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The phase stacking diagram of colloidal mixtures under
gravity

Daniel de las Heras* and Matthias Schmidt

The observation of stacks of distinct layers in a colloidal or liquid mixture in the sedimentation–diffusion

equilibrium is a striking consequence of bulk phase separation. Drawing quantitative conclusions about

the phase diagram is, however, very delicate. Here we introduce the Legendre transform of the chemical

potential representation of the bulk phase diagram to obtain a unique stacking diagram of all possible

stacks under gravity. Simple bulk phase diagrams generically lead to complex stacking diagrams. We apply

the theory to a binary hard core platelet mixture with only two-phase bulk coexistence, and find that the

stacking diagram contains six types of stacks with up to four distinct layers. These results can be tested

experimentally in colloidal platelet mixtures. In general, an extended Gibbs phase rule determines the

maximum number of sedimented layers as a function of the number of binodals and their inflection points.
Introduction

The addition of a second component to a colloidal dispersion
generates a wealth of new phenomena, such as the induction of
effective interactions of the primary colloidal component by
adding a depletion agent,1 the formation of complex ionic
colloidal crystals by adding an oppositely charged component,2

and the self-assembly of patchy colloidal mixtures into two
interpenetrating networks.3,4 Binary colloidal crystals are prom-
ising candidates e.g. for photonic applications.5 Gravity can have
a strong effect on colloidal mixtures because on typical length
scales in the lab the gravitational energy and the thermal energy
are comparable. The resulting observations are oen very
counter-intuitive, including denser particles oating on top of a
uid of lighter colloidal spheres,6 or the emergence of a oating
nematic phase sandwiched between two isotropic phases in
mixtures of colloidal platelets and spheres.7 The number of
distinct layers in a sample in the sedimentation–diffusion
equilibrium can be considerably large: e.g. a vertical stack of six
different phases was observed in mixtures containing charged
colloidal platelets.8 Much attention was devoted to sedimenta-
tion in charged colloidal systems.9 Although the investigation of
the bulk phase behaviour of colloidal mixtures is oen based on
sedimentation experiments,10 the interpretation of the experi-
mental ndings, and in particular drawing quantitative conclu-
sions about the bulk phase diagram, can be a very subtle issue.
Understanding and controlling the stacking sequence of
colloidal mixtures is of potential interest in industrial applica-
tions, such as for preventing phase separation in commercial
stitut, Universität Bayreuth, D-95440

iel@gmail.com
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colloidal products and inducing demixing in order to sort
colloidal particles by size or density.11 In molecular mixtures
rather than colloidal mixtures corresponding effects due to
gravity arise on larger length scales, e.g. relevant for species
segregation with depth in oil reservoirs.12,13

The connection between sedimentation equilibria and
thermodynamics in one-component systems has been previ-
ously analysed theoretically, see e.g. ref. 14–16, and investigated
experimentally, see e.g. ref. 17. There is, however, a lack of
systematic understanding of how to relate the bulk properties of
a binary mixture to its sedimentation equilibria.

Here we show for the rst time that the phenomenology of all
possible stacking sequences of a colloidal or liquid mixture is
directly related to the bulk phase diagram of the system,
without requiring further information about the equation of
state. A systematic stacking diagram follows from the bulk
phase diagram by Legendre transform in a unique way. Here the
Legendre transform acts on the features of the bulk phase
diagram, such as the binodal(s), critical point(s) etc., rather than
on the thermodynamic potential(s). The Legendre transform
introduces the ratio of the buoyant masses as a control
parameter. In experiments this could be varied e.g. by changing
the solvent of a colloidal mixture. We apply the theory to predict
the stacking diagram of a mixture of colloidal platelets, using
density functional theory to rst obtain the bulk phase diagram.
The mixture models a binary smectite–gibbsite platelet system,
and hence the results can be tested experimentally.

