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SUMMARY 

 

RNA binding proteins (RBPs) accompany RNA throughout its whole life cycle. Therefore, the 

interaction of RBPs and target RNAs is particularly essential for post-transcriptional regulation. 

Not only can RBPs affect the RNA’s expression, they can also control the localization, 

degradation, translation, and other activities of RNA. Capitalizing on recent advances in high-

throughput sequencing, this thesis describes the use of transcriptomic and proteomic technologies 

to systematically study the interplay of RNA and RBPs under the context of viral infection. In 

brief, we infect the human cell line HEK293 with the Sindbis RNA virus, with the aim of 

demonstrating how the viral infection remodels the host transcriptome and proteome.  

 

While it is commonly accepted that RBPs play a role in the regulation of gene expression, their 

contributions are still poorly understood. By using RNA interactome capture to track dynamic 

changes in RNA-binding proteome along the course of viral infection of Sindbis virus in human 

cells, we aim to assess the global impact of Sindbis virus infection on host transcriptome and 

proteome, and to identify host RBPs that interact with the Sindbis virus during its reproduction. 

This thesis reviewed the interplay dynamics between RNA and RBPs in human HEK293 cell line 

at three different viral infection stages. We observed a remodelling of binding activities of RBPs 

and the subsequent activation of the immune responses in the host cell. To our surprise, most 

RBPs demonstrating altered RNA binding did not show protein-level changes. Besides using 

statistical methods to evaluate the relative effects of different RNA processes, we also 

ddemonstrated that RNA degradation pathways had the biggest contribution to changes in RNA 

abundance change in SINV infected cells. Similar machinery may also apply to other 

alphaviruses, such as Chikungunya and Mayaro viruses, and thus we hope this study may 

contribute for the development of drugs to help solving public health problems caused by similar 

viruses in around the world. 
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Zusammenfassung 
 

RNA-Bindungsproteine (RBPs) begleiten die RNA während ihres gesamten Lebenszyklus. 

Deshalb ist die Interaktion von RBPs und Ziel-RNAs für die posttranskriptionelle Regulation 

besonders wichtig. RBPs können nicht nur die Expression der RNA beeinflussen, sondern auch 

die Lokalisierung, den Abbau, die Translation und andere Aktivitäten der RNA kontrolieren. Diese 

Arbeit nutzt die jüngsten Fortschritte in der Hochdurchsatz-Sequenzierung und beschreibt den 

Einsatz von transkriptomischen und proteomischen Technologien zur systematischen 

Untersuchung des Zusammenspiels von RNA und RBPs im Kontext der Virusinfektion. Kurz 

gesagt, wir infizieren die menschliche Zelllinie HEK293 mit dem Sindbis-RNA-Virus, um zu 

zeigen, wie die virale Infektion das Transkriptom und Proteom des Wirts umgestaltet. 

  

Es ist zwar allgemein anerkannt, dass RBPs eine Rolle bei der Regulierung der Genexpression 

spielen, aber ihre Beiträge sind noch immer wenig verstanden. Durch die Verwendung von RNA-

Interaktom-Capture, um dynamische Veränderungen im RNA-bindenden Proteom zu verfolgen, 

entlang des Verlaufs der Virusinfektion des Sindbis-Virus in menschlichen Zellen, wollen wir die 

globalen Auswirkungen der Sindbis-Virusinfektion auf das Wirts-Transkriptom und Proteom 

abschätzen und Wirts-RBPs identifizieren, die während der Reproduktion des Sindbis-Virus mit 

diesem interagieren.In dieser Arbeit wurde die Interaktionsdynamik zwischen RNA und RBPs in 

der menschlichen HEK293-Zelllinie in drei verschiedenen viralen Infektionsstadien untersucht. 

Wir beobachteten eine Neumodellierung der Bindungsaktivitäten der RBPs und die anschließende 

Aktivierung der Immunantwort in der Wirtszelle. Zu unserer Überraschung zeigten die meisten 

RBPs, die eine veränderte RNA-Bindung zeigten, keine Veränderungen der Proteinebene. Neben 

der Verwendung statistischer Methoden zur Bewertung der relativen Auswirkungen verschiedener 

RNA-Prozesse zeigten wir auch, dass die RNA-Abbaustrukturen den größten Beitrag zu den 

Veränderungen der RNA-Häufigkeit in SINV-infizierten Zellen leisteten. Eine ähnliche 

Maschinerie kann auch auf andere Alphaviren wie Chikungunya- und Mayaro-Viren angewendet 

werden. Daher hoffen wir, dass diese Studie zur Entwicklung von Medikamenten beitragen kann, 

die zur Lösung von Problemen der öffentlichen Gesundheit beitragen, die durch ähnliche Viren in 

der ganzen Welt verursacht werden. 
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1. Introduction 

 

 

The central dogma hypothesis, which was first proposed by Francis Crick in 1957, is now widely 

regarded as one of the most influential theories in biology. During the last decades, the content 

of central dogma has been profoundly expanded. RNA is one of central dogma’s three essential 

macromolecules by virtue of its function storing and circulating genetic information between 

DNA and proteins. However, recent research suggests that RNA also takes part in various cell 

activities that involve its closest functional partners, the RNA binding proteins (RBPs). 

Capitalizing on recent advances in high-throughput sequencing, this thesis describes the use of 

transcriptomic and proteomic technologies to systematically study the interplay of RNA and 

RBPs under the context of viral infection. In brief, we infect the human cell line HEK293 with 

the Sindbis RNA virus, with the aim of demonstrating how the viral infection remodels the host 

transcriptome and proteome.  In doing so we hope to uncover the fundamental processes driving 

remodelling and to provide an expanded view of mRNA-protein interactions in response to viral 

infection. 

 

1.1) RNA and RNA-binding proteins 

 

As an intermediate substance between DNA and protein, the primary cellular function of RNA 

is to transmit genetic information in the cell (Alberts B., 2002). A common metaphor considers 

the DNA genome as equivalent to a building projects blueprint, with the proteins as the functional 

‘bricks’ that can do almost anything in the cell (Crick, F.H., 1958). In this process, RNA works 

as a transcript for each corresponding protein in the DNA genome. For an RNA to be transcribed 

and transported to the right place, the RNA must bond to several RBPs (Glisovic T., 2008). Thus, 

in most cases, the activity of RNAs in the cell are coupled with RBPs.  

  

RBPs accompany RNA throughout its whole life cycle. Therefore, the interaction of RBPs and 

target RNAs is particularly essential for post-transcriptional regulation. Not only can RBPs affect 

the RNA’s expression, they can also control the localization, degradation, translation, and other 

activities of RNA (Ross, A.F., 1997; Deshler J.O., 1998; Brewer G., 1991; Zhang, W., 1993; 
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Gualerzi, C.O., 1990). For example, the zip code binding protein (ZBP) recognizes a 54-

nucleotide localization signal on β-actin mRNA which helps the β-actin messenger RNA 

(mRNA) to shuttle between a cell’s nucleus and cytoplasm (Ross, A.F., 1997) (Figure 1). As 

most of RNA binding proteins are functional related, they represent a group of proteins with 

higher evolutionary conservativeness (Gerstberger, S., 2014). While the strategies that RBPs 

employ to bind to RNAs are not fully understood, there is evidence that alterations in RBPs 

expression or binding sites availability in target transcripts can contribute to human muscular 

atrophies, neurological disorders and various cancers (Castello, A., 2013). Therefore, the study 

of RNA-RBP interactions is critical for gaining a better understanding of gene expression 

regulation and RNA function in the cell. It is hoped a better understanding of the interplay of 

virus RNA and the host RBPs in our study will aid research and development efforts for a host 

of similar RNA viruses. 
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Figure 1, Hypothetical model of the ZBP protein binding to the 54 b-actin mRNA at the ACACCC motif, 

the binding site is proposed by mutating motifs in A, B and C regions. (Reprinted with permission 

from American Society for Microbiology, Ross, A.F., 1997) 

 

1.1.1) RNA and its roles in the cell 

 

The three main types of cellular RNAs are messenger RNA (mRNA), ribosomal RNA (rRNA), 

and transfer RNA (tRNA). Messenger RNA is the direct transcriptional product of RNA, and 

functions are an intermediate macromolecule between the DNA and the protein. Ribosomal RNA 

is the RNA component of ribosomes. There are four types of rRNA in humans that contributed 

to form either a large or small subunit. The 5S, 5.8S and 28S rRNA together forms the large 

subunit of ribosome, while the 18S takes part to assembl the small subunit. (Jeanteur, P., 1969; 

Aloni, Y., 1971; Aubert, M., 2018). The ribosome itself is formed from these two RNA subunits 
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along with their accompanying ribosomal proteins (Aubert, M., 2018). The process of translation 

is started by ribosomal assembly and attachment to the mRNA (Gualerzi, C.O., 1990). The tRNA 

molecules, each of which contains a 3-letter codon, then translate the mRNA sequence into a 

peptide sequence by carrying the codon-specific amino acid to the ribosome (Rich, A., 1976). 

This function makes tRNA essential to the process of mRNA translation. 

 

Recent research has revealed that RNA has much broader functional and regulatory potential in 

the cell than anticipated. In 1967, Carl Woese et al., discovered that RNA could form a complex 

secondary structure which acted as a catalyst for specific biochemical reactions in the cell. 

Besides this catalytic potential, some types of RNA can also modulate translation (Cullen, B.R., 

2004). These RNAs play a critical role in regulating gene expression, usually by suppressing 

protein synthesis by binding to the 3’UTR of a target mRNA (Zheng, B., 2017). Long non-coding 

RNAs (lncRNAs), so called because they typically surpass 200 nucleotides in length, are another 

type of recently discovered non-coding RNAs. While the function of more than 99% of lncRNAs 

are still unknown (Kung, J.T., 2013), described functions include recruitment and allosteric 

activation of proteins, recruitment of transcriptional regulators and inhibition of protein actions. 

(Long, Y.C., 2017). Moreover, in addition to being regulated by RBPs, some RNA may regulate 

the function of RBPs itself (Hentze M.W., 2018). These and other findings have revolutionized 

our knowledge of the function of RNA and indicate more diverse roles for RNA in the cell than 

previously thought.  

 

Lastly, the genetic material in a large number of viruses is encoded by RNA rather than DNA, 

for instance in the case of influenza, severe acute respiratory syndrome and hepatitis C viruses 

(McGeoch, D., 1976; Marra, M.A., 2003; Takamizawa, A.C., 1991). The Sindbis virus used in 

this study is also an RNA virus. Using an RNA virus in our experiment helps us to quickly 

identify the set of RBPs that also potentially bind to viral RNAs. 

 

1.1.2) RNA life cycle: from synthesis to decay 

 

Multiple cellular processes carefully mediate the fate of an mRNA molecule throughout its 

lifespan (Bjork, P., L., 2015). During synthesis, an mRNA molecule will be adenylated, spliced, 
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and capped to become a mature mRNA (Peter, G., 1969). To be successfully translated into a 

protein, the mature mRNA will be then be transported from the nucleus to the cytoplasm. The 

mRNA can also be degraded to control the quality and the amount of mRNA in the cell (Bjork, 

P.L., 2015). 

