The 

parameter values that best resembled the empirical distributions for the four visits are described 

in Table 7-2. Additionally, Figure 7-2 displays fixation duration distributions for the empirical 

data paired with the simulated data.  

Table 7-2 Simulation study 2. Best fitting parameters for the visit at 6 months. 

Parameter Symbol Range 6 
months 

8  
months 

10 
months 

12 
months 

Saccade timing     

      Mean (ms)  tsac 200-650 397 369 340 350 

       Variance N 5-20 20 20 20 20 

       Saccade execution tex --- 50 50 50 50 

Saccade programming     

      Labile stage (ms) tlab 200-400 333 310 290 290 

      Non-labile stage (ms) tnlab 30-120 58 41 40 40 

      Standard deviation (ms) σ --- 0.33 0.33 0.33 0.33 

Error E --- 3.047 2.729 3.600 1.834 

Error cumulative distrib. Ec --- 1.500 4.881 14.580 4.641 
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Figure 7-2 Simulation study 2. Simulations paired with empirical data for the naturalistic 
condition on the four visits. 

 

The results from the statistical analysis performed on the simulated data resembled those found 

on the empirical data. Mean fixation durations decreased with age (F(3,27)= 124.979, p < .001, 

pη2= .933), particularly from 6 (M = 462 ms, SD = .003) to 8 months (M = 426 ms, SD = .003; p 

< .001) and from 8 to 10 months (M = 403 ms, SD = .002; p < .001).  

There was also a significant decrease in the labile stage of saccade programming (F(3,27)= 

360.664, p < .001, pη2= .973). As for mean fixation durations, pairwise comparisons showed a 
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significant decrease from 6 (M = 290 ms, SD = .807) to 8 months (M = 267 ms, SD = .780; p < 

.001) and from 8 to 10 months (M = 260 ms, SD = .736; p < .001). While an overall significant 

decrease was also found for the non-labile stage of saccade programming (F(3,27)= 7447.349, 

p < .001, pη2= .999), pairwise comparisons revealed that it was only significant from 6 (M = 58 

ms, SD = .164) to 8 months (M = 40 ms, SD = .059; p < .001).  Additionally, as in simulation 

study 1 results revealed a relative increase of the labile stage with respect to the non-labile 

stage program (F(3,27)= 1939.947, p < .001, pη2= .995). This change was significant from 6 to 

8 months where the non-labile stage went from constituting the 16.659 % (SD = .043) of the 

saccade program to being the 13.011 % (SD = .033; p < .001). Noticeably, from 8 to 10 months 

this percentage suffered a slight increase (from 13.011 %, SD = .033, to 13.312 %, SD = .045; p 

= .013), mainly due to the sudden decrease of the labile stage program during this period. 

With respect to saccade timing parameters, the mean values for the random walk timer 

decreased considerably from 6 to 10 months (6 months = 397 ms; 8 months = 369 ms; 10 

months = 340 ms), but remained fairly stable from 10 to 12 months (350 ms). The saccade 

timing variance (number of steps for the random walk, N), on the other hand, did not vary 

across visits. 

Figure 7-3 summarizes the results from simulation studies 1 and 2 and shows an overview off 

saccade timing and saccade programming parameter trajectories for the first year of life. 

Interestingly, for the overlapping visits at 6 months saccade programming parameters were very 

similar. On the other hand, saccade timing parameters were considerably larger for the results 

in simulation study 1. Since this parameter is assumed to be indicative of information 

processing, it might be the case that different groups of infants processed the visual information 

differently. These individual differences could be less obvious by adding more participants in 

each group (see Chapter 8). 
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Figure 7-3 Simulation studies 1 and 2. Saccade timing and saccade programming parameter 
trajectories over the first year of life.   

 

7.6 Simulation study 3: Individual differences between short lookers 

and long lookers 

In the present simulation study I modelled the fixation data from two infants (one long and one 

short looker) from the group of infants that was tested at 3.5, 5 and 6 months (see longitudinal 

study 1 from Chapter 6). During this period, the frontal areas of the brain involved in saccade 

planning and execution are developing rapidly (Atkinson, 2000; Bronson, 1974; Frick et al., 

1999; M. H. Johnson, 1990, 2011), leading to greater disengagement abilities and shorter 

fixation durations.  

During the first year of life long lookers have been associated with larger disengagement 

difficulties (Frick et al., 1999; see also Blaga & Colombo, 2006) or poorer processing speed 

(Colombo et al., 1991; Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 

1997). The present simulation study will analyse whether long lookers present a delayed 

trajectory in saccade timing and/or saccade programming parameters with respect to short 
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lookers. Furthermore, this section also represents the first demonstration of how the CRISP 

model can be applied to a single participant. 

7.6.1 Behavioural data  

Two infants from the first longitudinal study from Chapter 6 were selected and flagged as short 

and long lookers. The criteria to select these infants were (1) there were at least 50 fixations per 

visit; (2) for the long looker, mean fixation durations for each visit were above the mean; (3) for 

the short looker, mean fixation durations for each visit were bellow the mean. The long looker 

was infant number 6 from the first longitudinal study described in Chapter 6, while the short 

looker was infant number 2 (see Figure 6-6 and Figure 6-7). As for the previous simulation 

studies described in this chapter, with the view to reduce the number of free parameters only 

the naturalistic condition was modelled. 

The empirical data set for the infant flagged as long looker was comprised of 166 fixations at 3.5 

months, 175 fixations at 5 months and 242 fixations at 6.5 months. The empirical data set for 

the infant flagged as short looker was comprised of 66 fixations at 3.5 months, 226 fixations at 5 

months and 180 fixations at 6.5 months. 

7.6.2 Model adjustments 

The model adjustments and assumptions were exactly the same as those described previously 

in this chapter. 

7.6.3 Modelling results 

As for the previous simulations, the model’s free parameters were estimated using the genetic 

algorithm optimization technique described earlier in this chapter (see simulation study 1, or the 

simulation studies from Chapter 5). For each visit a total of four free parameters were fit: the 

mean durations for the labile and non-labile stages of saccade programming; and the mean and 

variance of the random walk timing signal for the naturalistic condition. The ranges for 

estimating these values were based on the same principles described in Chapter 5.  

The parameter values that best resembled the empirical distributions for the long and the short 

lookers are described in Table 7-3 and Table 7-4 respectively. 
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Table 7-3 Simulation study 3. Best fitting parameters for the long looker at 3.5 months. 

Parameter Symbol Range 3.5  
months 

5 
 months 

6.5  
months 

Saccade timing     

      Mean (ms)  tsac 200-650 420 470 490 

       Variance N 5-20 20 18 20 

       Saccade execution tex --- 50 50 50 

Saccade programming     

      Labile stage (ms) tlab 30-400 355 370 330 

      Non-labile stage (ms) tnlab 30-350 307 87 57 

      Standard deviation (ms) σ --- 0.33 0.33 0.33 

Error E --- 46.665 60.40 7.225 

Error cumulative distribution Ec --- 88.145 86.230 24.363 

 

Table 7-4 Simulation study 3. Best fitting parameters for the short looker at 3.5 months. 

Parameter Symbol Range 3.5 months 5 months 6.5 months 

Saccade timing     

      Mean (ms)  tsac 200-650 530 421 414 

       Variance N 5-20 20 20 20 

       Saccade execution tex --- 50 50 50 

Saccade programming     

      Labile stage (ms) tlab 30-400 300 274 280 

      Non-labile stage (ms) tnlab 30-350 88 49 41 

      Standard deviation (ms) σ --- 0.33 0.33 0.33 

Error E --- 10.552 6.082 5.999 

Error cumulative distribution Ec --- 163.157 6.012 6.136 

 

Figure 7-4 displays the empirical distributions of fixation durations paired with the simulated 

data for long and short lookers respectively. These graphs exhibit less smooth empirical 

distributions as a consequence of the reduced number of fixations. Nevertheless the simulated 

distributions seem to capture the main trends of the empirical distributions well. 
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Figure 7-4 Simulation study 3. Simulations for the long and short looker participants paired with 
the empirical data for the naturalistic and abstract conditions on the three visits. 

 

Whilst a statistical analysis was not suitable for exploring the differences between the long and 

short lookers in the empirical data (there is only one participant per group), it was possible to 

perform this analysis on the simulated data. As it was explained in the introductory chapter, 

computational modelling allows us to describe, predict and explain data that is itself 

unobservable (Lewandowsky & Farrell, 2011). For the present simulation, the model was able to 

simulate the data from 10 participants per condition, permitting a statistical analysis that 

compares the trajectories for the different variables in both groups (see simulation study 1).  

A repeated measures ANOVA with a within-subjects factor was performed on the simulated 

data revealing an overall decrease in mean fixation durations (F(1.466,26.399)= 315.323, p < 

.001, pη2= .946) and an interaction effect between age and group (long vs. short lookers) 

(F(1.466,26.399)= 86.415, p < .001, pη2= .828). In order to analyse the independent trajectories 

of mean fixation durations for short and long lookers two independent ANOVAs were performed. 
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Mean fixation durations decreased both for the long  (F(1.211, 10.894)= 59.427, p < .001, pη2= 

.868)  and the short lookers (F(2,18)= 1031.044, p < .001, pη2= .991)  groups. Nevertheless, 

while for long lookers the significant decrease happened from 5 (M = 527 ms, SD = .003) to 6.5 

months (M = 483 ms, SD = .002; p < .001), for the short lookers mean fixation durations only 

decreased from 3.5 (M = 492 ms, SD = .001) to 5 months (M = 403 ms, SD = .002; p < .001). 

Additionally three independent t-tests confirmed how mean fixation durations in each visit were 

shorter for the short lookers group (all p < .001). These results already suggest a delayed 

trajectory in mean fixation durations –and potentially a delayed development of the visuo-motor 

system- in the long lookers group as compared with the short lookers group.  

Saccade programming trajectories were also statistically analysed. A repeated measures 

ANOVA with a within-subjects factor revealed an age effect in the labile stage of saccade 

programming (F(2,36)= 175.914, p < .001, pη2= .907) and an interaction effect between age and 

group (long vs. short lookers) (F(3,36)= 521.438, p < .001, pη2= .967). Two independent 

ANOVAs were used to analyse the labile stage independent trajectories for long and short 

lookers and results revealed age effects both in long (F(2,18)= 229.388, p < .001, pη2= .962) 

and short lookers groups (F(2,18)= 539.594, p < .001, pη2= .984). The labile stage significantly 

increased for the long looking group from 3.5 (M = 312 ms, SD = .922) to 5 months (M = 332 

ms, SD = .918; p < .001), and significantly decreased from 5 to 6.5 months (M = 307 ms, SD = 

.850; p < .001). On the other hand, for the short looking group the labile stage significantly 

decreased from 3.5 (M = 284 ms, SD = .874) to 5 months (M = 254 ms, SD = .471; p < .001), 

and significantly increased from 5 to 6.5 months (M = 259 ms, SD = .784; p < .001). 

