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Abstract

Understanding metabolic pathways is one of the most important fields in bioscience in the

post-genomic era, but curating metabolic pathways requires considerable man-power. As

such there is a lack of reliable experimentally verified metabolic pathways in databases and

databases are forced to predict all but the most immediately useful pathways by inheriting

annotations from other organisms where the pathway has been curated. Due to the lack of

curated data there has been no large scale study to assess the accuracy of current methods for

inheriting metabolic pathway annotations.

In this thesis I describe the development of the Literature Metabolic Pathway Extraction

Tool (LiMPET), a text-mining tool designed for the automated extraction of metabolic path-

ways from article abstracts and full-text open-access articles. I propose the use of LiMPET

by metabolic pathway curators to increase the rate of curation and by individual researchers

interested in a particular pathway.

The mining of metabolic pathways from the literature has been largely neglected by the text-

mining community. The work described in this thesis shows the tractability of the problem,

however, and it is my hope that it attracts more research into the area.
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Part I

Introduction

1 The Problem

PubMed currently contains over 24 million article records, and this number is increasing at a

faster rate than ever with 2014 set to be the first year with over one million new article records

[2]. In some fields, researchers are encouraged, or even required, to submit results to databases

in a standard format. For instance, upon solving the structure for a protein, an X-ray crystallog-

rapher will submit the structure to the Protein Databank (PDB) as well as submitting the results

in a paper for peer review [3]. This allows anybody with an Internet connection to find curated

structures of proteins of interest quickly and efficiently. The data, being in a standard format,

is also easily consumed by computer programs allowing large scale studies involving many

structures to be carried out1. For instance, the CATH project has developed a semi-automated

system for classifying protein domain structures through the comparison of structures in the

PDB [4].

Unfortunately, this method of submitting results in a standard, computer-readable lan-

guage is found in few fields in bioscience due to the breadth of fields and the pace with which

new experiments can develop. We are currently in the situation where the vast majority of data

in many fields is only available as unstructured text spread across many publishers’ websites.

The study of metabolic pathways is one such field that suffers from a lack of manually

curated data in databases. BRENDA is a large database of curated metabolic reactions, but

individual reactions are not linked together to form pathways (meaning that there is little mo-

tivation to curate complete pathways from single organisms) [5]. KEGG [6] and BioCyc [7], are

two databases that were developed to curate metabolic pathways. Ultimately, however, the

databases are populated by human curators, which means it is practically impossible to keep

up with all new articles being published. Training of a FlyBase Genetic Literature Curator, for

instance, can take 6 months in addition to the time taken to actually curate an article [8].

1This may be a slightly optimistic view of PDB files, which are notorious for inconsistencies with the specification
and requiring human intervention in parsing. While the format has been regularly updated to accommodate increas-
ingly complex data, it was first conceived in the 1970s and many aspects, such as a fixed width of 80 characters (the
width of a computer punch card), can cause difficulties in parsing files. Formats, such as PDBML/XML and mmCIF,
have been developed to solve these problems.
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In this thesis I will describe the development of LiMPET, the Literature Metabolic Path-

way Extraction Tool. LiMPET is an attempt to speed up the discovery of metabolic pathway

information in the literature and to aid curation through the use of text mining.

2 Metabolic Pathway Prediction

Because of the high cost (both economic and temporal) of manually curating documents, KEGG

and BioCyc, two of the largest metabolic pathway databases, not only curate metabolic path-

way data, but also predict metabolic pathways where there is no curated data. Both have

different philosophies towards metabolism and how pathways are predicted.

2.1 BioCyc

BioCyc contains 3 database tiers. The tier 1 databases have received at least one year of man-

ual literature-based curation, while databases in tiers 2 and 3 contain metabolic pathways pre-

dicted computationally from an organism’s annotated genome sequence. Tier 2 databases have

undergone a moderate amount of review, whereas tier 3 databases have had no manual review.

Tier 1 contains six organism databases — including EcoCyc, AraCyc and YeastCyc for the

model organisms Escherichia coli K-12 MG1655, Arabidopsis thaliana and Saccharomyces cerevisiae,

respectively. Tier 1 contains another database, MetaCyc, containing all metabolic reactions,

from all organisms, for which experimental evidence in the literature has been curated. For

instance, MetaCyc contains the pathway “vindoline and vinblastine biosynthesis” from the

organism Catharanthus roseus. While C. roseus is a tier 3 organism, this pathway is of particular

interest in the development of chemotherapy drugs and a large amount of research has been

carried out on it. Therefore, the pathway is fully curated and belongs in tier 1. Many MetaCyc

pathways even contain reactions from multiple organisms.

The method used to transfer annotations from tier 1 databases to lower tiers to form path-

way predictions is well documented [9]. Computational annotations are obtained from the

Comprehensive Microbial Resource and UniProt. MetaCyc pathways are used as reference

pathways of small molecules connected by enzymes with specific E.C. numbers. Potentially

expressed enzymes are identified from an organism’s annotated genome and are assembled

into pathways by matching their E.C. numbers with those in the MetaCyc reference pathways.

15



Figure 1: a) The “proline biosynthesis I” pathway from MetaCyc, built using curated metabolic
reactions from Escherichia coli and Homo sapiens, b) The predicted “proline biosynthesis I” path-
way for Mycobacterium tuberculosis H37Rv, built using enzyme predictions from the organism’s
genome sequence and using the MetaCyc pathway as a template.

Figure 1 shows an example of this annotation transfer.

BioCyc pathways are quite small and are generally used to show a specific process, such

as the biosynthesis or degradation of a particular molecule. It is reasoned that the small path-

ways in BioCyc represent conserved biological processes and annotations can, therefore, be

accurately transferred from one organism to another.

Paley and Karp carried out a small study into the accuracy of predictions made by the

Pathway Tools suite when applied to Helicobacter pylori [10]. Of 98 predicted pathways, 40

showed evidence of their existence in the literature. It proved difficult to assess the accuracy of

the tool, however, as the pathways which had no mention in the literature are not necessarily

incorrect, but may simply be uncharacterised. It was deemed likely that 26 predicted pathways

not found in the manual analysis of the literature, were in fact correct.
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2.2 KEGG

KEGG has a different philosophy towards metabolism compared to BioCyc. Whereas Bio-

Cyc constructs small pathways, which have been determined to represent a single evolution-

ary block, KEGG constructs large networks which incorporate many BioCyc-sized pathways,

showing how they interact with one another. Appendix I shows the KEGG pathway “Arginine

and proline metabolism”, which contains reactions corresponding to the MetaCyc “proline

biosynthesis I” pathway shown in figure 1a as well as a host of other MetaCyc pathways.

The data model within KEGG is not as clear as that of BioCyc. Reference pathways are

very general and all organisms and pathway variations are incorporated into a single network.

There is little consistency in the organisms used to construct these reference pathways with

lesser known organisms often being used. This evidence used to construct the reference path-

ways is kept apart from the separate organism databases. For instance, evidence from an E. coli

experiment may have been used in the construction of a reference pathway. When viewing the

individual reactions in this reference pathway the evidence will be displayed to the user (along

with evidence from any other organisms). When looking at the pathway specifically in E. coli,

however, no evidence will be visible.

2.3 Possible prediction inaccuracies

Unfortunately, it is currently impossible to properly assess the accuracy of the predicted path-

ways in either database. In order to carry out such an assessment we would require a large

number of curated pathways from a range of organisms, which we, of course, do not have.

This lack of curated pathways also means that there has been no large scale studies of metabolic

evolution. Mano et al. developed a methodology for the alignment of metabolic pathways from

different organisms, but found the scope of the study limited by the lack of curated pathways

in multiple organisms within MetaCyc [11].

I carried out an initial study comparing the pathway predictions in a number of BioCyc

tier 3 databases with their counterparts in KEGG. The E.C. numbers of enzymes predicted to

be present in a number of BioCyc tier 3 pathways in multiple organisms were identified and

compared to their presence in KEGG. Due to KEGG’s licensing (described in Section 2.4), au-

tomating this comparison was not possible, but a manual comparison across a small selection

of organisms identified inconsistencies between the two databases. Table 1 shows the predicted
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Enzyme
C. glutamicum C. jeikeium S. aureus S. epidermidis P. acnes

BioCyc KEGG BioCyc KEGG BioCyc KEGG BioCyc KEGG BioCyc KEGG

5.1.2.3

6.2.1.3

5.3.3.8

1.3.99.3

4.2.1.17

1.1.1.35

2.1.3.16

Table 1: A table showing the enzymes of the MetaCyc pathway “fatty acid β-oxidation I” pre-
dicted to be present by BioCyc and KEGG in a number of organisms. A green cell specifies that
a particular enzyme is predicted to be present, while a red cell specifies its absence.

presence of seven enzymes from the MetaCyc pathway “fatty acid β-oxidation I” in five organ-

isms. While there are many differences between the predictions made by the two databases,

it is impossible to determine which is correct in each case, due to the lack of evidence in the

literature. Frustratingly, neither BioCyc nor KEGG show the steps made in making a specific

prediction.

While still tremendously useful in helping researchers make hypotheses regarding unex-

plored pathways, the usefulness of these predicted metabolic pathways is somewhat dimin-

ished by the inability to determine how accurate they are. In Part V I show how LiMPET can

be used to aid curation by using the tool to find evidence in the literature corroborating, or

even contradicting, predicted pathways in BioCyc. While the curation of a single pathway

would aid the research of anybody interested in said pathway, the curation of many pathways

could lead to larger studies comparing pathways from many species which could feedback and

improve prediction methods.

There are a number of different aspects of a given metabolic pathway that could be inves-

tigated by a larger study. Are there particular nodes that are more variable than others? How

closely related must organisms be in order to reliably transfer annotations? Are some reactions

more closely linked to the environment of the organism than others?
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Linking pathway nodes to the host’s environment has been investigated in non-metabolic

protein interaction pathways. By comparing the known phylogenetic relationships and re-

sponses to certain stresses, Nikolaou et al. found that stress signalling pathways in fungi have

evolved niche activity independent of phylogeny [12]. All organisms that were chosen for the

study had fully sequenced and annotated genomes, allowing the evolutionary conservation of

stress response genes to be studied. Three different stress response pathways (osmotic, oxida-

tive and cell-wall stresses) were compared in 18 different fungal species which lived in a range

of environments (human pathogens, plant pathogens and benign). For instance, C. glabrata (a

human pathogen) was much more resistant to all three stresses than S. cerevisiae despite both

being in the same family (Saccharomycetaceae).

Moreover, the study found that the core components of the stress response pathways (which

are usually involved in other, non-stress response, pathways) were strongly conserved across

the multiple species, while the upstream sensors and downstream transcriptional regulators

showed a lower level of conservation. One might hypothesise that a similar pattern may occur

in metabolic pathways, with core reactions being present in distantly related species and other

reactions being more variable and evolving to fit a specific niche. One gap left by this study,

however, is that the pathways were not experimentally verified. The study involved the com-

parison of genome sequences to determine pathway similarity. Just because a particular gene is

present does not mean that a protein is expressed in a specific compartment at a specific point

in the cell cycle, however. The pathway could, at least partially, take a different route around

the protein.

Studies concerned with comparing metabolic pathways take the same approach. For in-

stance, Huynen et al. compared the presence of TCA cycle genes in 19 sequenced genomes,

finding distinct incomplete cycles that are linked to particular environments [13]. It was con-

ceded, however, that that there was very little conservation in regulatory sequences and there

was no way of predicting whether predicted genes were co-expressed.

Likewise, Gianoulis et al. attempted to quantify the environmental adaptation across a

number to marine microbial organisms [14]. The group used data from the Global Ocean Sur-

vey (“a collection of quantitative environmental features and metagenomic sequences from

more than 40 different aquatic sites”) to map certain environmental features, such as tempera-

ture, salinity and depth, to metabolic features. Instead of mapping environmental features to
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metabolic features on a one-to-one basis, they were linked with many-to-many relationships

to create a “metabolic footprint”. Some expected links where found. For instance, photosyn-

thetic modules were found to be correlated with the environment, while the module for the

ATP synthase complex, which is independent of the source of the energy, is abundant in all

environments.

Despite the insight that can be gained from the comparisons of pathways predicted from

genomic sequences, it is clear that experimentally verified data is needed to produce confident

results. One of the principal aims at the outset of development of LiMPET was to create a tool

that would aid in the discovery and curation of metabolic pathway data in the literature.

2.4 Funding of manual curation

In recent years the sustainability of bioinformatics databases has been questioned. Due to the

worldwide recession, government funding for science has dropped and priorities in science

funding have changed — leading to the termination, or commercialisation, of many databases.

For instance, prior to 2013, The Arabidopsis Information Resource (TAIR) was the recognised

source of curated sequence data from Arabidopsis thaliana for over a decade [15]. Despite

widespread use and highly cited papers, in 2013 the US National Science Foundation declined

to renew the project’s funding and the database was forced into a subscription model [16].

Over the course of this project the effects of the high cost of manual curation has also be-

come apparent in metabolic pathway research. While BRENDA has provided a commercial

version of their database for some time, at the beginning of this project the whole database

was downloadable in a flat file format [5]. While poorly maintained (the file format contained

many inconsistencies that hindered parsing), I was able to undertake an initial analysis of the

database. Unfortunately, free users of the database can no longer bulk download data or access

the SOAP web services [17]2.

In 2011, due to significant cuts in government funding, KEGG introduced a subscription

model for FTP access to their data [16]. While the data is still freely available through its web-

site, large scale studies of many pathways are impossible without the ability to bulk download

data. Then, on June 25th, 2014, it was announced (by Peter Karp on the BioCyc mailing list)

2The BRENDA maintainers have, however, released the BKM-React database [18] of cross-referenced BRENDA,
KEGG and MetaCyc metabolic reactions. While continuing no species-specific BRENDA data, the database provided
a collection of experimentally verified metabolic reactions that was used in this project to assess the correctness of
extracted reactions.
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that the funding for BioCyc had not been renewed. While the BioCyc team are reapplying for

funding its situation is certainly precarious.

In the development of LiMPET I have investigated the semi-automated curation of metabolic

pathways using text-mining, with the view of lowering the man-power and economic costs of

curation and allowing individual researchers to find metabolic pathways in the literature them-

selves.

3 Text-mining

Computer processors are designed to follow very strict commands. This is reflected in the

languages that are used to command computers, which, while incredibly varied, ultimately

come down to providing a list of instructions for the various pieces of hardware within the

computer. Therefore, the data which a computer program is designed to read and process

must be stored in a strict format which the program can follow strict instructions to parse.

Computer hardware, programs and data storage formats are all designed from the bottom up

with this philosophy in mind. Natural language, however, isn’t designed, but is constantly

evolving and rules can often be hard to define. The English language is particularly notorious

for having significant exceptions to the majority of spelling and grammatical rules.

Text-mining was first developed as a method in the field of business intelligence (BI) [19].

BI is concerned with the automated analysis of unstructured, often private, data available to

a company to identify new business opportunities. As the World Wide Web grew over the

1990s, so too did the amount of freely available natural language text. Text-mining was soon of

interest to any field were there was relevant text on the Internet. In science, it became standard

to publish articles online, in addition to printed journals, and the potential of text-mining to

aid manual curation in bioscience was recognised [20].

Text-mining development in bioscience initially focused on systems for named entity recog-

nition (NER), the process of classifying elements in text into predefined categories, such as the

names of proteins or small molecules3. Current state-of-the-art NER tools (focusing on entities

such as proteins, small molecules, drugs and organisms) are able to achieve very high levels of

accuracy — typically with F-scores (see Section 8 for an explanation of F-scores) greater than

3As I have made extensive use of publicly available NER tools in this project, I will describe their development in
depth in Section 9.3.
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90%. Focus has, therefore, shifted to interaction extraction, the process of determining the na-

ture of relationships between different named entities. Interaction extraction can be used to

determine abstract relationships, such as gene-disease relationships, or more direct, physical

relationships, such as protein-protein interactions. As metabolic reactions fall into the latter

category and the extraction of protein (and/or gene) interactions is the topic upon which most

research has focused, a review of protein-protein interaction extraction methods provides a

useful backdrop for the development of an extraction method for metabolic reactions.

3.1 Protein-protein interaction (PPI) extraction

There are a range of experimental methods that have been developed to characterise PPIs rang-

ing from narrow focused methods such as X-ray crystallography, which offers the most con-

vincing evidence that two proteins form a stable complex, to broad scoped methods such as

yeast two-hybrid screens, which can find potential binding partners from a large pool of pro-

teins. The IntAct database [21] (which contains curated PPIs from the 14 members of the IMEx

Consortium [22]) contains interactions extracted from almost 13 000 publications (as of August

2014). While this is a monumental manual effort, it is still only a small fraction of the available

material.

PPI extraction was the subject of one task at BioCreative II [23] in 2006, where teams were

tasked with extracting PPIs from documents curated by IntAct and MINT (which were sep-

arate databases at the time before merging in the IMEx Consortium). Extracted interactions

could then be compared to the gold standard, manually curated interactions. The best per-

forming tool achieved an F-score of 29%, far lower than the high performance achieved by

NER tools. Two general approaches to the problem were identified in the subsequent analysis

of the submitted tools — which were termed as local association analysis and global association

analysis [23]. Local association analysis identifies co-occurring proteins at either the sentence

or passage level and may use other approaches such as interaction word lists and/or machine

learning techniques to determine if an interaction between the co-occurring pair is described.

Global association analysis focuses less on the characteristics of individual sentences, but rather

looks at the co-occurrence of protein names multiple times in a document or over the whole

collection. Global association analysis is more suitable for extracting well-known interactions

that are described frequently in the literature, but only local association analysis is able to de-
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termine novel interactions that have only been described once. The system developed during

this project incorporates both local and global association analysis.

Kabiljo et al. [1] carried out a comparison on a range of PPI extraction tools including

AkanePPI [24], OpenDMAP [25] and Whatizit [26]. AkanePPI is a state-of-the-art tool that

utilises many natural language processing (NLP) methods. OpenDMAP is a general purpose

information extraction platform which uses a heuristic approach. The patterns for PPI recog-

nition were created manually to adapt the tool to the task. Whatizit is a suite of tools that can

perform many bioscientific NLP tasks. The PPI extraction tool in Whatizit, Protein Corral, uses

three methods which utilise co-occurrence and heuristic techniques.

A simple baseline method was also developed for the comparison. The method was co-

occurrence based, looking for two protein or gene names within the same sentence as well as

an “interaction” verb, such as binds or phosphorylates (a manually curated list of “interaction”

verbs was used), in between the two entities — a similar methodology to the Co3 method of

Protein Corral. The tools were evaluated on five gene-protein interaction corpora. While per-

formance across the five corpora by each tool was variable, the simple baseline method showed

an overall performance that was comparable to the more sophisticated methods, while being

far simpler. I followed this simple methodology in the development of a metabolic reaction

extraction method in Part III.

BioCreative III [27] proposed a slightly different PPI extraction task to that in BioCreative

II. The task required the development of a tool capable of classifying and ranking abstracts

according to their suitability for manual curation of PPIs in the full text. This behaviour is

required by PPI databases, such as IntAct, to effectively manage their curator man-hours and

to prevent the needless curation of irrelevant articles. Semi-automated selection of articles

for manual inspection is common across the majority of biological annotation databases, but

is typically carried out using simple PubMed searches. While effective at selecting articles

relevant to a particular entity, this method is inadequate when dealing with complex events

and interactions involving multiple entities [28].

Jamieson et al. used text-mining to recreate the HIV-1, Human Protein Interaction Database

(HHPID) [29]. Protein NER was carried out by BANNER [30] while interactions in text were

identified using 2 tools, the Turku event extraction system (TEES) [31] and EventMiner [32].

The NER and event extraction was applied to 3090 titles and abstracts and 49 full-text articles
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achieving a precision, recall and F-score of 87.5%, 90.0% and 88.6%, respectively. The pipeline

was able to completely replicate over 50% of the database. The team observed that the greatest

obstacles to the automated extraction were grammatically-complex sentences and sentences

containing poor grammar.

While the study largely mined text from article abstracts, the team considered the use of

more full-text articles in the future. They identified significant challenges that full-text articles

could introduce, however, such as distinguishing true reactions from hypothetical reactions in

the Discussion and retrieving full-text articles in the first place (a challenge that I describe in

depth in Section 5).

While new methods for extracting PPIs are regularly released [33, 34], attention is increas-

ingly shifting towards more complex relationships, with a particular focus on biomolecular

networks and pathways [35] such as protein–protein interaction networks [36, 37], signal trans-

duction pathways [38, 39, 40], protein metabolism (synthesis, modification and degradation)

[35], and regulatory networks [41, 42]. This protein/gene-centric focus has been enshrined in

most of the competitive text-mining events (such as BioCreative [43, 44, 45] and BioNLP [35]).

However, in spite of this new focus on networks and pathways, one of the most important sub-

topics — the construction and curation of metabolic pathways — has largely been ignored.

4 Metabolic interaction extraction

The only system that I am aware of that has an explicit focus on extracting metabolic path-

way information from free text is the template-based EMPathIE [46], which is no longer under

active development (R. Gaizauskas, personal communication). The aim of EMPathIE was to

extract information about metabolic reactions together with relevant contextual information

(including source organism and pathway name) from specific journals. When evaluated on a

corpus of seven journal articles, EMPathIE achieved 23% recall and 43% precision [47].

Certain more generic systems may also be used for the same purpose, including the Ge-

neWays system for “extracting, analyzing, visualizing and integrating molecular pathway data”

[38], and the MedScan sentence parsing system [48], capable of extracting relationships be-

tween a range of biomedical entities including proteins and small molecules, and evaluated

on a PPI extraction task by Daraselia et al. [49]. However, neither GeneWays nor MedScan
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are freely available and I am not aware of any published evaluation of their performance with

metabolic pathway data.