 

In eukaryotes, RNA synthesis is the process by which genetic information in DNA is transcribed 

into mature RNA (Geiduschek, E.P., 1961). It is orchestrated as a collaboration of multiple 

processes that is dependent on each other (Maniatis, T., 2002). It typically includes the following 

steps: the start of transcription, 5’ capping, alternative splicing, and 3’ polyadenylation 

(McCracken, S., 1997; Edery, I., 1985; Niwa, M., 1990). Multiple RNA binding proteins and 

RNA-protein complexes are involved in this process. The primary regulator of RNA synthesis is 

a multiprotein complex called RNA polymerase II (Hahn, S., 2004). RNA synthesis starts when 

RNA polymerase II attaches to the promoter region, which is located just upstream of the 

transcription start site (TSS) of the regulated genes (Hahn, S., 2004). The promoter contains a 

specific DNA motif that binds to RNA polymerase II to initiate transcription. RNA polymerase 

II then unwinds the double-strand DNA and starts to produce a complementary strand to the 

template DNA strand. The newly transcribed end of the transcript is called the 5’ end. When the 

5’ end reaches a length of about 20–30 nucleotides, the capping enzyme complex, which sits on 

the RNA polymerase II, adds a 7-methyl-guanosine cap to the end (Rasmussen, E.B., 1993, Cho, 

E.J., 1997). The cap-binding complex is then attached to the capped region to protect the capped 

5’ end from degradation.   

 

During transcription, the spliceosome, which consists of small nuclear RNA and splicing factors, 

recognizes intron-exon junction sites on each intron and cleaves the intron from the primary 

transcript (Will, C.L., 2011). After transcription is completed, a set of RBPs recognize and bind 

to a specific motif on the 3’ end of the pre-mRNA, cleaving off a segment of the 3’ end and 

adding multiple adenosine tail units (poly (A) tail) to the cleavage site. This process is called 

polyadenylation (Niwa, M., 1990). After polyadenylation, poly (A) tail-binding protein Pab1p 

binds to the poly (A) tail to form the protected 3’ end (Zhao, J., 1999). After 5’ end capping, 

splicing, and 3’ end polyadenylation, the primary mRNA consists of a complex of mRNA and 

RNA binding proteins and is also called mature messenger ribonucleoprotein (mRNP). 
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The addition of the cap-binding complex and poly(A) tail binding protein Pab1p to both ends of 

the mRNA prevents the mRNA from been degraded. The mRNP is now ready to be transported 

from the transcription sites to the cytoplasm through nuclear pores formed by proteins assemblies 

termed Nuclear Pore Complexes (NPC). The mRNPs travel through NPCs mainly by diffusion 

(Cole, C.N., 2006) (Figure 2). 
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Figure 2, RNA binding protein Dbp5 facilitates the transportation of messenger RNA from the nucleus 

into the cytoplasm by going through the nuclear pore complex. (Reprinted with permission from Elsevier, 

Cole, C.N., 2006) 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Cole%20CN%5BAuthor%5D&cauthor=true&cauthor_uid=16682182
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After mRNP is transported to the cytoplasm, it attaches to a ribosome and starts translation (Di 

Liegro, C.M, 2014). Translation starts when the ribosome assembles around the target mRNA 

and recruits the corresponding tRNAs. The tRNAs carry anticodons that are reverse 

complementary to each codon on mRNA. For each mRNA codon, the corresponding tRNA 

brings the codon-specific amino acid to the ribosome and leaves. The ribosome moves forward 

to the next mRNA codon in a 3’ to 5’ direction, linking up all amino acids carried in by tRNAs 

in the form of an amino acid chain, which can later be folded into a protein. The amino acid chain 

is released from the ribosome when one of 3 stop codons (i.e., UAG, UAA or UGA) on the 

mRNA is met. 

 

The lifespan of mRNA in eukaryotic cells is controlled by a crucial post-transcriptional 

regulation mechanism called mRNA decay (Schoenberg, D.R., 2012). The mRNA decay can 

occur in different parts of a mature mRNA, it can happen from within the transcript sequence 

through endoribonuclease, or from both ends through exoribonuclease. Decay activities include 

decapping, deadenylation, exonucleolytic decay from both ends of the transcript, and 

endonucleolytic cleavage (Labno, A., 2016). It is also possible that the RNA molecule initiates 

the degradation even before the RNA is wholly synthesized (Morikawa, N., 1969). Various 

mRNA decaying mechanisms exist in the cell, mainly serve for two purposes, one that degrades 

transcripts explicitly with transcriptional error, preventing the production of potentially harmful 

proteins; and one which regulates the expression of normal mRNA as a post-transcriptional 

regulatory mechanism (He, F., 2015).  

 

1.1.3) RNA binding proteins 

 

RNA binding proteins bind to single or double-stranded RNA to form RNP complexes which 

exert various biological functions. The formation of these RNP complexes is prerequisite for 

RNA regulatory activities. Conventionally, RBP binds to RNA at the structurally well-defined 

RBDs, such as RNA recognition motif (RRM)3, hnRNP K homology domain(KH)4 or DEAD-

box helicase domain (Figure 3). Later identification of novel RBPs, which is also called non-

canonical RBPs, however, has shown that about half of the RNA binding sites are not canonical 

and map to intrinsically disordered regions of the protein (Castello, A., Fischer, B., 2016). These 
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Non-canonical RBPs lay various roles in RNA biology via alternative splicing and enzymatic 

activities, and are subject to posttranslational modifications such as lysine acetylation and 

tyrosine phosphorylation, adding another layer of regulation to RNA and RBPs interactions. 

(Castello, A., Fischer, B., 2016) 

 

 

Figure 3, A typical view of RNA-RBP interaction and various RNA activities related to RNA binding. 

Canonical RBPs binds to RNA through an RNA-binding domain (Reprinted with permission from 

Elsevier, Hentze, M.W., 2018) 

  

Multiple in vitro and in vivo approaches have been developed to screen the whole proteome for 

RBPs. (Baltz, A.G., 2012; Castello, A., 2017; Gerstberger, S., 2014). In vitro screening methods 

use an immobilized RNA or protein array as bait to incubate with cellular extracts for binding 

partners. In RNA arrays, the bound RBP is subsequently identified by quantitative mass 

spectrometry, while in protein arrays, cellular RNA is fluorescently labeled and a fluorescent 

intensity detector is used to identify different RBPs (Butter, F., 2009, Scherrer, T., 2010, Castello, 

A., 2016, Castello, A., 2017). In vivo methods use ultraviolet irradiation to cross-link 

neighboring RNAs and proteins in living cells, which are then identified using quantitative mass 

spectrometry. In terms of specificity, neither method is perfect; In vitro methods may also capture 

extraneous binding that does not appear in nature, while in vivo methods may identify indirect 

RNA-protein interactions. Nevertheless, both methods have contributed greatly to our knowledge 

of RBPs, with a recent compilation of the human RBPome reporting 1914 RBPs in total (Hentze, 

M.W., 2018)  
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Some RNA Binding Proteins are reported to have regulatory functions in viral infections, 

particularly in the case of RNA viruses (Li, Z., 2011). While the host cell dedicates more than 

1,500 proteins to RNA metabolism, viral genomes typically encode only a dozen. RNA viruses 

have thus developed sophisticated mechanisms that hijack the host resources to support their 

replication (Leung, J.Y.S., 2011). To identify the important host RBPs needed for viral infection, 

we isolated the complete complement of RNA binding proteins (i.e. the Interactome) using “RNA 

interactome capture” across different viral infection stages, and compared these with the whole 

proteome at these time points.  

 

1.2) The ‘Omics’ era in protein-RNA interactions 

 

The rapid development of a new generation of high-throughput DNA sequencing technologies 

has produced a reduced sequencing cost and far greater accuracy. These developments have 

revolutionized biological research over the past years. From the sequence of the first individual 

human complete genome in 2007, to the first draft map of human proteome in 2014 (Levy, S., 

2007, Kim, M.S., 2014), sequencing technologies have brought new perspectives to existing 

research fields, but also produced new research areas. As with the ‘genome’ and ‘proteome’, a 

collection of proteins that bind to RNA in a cell is termed an 'RBPome' or 'RNA interactome'. 

The RBPomes interplay with RNAs mediates post-transcriptional regulations in the cell.  

  

The investigation of RNA-RBPs interactions has greatly benefited from advances in next-

generation DNA sequencing and Mass-spectrometry based peptide sequencing. For instance, in 

interactome capture, identification of RBPome is determined by using mass-spectrometry to 

sequence the complete set of proteins in cross-linked protein complexes. On the other hand, if 

one is more interested in identifying the set of RNAs that bind to a protein, the RNA in the cross-

linked complexes can be isolated and sequenced using ‘CLIP’ technologies (explained in 1.2.5). 

CLIP and RNA interactome capture (explained in 1.2.4) would not be possible without the recent 

advances in ‘omics’ technologies. 

 

 



Page 14 of 111 

1.2.1) RNA sequencing 

 

The popularity of RNA sequencing arises from the fact that knowledge of the transcriptome 

brings profound insights on the coding parts of a genome (Wang, Z., 2009a). RNA sequencing 

technology was developed in conjunction with the “sequencing by synthesis” approach in 2005, 

and is one of several “next-generation sequencing” techniques (Margulies, M., 2005, Matthew 

N.B., 2006). Further technical details of “sequencing by synthesis” are shown in Figure 4. 

  

Prior to RNA sequencing, microarray hybridization was used to quantify RNA expression in 

parallel (Schena, M., 1995, Simon, M.D., 2013). However, this technology had certain 

disadvantages: First, microarray hybridization can only be used examine the expression of RNA 

with known sequences; Second, the accurate quantification of some sequences suffers from 

cross-hybridization with highly similar sequences; Third, the quantification is not likely to be 

exact in the case of extremely sparse or highly abundant transcripts (Casneuf, T., 2007). RNA 

sequencing, on the other hand, uses next-generation sequencing technology to directly determine 

the sequences from a complementary DNA (cDNA) library generated from a whole-cell 

transcriptome, providing a much higher resolution snapshot of the cell genetic makeup. As a 

consequence, RNA sequencing can address problems that befuddle traditional sequencing 

techniques, such as identifying alternative splicing events or new transcripts, discovering protein-

coding mutations, and comparing allele-specific expression. 

 

In our study, RNA sequencing is used to sequence the RNA level at Mock, 4 hpi, and 18 hpi. All 

types of RNA are sequenced in our experiment, including rRNA, mRNA, and non-coding RNAs. 

Since the Sindibis virus has an RNA genome, our study also examines the RNA production of 

the Sindbis virus. 
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Figure 4. The widely used ‘sequencing by synthesis’ technique for high-throughput DNA sequencing. 

The genomic DNA is isolated, fragmented, and attached to beads that only allow one DNA fragment per 

bead. The beads are captured in oil emulsion droplets for PCR cloning of the attached fragments. Beads 

with cloned DNA fragments are then deposited into wells on a fiber optic slide for the PCR reaction. 

During a PCR reaction, the newly incorporated base will emit photons and pyrophosphates that can be 

detected for sequencing (Reprinted with permission from Springer Nature, Margulies, M., 2005). 

 

1.2.2) Peptide sequencing 

 

It is a little known fact that the development of the first robust peptide sequencing method, named 

Edman degradation (Edman, P., 1949), was invented 28 years earlier than the first universal 

nucleotide sequencing technique, Sanger sequencing (Sanger, F., 1977). The process of 

determining the peptide sequence was originally called ‘sequenator’ and gradually changed to 

the term ‘sequencing’ as nucleotide sequencing gained popularity in molecular biology research 

around the late 1980s. Edman’s sequenator works by repeatedly cleaving and identifying N-

terminus amino acids. In each round of Edman degradation, the endmost N-terminus amino acid 



Page 16 of 111 

of a peptide is cleaved and identified by electrophoresis or chromatography. However, the 

cellular proteome is complex entity with many types of protein modifications and intensities, 

hindering the efficiency of N-terminus cleavage, making Edman’s approach ill equipped study 

the whole set of proteins in the proteome.  

 

In 1981, another peptide identification method was developed that combined of ionization and 

mass spectrometry (termed the MS method) (Barber, M., 1981, Morris, H.R., 1981). Compared 

to Edman’s sequenator, the MS method was more sensitive and had a much higher throughput. 

