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Universitätsstraße 30, D-95447 Bayreut

uni-bayreuth.de
bTheoretische Physik II, Physikalisch
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Effect of controlled corrugation on capillary
condensation of colloid–polymer mixtures

Andrea Fortini*a and Matthias Schmidtb

We investigate with Monte Carlo computer simulations the capillary phase behaviour of model colloid–

polymer mixtures confined between a flat wall and a corrugated wall. The corrugation is modelled via a

sine wave as a function of one of the in-plane coordinates leading to a depletion attraction between

colloids and the corrugated wall that is curvature dependent. We find that for an increased amplitude

of corrugation the region of the phase diagram where capillary condensation occurs becomes larger.

We derive a Kelvin equation for this system and compare its predictions to the simulation results. We

find good agreement between the theory and simulation indicating that the primary reason for the

stronger capillary condensation is an increased contact area between the fluid and the corrugated

substrate. On the other hand, the colloid adsorption curves at colloid gas–liquid coexistence show that

the increased area is not solely responsible for the stronger capillary condensation. Additionally, we

analyse the dimensional crossover from a quasi-2D to a quasi-1D system and find that the transition is

characterised by the appearance of a metastable phase.
1 Introduction

The equilibrium behaviour of a uid in contact with a solid
substrate is ruled by the interfacial free energy, i.e., the amount
of free energy needed to create the interface.1 Since this free
energy is the product of the interfacial tension and the total
contact area, the uid equilibrium behaviour at a substrate can
be controlled by either manipulation of the chemical properties
of the surface (interfacial tension) or the geometry of the surface
(contact area). It is known that corrugated surfaces have a
higher contact area with respect to a at surface with the same
cross-sectional area,2,3 and in nature, corrugation gives the
Lotus ower4 its characteristic hydrophobicity. Efforts to mimic
the Lotus effect resulted in the production of micromachined
surfaces whose wettability has been controlled by proper
surface microstructuring.5,6 From a fundamental point of view
wetting and capillary condensation on structured7 or curved
substrates8,9 as well as on surfaces with wedge geometry10,11 have
been studied in detail (see also the review by Bonn et al.12 and
references therein). Nevertheless, while a lot of research has
been done for simple uids, the effect of corrugation has been
neglected in complex colloidal uids because the roughness of a
substrate normally occurs at length scales that are much
smaller than the typical size of a colloidal particle.
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Recently, a technique has been introduced that allows the
controlled wrinkling of surfaces13,14 on the micron scale. The
effect of wrinkled substrates on crystallisation has been inves-
tigated,15 and the resulting structures have been used to
enhance Surface Raman Spectroscopy.16 Clearly, the wrinkling
technique could allow a systematic study of the effect of
roughness on the phase and wetting behaviour of complex
uids.

In this article, we investigate with computer simulations the
phase behaviour of a mixture of colloid and non-adsorbing
polymers conned between a wrinkled wall and a at wall. We
chose colloid–polymer mixtures because they have been exten-
sively studied in the literature,17–29 both from a theoretical and
experimental point of view. In particular, such mixtures allowed
the investigation of a variety of fundamental inhomogeneous
statistical phenomena such as wetting at single at walls30–34

and capillary condensation and evaporation between at
walls.35–40 Here, we describe the colloid–polymer mixture using
the Asakura–Osaawa–Vrij (AOV)41,42 model. Interestingly, the
depletion attraction between colloids and the corrugated wall
depends on the local curvature of the wall (the same effect
occurs for mixtures of hard spheres43,44). We nd that for an
increased amplitude of corrugation the capillary condensation
is stronger, i.e. the region of the phase diagram (phase space)
where capillary condensation occurs becomes larger. We also
analyse the conned system using a simple thermodynamic
description, derive a Kelvin equation and study its validity by
comparing the theoretical predictions to the simulation results.
The agreement between the theory and simulation is good, and
indicate that the increased contact area between the uid and
This journal is ª The Royal Society of Chemistry 2013
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the substrate (due to corrugation) is the primary cause for the
stronger capillary condensation. A dramatic increase in
colloidal adsorption at the corrugated wall is also primarily due
to the increased surface area. On the other hand, further anal-
ysis suggests that other effects inuence the thermodynamics of
the system, like for example the curvature dependence of the
particle wall interaction. Furthermore, we nd that the cross-
over from a quasi-2D to a quasi-1D system leads to the emer-
gence of metastable phases characterised by a sequence of lled
and empty quasi-1D channels.