Furthermore, three independent t-tests confirmed how the labile stages in each visit were 

shorter for the short lookers group (all p < .001) as compared to the long lookers group. The 

slight differences in the trajectories evidence the effect of individual differences in the 

development of saccadic control in young infants. Unsurprisingly, as with mean fixation 

durations, labile stages were shorter for the short lookers group reinforcing the view that –

according to the assumption stating that longer labile stages during the first year of life indicate 

a less developed visuo-motor system (see Chapter 5)- the short lookers had a more developed 

visuo-motor system at each visit.  

Trajectories for the non-labile stage of saccade programming were investigated with a repeated 

measures ANOVA with a within-subjects factor that revealed an age effect (F(1.119,20.140)= 
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64893.735, p < .001, pη2= 1.000) and an interaction effect between age and group (long vs. 

short lookers) (F(1.119,20.140)= 30643.241, p < .001, pη2= .999). Two independent ANOVAs 

analysed the non-labile stage independent trajectories for short and long lookers. Results 

revealed an overall decrease in the non-labile stages of saccade programming for both groups 

(long lookers: F(1.092, 9.828)= 48830.630, p < .001, pη2= 1.000; short lookers: F(2,18)= 

29289.011, p < .001, pη2= 1.000). The non-labile stages decreased from 3.5 (long: M = 303 ms, 

SD = 1.001; short: M = 88 ms, SD = .200) to 5 (long: M = 87 ms, SD = .247; short: M = 49 ms, 

SD = .095; all p < .001) and from 5 to 6.5 months (long: M = 56 ms, SD = 210; short: M = 41 ms, 

SD = .083; all p < .001) in both groups. Furthermore, the non-labile stages for the short lookers 

were significantly shorter than for long lookers in each visit (all p < .001). Interestingly, at 3.5 

months the non-labile stage for long lookers constituted the 49.27 % (SD = .413) of the saccade 

programming, while for short lookers it was just the 23.52 % (SD = .169). Long lookers’ non-

labile stage experienced an important decrease from 3.5 to 5 months thus by the second visit it 

constituted just 20.79 % (SD = .203) of the saccade programming. According to the 

assumptions made at the introduction for this chapter, a shorter non-labile stage is associated 

with a greater ability to cancel a saccade and hence with a more developed visuo-motor 

system. Thus according to these results from 3.5 months short lookers already showed a more 

developed visuo-motor system as compared to long lookers. 

Pertaining to saccade timing parameters, while the mean values for the random walk timer 

increased for long lookers (3.5 month: 420 ms; 5 months: 470 ms; 6.5 months: 490 ms), they 

decreased for short lookers (3.5 month: 530 ms; 5 months: 421 ms; 6.5 months: 414 ms). 

These results suggest that the processing speed between short lookers and long lookers also 

differs. More specifically, At 5 and 6.5 months long lookers presented longer means supporting 

past research where long lookers have been associated with poorer processing speed 

(Colombo et al., 1991; Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 

1997). Furthermore, the conflicting trajectories for the mean values for the random walk timer 

suggest that as proposed by a few studies (Colombo et al., 1995, 1991) long and short lookers 

present different strategies of visual intake. The saccade timing variance (number of steps for 

the random walk, N) almost did not vary across visits. 

For an overview off the saccade timing and saccade programming trajectories for long and short 

lookers see Figure 7-5. 
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Figure 7-5 Simulation study 3. Saccade timing and saccade programming parameter 
trajectories for short and long lookers. 

 

7.7 Discussion 

The present chapter aimed to investigate the development of the mechanisms underlying 

saccadic control and fixation durations in early infancy. More specifically, the studies described 

in this chapter served to investigate saccade timing and saccade programming parameter 

trajectories during the first year of life and to examine how these trajectories differed for short 

and long lookers.   

For this purpose I modelled fixation durations data from the longitudinal studies described in 

Chapter 6. With the view to reduce the number of free parameters in the model simulations only 

fixations from the naturalistic viewing condition were modelled. 

Simulation studies 1 and 2 aimed to explore the development of saccade timing and saccade 

programming during the first year of life. These studies modelled the data from the groups of 

infants tested at 3.5, 5 and 6.5 months, and at 6, 8, 10 and 12 months respectively. More 

specifically, these simulation studies intended to test the assumptions about the development of 

saccade timing and saccade programming parameters made in Chapter 5. In this chapter I 

hypothesized that (a) saccade timing parameters -the mean values for the random walk timer- 
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would decrease over the first year of life as a result of improvements in processing efficiency. 

Furthermore, I predicted that from 4 months onwards there would be (b) a relative decrease of 

the non-labile stage with respect to the labile stage program, and (c) a gradual decrease in the 

absolute times for both labile and non-labile programs as the infant’s saccadic control increases 

in efficiency.  

Results from the statistical analysis performed on the simulated distributions of fixation 

durations and investigating mean fixation duration trajectories resembled those from the 

empirical data, verifying the validity of the model fitting.  

Corroborating one of the assumptions from Chapter 5 (c), results showed how the labile stage 

of saccade programming kept decreasing until the 10 months visit. Similar results were found 

for the non-labile stage, even though it stabilized slightly earlier, at 8 months. The decrease of 

the labile and the non-labile stages of saccade programming suggest that the infant visuo-motor 

system kept developing and increasing in efficiency until infants were 8-10 months. These 

findings go in line with past evidence from various neurophysiological and behavioural studies 

suggesting that at 6 months postnatal age the neural mechanisms underlying saccade 

programming and saccade execution (such as certain eye-movement related areas in the 

superior parietal lobe) are still undergoing development or need to increase in efficiency, 

despite hundreds of thousands of practice saccades (Butcher et al., 2000; Csibra et al., 1998; 

Hood & Atkinson, 1993; Matsuzawa & Shimojo, 1997). 

Furthermore, results also revealed a relative increase of the labile stage with respect to the non-

labile stage program until the 8 months visit (b). This increase –and the concurrent decrease of 

the non-labile stage with respect to the labile stage- is particularly noticeable from 3.5 to 5 

months, where the non-labile stage went from constituting the 51.829 % (SD = .125) of the 

saccade program to constituting the 21.244 % (SD = .077) at 5 months. These results support 

the assumption made in Chapter 5 maintaining that when infants’ saccadic control is mainly 

driven by subcortical structures the non-labile stage of saccade programming will constitute 

most of the saccade program. As infants gain more volitional control over their eye-movements 

at 3-4 months due to the development of the eye-movement related areas of the prefrontal lobe 

(Atkinson, 2000; Bronson, 1974; Frick et al., 1999; M. H. Johnson, 1990, 2011), they will 

improve their ability to cancel a saccade program, and hence as the present results suggest 
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one could expect a relative increase of the labile stage with respect to the non-labile stage 

program.  

In terms of the saccade timing parameters, the mean for the random walk timer did not 

necessarily decrease for all visits. From 3.5 to 5 months it remained stable while it slightly 

increased by 6 months, indicating an increase in information processing that could be due to the 

infants showing more interest in the stimuli at this age (see Frank et al., 2011). On the other 

hand, the mean values for the random walk timer decreased considerably from 6 to 10 months. 

These advances in processing speed could be the result of the developments in memory 

capacity that occur during the second half of the first year (Baillargeon & Graber, 1988; Cohen 

& Gelber, 1975; Colombo, 1993; Richmond & Nelson, 2009; Ross-sheehy et al., 2003; Ruff & 

Rothbart, 1996). The variance (number of steps for the random walk, N) for the random walk 

timer remained fairly stable across visits. 

Finally, the simulation study 3 intended to analyse the trajectories for saccade timing and 

saccade programming parameters in infants classified as long and short lookers. Certainly, 

there is a large body of research investigating individual differences between short and long 

lookers, even though the majority of past studies have used looking times to classify long and 

short lookers rather than fixation durations (but see Papageorgiou et al., 2014; Wass & Smith, 

2014). While some of this research has found a relationship between look duration and 

disengagement abilities –with long lookers presenting greater difficulties to disengage during 

the first year of life- (Frick et al., 1999; see also Blaga & Colombo, 2006), others found an 

association between long lookers and poorer processing speed (Colombo et al., 1991; Colombo 

& Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 1997). Most likely, as discussed 

throughout this thesis long fixation durations during the first year of life are the result of both 

poorer disengagement abilities –a less developed visuo-motor system- and processing speed. 

For this reason I expected to find a delayed developmental change in saccade timing and/or 

saccade programming parameters for long lookers as compared to short lookers. The analysis 

performed on the simulated mean fixation duration trajectories already suggested a delayed 

trajectory in mean fixation durations in the long lookers group as compared to the short lookers 

group, that could potentially indicate a delay in the development of the visuo-motor system for 

long lookers. Similar results and conclusions were extracted from the analysis performed on 

saccade programming parameters. Labile as well as non-labile stages were shorter for the short 
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lookers in each visit. Interestingly, the labile and non-labile stages for long lookers at 3.5 months 

resembled the results obtained in simulation study 1 at this same age. On the other hand, 3.5-

month-old short lookers already displayed labile and non-labile stages that were closer to 5-

month-olds from simulation study 1. These results indicate a delayed trajectory of saccade 

programming parameters in long lookers, suggesting a slower development of the visuo-motor 

system in this group compared to short lookers.  

Saccade timing parameters in long and short lookers displayed opposed results. While the 

mean values for the random walk timer increased for long lookers, they decreased for short 

lookers, indicating differences in processing speed between short and long lookers. From 5 

months on long lookers showed longer mean values than short lookers, supporting past 

research where long lookers have been associated with poorer processing speed (Colombo et 

al., 1991; Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 1997). Moreover, 

the conflicting trajectories for the mean values for the random walk timer suggest that as 

proposed by few studies (Colombo et al., 1995, 1991) long and short lookers present different 

strategies of visual intake. The saccade timing variance (number of steps for the random walk, 

N) almost did not vary across visits. 

In Chapter 5 I discussed whether disengagement latencies should belong to the labile stage of 

saccade programming or to the non-labile stage. While the present results do not reject the idea 

that disengagement abilities could affect the labile stage, they reinforce the idea that the primary 

disengagement problems lie in the non-labile stage. The non-labile stage at 3.5 months 

(simulation study 1), a time when the frontal structures associated with saccade programming 

and execution are still developing, constitutes around the half of the saccade programming. 

Interestingly, similar results were found for the long lookers in simulation study 3. Thus this 

suggests that at least to an extent the prolonged non-labile stages are can also be due to 

problems disengaging.  

7.8 Conclusion 

The present chapter presented three simulation studies that aimed to investigate the 

development of saccade timing and saccade programming parameters through the first year of 

life. For this purpose I modelled fixations data from the two longitudinal studies presented in 
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Chapter 6. Additionally, simulation study 3 investigated the different developmental trajectories 

in saccade timing and saccade programming in infants classified as long and short lookers.  

Results showed a relative increase of the labile stage with respect to the non-labile stage 

program, more evident at 3.5-5 months and significant until 8 months. There was also a gradual 

decrease in the absolute times for both labile (until 10 months) and non-labile programs (until 8 

months) as the infants’ saccadic control increased in efficiency. These results indicate the 

influence in fixation durations of the developmental state of the visuo-motor system during the 

first and also the second half of the first year, even though both stages of saccade programming 

seemed to stabilize before 10 months. With regard to saccade timing parameters, the mean for 

the random walk timer did not necessarily decrease for all visits. Nevertheless, it decreased 

from 6 to 10 months, maybe due to the developments on memory capacity that occur at this age 

(Colombo, 1993). These results suggest that both the developmental state of the visuo-motor 

system and processing speed affect saccadic control until at least 10 months postnatal age.  