However, this method could only read short, fragmented pieces of proteins, and was not optimal 

for identifying a longer protein sequence as in Edman’s approach. However, The MS method 

method did ease the way for future sequencing efforts: When whole-genome sequencing first 

emerged, the short peptide sequences uncovered using MS approaches were easily mapped to the 

existing genomic database, making the identification process much easier. (Kim, M.S., 2014) 

  

The advances in MS-related technology gradually made MS an indispensable technique in 

proteome sequencing. In a classic proteome liquid chromatography-MS experiment, the purified 

protein sample has to be first digested into short peptide sequences, because the mass of the intact 

protein molecule exceeds the detection limit of the MS method. While different types of digesting 

enzymes with distinct cleavage preferences are available for protein digestion, in practice, trypsin 

is usually employed to do the task. Trypsin works by making a precise cut on the C-terminal side 

of Lysine and Arginine residue, producing peptides with appropriate lengths for MS detection 

and enhanced ionization properties (Huynh, M. L., 2009). After digestion, the mixture of peptides 

are  separated according to their molecular size using high-pressure liquid chromatography 

(HPLC).The solution of separated peptide groups then sequentially goes through an ionization 

chamber, where they are ionized and gradually vaporize to generate isolated charged particles.  

 

In the 1970s and 1980s much effort was devoted to the development of techniques that effectively 

ionized analytes in both liquid and solid forms (Macfarlane, R.D., 1976, Blakley, C.R., 1980, 

Heller, D.N., 1987, Dempster, A.J., 1921, Morris, H.R., 1981). Among these techniques, 

electrospray ionization (ESI) (Yamashita, M., 1984) and matrix-assisted laser 

desorption/ionization (MALDI) (Karas, M., 1987) drew most attention on account of their 
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advantages in sample mass limits and sensitivity. ESI was used to ionize samples in liquid form 

(Figure 5), while MALDI is used to ionize solid samples. These methods gradually become the 

most commonly used ionization techniques to date. In 2002, Fenn and Karas shared the 2002 

Nobel Prize in Chemistry for development of these techniques.  

 

 

Figure 5, Schematic diagram of an electrospray. The liquid sample is sprayed from the needle, and then 

the droplets are evaporated under high voltage and temperature, leaving charged macromolecule ‚bathed 

in gas for analysis. (Reprinted with permission from American Chemical Society, Yamashita, M., 1984) 

 

After ionization, the ionized particles go through the analyzer, and enter either an electronic or 

magnetic field which alters their movement, allowing separation of particles based on their mass 

to charge ratio. For instance, time-of-flight mass spectrometry (TOF-MS) uses an electric field 

to accelerate the ionized particles, where the ‘flight’ time of a particle to the detector is related 

to the quality of an ion. When combined with HPLC, TOF-MS is ideal for the analysis of polar 

metabolites such as amino acids and other organic biological samples (Stewart, D., 2015). Here, 

the detector ascertains the amount of particles with different mass-charge ratio. The MS outcome 

for each peptide is a mass spectrum, which contains a measure of its relative abundance and the 

mass to charge ratio of all of its ionized particles. 
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1.2.3) Experimental and ‘in silico’ identification of RNA-protein interactions and 

RNA-binding domains 

 

A range of methods have been developed to identify of RNA-protein interactions in the cell. 

These methods typically involve targeting a RNA of interest and using it as a bait to capture 

bound proteins bound. For example, proteins covalently bound to polyadenylated RNAs from 

cell lysis can be isolated by oligo(dT) selection and then identified using mass spectrometry 

based proteomic techniques. To date, over 1900 RBPs have been identified in humans (Hentze 

M.W., 2018) using protein microarrays (Tsvetanova, N.G.,  2010, Scherrer, T., 2010, MacBeath, 

G., 2000) or target RNA pull-down followed by quantitative mass spectrometry (Butter, F., 2009, 

Tsvetanova, N.G., 2010, Treiber, T., 2017). In brief, a protein microarray is a set of fabricated 

proteins that are arranged in a grid pattern on a modified glass chip. These proteins can be probed 

using different sorts of fluorescently labeled RNA, and the signal can be spotted onto the 

microarray chip for RNA-protein immobilization. For example, Scherrer et al., used a yeast 

proteome microarray containing ∼70% of the proteome (i.e., ~4,088 yeast proteins), to identify 

180 mostly unannotated proteins that interacted with RNA (Scherrer, T., 2010). 

  

Another approach for identifying RBPs is the use of stable isotope labeling of amino acids in cell 

culture (SILAC). In the SILAC method, two cell populations are fed growth medium containing 

amino acids labeled with non-radioactive (i.e.., stable) carbon-12 or carbon-13 isotopes (Ong, 

S.E., 2002). Non-binder proteins are expected to have an equal amount of control and bait eluate, 

thus having a heavy/light carbon isotope ratio around 1:1, while specific binders to the bait RNA 

will have different amounts in two populations, therefore, their heavy/light carbon isotope ratios 

are expected to be significantly differ from 1:1. By detecting differences in isotope abundance 

between control and bait eluate, Butter Falk and his co-worker were able to show that the HuR 

protein was a specific binder partner of Histone Deacetylase 2 (HDAC2) mRNA (Butter, F., 

2009). 

  

The more recent RNA interactome capture (RIC) methods has a higher sensitivity for RBP 

identification with lower background noise level compared with previous methods. RIC uses 

ultraviolet crosslinking of RBPs to RNA in vivo, followed by RNA pull-down and protein 
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identification using quantitative mass spectrometry. The crosslinking ensures robust binding of 

RBPs and RNAs, allowing for more stringent downstream purifying conditions that minimize 

contamination. The RNAs in pulled down mRNA-protein complexes are released by RNase 

treatment. The proteins are then cleaved into peptides and identified using MS (Castello, A., 

2013). In two different studies, RIC yielded 860 and 791 RBPs from human HeLa and HEK293 

cells, respectively (Baltz, A.G., 2012, Castello, A., 2012). A detailed description of RIC is shown 

in Figure 6. 
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Figure 6, mRNA-protein interactions are preserved by performing UV cross-linking in vivo. Poly(A) 

RNA-protein complexes are captured by pull-down with oligo(dT) magnetic beads. Eluates are processed 

with proteinase K for RNA quality control, RNases for protein quality control, and RNases and trypsin 

for quantitative analysis. Comparative proteomic data analysis defines 'high-confidence' mRNA 

interactomes (Reprinted with permission from Elsevier, Castello, A., 2013). 
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To understand RNA-protein interaction and binding activities, both experimental and 

computational methods can be used to identify precise RBPs domains. A noteworthy 

experimental method which uses comparative proteomics was developed by Kramer K. et al. 

This method hydrolyses UV-cross-linked RNPs and their non-cross-linked controls using 

proteinase and nuclease enzymes that remove proteins and RNAs not in a binding position 

(Kramer, K., 2014). The resulting peptide–RNA complexes are then enriched and analyzed by 

ESI MS. Then, a quantitative comparison of peptide intensities in both conditions is conducted 

using a modified search algorithm that removes MS spectra that does not correspond to any 

spectra in the cross-linked samples. In Kramer’s experiment, this allowed the identification of 

257 cross-linked sites on 124 distinct RNA-binding proteins (Kramer, K., 2014). In 2016, 

Castello and co-workers published an extension of the RIC method that added a protease 

digestion step followed by a second round of oligo(dT) capture and mass spectrometry. They 

used this method to successfully identify 1,174 binding sites within 529 HeLa cell RBPs, as well 

as numerous RNA-binding domains (Castello, A., 2016). 

 

In silico methods, on the other hand, make use of the protein sequence features from public 

databases (Wang, L., 2006, Terribilini, M., 2007) or the 3D structure of protein and binding 

RNAs to make predictions (Perez-Cano, L., 2010, Zhao, H., 2011). However, these prediction 

are complicated by the fact that about half of all RNA binding activities are driven by the 

intrinsically disordered regions (IDRs) of their constituent RBPs (Castello, A., 2016). That said, 

machine learning algorithms have shown a great potential for predicting binding sites given 

reliable training samples. My former colleague Mohamed Kammoun tested different machine 

learning algorithms including linear discriminant analysis, random forests, support vector 

classifiers, and convolutional neural networks to predict protein binding sites using an in vivo 

binding dataset of Hela cell (Kammoun, M., 2016). This dataset comprises of a collection of 

protein fragment sequences labelled as 'Bound' or 'Released' that represent binding or non-

binding to RBPs. Then, using certain sequence features as input, the outcome of different 

algorithms can be evaluated to give the best performing model. We built an interactive web 

interface for predicted protein RNA binding-sites based on the best performing model. This 

application allows users to upload the protein sequences in a FASTA file format or simple copy 

and paste input sequences. Given this input the app generates a dataset with the probability for 
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each amino acid being evolved in binding and an accompanying visualization. The online version 

of the app "RBDetect" can be found in this link: (https://nishuai.shinyapps.io/RBDetect/). An 

example run of the app is shown in Figure 7. 

 

 

Figure 7, The web interface of “RBDetect” for RNA binding-sites prediction. The input panel on the left 

allows user to upload the input sequences. The plot on the right shows the prediction result from 

RBDetect. X axis represents the input sequence, Y axis represents the predicted probability for protein 

binding on each position. 

 

1.2.4) Examining the RBP footprints on the RNA: the CLIP methods   

 

Besides investigating proteins in this RNA-protein binding complex, the role of their RNA 

counterparts of RBPs are also a major interest for researchers. While there are several different 

approaches for identifying RNAs in the context of RNA-RBP interactions, the critical steps of 

remain the same. These are: 1) extraction of the protein-RNA complex of interest 2) isolation of 

the bound RNA and 3) further study of the now isolated RNA. CLIP methods are a collection of 

techniques that use ultraviolet cross-linking and immunoprecipitation for the extraction of the 

protein-RNA complexes, with the method itself is being named after the aforementioned 

analytical procedures. A variety of methods has arisen from different laboratories who have 

modified the classical CLIP approach in a bid to make it more precise and efficient. 
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In the next part of this thesis, we overview the pioneering attempts to study RNA-protein binding 

in using high-throughput sequencing. This technique employs immunoprecipitation of native 

endogenous mRNP complexes using a specific antibody for the protein of interest, which is 

termed RNA immunoprecipitation (RIP). The RIP is followed by purification and analysis of 

bound RNA using a cDNA microarray (RIP-chip) or with high-throughput sequencing (RIP-seq) 

(Tenenbaum, S.A., 2000, Brooks, S.A., 2000, Tenenbaum, S. A., 2002, Penalva, L., O. 2004). 

Compared with RIP, the CLIP methods have the advantage of initiating of cross-linking using 

UV 254-nm light prior to immunoprecipitation. This step ensures a more robust binding of RBPs 

and RNAs, enabling the discovery of kinetically unstable interactions and allowing for more 

rigorous downstream purification of the bound RNAs. For instance, cross-linking allows partial 

digestion of the non-binding part of RNA while retaining the core elements involved in protein 

binding, thus providing a more optimal way of locating binding sites on RNAs (Ule, J., 2003). 

Moreover, the separate digestion of single- and double-stranded RNA with specific nucleases in 

the absence of proteins allows inference of the secondary RNA structure adjacent to the binding 

site (Foley, S.W., 2016). The "clipped" RNA sequences are then investigated using a cDNA 

microarray or next-generation sequencing technologies. Compared with microarray techniques, 

next-generation sequencing allows for a more thorough inspection of bound RNAs, enabling the 

analysis of bound RNA on a genome-wide scale (Licatalosi, D.D., 2008). When coupled with 

high throughput sequencing, CLIP methods are referred to as CLIP-seq or high-throughput 

sequencing-CLIP (HITS-CLIP). 