It is interesting to note that the creators of GeneWays, in that system’s key publication,

suggest signal-transduction pathways are an “easier target” for information extraction than

metabolic pathways, and chose to evaluate its performance on the former rather than the latter

[38]. Similarly Hoffmann et al. identify the extraction of metabolic information as a “special

case” that has “specific problems” associated with it [50]. This perception may explain why

relatively little attention has been paid to the task of extracting metabolic reactions from free

text. The particular challenges that are characteristic of metabolic reaction extraction tasks

include:

• Multiple entity types and entity mismatch. Whereas protein-protein interaction net-

works, protein metabolism and signal-transduction pathways concern the entity-type

protein, metabolic reactions involve both enzymes and metabolites. Moreover, there

is a mismatch between the entities that most taggers address (proteins/genes, small

molecules) and the entities involved in metabolic pathways (principally enzymes and

metabolites). Similar problems arise in the context of the extraction of protein-protein

interactions owing to the fact that protein/gene taggers almost invariably fail to distin-

guish between proteins and genes. Only a subset of proteins are enzymes, and whereas

the distinctive nomenclature associated with enzyme names may be beneficial to the ex-

traction process (such as the suffix -ase), it has been argued that identifying the names of

metabolites is more difficult than some other categories of chemical name [51].

• Ternary (and n-ary) relationships. Whereas the relationships in protein-protein interac-

tion networks and signal-transduction pathways are typically binary (e.g. “protein A

activates protein B”), metabolic relations are typically ternary (e.g. “enzyme C catalyzes

the conversion of substrate D to product E”). Moreover, multiple substrates and/or prod-

ucts are commonplace, leading to further complexity. One consequence is that there is a

greater potential for all the relevant entities in a metabolic reaction to be split over multi-

ple sentences and for there to be a high incidence of anaphora usage.

One of the initial goals of the project was to address the question as to whether the extraction of

metabolic reactions is, indeed, more difficult than the extraction of protein–protein interactions.
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Although the fully-automated construction of networks and pathways from the literature

may be the ultimate goal, a more practical focus for text mining systems in the immediate

future is to provide assistance to database curators and model builders. Existing initiatives

specifically designed to support database curation include PreBIND [52] and various tools [53]

aligned with the task of curating FlyBase [54]. In this context, high recall is often deemed to

be of paramount importance, although excessive numbers of false positives detract from the

usability of such systems [55]. Existing initiatives designed to assist the curation of pathway

and network databases include research that addresses the curation of Wnt signaling pathways

[39] and an application designed to support the curation of chemical–gene–disease networks

in the Comparative Toxicogenomics Database [56].

5 The automated retrieval of journal articles

The challenge of retrieving full-text articles has long held back biomedical text-mining. All ar-

ticle titles and abstracts can be obtained using the mature and stable E-Utils API provided by

the NCBI [2]. As the API allows article records, containing the article abstract, to be retrieved

in bulk and in a common format, early text-mining work in the biomedical community con-

centrated on the mining of these easily obtainable abstracts. While mining abstracts can return

important data (as the significant findings of a paper will be repeated in the abstract), a great

deal of potential useful data is only found in the full article. There has been a clear move to-

wards developing tools using full-text articles with the BioCreative III tasks using corpora of

full-text articles for the competition [45].

The move towards full-text article analysis is not simply a case of having more text to pro-

cess for each document, however. Cohen et al. compared the structure and content of abstracts

with the article bodies [57]. They found that article bodies contained longer sentences and sig-

nificantly more parenthetical material which would presumably hinder information extraction.

Jamieson et al. found reading grammatically complex sentences was one of the main obstacles

in extracting interactions [29]. A number of text mining tools were tested on the abstracts

and article bodies separately. The results for the majority of tools were better when reading

abstracts as opposed to article bodies, which came as no surprise as it was the standard to

develop and train tools on abstracts.
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Unfortunately, publishers have been reluctant to allow their publications to be mined. While

it is possible to scrape articles from the publishers’ websites [58], typically the Robots Exclusion

Standard of most publishers’ websites disallows access to screen scraping tools (with the excep-

tion of search engine spiders, such as the Googlebot). While the rules set by the robots.txt

file are purely advisory and rely on the cooperation of the spider, web administrators can block

access if they wish4.

PubMed Central (PMC), a repository of full-text articles from free-access journals, provides

an API (as part of the NCBI E-Utils API) to obtain complete articles in a common machine-

readable format from the Open-Access Subset, in addition to bulk downloading the subset

over FTP. The number of articles available in PMC significantly increased following the Con-

solidated Appropriations Act of 2008 (H.R. 2764) being signed into US law which required

all NIH funded research to be freely accessible and available through PMC within 12 months

of publication. Other research funding bodies, such as the 24 members of the Europe PubMed

Central funders group have since followed suit [59]. It has now become standard in text-mining

research to utilise full-text articles from PMC alongside abstracts retrieved from PubMed.

As I have alluded to, PMC contains two subsets of articles: open-access articles, which can

be downloaded in full using the API or the FTP server, and free-access articles, which can

only be viewed in full on the website. Figure 2 shows the number of records published in

PubMed in each year since 1990. The rate of publishing is increasing and 2014 will certainly

be the first year with one million new records. The graph also shows the number of articles

originally published each year that are held in the PMC Free-Access and Open-Access Subsets.

At the time of writing, the PMC Open-Access Subset contains approximately 750 000 articles

compared to over 24 million article records held in PubMed. While the rate of open-access

publishing is increasing, it is not undergoing the same explosive growth that publishing in

general is experiencing and is falling further behind. Looking back, the number of open-access

articles available that were originally published prior to 2005 is almost insignificant compared

to the total number of published articles.

While the open-access model is useful for text-mining research, the non-open-access model

is unlikely to disappear. Attitudes and laws regarding the text-mining of research are slowly

changing, however. On June 1st 2014 the UK Government brought into force the UK text and

4While investigating the potential use of screen scraping I discovered that while most publishers allowed the rela-
tively small scale scraping operation I employed, not all publishers were so lenient.
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data mining exception, which allows researchers with lawful access to articles to copy them

without explicit permission for the purposes of non-commercial text and data mining [60]. In

response to this change some publishers, such as Elsevier, now provide an API to access their

journals [61] and the CrossRef service has released a general API so that separate code does not

need to be written for every publisher with a retrieval API [62].

These developments have not been met with open arms by the text-mining community,

however, with researchers unhappy with the terms of use of the Elsevier API which they view

as being overly restrictive 5. For instance, the API is restricted to the retrieval of text, while

figures remain inaccessible and the API can only be used for non-commercial uses. The most

significant limitation of the API, however, is the explicit prevention of the automated crawling

of content — rendering it practically useless for text-mining. The UK copyright exception forces

no requirements on publishers on the access to the content.

In recent years the Associtation of European Research Libraries (or Ligue des Bibliothèques

Européennes de Recherche — LIBER) have lobbied for changes to copyright legislation to allow

the use of text and data-mining methods to extract data from content that researchers have ac-

cess to. LIBER, in response to the terms of the Elsevier API [63], stated their belief that the right

to read is the right to mine and that the introduction of licenses in addition to a subscription

to a journal, such as those required by the Elsevier API, is “unscalable and resource intensive”

and can only limit scientific progress.

The perspective of non-open-access publishers was described in the European Publishers’

Council (“a high level group of Chairmen and CEOs of leading European media corporations”)

Copyright Vision 2014 [64], where the demands for automated access to scientific journal arti-

cles for the purposes of data-mining were viewed as follows (p. 48):

In our view this is “a snare and a delusion” perpetrated by those intent on gaining

free access to the widest possible body of copyright works in the name of research,

going way beyond scientific journals, to works of all published authors, as well as

Europe’s news media and entertainment.

While it is difficult to get behind this wording6, publishers are wary, perhaps justifiably, of the

5See #ElsevierGate on Twitter for the unfiltered community response to the terms of the Elsevier API.
6Wording which seems to suggest that the push for automated access to scientific journals is a conspiracy by people

who want to download music and films for free. LIBER, unsurprisingly, responded with an open letter to the European
Commission [65] in light of the European Union’s upcoming copyright review.
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possibility of their whole catalogue of articles being made available on the Internet by a lone

unscrupulous researcher.

The release of the Elsevier API and the general CrossRef API unfortunately came too late

in the project to analyse their worth. The reaction within the community has shown that this

is an issue that promises to remain for some time yet, so the publicly available tool produced

by this project will only allow the automated retrieval of abstracts and open-access articles.

In Section 18.2, however, I show the stark difference in results between mining all available

full-text articles and mining just abstracts and open-access articles.

6 LiMPET — A metabolic pathway extraction tool

There are different ways of positioning the system that I aim to create. Enabling the fully au-

tonomous extraction and construction of pathways from the literature would be a lofty goal

and perhaps too ambitious, at least in the short term. A more realistic aim would be to create

a tool capable of aiding database curation — a task explored in BioCreative III in the develop-

ment of tools capable of selecting articles suitable for the manual curation of protein-protein

interactions [27]. Such tools exist in other fields. For instance, curators for FlyBase, the pri-

mary database of molecular data for the Drosophilidae family, utilises a GATE pipeline which

has an NER module to mark up gene names and is then able to link these to other entities in

the text [66]. Similarly the BRENDA companion databases, FRENDA and AMENDA, utilise

text-mining methods to extract enzyme information from PubMed abstracts [5].

The biomedical literature is littered with well-performing text-mining tools that are not

publicly available — a fact investigated further in Part II on currently available methods. While

perhaps acceptable in the context of a competition, such as BioCreative, where the tools are of-

ten crude prototypes which have not undergone the sort of testing required to create a reliable,

user-friendly tool, the open availability of both the final tool and the source code is neces-

sary to advance knowledge in the field — particularly as ours is the first published attempt at

metabolic reaction extraction since EMPathIE [46].

The ease of use of the tool is similarly important. Kabiljo et al. assessed the usability of

a number of protein-protein extraction tools and found their use fraught with difficulties [1].

Releasing a difficult to use tool can be almost as bad as not releasing the tool at all. While I
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have not developed a graphical user interface for my tool, I have endeavoured to make the

tool easy to install and use on its own, in addition to collaborating with other groups to allow

integration with other tools.

In this thesis I describe the development of LiMPET, the Literature Metabolic Pathway Ex-

traction Tool. LiMPET is designed to be a relatively simple first attempt at solving the problem

of metabolic pathway extraction; a baseline on which more advanced tools can be built on and

compared to. In Part II I describe the third party software that was utilised and in Part III I

describe the novel metabolic reaction extraction algorithm that forms the core of LiMPET. In

Part IV I describe the use of LiMPET to recreate experimentally verified pathways in EcoCyc

showingthat LiMPET, with its combination of a pattern based method and global association

analysis, performs strongly in its own right. In Part V the use of LiMPET to corroborate pre-

dicted metabolic pathways in BioCyc is shown, showing that metabolic pathway extraction is

a tractable problem that deserves more attention from the biomedical text-mining community.
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Part II

An overview of text-mining methods

In this chapter I will describe the existing methods and tools that were utilised in the develop-

ment of LiMPET, while the text-mining method developed during this project will be described

in following chapters.

7 Approaches to text-mining

The text-mining projects I described in Part I and the libraries used in this project use a variety

of text-mining methods.

The simplest text-mining methodology is dictionary-based. Dictionary-based methods utilise

a predefined collection of terms which is used to find matches in the text of interest — making

them particularly amenable to named entity recognition (NER) tasks. Dictionary-based meth-

ods have a very simple methodology and, if a suitable dictionary is already available, are very

easy to implement. They cannot take context into account, however. Consider an NER system

for the identification of given names in text. Using just a dictionary of common names it would

be impossible to determine whether the term Jack was a person’s name or the common English

noun or verb. Dictionary-based methods are also unable to recognise novel terms that are not

in the dictionary.

Heuristic (or pattern-based) methods rely on manually defined rules and are relevant to

both named entity recognition and relationship extraction. Consider the development of an

NER system for enzyme names. One could hypothesis that enzyme names could be recog-

nised by identifying words with the suffix -ase. Such a heuristic method would be able to

recognise novel enzyme names and it would also be possible to implement rules that take the

context of the word into account. Kabiljo et al. developed a heuristic method for the extraction

of protein-protein interactions which looked for predefined “interaction verbs” between two

protein names [1]. As described in Section 3, however, human language is constantly evolving

and rules are rarely defined clearly. Any rule implemented is likely to have significant excep-

tions that must be considered (e.g. not all enzymes have the suffix -ase and not all words with

the suffix -ase are enzymes). Systems that deal with particularly complex language may require
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input from a linguist in the development of rules.

Machine learning is an umbrella term for a large number of varied statistical methods which

all have the ability to learn from examples to create a general model that describes the data.

In the field of text-mining, machine learning methods learn from corpora of text (of the type

that the method is intended to be used to analyse) with all entities and relationships of inter-

est annotated. While machine learning methods are typically able to outperform the simpler

methods I have described, the need for large quantities of annotated text to train new models

can hinder their implementation in fields where a training corpus is not readily available.

In the areas of protein NER and PPI extraction, conditional random fields (CRFs) [67] have

become one of the most popular methods (see Sections 3.1 and 9.3.1). Unlike methods such as

naive Bayes classifiers, CRFs are able to take context and sentence structure into account, and

unlike hidden Markov models, have been shown to not suffer from label bias (where states with

fewer possible transitions are favoured over those with a greater number of possible transitions

as the node with fewer possible transitions will typically have higher probabilities [67]).

8 Performance assessment

The quantitative assessment of text-mining systems tends to involve the use of corpora —

collections of documents with entities and relationships manually annotated. The system being

assessed is run on the text within a corpus and the results compared to the marked-up elements

using the following measures:

Precision The proportion of extracted instances that are correct extractions.

Precision = true positives
true positives+ f alse positives

Recall The proportion of relevant instances that are correctly extracted.

Recall = true positives
true positives+ f alse negatives

F1-score (Often abbreviated to F-score) An overall measure of accuracy — the harmonic mean

of precision and recall.

F1-score= 2× precision×recall
precision+recall
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These measures rely on the availability of a suitable corpus, however. The creation of a corpus

is a very time consuming task. There are many reasons why annotating articles can take a

significant amount of time, but one practical concern is the tools used to write the annotations.

Typically, annotated documents are written in XML (a computer markup language). Manually

writing XML can be a labourious, error-strewn process for even an expert in the language. Tools

have been developed, however, to allow the annotation of text with no deeper knowledge of

the underlying format and allow the curator to concentrate on the annotations themselves.

PubTator is a web based tool to assist the curation of PubMed abstracts [68]. Abstracts are

automatically marked up with text-mining tools, but annotations can be easily changed and

added. While there are plans to expand its use to full-text articles, this will likely be limited to

open-access PubMed Central articles.

Moreover, accurately annotating text can require specialist domain knowledge where the

subject matter is complex or the text seems ambiguous to an untrained eye. In the devel-

opment of the BioCreative I training and test data, it took on average one week for a single

curator to curate 250 abstracts [69]. Additionally the accuracy of annotations was checked by

cross-referencing a subset of abstracts that were annotated by multiple curators. In the case

of abstracts concerning mouse genes, only 69% of annotations were agreed by three different

curators.

There is precedence, however, for evaluating text-mining tools in the absence of a suitable

corpus. Yuryev et al. developed a method for the construction of “biological association path-

ways” from the redundant networks extracted using the tool MedScan [40]. To assess their

method, the tool was used to reconstruct manually constructed pathways based on review

articles.

Rodríguez-Penagos et al. developed a tool for the extraction of regulatory networks from

text [42]. As a substitute for an annotated corpus, sets of abstracts and full-text articles that were

potentially relevant to Escherichia coli K-12 were collected from references in relevant databases

(RegulonDB and EcoCyc) and by using carefully-crafted search strategies. It is not possible

to automatically calculate a precise recall using this strategy as it is impossible to determine

if the extraction method has missed any extractions without manual analysis. The group in-

stead compared the extracted relationships to those in RegulonDB, finding that the extracted

relationships covered 45% of the database. As an estimate of precision, a biologist examined a
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random sample of 96 interactions which did not map to known interactions in RegulonDB and

found 81 had a basically correct semantic interpretation of their source sentences — giving a

precision of 84%.

As there is no available metabolic reaction corpus, an evaluation strategy similar to those

developed by Yuryev et al. [40] and Rodríguez-Penagos et al. [42] was used in the evaluation

of LiMPET’s core text-mining algorithm (see Section 13.2).

8.1 Assessing ranked extractions

When extracting reactions there isn’t a clear definition of what reactions are relevant to the user

— there is a certain level of subjectivity. The tool would not be particularly useful, however,

if a simple list of extracted reactions (which may be considerable in length) are returned to the

user. It is, therefore, desirable for extractions to be ranked according to their potential relevance

to the query. The traditional measures of recall, precision and F-score do not take ranking into

account, however — extractions are considered to be either correct or incorrect.

Swets [70] investigated a number of retrieval performance measures and determined that a

desirable method would have the following properties:

1. It would only be concerned with the ability of the system to differentiate relevant and

irrelevant items and would not be affected by other factors, such as efficiency.

2. It would be independent of any scoring threshold (whether from the user or a character-

istic of the retrieval system) and would measure the system’s total output.

3. It would be a single number, as apposed to a pair of numbers or a curve, so as to facilitate

easy comparison between methods.

4. It would have absolute significance as a measure of a single method and allow compar-

isons of different methods.

Swets outlined these requirements with general retrieval tasks in mind where retrieval scores

tend not to be shown. In bioinformatics, however, retrieval scores are typically provided to the

user and, moreover, a scoring threshold is typically applied to the list (which can be altered by

the user) and items not meeting the threshold are ignored. This led to Wilbur [71] modifying

condition 2 to bring it further in line with the use of retrieval systems in bioinformatics:
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It should be characterized by a [user] threshold, but should reflect the quality of

retrieval at every rank down to that threshold.

Carroll et al. [72] introduced “The Principal of Fidelity”, which states that: “a retrieval measure

should faithfully reflect the actual usage of the retrieval list”. Considering this, Carroll et al. in-

troduced the following three conditions to follow on from the Swets’ and Wilbur’s conditions:

5. It should be robust against results representing a small proportion of possible user queries.

6. When two disjoint sets of queries are considered, its value for the union of the two sets

should lie between its values for the two sets of queries.

7. It should reflect the choice of threshold; in particular, it should eventually decrease as the

threshold increases to include the entire retrieval list.

8.1.1 ROC analysis

ROC analysis was a popular method in clinical applications to evaluate the performance of

diagnostic tests in diagnosing specific medical conditions, when Gribskov & Robinson [73]

recognised the potential of the analysis to evaluate the performance of sequence annotation

methods. The initial steps of ROC analysis are the assignment of each datapoint as positive

or negative (relevant or irrelevant in the case of information extraction) and the subsequent

construction of a ROC curve where each point indicates the fraction of positives equal to or

greater than a specific score on the x-axis and the fraction of negatives equal or greater than the

same score on the y-axis. The following steps are employed to calculate the ROC curve:

1. The retrieval system produces a ranked list of extractions from most to least relevant.

2. Manually mark each item as relevant or irrelevant.

3. At each ranking calculate i, the number of relevant items at or preceding the ranking.

4. Number each irrelevant item in the list 1, 2, ..., f, ..., F according to its ranking.

5. The ROC curve plots i/I (where i=the number of preceding relevant items and I=the

total number of relevant items), the fraction of relevant items preceding the f th irrelevant

record, against f /F, the fraction of irrelevant items seen.
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1 2 3 4 5 5

Ranking Relevance Cumulative
relevant
items (i)

Cumulative
irrelevant
items (f )

i/I f /F

1 1 1 0 0.2 0

2 1 2 0 0.4 0

3 0 2 1 0.4 0.1

4 1 3 1 0.6 0.1

5 0 3 2 0.6 0.2

6 0 3 3 0.6 0.3

7 1 3 3 0.8 0.3

8 0 4 4 0.8 0.4

9 0 4 5 0.8 0.5

10 0 4 6 0.8 0.6

11 0 4 7 0.8 0.7

12 0 4 8 0.8 0.8

13 0 4 9 0.8 0.9

14 1 5 9 1.0 0.9

15 0 5 (I) 10 (F) 1.0 1.0

Table 2: Example ranked data showing the calculation of the corresponding ROC curve. Num-
bers in the top row correspond to the step employed to calculate the data in the column (see
page 36).

Table 2 shows example ranked data that is used to create the ROC curve in Figure 3 using these

steps.

A data set with good discrimination between relevant and irrelevant items will produce a

curve that lies in the upper left of the graph area (as can be seen by the blue curve correspond-

ing to the example data in Figure 3). A data set with no discrimination, however, will produce

a curve similar to the orange curve. The ROC score is the probability that a random relevant

record is ranked above a random irrelevant record and is equal to the area under the graph.

The example data produces a ROC score of 0.74, while the curve showing no discrimination

has a ROC score of 0.50.

In a typical biological application, however, the number of negatives in the whole dataset

will vastly outnumber the number of positives. This means that even a merely adequate rank-

ing of items will produce a ROC score close to 1. For this reason it is typically necessary to
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Figure 3: An example ROC curve created from the data in Table 2. The blue line corresponds to
the example ranked data, while the orange line shows data for a notional method that is unable
to discriminate relevant and irrelevant items.

calculate a ROCn curve, the ROC curve truncated after n irrelevant records, and the ROCn

score, the area beneath this curve divided by n/F. The value of n can be altered depending

on the use case, but a threshold of n=50 is common practice [73]. To combine the results from

different runs of a particular algorithm a pooled ROC curve and pooled ROCn score can be

produced by merging the ranked retrieval lists from the separate queries into one list.

ROC analysis has been used previously for evaluating the performance of text-mining sys-

tems. Frijters et al. [74] developed CoPub Discovery, a co-occurrence method for the discovery

of drug, gene and disease connections in text. In the absence of a suitable corpus, the tool was

evaluated on its ability to identify true positive and false positive hidden relationships in a par-

titioned set of Medline abstracts. Separate ROC curves and scores were produced for different

types of relationships (e.g. gene-disease, drug-disease) and were not directly compared, while

different results for different scoring criteria for each relationship type, were compared.
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8.1.2 Precision-recall (PR) curves

The use of ROC analysis for evaluating information retrieval has been criticised, however, with

the use of precision-recall curves, which simply plot the precision and recall at each relevant

item in the retrieval list, being put forward as a suitable replacement. PR curves are notably

more suitable when the number of irrelevant items is far larger (typically by orders of magni-

tude) than the number of relevant items — the typical situation in information retrieval. For

such data sets, ROC analysis requires the calculation of a ROCn curve, as described previously,

whereas the PR curve will be the same regardless of the number of irrelevant items found at the

bottom of the ranking. The use of ROCn curves can be problematic when comparing different

queries and methods that produce rankings where different thresholds would be suitable.