Simulation study 3 investigated the trajectories for saccade timing and saccade programming in 

infants classified as long and short lookers. Results displayed delayed trajectories in saccade 

programming parameters for long lookers as compared to short lookers, indicating a faster 

development of the visuo-motor system in the later group. Furthermore, the analysis of saccade 

timing parameters suggested that long lookers have slowed processing (Colombo et al., 1991; 

Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 1997) and that they 

present different strategies of visual intake studies as compared to short lookers (Colombo et 

al., 1995, 1991). 
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Chapter 8: General discussion, limitations and conclusion   

8.1 Revisiting initial goals and introduction to the final chapter 

The overarching goal of this work was to investigate the unexplored mechanisms underlying 

saccadic control and fixation durations during the first year of life using both behavioural and 

computational methods. Additionally, a secondary goal of the present work was to develop new 

analysis tools able to extract fixations reliably from low and high quality eye-tracking data.  

Chapter 1 provided the general literature background for this thesis, discussing past research 

on vision, visual orienting and visual attention. It particularly focused on reviewing previous 

empirical work and theoretical and computational models investigating visual attention and the 

mechanisms underlying oculomotor control and fixation durations in infants and adults. I 

reviewed adult studies investigating the locations where fixations land and their durations. 

Following this review I moved onto describing past literature on the development of looking 

behaviour and the few studies investigating fixation durations and saccadic control in infants. In 

infants, due to the numerous technical and practical constraints, very few studies have 

attempted to investigate the development of fixation durations and saccadic control during the 

first year of life and thus the understanding of the development of infant oculomotor control is 

restricted. This realization lead to the formulation of the motivation for the empirical studies 

carried out in the present thesis. 

In Chapters 2 and 3 I introduced the methods, experimental tools, and analytical techniques. 

More specifically, in Chapter 2 I described the particularities and technical difficulties of 

recording infants’ eye-movements and I outlined the techniques used within this thesis in order 

to minimize these problems (e.g., calibration techniques, equipment, room set-up). In Chapter 3 

I introduced GraFIX, a new method and software that I developed to detect fixations reliably in 

low and high quality eye-tracking data.  

Chapters 4-7 described the empirical work carried out within this thesis. In the present chapter, I 

discuss critically the findings of my experiments from a broader perspective. I examine the 

limitations of this work and how these might be addressed and overcome in the future. 

Moreover, I provide a discussion of issues to be considered when designing studies 

investigating infant visual attention in general and saccadic control in particular, and I propose 

future directions to follow the work described in this thesis.  
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8.2  Critical discussion 

In this section I will describe the achievements of this thesis and the ways in which it might 

contribute to the wider field. Since throughout the present thesis I have provided detailed 

discussions of the results of my work (see Chapters 3, 4, 5, 6, and 7), I will focus here on some 

individual findings in an attempt to discuss them from a broader perspective. I will start 

discussing how the idiosyncrasies and technical difficulties that testing infants entail can affect 

experimental results. The attempts to overcome some of these issues are also discussed, 

including GraFIX, the new method and software that I developed in order to facilitate and 

improve the analysis of low and high quality eye-tracking data. I will move on discussing the 

main findings from the cross-sectional and longitudinal behavioural studies described in this 

thesis (Chapters 4 and 6), as well as the simulation studies that were performed in these data 

(Chapters 5 and 7). Finally, I will review how the use of computational models helped answering 

questions about infant saccadic control that could not be explained with more traditional 

methods.  

8.2.1 Methods: Gathering data from infant participants 

As obvious as it may seem, testing infants is not an easy task. To begin with, they do not attend 

to experimental instructions and will not necessarily pay attention to what is presented to them, 

especially for an extended period of time (e.g., > 10 minutes). For these reasons most adult 

studies are not suitable for infants and have to be adapted, which is not always feasible. 

The first challenge that the researcher needs to face when planning an infant experiment is to 

design a study that infants at the targeted age will enjoy. Designing a fun experiment will not 

only considerably increase the chances of obtaining a decent amount of data, but also might 

improve the quality of it by encouraging infants to stay still in front of the experimental stimuli. 

This does not only apply to eye-tracking experiments but also to studies using any other 

techniques directed to test infant participants. In order to be able to model the fixation data 

described in this thesis, it was essential to gather as much data as possible (e.g., in Nuthmann 

et al., 2010, each adult participant was tested for about 40 minutes). Infant studies usually last 5 

to 10 minutes, which is not enough time to collect an acceptable number of fixations per viewing 

condition. To overcome this issue the experiments described in this thesis went through a 

period of piloting during which the stimuli was repeatedly changed and adapted until infants 

enjoyed it enough to attend to it for around 20 minutes. For instance, the initial battery of 
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naturalistic stimuli that was used for the studies described in Chapters 4 and 6 was composed 

of videos previously used to test adult participants. Since infants did not find these stimuli 

particularly appealing, I decided to design my own infant-friendly naturalistic videos.   

Secondly, infants are “noisy”. It does not matter how much we try, infants may always have 

something else on their minds unrelated to the experimental stimuli they are being presented 

with. This is an issue to keep in mind when interpreting our experimental results. For instance, it 

is still not clear whether the very long fixations found in the semi-naturalistic (Chapter 4) and 

abstract conditions (Chapter 6) are a consequence of information processing or any other inner 

process unrelated to the visual information being encoded. These processes are indeed difficult 

to assess.   

Thirdly, infant data is particularly noisy. As it was discussed in Chapter 3, the data quality from 

an eye-tracker can -and will- vary depending on the eye-tracker model and manufacturer, the 

eye physiology, the calibration procedure, the position of the participant relative to the eye-

tracker, the degree of head motion (Holmqvist et al., 2011, 2012), or even ethnicity (Blignaut & 

Wium, 2014). Data quality is particularly problematic in infant populations for a number of 

reasons, such as the difficulties of using the corneal reflection technique with their very watery 

eyelids (Gredebäck et al., 2009), or the unexpected movements the infant makes in front of the 

eye-tracker. Data quality is in fact a very important problem that has still not received the 

attention it deserves, especially in fields like developmental psychology. As recent articles have 

pointed out (Holmqvist et al., 2012; Saez de Urabain et al., 2014; Wass et al., 2013), low data 

quality can substantially alter the experimental outcomes. While noise in the data cannot be 

avoided when using the current remote eye-trackers (also in adults), in Chapters 2 and 3 I 

described some guidelines (e.g., infant calibration, lighting conditions, the participant’s distance 

and angle with respect to the eye-tracker) that could improve infant data quality.  

Finally, eye-tracking results are not always adequately reported in scientific journals. While 

there are specific guidelines for publishing eye-tracking studies (McConkie, 1981; Oakes, 2010), 

not many articles include them, hindering the reproducibility of the results. In this thesis I 

included all the details to explain not only how the data was collected and treated, but also what 

the quality of the data was and its potential impact on the experimental results. 
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8.2.2 Methods: Detecting fixations in low and high quality eye-tracking data 

8.2.2.1 Summary of main findings 

In Chapter 3 I presented GraFIX, a new method and software to reliably detect fixations in low 

and high quality data. As it was described earlier, the quality of infant data tends to be 

particularly low both in terms of spatial and temporal precision. Previous fixation detection 

approaches were not ready to handle this kind of data. Automatic detection approaches can be 

remarkably imprecise, while the alternative hand-coding methods are highly time consuming.  

Developing GraFIX I aimed to solve these problems by presenting a new method that combines 

both automatic and hand-coding approaches in a user-friendly desktop application. More 

precisely, in GraFIX data is initially parsed by using velocity-based algorithms whose input 

parameters are adapted by the user, and then manipulated using the graphical interface, 

allowing accurate and rapid adjustments of the algorithms’ outcome. The automatic algorithms 

(1) smooth the raw data, (2) interpolate missing data points, and (3) apply a number of post-hoc 

criteria to automatically evaluate and remove artifactual fixations. These post-hoc evaluations 

include (3.1) merging adjacent fixations with a similar location, (3.2) removing all fixations with a 

root mean square (RMS) of inter-sample distances higher than a threshold, and (3.3) removing 

all fixations shorter than a given threshold. The user interface allows for rapid adjustments of 

the algorithm’s input parameters (e.g., velocity threshold, interpolation latency), thus the user is 

able to immediately visualize the effect of different filters and parameter values on the data. 

This method was successfully assessed from four different perspectives. First, the agreement 

between two different raters was evaluated using the intra-class correlation coefficient (ICC) in 

two groups of infants presenting low and high quality data. Secondly, I compared hand-coding 

results with the two-step approach (a combination of automatic detection and hand-coding), 

demonstrating that both techniques should generate exactly the same results. Thirdly, the 

outcome from GraFIX automatic algorithms was compared to the two-step approach. This 

evidenced how even though in high quality data the results from the algorithms alone were 

close enough to hand-coding results, it was not the case for low quality data. Finally, I 

compared hand-coding results with GraFIX automatic algorithms and previous automatic 

detection algorithms (the velocity-based algorithms from Wass, et al., 2013; the adaptive 

velocity-based algorithms from Nyström and Holmqvist, 2010; and the I-VT filter velocity based 
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algorithm as implemented in Tobii-studio 3.0.0). This illustrated the problems of using automatic 

detection approaches to handle variable eye-tracking data quality.  

8.2.2.2 Contributions and general considerations 

The empirical work described in this thesis could not have been accomplished without 

developing GraFIX. When I started investigating the techniques available to extract fixations 

from infant eye-tracking data, it became obvious the need for new analysis tools able to handle 

the particularities of low quality data. Certainly, as outlined earlier, previous approaches were 

highly imprecise and/or time consuming.  

The main contribution of this new method is the use of a combination of automatic and hand-

coding approaches. The outcome from this procedure is very similar to what we could obtain 

from a purely hand-coding approach (see validation 2 from Chapter 3), but it is much faster and 

precise. For instance, participants featuring high data quality will need only few manual 

adjustments after executing the automatic algorithms and thus the whole detection process may 

just take few minutes. The higher the data quality is, the less time the researcher will have to 

invest in hand-coding. Additionally, the use of the automatic approach adds precision in 

detecting the onsets and offsets of fixations reliably.  

While the combination of both methods has been shown to be the most reliable technique for 

detecting fixations in variable quality eye-tracking data, both procedures alone already 

represent an improvement with respect to previous detection techniques. The automatic 

algorithms included post-hoc validation filters specifically implemented to handle low quality 

data, such as the filter to delete fixations with a RMS higher than a threshold. The idea of 

including post-hoc validation criteria is not new (Wass et al., 2013), but this particular filter is. 