Theory

We base our theory on the chemical potential as the central
quantity. In the presence of gravity, one can dene a height- and
species-dependent local chemical potential:7,18,19
This journal is ª The Royal Society of Chemistry 2013
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ji(z) ¼ mbi � migz, (1)

where z is the vertical coordinate, mbi is the chemical potential of
species i, mi is its buoyant mass and g is the acceleration due to
gravity. Eqn (1) immediately implies that the difference in the
local chemical potentials between two different heights is
experimentally accessible by measuring the difference in
heights between the two points. Eliminating gz from (1) yields
Fig. 1 Schematic representation of the bulk phase diagram of a colloidal
mixture in the plane of chemical potentials m2, m1. The black-solid line represents
the binodal where the phases A and B coexist. The red-dashed line represents a
sedimentation path. Its direction (from bottom to top of the sample) is indicated
by an arrow. The inset shows the stacking sequence and the relative thickness of
each sedimentation layer corresponding to the sedimentation path. The dotted
red line represents a sedimentation path tangent to the bulk binodal.
j2(j1) ¼ a + sj1, (2)

where the constants are a ¼ mb2 � smb1 and s ¼ m2/m1. Eqn (2)
describes a straight line in the plane of local chemical poten-
tials j1,j2. The slope s of this “sedimentation path” is given by
the ratio of the buoyant masses or, equivalently, by the inverse
ratio of the gravitational heights, s ¼ x1/x2, where xi ¼ kBT/(mig)
is the gravitational height of species i; here kB is the Boltzmann
constant and T is the absolute temperature.

Eqn (2) attains great signicance when combined with a local
density approximation (LDA),18 which applies when all relevant
correlation lengths in the system are small compared to all xi;
this is analogous to dividing the system in small horizontal
slabs, which are treated as individual equilibrium systems.12,13

Then one can assume that the state of the system at height z is
analogous to a bulk state with chemical potential mi and that

mi ¼ ji(z) (3)

As a consequence, the sedimentation path (2) is directly
related to the experimentally observed stacking sequence in the
vessel.7,19 The local phase coexistence between A and B occurs at
height zAB, provided that ji(zAB) ¼ mi,AB for both species; here
mi,AB is the chemical potential of species i at bulk coexistence
between phases A and B. As a result a (horizontal) AB interface
at height zAB is observed in the sample.

In order to illustrate these effects, we plot in Fig. 1 a sche-
matic bulk phase diagram of a mixture with stable A and B bulk
phases. We show a sedimentation path that starts in the region
where B is stable, crosses the binodal, and ends in the region
where A is stable. The corresponding stacking sequence
consists of bottom B and top A, which we write as BA. Clearly,
the thickness of each sedimentation layer is proportional to the
difference in chemical potentials between its upper and lower
interface, cf. eqn (1). The difference in chemical potentials
between the crossing of the sedimentation path and the binodal
and the bottom of the sample in Fig. 1 is simply Dmi ¼ �mighB,
with hB being the macroscopic thickness of the bottom sedi-
mentation layer. By neglecting effects due to the nite sample
height (to which we will turn below), the conditions for a sedi-
mented sample are fully determined by the parameters a and s,
which we now treat as new (state) variables. Each pair a, s
determines uniquely a sedimentation path (2). We will in the
following identify three types of boundaries in the a, s plane,
where the sedimentation behaviour changes qualitatively upon
innitesimal deviation of the parameters. We refer to these
boundaries as the sedimentation binodal, the terminal line,
and the asymptotic terminal line.
This journal is ª The Royal Society of Chemistry 2013
(i) Sedimentation binodal. As T ¼ const, the Gibbs phase rule
leaves one remaining free thermodynamic variable to parame-
terize mi,AB. Choosing this parameter as m1 results in m1,AB ¼ j1

and m2,AB(m1) ¼ j2(j1), from which one obtains at coexistence

m2,AB(j1) ¼ j2(j1). (4)

The marginal case is obtained when the slope of the sedi-
mentation path equals the slope of the binodal, which implies
that

m
0
2,AB(j1) ¼ j

0
2(j1), (5)

is simultaneously satised with (4); in (5) the prime denotes the
derivative with respect to the argument. Multiplying (5) by j1,
subtracting it from (4), and observing the structure in (2) yields

aAB(s) ¼ m2,AB(j1) � j1m
0
2,AB(j1), (6)

where aAB(s) is the intercept of the marginal case. Eqn (6)
establishes aAB(s) as the Legendre transform of the chemical
potential representation of the bulk binodal. Hence any path
(2), where the parameters are linked via a ¼ aAB(s), is special in
that it divides the a, s parameter space into distinct regions.
These regions differ in that a qualitative change in the stacking
sequence occur, namely the emergence of a oating phase (e.g.
from A to ABA). All paths that satisfy (6) are tangent to the
binodal (see Fig. 1).