The paper is organised as follows. In Section 2 we introduce
the model and the simulation technique. In Section 4 we derive
an expression for the Kelvin equation for corrugated walls,
while in Section 5 we present the simulation results. Finally in
Section 6 we draw our conclusions.

2 Model

The Asakura–Osaawa–Vrij (AOV)41,42model is a binarymixture of
colloidal hard spheres of diameter sc and spheres with diameter
sp representing polymer coils (Fig. 1a). The pair interaction
between colloids is that of hard spheres: Vcc(r) ¼ N if r < sc and
zero otherwise, where r is the separation distance between
particle centres. The interaction between a colloid and a poly-
mer is also that of hard spheres: Vcp(r) ¼N, if r < (sc + sp)/2 and
zero otherwise. The polymers, however, are assumed to be ideal,
hence the polymer–polymer interaction vanishes for all
distances, Vpp(r) ¼ 0. The size ratio q ¼ sp/sc ¼ 1 is a geometric
control parameter.

The colloid–polymer mixture is conned between one
smooth planar hard wall at z¼ 0 and one sinusoidal hard wall at
z ¼ H + asin(2px/l), where H is a measure of the distance of the
two walls, a is the amplitude of the sinusoidal corrugation, l is
Fig. 1 (a) Schematic drawing of the simulation box and model. Colloids of diameter
hard walls: a flat wall at the bottom (z ¼ 0) with area Aflat ¼ Lx � Ly, and a sinusoida
section of the simulation box. The depletion zones at the walls are delimited by dash
and polymers at the flat wall. The depletion zones are delimited by dashed lines. Th
regions. (d) Like (c) but for a colloid at a sinusoidal wall. The gain in free volume de

This journal is ª The Royal Society of Chemistry 2013
its wavelength, and x is the lateral coordinate perpendicular to
the wrinkles. Any overlap between particles and walls is omitted,
therefore the external potentials acting on species i ¼ c, p

Vext;iðzÞ ¼
�

0 r~i ˛Vfree

N otherwise;
(1)

where Vfree is the free volume available to the particles as
sketched in Fig. 1b.

The polymers induce an effective colloid–colloid and colloid–
wall attraction that is of entropic origin and is due to the so-
called depletion effect. In Fig. 1c, we show a colloid in contact
with a wall. Around the colloid there is a depletion region
(dashed circle) prohibited to the polymers due to the colloid–
polymer hard–core interaction (the chains cannot penetrate the
colloids). The hard–core interaction between polymers and the
wall gives rise to a depletion zone at the wall (dashed line in
Fig. 1c). If two colloids approach each other, so that two
depletion zones overlap there is an increase in free volume for
the polymer chains, i.e., an increase in entropy.17,18,41,42 The
increase in entropy can be described by an attractive interaction
between colloidal particles. Likewise, there is an increase in
entropy when the depletion zones of colloids and the wall
overlap (grey zone). The larger the excluded volumes, the
stronger is the effective attraction between the hard wall and the
colloids. Fig. 1d illustrates the depletion zone of a curved wall.
Clearly, the gained free volume (grey zones) depends on the
local curvature of the wall. The concave part of the wall leads to a
larger gain in free volume (more attractive) than the convex part
of the wall (less attractive).

We denote the packing fractions by hi ¼ ps3i Ni/(6AH), where
Ni is the number of particles of species i, and A is the cross-
sectional (normal to the z-direction) area of the wrinkled wall,
and is also equal to the area of the at wall. Additional
sc and spheres with diameter sp representing the polymers are confined between
l wall of wavelength l and amplitude a at the top (z ¼ H + asin(2px/l)). (b) Cross-
ed lines. The grey area indicates the volume accessible to the particles. (c) Colloids
e grey area indicates the gain in free volume due to the overlap of two depletion
pends on the local curvature of the wall.