Furthermore, the user interface allows the user to play with the input parameter values and see 

the effects that different values have in the data within seconds. This feature is particularly 

useful for users that are not familiar with fixation detection techniques. Many times these users 

tend to use the values that have been previously reported in scientific papers or those 

recommended by manufacturers, without considering how these values will affect their 

experimental outcomes. This is very concerning, since this practice can seriously alter the 

experimental outcomes, especially when dealing with variable quality data (Holmqvist et al., 

2011).  
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Moreover, GraFIX hand-coding tool also constitutes an improvement compared to previous 

hand-coding approaches. First of all, fixations can be created, merged or deleted by simply 

clicking on them with the mouse. This method is considerably quicker than previous hand-

coding procedures where fixations had to be coded by analysing videos frame by frame. 

Additionally, I implemented different visualization options where raw and processed eye-

tracking data can be replayed in real time. This feature permits the user to look at the detection 

outcomes from different perspectives and make more constructive decisions of whether a 

particular event in the data is a fixation or not. 

A controversial contribution of this method is the idea of using different sets of input parameters 

for different participants featuring various levels of data quality. As I discussed in Chapter 3, a 

particular set of parameters will affect low and high data quality in different ways. For instance, 

a low velocity threshold will detect fixations reliably in high precision data, whilst it will detect 

multiple very short artifactual fixations in low precision data. On the other hand, a high velocity 

threshold may work better in low precision data, but will merge fixations together in high quality 

data. For this reason I believe that the use of different parameters for different participants is 

justified. Nevertheless, it remains an open question whether it should be acceptable to include 

participants featuring very different data quality in the same analysis.  

The main limitation of this approach is that it can still be time consuming compared to automatic 

algorithms. This might not be a problem if we have a relatively small number of participants 

(e.g., < 200), but when processing a large amount of data it can be tempting to choose a less 

rigorous method. 

8.2.3 Factors affecting saccadic control and fixation durations at 6 months 

8.2.3.1 Summary of main findings 

In Chapter 4 I investigated different aspects related to infant saccadic control and fixation 

durations. For this purpose I gathered fixation data from 6-month-olds and adults that where 

presented with two different complex dynamic viewing conditions (naturalistic and semi-

naturalistic videos) and performed the gap-overlap (Atkinson et al., 1992; Butcher et al., 2000; 

Elsabbagh et al., 2009; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; M. H. Johnson et al., 

1991) and double-step (Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 

2006; Westheimer, 1954) paradigms. 
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As expected, results showed longer mean fixation durations for infants as compared to adults 

for both naturalistic and semi-naturalistic viewing conditions. Furthermore, mean fixation 

durations where also longer for the semi-naturalistic condition compared to the naturalistic one, 

both for infants and adults, evidencing how at 6 months infants also adapt their eye-movements 

to different viewing conditions.  

The gap-overlap paradigm served to analyse participants’ disengagement abilities. In the case 

of infants, longer disengagement latencies have been typically associated with a less developed 

visuo-motor system (Butcher et al., 2000; Farroni et al., 1999; Hood & Atkinson, 1993; M. H. 

Johnson et al., 1991). Results showed correlations between disengagement latencies and 

fixation durations not only in 6-month-olds, but also in adults for the naturalistic condition. This 

indicates that the ability to disengage does not only depend on the developmental state of the 

visuo-motor system but also in the visual stimulus being processed (see discussion from 

Chapter 5).  

Individual differences between long and short lookers were found both in infants and adults, 

demonstrating a great control in gaze allocation at 6 months.  

The double-step paradigm was used to investigate saccade cancellation in infants. While the 

limited amount of data did not allow for the same analysis performed in previous studies with 

adults (Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 2006; Westheimer, 

1954), reaction times when infants made a single saccade to the second target were longer 

than when they made two consecutive saccades to the first and the second target, suggesting 

that in the former case they were cancelling the saccade program to the first target. The data 

and findings from this study constituted the basis for modelling the data with the CRISP model 

in Chapter 5. 

8.2.3.2 Contributions and general considerations 

The findings reported in Chapter 4 indicate that most 6-month-olds already have a well 

developed top-down control that modulates gaze allocation (as suggested by the differences in 

mean fixation durations found between different viewing conditions, and the individual 

differences between short and long lookers), even though the mechanisms underlying saccadic 

control may still need to further develop or increase in efficiency (as suggested by the 

differences in mean fixation durations between 6-month-olds and adults). These findings go in 
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line with past behavioural and neurological evidence suggesting that even though at 6 months 

the neural structures involved in saccade planning and execution are in place, they may still be 

going through a “calibration phase” to increase in efficiency (Butcher et al., 2000; Csibra et al., 

1998; Hood & Atkinson, 1993; Matsuzawa & Shimojo, 1997). Saccade planning and execution 

involves subcortical areas such as the superior colliculus or the substantia nigra, and cortical 

areas such as the frontal (e.g., the frontal eye fields, FEF; the supplementary eye fields, SEF) 

and superior parietal lobes (Kurtzberg & Vaughan, 1982; Posner, 1988; Schiller, 1985, 1998). 

Csibra, Tucker, and Johnson (1998) reported that at 6 months the saccade-related potentials 

(SRPs), associated with the eye-movement related areas of the parietal cortex that are found to 

precede the onset of a saccade (Kurtzberg & Vaughan, 1982), are weak, less synchronized to 

the saccade execution, or completely absent. As the findings from this thesis, these findings 

suggest that at 6 months the infant visuo-motor system is still undergoing development. 

Six-month-olds as well as adults showed significant differences in mean fixation durations 

between viewing conditions, indicating the influence of visual and cognitive processing in 

saccadic control. Even though some previous studies have investigated this issue, they did not 

use particularly complex visual stimuli (but see Hunnius & Geuze, 2004). In this study I aimed to 

move forward and investigate infants’ eye-movements under complex dynamic conditions that 

are more ecologically valid. Regardless of the change in the stimuli, results were similar to 

previous studies where differences between viewing conditions were also found at the same 

age (Hunnius & Geuze, 2004a). Interestingly, mean fixation durations remained significantly 

longer for the semi-naturalistic condition as compared to the naturalistic one, which was visually 

and semantically more complex. This raises the question of whether longer fixation durations 

could be to an extent a consequence of higher requirements in processing more complex visual 

stimuli, or if on the other hand they are not reflecting any cognitive activity related to the visual 

stimulus. In Chapter 4 I argued how both alternatives are feasible and not mutually exclusive. 

This question could be further explored in future experiments by including heart-rate measures 

(Courage et al., 2006; Reynolds & Richards, 2007; see section 8.3.2). 

Another relevant finding from this study is the positive relationship between mean fixation 

durations and disengagement latencies from the gap-overlap paradigm in infants and to a lesser 

extent also in adults, with longer fixation durations being associated to longer disengagement 

latencies. As explained earlier in this thesis (see Chapters 1 and 4) disengagement latencies in 
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infancy have been typically associated with the developmental state of the visuo-motor system 

(Atkinson, 2000; Bronson, 1974; Frick et al., 1999; M. H. Johnson, 1990, 2011). This could 

explain the stronger correlations in 6-month-olds, even though at this age disengagement 

difficulties are thought to have somewhat diminished. Nevertheless, as suggested by the adult 

correlations in the naturalistic condition, disengagement can also be affected by the visual 

stimuli being processed. This conclusion is backed up by previous studies from Kikuchi and 

colleagues (2011), where they reported larger disengagement latencies and saccade-related 

event-related potentials (ERPs) when children disengaged from faces. 

The double-step paradigm was used to investigate saccade cancelation in infants. Whilst this 

paradigm has been widely used in adult research to investigate saccade programming (see 

Chapter 1; Becker & Jurgens, 1979; Findlay & Harris, 1984; Walker & McSorley, 2006; 

Westheimer, 1954), in infancy research it has only been applied to identify the shift from 

retinotopic to spatiotopic coordinate systems (e.g. Gilmore & Johnson, 1997; Kaufman, Gilmore, 

& Johnson, 2006; Senju et al., 2011). Technical and practical constraints in infant testing are the 

main reason why equivalent analyses were not feasible in infants and adults (see discussion 

from Chapter 4). Unlike infants, adults were expected to follow the experimental instructions and 

to perform a high number of trials. The version of the double-step paradigm described in 

Chapter 4 was designed to encourage infants to look at the second target by making it visually 

more attractive, as it was done in previous infant studies utilizing the anti-saccade task (M. H. 

Johnson, 1995b). The visual targets were colourful and engaging in order to keep the infant 

interested for longer periods, and the time lapse between the first and the second target’s 

appearances was adapted to each participant’s responses using the modified binary search 

(MOBS) thresholding algorithm. Still, it was not possible to gather enough valid trials in order to 

determine the threshold between the labile and non-labile stages of saccade programming, as 

estimated in adult studies (Becker & Jurgens, 1979). Results from this study suggested, 

however, that 6-month-olds were able to cancel a saccade. In any case these results were not 

satisfactory enough for the purposes of this thesis and hence I decided to remove this paradigm 

from future designs and focus on gathering more fixations from more viewing conditions (see 

Chapters 6 and 7). Future studies aiming to identify the labile and non-labile stages of saccade 

programming in infants should consider having multiple testing sessions close in time in order to 

gather enough data per participant. 
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The results and the data from this study were not only essential to model infant fixation 

durations in Chapter 5, but also served to build a strong experimental design that was used in 

the longitudinal studies described in Chapter 6. 

8.2.4 The mechanisms underlying saccadic control and fixation durations at 6 

months 

8.2.4.1 Summary of main findings 

The simulation studies described in Chapter 5 intended to explore the mechanisms underlying 

saccadic control and fixation durations in 6-month-olds by determining the generalizability of 

extending the CRISP theoretical framework and computational model of fixation durations in 

adult scene-viewing (Nuthmann et al., 2010) to infants. Furthermore, the model was used to test 

specific developmental questions on saccadic control and explore the limitations of the CRISP 

adult theoretical framework when applied to infant data. 

Results from simulation study 1 demonstrated the CRISP model and its theoretical framework’s 

generalizability –such as the two-step notion of saccade programming– to data from 6-month-

old infants. Furthermore, results showed great differences in saccade programming and 

saccade timing parameters between infants and adults, suggesting that -unsurprisingly- 6-

month-olds are slower processors than adults and that their visuo-motor system is still 

undergoing development. Simulation studies 2 and 3 tested whether fixation durations in infancy 

are influenced by the developmental state of the visuo-motor system and/or by visual and 

cognitive processing speed, with results suggesting that while both factors influence oculomotor 

control at this age it is visual and cognitive processing what contributes most to developmental 

change.  

8.2.4.2 Contributions and general considerations 

Computational models are able to describe, predict and explain data that is itself unobservable 

(Lewandowsky & Farrell, 2011) allowing us to investigate the mechanisms that are not directly 

accessible through experimentation (Braitenberg, 1984; Schlesinger & McMurray, 2012). This 

technique is particularly useful for investigating infant development, where the limitations testing 

infants pose important constraints (see Chapters 2 and 3). Current behavioural techniques have 

been unable to investigate certain aspects of the development of saccadic control, such as 

saccade cancellation or the two-step notion of saccade programming. Probably one of the most 
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important contributions of the simulation studies presented in Chapter 5 is the use of a 

computational approach to investigate the unanswered questions related to the development of 

saccadic control and fixation durations in 6-month-olds. While the simulation studies were 

grounded in assumptions and the conclusions that were taken from them were not based on 

any “real” data (the simulated data), these results provide a feasible interpretation of the data 

that could be further investigated with other future studies.  