(ii) Terminal line. The systems reach a critical point, when
locally for both components

ji,crit(zcrit) ¼ mi,crit, (7)

from which follows, upon using the general expression (2), that

acrit(s) ¼ m2,crit � sm1,crit, (8)
Soft Matter, 2013, 9, 8636–8641 | 8637
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which is linear in s, implying that a critical point corresponds to
a straight (terminal) line in the a, s-space of sedimentation
paths. Indeed the same reasoning can be applied to the triple
point and other “special” points in the phase diagram, at which
a binodal ends. In each of these cases the result is analogous to
(8). The sedimentation paths that correspond to (8), i.e. that lie
on the terminal line, are those that cross the special point.

(iii) Asymptotic terminal line. A bulk binodal that does not
terminate at nite values of mi can either be connected to a
phase transition of one of the pure subsystems or it can repre-
sent a large demixing region at very high chemical potentials. In
both cases the bulk binodal tends to an asymptote with a well-
dened slope,

m2,AB/m1,AB / sN, (9)

and a corresponding (asymptotic terminal) line emerges in the
stacking diagram, which is described by s(a) ¼ sN ¼ const, for
all values of a. The paths that are described by (9) are those that
are parallel to the asymptote of the binodal.
Fig. 2 Schematic bulk phase diagrams of colloidal mixtures in the plane of
chemical potentials m1, m2 (a, c, e), and the corresponding stacking diagrams in the
plane of slope s and intercept a of the sedimentation path (b, d, f); here we setm1

> 0. Chemical potentials are given in arbitrary units. (g) Sedimentation phase
diagram of the mixture of panel (e) in the a, rmin plane. In panels (a, c, e) solid lines
represent binodals (modelled as Bézier curves), empty circles represent critical
points, dashed lines indicate selected sedimentation paths (the arrows give the
direction from bottom to top of the sample, labels indicate the corresponding
stacking sequences). The triangle in (e) represents the triple point. In panels (b, d,
f, and g) the solid lines indicate sedimentation binodals, dashed lines represent
terminal lines, and dotted lines indicate asymptotic terminal lines. Different
stacking regions are coloured and are labelled by their respective stacking
sequence.
Results

We show in Fig. 2 three schematic bulk phase diagrams in the
m1, m2 plane (a, c, e) and the corresponding stacking diagrams in
the a, s plane (b, d, f). The simplest example (a) consists of a
binodal that ends at two critical points. This topology corre-
sponds to a closed immiscibility loop in the pressure-compo-
sition or density–density plane, as predicted, e.g., for mixtures
of patchy colloids.20 Two sedimentation paths with the same
slope but opposite directions correspond to stacking sequences
with inverse order (e.g., AB and BA); in order to avoid this
ambiguity we only consider the case m1 > 0. The corresponding
stacking diagram (b) contains one sedimentation binodal and
one terminal line for each of the two critical points. Each
terminal line is tangent to the end of the sedimentation bino-
dal. The crossing point, where the two terminal lines intersect,
represents the sedimentation path that connects the two critical
points in the bulk phase diagram. The sedimentation binodal
and the terminal lines divide the a, s plane into ve different
regions with differing stacking sequences. Those paths that
cross the bulk binodal twice generate the stacking sequence
BAB. This triple stacks occur although there is no triple point in
the bulk phase diagram nor are there three different phases. A
similar stacking sequence, a nematic phase sandwiched
between two isotropic phases, has been theoretically predicted
and experimentally observed very recently7 in mixtures of silica
spheres and gibbsite platelets. In general, two consecutive
phases in the stacking sequence coexist in bulk, but two non-
consecutive phases may or may not coexist in bulk and, as the
example demonstrates, the same phase (B) can reenter the
sequence. An obvious consequence is that the Gibbs phase rule
does not apply to the maximum number of layers in the sedi-
mentation equilibrium. Instead, the maximum number of
sedimented layers in a mixture under gravity is 3 + 2(nb� 1) + ni,
where nb is the number of bulk binodals and ni is the total
number of inection points in all binodals. This maximal
8638 | Soft Matter, 2013, 9, 8636–8641
number of layers occurs if a sedimentation path crosses each
binodal 2 + nb,i times, with nb,i being the number of inection
points of each binodal. The occurrence of an inection point in
a binodal has been predicted in colloidal platelet–sphere
mixtures.7 It is also a natural consequence of a binodal that
connects two phase transitions in the pure components of the
mixture. An example is the isotropic–nematic transition in
binary platelet mixtures, to which we turn below.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 Phase diagram and stacking diagram of a binary mixture of colloidal
platelets. (a) Bulk phase diagram as a function of the chemical potentials m1 and
m2 of small platelets (species 1) and big platelets (species 2) with the size ratio
R2/R1 ¼ 1.4. The solid line represents the IN bulk binodal. The dashed line indi-
cates a selected sedimentation path for a vessel with height h ¼ 10 mm. The
arrow gives the direction from bottom to top of this sample. The inset illustrates
the corresponding stacking sequence. (b) Sedimentation phase diagram for
infinite sedimentation paths in the a, rmin plane. The solid lines represent the
sedimentation binodals, and the vertical dotted lines indicate the asymptotic
terminal lines. (c) Sedimentation phase diagram in the plane of (scaled) reference
chemical potentials bmb1, bm