  

CLIP provides a feasible way for genome-wide profiling of binding RNAs and localization of 

the RBP recognition element (RRE) within target RNAs (Licatalosi, D.D., 2008; Van Nostrand, 

E.L., 2016). Hafner’s photoactivatable ribonucleoside enhanced cross-linking 

immunoprecipitation method (PAR-CLIP), further improves the UV cross-linking efficiency and 

the identification of RREs on bound RNAs (Hafner, M., 2010). PAR-CLIP utilizes a photo-active 

ribonucleic acid analog (4-thiouridine or 6-thioguanine) to insert nascent RNA transcripts into 

living cells, followed by cross-linkage using long-wavelength UV 365-nm light. The 

photoreactive nucleosides, which have not shown detectable toxic effects on cell growth, 

generate a characteristic sequence change upon cross-linking (T to C in 4-thiouridine and G to A 

in 6-thioguanine). This results in easy identification of cross-linking sites after the sequencing of 
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the isolated RNA fragments, and dramatically improves the resolution. Using PAR-CLIP, 

Ricardo et al., revealed that the DNA-binding protein CTCE (CCCTC-binding factor protein) 

could bind to a variety of RNAs in vivo and might regulate the p53 interaction with Wrap53 

RNA (Saldaña-Meyer, R., 2014).  

  

PAR-CLIP has certain advantages over CLIP method, but it also has some limitations. The 

insertion of nucleotide analogs is challenging to implement in animal models and clinical 

specimens, meaning the method can only be used at the cellular level. Furthermore, the insertion 

of analogs is reported to inhibit rRNA synthesis and cause a nucleolar stress response in cells, 

though it remains to be seen whether the effect is toxic enough to inhibit in vivo RNA binding 

activities (Burger, K., 2013). 

  

The combination of high throughput sequencing with CLIP methods has the power to identify 

binding regions on a genome-wide scale. However, this method can only resolve about 30 

nucleotides a time due to the current technical limits in high throughput sequencing (König, 

2010). In their modified iCLIP method, König and colleagues reached a single-nucleotide 

resolution for the identifying binding regions, by taking advantage of the fact that during the 

identification of bound RNA after immuno-purification, the majority of reverse transcribing 

cDNAs will be truncated immediately before the cross-linked nucleotide (Urlaub, H., 2002). As 

shown in Figure 8, after immunoprecipitation and proteinase treatment, amino acid residues that 

have covalently attached to the RNA at the cross-link site remain in position. This blocks the 

transcription enzyme’s activity and terminats the reverse transcription of the attached RNA, 

which is positioned precisely one nucleotide before the cross-linking site. iCLIP then captures 

the truncated cDNA, introducing two cleavable adapter regions with random barcode sequences, 

and evoking the circularization of the cDNA by annealing the two cleavage sites. The circularized 

cDNA library can then be sequenced using high-throughput sequencing (König, J.K., 2010). 

Using iCLIP, Wang et al., discovered that T-cell intracellular antigen 1 (TIA1) and TIA1-like 1 

bind to the same positions on human RNAs, shedding light on the various functions of TIA1 and 

TIA1-like proteins in a cell (Wang, Z., 2010). 
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Figure 8, A schematic representation of the iCLIP protocol. After immuno-purification, the covalently 

linked RNA is cross-linked with the RBP and an RNA adaptor is added to its 3′ end. Proteinase K digests 

non-crosslinked parts of the protein, only leaving behind polypeptide fragments that are covalently 

attached to the RNA. Oftentimes, these residual fragments on the RNA will cause a truncation of reverse 

transcription (RT) at the cross-link site. The resulting cDNA molecules are circularized and prepared for 

high-throughput sequencing. The red bar shows the next nucleotide where cDNAs are truncated during 

reverse transcription (Reprinted with permission from Journal of Visualized Experiments, König, J., 

2010). 
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Not only does iCLIP improves the resolution, but by introducing random tags on the adapters it 

reduces the effect of the PCR amplification preference. However, due to the stringent 

experimental conditions involved in iCLIP, laboratories often encounter technical problems 

generating the libraries, especially for those RBPs that lack a canonical RNA binding domain. 

Furthermore, the sequenced CLIP-seq libraries are often of extremely low complexity, which 

means a large proportion of CLIP-seq reads are actually PCR duplicates (Van Nostrand, E.L., 

2016). The eCLIP method is a modified version of iCLIP, developed to improve the library 

complexity and simplify the iCLIP procedure. Ericet al., observed that circular ligation used in 

iCLIP is not as efficient as it could be. Therefore, rather than introducing the two cleavable 

adapters that later form the circularized cDNA molecules, the cDNA is ligated to single-stranded 

DNA adapters on the 3' end and converted to a linear double-stranded DNA library. As with 

iCLIP, the single-stranded DNA adaptor also contains a random-mer to distinguish it in case two 

identically sequenced reads arise from different RNA fragments or are generated as a PCR 

duplicate. Finally, the paired-end cDNA fragments are amplified and sequenced using high 

throughput sequencing (Van Nostrand, E.L., 2016). It was found that CLIP use decreases the 

required amplification by ~1,000-fold, decreasing discarded PCR duplicate reads by ~60% while 

maintaining single-nucleotide binding resolution. Consequently, eCLIP is a more suitable 

method when performing CLIP on a large scale. 

 

1.2.5) The eCLIP database 

 

A great deal of effort has been put into the improving methodological techniques for discovering 

RNA partners and pinpointing their precise binding regions to RBPs. These advances have 

allowed researchers to gain insights into the broader RNA regulatory network and determine 

functional roles associated with RNA-RBP interactions. To preserve the growing information 

generated in different labs with various CLIP methods, a database was required for the 

standardized sharing and archiving of information. The Encyclopedia of DNA elements 

(ENCODE) is a comprehensive database that logs various types of experimental data related to 

functional elements in the human genome (Consortium, E.P., 2012). ENCODE allows the user 

to upload identified RBP peaks determined with eCLIP so long as the experiment fulfills standard 
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requirements and follows a uniform data processing pipeline. In addition to eCLIP ENCODE 

also contains datasets generated by RIP-chip, RIP-seq, and iCLIP (Van Nostrand, E.L., 2016). 

The first eClip dataset in Encode was uploaded by Van Nostrand E.L. et al., who used eCLIP to 

determine 102 RBPs in K562 cells or HepG2 cells. In 2017, the eCLIP database contained more 

than 350 experiments, revealing upwards of 700000 RNS binding regions on RNA at single-

nucleotide resolution, covering approximately 16.5% of the annotated mRNA transcriptome 

(Van Nostrand, E.L., 2018). 

 

1.2.6) ‘Omics’ data analysis 

 

Omics technologies have generated a considerable amount of biological data, making its storage 

and analysis more significant than ever before. Large international projects have pushed such as 

the “International Cancer Genome Consortium” (ICGC), “The Cancer Genome Atlas” (TCGA) 

and the “Human Cell Atlas” (HCA) (Zhang, J., 2011, Cancer Genome Atlas Research, 2013, 

Regev, A., 2017) have pushed need for data analysis pipelines even further. The ICGC and 

TCGA projects are expected to generate petabytes of data for thousands of whole genomes, while 

the HCA will map the transcriptome of billions of single cells in the human body. In fact the 

TCGA dataset, already harbors more than two petabytes publically available genomic data 

(Cancer Genome Atlas Research, 2013). In order to carry out practical in-depth research of this 

massive amount of omics data, customized data processing algorithms and statistical methods 

are essential for genomic, transcriptomic, or proteomic data analysis. As omics datasets can be 

prohibitively large, the analysis of such data requires significant computing resources leading 

researchers seek distributed computing methods to improve efficiency (Srimani, J.K., 2010). For 

example, The Genome Analysis Toolkit (GATK) makes use of a MapReduce framework for 

parallelized computing (McKenna, A., 2010). Tools such as these, which optimize the efficient 

mining of “omics” data will be essential for generating new breakthroughs in the field of 

bioinformatics (Dean, J., 2004, Quinlan, A.R., 2010). 

  

Another important factor that can affect data processing efficiency is data quality, genomic 

sequencing data also suffers from quality issues. These issues usually come form multiple steps 

of biochemical reactions, which often lead to a certain level of uncontrollable bias. Biological 
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artifacts such as unstable enzyme activity, mismatch in reverse transcription, adaptor 

contaminations, and PCR amplification biases can have detrimental effects on the downstream 

analysis (Patel, R.K., 2012, Yang, X., 2013). The artifacts can result in poor quality reads, an 

excessive number of duplicated reads, sequence-specific duplication and so on. Handling these 

artifacts requires specific algorithms are used to control the quality of the sequencing data. For 

example, hash tables and heapsort algorithms are often used to efficiently detect unbalanced 

enrichment of specific sequences in a dataset (Marcais, G., 2011, Misra, S., 2011). Algorithm 

development is especially pertinent given the development of the single-molecule sequencing 

technologies by Pacific Biosciences and Oxford Nanopore, which produce a much longer readout 

and a lower base accuracy (Quail, M.A., 2012, Branton, D., 2008). 

 

Genome and proteome data analysis often involves mapping the detected biological sequences 

to the reference genome or proteome. This step is needed to define where the sequences are 

originally located in the genome. Popular mapping applications generally use the hashing and/or 

the Burrows-Wheeler transform fast indexing algorithms. Hash-based methods build a hash table 

for the reference genome and compare it with hashed reads, or to first hash reads and then fit the 

hashes to the reference genome (Buhler, J., 2001, Lee, W.P., 2014, Li, H., 2008, Li, R., 2009). 

In another mapping algorithm SOAP, the reference genome and the sequencing reads are 

converted into a 2-bits-per-base encoding, and the number of mismatches between a read and the 

hashed reference is computed using bit operation (Li, H., 2008). Hash algorithms are often 

efficient for lookup of a match in constant time, but this come at the cost of high memory 

consumption. The Burrows-Wheeler transform, on the other hand, started out as a text 

compression algorithm. The higher the text repeatability, the greater the compression ratio, which 

overcomes the problem of large genome repeatability. For an exact sequence lookup using the 

Burrows-Wheeler transform, the match can be found within several calculations compatible with 

the length of a given sequence (Burrows, M., 1994). While, in theory, the lookup time is not as 

fast as for hash-based methods, this process consumes far less memory overall. As a 

consequence, software based on the Burrows-Wheeler transform is a bit more widely used in 

mapping.  
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A particular issue to be aware of when mapping RNAs to the reference genome is that of 

alternative splicing. In the process of transcription, genes are translated into pre-mRNA with all 

introns and exons from the original DNA sequence. To form a mature mRNA, all introns and 

sometimes one or more exons are cut out from the pre-mRNA molecule. This means that the 

mature mRNA preserves the order of exons but does not necessarily contain all exons from the 

gene. The length of introns in a gene ranges from 50 to 100,000 bases, so ordinary DNA mapping 

methods cannot distinguish mRNA reads that cross the exon-exon junction sites from regions in 

the reference genome, without addressing any skipped regions in the mRNA. 

  

Therefore, mapping splicing reads to the reference genome might require a more sophisticated 

algorithm, but is normally worthwhile. The identified splicing reads provide direct evidence of 

alternative splicing events and their corresponding splicing sites. In general, two kinds of 

algorithms are designed to address this issue. The first constructs a reference library of all 

possible exon junctions for each transcript. This will, in theory, cover all possible junction 

patterns in mature mRNA. The mRNA reads can then be safely mapped to the library as unspliced 

DNA sequences. Because the ‘junction library’ size is usually much smaller than the size of the 

genome this “junction library” method can be used to find all known splicing events without 

consuming too much extra computing time and memory. However, this ‘junction library’ method 

is unable to find unknown exons. In contrast, the second algorithm maps the reads to the reference 

genome as unspliced DNA. Then, each unmapped read is split into smaller segments for another 

round of mapping (Wang, Z., 2009, C Trapnell, C., 2009). In the Spliced Transcripts Alignment 

to a Reference aligner (STAR) used in our analysis, all reads are mapped from one side to find 

the ‘maximum mappable prefix,’ which is used to realign the  unmapped part of the read to the 

reference genome (Dobin, A., 2013). 