But, why use the CRISP model? Might other models of oculomotor control not explain infant 

data just as well? I chose this model over others for a number of reasons. First of all, the CRISP 

model investigates fixation durations in scene viewing, which is also the focus of the studies 

described in this thesis. Additionally, the model’s architecture is adequate to answer specific 

questions about the development of the mechanisms underlying fixation durations and saccadic 

control. In particular, I was able to use the free parameters from the CRISP model as an index 

for the developmental state of the visual system (saccade programming parameters) and visual-

cognitive processing (saccade timing parameters). Finally, the use of this model allowed 

investigating saccade cancellation and the two-step notion of saccade programming, which due 

to practical and technical difficulties has not been specifically analysed before. Nevertheless, 

this does not mean that the CRISP model is the only option able to explain infant oculomotor 

control. Other models could also provide new valid perspectives and potentially extend the work 

presented in this thesis. 

Free model parameters were fitted using a genetic algorithm optimization technique. 

Nevertheless, due to the very skewed infant fixation duration distributions, sometimes the 

results had to be slightly adapted by hand (this was also the case for the baseline simulation in 

Nuthmann et al., 2010). Even though adapting free parameters by hand is relatively common in 

computational modelling, it can be a matter of concern. How do we know that the parameters 

we are reporting are the best fitting? Certainly, other parameter combinations could also provide 

a good fit. Some parameter combinations can be discarded based on the plausibility of the 

results. For instance, very short labile stages in 3-month-old infants can be discarded since 

these results are not physiologically plausible. In this thesis, the genetic algorithm was used as 

an approximation technique whose results were later optimized manually. The final parameter 

values were never massively changed from the results obtained with the genetic algorithm, with 

the view to be as rigorous as possible. 
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Results showed that the CRISP computational model was applicable to 6-month-olds, implying 

that its theoretical framework is also feasible for infants. One of the most relevant assumptions 

from the CRISP theoretical framework states that saccades are programmed in two stages, an 

initial labile stage during which the saccade is subject to cancellation, and a subsequent non-

labile stage where the saccade can no longer be cancelled. This notion has not previously been 

investigated in infants, nor has saccade cancellation. Results from Chapters 4 and 5 suggested 

that saccades at 6 months were programmed in these two stages. Nevertheless, due to the 

cross-sectional nature of the study the development of saccade programming had to be 

hypothesized and tested later in subsequent studies (see Chapters 6 and 7).  

Results from these simulation studies also suggested that at 6 months fixation durations are 

mainly affected by information processing speed, even though the developmental state of the 

visuo-motor system still plays an important role. I proposed that most likely these two factors 

are linked together, as suggested by previous studies that concluded that a less developed 

brain requires more time for information processing (Rose, Feldman, & Jankowski, 2002).  

These simulations also indicated some limitations when applying CRISP to infant data 

described in detail in Chapter 5 and reviewed later in this chapter. 

8.2.5 The development of saccadic control and fixation durations over the first 

year of life 

8.2.5.1 Summary of main findings 

The studies described in Chapter 6 intended to investigate the development of fixation durations 

and saccadic control during the first year of life. For this purpose I presented two longitudinal 

studies and a study with adult participants that were eye-tracked while viewing a battery of 

dynamic (naturalistic and abstract) and static stimuli and performed the gap-overlap paradigm. 

Specifically, these studies intended to analyse fixation duration trajectories for different types of 

stimuli (dynamic and static) during the first year of life as well as to explore individual 

differences in fixation durations across visits and stimulus types. Moreover, the gap-overlap 

paradigm was used to explore the relationship between fixation durations and disengagement 

latencies during the first year. 

Overall, mean fixation durations decreased during the first year of life, with different viewing 

conditions decreasing at different rates and times. While some previous studies reported an 
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increase in looking times when viewing more complex forms of visual stimuli, (Courage et al., 

2006; Frank et al., 2014, 2009; Shaddy & Colombo, 2004), in the studies from Chapter 6 mean 

fixation durations did not increase for any of the viewing conditions. The decrease in fixation 

durations could be explained by an improvement in processing efficiency (Colombo et al., 

1991), the improvements in disengagement abilities during the first 6 months (Atkinson, 2000; 

Bronson, 1974; Frick et al., 1999; M. H. Johnson, 1990, 2011), and/or the advances in memory 

capacity that occur during the second half of the first year (Colombo, 1993). 

Individual differences across visits and viewing conditions were also found, even though they 

did not appear to be as stable as the ones found in adults.  

With regard to disengagement latencies, they diminished during the first half of the first year, 

probably as a consequence of the development of the areas in the frontal cortex concerned with 

saccade programming and execution (Atkinson, 2000; Bronson, 1974; Frick et al., 1999; M. H. 

Johnson, 1990, 2011). While there were few positive correlations between mean fixation 

durations and disengagement latencies for some of the viewing conditions and visits, they were 

not very stable. 

8.2.5.2 Contributions and general considerations 

Whilst the studies described in Chapters 4 and 5 provided a detailed account about fixation 

durations and saccadic control at 6 months, they left some open questions to be investigated in 

subsequent chapters. The results from the cross-sectional study described in these chapters 

served to design the longitudinal studies from Chapters 6 and 7. For instance, in the simulation 

studies from Chapter 5 it became evident that more fixations per participant were needed in 

order to obtain more reliable results from the model, and to potentially be able to model 

participants individually. To solve this issue I decided to include more free-viewing scenes and 

to exclude the double-step paradigm from the protocol, since results from Chapter 4 were not 

satisfactory and the task seemed to make infants tire easily (see section 8.2.3.2). Additionally I 

included a third viewing condition: static images.  

Few studies have investigated the differences in looking at dynamic and static stimuli in infants 

and children (Bronson, 1990; Hunnius & Geuze, 2004a; Shaddy & Colombo, 2004; Stoesz & 

Jakobson, 2014). For instance, Bronson (1990) found that 2-14-week-old infants had more 

difficulties disengaging when the stimuli was flickering. Similarly, Hunnius and Geuze (2004) 
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reported that scanning patterns for dynamic videos only stabilized at around 18 weeks, which is 

slightly later than what is usually reported for the scanning of static images. Results from the 

longitudinal studies in Chapter 6 backed these findings, with trajectories of mean fixation 

durations in static images stabilizing already during the first half of the first year. From 3.5 

months, infants showed significantly shorter fixation durations in the static images condition as 

compared to the other two dynamic conditions. As discussed in Chapter 6, the big changes in 

fixation durations between static and dynamic stimuli could be the result of two different 

processes. First, the processing of motion may be adding an extra step when encoding visual 

information from a dynamic scene. The cortical pathway that goes to the superior colliculus from 

the primary visual cortex (V1) through the middle temporal area (MT), is thought to be involved 

in motion detection and the smooth tracking of moving stimuli (M. H. Johnson, 1990, 2011; 

Schiller, 1985, 1998) and is already functioning at about 2 months of age (M. H. Johnson, 1990, 

2011). Dynamic visual information is thus also processed through the MT pathway –which 

presumably is not involved in the processing of static visual information-, leading to prolonged 

fixation durations. Secondly, a dynamic scene may contain more semantic content that needs to 

be processed -such as the understanding of the actions that the different characters are 

performing- that can prolong fixation durations. 

Overall static images were the viewing condition that could most predict performance in later 

testing sessions, as evidenced by the strong correlations found across visits. This might be 

because this condition is less complex than the dynamic scenes (no motion), and thus stabilizes 

earlier. 

The poor correlations between disengagement latencies and mean fixation durations were 

unexpected. Findings from the cross-sectional study in Chapter 4 showed strong correlations 

between these two measures in 6-month-olds, thus I expected to find similar results particularly 

in infants younger than 6 months, since during this period their disengagement abilities are 

though to be undergoing development. One possible explanation for the poor correlations 

reported in Chapter 6 is that infants could be predicting the target’s next location (left or right) 

and thus the paradigm might as well be recording anticipatory eye-movements. In Chapter 4, 

trials from the gap-overlap paradigm were alternated with double-step trials, making it difficult to 

predict where the target was going to appear next. In future studies with the gap-overlap task I 
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would recommend to also include random targets at different locations in order to avoid infants 

predicting the next target location.   

In Chapter 6 I used the Markov chain Monte Carlo (MCMC; Schafer, 1997) multiple imputation 

technique, a new procedure to deal with missing data. While this technique has rarely been 

used in similar psychological studies –and never for longitudinal studies-, it proved to be a 

reliable way to interpolate missing values. Nevertheless, it is still not clear whether it should be 

used when the number of missing points is high relative to the number of participants gathered. 

These aspects should be further investigated in future studies. 

8.2.6 The development of the mechanisms underlying saccadic control and 

fixation durations over the first year of life. 

8.2.6.1 Summary of main findings 

The simulation studies described in Chapter 7 aimed to investigate the development of saccade 

timing and saccade programming parameters over the first year of life and to analyse how 

parameter trajectories differ for short and long lookers. As in Chapter 5, data was modelled with 

the CRISP model (Nuthmann et al., 2010). 

In simulation studies 1 and 2, fixations from the naturalistic condition from the first and the 

second longitudinal studies described in Chapter 6 were modelled. As it was hypothesized in 

Chapter 5, results showed a relative increase of the labile stage with respect to the non-labile 

stage program, more evident at 3.5 - 5 months and significant until 8 months. There was also a 

gradual decrease in the absolute times for both labile (until 10 months) and non-labile programs 

(until 8 months) as the infants’ saccadic control increased in efficiency. Regarding saccade 

timing parameters, the mean for the random walk timer –indicative of visual and cognitive 

processing speed- did not necessarily decrease for all visits. However, it decreased from 6 to 10 

months, maybe due to the developments on memory capacity that occur at this age. These 

results suggest that both the developmental state of the visuo-motor system and processing 

speed affect saccadic control until at least 10 months postnatal age.  

Simulation study 3 investigated the trajectories for saccade timing and saccade programming 

parameters in infants classified as long and short lookers. I found delayed trajectories in 

saccade programming parameters for long lookers as compared to short lookers, suggesting a 

faster development of the visuo-motor system in the later group. Additionally, the analysis of 
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saccade timing parameters suggested that long lookers are slower processors (Colombo et al., 

1991; Colombo & Mitchell, 1990; Cuevas & Bell, 2013; Jankowski & Rose, 1997) and that they 

present different strategies of visual intake compared to short lookers (Colombo et al., 1995, 

1991). 

8.2.6.2 Contributions and general considerations 

As in Chapter 5, in Chapter 7 I used computational modelling to investigate mechanisms that 

are not directly accessible through experimentation. Findings from the simulation studies 

confirmed the assumptions made in Chapter 5 and provided a feasible interpretation to explain 

the development of fixation durations and saccadic control in young infants. As for the findings 

in Chapter 5, this interpretation needs to be further investigated in future empirical studies. 