The use of pooled ROC curves, and the resultant pooled ROC score, in information retrieval

has been similarly criticised. Sierk and Pearson [75], in an evaluation of protein structure com-

parison methods, found that pooled ROC curves could be unduly distorted by the poor per-

formance of a small number of queries and instead examined the performance of the methods

with individual queries. Carroll et al. showed an example where the pooled ROC curve of two

queries is lower than both of the individual ROC curves [72].

Table 3 shows the same ranked data as before with the precision and recall calculated at

each relevant item. The average precision is the mean of the precision at each relevant item

in the retrieval list. Figure 4 shows the resultant precision recall curve. A data set with no

discrimination will achieve an average precision of about 0.5 regardless of recall, resulting

in the orange curve as can be seen in Figure 4, whereas a data set where relevant items are

clustered at the top of the ranking will produce a curve that is higher (for most of the curve, at

least) and a higher average precision.

8.1.3 TAP-k

Average precision does not take into account a user threshold, however, which breaks Wilbur’s

modification to the second condition of a good retrieval measure [71] described previously (“It

should be characterized by a [user] threshold, but should reflect the quality of retrieval at ev-

ery rank down to that threshold.”). In response to this Carroll et al. developed the measure

Threshold Average Precision at a median of k errors per query (TAP-k) which is based on av-

erage precision, but reflects the user’s tolerance for errors [72]. The TAP score at a particular
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Ranking Relevance Precision Recall

1 1 1.00 0.2

2 1 1.00 0.4

3 0

4 1 0.75 0.6

5 0

6 0

7 1 0.57 0.8

8 0

9 0

10 0

11 0

12 0

13 0

14 1 0.36 1.0

15 0

Average Precision (AP) 0.66

Table 3: Example ranked data showing the calculation of the corresponding PR curve.

scoring threshold is defined as follows:

1. The retrieval system produces a ranked list of extractions from most to least relevant.

2. Manually mark each item as relevant or irrelevant.

3. Define a scoring threshold and assign the first item prior to the threshold as the ’sentinel’.

4. Calculate the precision at the sentinel and at each relevant item with a score greater than

the sentinel.

5. Assign a precision of 0 to each relevant item scoring lower than the sentinel.

6. Calculate the mean of the precisions from steps 4 and 5 to calculate the TAP.

Table 4 shows the example data with the associated precisions at a number of thresholds.

To calculate the appropriate threshold for the results from a series of queries, the user is as-

sumed to tolerate k errors per query (EPQ). The lowest threshold that produces a median EPQ
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Figure 4: An example precision-recall curve created from the data in Table 3. The blue line
corresponds to the example ranked data, while the orange line shows data where there is no
distinction between relevant and irrelevant items.

of k across the queries is chosen as the threshold. While the value of k is arbitrary and may de-

pend on the problem at hand, the values of 5, 10 and 20 were chosen for the gene normalisation

task at BioCreative III [45]. While not directly comparable to the metabolic reaction domain,

the TAP-k scores achieved by the competing tools provide the only possible comparison to the

scores achieved by LiMPET.

As the development of LiMPET has progressed, the characteristics of results produced and

the methods used to evaluate them have changed. Early in the development process LiMPET

was evaluated by extracting reactions from a small selection of hand-picked relevant papers

using a variant of the F-score (see Part III) while later in the project the tool was tasked with

extracting reactions from a large number of automatically retrieved articles, of unknown rele-

vance, where extractions were ranked and the TAP-k measure was used (see Part IV).
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Precisions with threshold

Ranking Score Relevance 0.65 0.75 0.90

1 1.00 1 1.00 1.00 1.00

2 0.95 1 1.00 1.00 1.00

3 0.90 0 0.67

4 0.85 1 0.75 0.75 0

5 0.80 0

6 0.75 0 0.50

7 0.70 1 0.57 0 0

8 0.65 0 0.50

9 0.60 0

10 0.55 0

11 0.50 0

12 0.45 0

13 0.40 0

14 0.35 1 0 0 0

15 0.30 0

Average
(TAP) 0.64 0.54 0.46

Table 4: Example ranked data showing the calculation of TAP scores at three different thresh-
olds. Precisions in blue signify the assigned sentinel records at each scoring threshold. Preci-
sions in green belong to relevant items with a score above the threshold and precisions in red
belong to items below the threshold which are all given a precision of 0.

9 Third party tools

In order to effectively utilise the time available for the project, I attempted to incorporate avail-

able software into the tool whenever possible. I had the following requirements of any software

to be incorporated:

• The software must be open-source with no restrictions on incorporating it into other tools.

• Ideally the software would be available as a Java library. While it is possible to incor-

porate command line programs into a Java program, this may hinder the easy running

of the tool and may prevent it from running cross platform. The incorporation of web

services should only be used sparingly as mining a large amount of text could cause too

many requests to be sent to the service.
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• Databases must be freely available and downloadable to embed into the tool. Network

access to a database can only be allowed sparingly for reasons described in the previous

point.

9.1 A text-mining framework

It would certainly be possible to program the tool from scratch, but there are many advantages

to utilising a text-mining framework. The tool was intended to be open source and freely

available for others to view and fork the code. Writing a program from scratch could hinder

the ability of others to edit the code, particularly for a complex project such as this. Anybody

who is familiar with the framework used to develop a program, however, should be able to

understand the code much more quickly. Even if they are not familiar with the framework, the

framework will provide its own documentation. In addition, frameworks are typically written

in a modular fashion so that components can be reused between projects — further easing their

incorporation into third-party software.

The first popular, open-source, general text-analytics framework was the General Archi-

tecture for Text Engineering (GATE) which began development in 1995 at the University of

Sheffield and is still well maintained today [76]. GATE has grown into a very mature package

which can be used as a standalone program or incorporated into software as a Java library.

GATE also comes with many general text-mining modules (such as a tokeniser, sentence split-

ter and a part of speech tagger).

In 2009, the Unstructured Information Management Architecture (UIMA) was made an OA-

SIS standard [77, 78]. UIMA, initially developed by IBM and open-sourced in 2006, is a general

framework that, unlike GATE, does not contain any text-mining components, but rather de-

scribes a standard way of constructing an information extraction pipeline.

UIMA has been utilised in a wide variety of applications, such as the clinical Text Analysis

and Knowledge Extraction System (cTAKES) [79] and, famously, the IBM Research computer

Watson which won an episode of the US quiz show Jeopardy!. UIMA has also been a popular

choice of framework for the mining of biomedical research literature with many groups releas-

ing their code as UIMA components (or with available UIMA wrappers) — a number of which

will be described in the following sections. UIMA also forms the core of the U-Compare sys-

tem — a graphical tool that allows users with no programming experience to create their own
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text-mining pipeline using UIMA components [80].

While GATE is a very capable text-mining framework, I chose to use the UIMA framework,

because of its popularity in biomedical text-mining and the availability of components written

by other groups (many of which are discussed in the following sections).

9.2 General text-mining tools

Libraries exist for most programming languages for carrying out basic natural language pro-

cessing tasks such as sentence parsing and part-of-speech tagging. One toolkit was found to fit

our criteria: Apache OpenNLP [81].

OpenNLP is a machine learning based Java library and, as such, requires extensive train-

ing to create a suitable probabilistic model. While a large number of models are provided

alongside the library, they are all the result of training the library on general-use language

(typically from newspaper articles). The language used in biomedical articles, however, is

highly specialised [82]. Buyko et al. [83] showed that transferring OpenNLP components to the

biomedical domain was as simple as retraining the tool using a biomedical corpus, however,

and that a specially designed tool was not necessary — for the low level text-mining tasks that

OpenNLP deals with, at least. OpenNLP was retrained separately on two corpora, GENIA

[84] and PennBioIE [85], and the subsequent performance of five OpenNLP components was

assessed. Each component performed well when trained with either corpus, with the sentence

splitter, tokenizer and parts-of-speech tagger achieving accuracies of approximately 99% and

the chunker and parser achieving average F-scores of 92% and 86%, respectively. The group

have released the trained models [86], allowing OpenNLP to be used with no need of further

training.

OpenNLP was incorporated into the previously mentioned Mayo clinical Text Analysis

and Knowledge Extraction System (cTAKES) where a number of components were built on

OpenNLP components trained on clinical data [79].

9.3 Named Entity Recognition (NER)

Named entity recognition, typically the first step taken in a text-mining operation, aims to find

entities within text and assign each to a predefined category. In this project it was necessary

to be able to recognise genes and proteins, small molecules and organism names. Fortunately
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there has been extensive research into each of these areas.

9.3.1 Gene/protein NER

There is significant subjectivity in what gene and protein names consist of. While correspond-

ing genes and proteins typically have distinct names, they are often used interchangeably in

text. For instance, the gene ADH1 may be referred to as the alcohol dehydrogenase gene or the gene

encoding alcohol dehydrogenase. Similarly the protein alcohol dehydrogenase may be referred to as

the protein encoded by ADH1. Due to these difficulties and the unimportance of the distinction

in many situations, tools rarely attempt to make any distinction.

The first freely available, user-friendly tool to attempt to solve this problem was ABNER,

originally released in 2004 [87]. The tool included a graphical user interface and a Java pro-

gramming interface to allow its functionality to be incorporated into other programs. ABNER

was able to recognise protein names with an F-score of 84.9% and became the benchmark sys-

tem with which to compare future work with.

Gene/protein NER was the subject of one of the tasks of BioCreative I in 2004, bringing

together 15 groups to attempt the challenge [43]. The task called for the recognition of genes

and proteins in three different organisms: yeast, fly and mouse. While the tools performed

very well on yeast names (producing a high F-score of 92%), fly and mouse names proved

more difficult to recognise (producing high F-scores of 82% and 79%, respectively). It was

found that fly names had a significant overlap with English words and mouse names were

more complex than yeast names. Overall, the highest F-score achieved was 83.6%. This was

not significantly different from ABNER’s score of 83.7% on the same corpus [88].

While most of the tools used a variety of statistical methods (principally hidden Markov

models and support vector machines), one tool, Text Detective, implemented a rule based ap-

proach [89]. The tool tokenises a document and uses a variety of rules and dictionaries to

categorise each token. For instance, terms such as kinase, receptor and transporter are highly

indicative of a gene/protein name and are typically accompanied by chemical terms (which

can be recognised by a combined rules-based and dictionary approach) and other biological

terms which are stored in a dictionary. The tool also attempts to recognise gene symbols (such

as TNF and p53) by recognising them as non-word tokens and using the precomputed proba-

bilities of words that are typically found in the vicinity of gene mentions. While Text Detective
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performed well on yeast and mouse gene names, no attempt was made on fly names.

BioCreative II in 2006 also proposed a gene NER task [44]. The best performing tool pro-

duced an F-score of 87.2% — an increase over the best score at BioCreative I. The entries to the

second competition showed a significant move towards the use of conditional random field

models in their methods. Unfortunately none of the tools entered were made publicly avail-

able, so ABNER remained the easiest to use, freely available system.

Leaman and Gonzalez, recognising this lack of freely available tools, developed BANNER,

an open-source gene NER tool based on conditional random fields [30]. BANNER achieved an

F-score of 82.0% — coming between the 9th and 10th ranked entries of BioCreative II. However,

this evaluation was run before the testing corpus had become available and, therefore, the

training corpus of 15 000 sentences was split in two to create a testing corpus. ABNER achieved

an F-score of 78.3% on the same test corpus. This performance was repeated by Kabiljo et al.

[1] who found that BANNER outperformed ABNER on four different corpora. BANNER is

available as a Java library and, since its first publication, a UIMA wrapper has been included.

BioCreative III proposed a gene normalisation task, of which the first step was gene NER

[45]. As gene NER was no longer the focus of this competition, most entries utilised previously

developed NER tools instead of building their own from the ground up (although most entries

involved sort type of post-processing of results from the NER tools). The NER tools used

included ABNER and LingPipe, as well as BANNER and GNAT (which implements BANNER

in its own method) [90].

I adopted BANNER for this project due to its good performance and its ease of implemen-

tation in a UIMA pipeline.

9.3.2 Small molecule NER

Small molecule NER methods use either dictionary or machine learning methods, or a com-

bination of the two. This is due to there being two significantly different ways of naming

small molecules — using the IUPAC systematic approach or using vernacular names. For in-

stance, the molecule with the systematic name butane-1,4-diamine has also been given the ver-

nacular name putrescine. Furthermore, a combination of the two approaches can be used —

N-carbamoylputrescine, for example.

A dictionary-based approach can perform better with vernacular names than a statistical
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approach as there is no common theme in the vernacular naming of small molecules and there

are existing large and well-maintained databases of molecule names (which are discussed later

in this section). Systematic names, however, are ideal for machine learning methods as they

consist of a limited range of building blocks, but with very variable grammar. Kolářik et al.

discovered that systematic and semi-systematic names could be recognised by their morpho-

logical structure with higher accuracy than with dictionary methods [91]. Because of this vari-

ability in naming molecules, well-performing small molecule NER systems typically utilise

both approaches.

Narayanaswamy et al. [92] describe a prototype system designed to extract systematic and

semi-systematic chemical names. Their method was based on a set of manually developed

rules, as opposed to machine learning, as their were no comprehensive annotated corpora of

gene/protein or chemical names at that point in time. The method produced promising results

(an F-score of 81.69%) on a small test corpus of 55 abstracts.

In 2006, Corbett and Murray-Rust officially released the first freely available chemical NER

tool: OSCAR3 [93], followed by OSCAR4 in 2011 [94]. The first tool to compete against OS-

CAR4, ChemSpot, was released in 2012 [95]. The only comprehensive comparison of these

tools is found in the ChemSpot paper where both tools were tested against the SCAI chemical

corpus [91]. OSCAR4 achieved an F-score of 57.3% while ChemSpot achieved 68.1%. As this

project began in 2010, I initially implemented OSCAR3 and later updated to OSCAR4. Despite

ChemSpot’s performance advantage I decided to keep OSCAR4 as it had continued OSCAR3’s

good performance within the algorithm described here and there were more pressing aspects

of LiMPET requiring focus. OSCAR4 is available as a Java library with an easy to use API. It

was necessary to write a UIMA wrapper, however.

In addition to identifying small molecules in the text, it is also necessary to link together

separate mentions of the same entity (in order to determine separate mentions of the same

reaction and to link reactions together to form pathways). Chemoinformaticians have long

understood the need for a common chemical language to describe small molecules. SMILES

(Simplified Molecular-Input Line-Entry System), developed at the United States Enviromen-

tal Protection Agency in the 1980s, allows molecules to be described using ASCII strings [96].

SMILES has certain shortcomings, however, which rendered the format unsuitable for com-

paring molecules in separate databases. Principally, it is possible to obtain different, but valid,
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SMILES strings from the same molecule. For instance, consider the molecule α-D-glucose which

has a different SMILES identifier in two databases:

• ChEBI: OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O

• PubChem: C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O

In 2006, however, a new identifier was proposed: InChI (IUPAC International Chemical Iden-

tifier) [97]. Similarly to SMILES, InChI allows molecules to be described in ASCII strings, but

InChI can express more information and, most importantly for our use case, every chemical

structure has a unique InChI. With its greater utility and its backing from IUPAC, InChI quickly

surpassed SMILES as the standard chemical structure identifier used by all major chemical

databases. While it has been shown that there are inconsistent InChI assignments within and

between databases, these inconsistencies are due to quality control issues and not the InChI

format [98].

Due to the strict regular grammar of the IUPAC specification, it is theoretically possible to

calculate the composition and structure of a molecule from its systematic name, a task which

can be carried out by the Open Parser for Systematic IUPAC Nonmenclature (OPSIN) [99],

which is included in the OSCAR4 library. The language used in chemistry literature can be

very different to biomedical literature, however, where vernacular or semi-systematic names

are far more common than strict systematic names. While this is understandable for complex

molecules with suitably complex systematic names, even simple molecules are commonly de-

scribed using older vernacular names instead of their systematic counterparts. For instance,

acetic acid is commonly found in biomedical literature, while its systematic name ethanoic acid

is rarely used7.

Often systematic names are built with the correct components, but in the incorrect or-

der. The following passages show alternative IUPAC-like names for the molecule butane-1,4-

diamine:

Linear or star-shaped poly(glycerol metha crylate)s (PGOHMAs) modified with 1,4-

butanediamine and 1,2-ethanediamine (EDA) were synthesized and used as poly-

cations. [100]

Herein, we employed single-molecule imaging and spectroscopy techniques for

7When searching for ethanoic in PubMed, it is helpfully suggested that I have spelt ethanolic incorrectly.
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the detection of photochemical reactions between 1,4-diaminobutane (DAB) and

CdSe/ZnS single QDs. [101]

The biological chemical space is much smaller than the synthetic chemical space. For this

reason, authors will often miss parts of the systematic name which are deemed irrelevant in

a biological context — this particularly applies to stereochemistry. For instance, if the term

glucose is found in the biomedical literature, the reader can safely assume that the specific

molecule referred to is D-glucose as this is the predominant enantiomer found in nature. Being

rarely found in nature, L-glucose would be expected to include the stereochemistry in the name.

With these inconsistencies in systematic names and the use of vernacular names, a chemical

dictionary is necessary to determine the InChI of extracted small molecules. There are many

chemical databases with the largest, PubChem, currently holding over 50 million compounds

[102]. The size of this database would make incorporation into an offline tool difficult and

potentially cause incorrect mapping of metabolites to irrelevant molecules. For instance, over

15 million compounds in PubChem are obtained from patents, of which presumably only a

small percentage are used as drugs.

Chemical Entities of Biological Interest (ChEBI) is a more focused database currently cata-

loguing close to 40 000 entities [103]. While PubChem extracts compounds from many sources

irrelevant to metabolic pathways, ChEBI principally sources data from four databases: IntEnz

[104], KEGG COMPOUND [105], PDBeChem [106] and ChEMBL [107] — all of which are po-

tentially relevant to metabolic pathways. With the small size of the database allowing easy

incorporation into an offline tool and each specific compound containing a list of known syn-

onyms and an InChI, ChEBI was chosen as the chemical database to incorporate into LiMPET.

9.3.3 Organism NER

Recognising mentions of organism names is necessary to determine the context of any entities

or interactions found in an article.

While it might be possible to create either a rule-based or statistical method-based system

able to recognise a given Latin species name, it would be unnecessary. While PubChem cat-

alogues over 50 million compounds, all of which have a variety of possible names, there are

relatively few organisms (NCBI Taxonomy currently contains approximately 420 000) and or-

ganism naming tends to follow strict conventions in scientific literature. Typically organisms
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are referred to with their full Latin binomial name (e.g. Catharanthus roseus) or with an abbre-

viated genus (e.g. C. roseus). While many organisms have been given vernacular names (e.g.

Madagascan periwinkle) they are generally used sparingly in scientific literature and typically

confined to an introduction of the organism. Although one exception to this rule is with higher

model organisms (such as human and mouse) where vernacular names may be preferred over

taxonomic names.

There are, however, a number of complications that need to be taken into consideration.

While there is no study in the literature on the accuracy of the spelling of Latin organism names,

a feasible hypothesis would be that misspellings in Latin names are more common than in the

rest of the text due to most people’s unfamiliarity with Latin. Also, while full Latin names

are designed to unambiguously identify organisms, use of an abbreviated genus can make

the name ambiguous. For instance the abbreviated name D. virginiana could refer to Didelphis

virginiana (the North American opossum) or Diospyros virginiana (the American persimmon).

To a person reading this name in an article, the distinction should be obvious due to the context

of the article, but establishing context is significantly more difficult for a computer program.

Latin names are, unfortunately, not static. Prior to genome sequencing, taxonomic clas-

sification (on which Latin names are based) was carried out by observing the morphologi-

cal differences between organisms. The ability to compare genome sequences caused many

of these earlier classifications to be revised, however. For instance, in 2007 the whole of the

genus Dryandra was transferred into the genus Banksia, causing the renaming of many organ-

isms, such as Dryandra nivea to Banksia nivea [108]. It is, therefore, necessary for any dictionary

method to include all names that an organism has been assigned as the user may be mining

older text.

TaxonGrab is a rule-based tool which identifies all words not found in an English language

dictionary and applies rules to determine if a Latin organism name is present [109]. TaxonGrab

achieved a recall of 94% and a precision of 96% against the 5000 page Volume 1 of “The Birds

of the Belgian Congo” by James Paul Chapin, containing over 8000 taxonomic names. “Find

all taxon names” is a tool based on TaxonGrab which implements additional rules to achieve a

higher performance (>99% recall and precision) on the same evaluation set [110]. Neither tool

was tested on their ability to normalise organism mentions against a database, however, and

the evaluation corpus is unlike a biomedical research article. In addition, due to the rule-based
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approach neither tool has the ability to recognise vernacular names.

There has been more focus on dictionary based methods, however, for the reasons elab-

orated previously and due to the free availability of a comprehensive and well-maintained

organism database in the form of the NCBI Taxonomy database. The use of the database also

automatically solves one problem with the rule-based methods: the normalisation of organism

names against a database.

LINNAEUS is principally a dictionary-based method which implements some heuristic

rules [111]. A dictionary of organism name synonyms was created using the NCBI Taxonomy

database and abbreviated names were generated for each entry. Additional synonyms were

identified that occur frequently in the literature — such as patient referring to Homo sapiens.

The group recognised the issue of ambiguous abbreviations and acronyms which can map

to several organisms or even non-species terms (for instance, PCV can refer to Peanut Clump

Virus or Packed Cell Volume). When LINNAEUS encounters an ambiguous term it searches for

one of the possible expanded terms within the same text. It can even identify novel acronyms

when defined in the format: species (acronym), where acronym is a sequence of capital letters,

digits or hyphens.