Soft Matter, 2013, 9, 3994–4002 | 3995
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thermodynamic quantities are the scaled chemical potential
bmc and bmp of colloids and polymers, respectively, and the
polymer reservoir packing fraction hrp ¼ exp(bmp) of a reservoir
of pure polymers that is in chemical equilibrium with the
system. The inverse temperature is b ¼ 1/kBT, with kB the
Boltzmann constant and T the temperature.

3 Simulation method

Fig. 1a shows an illustration of the model, for which we carried
out Monte Carlo computer simulations for a wide range of
different values of particle concentrations and for several values
of the amplitude a. The wavelength of the corrugation was xed
to the value of l ¼ 10sc. Periodic boundary conditions were
applied in the x- and y-directions, and the box size in the x-
direction was chosen as 4l.

We carried out Monte Carlo simulations in the grand
canonical ensemble, i.e. with xed volume, temperature, and
chemical potentials bmc and bmp.

To study the phase coexistence, we sample the probability
P(Nc)|mc,mp

of observing Nc colloids in a volume V using the
successive umbrella sampling.45 We use the histogram
reweighing technique to obtain the probability distribution for
any m

0
c once P(Nc)|mc,mp

is known for a given mc:

ln PðNcÞjm0c ;mp ¼ ln PðNcÞjmc ;mp þNc

�
bm0

c � bmc

�
: (2)

At phase coexistence, the distribution function P(Nc)
becomes bimodal with two separate peaks of equal area for the
colloidal liquid and gas phases. We determine which m0

c satises
the equal area rule

ðhNci

0

PðNcÞjm0c ;mpdNc ¼
ðN

hNci

PðNcÞjm0c ;mpdNc; (3)

with the average number of colloids

hNci ¼
ðN
0

NcPðNcÞjmc ;mpdNc; (4)

using the histogram reweighing eqn (2). The sampling of the
probability ratio P(N)/P(N + 1) is done, in each window, until the
difference between two successive samplings of the probability
ratio is smaller than 1 � 10�4. To improve the sampling accu-
racy, we used the cluster move introduced by Vink and
Horbach.46

4 Theory: Kelvin equation

We apply a thermodynamic treatment in the limits of l/s [ 1
and H/s [ 1 to the system sketched in Fig. 1. The derivation
follows closely the derivation of Evans47 for uids between
smooth parallel walls. For simplicity we limit the theoretical
derivation to the case of one-component uids. As will become
clear at the end of the section, the result can be generalised
effortlessly to multi-component uids.

The free energy in the grand canonical ensemble is the grand
potential U. For a uid between top and bottom walls of area A1
3996 | Soft Matter, 2013, 9, 3994–4002
and A2, respectively, the grand potential is the sum of the bulk
free energy per unit volume u and the surface energy contri-
butions from the two walls,

U(m) ¼ Vu(m) + A1g
1(m) + A2g

2(m), (5)

where V is the volume, m is the chemical potential and g1 and g2,
are the uid–wall interfacial tensions for the top and bottom
walls, respectively.

We introduce the bulk chemical potential at coexistence mb,
and use it as a reference state for the chemical potential of the
conned system

m ¼ mb + Dm.

Assuming Dm is small we Taylor expand eqn (5) around mb,
recalling that the bulk density is

r ¼ � vu

vm

and that the adsorption is

G ¼ vg

vm
:

The Taylor expansion yields

UðmÞ
V

¼ uðmbÞ � rðmbÞDmþ A1

V
g1ðmbÞ

þA1

V
G1ðmbÞDmþ A2

V
g2ðmbÞ þ

A2

V
G2ðmbÞDm: (6)