According to the modelling results, both the developmental state of the visuo-motor system and 

processing speed affect saccadic control until at least 10 months postnatal age. These findings 

suggest that much of the variance in fixation durations that is observed during the first year (and 

particularly during the first 6 months) come from the development of the mechanisms underlying 

saccade programming and saccade execution. This finding is very important in order to interpret 

the results from studies using various looking measures.  

Moreover, the differences between short and long lookers in saccade programming and 

saccade timing parameters were striking, with short lookers resembling results from older 

infants in each visit. This also evidences the substantial variability in fixation durations that can 

be found in young infants at the same age. 

8.3 Limitations 

Having discussed some contributions of my findings, I will now focus on some more general 

limitations of my approach. While some of the limitations were inevitable due to choices that had 

to be made prior to my studies and other restrictions (e.g., the number of participants), others 

emerged only during the testing or the analysis phase (e.g., data quality). Disentangling the 

weaknesses of the studies presented in this thesis will help other researchers to consider their 

experimental designs and methods for future studies more carefully. As such, reporting the 

limitations is an essential process in ensuring the highest research standards are maintained. 
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8.3.1 Experimental stimuli 

Most research investigating eye-movements in infants is based on results from basic 

oculomotor paradigms such as the gap-overlap, or the presentation of relatively simple static 

and dynamic stimuli. This approach has been often criticized due to the limited ecological 

validity of the stimuli (Hunnius & Geuze, 2004a; Neisser, 1976; Schmuckler, 2001). Some 

studies have attempted to design more naturalistic stimuli. For instance, Hunnius and Geuze 

(2004) investigated the development of scanning in dynamic scenes, and for this they recorded 

the infants’ mothers’ face, which was more ecologically valid than a random face.    

In the present thesis I have attempted to design stimuli that were as naturalistic as possible (see 

Chapters 4 and 6). Nevertheless, as in most current eye-tracking infant studies the videos were 

still displayed on a computer screen, which reduces the ecological validity of the experiment. 

Recently few head-mounted eye-tracker models have become available for use with infants 

(Aslin, 2012; Corbetta et al., 2011; Franchak & Adolph, 2010; Franchak et al., 2010). These new 

advances in eye-tracking equipment will allow researchers to investigate cognitive development 

and eye-movements in the real world. Even though using these devices implies new difficulties 

in testing and analysis that still need to be addressed, head-mounted eye-trackers allow 

researchers to gather a baste amount of data of more natural eye-movement behaviour.    

8.3.2 Experimental design 

In Chapters 4 and 6 significantly longer mean fixation durations were reported for certain 

viewing conditions. The interpretation of these results, however, was not straightforward: were 

the long fixation durations in certain conditions consequence of the higher cognitive demands of 

the stimuli? Or rather the result of other inner processes unrelated to the stimuli being viewed? 

The design of the studies presented in this thesis does not allow giving a definite answer to 

these questions.  

Some infant researchers have argued that measures of look duration do not reflect information 

processing directly, and have attempted to use heart-rate measures to determine which portion 

of a look is relevant in attentional processes (Courage et al., 2006; Reynolds & Richards, 2007). 

For instance, Reynolds and Richards (2007) measured look duration together with the 

participant’s heart-rate and concluded that it is only in the portion of looking that happens during 

the heart-rate defined phase of sustained attention when the infants engage in actively 



 268 

processing visual information. It is important to note that these studies measured look duration, 

and not fixation durations. While it would be worth trying similar research on fixation durations, 

these may still be too short to be able to relate them to the heart-rate phases of attention. 

8.3.3 Participants and statistical analysis 

The number of participants per group was not so high, particularly in the first longitudinal study 

where only 12 infants could be tested. This was a problem for performing the statistical analysis 

on the data using the Linear Mixed Model (LMM) procedure. An LMM allows for the analysis of 

trajectories from two different cohorts as long as they share a point. The two longitudinal studies 

share the 6 months visit (which is the last visit for the first longitudinal study, and the first for the 

second longitudinal study), thus technically it should be possible to analyse both cohorts 

together in a single analysis. This analysis was not possible, however, due to the low number of 

participants in the first cohort. Most likely this also affected the correlational analyses, for which 

usually many more participants are required. Future studies should increase the number of 

participants participating in longitudinal studies and also factor in a larger proportion of drop-

outs than would be expected in studies involving older children and adults, especially if the later 

time points are after most parents have returned to work and have less free-time to devote to 

participating in such studies. 

8.3.4 Data quality 

Low data quality is a major issue when testing infants (see Chapters 2 and 3). Regardless of my 

attempts to minimize the problems associated with infant testing and data analysis, there were 

still differences in data quality across groups. These problems will remain present until more 

effective high-speed eye-trackers become available for infants. 

As discussed in Chapter 4, it is still debated whether participants featuring very different levels 

of data quality should be included in the same analysis. In fact, when these differences occur 

across groups (e.g., 3-month-old, vs. adults) it could potentially alter the experimental results. In 

general, to date not many studies have paid attention to these issues (particularly in 

developmental psychology). Hopefully the present work will help raising awareness on the 

importance of data quality in research. 
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8.3.5 Modelling infant fixation durations with CRISP 

The particularities of infant fixation data add an extra level of complexity for modelling fixation 

durations with the CRISP model. First of all, it is important to gather a large number of fixations 

per participant, which is not always feasible when testing infants. For instance, the cross-

sectional study described in Chapter 4 did not include enough free-viewing scenes in order to 

gather a large number of fixation data per participant. Consequently, modelling participants 

individually was not possible. The design for the studies described in Chapter 5 included more 

free-viewing scenes and this problem was solved.   

In Chapter 5 I also discussed the difficulties of modelling very skewed fixation duration 

distributions. As a result of the high variability in fixation durations in infants, their fixation 

duration distributions are particularly skewed and might include very long fixations (> 2-3 secs). 

This can be due to problems disengaging and/or less efficient information processing. Adult 

fixation duration distributions are also to a lesser extent positively skewed, even though they 

tend to present much shorter tails. Moreover in adults long fixations are fairly uncommon and 

tend to be discarded from the analysis, the rationale being that such long fixations may not be 

indicative of any perceptual activity or information processing (Inhoff & Radach, 1998). For the 

present studies I decided not to include an upper thershold that discards these long fixations.  

The CRISP model captured the tails of the distributions to a certain degree, but was not able to 

simulate the very long fixations from infant fixation duration distributions. The genetic algorithm 

optimization technique did not handle the very skewed distributions well, and frequently results 

had to be manually fitted. Surely, more work needs to be done to improve the model’s 

optimization technique. Furthermore, the model could be extended to include a disengagement 

component able to further explain the very skewed distributions in very young infants (see 

Future considerations). 

8.3.6 Modelling individual differences 

Given a set of parameters, the CRISP model is able to generate a number of fictitious 

participants, each with slightly different fixation duration distributions. While these distributions 

are different, all derive from the same set of parameters and thus they are very similar. In 

Chapter 7 I used a statistical analysis to explain the modelling results. Even though this can 

help explaining the data, it is important to take into account that since the model is not able to 
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generate individual differences, the significance of the analysis is not valid. In the future, using 

the data and results presented in this thesis the CRISP model could be extended to account for 

individual differences.    

8.4 Future directions 

While this thesis already provided valuable insights into the development of fixation durations 

and saccadic control, it also raised new questions and opened up new strands of research. In 

this section I overview the future directions of this thesis work. 

8.4.1 Improving fixation detection techniques 

In Chapter 3 I presented GraFIX, a new method and software to detect fixations in low and high 

quality eye-tracking data. As demonstrated with the validation analyses, GraFIX provides a 

better alternative for detecting fixations compared to previous automatic and manual 

approaches. Nevertheless, it is still not perfect.  

As any hand-coding method, the researcher needs to establish some guidelines that determine 

what will be coded as a fixation. While a reliability analysis can quantify the consistency of 

coding fixations within the same study, different researchers may have different ways of coding. 

For instance, a researcher may not pay attention to small microsaccades and will merge them 

together in a long fixation, while another researcher will consider fixational eye-movements 

when coding eye-tracking data. This way, without looking at the actual data it is not possible to 

determine how fixations were coded.  

A way to solve this problem is by making eye-tracking data publicly available in a single 

database, where other researchers can download it. Similarly, publishing raw data together with 

scientific articles can allow replicated analysis as well as meta-analyses. This could help 

standardizing the coding guidelines as well as would make research more transparent. 

COGAIN6 has lead the main initiative to standardize eye-tracking data-quality by investigating 

how eye-trackers compare in their performance, and designing methods and measures for valid 

comparison. More specifically, they have focused on eye data quality standardization, 

standardization of eye-data terminology, designing a standardized set of artificial eyes, 

designing a standard experimental protocol for the collection of data for data quality 

measurement, investigating physiological measures of eye data quality, implementing 
                                                        
6 http://www.cogain.org/info/eye-data-quality 
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commercial eye trackers to the same experimental software, or investigating the effects of data 

quality on eye movement measures. Such initiatives are invaluable for the advance of eye-

movement research. 

8.4.2 Analysing fixation locations: Saliency models 

Gaze control has been typically investigated through the study of two main aspects: the location 

where fixations land (fixation position or location) and the time-lapse during which the eyes 

remain still at a given location (fixation duration). In infants, a number of studies have 

investigated fixation locations (e.g., Bronson, 1990, 1994; Frank et al., 2014; Frank, Vul, & 

Saxe, 2011; Hunnius & Geuze, 2004a). Only few studies, however, have analysed fixation 

durations (but see Bronson, 1990; Hunnius & Geuze, 2004b; Papageorgiou et al., 2014; Wass 

& Smith, 2014). With the view to fill this gap the present work has focused on fixation durations. 

Still, there are a number of questions related to fixation locations that could be answered with 

further analyses on the data collected for this thesis and the use of saliency models. For 

instance, how do long and short fixations relate to the region of the stimuli being viewed? Are 

long fixation durations more likely to fall on areas with more semantic or visual content? How 

fast do infants react to motion in a complex naturalistic scene? And in an abstract scene?  

8.4.3 CRISP Disengagement component 

As mentioned earlier, the CRISP model was not able to capture the long tails of the very 

skewed distributions. I proposed that future extensions of the model could include a 

disengagement component able to simulate the very long fixation durations that are most likely 

consequence of problems disengaging (see Chapter 5).  

In Chapter 5 I discussed whether the disengagement component should affect the labile or the 

non-labile stage of saccade programming. I concluded that both stages should be influenced by 

this component, since disengagement abilities are related to both difficulties triggering a 

saccade (in young infants) and the visual stimuli currently being processed. Nevertheless, more 

research needs to be done to determine the functioning of this new component, and the extent 

to which it would affect the labile and non-labile stages in different participants.  