The tool performed well on a manually annotated corpus of 100 full-text articles from the

PMC Open-Access Subset with 94.3% recall and 97.1% precision. The BioCreative III gene

normalisation task required the entries to determine the source organism of genes in order

to link them to database entries [45]. LINNAEUS was the only publicly available organism

NER tool at the time and was used by the vast majority of teams. While the teams did note

some ambiguity in species names and taxonomy IDs, the performance of LINNAEUS was well

regarded.

LINNAEUS has since gained competition in the form of OrganismTagger, a hybrid rule-

based/machine learning system [112]. While OrganismTagger was not able to perform as

strongly as LINNEAUS, the novel machine learning approach could lead to better results in

future versions.

LINNAEUS is available as a Java library and provides a UIMA wrapper for easy integration

into a UIMA pipeline. These points and its good performance made LINNAEUS the obvious

choice for integration into LiMPET.
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9.4 Network visualisation

There are different ways to provide metabolic pathway data. In certain cases a user may prefer

a list of the individual metabolic reactions or in a computer-readable language, such as SBML.

In most cases, however, users will want to see the metabolic pathway output as an image

which will allow them to easily parse the information. Indeed, visually displaying metabolic

pathways is the standard method used to present information by databases such as BioCyc and

KEGG. In order for LiMPET to be useful to users it must be able to construct such diagrams

itself or provide the information to third-party tools to do so.

There are a number of general network visualisation libraries available for Java such as the

Java Universal Network/Graph Framework (JUNG) [113], Graphviz [114] and Gephi [115].

Any of these libraries would allow a network to be drawn and shown to the user without leav-

ing the Java application. Implementing functionality more advanced than simply displaying

a static image to the user (such as the ability to manually edit the network), however, would

be a significantly time-consuming task. It is also unlikely that any researcher using the tool

would be doing so in isolation. Rather they would have multiple networks that would need to

be compared and merged. This functionality is best achieved with an external tool.

While there are many standalone general network drawing packages, Cytoscape, originally

created at the Institute for Systems Biology in Seattle in 2002, has become the standard visu-

alisation tool for biological networks. Cytoscape has a number of advantages over a general

visualisation tool. For instance, Cytoscape has the ability to import networks stored in systems

biology file types (such as SBML [116] and BioPAX [117]), and is able to directly import Gene

Ontology terms. Cytoscape also has a mature plugin framework and, due to the tool’s pop-

ularity in the bioinformatics community, has a wide range of third-party plugins that enable

sophisticated network analysis. For these reasons LiMPET was designed such that extracted

metabolic pathways would be output in format viewable by Cytoscape.
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Part III

A metabolic reaction extraction algorithm

In Section 3.1 I described the protein-protein interaction extraction task at BioCreative II where

two principal methodologies were used by the competing teams: local and global association

analysis [44]. In the development of LiMPET I have taken a hybrid approach. In the following

chapter I will describe the local association analysis; the development of a core text-mining

algorithm for recognising metabolic reactions described in individual sentences.

The work described in this chapter has been published [118] and the text here is largely

based on the published article.

10 A methodology for extracting metabolic reactions

Various approaches have been utilized for extracting relationships between biological enti-

ties described in free text, broadly ranging from simple methods based on the co-occurrence

of terms to sophisticated natural language processing methods. Here I adopt an intermedi-

ate, rule-based and pattern-matching approach that combines lists of stemmed keywords with

rules for rewarding and penalizing the occurrence of words depending on their location. This

approach can be viewed as an elaboration of several existing algorithms designed to extract

protein-protein interactions (PPIs).

Indeed, the starting point for the algorithm developed here was the simple benchmark for

PPI extraction presented in [1], which looks for ordered triplets of the form “protein name /

interaction keyword / protein name”. The Co3 algorithm, available via the Whatizit suite of

Web services [26], takes a similar approach, as does the algorithm devised by Ono et al. [119],

but with the addition of simple parts-of-speech rules.

This kind of algorithm is easy to integrate with established NER tools. The algorithm builds

on two state-of-the-art named-entity taggers: BANNER [30] for recognizing gene/protein names;

and OSCAR3 [93, 120] (later updated to OSCAR4 [94]) for identifying the names of chemical

entities.

However, one important difference in the algorithm developed here arises from the intrinsic

complexity of the relationships that are sought for extraction. For instance, small molecule
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entities must be further classified as substrates or products. The algorithm assigns different

permutations of such entities within a given sentence, with each permutation scored separately,

although there are rules to ensure that implausible permutations are ignored. Details are given

in section 12.2.

In terms of performance, one might anticipate that the algorithm will give higher precision,

but lower coverage, than machine learning methods. It is interesting to note that the simple

algorithm used in [1] proved remarkably effective when evaluated against some well-regarded

machine learning approaches. When other factors are taken into account, such as execution

speed and ease of installation, simple algorithms of this type are worthy of serious attention.

11 A metabolic reaction extraction task

It is first important to define what a metabolic reaction is. Broadly speaking a metabolic reac-

tion is any chemical process that occurs in living organisms to maintain life. Typically, however,

the term is used to describe the conversion of a set of non-peptide molecules into a different

set of non-peptide molecules. The vast majority of such reactions in a living cell are catalysed

by an enzyme. These reactions can occur in distinct pathways that serve many purposes — for

example, the break down of large molecules to obtain the energy required to power the cell or

the construction of large molecules, such as lipids, to store energy.

In reality, however, metabolic pathways are rarely distinct from one another, with molecules

typically being involved in multiple pathways. In Section 2 I described two databases, BioCyc

and KEGG, which take very different views on the organisation of metabolic pathways within

a cell. In the development of LiMPET I have focused on the extraction of discrete pathways like

those described in BioCyc, but due to the interconnected nature of metabolic pathways neigh-

boring pathways are typically extracted as well resulting in raw extracted pathways that are

more similar to KEGG pathways. In addition to the core extraction algorithm of LiMPET I have

also developed functionality aimed at discerning the relevant information that is extracted by

the tool from the irrelevant.

While the vast majority of chemical reactions are reversible, the use of enzyme catalysts

result in most metabolic reactions having a clear direction. The initial molecules are referred

to as substrates and the molecules that they are converted into are referred to as products.
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The substrates and products are the most basic information required to describe a metabolic

reaction, but the enzyme may also be included as well as descriptors of the type of reaction.

Not all metabolites in a reaction are equally important from an academic perspective, how-

ever. For instance, many varied metabolic reactions involve the breakdown of ATP to ADP and

phosphate in addition to other metabolites. Therefore, when describing such a reaction in text,

typically authors will not include these so-called side metabolites. While this does limit the

scope of LiMPET (it cannot be expected to fully extract reactions which are not fully described

in the text), the extraction of the primary metabolites remains a worthwhile task as it is these

metabolites that define the purpose of the pathway.

LiMPET first uses the previously described NER tools, BANNER and OSCAR, to mark-up

protein and small molecule entities in a document. The core algorithm described next attempts

to determine which small molecule entities are substrates and which are products based on

their ordering, position in the sentence and the presence of key words.

12 The algorithm

Given text in which the names of putative proteins and small molecules have been tagged, the

algorithm proceeds in three key stages: a sentence selection phase; an entity assignment phase;

and an assignment scoring phase.

12.1 Sentence selection

The algorithm begins by selecting sentences containing at least two small molecules. The work-

ing assumption is that sentences of interest will contain the names of both a substrate and a

product, but not necessarily the name of an enzyme; it is sometimes possible to correctly iden-

tify substrate and product even when the name of an enzyme is not found (e.g. when it is

mentioned in a separate sentence). In our training corpus (described in Section 13.1), 30% of

the sentences that describe a metabolic reaction (and selected without reference to whether the

name of an enzyme is present or not) do not contain the name of an enzyme.
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12.2 Entity assignment

Given a selected sentence, potential orderings of putative enzyme(s), substrate(s) and prod-

uct(s) occurring within the sentence are then considered in turn, or — in the absence of a

putative enzyme name — orderings of substrate(s) and product(s). Manual analysis of text

determined orderings that were highly unlikely to occur in practice. Specifically, it was deter-

mined that a particular entity type cannot be surrounded by entities of a different type (e.g. the

order substrate - product - substrate). Such orderings were disregarded. The possibility that

the reaction has multiple substrates and/or products is taken into account during this scoring

phase. Consider, for example, the sentence:

L-Arabinose isomerase catalyzes the conversion of L-arabinose to L-ribulose, the

first step in the utilization of n-arabinose by Escherichia coli B/r. [121]

Here BANNER tags L-Arabinose isomerase as a putative protein, and OSCAR tags L-arabinose,

L- ribulose and n-arabinose as putative small molecules. Ten different ways that the entities

enzyme, substrate and product may be assigned to the tagged names are deemed suitable for

consideration during the scoring phase. These assignments are given in Table 5.

12.3 Assignment scoring

The extraction algorithm described here is based on the baseline protein-protein interaction

(PPI) extraction algorithm developed by Kabiljo et al. [1]. As the PPI extraction algorithm was

concerned with extracting binary interactions by recognising a single keyword surrounded

by protein entities, scoring was not necessary. Due to the relative complexity of metabolic

reactions, however, with multiple entity types, multiple keyword types and different sentence

structures it is necessary to score each component separately. Appropriate locations for each

type of keyword given an ordering of enzyme and metabolite entities are defined in Appendix

IV.

Given a sentence to which the entities substrate, product and (optionally) enzyme have

been assigned, each assignment is then awarded a separate score based on the following crite-

ria:

• Each entity within the assignment (either enzymes or metabolites) is awarded a positive

score (+0.3 per entity).
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L-Arabinose isomerase L-arabinose L-ribulose n-arabinose

E S P P

E S S P

E P S S

E P P S

E S P

E S P

E S P

E P S

E P S

E P S

Table 5: Assignments of the entities enzyme (E), substrate (S) and product (P) for a sample
sentence. The ten assignments of E, S and P for the sentence “L-Arabinose isomerase catalyzes
the conversion of L-arabinose to L-ribulose, the first step in the utilization of n-arabinose by
Escherichia coli B/r”. Given that L-Arabinose isomerase is the only tagged protein, it is deemed
to be the enzyme in all cases, whereas different numbers and orderings of substrates and prod-
ucts are possible, given the presence of three tagged small molecules (L-arabinose, L-ribulose and
n-arabinose). Note that other potential orderings (namely E-P-S-P and E-S-P-S) are not consid-
ered, as they are deemed highly unlikely to occur in practice.

• Each word occurring between the first and last assigned substrate and product —- the

entities L-arabinose and n-arabinose in the exemplar sentence above —- and that does not

belong to the name of any additionally-assigned entities — L-ribulose in this exemplar

sentence — incurs a small penalty (-0.1 points per word).

• If a keyword is found at an appropriate location relative to one or more entities (ap-

propriate locations for reaction and production words are shown in Appendix IV), the

assignment is awarded a positive score (+2 points per keyword).

• If a keyword is found in an inappropriate location, a penalty (of -1 point) is incurred.

• A bonus (of +2 points) is awarded when both a reaction and production keyword are

found, provided they are in appropriate locations.

Keywords fall into the following categories: reaction word stems (e.g. add, conver, hydrolys,

dimeris, from); production word stems (e.g. form, give, produc, synthesi, to); variants of the verb

catalyse; and the coordinating conjunction and (all reaction and production word stems are

listed in Appendix IV. Stemming was performed using a Java implementation [122] of the stan-
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dard Porter stemming algorithm [123]. Scoring locations include: between an assigned enzyme

and substrate for reaction keywords; between a substrate and product for reaction keywords,

for production keywords and for the prepositions to and into; and between the last two as-

signed products/substrates for the word and. An example of an inappropriate location for a

production keyword is before an assigned substrate.

As an example, here is the scoring for the exemplar sentence given the following partially

incorrect assignments:

Enzyme = L-Arabinose isomerase

Substrate = L-arabinose

Products = L-ribulose and n-arabinose

• 4 entity assignments made: +1.2 points.

• Reaction keyword conversion found between the enzyme and substrates: +2 points.

• Production keyword to found between substrate and products: +2 points.

• Both a reaction word and a production word have been found: +2 points.

• Word catalyzes found: +2 points.

• Penalty for 8 words between first and last metabolite entities: -0.8 points.

This gives a total score of +8.4 points.

Consider the following correct assignments:

Enzyme = L-Arabinose isomerase

Substrate = L-arabinose

Products = L-ribulose

• 3 entity assignments made: +0.9 points.

• Reaction keyword conversion found between the enzyme and substrates: +2 points.

• Preposition to found between substrate and products: +2 points.

• Both a reaction word and a production word have been found: +2 points.

• Word catalyzes found: +2 points.

• Penalty for 1 word between first and last metabolite entities: -0.1 points.
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This gives a total score of +8.8 points — higher than the score achieved by the incorrect assign-

ments previously.

The list of assignments is ranked by score. Assignments below a threshold of 3.6 are re-

moved from consideration. Pairwise comparisons of remaining assignments are made — if

two assignments have at least one metabolite assignment in common, the lowest scoring as-

signment is removed (this allows multiple reactions to be extracted from a single sentence if

they contain different metabolites).

The keyword lists and weightings used in the algorithm were chosen as follows:

• The reaction keyword list was assembled manually with specific reference to the nomen-

clature used in the Enzyme Commission (E.C.) classification [124].

For instance, the E.C. classification malate dehydrogenase (1.1.1.37) leads to the stem dehy-

drogenat (matching words such as dehydrogenates and dehydrogenation).

• The production keyword list, together with the set of prepositions, conjunctions and ad-

dition reaction keywords, were assembled manually from an examination of the litera-

ture, from our own knowledge of the field, and using a thesaurus.

• The weightings (bonuses and penalties) used for each component when generating a

score for a given assignment were derived from a small training corpus described in

Section 13.1.

It is worth noting that an attempt to automatically compile a keyword list from verbs found

between a tagged protein entity and a tagged small molecule in the GENIA corpus (a pro-

cess analogous to that carried out by Kabiljo et al. in the context of PPI extraction [1]) proved

insufficiently discriminatory to be useful, as the false positive rate was too high.

13 Training and evaluation

When considering how to evaluate this system, we found that existing corpora — even those

with many sentences that contain the names of at least two small molecules, for example GE-

NIA [125] and the metabolite corpus developed by Nobata et al. [51] — do not contain signif-

icant amounts of metabolic information relevant to the chosen target. Given that we perceive

support for metabolic pathway curation as the ultimate goal of our research, we chose to assess
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how many reactions belonging to a given metabolic pathway our system is able to extract from

papers known to be relevant to that pathway. To this end, three contrasting pathways were

chosen from the EcoCyc database [9] — a tier one database within BioCyc containing manually

curated Escherichia coli metabolic pathways.

This approach to evaluation differs in two additional respects from the protein-centric BioNLP

shared task on complex relationship extraction [35]: rather than abstracts alone, additional sec-

tions of full text articles were used; and entities were not pre-annotated. For the shared task,

gold-standard annotations of protein names were provided from the outset. It was argued at

the time that this would not have a major impact on the results, whilst it was acknowledged

that it detracted somewhat from the task’s “realism” [35]. However, an analysis by Kabiljo and

coworkers demonstrated that the use of putative entity names that have been predicted us-

ing entity taggers (with an associated error rate of around 15%) instead of true, gold-standard

entity names (extracted manually from the literature) can have a surprisingly large impact on

relationship extraction scores, with “a fall of around 20 percentage points [in F-score] being

commonplace” [1].

Although this approach to evaluation has been previously adopted elsewhere (see, for ex-

ample, Rodríguez-Penagos et al. [42]), I acknowledge that it is “unrealistic” in that all papers

are known to be relevant in advance. Although this is an important caveat, I believe the iden-

tification of relevant papers (e.g. with respect to the species of interest) is the task of a sepa-

rate information retrieval component and that the evaluation of this system’s ability to extract

metabolic reactions is highly informative.

13.1 Training corpus

A small training corpus was used to set the weighting for the various scoring rules described

in the previous section. This corpus consists of sentences containing the names of at least two

small molecules selected manually from the literature referenced in the MetaCyc database [9]

for various metabolic pathways, but excluding the specific pathways used subsequently for

evaluation; 100 sentences were manually selected that describe at least one reaction each (with

at least one named substrate and one named product), together with 100 sentences containing

the names of multiple small molecules, but that do not describe a specific reaction. It is impor-

tant to note that these were the only criteria used to select sentences from the set of referenced

60



papers. No attempt was made to exclude “difficult” sentences, hence the corpus contains the

following complex sentence with multiple reactions:

ZEP catalyses the epoxidation of zeaXanthin to produce epoxycarotenoid; NCED

catalyses the cleavage reaction of epoxycarotenoids to produce xanthoxin (the first

C15 intermediate); and AAO catalyses the final step of ABA biosynthesis, which

converts ABA aldehyde to ABA. [126]

Half of the sentences (i.e. 50 describing interactions, 50 describing no interactions) were used

to adjust the weightings of the various scoring components described above in order to find a

good combination for differentiating between true positives (i.e. true interactions with entities

correctly assigned) and false positives (i.e. non-interactions, or interactions with entities mis-

assigned). The weightings were adjusted manually by assessing false positives and negatives

and adjusting accordingly. For instance, if it was found that most false positives generally had

more words in between metabolite entities than true positives, then the penalty for each word

between the first and last entity would be increased and the algorithm re-run. A number of

iterations of adjustments were made, but no attempt was made to highly optimize the choice

of weightings and thresholds, as the sample size of sentences was relatively small and unlikely

to be highly representative of relevant literature as a whole. The effectiveness of the chosen

weightings was evaluated using the remaining set of 100 sentences.

13.2 Evaluation pathways

Rather than create a set of manually-annotated sentences or abstracts to evaluate the method,

performance against manually-curated pathways in the EcoCyc database was assessed. This

is a similar approach to that adopted by Yuryev et al. [40] in the context of automated signal-

ing pathway construction and Rodríguez-Penagos et al. [42] when evaluating the automated

reconstruction of a bacterial regulatory network.

Three pathways were chosen from EcoCyc and the original papers cited in each of these

EcoCyc entries collected. The three pathways are shown in Figure 5: the pantothenate and

coenzyme A biosynthesis pathway (8 papers), the tetrahydrofolate biosynthesis pathway (13

papers) and the aerobic fatty acid β-oxidation I pathway (11 papers). All three pathways are

from E. coli K-12 substr. MG1655. All reactions in all three pathways have at least one substrate,
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product and enzyme; some reactions have multiple substrates and/or products, but there is

never more than one enzyme.

I chose to annotate only the Abstract and Introduction of the referenced papers using the

metabolic reaction system and compare the results to the relevant pathways within EcoCyc.

The decision to exclude the Methods, Results and Discussion sections was in part a pragmatic

one (it reduced the amount of text that was needed to be examined manually in order to eval-

uate the performance of our system), but was also guided by previous research concerning

the information content of the different sections of full-text articles. For example, Shah et al.

[127] undertook an analysis of the distribution of protein and gene names in 104 articles, and

concluded that the Abstract and Introduction were the best sources of information about enti-

ties and their interactions, with the Methods and, to a lesser extent, the Results sections often

proving problematic (for example, keywords unique to the Methods section commonly refer to

reagents and experimental techniques).

13.3 Measuring performance

To gain a rounded picture of how well the system performs, I considered the quality of its

predictions for different aspects of our evaluation data: the entities (enzymes, small molecules)

within a pathway; the metabolic reactions within a pathway; the binary relationships (enzyme-

substrate, enzyme-product, substrate-product) within a reaction; and whole pathways.

Given that predictions were compared to manually-curated pathways, rather than to gold-

standard corpus annotations, we chose to adopt a similar approach to measuring performance

to that of Rodríguez-Penagos et al. [42]. However, in a preliminary evaluation of entity tagger

performance, gold-standard manually-annotated corpora were used, rather than curated path-

ways. In this context I was able to calculate the standard recall, precision and F-score metrics

used in the majority of text mining research. Consequently the main performance measures

used are:

Recall(C) Of the reactions/relationships/entities within a corpus of texts, the percentage that

have been extracted — here “C” stands for “corpus”.

Recall(P) Of the reactions/relationships/entities within a manually-annotated pathway, the

percentage that have been extracted — here “P” stands for “pathway”.
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Figure 5: The three chosen pathways from EcoCyc used for evaluation of the metabolic reac-
tion extraction algorithm: a) pantothenate and coenzyme A biosynthesis; b) tetrahydrofolate
biosynthesis; and c) aerobic fatty acid β-oxidation I.
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Precision Of the extracted reactions/relationships/entities, the percentage that are correct.

F-score The harmonic mean of recall(C) and precision.

Note that, in evaluating recall, only the primary metabolites belonging to the main route along

the metabolic pathway were taken into account. Hence side metabolites, such as ATP →

ADP + Pi, are ignored. This approach was taken because it is common practice for authors

to omit details about side metabolites from published papers, leaving them to be inferred by

the reader.

When judging the accuracy of named entity taggers, there is a choice to be made between

“strict” matching criteria (where the tagger is required to match a given name exactly) and

“sloppy” matching criteria (where the tagger is not required to match the name boundaries

exactly to score a “hit”; any sized overlap between the gold-standard entity and the tagged

entity will count as a match). For example, consider the following tagged sentence fragment:

...is a key precursor of the <molecule>4′-phosphopantetheine</molecule>

moiety of...

Using sloppy matching criteria, credit is given for annotating phosphopantetheine, 4′-phospho-

pantetheine or 4′-phosphopantetheine moiety, but also for key precursor of the 4′; whereas strict

matching criteria require an exact match to 4′-phosphopantetheine.