The coexistence between a liquid and a gas phase inside the
slit occurs when both thermal and mechanical equilibrium
conditions are satised, i.e., the chemical potential and pres-
sure of the gas and liquid phases are the same. These two
conditions are satised when the grand potential of the two
phases is the same Ugas(m) ¼ Uliq(m). Given that uliq(mb) ¼
ugas(mb), the above equilibrium condition inside the slit leads to
the following relationship

0 ¼ �
rliq � rgas

�
Dmþ A1

V

�
g1
gas � g1

liq

�
þ A1

V
ðG1

gas � G1
liqÞ Dm

þ A2

V

�
g2
gas � g2

liq

�
þ A2

V
ðG2

gas � G2
liqÞDm: (7)

We stress that the above relation (7) is valid for any type of
surface, as we only requested that Dm be small.

The previous relationship greatly simplies if we further
assume that the adsorption at the wall is negligible and that
g1 ¼ g2 ¼ g, in which case

Dm ¼
�
A1

V
þ A2

V

� �
gliq � ggas

��
rliq � rgas

� (8)

We stress that the assumption g1 ¼ g2 ¼ g implicitly
considers a curvature independent interfacial tension. That is,
we treat the limit of a/s [ 0. This apparently crude approxi-
mation is justied in the framework of the Kelvin equation that
treats systems in the limitH/s[ 1. Strictly speaking, the Kelvin
This journal is ª The Royal Society of Chemistry 2013
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equation is not valid for strongly conned systems, but has
been shown before that its predictions remain qualitatively
good down to quasi-2D systems. This theoretical description
would on the other hand break down in the quasi-1D limit,
because it would predict a phase transition that in reality does
not exists for a bulk one-dimensional system.

4.1 Two at walls

If we consider two at walls of equal area A1 ¼ A2 ¼ Aat, and
volume V ¼ Aat H we obtain the standard equation47

Dmflat ¼ 2

H

�
gliq � ggas

��
rliq � rgas

� : (9)

4.2 One corrugated wall and one at wall

A system with one at wall and one corrugated wall has a
volume V ¼ Aat hHi, with hHi the average separation distance
between the walls. The relation (8) then becomes

Dmcorr ¼ 1

hHi ð1þ RÞ
�
gliq � ggas

��
rliq � rgas

� ; (10)

where

R ¼ Acorr

Aflat

is the ratio between the at and corrugated area and is equiv-
alent to theWenzel roughness ratio dened as the ratio between
the contact area and the geometric cross-sectional area.2

By comparing eqn (9) and (10) we nd also that the ratio
between the chemical potential shis of the corrugated and at
walls is related to the Wenzel ratio via

Dmcorr=Dmflat ¼ 1þ R

2
: (11)

4.3 Two corrugated walls

For the case of two corrugated walls the general Kelvin eqn (8)
becomes

Dmcorr ¼ 2

hHiR
�
gliq � ggas

��
rliq � rgas

� ; (12)

By comparing eqn (12) and (9) we nd that for the case of two
corrugated walls the ratio is
Fig. 2 The roughness ratio R for a sinusoidal wall. (a) For fixed amplitude a¼ 5sc
and changing wavelength. (b) For wavelength l ¼ 10sc and changing amplitude.
Dmcorr/Dmflat ¼ R.

4.4 Generalisation to binary mixtures

The derivation of the Kelvin equation for binary mixtures48

proceeds along the lines described above for a one-component
uid. A closed set of equation for the chemical potential shis
Dmc, and Dmp, for colloids and polymers, respectively, can
however be obtained only when an independent relationship
between Dmc, and Dmp is used. In ref. 37 three possible choices
This journal is ª The Royal Society of Chemistry 2013
for the relationship are outlined. Independent of the choice of
the relationship, the equations for binary mixtures for corru-
gated walls lead to.