  

One of the significant applications of RNA sequencing is the comparison of transcriptomic 

abundance levels in different conditions. This takes place in the following steps: First, after 

mapping RNA sequencing reads to the reference genome, the expression levels for each gene or 

isoform are estimated. Second, the mapped data is normalized and with the aid of statistical and 

machine learning methods and differentially expressed genes (DEGs) are identified. Finally, the 

relevance of the produced data is evaluated from a biological context (Bjork, P., 2015). Given 
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the increasing popularity of RNA-Seq technology a large choice of different software and 

analytical pipelines have now been developed to perform these types of analyses (Trapnell, C., 

2009, Oshlack, A., 2010, Costa-Silva, J., 2017) 

 

1.3) The intimate relationship between viruses and RNA 

 

Humans have a long history of fighting with viruses. From the outbreak of swine flu in 2009, to 

the recent Ebola epidemic in 2013 (Centers for Disease Control and Prevention, 2012, Kaner, J., 

2016), each outbreak of the virus pulls the world into a fresh wave of panic. While pandemics 

are rare, the resources spent on prevention in many countries often surpasses those spent on 

treatments. Depending on the primary genetic material, a virus can be classified into DNA or an 

RNA virus, with the majority of parasites that infecting humans, animals, and plants being RNA 

based (Domingo, E., 1997). 

  

In contrast to DNA viruses, RNA viral replication can be considerably error-prone. This is mainly 

due to the absence of proofreading/repair and post replicative error correction mechanisms that 

tend exist in higher organisms (Domingo, E., 1996). This contributes to RNA viruses’ possessing 

the highest mutation rate among all living beings (Drake, J.W., 1999. Moya, A., 2000). In 

addition, the probability of error increases with RNA virus’s high replication rate. Indeed, it has 

been reported that a single infectious particle can produce, on average, 100,000 copies in 10 

hours (Domingo, E., 1997). These features of the RNA virus contribute to its high adaptability 

towards environmental pressures at the population level. (Domingo, E., 1997) 

 

1.3.1) Sindbis virus as a discovery model 

 

The Sidnbis virus (SINV) is transmitted from mosquito to vertebrates, causing high fever, 

arthralgia (joint pain) and rash in humans. (Kurkela, S., 2008, Laine, M., 2004). Cases of SINV 

infection are mostly reported in northern Europe and South Africa. Although the fatality rates are 

rather low, it was recently found that 39% of patients had a chronic form of arthralgia that 

affected their daily lives even 6-8 months post infection (Gylfe, A., 2018). The Sidbis virus 

possesses a single-stranded RNA genome of approximately 11.7kb. It replicates in the cytoplasm 
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of the infected cell (Strauss, J.H., 1994), is highly tractable, and has a relatively well-understood 

life cycle that  involves cellular factors common to other pathogenic alpha viruses such as the 

chikungunya virus and Venezuelan equine encephalitis virus (Carrasco, L., 2018). The SINV 

RNA genome was first sequenced in 1984. The genome is capped at its 5′ end and polyadenylated 

at the 3′ end, and the encoding part of the genome consists of about 11,700 nucleotides (Strauss, 

E.G., 1984). The genome contains two open reading frames separated by a UGA termination 

codon (Strauss, E.G., 1983). The first two-thirds of the genome from 5’ end encode a non-

structural polyprotein, which is later auto-catalytically cleaved into four non-structural proteins 

(Ding, M., 1989). The other third of the genome consist of a positive-sense RNA molecule 

generated from an internal promoter, that harbors a cap and a poly(A) tail, and is translated into 

structural proteins with the help of the non-structural proteins (Strauss, E.G., 1983) (Figure 9). 

SINV has been widely used as a model system in the laboratory to study viral translation and 

host viral interactions (Carrasco, L., 2018). In our study, we use SINV as a model for 

investigating if RNA binding proteins in the host cell are targeted by SINV to benefit its 

proliferation. 

 

 

 

Figure 9, The structure of the Sindbis virus genome, The first two-thirds of the genome encode a non-

structural polyprotein, the other third encodes structural proteins. The genome is capped at the 5′ end and 

polyadenylated at the 3′ end. (Garcia-Moreno, M., Mol Cell 2019) 

 

1.3.2) Differential codon usage in virus infection 
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The translation of RNA to a protein requires a combination of three nucleotide bases which are 

collectively referred to as a codon. Codons determine the synthesis of an amino acid, and consist 

of a total of 64 combinations of three-base codons encoding 21 different amino acids in protein 

synthesis. Therefore multiple codons may encode a single amino acid. This phenomenon is 

referred to as the ‘degeneration’ of the genetic code (Pandit, A., 2011). Different codons that 

code for the same amino acid are called synonymous codons, while codons that code for different 

amino acids are called non-synonymous codons. Research suggest that in different organisms, 

synonymous codons are not used with equal frequencies; termed the ‘codon bias’ (Hershberg, 

R., 2008). The adaptability of a viruses to its host is significantly influenced by differences in 

codon usage bias (Kumar, N., 2016; Deka, H., 2014). Moreover, optimizing codon bias in vivo 

has been shown to enhance the efficiency and accuracy of protein expression (Zhou, J., 1999; 

Hershberg, R., 2008). Therefore, altering native codon usage might be a strategy for a virus to 

adapt to a new host. For example, the Asian lineage of the Zika virus (ZIKV) has reportedly been 

evolving during the second half of the 20th century to adapt to human codon usage bias to as a 

means of improving its fitness in the cell (Freire, C., 2018) 

  

The codon usage preferences in the Sindbis virus and humans are markedly different. If there is 

a low concentration of preferred tRNAs that deposit appropriate amino acids for SINV, ribosome 

pausing or stalling of Sindbis virus replication is induced. Given reports that HIV can induce a 

reconfiguration of a cells tRNA pool to improve its translation efficiency, we wonder if SINV 

will behave similarly under the contest of intensive virus-host competitive pressure (Zhou, J., 

1999). 

 

1.4 Aim of study 

 

While it is commonly accepted that RBPs play a role in the regulation of gene expression, their 

contributions are still poorly understood. By using RNA interactome capture (RNA-IC) to track 

dynamic changes in RNA-binding proteome along the course of viral infection of Sindbis virus 

in human cells, we aim to assess the global impact of Sindbis virus infection on host 

transcriptome and proteome and to identify host RBPs that interact with the Sindbis virus during 

its reproduction.  
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Previous studies have demonstrated that Sindbis virus infection can significantly inhibit the host 

RNA and protein synthesis on a global scale, however the specific functional processes exploited 

by the virus are not well characterized. Using external databases containing RBP-RNA 

interaction and innate RNA processing rates, we aim to discover the underlying regulatory 

mechanisms exploited by the virus to conquer the host cells defenses. 
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2. Proteome-wide analysis of RBP responses in Sindbis virus infected cells 

 

 

While RBPs are critical for regulating gene expression during all viral infections, they are 

particularly important for RNA viruses. Given that the SINV genome only encodes seven 

proteins, it is impossible for the viruses own cellular machinery to fulfill all the tasks of RNA 

transcription, processing, and translation. Instead, SINV relies heavily rely on host RBPs for its 

replication in a host cell. It has been reported that SINV may induce a profound suppression of 

cellular protein synthesis in certain cell lines, as a means of inducing the protein-synthesizing 

machinery to preferentially translate viral RNA (Carrasco, L., 2018). Here, we aim to discover 

how virus infection changes the RNA-binding activities and functionality in HEK293 cells. More 

specifically, we address the following questions: 1) does SINV inhibit the host translation 

processes in HEK293 cells? 2) Are there any cellular RBPs exploited by SINV replication? 3) 

What is the potential functional relevance of the RBPs exploited by SINV replication? 

 

2.1) Introduction and experimental design 

 

To address these questions, we used ‘RNA interactome capture’ to isolate the “RNA binding 

proteome” at 4 and 18 hours post-infection (hpi) to capture different SINV infection stages, using 

uninfected cells as a control condition. The 4 and 18 hpi time points corresponded with two 

distinct infection stages of the SINV biological cycle; at 4 hpi, viral gene expression co-exists 

with host protein synthesis, while at 18 hpi the synthesized proteins are almost exclusively viral. 

In each condition, we took 3 biological replicates for more accurate and reliable measurement. 

Replicates of cell culture in each condition were labeled with three different amino acid isotopes 

using SILAC. This enabled the analyses of proteins from different replicates in one mass 

spectrometry run, minimizing potential batch effects. To correct for possible isotope-dependent 

effects in proteome MS quantitative analysis, SILAC labels in the three replicates were 

permutated between the three conditions (i.e., uninfected, 4 hpi and 18 hpi).  

  

Next, labeled cells from the different infection stages were irradiated with UV light to induce 

covalent bonds between RNA and RBPs. The cells were then lysed, and RBP captured for 
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RBPome analyses (Figure 4). The lysed cells were then stored in aliquots for parallel 

transcriptomic and whole proteome analyses (Figure 10). Finally, equal amounts of lysate from 

each of the three conditions before the oligo(dT) capture (Figure 10), were combined and 

analyzed using quantitative proteomics. 
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Figure 10. Schematic representation of RNA-IC combined with SILAC and virus infection. The isotope-

labeled replicates are subjected to UV cross-linking to preserve the mRNA-protein interactions in vivo. 

Proteins bound to Poly(A) RNA are pulled down with oligo(dT) magnetic beads. Eluates are processed 

with proteinase K for RNA quality control, RNases for protein quality control, and RNases and trypsin 

for MS. (Garcia-Moreno, M., Mol Cell 2019) 
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2.2) Materials and methods 

 

2.2.1) Generating human reference proteome and mapping peptide sequences 

 

Human proteome and annotations were obtained from the R package mRNAinteractomeHeLa 

(http://www.hentze.embl.de/public/RBDmap/) (Castello. A., 2012). Specifically, the human 

reference proteome is downloaded from the Uniport database. The reference proteome was made 

by combining the Sindbis virus proteome with the Human proteome.  

  

Mapping peptide sequences to the reference proteome was achieved using the ‘mapPeptides’ 

function in R package RBDmap (http://www.hentze.embl.de/public/RBDmap/). This function 

maps each peptide sequence in two steps. The first step indexes the reference proteome. This is 

done by sliding a window of 4-amino acid along all protein sequences in the reference proteome 

to generate a pool of all extant 4-letter subsequences in the proteome. Each 4-letter subsequence 

in the pool is indexed with a unique number. The number refer to the position of the protein in 

the reference proteome that contains that subsequence (Figure 11). The pool of 4-letter substrings 

is then converted into a hash table to ensure a search complexity of O(1), which means a 4-letter 

query sequence can always find the match in the pool with only a constant number of 

computational operations. Therefore, the output of indexing is a fast search hash table with all 4-

letter amino acids each linked to a list of numbers indicating the position of their mother-protein 

in the reference proteome. 
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Figure 11. A window of 4-amino acids slides along the 228th protein sequence in the reference proteome. 

In addition to the 228th protein sequence, these 4-amino acids also appears in other protein sequences, as 

indicated by the numbers in the linked list. 

 

The second step is to find matches for each query peptide sequence. The ‘mapPeptides’ function 

does this by extracting the first and last four amino acids from each query peptide as seeds, and 

using both seeds to locate proteins in the above-mentioned hash table. Only proteins concurrently 

matching both seeds are recorded for further investigation. After seed matching, the number of 

reference proteins that can potentially make a perfect match to the query peptide is greatly 

reduced. This means standard string matching can then be carried out to search for perfect 

matches to the query peptide in entire sequence. 

  

This algorithm does not allow mismatches between the peptide sequence and the reference 

proteome, which means only perfect matches can be discovered. This is a good solution for the 

majority of cases because the query peptide sequence is often of much shorter length compared 

to the DNA sequencing output. One the other hand, allowing for mismatches may undermine the 

confidence of finding the exact sequence origin.  