In this research I adopted sloppy matching criteria on the grounds that they have proved

more informative than strict criteria in the context of gene/protein NER in general, and of

gene/protein relationship extraction in particular. With respect to NER, in the vast majority of

cases where a match was found using sloppy criteria but not with strict criteria, the core part of

the entity name was correctly identified [128]. Strict criteria were deemed misleading because

they are highly sensitive to the essentially arbitrary choices made when drawing up annota-

tion guidelines for the evaluation corpora — for example, whether the word mouse is part of

the protein name in the phrase mouse oxytocin. With respect to NER in the specific context of

relationship extraction, a manually corrected F-score was only 4 percentage points lower than

the sloppy F-score, but 20 points greater than the strict F-score [128]. The manually corrected

F-score was calculated by the manual assessment of each tagged entity that was counted as a

miss using strict criteria, but a hit by sloppy criteria.

In the data sets used for this research there are a few examples where sloppy matching
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criteria arguably give a misleading impression about how well a complex entity name has

been tagged. With sloppy matching, both the following examples of sub-optimal tagging score

a “hit”:

• The significant truncation of the long entity name Geranyl pyrophosphate:(-)-endo-fenchol

cyclase to endo-fenchol cyclase;

• The splitting of the single entity TPS-d3 family members of conifer diterpene synthases into

the two tagged entities TPS-d3 and conifer diterpene synthases.

However, such examples were comparatively rare, and it was concluded that the number of

false negatives that appear to be true negatives with strict criteria is a more significant problem

than the number of false positives that appear to be true positives with sloppy criteria.

14 Results

14.1 Pre-evaluation of entity taggers

I performed a preliminary evaluation of the performance of BANNER and OSCAR3 on the

GENIA corpus [84], which contains 2,000 biomedical abstracts related to the specific topic of

human blood cell transcription factors. GENIA was chosen because it contains annotations for

a broad range of biological and chemical entities. Additionally OSCAR3 was tested using the

dedicated Fraunhofer SCAI chemical corpus [91], which contains 101 abstracts from chemistry

papers. Neither tool was developed using either of these corpora: BANNER was trained on

the BioCreative corpus [129], and OSCAR3 was trained on two corpora of full-text articles from

RSC journals and abstracts [94].

BANNER scored 72% for precision, recall(C) and F-score on GENIA. This is roughly in line

with expectations; it has been previously shown that a range of protein/gene name taggers

perform less well on GENIA than on some other widely-used corpora, and that this is (at least

in part) attributable to the chosen annotation criteria (see, for example, the analysis in [130]).

The results for OSCAR3 are more interesting and are presented in Figure 6. Two features

stand out from these results: the best performance of OSCAR3 on both corpora is worse than

had been expected from results presented elsewhere [56], with peak F-scores of 62% and 48%
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on the Fraunhofer SCAI corpus (Figure 6a) and the GENIA corpus (Figure 6b) respectively; and

the performance on the GENIA corpus is significantly worse than that on Fraunhofer SCAI.

A preliminary examination of the tagged text generated by OSCAR3 for both corpora in-

dicated that a significant proportion of the false positives were attributable to acronyms being

tagged as the names of chemicals. This is a known problem (identified in the original OSCAR3

paper by Corbett & Murray-Rust [93]) and one that the authors advocate addressing at the

level of the wider text-mining framework.

In this spirit, a simple method for resolving acronyms was developed. Any putative acronym

(i.e. any uppercase token of more than one letter) is deemed to be a false positive unless either

a) a defining chemical name is found in the text preceding it, or b) OSCAR3 gives it a confi-

dence score of 0.5 or more. The latter criterion is used to allow for the presence of commonly

occurring molecules for which acronyms are frequently used without explicit definition (e.g.

NAD). This approach achieved a significant improvement in precision at the cost of a negligible

drop in recall (Figure 6c). Bearing these results in mind, we henceforth used OSCAR3 with the

threshold set to zero, thereby maximizing recall.

Our training corpus of sentences containing the names of at least two small molecules (see

Section 60) was also used to assess whether, in cases where BANNER tags multiple protein

names within a single sentence, it is advantageous to prefer names that end in -ase or -ases. Of

the 77 enzyme names in the training corpus, 60 end in -ase(s). As expected, the suffix -ases com-

monly occurs when a text refers to a class of enzymes in general, whereas the suffix -ase is used

when a specific enzyme is being discussed in the context of a particular reaction. I also found,

however, that the naming of multiple proteins in a sentence describing a metabolic reaction

was uncommon. Therefore, this approach was not incorporated into the current method.

14.2 Performance of entity taggers on metabolic corpora

I began by undertaking a standard analysis of tagger performance by evaluating BANNER

and OSCAR3’s scores for all the entities in the Abstract and Introduction of each of the papers

associated with the three evaluation pathways. All protein and small molecule names were

manually annotated to achieve a true recall figure. Results are shown in Table 6.

Performance here is significantly higher than it was for GENIA. It is worth noting that, in

the case of BANNER, the performance on this corpus is very similar to its performance on

66



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall(C)
Precision
F-score

Confidence threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall(C)
Precision
F-score

Confidence threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall(C)
Precision
F-score

Confidence threshold

a)

b)

c)

Figure 6: Graphs showing the performance of OSCAR3 at a range of confidence thresholds.
Performance is shown under the following conditions: a) when applied to the SCAI chemical
corpus; b) when applied to the GENIA corpus without acronym detection; and c) when applied
to the GENIA corpus with acronym detection. The y-axis gives the recall(C), precision and F-
score values in the range 0 to 1.
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Protein names tagged by
BANNER

Small molecule names
tagged by OSCAR3

Pantothenate and coenzyme A biosynthesis pathway

Recall(C) (%) 81 (112/139) 96 (329/343)

Precision (%) 85 (112/132) 86 (329/384)

F-score (%) 83 91

Tetrahydrofolate biosynthesis pathway

Recall(C) (%) 93 (250/268) 82 (528/647)

Precision (%) 76 (250/327) 95 (528/558)

F-score (%) 84 88

Aerobic fatty acid β-oxidation I pathway

Recall(C) (%) 91 (341/376) 81 (456/565)

Precision (%) 82 (341/414) 92 (456/494)

F-score (%) 86 86

Table 6: The tagging performance of BANNER and OSCAR3. The tagging performance of the
NER tools when applied to the Abstracts and Introductions from papers referenced in EcoCyc
with respect to the three evaluation pathways. Taking the BANNER column for the pantothen-
ate and coenzyme A biosynthesis pathway as an example, the numbers in brackets indicate
that BANNER correctly identified 112 out of the 139 protein names (recall row); and of the 132
names it tagged, 112 were correct (precision row). The OSCAR3 results are with a confidence
threshold of zero.
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gene/protein interaction corpora such as AIMed [131] and the LLL training corpus created for

the 2005 LLL challenge [132], for which F-scores of 82.9% and 84.1% were reported in [1].

14.3 Relationship extraction

The reactions extracted from the three EcoCyc pathways were evaluated in a number of dif-

ferent ways. In the first evaluation, reactions were considered correct if all primary substrates,

products and the enzyme were extracted correctly. In the second, the ability to extract the en-

zyme was not taken into account. The results of these two evaluations can be seen in Table 7.

The precision scores show the percentage of extractions that were correct under the previously

described criteria. The recall(P) scores show the percentage of the reactions in the pathway

that were successfully extracted. As was described in Section 13.3, recall(P) is not the true re-

call (which would be the percentage of metabolic reactions in the source documents that were

successfully extracted) and as such the F-score cannot be calculated.

A third evaluation (see Table 8) broke the reactions down into binary interactions (substrate-

product, substrate-enzyme and product-enzyme) that allowed a more granular evaluation.

Consider the following reaction catalysed by the enzyme E1:

S1 + S2→ P1

The reaction can be broken down into the following binary interactions:

• S1 — P1

• S2 — P1

• E1 — S1

• E1 — S2

• E1 — P1

If one of the substrates were missed in the extraction, the extraction would be considered in-

correct using the first evaluation criteria considering whole reactions, but the second criteria
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Correct reactions (ignoring
enzyme)

Correct (including enzyme)

Pantothenate and coenzyme A biosynthesis pathway

Recall(P) (%) 78 (7/9) 56 (5/9)

Precision (%) 59 (24/41) 41 (17/41)

Tetrahydrofolate biosynthesis pathway

Recall(P) (%) 90 (9/10) 70 (7/10)

Precision (%) 60 (39/65) 38 (25/65)

Aerobic fatty acid β-oxidation I pathway

Recall(P) (%) 29 (2/7) 29 (2/7)

Precision (%) 30 (11/37) 14 (5/37)

Table 7: The performance of the metabolic reaction extraction method on the three evaluation
pathways. Taking the “correct reactions (ignoring enzymes)” column for the “pantothenate
and coenzyme A biosynthesis” pathway as an example, the numbers in brackets indicate that
the algorithm correctly identified 7 out of the 9 reactions in the curated EcoCyc pathway (recall
row), giving 78%; and of the 41 identified interactions (precision row), 24 were valid reactions
(irrespective of whether they belong to the pathway or not), giving 59%. A reaction for which
the substrate(s) and product(s) have been correctly assigned, but not the enzyme, is deemed
correct in column two, but incorrect in column three.

evaluating binary interactions would recognise the extraction as partly correct. This evaluation

of binary interactions also allows the results to be compared to tools used for the extraction of

binary protein-protein interactions (see Table 9).

A visual summary of the complete set of results for the three pathways is given in Figures

7-9.

Fair and meaningful comparisons within the field of biological text mining are extremely

difficult; for example, a single system may give a wide range of different performances even

when applied to different corpora within the same sub-domain. In this research, a prominent

feature of the results (as presented in Tables 7 and 8) is that the algorithm performs noticeably

less well on the aerobic “fatty acid β-oxidation I” pathway than on the other two pathways. To

a significant extent this appears to be attributable to the distinctive ways that reactions in fatty

acid pathways are commonly described, for example in terms of molecular addition (with no

explicit product mentioned):

Enoyl-CoA hydratase catalyzes the second reaction of the fatty acid β-oxidation,

i.e., the syn addition of water to α, β-unsaturated fatty acyl-CoA thioesters.
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Figure 7: The reconstructed pantothenate and coenzyme A biosynthesis pathway from mined
reactions. Squares are small molecules, circles are enzymes, and a pair of arrows is used to
denote a single reaction (the first for the interaction substrate-enzyme, and the second for the
interaction enzyme-product). Items labeled green are correct, items labeled red are incorrect,
and a purple circle denotes an extracted reaction with no corresponding enzyme extraction.
The number next to a reaction indicates the number of times that reaction was extracted from
the set of source texts. The reactions on the right-hand side of the figure (lying outside the blue
rectangle) are reactions extracted by our algorithm that are not part of the manually-annotated
pantothenate and coenzyme A biosynthesis pathway from EcoCyc given in Figure 5a.

71



Figure 8: The reconstructed tetrahydrofolate biosynthesis pathway from mined reactions. The
network is structured in the same way as Figure 7 on page 71. The reactions on the right-hand
side of the figure (lying outside the blue rectangle) are reactions extracted by our algorithm that
are not part of the manually-annotated pantothenate and coenzyme A biosynthesis pathway
from EcoCyc given in Figure 5b.
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Substrate-
product

Substrate-
enzyme

Product-
enzyme

Total

Pantothenate and coenzyme A biosynthesis pathway

Recall(P) (%) 67 (10/15) 58 (7/12) 55 (6/11) 61 (23/38)

Precision (%) 59 (35/59) 65 (13/20) 59 (13/22) 60 (61/101)

Tetrahydrofolate biosynthesis pathway

Recall(P) (%) 82 (9/11) 64 (7/11) 70 (7/10) 78 (25/32)

Precision (%) 48 (55/114) 62 (28/45) 58 (26/45) 53 (109/204)

Aerobic fatty acid β-oxidation I pathway

Recall(P) (%) 20 (2/10) 38 (3/8) 38 (3/8) 31 (8/26)

Precision (%) 40 (12/30) 80 (8/10) 67 (6/9) 53 (26/49)

Table 8: Binary interaction extraction performance for all three evaluation pathways. Numbers
in brackets were calculated as for Table 7.

However, in the absence of a substantially larger data set, it is not possible to draw firm con-

clusions.

Notwithstanding these caveats and challenges, note (with considerable caution) that these

results appear to be somewhat better than those achieved using the EMPathIE system [46].

However, no direct comparison is possible.

Caution should, of course, be exercised when making comparisons between different sub-

domains and where the evaluation strategies are different — particularly as our evaluation did

not involve a calculation of the true recall, but rather the recall of the relevant pathways. Nev-

ertheless, it is useful to consider how the performance of this method for extracting metabolic

reactions compares to that in the well-studied sub-domain of gene/protein interaction extrac-

tion. Here (in Table 9) the performance of this method is briefly compared with the reported

performance of three contrasting gene/protein interaction tools: the rule-based RelEx method

[133], which was the best-performing method in the evaluation reported in [1]; the NLP tool

AkanePPI [134] trained on the BioInfer corpus [135]; and the simple baseline(k) algorithm in

[1].

The analysis of extracted reactions as ternary relationships (in Table 7) and as binary rela-

tionships (in Table 8) suggest both that the method performs reasonably well when placed in

the wider context of biomedical relationship extraction, and that metabolic reaction extraction

is more tractable than has hitherto been assumed.
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Method Interaction type Range of scores on different
corpora (%)

Precision Recall

RelEx Protein-protein 39-80 45-72

Baseline(k) Protein-protein 23-54 52-67

AkanePPI (trained on BioInfer) Protein-protein 29-77 40-56

Method described in this paper Substrate-product 40-59 20-82

Method described in this paper Substrate-enzyme 62-80 38-64

Method described in this paper Product-enzyme 58-67 38-70

Table 9: Comparison of the performance of methods for extracting gene/protein interactions
with that of the method for extracting metabolic reactions presented here. The range of scores
for the gene/protein extraction tools are for five corpora as evaluated in [1]. The scores for this
metabolic reaction extraction method summarize those in table 8, i.e. they are broken down
into the same three binary interactions and the range is for the three evaluation corpora.

15 Discussion

Here I have presented a simple method for extracting metabolic reactions from free text. I

have shown that it successfully extracted a high percentage of reactions for two out of three

pathways; the third pathway, dealing with fatty acid metabolism, proved particularly chal-

lenging owing to the distinctive way in which reactions are described (for example, in terms of

molecular addition). Insofar as comparisons with broadly comparable methods are possible,

it appears that this approach performs rather well; that, at least, is what the brief compari-

son with the performance of gene/protein interaction extraction methods suggests, with both

precision and recall at comparable levels.

Given that information about secondary metabolites such as ATP is frequently omitted

from source papers, I have focused on the extraction of primary metabolites, rather than side

metabolites, in the evaluations presented here. Clearly, this lack of information about side

metabolites in the literature is an obstacle to the fully automated construction of complete

metabolic pathways using text-mining methods. However, a more realistic goal for a metabolic

text mining system is to support manual curation. In this latter context, I believe these eval-

uations show that this method could prove immediately useful to database curators, who are

already used to having to infer the side metabolites when metabolic reactions are incompletely

specified in the literature. It is important to remember, however, that the evaluation was car-

75



ried out by extracting reactions from articles known to be relevant to the pathway — resulting

in relatively few irrelevant reactions being extracted. In the next part, LiMPET is tasked with

extracting reactions from larger sets of articles with varying levels of relevance which results

in relevant reactions often being far out-numbered by irrelevant reactions. Methods for calcu-

lating the relevance of extractions are also discussed.

There are a number of ways that the method could be improved, for example by incorporat-

ing techniques for handling negation (and speculation) and resolving anaphora, and the sys-

tem might benefit from using more sophisticated tool in place of our present simple acronym

resolution strategy, such as the widely-used Acronym Resolving General Heuristic (ARGH)

program [136].

But perhaps more interesting is the fact that this relatively simple method performs so

well, especially in light of prior assumptions that this is a particularly challenging sub-domain.

There are several reasons why this may be the case:

• Whole reactions are commonly described in a single sentence.

• A single sentence commonly describes a single reaction and nothing else.

• Entity taggers appear to be reasonably accurate in a metabolic context, with most enzyme

names having the suffix -ase or -ases.

• Keyword lists appear reasonably discriminatory when distinguishing metabolites from

non-metabolites and substrates from products.

• Most reactions are described multiple times in the literature; typically at least one occur-

rence will be worded in such a way that the information is relatively easy to extract.
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Part IV

LiMPET — a metabolic pathway extraction

pipeline

16 Introduction

In the previous part I described the development of a metabolic reaction extraction algorithm.

The algorithm forms the local association analysis component of LiMPET — attempting to

determine reactions given the contents and structure of individual sentences. In the following

part I will describe the global association analysis components of LiMPET — the integration of

extractions from different sources and publicly available data.

The bulk of this part is concerned with constructing a pathway from the individual ex-

tractions made by the core algorithm and determining the correct and relevant parts of the

returned network. The first challenge in constructing a pathway from individual extraction is

merging together different mentions of the same reaction. As has been discussed previously,

it is sometimes difficult to define what constitutes a metabolic reaction description. Some de-

scriptions may just include the primary metabolites while another includes the enzyme and

another still includes side reactions. This makes the consolidation of metabolic pathway data

from different sources inherently difficult as it can be challenging to determine the ’important’

parts of the reaction on which to base any merges. Moreover, as a text mining project there will

always be a certain level of unreliability in the data being consolidated and it is important not

to let this affect the integrity of correct extractions.

The second challenge in pathway building is correctly linking reactions together such that

the product of one reaction is the substrate of the next. Firstly, different names for the same

metabolite must be disambiguated due the many different names that a single metabolite must

have. Secondly, a determination must be made on the appropriate metabolites through which

reactions can be linked. Linking together all reactions containing acetyl-CoA is unlikely to

yield a useful pathway.

In approaching both of these challenges one must also consider the host organism of the ex-
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tracted reactions, especially when a wide range of literature is being mined — not just literature

that is known to be relevant. In the spirit of the core algorithm of LiMPET I have attempted to

solve these challenges using heuristic algorithms and already available tools.

Also in this part I describe the development of a component to allow the automated re-

trieval of relevant articles to mine (see Section 17.1). While in the previous part the core al-

gorithm was tested on collections containing less than 20 articles, this component allows the

mining of hundreds of articles. This introduces its own problems, however, resulting in the

extraction of far more incorrect and irrelevant reactions. In Section 17.6.2 I describe a method

for scoring the correctness and the relevance of extracted reactions to allow the appropriate

data to be found.

17 Pipeline components

As input the pipeline takes a list of MetaCyc pathway IDs and the NCBI Taxonomy ID of the

organism of interest. For instance, consider a user interested in alanine biosynthesis in My-

cobacterium tuberculosis. The user would search MetaCyc using the term “alanine biosynthesis”

and find three alternative pathways with the designations I, II and III. The ID can be retrieved

from the URL for each of the alternative pathways:

http://www.metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=ALANINE-VALINESYN-PWY

The IDs are supplied to LiMPET as a vertical bar delimited list:

ALANINE-VALINESYN-PWY|ALANINE-SYN2-PWY|PWY0-1021

These pathways are merged and are used as a seed pathway for the retrieval of relevant ar-

ticles. While it would be more user-friendly for the user to simply supply the term “alanine

biosynthesis”, it is impossible to search MetaCyc using pathway names using the API.

The organism ID can be obtained by searching NCBI Taxonomy with the ID being clearly

displayed on an organism’s page. In the case of M. tuberculosis, the ID “1773” would be sup-

plied to LiMPET.

17.1 Literature search

A set of literature search queries is generated from the inputted MetaCyc pathways and organ-

ism. One search query is constructed for each unique metabolite in the seed MetaCyc pathway,
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containing synonyms for the metabolite (obtained from the ChEBI database) and the organ-

ism of interest (obtained from the NCBI Taxonomy database). The following query would

be constructed for the metabolite pyruvate and the organism M. tuberculosis (truncated lists of

synonyms are used for presentation purposes):

(("M.tuberculosis"[All Fields]) OR ("Mycobacterium tuberculosis"[All

Fields]) OR ("Bacterium tuberculosis"[All Fields])) AND (("pyruvate"[All

Fields]) OR ("pyruvic acid"[All Fields]) OR ("alpha-ketopropionic

acid"[All Fields]))

The boolean terms OR and AND ensure that the retrieved document records contain any organ-

ism synonym and any metabolite synonym.

Organism synonyms are retrieved using the dictionary provided by the LINNAEUS organ-

ism named entity recognition library (which is based on the NCBI Taxonomy database ) [111].

Metabolite synonyms are retrieved from a local ChEBI database [103]. Not all metabolites are

included in the query — currency molecules, such as ATP and ADP, are excluded as they are

not meaningful in the identification of pathways and may lead to the retrieval of many irrele-

vant articles.

LiMPET uses PubMed to carry out literature searches because it is the de facto standard for

life science research and has a stable, mature API (named NCBI E-Utils) [2]. It is important to be

aware of its limitations, however. By default, PubMed returns results in reverse chronological

order. Ordering by relevance was evaluated, but no performance improvement was found.

By default, LiMPET retrieves the 100 most recent articles. This was determined to provide

a good balance between processing time and literature coverage, although, with particularly

well-studied organisms there may be far more articles than can feasibly be mined using the

algorithm. While there were difficulties parallelising the tool, this approach would significantly

reduce the processing time as each article in a retrieved set would be mined independently.

PubMed does not have access to the full-text of papers and is limited to searching the title

and abstract. Google Scholar, on the other hand, indexes the full-text of articles, but, unlike

PubMed, provides no API. While third-party libraries have been developed to allow auto-

mated searching using Google Scholar, such libraries retrieve results by parsing the specific

website HTML. A relatively minor change to the markup, therefore, could result in broken

functionality. This limits their long-term stability and the implementation of such libraries in a
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public tool would, therefore, be inappropriate. Using PubMed, it must be taken into consider-

ation that information that is buried in the full-text, with no indication in the abstract, will be

missed.

17.2 Literature retrieval

Text-mining tools have traditionally focused on the mining of abstracts as they can be retrieved

using a stable API (or as a bulk download) in a consistent format. As the PMC Open-Access

Subset has grown in recent years, text-mining research has begun to utilise the subset’s full-text

articles in the evaluation of new methods. As discussed in Section 5, however, the subset only

contains a small percentage of all published research. While the subset is useful for testing

certain text-mining methods it is not particularly useful for the end user8.