Dmcorr
c =Dmflat

c ¼ 1þ R

2

Dmcorr
p =Dmflat

p ¼ 1þ R

2
;

(13)

and

Dmcorr
c =Dmflat

c ¼ R

Dmcorr
p =Dmflat

p ¼ R;
(14)

for one and two corrugated walls, respectively.
4.5 Roughness ratio for a sinusoidal wall

We consider a wall corrugated in one direction by a sinusoidal
functional form as shown in the sketch of Fig. 1a. The cross-
sectional area is Aat ¼ Lx � Ly, where Lx and Ly are the parallel
and perpendicular directions with respect to the sinusoidal
direction, and Lx ¼ nl, where n is an arbitrary number and l is
the wavelength. Therefore, the roughness ratio can be written as

R ¼

ðnl
0

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

l2
cos2

�
2p

l
x

�s

nl
; (15)

where the numerator is the line integral over the sinusoidal
path. The elliptical integral can be solved numerically. The
value of the integral (15) is the same for any integer value of n,
but changes when non-integer values of n are chosen. There-
fore, an explicit dependence of the integral on n is le for the
general case.

Fig. 2 shows the behaviour of the roughness ratio dened in
eqn (15). For xed amplitude and increasing wavelength
Soft Matter, 2013, 9, 3994–4002 | 3997
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(Fig. 2a) the ratio R decreases. Clearly for l / N the ratio goes
to one. On the other hand, for a xed wavelength l (Fig. 2b) the
roughness ratio R increases monotonically for increasing values
of the amplitude of corrugation a.
5 Simulation results
5.1 Phase diagram

Fig. 3 shows the phase diagram in the (bmp, bmc) representation.
Each line represents a binodal, i.e. the value of colloid and
polymer chemical potentials at which phase separation occurs.
For chemical potentials in the region above a binodal the gas
phase is stable, whereas in the region below the binodal the
liquid phase is stable. In particular, the capillary binodals for
corrugation amplitude a/sc ¼ 0–15 are shown (symbols). As a
reference we also show the bulk binodal (dashed line), and the
capillary binodal for at walls with separation distance H/sc ¼ 5
(thick continuous line). The binodal for the colloid–polymer
mixtures conned between two at walls (i.e., a¼ 0 H/sc ¼ 15) is
shied toward smaller colloidal chemical potentials and higher
polymer chemical potential with respect to the bulk binodal
(thin dashed line). The shi of the binodals indicates the
occurrence of capillary condensation, because in the region
between the conned and bulk binodals, the stable phase for the
conned system is the liquid, while for the bulk system is the
gas. This effect was extensively studied in the literature35,37,38,49

for colloid–polymer mixtures conned between at walls.
Here, for colloid–polymer mixtures conned between one

at and one corrugated wall, we nd that for increasing corru-
gation, i.e., increasing amplitude a of the sinusoidal wall, the
binodals shi toward larger polymer chemical potentials and
smaller colloid chemical potentials, indicating progressively
Fig. 3 Phase diagram in the (bmp, bmc) representation. Shown are the binodals
for wavelength l ¼ 10sc and amplitudes a/sc ¼ 0, 5, 7, 9, 11, 13, and 15. Also
shown are the binodals for the bulk system (dashed line) and for the system
confined between two flat walls at distance H ¼ 5sc (thick continuous line).

3998 | Soft Matter, 2013, 9, 3994–4002
stronger capillary condensation with respect to the at walls,
i.e., larger region of phase space where the capillary condensa-
tion occurs. The critical points were not calculated because an
accurate determination would require a careful nite-size
analysis38 that is beyond the scope of the current work. The end-
points in Fig. 3 were determined as the lowest value of the
chemical potentials at which a double peak in the probability
distribution was observed.

One trivial interpretation for the behaviour is that the sinu-
soidal wall introduces a length scale in the system that is
smaller than the average wall separation distance, namely
hmin ¼ H � a, that strengthens the capillary condensation.
However, this interpretation is not supported by our results. For
example for a ¼ 11sc, the smallest length scale is hmin ¼ 15sc �
11sc ¼ 4sc. As a reference in Fig. 3, we plot the binodals for two
at walls at distance H/sc ¼ 5. The a ¼ 11sc binodal (le
triangles) is clearly separated from it.