  

It is also possible to make modifications to the algorithm to allow for one mismatch during 

mapping. The cost is an increase in a tolerable amount of computing time during seed matching. 

Instead of having only two seeds, one can extract all possible 4-letter seeds from the query 

peptide sequence. For each seed, there will be a corresponding list of positions of the mother-
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protein in the reference proteome. A perfect match ensures the position of the protein appears for 

all seeds. One mismatch will cause a 1 to 4 absence in the corresponding protein position. To 

counteract this, the lists of positions and identify positions that appear n to n-4 times are 

combined, n being the number of all possible 4-letter seeds from that peptide. It is safe to omit 

the string matching procedure as described in the original algorithm because the seed matching 

step guarantees to find all 1-mismatch and perfectly matched proteins. 

 

The computing time of this modification largely depends on the average length of the query 

peptides, which determines n, i.e., the number of all possible 4-letter seeds generated. The 

increase in n will result in linearly increased computing time. Therefore, to avoid instances of a 

very large n from extremely long query peptide sequences, one can set a rule where, for query 

peptides extending more than 20 amino acids in length, 20 seeds will be randomly selected from 

the query sequence. This is followed by the same string matching procedure as in the original 

algorithm. 

  

In our case, we only considered peptides that uniquely mapped to a single gene for downstream 

analysis. The mean intensity values of peptides mapped to the same gene are calculated to 

represent the intensity of that protein. 

 

2.2.2) Proteome differential analysis 

 

The aggregated mean log2-intensity ratio of each protein was tested for enrichment between the 

three biological replicates using a moderated t-test, which is implemented in the R/Bioconductor 

package Limma (Smyth, G.K., 2004). The p-values were corrected for multiple testing by 

controlling the false discovery rate using the Benjamini-Hochberg method. Results were 

visualized using the R package ggplot2 (Wickham, H., 2009).  

  

For proteins whose intensity was ‘zero’ in one of the two conditions we applied a semi-

quantitative approach which assumed that proteins without quantitative information were below 

the detection limit (Sysoev, V.O., 2016). The approach counted the number of replicates in each 

condition in which a given protein has an intensity value. When comparing two conditions and 
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three biological replicates, this leads to a matrix with 16 different groups (detected 0, 1, 2 or 3 

times in condition one versus detected 0, 1, 2 or 3 times in condition 2). A protein is classified 

as a ‘dynamic RBP’ by the semi-quantitative method if an intensity value is assigned to it in 2-3 

of the replicates in 1 of the 2 conditions, while only 1 or 0 intensity values are detected in the 

other condition. An accuracy assessment of semi-quantitative analysis for differential analysis 

can be found in 5.2.3. 

  

The fraction of RNA-bound RBPs was determined by computing the ratio between the protein 

intensity of each RBP in the RNA-IC eluates at 18 hpi and then in the whole cell lysate. Hence, 

this calculation reflects the amount of protein crosslinked to RNA (RNA-IC), divided by the total 

amount of protein (whole cell lysate). It confirms that the changed binding for RBPs is not due 

to an overall change of protein abundance in the cell. 

 

2.2.3) Gene set enrichment analysis 

 

Gene set enrichment analysis is carried out by using package mRNAinteractomeHeLa 

(http://www.hentze.embl.de/public/RBDmap/) (Castello. A., 2012). Specifically, GO 

annotations are obtained from ‘GO.db’ package which contains a set of annotation maps 

describing the entire Gene Ontology. Gene set enrichment analysis is performed by applying 

Fisher's exact test to categories from Gene Ontology (GO) annotations with at least three 

annotated proteins. The functional enrichment of differently expressed proteins are carred out 

using Functional Enrichment of Significantly Changed Proteins (STRING). 

 

2.3) Results 

 

2.3.1) Dynamics of the RBPome in Sindbis infected cells 

 

The RNA-IC experiments revealed that the RBPome of SINV-infected cells went through a 

pervasive remodeling. In particular, we identified a total of 794 RNA binding proteins; 91% of 

which were already annotated to the gene ontology term ‘RNA-binding’ or/and were previously 
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reported to be RBPs in eukaryotic cells by RNA-IC (Hentze M.W., 2018). Hence, the protein 

composition of our dataset closely resembles that of previously established RBPomes.  

  

Most cellular RBPs remained unaltered at 4 hpi except for 17 RBPs (~2% of the identified 

RBPome) (Figure 12 and 13). Fifteen of these were detected exclusively by the semi-quantitative 

method due to the lack of protein intensity value in one condition, reflecting possible ‘on-off’ 

and ‘off-on’ states (Table S1). It is worth noting that the SINV capsid protein was already at high 

levels during this early stage of viral infection (Figure 12). 

 

 

 

 

Figure 12. Scatter plot showing the intensity ratio between the 4 hours hpi and the uninfected condition 

for each protein (dots) in the eluates of two biological replicates of RNA-IC. (Garcia-Moreno M. et al. 

Mol Cell 2019) 
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Figure 13. Volcano plot comparing the log2 fold change of each protein between 4 hpi and uninfected 

conditions and the p-value of this change across the three biological replicates. Sky blue/yellow points 

indicate proteins significantly enriched in uninfected condition (Mock)/4 hpi for at least two-fold change 

in intensity with 20% FDR. Names of proteins with at least two-fold change in intensity but higher FDR 

is also shown. (Garcia-Moreno M., Mol Cell 2019) 

 

By contrast, SINV caused a pervasive remodeling of the RBPome at its later infection stage 

(Figure 14 and 15). Here, 236 RBPs (~30%) displayed altered RNA-binding activities (48 RBPs 

with 1% false discovery rate (FDR), 167 with 10% FDR and 21 by the semi-quantitative analysis) 
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(Table S2). RBPs with differential RNA-binding activity in SINV-infected cells are referred to 

here as ‘dynamic RBPs.’ It can also be seen that the amount of viral capsid protein dramatically 

increased throughout the infection (Figure 13 and 15), confirming the active replication of SINV 

in HEK293 cells. 

 

 

 

 

Figure 14. Scatter plot showing the intensity ratio between 18 hpi and the uninfected condition for each 

protein (dots) in the eluates of the two biological replicates of RNA-IC. Sky blue/yellow points indicate 

proteins significantly enriched in Mock/18 hpi with 10% FDR, Dark blue/red points indicate proteins 

significantly enriched in Mock/18 hpi with 1% FDR. (Garcia-Moreno M., Mol Cell 2019) 
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Figure 15. Volcano plot comparing the log2 fold change of each protein between the 18 hpi and uninfected 

conditions and the p-value of this change across the three biological replicates. Sky blue/yellow points 

indicate proteins significantly enriched in Mock/18 hpi with 20% FDR. Dark blue/red points indicate 

proteins significantly enriched in Mock/18 hpi with 1% FDR. Names of proteins with at least 2 fold 

change in intensity but higher FDR are also shown. (Garcia-Moreno M., Mol Cell 2019) 
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2.3.2) Virus infection turns off the nuclear RBPs and activates the cytoplasmic 

processes 

 

Our data reveal an inhibition of the host translation processes in HEK293 cells and a global 

remodeling of the host RNA-binding proteome in response to infection. The results show that 

most RBPs inhibited by SINV at 18 hpi are linked to nuclear processes such as RNA processing 

and export. This finding is in good agreement with the previous reports of the inhibition of 

nuclear RNA metabolism by Sindbis virus (Gorchakov, 2005) (Figure 16). Conversely, most 

stimulated RBPs were cytoplasmic and are linked to protein synthesis, 5’ to 3’ RNA degradation, 

RNA transport, protein metabolism, and antiviral response (Figure 17). These findings suggest 

that viral infection by the Sindbis turns off the nuclear RBPs and activates the cytoplasmic 

processes. 

 

 

Figure 16.  Molecular function (upper panel) and cellular component (bottom panel) gene ontology (GO) 

term enrichment analysis of the stimulated RBPs against those inhibited by SINV at 18 hpi. Blue bars 

represent enriched functions and cellular location for inhibited RBPs, salmon bars represent enriched 

functions and cellular locations for stimulated RBPs. (Garcia-Moreno M., Mol Cell 2019) 
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Figure 17. Functional Enrichment of Significantly Changed Proteins. The left enrichment plot shown in 

blue represents pathway analysis of proteins that demonstrate decreased binding, the right enrichment plot 

shown in red represents pathway analysis of proteins with increased binding (right) in the cell during viral 

infection. The plot is generated by STRING. (Garcia-Moreno M., Mol Cell 2019) 

 

2.3.3) Changes in RBPome are not due to alterations in protein abundance 

 

Changes detected by RNA-IC can be explained by various reasons. Besides changes in binding 

behavior, alterations in cellular protein abundance may also cause differential binding. To assess 

this possibility on a global level, we analyzed the total proteome (inputs of the RNA-IC 

experiments) using quantitative proteomics (Figure 18). We were surprised to see that SINV 

infection did not cause any noticeable alterations to host RBP levels, even at 18 hpi (Figure 18A 

and Table S3). The abundance of dynamic RBPs detected by RNA-IC also remained unaltered 

(Figure 18B). Therefore, whole proteome profiling infers that the changes in the RBPome are 

not due to alterations of relative protein abundance. 
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Figure 18. Scatter plot comparing the intensity of RBPs in the total proteome of two RNA-IC replicates 

from cells infected for 18 hours (grey dots) (A). Differentially expressed RBPs are highlighted as black 

dots (B). (Garcia-Moreno M. et al. Mol Cell 2019) 

 

 

Surprised by the identification of the virus glycoprotein E2 in RNA-IC eluates, we estimated the 

proportion of protein-bound and unbound to RNA by normalizing the protein intensity reported 

in the RNA-IC experiment to that in the whole cell lysate (Figure 19). SINV NSP4 and NSP2 

proteins were distributed within the top 50% of the identified RBPs, while Sindbis virus proteins 

E2 and NSP3 were present within the bottom 50%, suggesting lower affinity of the latter, or more 

transitory interactions with RNA (Figure 19). 
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Figure 19. Scatter plot comparing the intensity of each protein in whole cell lysate from 18 hsi cells in 3 

replicates (grey dots), red dots indicate the intensities of viral proteins (WCL). Normalized protein 

intensity reported in the RNA-IC experiment to that in the whole cell lysate (IC/WCL). (Garcia-Moreno 

M. et al. Mol Cell 2019) 

 

2.4) Discussion 

 

 We used RNA-IC to demonstrate that SINV infection causes a massive remodeling of the host 

proteome and changes the protein binding activities in host RBPs. It shuts down nuclear activities 

and activates cytoplasmic activities. We believe this may be related to the cytoplasmic nature of 

the Sindbis virus. Since the replication of the Sindbis virus strongly relies on cellular RBPs, 

changes in RBPs binding may be due to elevated RBP-RNA interactions during Sindbis virus 

(SINV) infection. Furthermore, there is evidence to suggest that not only does SINV infection 

shuts off of host protein synthesis, it also initializes the global production of its proteins. 
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There are naturally a few limitations in these experiments we would like to address, first is the 

differential expression analysis in proteomics data. Many factors can contribute to a high missing 

rate in MS proteomics data, making it especially challenging to quantitatively assess 

differentially expressed proteins (Lazar, 2016). However, the semi-quantitative approach 

developed by Bernd Fischer and Vasiliy O. Sysoev has helped researcher to mostly overcome 

this issue (Sysoev, V.O., 2016). Among the total 253 differentially expressed RBPs at 4 hpi and 

18 hpi, about 10% were discovered purely by semi-quantitative analysis. 