This lack of automated access to full-text literature was first approached as a technical chal-

lenge (although, as described in Section 5, the problem was revealed to be one of politics and

legalities). In addition to metadata regarding an article, records obtained by the PubMed API

include links to the location of the article on publishers’ websites. A system was developed

which followed these links and employed a general screen-scraping method (independent of

any specific markup) to retrieve the full-text article. This was a complex process as the links

supplied by PubMed do not have a standard destination. They may link to the abstract or di-

rectly to the full-text. The publisher may hold the full-text in HTML and/or PDF, and the PDF

may be linked to directly or be displayed in a frame within a webpage.

The evaluation of LiMPET in this chapter was carried out using full-text articles retrieved

using this method. As will be discussed in Part VI, however, this behaviour cannot be made

available in the public tool. Therefore, the public release of LiMPET only has the ability to

retrieve abstracts and full-text articles from the PMC Open-Access Subset using the NCBI E-

Utils API (the implications of which are shown in Section 18.2).

17.3 Metabolic reaction extraction

Metabolic reactions were extracted using the algorithm described in Part III. While minor bugs

were addressed throughout LiMPET’s development, the core methodology remained static.

8The usefulness of abstracts and open-access PMC articles in this domain is investigated in Section 18.2.
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17.4 Assignment to organisms

While the literature search strategy should retrieve articles relevant to a specific organism, it

remains necessary to assign individual reactions to an organism as articles rarely mention just

a single organism. The organism of interest may be mentioned in passing in an article abstract

while the article deals principally with a different organism. Reactions in such an article should

not be assigned to the organism of interest. An article dealing with the organism of interest

may compare against reactions in other organisms. Such reactions should be recognised as not

belonging to the organism of interest.

A simple, heuristic approach to this problem was developed — similar to entries in the gene

normalisation task of BioCreative III [45]. Using a development corpus of 30 documents the

following rules were developed, in order of priority:

1. If an organism is mentioned within a reaction sentence, the reaction is associated with

this organism. If multiple organisms are mentioned, the reaction is assigned to all.

2. If the previous point does not apply, the reaction described will belong to the first organ-

ism mentioned in the paper.

This small number of rules and their simplicity was surprising considering the expectation

that this may be a very challenging problem. Nevertheless, an algorithm incorporating these

rules was developed and tested on a corpus of 20 papers. Of the 78 reactions described in the

test set, 63 were assigned to the correct organism for an accuracy of 81%. By simply assigning

each reaction to the first organism mentioned in the paper, only 51 were assigned to the correct

organism for an accuracy of 65%.

17.5 Pathway building

Up to this point I have described the extraction of single metabolic reactions. There will be

cases, however, where the same reaction is extracted from multiple source sentences. If left as

separate reactions, the outputted pathway would likely be very hard to understand. Merging

separate extractions also provides an avenue to score the correctness of putative reactions (see

Section 17.6.1).

Metabolic reactions do not exist in isolation, but instead form pathways of reactions that

have evolved to carry out a specific function, such as the breakdown of large molecule in mul-
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tiple steps in order to harvest energy for the cell. In this section I discuss the methods I have

employed to link together individual metabolic reactions in the face of many difficulties, such

as promiscuous molecules that are involved in many reactions and incorrectly extracted reac-

tions.

To merge and link reactions together to form pathways it is necessary to disambiguate small

molecule names. LiMPET does so by obtaining InChIs from ChEBI [103] (Section 9.3.2 contains

a discussion of small molecule identifiers and chemical databases). As an InChI needs to be

retrieved for each small molecule extracted from the text, using the ChEBI web services would

be unwise due to usage limits and the time required for a large number of queries. A local

copy was, therefore, downloaded and the data stored in an embedded SQL database within

LiMPET. Variants of all synonyms (such as disregarding stereochemistry and whitespace; see

Appendix II for a full explanation) were pregenerated and indexed to allow for quick look-up.

In the program output, entity mentions assigned the same InChI identifier are merged to create

a single entity regardless of the individual extracted names.

Merging reaction extractions is not straightforward, however. Two extractions that contain

the exact same substrates and products can be safely merged, but in cases where some, but

not all, metabolites are shared by two extractions, a decision must be made about whether and

how to merge. For instance, consider the reactions:

A→ C

A + B→ C

There are two different ways of merging the reactions: taking the union (creating a reaction

including all metabolites from all the merged reactions) or taking the intersection (creating a

reaction including only those metabolites found in all the merged reactions). If we assume that

both reactions are correctly extracted, it is typically safe to assume that B is a side metabolite

and is not always referenced when describing the reaction — in which case, the union of the

reactions should be taken. Extractions are not always correct, however, so it may be that B is an

erroneous addition and is not involved in the reaction — in which case, the intersection should

be taken. Initially an algorithm was developed that would take the union of two extracted
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reactions (as the intersection would result in the potential loss of information) if the reactions

had at least one substrate and at least one product in common. Therefore, the reactions above

would be merged to create a single reaction (A + B → C) as both reactions have A as a sub-

strate and C as a product. This algorithm was problematic, however, and caused over-merging.

Consider the following three reactions:

A→ C

B→ D

A + B→ C + D

The algorithm would result in the union of all three reactions to create A + B → C + D. If

the third reaction extraction was incorrect, however, this would effectively hide A → C and

B → D as separate reactions from the user. In this case, the three reactions should simply

remain unmerged.

Ideally, a statistical method would be used that accounted for the number of times a reaction

was extracted. If A → C was extracted 10 times and B → D was extracted 10 times, while

A + B → C + D was extracted only once, the reactions could be confidently left separate.

Unfortunately, reactions are rarely extracted enough times for such a method to be viable.

As this over-merging proved to have a significant detrimental effect to the accuracy of out-

putted networks, a more conservative algorithm was employed that would only merge two

extractions containing the exact same metabolites — with the exception of currency molecules,

such as ATP, ADP, NAD and NAD+. Here currency molecules are defined as molecules that are

not confined to a specific process and do not typically form meaningful pathways. A manually

curated list of currency molecules was used (see Appendix III). Consider the following reaction

extractions:

allantoate + H2O→ S− ureidoglycolate + urea (1)

allantoate→ S− ureidoglycolate + urea (2)

allantoate→ S− ureidoglycolate (3)
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Extractions 1 and 2 would be merged as the only difference is the substrate H2O, a currency

molecule. Extraction 3 would not be merged due to the absence of the product urea, a non-

currency molecule. This under-merging can prove problematic in cases where there are few

extractions. If a specific reaction is extracted twice, but they cannot be merged, both extractions

may get lost amongst the false positives. If a specific reaction is extracted four times, however,

one extraction not being merged with the others has less of an impact. In practice this under-

merging rarely had any significant effect on extracted pathways.

While joining reactions together to form pathways is usually trivial (i.e. if the product

of one reaction has the same InChI as a substrate of a different reaction, the reactions can be

joined), currency molecules can be problematic. Currency molecules tend to form a small num-

ber of highly connected nodes which the rest of the network clusters around (due to their in-

volvement in many unrelated reactions). LiMPET, using the manually curated list of currency

molecules, recognises each mention of a particular currency molecule as a unique entity. There-

fore, completely separate reactions that both happen to convert ATP to ADP will not be linked

together. There are problems with using a static list to identify currency molecules, however, as

a metabolite’s status as currency or non-currency can depend on context. While acetyl-coenzyme

A is often confined to side reactions, it is an integral metabolite in the TCA cycle — pathways

downloaded from BioCyc using the API make no distinction between “side” and “integral”

metabolites.

Despite the literature search strategy (described in Section 17.1), the networks extracted are

typically very large, containing false positive extractions and correctly extracted, but irrelevant,

reactions in addition to the reactions relevant to the seed pathway (see Figure 12). A heuristic

approach was taken to score individual metabolites for both correctness and relevance.

Metabolites were scored individually because an extracted reaction may contain both cor-

rect and incorrect information (and relevant and irrelevant information). Consider the follow-

ing pathway description:

In parasitic mode they convert the PEP generated by glycolysis to OAA, which is

then reduced to malate via a cytosolic malate dehydrogenase (Figure 6). [137]

Two separate reactions are described in this sentence, but the core algorithm, unable to differ-

entiate them, extracts the following reaction:
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PEP + OAA→ malate

In this extraction both OAA and malate are correctly assigned to the reaction, while PEP is

incorrectly assigned.

In order to score different parts of the reaction separately, LiMPET splits the reaction into bi-

nary interactions (containing a single substrate and product) — in this case PEP→ malate and

OAA → malate. Each binary interaction is scored for correctness and relevance (see Sections

17.6.1 and 17.6.2) with the individual metabolites inheriting the highest correctness and rele-

vance scores from a containing binary interaction. When drawing the final network a threshold

is applied which would hide PEP due to its low score.

17.6 Training LiMPET

It was decided to train and test LiMPET on a particular use case: the extraction of novel path-

way routes. Groups of pathways were identified in MetaCyc that showed different routes

between two metabolites. For instance, consider the pathways “allantoin degradation to gly-

oxylate” I (from Saccharomyces cerevisiae) and II (from Arabidopsis thaliana) (see Figure 10). Both

pathways begin with allantoin and end with glyoxylate, but pathway II contains an extra inter-

mediate metabolite (S-ureidoglycine). LiMPET can then be tasked with extracting pathway II

from the literature using pathway I as the seed pathway.

The correctness and relevance parameters were tuned using a preliminary analysis of three

MetaCyc pathway extractions:

• “Allantoin degration to glyoxylate II” in Arabidopsis thaliana using pathway I as the seed

pathway.

• “Lactose degradation II” in Agrobacterium tumefaciens using pathway III as the seed path-

way.

• “Methylglyoxal degradation V” in Saccharomyces cerevisiae using pathway VII as the seed

pathway

These pathways were deemed to be fairly representative of MetaCyc pathways in general in
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Figure 10: The pathways “allantoin degradation to glyoxylate” I and II from Saccharomyces
cerevisiae and Arabidopsis thaliana, respectively. Both pathways begin and end with the same
metabolites, but both take a different route.
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terms of their size, but were otherwise selected at random from a set of pathways containing

alternate branches.

17.6.1 Reaction correctness

Two factors were used to assess the correctness of substrate-product binary interactions: the

presence of the interaction in BRENDA [138]9 and the number of times the interaction was

extracted. In total, across the three pathways, 1459 reactions were extracted, of which 220

contained an interaction found in BRENDA. 90% (197) of these reactions were found to be

correct extractions accurately reflecting the content of the sentence. The remaining 10% are

accounted for by incorrect extractions that correspond to real reactions purely by coincidence.

Of the 1239 reactions not found in BRENDA, 72% (893) were found to be unambiguously

incorrect extractions. The remaining 28% were not found in BRENDA for a number of reasons:

• Reactions involving generic molecules (such as alcohol) — while BRENDA contains generic

reactions, generic molecules cannot be assigned an InChI and, therefore, cannot be cross-

referenced with the database.

• Composite reactions — multiple reactions are often described as though they are a sin-

gle reaction. For instance, a sentence may describe the conversion of A to D without

mentioning the intermediate molecules B and C. While composite reactions will not be

found in BRENDA the extractions were an accurate representation of the information in

the sentence.

• There are a number of possible points of failure in assigning a molecule an InChI, any

of which can result in no InChI, or an incorrect InChI, being assigned and preventing

cross-referencing with BRENDA. There were cases of metabolites in ChEBI not having

comprehensive synonym lists, errors in accurately extracting text from PDFs and bugs in

searching the offline ChEBI database.

Of the 1211 reactions that were only extracted once, only 32% (389) were correct extractions.

The majority of extractions extracted more than once were correct, however: 60% of those ex-

tracted twice, 82% of those extracted three times, 86% of those extracted four times and 95% of
9As BRENDA is not freely downloadable, the companion database BKM-React [18] of cross-referenced species non-

specific metabolic reactions from BRENDA, KEGG and MetaCyc was used as a substitute.
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Factor Estimated probability of correct reaction

Found in BRENDA

True 0.90

False 0.28

Number of extractions

1 0.32

2 0.60

3 0.82

4 0.86

5 or more 0.95

Table 10: A table showing the probabilities of correctness factors derived from the development
set of three pathways.

those extracted more than five times. The extraction of the same non-existent reaction multi-

ple times is coincidental and generally involve metabolites found in many pathways (such as

acetyl-CoA).

Table 10 summarises the probabilities of the two correctness factors. These factors are used

to calculate extraction scores for each binary interaction in each extracted reaction. For exam-

ple, the extraction score for a binary interaction found in BRENDA and extracted only once

would be calculated like so:

0.9 + (1− 0.9)× 0.32 = 0.93

Likewise, the extraction score for a binary interaction not found in BRENDA, but extracted

four times would be calculated like so:

0.28 + (1− 0.28)× 0.86 = 0.90
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17.6.2 Reaction relevance

Reaction relevance is subjective and depends on the needs of the user. For the purposes of

training LiMPET and the subsequent test of performance, a binary interaction was defined as

relevant if it belonged to the pathway that was being looked for. For instance, when using

“allantoin degradation to glyoxylate I” as a seed pathway to extract “allantoin degradation to

glyoxylate II” in Arabidopsis thaliana from the literature, only those binary interactions found in

pathway II were deemed relevant.

As with correctness, a number of potential relevance factors for a binary interaction were

identified:

• The presence of the binary interaction in the seed pathway.

• The number of times the reaction is extracted.

• The relevance of the source document(s) — measured by the similarity between the set of

metabolites mentioned in the source document(s) and those occurring in the seed path-

way.

• The presence of the binary interaction in a branch connecting two metabolites occurring

in the seed pathway.

A substrate-product binary interaction found in the seed pathway is given a base score of 1.0

(which results in the final relevance score equalling 1.0), while a base score of 0 is given if not

found in the seed pathway.

Across the development set of pathways, relevance was partially correlated with the num-

ber of times a reaction was extracted with 18% of reactions extracted five or more times being

relevant, 10% of those extracted 4 times and 2% of those extracted 3 times.

To assess the relevance of a specific article, Dice’s coefficient [139] was employed. The mea-

sure is used to compare the similarity of two samples — in this case, the compared samples are

the small molecules mentioned in the article and the metabolites present in the seed pathway.

Dice’s coefficient is calculated using the same formula as the F-score (see Section 8). For in-

stance, if a seed pathway contains 10 metabolites and an article mentions 5 of these metabolites

in addition to a further 20 small molecules not found in the seed pathway, the Dice’s coefficient

would be calculated as follows:
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Precision =
true positives

true positives + f alse positives

=
5

5 + 20

= 0.20

Recall =
true positives

true positives + f alse negatives

=
5

5 + 5

= 0.50

Dice′s coe f f icient = 2× |A
⋂

B|
|A|+ |B|

= 2× 0.20× 0.50
0.20 + 0.50

= 0.29

For each extracted reaction, Dice’s coefficient was calculated for each source document. The

reactions extracted for each of the three pathways were merged into a single list and ranked

by the greatest Dice’s coefficient for each reaction. For each reaction the proportion of relevant

reactions (i.e. the reactions in the known pathways) was calculated in a window of 50 reactions

either side of the reaction. Figure 11 shows a chart plotting the Dice’s coefficient against the

proportion of relevant reactions. A logarithmic curve with the following equation was fitted to

the data10 to calculate a document relevance factor:

y = 0.0332686 ln(x) + 0.113365

10The regression calculation was performed using Gnumeric, an open-source spreadsheet program for Linux oper-
ating systems.
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Figure 11: A graph showing the correlation between the greatest Dice coefficient for a set of
source articles and the proportion of relevant reactions.

where y = document relevance factor, x = greatest Dice’s coefficient

Therefore, for a reaction where the greatest Dice’s coefficient achieved by a source document is

0.2, the document relevance factor would be calculated like so:

y = 0.0332686 ln(0.2) + 0.113365

y = 0.0598213

The final factor taken into account in calculating relevance is the presence of a binary in-

teraction in a branch connecting two metabolites found in the seed pathway. Not all branches

are of equal quality, however. Longer branches are typically less relevant as they are more

likely to be the integration of a separate pathway and not a variation on the seed pathway and

branches containing a low confidence reaction are less likely to be real branches. The quality

of the branch is calculated by simply multiplying the extraction scores of each reaction in the

branch. Therefore, short branches containing reactions with good extraction scores will achieve

a high score. This does, however, require all reactions in a branch to be correctly extracted — a

single missing reaction will cause the two seed metabolites to no longer be connected.
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Consider an extracted pair which is not found in the seed, but is extracted fours times, the

greatest Dice’s coefficient for any source document is 0.3 and it belongs to a branch containing

three reactions connecting two metabolites from the seed pathway (with individual extraction

scores for the reactions in the branch of 0.9, 0.8 and 0.7). The relevance score would be calcu-

lated as follows:

• Binary interaction not found in seed pathway:

x = 0

• Reaction is extracted four times, producing a score of 0.10 (as 10% of reactions extracted

four times in the development set were relevant):

x = 0 + (1− 0)× 0.10

= 0.10

• The greatest Dice’s coefficient of any source document is 0.3:

x = 0.10 + (1− 0.10)× 0.0332686 ln(0.3) + 0.113365

= 0.10 + (1− 0.10)× 0.07331051

= 0.166

• The binary interaction is part of a branch containing 3 reactions:

x = 0.166 + (1− 0.166)× (0.9× 0.8× 0.7)

= 0.166 + (1− 0.166)× 0.504

= 0.586

The calculated relevance score for the pair is 0.586.
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Figure 12: A partial view of a network (“allantoin degradation to glyoxylate” in Saccharomyces
cerevisiae) extracted by LiMPET. The full pathway is significantly larger and viewing details
would not be possible if shrunk to a single page. Metabolites are displayed as pink circles and
reaction nodes as blue squares. Extraction scores are proportional to the thickness of the con-
necting arrows, while relevance scores are reflected by the colour (from blue: low relevance, to
red: high relevance. Figure 13 shows the network with extraction and relevance score thresh-
olds applied.

17.7 Program output

Extracted reactions are outputted in SBML — a standard XML-based format designed for the

exchange of metabolic pathways [116]. Custom annotations containing the links to source arti-

cles and the extraction and relevance scores are assigned to reactions.

While Cytoscape, the standard biological network visualisation tool, can display SBML

files, custom annotations cannot be read. LiMPET can, therefore, also output delimited files

suitable for visualisation with Cytoscape. Visual properties of the network can then be used to

show the extraction and relevance scores of individual reactions (see Figures 12 and 13).
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a

b

c

Figure 13: The network shown in Figure 12, but with extraction and relevance score thresholds
applied.
Note the seemingly duplicate pairs of reactions joining metabolites (a, b and c). These pairs
of reactions consist of one reaction containing the side metabolites and one not containing
them (this shows the under-merging described in Section 17.5). The side metabolites have been
assigned relevance scores below the threshold and, therefore, cannot be seen in this network.
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17.8 Evaluating LiMPET

In addition to the development pathways, a further 14 MetaCyc pathways were identified with

an alternative pathway describing a different route between two metabolites. Branches varied

in length between 1 and 3 reactions. While there are more examples of alternative branches

(many longer in length) in MetaCyc, it was necessary that the pathway was fully annotated in

at least one species. Unfortunately many pathways in MetaCyc are formed from the merging of

incomplete pathways from multiple species; a drawback which is more prevalent with longer

pathways.

An extraction cut-off was applied to all extracted reactions (such that reactions not found

in BRENDA and only extracted once were below the threshold) and reactions were ranked

by relevance score. TAP-k was used to assess LiMPET’s performance (see Section 8.1.3 for a

detailed discussion of performance metrics and why TAP-k was chosen).

18 Results

In total, across all 14 pathways, over 4 500 articles were retrieved and mined. LiMPET suc-

ceeding in extracting and scoring highly all reactions in 9 of the pathways, while no reactions

were retrieved in 3 of the pathways. For the purposes of evaluation, reactions were assigned

the highest extraction and relevance score achieved by their individual metabolites. An extrac-

tion threshold of 0.75 was set and the remaining reactions were ordered by relevance score.

Table 11 shows the rankings of extracted reactions corresponding to reactions in the pathway

being reconstructed (see Appendix V for an example ranked list) and TAP-k scores for all 14

pathways. Appendix VI shows a selection of extracted pathways compared to their MetaCyc

counterparts.

TAP-k scores showed significant variation, even amongst completely extracted pathways.

The highest TAP-k scores were achieved by the extraction of “indole-3-acetate biosynthesis III”

in Pseudomonas savastanoi, while the extraction of “indole-3-acetate biosynthesis I” in Arabidop-

sis thaliana achieved far lower scores, despite both pathways being extracted correctly. This is

because the short length of the pathways has caused the TAP-k measure to become particularly

sensitive to a relatively small number of highly ranked irrelevant reactions.
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Seed pathway
Attempted
reconstruction

Organism
Ranking of
relevant reactions

Mean EPQ (k)

5 10 20

allantoin
degradation to
glyoxylate II

allantoin
degradation to
glyoxylate I

Saccharomyces
cerevisiae

1, 3, 4 0.6300 0.6269 0.6181

glycerol
degradation II

glycerol
degradation I

Arabidopsis
thaliana

1, 2 0.7778 0.7222 0.7037

glycerol
degradation I

glycerol
degradation II

Klebsiella
pneumoniae

2, 3 0.4841 0.4402 0.4127

indole-3-
acetate
biosynthesis III
(bacteria)

indole-3-
acetate
biosynthesis I

Arabidopsis
thaliana

5, 6 0.2068 0.1993 0.1929

indole-3-
acetate
biosynthesis I

indole-3-
acetate
biosynthesis III
(bacteria)

Pseudomonas
savastanoi

1, 2 0.7778 0.7778 0.7619

ent -kaurene
biosynthesis II

ent-kaurene
biosynthesis I

Arabidopsis
thaliana

3, 4 0.4111 0.3519 0.3081

ent-kaurene
biosynthesis I

ent -kaurene
biosynthesis II

Physcomitrella
patens

4 0.2250 0.2083 0.1513

mannosylglycerate
biosynthesis II

mannosylglycerate
biosynthesis I

Pyrococcus
horikoshii

0 0 0

mannosylglycerate
biosynthesis I

mannosylglycerate
biosynthesis II

Rhodothermus
marinus

3 0.3333 0.2917 0.2292

methylglyoxal
degradation V

methylglyoxal
degradation
VII

Pseudomonas
putida

0 0 0

phenylalanine
biosynthesis II

phenylalanine
biosynthesis I

Bacillus
subtilis

1, 31 0.2708 0.2625 0.2796

phenylalanine
biosynthesis I

phenylalanine
biosynthesis II

Nicotiana
sylvestris

0 0 0

pyruvate
fermentation to
ethanol II

pyruvate
fermentation to
ethanol I

Chlamydomonas
reinhardtii

6, 7, 25 0.1658 0.1623 0.1594

pyruvate
fermentation to
ethanol I

pyruvate
fermentation to
ethanol II

Zea mays 2, 3 0.4444 0.4259 0.4156

Average 0.3376 0.3192 0.3023

Table 11: The ranking of relevant reactions and the TAP-k scores achieved by LiMPET in the
attempted reconstruction of 14 MetaCyc pathways. In the ranking column green signifies a
complete extraction; orange, a partial extraction; red, a failed extraction.
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18.1 Error analysis

There were three categories of error found: failures to retrieve articles describing the relevant

reactions, failures to extract the relevant reactions from articles that have been retrieved and

failures to assign extracted reactions with a high relevance ranking.