8.4.4 Using the model to generate novel predictions 

In this thesis I have used computational modelling to explain and interpret fixation durations 

data from infants. Another use for computational models is to generate novel predictions based 
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on preliminary data. This approach has the potential of predicting how infants that were tested 

at a certain age will perform later on. Such a model could be extremely advantageous for the 

study of atypical development, where the study of fixation durations is gaining popularity. For 

instance, recent studies have reported that 6 to 9 months infants at familial risk of autism 

spectrum disorders (ASD) with shorter fixation durations are more likely to receive an ASD 

diagnosis later on (Wass et al., 2015). The data from the longitudinal studies described in this 

thesis could be used as a basis for developing a predictive model of typically developing infants 

that could later be extended for atypically developing infants. 

8.5 Conclusion 

The main goal of my thesis work was to investigate the development of fixation durations and 

saccadic control over the first year of life in a series of cross-sectional and longitudinal studies 

where I used eye-tracking as well as computational methods.  

The eye-tracking studies highlighted how infant fixation durations are influenced by the low-level 

visual features from the viewing material (bottom-up control) from a very early age. It was not 

until the 5 months visit that infants also showed an increase in top-down control. Fixation 

durations decreased with age for all viewing conditions but not at the same rate. Furthermore, 

individual differences between long and short lookers were found across visits and viewing 

conditions. 

The data and the results from the eye-tracking studies constituted the basis for the simulation 

studies where I modelled fixation data using the CRISP model of fixation durations (Nuthmann 

et al., 2010). While the simulation studies were grounded on assumptions and the conclusions 

that were taken from them were mainly based in simulated data, these results provided a 

feasible interpretation of the data and contributed to understanding the mechanisms underlying 

fixation durations and saccadic control in infancy. For the first time the two-step notion of 

saccade programming was introduced in infants, which states that saccades are programmed in 

two consecutive stages: the labile stage, during which the saccade program can still be 

cancelled, and the subsequent non-labile stage, where the saccade program can no longer be 

cancelled. Furthermore, model simulations suggested that at least until 10 months, infant 

fixation durations are influenced by both the developmental state of the visuo-motor system and 
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information processing speed. The simulations of the data from short and long lookers 

highlighted the huge developmental differences that can be found across infants.  

On a methodological level, I was able to develop GraFIX, a new method and software to detect 

fixations in low and high quality eye-tracking data. As the validation analyses presented in 

Chapter 3 demonstrated, this method provides a better alternative for detecting fixations 

compared to previous automatic and manual approaches. 

In conclusion, the present work provided valuable insights into the development of the 

mechanisms underlying fixation durations and saccadic control in infancy, an area of 

investigation that has been underrepresented in the research literature mainly due to the many 

practical and technical constraints that testing infants entail. Furthermore, my thesis 

demonstrates the benefits of mixing behavioural and computational methods to investigate 

realms of research not easily accessible through experimentation, such as oculomotor control in 

infancy. 
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Appendix A 

Pseudo-code of the proposed interpolation algorithm 

1. Calculate the velocities for each point 

2. Iteratively find velocity peaks and flag those over the velocity threshold as saccades 

3. Find next gap 

3.1. If the gap is longer than the interpolation latency: 

3.1.1. Calculate the Euclidean distances from a central point for the fixations preceding and 

following the gap. 

3.1.2. If the difference between both Euclidean distances is lower than the maximum 

displacement threshold: 

3.1.2.1. Interpolate. 

Pseudo-code of the proposed velocity algorithm and the post-doc validation 

1. Calculate the velocities for each point 

2. Iteratively find velocity peaks and flag those over the velocity threshold as saccades 

3. The data points in between two saccades are grouped and flagged as fixations 

4. Post-hoc validation: Merge adjacent fixations with similar location 

4.1. If this post-hoc validation criterion is selected  

4.1.1. Find next two adjacent fixations 

4.1.2. If the gap between the two fixations is shorter then 50 ms 

4.1.2.1. Calculate the distance in degrees between the locations for the two fixations 

4.1.2.2. If the distance is shorter than the maximum displacement threshold 

4.1.2.2.1. Merge both fixations 

5. Post-hoc validation: The root mean square (RMS) of inter-sample distances per fixations does not 

exceed a threshold 

5.1. If this post-hoc validation criterion is selected  

5.1.1. Find all fixations with a RMS over the threshold 

5.1.2. Delete them 

6. Post-hoc validation: Minimum fixation duration 

6.1. If this post-hoc validation criterion is selected  

6.1.1. Find all fixations with a duration over the threshold 
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6.1.2. Delete them 
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Appendix B 

Detailed descriptions for the naturalistic videos from the cross-sectional study defined in 

Chapter 4. 

Table Appendix 1 Descriptions for the naturalistic videos described in Chapter 4. 

Video Active state Inactive state 

1 The character is dancing and playing 

with a transparent bag full of colourful 

balls.  

The character does not move. 

2 The character is holding a red balloon 

with both hands and moving it around. 

The character occludes her face with the 

balloon.  

3 The character faces the camera and 

moves a yellow octopus that she is 

holding around. 

The character has her back turned to the 

viewer. 

4 The character is holding two balloons 

and is dancing with them. 

The character does not move. 

5 The character is looking at the viewing 

trying to attract his or her attention. 

The character is occluding her face. 

6 The character is dancing and moving a 

yellow toy around. 

The character does not move. 

7 The character is dancing behind a pink 

object. 

The character is hidden behind the pink 

object. 

8 The character is dancing and moving a 

red toy around. 

The character does not move. 

9 The character is dancing behind a pink 

object (different actresses as in video 

7). 

The character is hidden behind the pink 

object. 

10 The character is dancing and playing 

with one balloon that she is holding 

with one hand.  

The character does not move.  
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3) 4) 

5) 6) 

7) 8) 

9)  10)  

Figure Appendix 1 Naturalistic videos for the cross-sectional study described in chapter 
4. 
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Appendix C 

Table Appendix 2 Descriptions for the naturalistic videos described in chapter 6. 

Video Active state Inactive state 

1 The character is dancing and playing 

with a transparent bag full of colourful 

balls.  

The character does not move. 

2 The character is holding a red balloon 

with both hands and moving it around. 

The character occludes her face with the 

balloon.  

3 The character faces the camera and 

moves a yellow octopus that she is 

holding around. 

The character has her back turned to the 

viewer. 

4 The character is holding two balloons 

and is dancing with them. 

The character does not move. 

5 The character is looking to the front 

trying to attract his or her attention. 

The character is occluding her face. 

6 The character is dancing and moving a 

yellow toy around. 

The character does not move. 

7 The character is dancing behind a pink 

object. 

The character is hidden behind the pink 

object. 

8 The character is dancing and moving a 

red toy around. 

The character does not move. 

9 The character is dancing and playing 

with a transparent bag full of colourful 

balls. 

The character does not move. 

10 The character is dancing and playing 

with a transparent bag full of colourful 

balls. 

The character does not move.  

11 The character is holding two balloons 

and is dancing with them. 

The character does not move. 

12 The character is dancing and moving a 

yellow toy around. 

The character does not move. 
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13 The character is dancing and moving a 

red toy around. 

The character does not move. 

14 The character faces the camera and 

moves a yellow octopus that she is 

holding around. 

The character has her back turned to the 

viewer. 

15 The character is holding a red balloon 

with both hands and moving it around. 

The character occludes her face with the 

balloon. 
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Figure Appendix 2 Naturalistic videos for the longitudinal studies described in chapter 6. 
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Figure Appendix 3 Abstract videos for the longitudinal studies described in chapter 6. 
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Figure Appendix 4 Static images for the longitudinal studies described in Chapter 6. 
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Appendix D 

In Chapter 6, the data from the longitudinal study testing infants from 6 to 12 months was 

analysed using the MCMC multiple imputation technique. First, ten plausible synthetic values or 

imputations were generated for each missing data point, leading to 10 different data sets. 

Secondly, each data set was analysed with the corresponding ANOVA, which generated 10 

slightly different and plausible results. Finally, the 10 estimates were pooled into a single 

estimate by calculating their means, combining the variations within and across the 10 imputed 

data sets.  

Tables 3, 4, 5 and 6 show the descriptive statistics for mean fixation durations and the ex-

Gaussian components (µ, σ, and τ) for the original data set, the data sets generated with the 

MCMC multiple imputation technique, and the pooled data.  

 

Table Appendix 3 Descriptive statistics for mean fixation durations in naturalistic videos, 
abstract videos and static images from the original and imputed data sets. 

 
Imputation 

Number 

 

Naturalistic videos  Abstract videos  Static images  

N Mean Std.  N  Mean  Std.  N  Mean  Std.  

Visit 1 

Original data 18 .516 .053 18 .800 .219 18 .325 .039 

1 19 .512 .055 19 .764 .264 19 .324 .039 

2 19 .510 .057 19 .761 .273 19 .328 .040 

3 19 .512 .055 19 .793 .215 19 .330 .044 

4 19 .519 .053 19 .799 .213 19 .329 .041 

5 19 .515 .052 19 .829 .248 19 .328 .039 

6 19 .513 .053 19 .783 .225 19 .328 .040 

7 19 .517 .052 19 .808 .215 19 .327 .039 

8 19 .519 .053 19 .808 .216 19 .328 .041 

9 19 .506 .068 19 .796 .213 19 .332 .049 

10 19 .518 .052 19 .803 .213 19 .329 .041 
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Pooled 19 .514 
 19 .794  19 .328  

Visit 2 

Original data 16 .468 .045 16 .743 .187 16 .317 .039 

1 19 .467 .048 19 .775 .228 19 .318 .041 

2 19 .472 .045 19 .719 .227 19 .320 .040 

3 19 .471 .051 19 .739 .257 19 .320 .040 

4 19 .473 .044 19 .765 .219 19 .322 .043 

5 19 .489 .081 19 .814 .332 19 .319 .038 

6 19 .474 .045 19 .761 .282 19 .320 .040 

7 19 .481 .053 19 .805 .290 19 .319 .037 

8 19 .481 .054 19 .820 .285 19 .320 .038 

9 19 .490 .092 19 .839 .387 19 .316 .037 

10 19 .475 .047 19 .766 .253 19 .320 .039 

Pooled 19 .477 
 19 .780  19 .319  

Visit 3 

Original data 18 .452 .046 18 .666 .161 18 .322 .041 

1 19 .440 .068 19 .635 .208 19 .321 .040 

2 19 .448 .048 19 .669 .157 19 .322 .040 

3 19 .455 .046 19 .650 .172 19 .323 .041 

4 19 .447 .050 19 .669 .157 19 .322 .040 

5 19 .444 .057 19 .648 .176 19 .322 .040 

6 19 .448 .049 19 .658 .160 19 .322 .040 

7 19 .455 .046 19 .678 .165 19 .322 .040 

8 19 .453 .045 19 .686 .178 19 .322 .040 

9 19 .453 .045 19 .665 .157 19 .322 .040 

10 19 .445 .055 19 .652 .168 19 .322 .040 

Pooled 19 .449 
 19 .661  19 .322  

Visit 4 
Original data 19 .446 .057 19 .699 .157 19 .334 .045 

1 19 .446 .057 19 .699 .157 19 .334 .045 
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2 19 .446 .057 19 .699 .157 19 .334 .045 

3 19 .446 .057 19 .699 .157 19 .334 .045 

4 19 .446 .057 19 .699 .157 19 .334 .045 

5 19 .446 .057 19 .699 .157 19 .334 .045 

6 19 .446 .057 19 .699 .157 19 .334 .045 

7 19 .446 .057 19 .699 .157 19 .334 .045 

8 19 .446 .057 19 .699 .157 19 .334 .045 

9 19 .446 .057 19 .699 .157 19 .334 .045 

10 19 .446 .057 19 .699 .157 19 .334 .045 

Pooled 19 .446 
 19 .699  19 .334  

 

 

Table Appendix 4 Descriptive statistics for µ fixation durations in naturalistic videos, abstract 
videos and static images from the original and imputed data sets. 