 

Another important aspect of this study is the use of whole cell lysate as a negative control for in 

the RNA-IC experiment. Integrative analysis of the RNA-IC and whole cell lysate proteomics 

data shows that alteration in the proportion of proteins bound to RNA in host RBPs does not 

relate to changes in protein abundance. Therefore these findings are more likely to be explained 

by increased binding of the detected proteins to RNAs. However, this method does not 

discriminate between viral RNA binding or cellular RNA binding. To address this issue, we 

sequenced whole cell RNA for each of the 3 infection stages, to explore the interaction of viral 

RNA and cellular RBPs. Findings from these experiment are outlined in the next chapter. 
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3. Transcriptome analysis in Sindbis virus infected cells 

 

 

3.1) Introduction 

 

The RNA-IC experiments in SINV-infected cells revealed that the entire complement of cellular 

RBPs are remodeled upon infection. It is possible that the remodelling of the RBPome is due to 

alterations in the availability of RNA substrates. To address this question we profiled the 

transcriptome of uninfected versus SINV-infected cells by performing RNA sequencing analysis 

of the total RNA isolated from the RNA-IC input samples. This analysis showed how the activity 

of host RBPs may be altered by changes in the availability of their target RNAs. The analysis 

also demonstrates that alterations in RNA levels can be a consequence of increased cellular RNA 

degradation and shifts in codon usage. 

 

3.2) Methods 

 

3.2.1) Mapping RNA sequence to the reference genome 

 

Version hg38 of the human genome was combined with the SINV sequence and used as our 

reference genome. RNA sequencing was then conducted in the Castello lab. The RNA 

sequencing reads were mapped to this reference genome using the ultrafast universal RNA-seq 

aligner STAR (Dobin, A., 2013). Reads mapping to each transcript were counted with 

‘featureCounts’ function from the Subread software package (Liao, Y., 2014). Reads mapped to 

rRNA sequences are removed for further analysis. To avoid ambiguity, only uniquely mapped 

reads were considered for counting. Reads mapping to positive and negative strands of viral 

RNAs were separated using SAMtools ‘view’ utility (Li, H., 2009). In Illumina reverse paired-

end sequencing, paired reads came from opposite strands. Therefore, reads with the second pair 

mapping to the positive strand, or with the first pair mapping to the negative strand, were both 

counted as mapping to the positive strand and vice versa. The total read counts mapping to each 

strand was compiled and counted using SAMtools merge and SAMtools depth, respectively (Li, 

H., 2009). 
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3.2.2) RNA count differential analysis 

 

SINV infection is known to shut off transcription globally as a means of reducing the 

development of antiviral responses in a host cell. (Gorchakov, R., 2005). The global change in 

RNA abundance may bias (underestimate) differential expression results if normalization is 

carried out under the assumption overall RNA abundance remains unchanged. Therefore, we 

decided to normalize read counts in each condition to the corresponding rRNA expression by 

dividing by a factor proportional to the total rRNA read counts in the 3 conditions (0.899, 1 and 

0.473 for Mock, 4 hpi and 18 hpi respectively). The R package DESeq2 (Anders, S., 2010) was 

used for differential gene expression analysis based on rRNA normalized read counts. As 

DESeq2 requires the read counts to be un-normalized integer values, rRNA normalized read 

counts were rounded to the closest integer to carry out “DESeqDataSet” differential analysis.  

  

In DESeq2, a proper estimation of size factors can help to cancel out the error effects between 

technical replicates derived from the amount of pipetting or slightly different PCR circles. These 

errors can lead to proportional changes in the whole DNA yield, influencing between-sample 

read counts. This is further complicated by the fact that general amount of read counts between 

different infection times in our experiment are not expected to be the same, due to our observation 

that viral infection shuts down the expression of most genes, and this effect would not be canceled 

out. Therefore, we estimated the size factor of each sample separately in DESeq2, instead of 

pooling all the samples prior to estimating this parameter. 

  

Differential RNA expression between infected (4 and 18 hpi) and uninfected cells (Mock) was 

visualized in MA-plots to show the log2 fold changes over the mean of normalized counts using 

DESeq2 (Anders, S., 2010). To visualize the overall effect of experimental covariates and 

potential batch effects, a principal component plot of the samples was generated using the 

plotPCA function in DESeq2 (Anders, S., 2010). Principal components (PC) of the variance 

stabilized expression of the top 500 genes with the highest expression variance among samples 

were extracted. As shown in Figure 20, the variance explained by the first and second PC (on the 

x and y-axes) accounted for 96% of the total variance, and, as expected, samples within the same 
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condition clustered better than those between conditions. We note that the first PC accounts for 

94% of the total variance, and distinctly separates 18 hpi from the other samples (i.e., uninfected 

and 4 hpi), indicating that the cellular transcriptome is dramatically altered at 18 hpi. 

 

 

Figure 20, Principal component analysis of gene expression as profiled by RNAseq in uninfected and 

SINV-infected cells at 4 or 18 hpi. The 3 replicates of each condition are considered separately. Data 

shows that, first, the 23 replicates from the same condition cluster together (i.e., they are more similar to 

each other than to other conditions) and, second, that the transcriptome at 18 hpi strongly differs from the 

uninfected control condition and 4 hpi. (Garcia-Moreno M., Mol Cell 2019) 

 

3.2.3) Linear regression model for explained variance 

 

The levels of mRNA within a cell are determined by the combined modulation of synthesis, 

processing, and degradation rates of mRNA (Bjork, P., 2015; He, F., 2015). In order to analyze 

the relative contribution of RNA synthesis, processing and degradation to the alterations of RNA 

levels in SINV infected cells, we compared transcriptome changes observed at 4 and 18 hpi in 

our RNAseq dataset with freely available measures of the rates of synthesis, processing and 

degradation for all RNAs in HEK293 cells (Mukherjee, N., 2017). Specifically, the INSPEcT R 

package was used to infer the rates of different RNA processes. This R package is used for the 

comprehensive quantification of synthesis, processing and degradation rates of genes. The 
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estimation of differential RNA processes is based on a set of differential equations that describe 

the process of production, maturation, and degradation of pre-mRNA and mature mRNAs. For 

model simplicity, INSPEcT assumes that pre-mRNAs are not degraded, and mature mRNAs are 

immediately translocated from the nucleus to the cytoplasm (Pretis, S.D., 2015). These 

assumptions are not necessarily accurate but are acceptable in this particular context.  

  

We used one-way ANOVA to evaluate the relative effects of the RNA processes (RNA 

degradation, processing, and synthesis) on transcriptomic changes in the different conditions 

(Welch, B. L., 1951). The effects are shown as explained variances in ANOVA for each RNA 

process in the two comparisons. 

 

3.2.4) Predicting binding specificity with DeepBind 

 

DeepBind is a software package that predicts sequence specificities of DNA- and RNA-binding 

proteins using deep learning methods; and it is reported to outperform other state-of-the-art 

models such as RankMotif++ and KmerHMM (Alipanahi, B., 2015). We used DeepBind to 

predict binding sites on the viral genome against 244 known human RNA-binding proteins in the 

DeepBind database. As suggested by DeepBind, the viral genome was chopped into 50-bp 

segments to achieve the best performance (Alipanahi, B., 2015). To correctly count binding sites 

sitting at chopping breakpoints, the same genome was rechopped into another set of 50-bp 

segments, starting from the 25th nucleotide of the original sequence instead of from the first base. 

The results were merged afterward. To fit our experimental model, only human-originated RNA-

binding proteins in DeepBind database are used to make the prediction. 

 

3.2.5) Codon usage bias in uninfected and infected cells 

 

To get the preferred codon usage of Sindbis at 18 hpi, we counted the appearance of each 3-letter 

codon in the SINV 'genomic' and 'capsid' sequences and weighted the counts by their actual 

expression at 18 hpi. The tRNA annotation was downloaded from Genecode, and anticodons 

associated with each tRNA are converted to codons based on tRNA annotation. The real-time 

codon usage in the cell is calculated by counting the reads mapped to the tRNA annotation at 
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Mock, 4 hpi and 18 hpi. The mapped counts are normalized by the total amount of reads in each 

sequencing lane. To compare the codon usage bias in uninfected vs. infected cells, the F test was 

applied to the codon count between Mock, 4 hpi, and 18 hpi. Codons with an F test p-value 

smaller than 0.1 were chosen for comparison of the real-time codon usage shift between Mock 

and 18 hpi. We then tested the similarity of real-time codon usage in Mock, 4 hpi and 18 hpi 

using the preferred codon usage generated from viral sequences and their actual expression. 

 

3.3) Results 

 

3.3.1) Replication of Sindbis virus during infection      

   

SINV produces two overlapping mRNAs: gRNA and sgRNA (Figure 9). Consequently, the read 

coverage was substantially higher in the last third of the gRNA, where these transcripts overlap 

(Figure 21). In agreement with published data we note that the sgRNA and gRNA from the 

positive strand were more abundant than those on the negative strand (Figure 21) (Gorchakov, 

R., 2005; Strauss, J.H., 1994). As the copy number of the negative strand is low and it lacks a 

poly(A) tail, this phenomenon should not contribute to our RNA-IC results.  
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Figure 21. Read coverage of the positive and negative RNA strand of SINV in the RNAseq analysis at 4 

and 18 hpi. Note that the y axis in both plots uses different scales to facilitate the visualization of the data. 

(Garcia-Moreno M., Mol Cell 2019) 

 

 

During infection the amount of viral RNA greatly increased (Figure 21). Overall, viral RNA in 

the early stage of infection (4hsi) consisted of less than 0.7% of the total RNA. However, at the 

later stage of infection (18 hsi), more than 77.7% of the total RNA became viral RNA (Figure 

22). This proportional increase in viral RNA is a consequence of not only of viral replication but 

also loss of host RNA, as outlined in section in 3.3.2. 
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Figure 22. The composition change of different types of RNAs from different origin during viral infection. 

The x axis represents different infection times, while the y axis gives the relative abundance of 3 types of 

RNAs in the cell, i.e. protein-coding, non-coding and viral RNA. (Garcia-Moreno M., Mol Cell 2019) 

 

 

3.3.2) Alterations of the transcriptome in Sindbis-infected cells 

     

The host transcriptome responds dramatically to SINV infection. At 4 hours post SINV infection, 

the host transcriptome shows a relatively minor change in composition, with only 67 up and 177 

down-regulated RNAs, respectively (Figure 23F). By contrast, profound changes in the cellular 
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transcriptome were observed at 18 hpi, with 12,372 differentially expressed RNAs detected 

(p<0.1; Figure 23G). Of these, 10,924 RNAs had significantly lower expression, and 1,448 RNAs 

were upregulated (Table S4). Hence, SINV infection causes a massive loss of host RNAs at its 

later infection stage. 

 

Figure 23. The amount of different types of RNA in different infection stages. The x axis represents the 

mean of normalized counts in the 3 replicates, while the y axis represents the log2 fold change of all 

transcripts between 4hpi (F) /18hpi (G) and the Mock condition. (Garcia-Moreno M., Mol Cell 2019) 

 

 

Given the massive loss of cellular RNAs, we wondered if the proportion of different RNA species 

also changed during infection regardless of the overall inhibition of transcription. Figure 24 

shows the composition of each type of RNA in the cell. The read counts in each RNA type are 

weighted by the total amount of reads for the three-time points per category. It can be seen that 

siRNA and rRNA molecules are among the most stable RNA species in the cell during infection. 

In contrast the abundance of protein-coding RNAs, lncRNAs, and miRNAs suffer the most from 

viral infection. 
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Figure 24. A detailed plot shows the abundance change of different types of RNA during infection. For 

each type of RNA, the relative abundance at Mock, 4hpi and 18hpi are shown in yellow, blue and red 

respectively. Read counts in each RNA type are weighted by the total amount of reads in the 

corresponding infection stages. 