For amplitude a ¼ 15sc the system consists of a series of
independent quasi-1D channels. Interestingly, we nd that the
binodal lines for increasing amplitudes a slowly approach the
binodal of the system with a single groove, therefore the system
undergoes a slow dimensional crossover from a quasi-2D to a
quasi-1D system. We stress that in one-dimensional systems the
gas–liquid phase transition does not exist in the thermody-
namic limit. Even in quasi-1D pores a rounding of the transition
is noted50 and a multi domain structure is observed instead of a
proper gas–liquid separation.
5.2 Comparison with the Kelvin equation

The Kelvin eqn (11) suggests, on the other hand that the stronger
capillary condensation for increasing amplitudes a is due to the
increased surface area of the corrugated wall. To evaluate the
Fig. 4 The ratio Dmcorrc /Dmflatc for different amplitudes a of the sinusoidal wall at a
fixed wavelength l ¼ 10sc. We compare results of the computer simulations
(symbols) for different values of polymer reservoir packing fraction hrp with the
theoretical prediction (line) of eqn (10).

This journal is ª The Royal Society of Chemistry 2013
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validity of this interpretation we compare theoretical results with
the simulation ndings. In particular, we compare the ratio
Dmcorrc /Dmatc found in simulations to the theoretical result of eqn
(11). Remarkably, the simulation results start at smaller values of
the ratio but they follow the same trend as the theory results for
increasing amplitudes a/sc, demonstrating that the stronger
capillary condensation is mainly driven by the increased surface
area of the corrugated wall. We believe that the smaller values of
the ratio Dmcorrc /Dmatc in simulations with respect to the theory
are due to the large adsorption of colloids at the sinusoidal wall
in the gas phase. The Kelvin equation also neglects the curva-
ture. Recent works on curved surfaces51,52 suggest that the
inclusion of curvature effects would lead to smaller values of the
gliq � ggas difference. This leads to a decrease of the shi in
chemical potential predicted by the Kelvin equation, leading to a
better agreement with simulation results (Fig. 4).
Fig. 5 Adsorption at the corrugated wall for increasing values of the corrugation
amplitude a/sc. (a) Colloidal adsorption Gcorr with the cross-sectional area Aflat as
the reference surface. (eqn (17)). (b) Colloidal adsorption G*

corr with the real
contact area Acorr as the reference surface (eqn (18)).

This journal is ª The Royal Society of Chemistry 2013
5.3 Adsorption

Further insights can be gained by calculating the colloid
adsorption G for state points at gas coexistence. First of all, we
carried out simulations of colloid–polymer mixtures between
two at walls at separation H ¼ 15sc to measure the adsorption
at one at wall

Gflat ¼ N flat
c �Nbulk

c

2Aflat
(16)

at the gas coexistence state points of the phase diagram shown
in Fig. 3. Subsequently, we performed simulations for the
mixtures conned between one at and one sinusoidal wall and
computed the adsorption at a single sinusoidal wall

Gcorr ¼ Ncorr
c �Nbulk

c

Aflat
� Gflat: (17)

Here we choose as a reference the cross-sectional area Aat,
as it is common for corrugated surfaces where the real contact
area is not easily known. We nd that the adsorption increases
dramatically with increasing amplitudes a and changes little for
increasing polymer reservoir packing fractions (Fig. 5a).

In order to evaluate the effect of the chosen reference area,
we also calculated the adsorption using as a reference the real
contact area Acorr, i.e.

G*
corr ¼

Ncorr
c �Nbulk

c

Acorr
� Gflat: (18)

The increase in colloid adsorption for increasing amplitudes
a is now less dramatic (Fig. 5b, note the different y-axes scale)
but still clearly visible. Therefore, the increased surface area of
the sinusoidal wall is not the only factor responsible for the
increased adsorption and consequently for the stronger capil-
lary condensation.