b
2, cf. eqn (1), for sample height h ¼ 10 mm, i.e. sedi-

mentation paths of finite length. The solid lines represent the sedimentation
binodals. Each colour in (b) and (c) represents a different sedimentation state,
labeled by its corresponding stacking sequence upon increasing the height.
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We next consider case (c) where the AB phase transition
persists in the pure system of species 2. The bulk binodal tends
asymptotically to the value of m2 at the phase transition of the
pure species 2 when m1 / �N. In the stacking diagram (d) an
asymptotic terminal line appears: as laid out above, this vertical
line is at a position s that gives the slope of the asymptote of the
bulk binodal.

The complexity of the stacking diagram increases very
signicantly with the number of stable phases in the bulk phase
diagram. In Fig. 2(e) we show a still rather simple bulk phase
diagramwith three bulk phases A, B and C that coexist at a triple
point. The pure species 1 undergoes a BC phase transition that
persists in the mixture and ends at the triple point. The BC bulk
binodal tends asymptotically to the value of m1 at the
phase transition of the monodisperse system of species 1 when
m2 /�N (vertical asymptote). The component 2 of the mixture
undergoes an AB phase transition. The binodal has a horizontal
asymptote and ends at the triple point. At chemical potentials
above the triple point there is strong demixing between A and C.
The AC binodal has asymptotically a well-dened slope, for
which the general expression holds: dm2/dm1|coex ¼ Dr1/Dr2,
with Dri being the jump in density of species i at the phase
transition. At very high chemical potentials both species
approach the close packing density and the slope of the binodal
will be constant. The corresponding stacking diagram, Fig. 2(f),
has three sedimentation binodals (one for each bulk binodal),
one terminal line due to the triple point, and two asymptotic
terminal lines. The asymptotic terminal line of the BC bulk
binodal is not visible because its slope is innite. To overcome
this problem, we show in panel (g) the stacking diagram in the
a, rmin plane, where rmin is the distance of the sedimentation
path to the origin in the m1, m2 plane and tan a ¼ s, cf. Fig. 1.
Here we use the sign convention that rmin is positive (negative)
for a clockwise (counterclockwise) path in order to discriminate
between paths with identical values of a, but with negative
values of s. We nd six sedimentation binodals (two for each
bulk binodal because in this plane we plot all possible paths,
0# a# 2p, liing any sign restriction onm1), one terminal line,
and six asymptotic terminal lines at a ¼ 0, 0.35p, p/2, p, 1.35p,
and 3p/2. Each pair a and a + p represents the asymptotic
behaviour (and direction) of a bulk binodal in the stacking
diagram. All intersections between sedimentation binodals and
terminal lines dene the boundaries of the sedimented phases.
There are 22 different stacking sequences, which vary in
complexity from the simple AC to the exotic CACBAB. Sedi-
mentation monophases do not occur, as each path crosses at
least one binodal. These examples demonstrate the extreme
richness of the stacking diagram.