Failure to retrieve the appropriate articles had a number of different causes:

• PubMed indexes the exact spelling in article records. While LiMPET’s search strategy in-

volves including organism and small molecule synonyms in the search query and PubMed

automatically includes synonyms known synonyms, the use of non-standard terms or

misspellings by authors can result in a failure to retrieve articles. The attempted recon-

struction of “phenylalanine biosynthesis II” in Nicotiana sylvestris failed to extract any rel-

evant reactions. This is due to most work in this area being carried out by a single group

who prefer the spelling Nicotiana silvestris — a variant spelling not present in NCBI Tax-

onomy. If the variant spelling is included in the LINNAEUS dictionary, the articles are

successfully retrieved and the relevant reactions extracted.

• By default LiMPET attempts to retrieve the 100 most recent articles for a given article.

One citation for “phenylalanine biosynthesis I” in Bacillus subtilis in MetaCyc, was found

by the search, but fell outside the 100 most recent articles. The article [140], published in

1976, was the 275th most recent article in the returned set from one query.

• PubMed principally includes records for research articles, whereas reactions in Meta-

Cyc are obtained from additional sources, such as books. Evidence for one reaction in

“phenylalanine biosynthesis I” in Bacillus subtilis was obtained from a book.

• The single reaction MetaCyc pathway “methylglyoxal degradation VII” in Pseudomonas

putida originates from a single source article. The article was published in the now de-

funct journal Agricultural and Biological Chemistry, which is not indexed in PubMed and

so could not be retrieved by LiMPET. The article could be found using a manual Google

Scholar search, however.

With successfully retrieved articles, there are two principal causes of errors:

• Following the extraction of a putative reaction, failure to assign an InChI for a component

metabolite effectively prevents the reaction from achieving high extraction and relevance

97



scores as the reaction cannot be combined with or linked to other reactions and cannot

be cross-referenced with BRENDA. In the extraction of “mannosylglycerate biosynthe-

sis I” in Pyrococcus horikoshii, LiMPET successfully retrieved the two adjoining reactions

GDP-mannose to mannosyl-3-phosphoglycerate to mannosylglycerate, but the extraction score

for both fell below the cut-off. This was due to a failure to cross-reference mannosyl-3-

phosphoglycerate with ChEBI, which listed two more complex synonyms for the metabo-

lite: 2-(α-D-mannosyl)-3-phosphonatoglycerate(3−) and 2-(α-D-mannosyl)-3-phosphonatoglycerate

trianion.

• As discussed in Section 15, LiMPET’s pattern-based core algorithm is unable to extract

reactions from descriptions that do not match one of the manually defined patterns. For

instance, in the extraction of “phenylalanine biosynthesis I” in Bacillus subtilis, LiMPET

was unable to extract the reaction phenylpyruvate to phenylalanine from the following sen-

tence:

This reaction is a transamination step involving glutamate and either p-hydroxyphenylpyruvate,

the precursor to tyrosine or phenylpyruvate, the precursor to phenylanine.

Failures to correctly assess relevance were also identified:

• As was discussed previously, a single reaction in the pathway “phenylalanine biosyn-

thesis I” in Bacillus subtilis was missed entirely. As this reaction is part of an alternative

branch containing two reactions, the other reaction, which was correctly extracted was

assigned a low relevance score as the branch could not be completed.

• In “pyruvate fermentation to ethanol II” in Chlamydomonas reinhardtii, one reaction in

the “novel” branch could not be cross-referenced with BRENDA, resulting in mediocre

extraction and branch scores. Compounding the error, the pathway involves metabolites

involved in many cellular pathways (such as pyruvate, acetyl-CoA and acetaldehyde)

which resulted in a large number of high scoring branches.

18.2 Extracting pathways from abstracts and PMC-OA full-text articles

In section 17.2 I described the method used for obtaining full-text articles by screen-scraping

publishers’ websites. As this behaviour cannot be released in the final tool, however, the evalu-

ation of LiMPET was repeated, but the retrieval of text was limited to abstracts and open-access
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PMC articles that could be retrieved using the NCBI E-Utils API. Table 12 shows a comparison

of the recall achieved compared to the original performance using screen-scraping to retrieve

all available full-text articles. For the purposes of this analysis, a reaction was considered to

be successfully retrieved regardless of its relevance ranking to better determine how much

available data is in the open-access literature. Despite these lenient conditions the limitation

in text to mine produced a significant drop in performance with only a single pathway being

completely extracted and no relevant reactions being extracted from 8 pathways.

19 Discussion

Here I have described the expansion of LiMPET from a core metabolic reaction extraction al-

gorithm to a pipeline able to retrieve relevant articles and to construct individually extracted

reactions into pathways. LiMPET performed well with its ability to retrieve novel alternative

branches for a given pathway in specific organisms, with 9 of the 14 evaluation pathways being

retrieved completely with individual reactions scored appropriately. While the TAP-k scores

achieved are largely in line with those from the gene normalisation domain [45, 141, 142], they

are difficult to interpret in this context due to the low number of possible relevant extractions.

Despite this, a subjective analysis of the rankings of individual relevant reactions show a good

performance with relevant reactions typically being placed within the top ten.

The partial and failed pathway extractions highlight weaknesses of the method and tool.

While certain errors, such as defunct journals not being indexed by PubMed, cannot be solved

by improving the method, potential improvements could be made to the search strategy and

the core algorithm. The significant drop in performance when the evaluation was repeated

using just abstracts and full-text articles from the PMC-OA Subset, however, raises concerns

about whether a substantial performance increase could be found without access to more full-

text articles. The implications of these findings are discussed in Part VI.
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Attempted
reconstruction Organism

Total
reactions in

pathway

Recall from all
full-text

Recall from
abstracts and

PMC-OA
articles

allantoin
degradation to

glyoxylate I

Saccharomyces
cerevisiae 3 1.00 0.33

glycerol
degradation I

Arabidopsis
thaliana 2 1.00 0.00

glycerol
degradation II

Klebsiella
pneumoniae 2 1.00 0.00

indole-3-acetate
biosynthesis I

Arabidopsis
thaliana 2 1.00 0.50

indole-3-acetate
biosynthesis III

(bacteria)

Pseudomonas
savastanoi 2 1.00 0.50

ent-kaurene
biosynthesis I

Arabidopsis
thaliana 2 1.00 0.00

ent -kaurene
biosynthesis II

Physcomitrella
patens 1 1.00 1.00

mannosylglycerate
biosynthesis I

Pyrococcus
horikoshii 2 0.00 0.00

mannosylglycerate
biosynthesis II

Rhodothermus
marinus 1 1.00 0.00

methylglyoxal
degradation VII

Pseudomonas
putida 1 0.00 0.00

phenylalanine
biosynthesis I Bacillus subtilis 3 0.67 0.33

phenylalanine
biosynthesis II

Nicotiana
sylvestris 3 0.00 0.00

pyruvate
fermentation to

ethanol II

Chlamydomonas
reinhardtii 2 1.00 0.00

pyruvate
fermentation to

ethanol I
Zea mays 3 1.00 0.33

Table 12: A comparison of the recall achieved by LiMPET when extracting pathways from
all available full-text retrieved by screen-scraping with the extraction of pathways from just
abstracts and PMC-OA articles.
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Part V

Towards the automated annotation of

BioCyc predicted pathways

20 Introduction

The use of text-mining is increasingly common in the curation of gene information for model

organism databases. The maintainers of WormBase [143], a gene-centric database for the model

organism Caenorhabditis elegans, incorporate text-mining methods into their curation workflow

[144]. New articles are flagged as containing certain data types (such as expression patterns

and genetic interactions) and named entity recognition (of entities such as transgenes and

molecules) is carried out using the Textpresso information retrieval system [145]. The Worm-

Base team have collaborated with the maintainers of the model organism databases dictyBase

(Dictyostelium discoideum) and TAIR (Arabidopsis thaliana), to implement their pipeline in the

curation of gene data from other organisms. The FlyBase Consortium are also actively investi-

gating the implemenation of text-mining methods in their curation workflow [8].

BRENDA [5] was originally a purely manually annotated database, but has since supple-

mented this manually extracted data with data retrieved using text-mining methods. Unlike

the biocuration of gene-centric model organism databases, however, data from text-mining is

used to supplement manual curations (and is clearly marked as such). The subset FRENDA

(Full Reference ENzyme DAta) contains data obtained by mining article titles and abstracts for

co-occurring enzyme and organism names, while AMENDA (Automatic Mining of ENzyme

DAta) uses ontologies to retrieve the tissue source and subcellular localisation of enzymes.

While it would require significant man-power to manually determine all the organisms that a

particular enzyme is known to be present in, FRENDA is able to provide relevant references to

the user who can then rapidly check the extracted information.

I believe that metabolic pathway databases, such as BioCyc, could greatly benefit from the

addition of data retrieved using text-mining similar to BRENDA. Here an example use-case

will be shown: using LiMPET to identify evidence in the literature for predicted pathways in
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BioCyc.

As of August 2014, MetaCyc contains 2 569 annotated pathways and BioCyc contains 3 563

organism databases containing predicted pathways. While most MetaCyc pathways will not

have a corresponding predicted pathway in every organism database, there is still too much

available data to attempt to corroborate every predicted pathway for every organism. LiMPET’s

extraction process involves two long-running sub-tasks: downloading full-text articles and ex-

tracting reactions from the text. The MetaCyc pathways used to assess LiMPET’s performance

in Part IV were modest in size, resulting in no more than 500 papers being downloaded and

mined for a single test pathway — a maximum of 3 hours was taken for a single pathway

extraction. As we investigate larger pathways and using multiple variant pathways as seeds,

however, the run time will increase dramatically11. A set of pathways in a single organism

were, therefore, selected for investigation.

21 Pathway and organism selection

Previously I have described attempted pathway extractions in many organisms ranging from

thoroughly studied model organisms, such as Arabidopsis thaliana, to organisms, such as Nico-

tiana sylvestris, with relatively few citations. Model organisms are unsuitable for this task as

there are specialist teams that curate relevant research for the Tier 1. While retrieving reactions

present in organisms with few citations proved successful in a number of cases (see Section 18),

it was known beforehand that the reactions were present in the literature. For a lesser known

organism, such as N. sylvestris, where only 372 article records in PubMed reference the organ-

ism, few pathways will have been characterised. The ideal organism for this task is one that

is well studied, but has few curated pathways in MetaCyc. Mycobacterium tuberculosis, with its

effect on human health, is well-studied with approximately 50 000 potentially relevant articles

in PubMed, but only 46 pathways in BioCyc are listed as being experimentally observed in the

organism.

The identity of these 46 pathways is perhaps evidence of bias towards those of therapeutic

interest (such as mycothiol biosynthesis), but whether that is a bias in the curation of MetaCyc

11Abstracts and PMC open-access full-text articles, however, can be retrieved rapidly as the NCBI E-Utils API allows
bulk downloading and no screen-scraping is required. Attempts were made to parallelise the core algorithm, but the
architecture of certain third party libraries prevented this. It would be possible to run algorithm is separate processes
(in a cluster, for instance), but the memory needs would be considerable.
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pathways or in the focus of original research is unclear. A further 1 117 pathways are predicted

to to be present, however. Of these pathways I chose a subset of “core” pathways (the 20 amino

acid biosynthesis pathways) that I considered to be likely candidates for research and, there-

fore, more likely than a purely random selection to have supportive evidence in the literature

that has not been curated by BioCyc.

For each amino acid, LiMPET was provided with each of its biosynthesis pathways in Meta-

Cyc as seed pathways. For instance, in the case of asparagine biosynthesis, the three pathways

“asparagine biosynthesis” I, II and III were merged and used as a seed pathway despite path-

way I being the only pathway predicted to exist in M. tuberculosis. All variants were used as

this would increase the likelihood of finding variants with evidence in the literature that have

not been predicted to be present by BioCyc. For each PubMed query the most recent 100 arti-

cles were downloaded — the total number of articles to mine for a single pathway ranged from

362 to 937 articles.

22 Results

Table 13 shows the amino acid biosynthesis pathway variants predicted to be present in M.

tuberculosis and the variants for which evidence LiMPET was able to extract from the literature.
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Table 13: A table showing the amino acid biosynthesis pathway variants predicted to be present
in M. tuberculosis by BioCyc and the coverage of each pathway by reactions extracted from the
literature using LiMPET. The cell colour indicates the level of coverage, with green showing a
complete pathway extraction, orange showing a partial extraction and red indicating that no
reactions in the pathway were extracted. Blue cells show extracted pathways that were not
predicted to be present by BioCyc.

Amino acid

biosynthesis

pathway

Variants predicted

in M. tuberculosis

in BioCyc

Pathway coverage

by LiMPET

Alanine

I 0/3

II 1/1

III 1/1

Arginine
I 0/9

II 0/8

Asparagine I 0/1

Aspartate
I 0/1

II 0/2

Cysteine
I 2/2

II 0/2

Glutamate I 1/1

Glutamine I 1/1

Glycine
I 0/1

III12 1/1

Histidine I 0/10

Isoleucine
I 2/13

I (from threonine) 0/7

12Glycine biosynthesis III was not predicted to be present by BioCyc, but was extracted by LiMPET.
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Table 13: A table showing the amino acid biosynthesis pathway variants predicted to be present
in M. tuberculosis by BioCyc and the coverage of each pathway by reactions extracted from the
literature using LiMPET. The cell colour indicates the level of coverage, with green showing a
complete pathway extraction, orange showing a partial extraction and red indicating that no
reactions in the pathway were extracted. Blue cells show extracted pathways that were not
predicted to be present by BioCyc.

Amino acid

biosynthesis

pathway

Variants predicted

in M. tuberculosis

in BioCyc

Pathway coverage

by LiMPET

Leucine I 0/6

Lysine
I 2/9

VI 0/7

Methionine

I 0/5

II 0/6

III 0/2

Phenylalanine I 3/3

Proline I 0/4

Serine I 3/3

Threonine
I 0/6

I (from

homoserine)

0/2

Tryptophan I 3/6

Tyrosine I 3/3

Valine I 2/4
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Figure 14: The three alanine biosynthesis pathways in MetaCyc.

LiMPET was able to corroborate a number of BioCyc predicted pathways. Of the 20 amino

acids, at least one complete biosynthesis pathway corresponding to a MetaCyc pathway was

extracted for 7 amino acids. Incomplete biosynthesis pathways were extracted for a further 4

amino acids. While no reactions from the biosynthesis pathways for the other 9 amino acids

were extracted, this is not necessarily a fault of LiMPET — the pathways may not have been

characterised in the literature.

For instance, consider alanine biosynthesis. Figure 14 shows the three experimentally ver-

ified pathways in MetaCyc — all of which are predicted to exist in Mycobacterium tuberculosis.

LiMPET was able to extract both the forward and backward reactions of pathway II and the

reaction of pathway III, but was unable to find either of the pathway I reactions. Consider

the reaction pyruvate to L-alanine. LiMPET returned links to the two source papers and the

specific sentences that this reaction was extracted from:

“L-AlaDH catalyzes the NADH-dependent reversible oxidative deamination of l-

alanine to pyruvate and ammonia.” [146]

“NAD(H)-dependent l-AlaDH catalyze the oxidative deamination of l-alanine to

pyruvate and ammonia (catabolic reaction) or, in the reverse direction, the reductive

amination of pyruvate to l-alanine (biosynthetic reaction).”13 [147]

13Note that the erroneous hyphen in the final word reaction, is due to the sentence being extracted from a PDF, where
there is no differentiation between soft and hard hyphens. While in this case the soft hyphen could be eliminated
using an English dictionary, differentiating soft and hard hyphens in specialist terms (such as small molecule names)
is a more difficult task.
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Figure 15: The pathways “glycine biosynthesis I” and “glycine biosynthesis III” from MetaCyc.

In the case of glycine biosynthesis, LiMPET was able to extract information that contra-

dicted the BioCyc prediction. Figure 15 shows two alternate glycine biosynthesis pathways

from MetaCyc. While BioCyc only predicted the presence of “glycine biosynthesis I” in M.

tuberculosis, LiMPET was able to extract “glycine biosynthesis III”, while finding no evidence

for the predicted pathway.

The glyoxylate to glycine reaction was extracted from three different sentences in a single

article [148]:

“The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the

reductive amination of glyoxylate to glycine but not the reverse reaction.”

“GxRA is involved in the reductive amination of glyoxylate to glycine.”

“This enzyme was detected by the reductive amination of glyoxylate to glycine

concurrent with the oxidation of NADH to NAD+ (Fig. 1).”

Moreover, a manual search for the predicted pathway using PubMed, Google Scholar and

Google was not able to find any evidence of the reaction’s presence in M. tuberculosis. While

this does not mean that the BioCyc prediction is incorrect, the failure to predict the presence of

the pathway “glycine biosynthesis III” certainly is incorrect. In the description of the “glycine
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biosynthesis III” pathway it is noted that the pathway has been documented in archaea, bacte-

ria and eukaryotes, but it is unclear why it was not predicted for M. tuberculosis specifically.

A number of pathways were partially extracted. In the case of tryptophan and valine

biosynthesis, LiMPET was able to extract half of the reactions from the predicted pathways.

23 Discussion

Here I have shown an example use-case for LiMPET: the automated extraction of literature

evidence for predicted pathways. Using collections of MetaCyc pathways I was able to use

LiMPET to find corroborating evidence for a number of amino acid biosynthesis pathways in

Mycobacterium tuberculosis and contradictory evidence for one pathway.

BioCyc tier 1 databases have been used to assess the performance of LiMPET previously —

namely EcoCyc (see Part III) and MetaCyc (see Part IV). Using these tier 1 databases, we can be

confident that descriptions of the curated metabolic reactions exist in the literature. Therefore,

whenever LiMPET fails to extract a pathway or a particular reaction from the literature, we

can be confident that some part of the methodology has failed and these failures can be further

investigated. In real use and in this performance assessment, however, there is less certainty

that the information is even in the literature.

Using the functionality shown here, LiMPET could be used to help database curators and

users, alike. Using LiMPET, I was able to extract evidence for seven complete amino acid

biosynthesis pathways. The only manual step needed for each pathway was the retrieval of

MetaCyc IDs for the seed pathway; a process requiring only a few minutes in each case (as

described in Section 17, the BioCyc API cannot be used to search the database by pathway

name — instead the pathway IDs must be manually extracted from the webpage URLs). A

curator would potentially only need to read a select few papers in depth to ensure extractions

were correct.

Currently BioCyc predicted pathways can provide a useful start for a researcher interested

in a particular pathway. As the reliability of predictions is not known, however, individuals

still need to carry out their own research of the literature. Using LiMPET a single researcher

could potentially find evidence for a predicted pathway without needing to manually search

the literature.
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Perhaps the most compelling potential use, however, is the automated annotation of pre-

dicted pathways with evidence from the literature, similar to how BRENDA displays species-

specific enzyme data from FRENDA and AMENDA (and clearly labels the origin of the data).

Once the pathway and organism identifiers have been retrieved, the running time of the

program varies greatly depending on the size of the pathways and literature coverage of the

organism of interest. At the high end, the four glutamine biosynthesis pathways in MetaCyc

contain 16 non-currency molecules (see Section 17.5 for a description of currency molecules),

resulting in the retrieval of 937 articles. At the low end, the single valine biosynthesis pathway

resulted in the retrieval of just 362 articles. The amount of retrieved articles also affects the time

taken to extract reactions.

The attempted extraction of the lysine biosynthesis pathway shows the brittleness of some

parts of the method. A minireview documenting the entire pathway in M. tuberculosis [149]

was retrieved and all reactions were successfully extracted. The majority of the reactions were

assigned to the incorrect organism, however. This was due to the title of the article, which

referred to M. tuberculosis, not being extracted with the rest of the article from the article’s

webpage. Much of the original research referenced by the review was successfully found, but

could not be retrieved because they were published by smaller publishers which the article

downloading software could not access.

While this work has shown the potential of LiMPET in assisting database curation, it has

further shown that the weak link in the process is the retrieval of full-text articles. I will discuss

the implications of this in Part VI.
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Part VI

Conclusions and further work

In this thesis I have described the development of LiMPET, a tool for the automated extraction

of metabolic pathways from research articles. Initial work focused on the development of a

prototype text-mining algorithm for the extraction of individual metabolic reactions. As the

bioinformatics community has focused on the extraction of other types of interactions and this

problem had yet to be tackled, expectations of this relatively simple pattern-based approach

were rather modest. When tasked with extracting reactions from articles known to describe

various E. coli pathways, however, the algorithm outperformed these expectations significantly.

While it had initially been planned to either improve the prototype algorithm or replace it

entirely with a more sophisticated method at this stage, it was decided to focus instead on

other aspects in order to produce a usable tool.