Interestingly, the simulation snapshots for state points at
gas coexistence for polymer reservoir packing fraction hrp ¼ 1.4
(shown in Fig. 6) show that colloids are adsorbed inside the
Fig. 6 Snapshots of the simulation at gas–liquid coexistence for the packing
fraction corresponding to the equilibrium gas phase and polymer reservoir
packing fraction hrp ¼ 1.4. The colloidal particles (cyan/light grey spheres) and the
polymers (green/dark grey spheres) are confined between one flat wall (bottom)
and one sinusoidal wall (top). The walls occupy the white sections of the figures.
(a) Amplitude a/sc ¼ 1, (b) amplitude a/sc ¼ 5, (c) amplitude a/sc ¼ 9, (d)
amplitude a/sc ¼ 13.
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grooves of the sinusoidal walls, that is in the concave parts of
the corrugated wall.
Fig. 8 Snapshots of the simulation at polymer reservoir packing fraction hrp¼ 1.4
and amplitude a/sc ¼ 11. The colloidal particles (cyan/light grey spheres) and the
polymers (green/dark grey spheres) are confined between one flat wall (bottom)
and one sinusoidal wall (top). The walls occupy the white sections of the figures.
(a) One channel filled with colloids at state point a in Fig. 7b. (b) Two channels
filled with colloids at state point b in Fig. 7b. (c) Three channels filled with colloids
5.4 Free energy curves

We next explore the dimensional crossover that occurs at
amplitudes a/sc comparable to the wall distance H. Consider
that the free energy (grand potential) difference with respect to a
reference state is given by �ln(P(hc)|mc,mp

), where P((hc)|mc,mp
) is

the probability of observing the system at colloid packing frac-
tion hc. In Fig. 7a) we plot the free energy curves for amplitudes
a ¼ 1, 3, 5, 7 sc. The two minima correspond to the gas and
liquid coexisting densities. For intermediate packing fractions
hc the free energy decreases for increasing packing fraction, as
expected for systems in slit geometry. In Fig. 7b the free energy
curves for amplitudes a ¼ 9, 11, 13, 15 sc are shown. The
approaching dimensional crossover is characterised by the
appearance of a sequence of minima in the free energy curves.
In our system the local minima appear rst for a/sc ¼ 9 and
Fig. 7 Logarithm of the probability distribution (free energy) at polymer reser-
voir packing fraction hrp ¼ 1.4 and colloid chemical potentials at coexistence. (a)
For amplitudes a ¼ 1, 3, 5, 7 sc. (b) For amplitudes a ¼ 9, 11, 13, 15 sc.

at state point g in Fig. 7b. (d) Equilibrium liquid phase.

4000 | Soft Matter, 2013, 9, 3994–4002
becomes stronger and stronger for increasing amplitudes.
These minima indicate the presence of metastable phases
characterised by the coexistence of channels lled with the uid
phase and channels containing the gas phase. Each time a
channel is completely lled we nd an energy minimum due to
the decreased interfacial energy as shown in Fig. 8 for polymer
reservoir packing fraction hrp ¼ 1.4 and corrugation amplitude
a/sc ¼ 11. These phases are similar to the zebra phase predicted
for optically conned mixtures.53–55
6 Summary and conclusions

We traced the phase diagram of model colloid–polymer
mixtures conned between one at wall and one corrugated
wall with grand-canonical MC simulations. The corrugation was
modelled by a sinusoidal function of amplitude a. We found
that for increasing values of a the capillary condensation gets
stronger, i.e., the region of parameter space where the capillary
condensation occurs becomes larger. We derive a Kelvin equa-
tion for the system that predicts that capillary condensation in