We next apply the theory to a mixture of innitely thin
circular hard platelets with the aspect ratio R2/R1¼ 1.4, where Ri

is the radius of species i. We use a microscopic geometry-based
density functional to calculate the bulk phase diagram. The
functional goes beyond the Onsager limit and has been used
previously to analyze the bulk phase diagram of platelet–platelet
mixtures with different aspect ratios.21 The pure uid of hard
platelets undergoes an isotropic–nematic (IN) phase transition
as a function of the chemical potential. Further phases with
This journal is ª The Royal Society of Chemistry 2013
positional order, such as columnar or crystal phases, are not
present in the model due to the vanishing thickness of the
particles.22 The bulk phase diagram of the binary mixture is
depicted in the m1, m2 plane in Fig. 3(a). The IN bulk binodal
connects the phase transitions of the pure components. The
chemical potential of the small platelets, m1, decreases when a
small fraction of big platelets is added to the pure uid of small
platelets (big platelets favour the orientational order of the
small platelets). The behaviour of m2 is the opposite: its coex-
istence value increases if a tiny fraction of small platelets is
added to the pure system of big platelets. As a result, the bulk
binodal, that connects both limits, has a curvature change and a
maximum at intermediate values of composition.

The stacking diagram of the mixture is plotted in Fig. 3(b) in
the a, rmin plane. There are two sedimentation binodals and
four asymptotic terminal lines at a¼ 0, p/2, p and 3p/2. We can
identify six different sedimentation sequences, including a
oating isotropic phase NIN, a double oating isotropic NINI
and nematic ININ. Such states with four layers arise from the
curvature change of the bulk binodal. The NINI four-stack can
be understood as a fractionation between two double NI stacks,
the lower one being rich in heavier platelets, and the upper one
being rich in the lighter platelets. This interpretation also
applies to the inverted ININ sequence, which appears in the
region of negative buoyant masses.
Soft Matter, 2013, 9, 8636–8641 | 8639
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Real samples possess a nite height h, such that there is only
an interval of the corresponding innite sedimentation path
accessible. In order to characterize such a state, four variables are
required, which we choose to be the slope s of the path, the two
reference chemical potentials mb1 and mb2, cf. eqn (1), and the
sample height h. We adopt the convention that the origin of the
coordinate system is in themiddle of the sample, such that�h/2 <
z < h/2. As a consequence at z ¼ 0 the local chemical potential
ji(z) ¼ mbi . We choose x1 ¼ 0.805 mm and x2 ¼ 3.89 mm, which is
compatible with, e.g., a colloidal mixture of gibbsite platelets
(species 1: average diameter 214 nm and thickness 10 nm) and
smectite (species 2: average diameter 300 nm and thickness 1 nm)
dispersed in water at room temperature (see e.g. ref. 7 and refer-
ences therein). We obtain s ¼ x1/x2 ¼ 0.207 or a ¼ 192�, and we
choose the vessel height as h ¼ 10 mm. An example of a sedi-
mentation path and the corresponding sedimentation sequence
for these conditions are shown in Fig. 3(a). The stacking diagram
for the nite height is shown in Fig. 3(c). Due to the nite sample
height, additional sedimentation binodals arise when a sedi-
mentation path starts or ends at the bulk binodal. While for
innite sedimentation paths there are only two sedimentation
phases, NI and NINI, for nite height we nd six different stacks I,
N, NI, NIN, INI, and NINI. Hence the main effect of the nite
length of the sedimentation path is that new sedimentation
stacks appear. These are formed by removing layer(s) on top or
bottom of the innite stacking sequences. Note that the mb1, m

b
2

plane can be converted to the plane of average densities by
calculating the density proles and average density of those paths
that form the phase boundaries of the stacking diagram.
Discussion

A colloidal mixture under gravity can be represented by a
straight line in the plane of chemical potentials, which we refer
to as a sedimentation path. A crossing between the sedimen-
tation path and a binodal corresponds to an interface in the
sample, which establishes a direct relationship between the
path and the observed phase stacking sequence under gravity.
We have developed a general theory that relates all possible
stacking sequences of a colloidal mixture to its bulk phase
diagram. We have shown how to group the stacking sequences
in a stacking diagram that follows in a unique way from the bulk
phase diagram. The binodals, their ending points, and their
asymptotic behaviour are the three distinct elements that
determine the boundaries between the different sedimentation
states in the stacking diagram. The stacking and the bulk phase
diagrams are linked by a well dened mathematical mapping
based on the Legendre transform.