Following the extraction of individual metabolic reactions by the core algorithm, reactions

are assigned to a host organism as articles may contain references to multiple organisms. Ex-

tracted metabolites are cross-referenced with ChEBI and InChIs assigned to allow the merging

of separate mentions of the same reaction and to join reactions together to form pathways. Ex-

tracted reactions are then scored on their correctness and relevance to allow the user to find the

particular reactions of interest.

While LiMPET has shown good performance, it is important to recognise the tool’s weak-

nesses and how they could be mitigated:

• The development of LiMPET has been limited by the lack of a metabolic reaction cor-

pus. Ideally, text-mining methods are tested by mining a corpus of text which can then

be compared to gold-standard annotations with recall, precision and F-score as standard

measures with which to report these results. Without a suitable corpus, non-standard

testing methods using relatively small datasets have been employed and the results pro-

duced cannot be directly compared to other tools14. While the manual error analyses

employed give good insight into the performance of LiMPET and would allow further

14While there are no other metabolic pathway extraction tools to compare with, comparisons with tools in related do-
mains, such as protein-protein interaction extraction would be useful. It is also my hope that other metabolic pathway
extraction methods will be developed in the future — a corpus would allow direct comparisons with LiMPET.
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development of the method, development of a machine learning method is not possible

without a corpus.

• The core algorithm developed here was originally conceived with the baseline PPI ex-

traction algorithm from Kabiljo et al. [1] in mind. Despite the relatively simple heuristic

methodology, however, the algorithm performed well and LiMPET was built around it.

Limitations of the algorithm were recognised, such as difficulties extracting reactions in-

volved in fatty acid biosynthesis. While the previously described lack of a metabolic re-

action corpus would hinder the development of a supervised machine learning method,

a semi-supervised learning method would potentially be feasible.

While supervised learning takes advantage of manually labeled text to train a statistical

method, this labeling is an expensive process. Unsupervised learning methods, however,

are able to extract string of words between entities in unlabeled text and identify patterns

which can then be mapped on to specific relationships [150]. As these methods have no

way to determine what an interested relationship is, however, these patterns may be dif-

ficult to map to relationships in certain knowledge domains.

Distant supervision, a semi-supervised learning method, can use a heuristic function or

knowledge base to weakly label text and identify sentences likely to express a particu-

lar relationship [151]. An unsupervised learning method can then be used to identify

patterns in the sentences with the knowledge that the identified patterns can likely be

mapped to the relationship of interest. This technique could potentially be applied to

metabolic reaction extraction using a database of known metabolic reactions, such as

BRENDA (where sentences containing all metabolites contained in a single known re-

action would be identified as likely containing a reaction description), and would be a

worthwhile avenue for further development.

• The algorithm to assign reaction extractions to their host organisms is quite brittle. Sim-

ilar heuristic methods to the algorithm developed here were used in entries to the gene

normalisation task of BioCreative III [45]. The algorithm assumes that articles have a

primary organism of interest (which will be the first organism mentioned in the article)

and sentences describing reactions belonging to other organisms will also contain the

organism name. These assumptions have generally been found to be correct, but arti-

cles involving multiple organisms (such as a review article comparing enzymes across a
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genus) can easily confuse the algorithm. A failure to identify the first organism named

in the article (for instance, if the article is not extracted fully or extraction from a PDF

produces some garbled text) can result in an incorrect identification of the article’s pri-

mary organism. A small corpus of full-text articles with annotated species names and

metabolic reactions was created to develop the algorithm, but a larger corpus would al-

low the development of a more sophisticated statistical method.

• Assigning InChI identifiers to extracted small molecules is a critical step, allowing reac-

tions to be linked together and cross-referenced with BRENDA. This is carried out using

an offline ChEBI database with pregenerated name variants. While the variants account

for the presence or absence of expected additional elements (such as stereochemical iden-

tifiers and hyphens) a simple misspelling or non-standard spelling can cause a search

failure. For instance, consider the small molecule D-glucose 1,6-bisphosphate. The search

strategy would identify glucose-bisphosphate as the same molecule, but not D-glucose 1,6-

bisphosfate, despite the latter’s closer spelling overall. While cases of being unable to find

correctly named molecules are unusual, their detrimental effect to the rest of the pipeline

may warrant a more sophisticated search method, such as a search index capable of fuzzy

string matching.

• No attempt is currently made to distinguish the stereochemistry of an extracted molecule.

For example, alanine, D-alanine and L-alanine are all assigned the same InChI. This is due

to the stereochemistry typically not being included by the author when the specific enan-

tiomer can be easily inferred (e.g. glucose typically refers to D-glucose as L-glucose is rarely

found in nature). Unlike most human readers, however, computer programs do not have

the benefit of a scientific education and cannot infer such information.

• A reaction’s extraction score is determined by its presence in BRENDA and the number

of times it is extracted. It does not, however, take into account the sentence content. As

such the score is not very granular and novel reactions that are only found once have the

potential to be overlooked. Unfortunately the scores produced by the core algorithm can

only be used to compare reaction assignments in the same sentence and are not compa-

rable between extractions from separate sentences15. Developing a sentence complexity

15For instance, an extracted reaction containing many substrates and products from one sentence will typically score
higher than an extracted reaction from a different sentence containing just a single substrate and product, regardless
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measure that takes into account factors not currently considered (such as the presence of

negation words and the length of the sentence) could alleviate this problem.

• The concept of a “relevant” reaction is subjective and is dependent on the needs of the

user. While there are a number of different factors taken into account in scoring a re-

action’s relevance, the method here focuses on finding alternate routes between two

metabolites. Different relevance algorithms could be developed. For example, the user

could be interested in links between pathways.

• The extraction and relevance scoring methods were refined using a relatively small train-

ing set of three pathways. Despite the limited number of pathways, approximately 1

400 putative reactions were extracted in total — all of which were manually assessed. It

would be possible to refine the scores using a larger set, but this would require signifi-

cantly more man-power.

• The branch finding algorithm is brittle. The algorithm relies on a complete, uninterrupted

path between two metabolites. If a single reaction is missed, all other reactions in the

branch will achieve a low relevance score if the branch is not known in other organisms.

It would be possible to identify potential reactions that bridge a gap that exist in other

organisms using BRENDA. Unfortunately assessing the plausibility of such links existing

would require species-specific information (to identify the closest related organism con-

taining the linking reactions) which would require access to the BRENDA commercial

version.

Despite these various improvements that could be made, it is clear that the greatest weakness

of LiMPET, and by extension other text-mining tools, is the retrieval of text to mine.

After the development of the core algorithm I identified the automated retrieval of full-text

articles as potentially the most important component in developing a usable text-mining tool.

The retrieval of full-text articles (from non-PMC sources) was not included in any published

text-mining tool and the subject was never broached in any related articles. I saw this as a

problem that had a technical solution and I set out to develop it.

I developed a system which followed links in PubMed article records to publishers’ web-

sites. Once connected to the publisher’s website the system could then follow links based on

of the quality of the extraction, as the scoring algorithm increments the score for each metabolite included (see Section
12.3).

113



their text (such as Full Text (HTML)) to find the full-text article in either HTML of PDF. The

method performed well and LiMPET gained the ability to retrieve the full-text of any article.

It was shown that LiMPET performs significantly better when it is able to retrieve large quan-

tities of full-text articles compared to when only abstracts and open-access full-text articles are

available (see Section 18.2).

In my enthusiasm to solve this problem, however, I failed to see that the problem wasn’t a

technical one, but was a political and legal one (see Section 5 for a full discussion). While re-

trieving articles for the work in Part V, one publisher website detected the use of an automated

program and blocked its access. It became clear that releasing a tool with such functionality

would be irresponsible. The public release of LiMPET, therefore, only has the ability to auto-

matically download article abstracts and full-text articles from the PMC Open-Access Subset

(although locally stored articles can also be mined).

Although I identified several potential algorithmic improvements above, I am skeptical

about how large an improvement in performance could be seen as the availability of full-text

articles is by far and away the limiting factor. Unfortunately this is not a technical challenge

that can be solved by a little creative thinking, rather, it is a challenge in reconciling the dif-

ferent needs and motivations of a number of disparate groups. There has been real progress

in recent years with governments realising the worth of text-mining and introducing new leg-

islature legitimising its use, and a willingness by publishers to compromise on access to their

intellectual property.

24 Exploiting LiMPET

LiMPET has been integrated with other tools. The output SBML file produced by the tool

can be read by the metabolic pathway analysis tool Metingear [152] developed at the EBI.

In addition to displaying the basic extracted reactions, Metingear can also display links to the

source articles and the extraction and relevance scores. Using Metingear, data obtained through

text-mining can easily be integrated with data from other sources.

Throughout this project I have worked with scientists at Unilever with the aim of integrat-

ing LiMPET with their systems — specifically the pipeline software Pipeline Pilot from Accel-

rys. Pipeline Pilot allows researchers with limited programming experience to build pipelines
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from a host of modular components. I have written a wrapper for LiMPET allowing the tool to

be incorporated into pipelines to allow the mining of internal documents.

While the integration of LiMPET with these third-party tools can allow individual researchers

to carry out their own text-mining analysis of metabolic pathways, a more compelling use-case

would be its use in assisting database curation. In MetaCyc, data for specific metabolic reac-

tions can originate from a limited number of sources. Using LiMPET, curators would be able to

find extra evidence with the only manual effort being to check that the specific source articles

for the returned reactions.

In Section 2 I described how databases such as BioCyc and KEGG predict metabolic path-

ways based on genome sequences. While these predictions provide a useful starting point for

research, the reliability of these predictions is unknown. LiMPET could be used to find poten-

tial evidence for predicted reactions, with no manual effort, that could be displayed to the user

(and clearly marked as having been found using text-mining). The use of text-mining would

encourage a more collaborative approach to pathway curation. With users checking the relia-

bility of retrieved evidence themselves, they could also report their findings to inform others.

Evidence flagged as unreliable by multiple users would be brought to the attention of man-

ual curators who could remove it. Likewise, predicted pathways with reliable evidence could

become potential targets of manual curation.
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Figure 16: The KEGG network “arginine and proline metabolism”.
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26 Appendix II

To allow metabolites to be looked up rapidly in the offline ChEBI database, name variants were

pregenerated and indexed. Consider the small molecule aldehydo-D-glucose 6-phosphate(2−).

The following variants were generated:

1. Remove round and square brackets with their content.

aldehydo-D-glucose 6-phosphate

2. Remove stereochemistry identifiers.

aldehydo-glucose 6-phosphate

3. Remove all whitespace.

aldehydo-glucose6-phosphate

4. Remove non-word characters (the set of word characters contains the 26 letters, 10 num-

bers and underscore).

aldehydoglucose6phosphate

5. Remove any non-letters.

aldehydoglucosephosphate

Small molecule entities recognised by OSCAR4 undergo the same variant generation. Each

variant is used to query the database in turn until a match is found. Consider the extracted

entity aldehydo glucose 6-phosphate. The following variants corresponding to the pregenerated

variants are generated:

1. aldehydo glucose 6-phosphate - no match

2. aldehydo glucose 6-phosphate - no match

3. aldehydoglucose6-phosphate - no match

4. aldehydoglucose6-phosphate - matched
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27 Appendix III

The manually curated table below was used to identify currency molecules. Care was taken to

only include small molecules that would be considered currency molecules in the vast majority

of cases.
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Name InChI

NAD+ InChI=1S/C21H27N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-

16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-

10)27-3-1-2-9(4-27)18(23)33/h1-4,7-8,10-11,13-16,20-21,29-32H,5-6H2,(H5-

,22,23,24,25,33,34,35,36,37)

NADH InChI=1S/C21H29N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-

16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-

10)27-3-1-2-9(4-27)18(23)33/h1,3-4,7-8,10-11,13-16,20-21,29-32H,2,5-

6H2,(H2,23,33)(H,34,35)(H,36,37)(H2,22,24,25)

NADP+ InChI=1S/C21H28N7O17P3/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(44-

46(33,34)35)14(30)11(43-21)6-41-48(38,39)45-47(36,37)40-5-10-

13(29)15(31)20(42-10)27-3-1-2-9(4-27)18(23)32/h1-4,7-8,10-11,13-16,20-21,29-

31H,5-6H2,(H7-,22,23,24,25,32,33,34,35,36,37,38,39)

NADPH InChI=1S/C21H30N7O17P3/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(44-

46(33,34)35)14(30)11(43-21)6-41-48(38,39)45-47(36,37)40-5-10-

13(29)15(31)20(42-10)27-3-1-2-9(4-27)18(23)32/h1,3-4,7-8,10-11,13-16,20-21,29-

31H,2,5-6H2,(H2,23,32)(H,36,37)(H,38,39)(H2,22,24,25)(H2,33,34,35)

ATP InChI=1S/C10H16N5O13P3/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-

10)1-25-30(21,22)28-31(23,24)27-29(18,19)20/h2-4,6-7,10,16-

17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20)

ADP InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-

10)1-23-27(21,22)25-26(18,19)20/h2-4,6-7,10,16-

17H,1H2,(H,21,22)(H2,11,12,13)(H2,18,19,20)

AMP InChI=1S/C10H14N5O7P/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(22-

10)1-21-23(18,19)20/h2-4,6-7,10,16-17H,1H2,(H2,11,12,13)(H2,18,19,20)

C InChI=1S/C

O InChI=1S/O

N InChI=1S/N

H InChI=1S/H

CO2 InChI=1S/CO2/c2-1-3

H2O InChI=1S/H2O/h1H2
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28 Appendix IV

28.1 Reaction word stems

• to

• convers

• convert

• transfer

• add

• incorpor

• transform

• isomeris

• isomeriz

• isomer

• coupl

• cycliz

• cyclis

• cyclis

• cleav

• dimer

• dimeris

• trimer

• trimeris

• condens

• aromat

• hydrat

• dearomat

• decarboxyl

• dehydrogen

• reduc

• reduct

• oxidis
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• oxidiz

• oxid

• dismut

• transhydrogen

• peroxid

• peroxidis

• peroxidiz

• de-epoxid

• hydrogen

• dioxygen

• lipoxygen

• monooxygen

• oxygen

• epoxid

• hydroxyl

• transhydroxyl

• demethyl

• desatur

• ferroxid

• dehalogen

• deiodin

• methyl

• N-methyl

• hydroxymethyl

• formyl

• aminomethyl

• formimin

• carboxyl

• carbamoyl

• amidin

• transketol

• transadol
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• acyl

• succinyl

• palmitoyl

• coumaroyl

• acetyl

• arachidonoyl

• benzoyl

• galloyl

• sinapoyl

• tigloyl

• tetradecanoyl

• hydroxycinnamoyl

• feruloyl

• malonyl

• mycolyl

• dihydroxycinnamoyl

• piperoyl

• trimethyltridecanoyl

• myristoyl

• methylpropanoyl

• thiol

• glutamyl

• lysyl

• cyclis

• oxidocyclis

• oxidocycl

• leucyl

• aspartyl

• arginyl

• glutamyl

• alanyl

• glutamylcysteinyl
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• phosphoryl

• dextran

• sucrat

• glucano

• galactosyl

• glucosyl

• mannosyl

• acetylglucosaminyl

• galactosyl

• abequosyl

• fucosyl

• acetylglucosaminyl

• acetylgalactosaminyl

• glucuronosyl

• fructosyl

• glycosyl

• glyco

• rhamnosyl

• acetylmannosaminouronosyl

• glucuronosyl

• glucosaminyl

• ribosyl

• deoxyribsyl

• phosphoribosyl

• diphosphoryl

• phosphoribosyl

• apiosyl

• xylosyl

• dihydrostreptosyl

• arabinosyl

• sialyl

• dimethylallyl
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• pyridinyl

• sulfuryl

• adenosyl

• carboxyvinyl

• isopentenyl

• geranyl

• octaprenyl

• polyprenyl

• aminocarboxypropyl

• hexaprenyl

• farnesyl

• decaprenyl

• pentaprenyl

• nonaprenyl

• geranylgeranyl

• aminocarboxypropyl

• aminocarboxyetyl

• sulfhydryl

• transamin

• oximin

• purin

• adenyl

• adenylyl

• nucleotidyl

• uridylyl

• guanylyl

• cytidylyl

• thymidylyl

• phosphoryl

• diphosphoryl

• sulfur

• hydrol
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• hydr

• hydrolis

• hydrolys

• hydroliz

• hydrolyz

• hydrolysi

• hydrolyzi

• dehydr

• dephosphoryl

• alkyl

28.2 Production word stems

• from

• produc

• product

• yield

• generat

• creat

• construct

• form

• format

• make

• manufactur

• return

• give

• synthes

• synthesi

• synthesis

• biosynthes

• biosynthesi

• biosynthesis

• result
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28.3 Scoring locations

The following list describes the locations of entities and reaction and production keywords that

score +0.3 for each entity placement and +2 for each keyword placement, where E = enzyme,

S = adjacent substrates, P = adjacent products, Rw = reaction keyword and Pw = production

keyword. A keyword in any other location will score -1.

• E - Rw - S - Rw - Pw - P

• E - Pw - P - Pw - Rw -S

• Rw - S - Rw - E - Pw - P

• Pw - P - Pw - E - Rw - S

• Rw - S - Rw - Pw - P - E

• Rw - S - Rw - Pw - P

• Pw - P - Pw - Rw - S

In a list of substrates or products the keyword and between the last two metabolites will score

+2, but will score -1 if found between any two other entities in the list:

S1 - S2 ... Sn-1 - AND - Sn
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29 Appendix V

Reaction Extraction Relevance

(E,E,E,)-geranylgeranyl diphosphate -> ent-kaurene 0.982 1

copalyl pyrophosphate + (E,E,E,)-geranylgeranyl
diphosphate -> ent-kaurene

0.932 1

(E,E,E,)-geranylgeranyl diphosphate -> copalyl diphosphate 0.995 0.888799

copalyl diphosphate -> ent-kaurene 0.932 0.865598

pyrophosphate -> ent-kaurene 0.752 0.583407

Chlorophyll -> phytol 0.969 0.196073

anylgeranyl pyrophosphate -> copalyl pyrophosphate 0.9132 0.15437

phytol -> phytyl diphosphate + phytyl-phosphate 0.9132 0.137249

ent-kaurene -> ent-kaurenoic acid 0.9132 0.134339

isopentenyl diphosphate + dimethylallyl diphosphate ->
geranyl diphosphate

0.932 0.086386

(E,E,E,)-geranylgeranyl diphosphate -> phytoene 0.752 0.076126

copalyl pyrophosphate -> ent-kaurene 0.8884 0.058275

GA12 -> GA9 0.932 0.05665

(E,E,E,)-geranylgeranyl diphosphate -> phytyl diphosphate 0.752 0.041204

(E,E,E,)-geranylgeranyl diphosphate -> tocotrienol 0.752 0.041204

dioxygenase -> tocotrienols 0.752 0.041204

phytol -> phytyl diphosphate 0.752 0.041204

(E,E,E,)-geranylgeranyl diphosphate -> GA 0.752 0.040266

phytol -> Chlorophyll 0.8884 0.039209

gibberellin -> ent-kaurene 0.752 0.039057

farnesyl diphosphate -> squalene 0.8884 0.033427

GA1 -> amino acids 0.752 0.032843

isopentenyl diphosphate -> pyrophosphate 0.932 0.028033

isopentenyl diphosphate + pyrophosphate -> polyprenyl
diphosphates

0.752 0.028033

sulfated -> adenosine 5´-phosphosulfate 0.8884 0.022457

...

Table 14: The truncated list of reactions extracted when using the pathway “ent-kaurene
biosynthesis II” as a seed to extract reactions in Arabidopsis thaliana. An extraction score thresh-
old of 0.75 was applied and reactions were ordered by relevance score. The green cells show the
reactions corresponding to the pathway “ent-kaurene biosynthesis I”. The extraction and rele-
vance scores for a specific reaction correspond to the highest scores achieved by any metabolite
in the reaction.
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30 Appendix VI

Part IV describes the evaluation of LiMPET using sets of alternative pathways from MetaCyc.

Using one pathway as a seed, LiMPET was tasked with extracting the corresponding alterna-

tive pathway in an organism known to host it. Two examples comparing the seed pathway,

target pathway and the pathway extracted by LiMPET follow.

Extracted pathways are drawn as bipartite networks, with separate reaction nodes (blue

squares) and metabolite nodes (pink circles). The thickness of connecting arrows correlate with

extraction scores while the colour reflects relevance scores (with blue equalling a relevance

of 0 and red equalling a relevance of 1). Extracted pathways are laid out automatically by

Cytoscape (using the yFiles algorithm Organic).

30.1 Ent-kaurene biosynthesis

Figure 17: The pathways “ent-kaurene biosynthesis” I and II from MetaCyc showing two routes
between geranylgeranyl diphosphate and ent-kaurene. Pathway II was used as a seed pathway to
discover the corresponding pathway (I) in Arabidopsis thaliana (see Figure 18).
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b

Figure 18: The extracted network when using the pathway “ent-kaurene biosynthesis I” as a
seed to discover the corresponding pathway in Arabidopsis thaliana. Extraction and relevance
thresholds were applied. Reactions a and b correspond to the two reactions of the pathway
“ent-kaurene biosynthesis II” (see Figure 17).
The reactions directly linking (E,E,E,)-geranylgeranyl diphosphate to ent-kaurene are assigned a
high relevance (shown by their red colour) as they are found in the seed pathway. This reaction
appears to be present twice, but one reaction contained a side metabolite which achieved a low
relevance score and so is not visible.
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30.2 Pyruvate fermentation to ethanol

Figure 19: The pathways “pyruvate fermentation to ethanol” I and II from MetaCyc showing two
routes between pyruvate and ethanol. Pathway I was used as a seed pathway to discover the
corresponding pathway (II) in Zea mays (see Figure 20).
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b

Figure 20: The extracted network when using the pathway “pyruvate fermentation to ethanol
I” as a seed to discover the corresponding pathway in Zea mays. Extraction and relevance
thresholds were applied. Reactions a and b correspond to the two reactions of the pathway
“pyruvate fermentation to ethanol II” (see Figure 19).
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