the system is controlled by the Wenzel ratio R ¼ Acorr
Aflat

between

areas of the corrugated and at walls. We nd very good
agreement between simulation results and the Kelvin equation
prediction, indicating that the increased contact area between
the uid and the substrate (due to corrugation) is the primary
cause for the stronger capillary condensation. The analysis of
the adsorption of colloidal particles shows a strong preference
of the colloids to adsorb at the corrugated wall in agreement
with the stronger capillary condensation. The nding is also
corroborated by a visual inspection of the simulation snap-
shots, which show a strong adsorption of colloids in the grooves
of the corrugated walls. Nevertheless, we nd an increase of
adsorption for an increased surface area also when the real
contact area is used as a reference. One possible explanation for
this effect is that the depletion effect responsible for the
This journal is ª The Royal Society of Chemistry 2013
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colloid–wall effective attractive interaction is curvature depen-
dent. The overlap area between the particle and wall excluded
volumes is different for different wall curvatures. Therefore the
wall is more attractive at the concave side and less attractive at
the convex edge. In our simulation we used a xed wavelength
and changing amplitudes, i.e., the curvature of the corrugated
walls would be different for the different amplitudes leading to
a different effective wall–colloid attractive interaction. We also
observe a dimensional crossover from a quasi-2D system to a
quasi-1D system. The quasi-1D system occurs when the ampli-
tude of the corrugated wall is equal to the average separation
distance, i.e., all channels are decoupled. The free energy curves
show that the approaching crossover is characterised by the
appearance of a metastable phase, with partially lled channels,
similar to the ‘zebra’ phase predicted for optically conned
colloid–polymer mixtures.53,54

In this paper we only considered capillary condensation and
neglected two other relevant phenomena, namely wetting12 and
wedge lling transitions.11,56,57 Given the nite system size as
well as the nite wedge geometry our assumption is completely
reasonable, but an extension of this work would be to analyse
the wetting and wedge lling behaviour of a single corrugated
wall and compare to works on wedge lling transition in nite
geometries.58–60

A recent paper55 on uids in periodic connement showed
unexpected correlations between the channels that deserve
further investigation in the current system.
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16 N. Pazos-Pérez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla,

A. Fery and L. M. Liz-Marzán, Chem. Sci., 2010, 1, 174.
17 E. Meijer and D. Frenkel, Phys. Rev. Lett., 1991, 67, 1110.
This journal is ª The Royal Society of Chemistry 2013
18 H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey,
A. Stroobants and P. B. Warren, Europhys. Lett., 1992, 20,
559.

19 S. M. Ilett, A. Orrock, W. C. K. Poon and P. N. Pusey, Phys.
Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.,
1994, 51, 1344.

20 E. H. A. d. Hoog and H. N. W. Lekkerkerker, J. Phys. Chem. B,
1999, 103, 5274.

21 M. Dijkstra, J. M. Brader and R. Evans, J. Phys.: Condens.
Matter, 1999, 11, 10079.

22 M. Schmidt, H. L. owen, J. M. Brader and R. Evans, Phys. Rev.
Lett., 2000, 85, 1934.

23 J. M. Brader and R. Evans, Europhys. Lett., 2000, 49, 678.
24 R. Tuinier, H. Lekkerkerker and D. Aarts, Phys. Rev. E: Stat.

Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, 65,
1255.

25 D. G. A. L. Aarts and H. N. W. Lekkerker, J. Phys.: Condens.
Matter, 2004, 16, S4231.

26 A. Fortini, M. Dijkstra, M. Schmidt and P. Wessels, Phys. Rev.
E: Stat., Nonlinear, So Matter Phys., 2005, 71, 051403.

27 R. L. C. Vink, A. Jusu, J. Dzubiella and C. N. Likos, Phys. Rev.
E: Stat., Nonlinear, So Matter Phys., 2005, 72, 030401(R).

28 D. G. A. L. Aarts, J. Phys. Chem. B, 2005, 109, 7407.
29 J. Taffs, A. Malins, S. Williams and C. Royall, J. Phys.:

Condens. Matter, 2010, 22, 104119.
30 W. K. Wijting, N. A. M. Besseling and M. A. Cohen Stuart,

Phys. Rev. Lett., 2003, 90, 196101.
31 W. K. Wijting, N. A. M. Besseling and M. A. Cohen Stuart,

J. Phys. Chem. B, 2003, 107, 10565.
32 D. G. A. L. Aarts, J. H. van der Wiel and

H. N. W. Lekkerkerker, J. Phys.: Condens. Matter, 2003, 15,
S245.

33 P. P. F. Wessels, M. Schmidt and H. Löwen, Phys. Rev. Lett.,
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