 
Imputation 

Number 

 

Naturalistic videos  Abstract videos  Static images  

N Mean Std.  N  Mean  Std.  N  Mean  Std.  

Visit 1 

Original data 18 .248 .044 18 .214 .055 18 .227 .041 

1 19 .250 .044 19 .218 .056 19 .228 .040 

2 19 .247 .043 19 .212 .054 19 .230 .042 

3 19 .243 .047 19 .207 .063 19 .228 .040 

4 19 .270 .106 19 .230 .086 19 .250 .108 

5 19 .242 .049 19 .208 .060 19 .223 .042 

6 19 .247 .043 19 .218 .055 19 .232 .045 

7 19 .244 .045 19 .216 .053 19 .228 .040 

8 19 .246 .043 19 .214 .053 19 .231 .043 

9 19 .252 .047 19 .218 .055 19 .248 .100 
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10 19 .255 .054 19 .213 .053 19 .244 .084 

Pooled 19 .250 
 19 .215  19 .234  

Visit 2 

Original data 16 .218 .025 16 .202 .042 16 .214 .027 

1 19 .220 .027 19 .205 .044 19 .215 .026 

2 19 .216 .025 19 .196 .044 19 .212 .025 

3 19 .213 .028 19 .190 .053 19 .212 .027 

4 19 .234 .077 19 .221 .096 19 .234 .078 

5 19 .224 .033 19 .201 .041 19 .217 .028 

6 19 .222 .026 19 .209 .042 19 .213 .031 

7 19 .218 .025 19 .204 .048 19 .214 .026 

8 19 .216 .026 19 .196 .048 19 .212 .029 

9 19 .222 .059 19 .200 .063 19 .215 .046 

10 19 .228 .047 19 .207 .047 19 .219 .037 

Pooled 19 .221 
 19 .203  19 .216  

Visit 3 

Original data 18 .220 .030 18 .224 .040 18 .219 .034 

1 19 .218 .031 19 .218 .045 19 .216 .037 

2 19 .221 .030 19 .225 .039 19 .221 .034 

3 19 .231 .054 19 .216 .051 19 .219 .033 

4 19 .221 .030 19 .226 .040 19 .219 .033 

5 19 .217 .034 19 .232 .054 19 .211 .049 

6 19 .225 .035 19 .223 .039 19 .216 .036 

7 19 .220 .030 19 .225 .039 19 .218 .033 

8 19 .220 .030 19 .230 .047 19 .220 .033 

9 19 .223 .032 19 .222 .039 19 .214 .041 

10 19 .228 .043 19 .223 .039 19 .225 .042 

Pooled 19 .222 
 19 .224  19 .218  

Visit4 Original data 19 .204 .020 19 .207 .032 19 .221 .046 
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1 19 .204 .020 19 .207 .032 19 .221 .046 

2 19 .204 .020 19 .207 .032 19 .221 .046 

3 19 .204 .020 19 .207 .032 19 .221 .046 

4 19 .204 .020 19 .207 .032 19 .221 .046 

5 19 .204 .020 19 .207 .032 19 .221 .046 

6 19 .204 .020 19 .207 .032 19 .221 .046 

7 19 .204 .020 19 .207 .032 19 .221 .046 

8 19 .204 .020 19 .207 .032 19 .221 .046 

9 19 .204 .020 19 .207 .032 19 .221 .046 

10 19 .204 .020 19 .207 .032 19 .221 .046 

Pooled 19 .204 
 19 .207  19 .221  

 

 

Table Appendix 5 Descriptive statistics for σ fixation durations in naturalistic videos, abstract 
videos and static images from the original and imputed data sets. 

 
Imputation 

Number 

 

Naturalistic videos  Abstract videos  Static images  

N Mean Std.  N  Mean  Std.  N  Mean  Std.  

Visit 1 

Original data 18 .070 .027 18 .053 .040 18 .054 .019 

1 19 .074 .031 19 .053 .039 19 .056 .021 

2 19 .076 .036 19 .061 .053 19 .055 .020 

3 19 .070 .026 19 .054 .039 19 .054 .019 

4 19 .070 .026 19 .054 .039 19 .054 .019 

5 19 .072 .027 19 .057 .043 19 .055 .020 

6 19 .071 .027 19 .054 .039 19 .053 .019 

7 19 .070 .026 19 .056 .041 19 .054 .019 

8 19 .072 .028 19 .051 .040 19 .054 .019 
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9 19 .073 .030 19 .057 .042 19 .055 .019 

10 19 .069 .026 19 .054 .039 19 .052 .020 

Pooled 19 .072 
 19 .055  19 .054  

Visit 2 

Original data 16 .046 .019 16 .044 .027 16 .043 .014 

1 19 .046 .018 19 .044 .025 19 .044 .017 

2 19 .051 .022 19 .052 .036 19 .043 .017 

3 19 .047 .019 19 .045 .029 19 .042 .014 

4 19 .048 .018 19 .036 .036 19 .040 .019 

5 19 .049 .020 19 .041 .043 19 .045 .018 

6 19 .050 .020 19 .048 .027 19 .042 .013 

7 19 .045 .017 19 .045 .031 19 .041 .015 

8 19 .051 .022 19 .050 .030 19 .042 .018 

9 19 .043 .021 19 .038 .043 19 .041 .017 

10 19 .051 .025 19 .046 .026 19 .040 .018 

Pooled 19 .048 
 19 .044  19 .042  

Visit 3 

Original data 18 .046 .018 18 .050 .027 18 .044 .020 

1 19 .047 .017 19 .048 .027 19 .042 .022 

2 19 .047 .017 19 .050 .026 19 .045 .020 

3 19 .046 .017 19 .049 .027 19 .042 .021 

4 19 .045 .017 19 .050 .026 19 .048 .026 

5 19 .050 .024 19 .049 .026 19 .046 .021 

6 19 .046 .017 19 .049 .026 19 .044 .019 

7 19 .044 .018 19 .050 .026 19 .041 .023 

8 19 .047 .018 19 .049 .026 19 .043 .020 

9 19 .047 .018 19 .050 .026 19 .044 .019 

10 19 .046 .017 19 .049 .026 19 .042 .021 

Pooled 19 .047 
 19 .049  19 .044  
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Visit4 

Original data 19 .038 .014 19 .033 .021 19 .050 .027 

1 19 .038 .014 19 .033 .021 19 .050 .027 

2 19 .038 .014 19 .033 .021 19 .050 .027 

3 19 .038 .014 19 .033 .021 19 .050 .027 

4 19 .038 .014 19 .033 .021 19 .050 .027 

5 19 .038 .014 19 .033 .021 19 .050 .027 

6 19 .038 .014 19 .033 .021 19 .050 .027 

7 19 .038 .014 19 .033 .021 19 .050 .027 

8 19 .038 .014 19 .033 .021 19 .050 .027 

9 19 .038 .014 19 .033 .021 19 .050 .027 

10 19 .038 .014 19 .033 .021 19 .050 .027 

Pooled 19 .038 
 19 .033  19 .050  

 

 

Table Appendix 6 Descriptive statistics for τ fixation durations in naturalistic videos, abstract 
videos and static images from the original and imputed data sets. 

 
Imputation 

Number 

 

Naturalistic videos  Abstract videos  Static images  

N Mean Std.  N  Mean  Std.  N  Mean  Std.  

Visit 1 

Original data 18 .268 .051 18 .586 .230 18 .098 .026 

1 19 .266 .050 19 .588 .223 19 .096 .027 

2 19 .276 .060 19 .632 .301 19 .103 .033 

3 19 .271 .051 19 .589 .224 19 .092 .036 

4 19 .264 .053 19 .554 .261 19 .098 .025 

5 19 .267 .050 19 .585 .223 19 .097 .026 

6 19 .256 .073 19 .618 .265 19 .095 .028 

7 19 .262 .056 19 .560 .249 19 .100 .025 
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8 19 .276 .061 19 .619 .267 19 .095 .029 

9 19 .279 .069 19 .620 .270 19 .104 .035 

10 19 .275 .058 19 .607 .242 19 .105 .039 

Pooled 19 .269 
 19 .597  19 .099  

Visit 2 

Original data 16 .250 .042 16 .541 .192 16 .103 .029 

1 19 .252 .052 19 .548 .178 19 .109 .035 

2 19 .254 .047 19 .440 .346 19 .118 .056 

3 19 .253 .043 19 .521 .204 19 .093 .044 

4 19 .247 .054 19 .553 .219 19 .107 .031 

5 19 .251 .044 19 .615 .299 19 .103 .028 

6 19 .254 .057 19 .656 .379 19 .105 .027 

7 19 .260 .073 19 .632 .390 19 .115 .041 

8 19 .272 .071 19 .539 .261 19 .107 .029 

9 19 .264 .053 19 .451 .283 19 .125 .061 

10 19 .279 .112 19 .659 .578 19 .115 .047 

Pooled 19 .259 
 19 .561  19 .110  

Visit 3 

Original data 18 .232 .049 18 .443 .163 18 .102 .034 

1 19 .242 .066 19 .449 .161 19 .106 .036 

2 19 .234 .048 19 .462 .179 19 .105 .035 

3 19 .238 .054 19 .459 .173 19 .103 .033 

4 19 .224 .060 19 .416 .196 19 .103 .033 

5 19 .231 .048 19 .447 .160 19 .105 .034 

6 19 .236 .051 19 .445 .159 19 .101 .033 

7 19 .232 .048 19 .443 .159 19 .105 .035 

8 19 .240 .058 19 .456 .169 19 .104 .034 

9 19 .239 .056 19 .459 .174 19 .106 .037 

10 19 .232 .048 19 .444 .159 19 .102 .033 
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Pooled 19 .235 
 19 .448  19 .104  

Visit4 

Original data 19 .242 .055 19 .502 .169 19 .113 .024 

1 19 .242 .055 19 .502 .169 19 .113 .024 

2 19 .242 .055 19 .502 .169 19 .113 .024 

3 19 .242 .055 19 .502 .169 19 .113 .024 

4 19 .242 .055 19 .502 .169 19 .113 .024 

5 19 .242 .055 19 .502 .169 19 .113 .024 

6 19 .242 .055 19 .502 .169 19 .113 .024 

7 19 .242 .055 19 .502 .169 19 .113 .024 

8 19 .242 .055 19 .502 .169 19 .113 .024 

9 19 .242 .055 19 .502 .169 19 .113 .024 

10 19 .242 .055 19 .502 .169 19 .113 .024 

Pooled 19 .242 
 19 .502  19 .113  

 

 

 

 