In order to characterize the sedimentation states, a suitable
order parameter is the array of thicknesses, hm, of the individual
layers m ¼ 1, 2, . in a sedimented stack. When crossing a
boundary in the sedimentation diagram, at least one of the
hm / 0, which implies a continuous phase transition in the
inhomogeneous systems. Finite-size and surface effects, that
are beyond our LDA treatment, will modify and enrich this
scenario via wetting at the upper and lower boundaries and
capillary evaporation effects of very thin oating layers.19
8640 | Soft Matter, 2013, 9, 8636–8641
The individual stacks are always in the order of decreasing
total mass density, rmðzÞ ¼

P

i
miriðzÞ. The condition

0$drmðzÞ=dzh
P

ij
miðvri=vmjÞdjjðzÞ=dz follows by imposing

the local thermodynamic stability along the sedimentation
path, i.e. the matrix of partial derivatives vri/vmj|T,V,mk, where V is
the system volume, is positive denite.23 This is consistent with
the ndings in12,13 and is not in conict with the possibility of
denser particles oating on top of lighter ones, as recently
reported by Piazza et al.,6 provided that the oating phase has
lower mass density than the supporting phase.

Gravity induces very rich phenomenology even for the
simplest of mixtures. For example, the binary hard core platelet
mixture that we investigated has only isotropic and nematic
phases stable in bulk. We found that the stacking diagram
contains six different types of sequences, with up to four
distinct layers. The maximum number of layers in a stacking
sequence is not limited by the Gibbs phase rule for bulk phases.
Instead, an extended Gibbs phase rule holds, which accounts
for the maximum number of layers that can appear in the
sedimentation–diffusion equilibrium. The relevant parameters
are the number of binodals and the number of their inection
points, rather than only the number of components as is rele-
vant in bulk. As a consequence, extremely rich stacking
sequences can be found even for very simple mixtures. An
example is the NINI stack that we predict to occur in the binary
platelet mixture. Mixtures with three binodals can lead to
stacking sequences with seven distinct layers in the simplest
case with no inection points.

Our results demonstrate that the ratio between the
buoyant masses of both species, s, is a key parameter that
controls the stacking sequence of a mixture. A change in the
strength of gravity, i.e. by using centrifugal forces as in
analytic centrifugation, leaves the slope s invariant. However,
if the species are made of different materials, one can vary s
experimentally by changing the density of the solvent,
because m2/m1 ¼ v2(rm,2 � rs)/(v1(rm,1 � rs)), where vi is the
particle volume, rm,i is the mass density of species i, and rs is
the solvent density. Alternatively, one could vary s by
designing colloids with cores made of different materials.24

While clearly the average density of colloids in the sample
(related to a cf. eqn (2)) plays a major role in determining the
stacking sequence, our consideration for the binary platelet
mixture demonstrates that the total height of the sample is a
further relevant parameter because it controls the accessible
region of the corresponding innite sedimentation path. As
different intervals of an innite sedimentation path can lead
to distinct stacking sequences, the height of the sample
should be carefully controlled in sedimentation experiments.
See the discussion of the effect of nite sample height in the
binary platelet mixture, Fig. 3.

Our approach is relevant for computer simulation work, as
the sedimentation–diffusion equilibrium of colloidal mixtures
can be predicted by simulating only the bulk phase behaviour,
which can be less computationally demanding than performing
simulations of inhomogeneous systems under gravity.
This journal is ª The Royal Society of Chemistry 2013
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Although we have restricted our study to the case of binary
mixtures, the theory is valid for multicomponent systems, as
sedimentation paths remain as lines in the space spanned by all
chemical potentials, cf. eqn (1). Our theory can also be used to
describe the sedimentation of mixtures with non-colloidal
components. An example is mixtures of platelets and non-
adsorbing polymers where the gravitational length of the poly-
mers is much higher than that of the colloids. We have checked
that the results from our approach, using the free-volume
theory in ref. 25 to describe the bulk phase diagram of the
mixture, match with those of the effective one-component
approach by Wensink and Lekkerkerker26 and the experiments
by van der Kooij et al.27 Our theory also applies to molecular
mixtures, provided that the bare mass rather than the buoyant
mass is used.
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