 

In the RNA-IC, we show that dynamic alterations of host RBPs at 18 hpi are not related to 

changes in protein abundance. Under the assumption that the binding affinity of RBPs did not 

change during infection, the altered binding of RBPs can, therefore, is more likely be explained 

by changes in the number of RNAs they bind to. In other words, altered binding is a consequence 

of altered RNA levels in the cell. Since a large proportion of cellular RNA at 18nhpi is accounted 

for by viral RNA, it is highly possible that some up-regulated host RBPs relocalize to bind viral 
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RNAs instead at this infection stage, while some down-regulated RBPs lose their binding 

partners. 

 

In summary, the availability of cellular RNA is globally reduced upon infection, correlating with 

the emergence of viral RNA (Figure 22 and 23). We suggest that decreased availability of cellular 

RNA is expected to contribute to the inhibition of RNA-binding activity observed for 133 down-

regulated RBPs at 18hpi, while some up-regulated host RBPs may relocalize to bind viral RNAs.  

  

3.3.3) Immune response in HEK293 cell to viral infection 

  

As we expected, upregulated RNAs were more enriched in genes related to antiviral activities, 

reflecting the activation of the host defense systems. Although not all antiviral related genes are 

up-regulated, compared to the 12% of up-regulated genes in differentially expressed genes on a 

global scale, 21.6% of genes are up-regulated in the same context for antiviral related genes. We 

selected two antiviral GO terms for further investigation (innate immune response: 

GO::0045087, which featured 687 genes, and defense response to virus: GO::0051607, which 

included187 genes), totaling 767 genes after removal of duplicates. In these GO terms, 255 genes 

were differentially expressed and 55 genes were up-regulated (Figure 25). 
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Figure 25. Heatmap showing the log2 fold expression change of 55 up-regulated genes determined by 

RNAseq analysis of RNAs enriched with p<0.05 in SINV-infected (4 or 18 hpi) versus uninfected 

HEK293 cells. Genes were annotated to 'viral defense' and 'innate immune response' gene ontology (GO) 

terms. These GO terms were statistically enriched in infected versus uninfected cells. Colors in the 

heatmap indicates the log2 fold change between 4hpi/18hpi to Mock, as red being up-regulated and blue 

been down-regulated. Note the presence of interferons (IFNs), interferon-stimulated genes (ISG), 

interferon-induced proteins (IFI), and interferon regulatory factors (IRF). (Garcia-Moreno M., Mol Cell 

2019) 

 

  

We defined the group of most differentiated genes where the log2 fold change was larger than 4 

and the FDR was below 1%. In contrast, given the loss of host RNAs at 18 hpi (Figure 16), in 

terms of the most differentiated genes, up-regulated genes greatly outnumbered down-regulated 

genes (Figure 26). This may suggest that although the transcription of most genes has been 

inhibited, the virus may utilize some specific genes for its own replication. We also notice that 

some of the genes such as IFNL1, IFIT2, OASL, and CCL5 are related to cellular immune 

activities. This suggests that SINV infection triggers the host antiviral activities. 
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Figure 26. Heatmap of the most differentially expressed genes detected by RNAseq in SINV-infected (4 

or 18 hpi) and uninfected HEK293 cells. This is defined as genes that over or under-expressed across all 

three conditions with log2 fold change > 4 and FDR < 0.01. (Garcia-Moreno M. et al. Mol Cell 2019) 

 

  

3.3.4) Modeling alterations of transcriptome in Sindbis-infected cells 

  

The loss of cellular mRNAs can be a vital driving force in shaping the RBPome in SINV-infected 

cells. However, it is unclear where transcriptome remodeling originated from and whether it 
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benefits viral infection. Alterations in RNA levels can be a consequence of reduced transcription 

and increased RNA degradation (Mukherjee, N., 2017). To explore which of these pathways 

contribute the most to RNA loss in SINV infected cells, we compared the fold change of each 

mRNA in our dataset to available data on the speed of synthesis, processing, and degradation of 

each transcript (Mukherjee, N., 2017) (Figure 27). The process of transcription can explain most 

of the differences between the uninfected and 4 hpi condition (Figure 28 and Table 1). However, 

RNA degradation accounted for more than 50% of the explained variance at 18 hpi. We reasoned 

that this phenomenon may be due to the combined effect of activation of the 5’ to 3’ RNA 

degradation machinery, as the exonuclease XRN1 and its interactor PAT1 homolog 1 (PATL1) 

are stimulated at 18 hpi (Table S1), and reduced transcriptional activity at this point (Gorchakov, 

R., 2005, Houseley, J., 2009). 

 

 

Figure 27. Analysis of the contribution of transcription, processing, and degradation to the transcriptome 

of SINV-infected cells. A) Plots representing the log2 fold change of cellular RNAs detected by RNAseq 

between uninfected and SINV-infected (4 hpi) cells, compared to rates of RNA synthesis (left), processing 

(middle)´, and degradation (right). These rates were determined separately in another study (Mukherjee 

et al., 2017). B) As in (A) but comparing 18 hpi and uninfected cells. (Garcia-Moreno M. et al. Mol Cell 

2019) 
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Figure 28. Percentage of variance in RNA expression explained by the three major RNA processes. At 18 

hsi, the degradation rate explains a higher percentage of expression variance. The synthesis rate and 

processing rate also contribute to a proportion of the change in transcription. (Garcia-Moreno M., Mol 

Cell 2019) 
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Table 1. Percentage of variance in transcript abundance change between Mock and 18hpi as explained by 

altered RNA degradation, synthesis and processing rates in ANOVA one way analysis. Explained 

variance is represented in column 'Sum Sq'. 

 

 

3.3.5) RNA splicing and intron retention during SINV infection 

 

Intron retention is a primary mechanism of gene expression regulation in eukaryotic organisms 

(Jacob, A.G., 2017). Although it is believed that intron retaining transcripts are non-functional 

because they are subject to nonsense-mediated decay, there is evidence that intron-retaining 

mRNAs can also play an essential role in diverse diseases (reviewed in Wong, J., 2015). One 

hypothesis is that if the splicing machinery is impaired by a viral infection, there would be a 

reduced number of splicing events happening at 18 hpi compared to the Mock condition. In other 

words, if there are the same number of reads per condition, then there will be more reads spanning 

exon-intron junctions at 18 hpi. The number of retained introns is considered a good proxy for 

an unsuccessful splicing event, and moreover provides information on the number of non-

splicing reads that map to and span over exon-intron junctions. In regards to our hypothesis that 

viral infection may induce intron retention, we compared the number of successful and failed 

splicing events in the 3 infection stages. As shown in Figure 29, the number of failed splicing 

was significantly lower in the late stage of infection. 
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Figure 29: Scatter plot comparing the number of intron retention in the 4 hsi vs. uninfected (red dots) 

condition and 18 hsi vs. uninfected condition (blue dots). In 4 hpi vs. uninfected, the number of introns 

retained in the two conditions are relatively equal, while in 18 hpi, the number of intron retained was 

dramatically reduced compared to the Mock condition. 

 

It is difficult to draw a firm conclusions from the above analysis given the massive inhibition of 

host RNA at 18 hpi. However, several splicing events on the virus genome can be observed at 18 

hpi (Table 2). The most extensive splicing spanned around 4000 bases in length in the viral 

genome (Table 2). This suggests the possibility of various alternative virus protein isoforms 

being generated at 18 hpi.  
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Table 2. Most abundant splicing events in viral genome at 18hsiwith a read count coverage greater than 

100 

 

 

3.3.6) Shift of codon usage in Sindbis-infected cells 

 

There are some fundamental difference in codon usage between viruses and humans. Therefore, 

investigating the codon usage shift during infection will help us to understand how the Sindbis 

virus manages to thwart host defense mechanisms whilst exploiting host molecular resources 

under the pressure of tRNA pool discrepancy. We demonstrate that there is a change in codon 

usage between uninfected and infected stages. We also show that the preferred codon usage of 

viral genomic RNA could explain some of the observed shift in codon usage. 

  

Figure 30 shows the similarity between real-time codon usage at Mock, 4 hpi and 18 hpi and the 

preferred codon usage for virus at 18 hpi. It can be seen that codon usage profile between Mock 

and 4 hpi has the highest correlation, while the codon usage profile at 18 hpi bears more 

resemblance to the preferred codon usage for virus replication. The changes in real-time codon 

usage at 18 hpi compare to Mock are also shown. These changes highly correlate with the 

differences in preferred viral codon usage at 18 hpi and real-time codon usage in Mock (cor = 

0.513). 
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Figure 30. Similarity scatterplot of real-time codon usage and preferred codon usage for virus at 18 hpi. 

Each dot in the lower-left panel represents a codon. X-axis and y-axis represents the abundance of the 

corresponding tRNA in the cell. 

  

3.3.7) Alterations in expression of protein-binding RNAs in eCLIP database 

  

The first question about RBP binding will probably be “where do they bind?”. The  large amount 

of eCLIP experiments on the eCLIP database provides a useful overview of RNA binding site 

locations. Experimental research shows that RBPs usually bind to RNA with a preference for 5′- 

or 3′-untranslated regions (Gebauer, F., 2012). The same pattern can be observed in the eCLIP 
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dataset. Most RNAs bind proteins at their 5′- or 3′-UTR, with the highest preference for the 5’ 

UTR. Figure 31 shows the distance distribution for RBP binding sites to their nearest 3’ UTR 

start site for 80 RBPs uploaded to eCLIP in 2016. It can be observed that a large proportion of 

binding sites on RNA tend to have a distance preference to their nearest 3’ UTRs. In our study, 

we use eCLIP data as a reference to uncover the expression of potential target RNAs for RBPs 

of interest. We also found that, in general, RNAs that bind to multiple RBPs tended have a higher 

expression in the cell. 

 

 

Figure 31, Distance distribution of protein binding sites to their nearest 3’ UTR start site. Each line is a 

protein, and x-axes represent the distance of all protein binding sites to their nearest 3’ UTR on the located 

gene, while the y-axis represents the relative density distribution. 
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We hypothesis that those RNAs that are functionally required for many RBPs will be more 

abundant overall. To address this question, we used a database of approximately 100 RBPs from 

eCLIP to study if the number of possible binding partners affected the average change in 

expression level of the protein binding RNAs. The expectation was that RNAs with greater RBPs 

binding capacities will be more stable during viral infection compared to RNAs that bind to fewer 

RBPs overall.  

  

The data shows that the average log2 fold change from Mock to 18 hpi of the set of higher binding 

genes was significantly higher than that of genes that bind to fewer RBPs. As shown in Figure 

32, while most RNAs are down-regulated at 18 hpi by more than one fold due to viral infection, 

there is reduced change in expression level for RNAs that can bind to more RBPs. 
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Figure 32. RNA versatility vs. transcript log fold change from Mock to 18 hpi. The x-axis gives number 

of possible interacting proteins, while log2 fold change of RNA abundance from uninfected to late 

infection stage is shown on the y-axis. The black line is a linear regression line between the average log2 

fold change from Mock to 18 hpi and the possible number of proteins they may interact with 

  

3.3.8) Predicting binding sites on viral RNA using DeepBind 

  

DeepBind is a software that uses deep learning algorithms to analyze binding specificity of DNA 

and RNA sequences to which a set of proteins will bind. It is designed for the identification of 

genomic regions that are sensitive to deleterious mutations that can cause diseases. Trained with 

RNA-binding proteins and a set of their binding regions, DeepBind can analyze new sequences 

to and compute the likelihood of binding along the sequences for all possible RNA-binding 
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proteins. One of the critical objective of this study is to identify human RBPs that may bind to 

the RNA sequence of the Sindbis virus at 18hpi. Therefore, in the next analysis we used 

DeepBind to test the binding specificity for human originated RBPs on the RNA genome of the 

Sindbis virus. 

  

First, to make sure that the binding sites suggested by DeepBind were more than just random 

hits, we compared the Deepbind scores for each RBP along with the virus with simulated scores 

obtained by 1000 random permutations of the Sindbis virus genome. To identify RBPs relevant 

to our study, we combined the information from Deepbind with the RBPs abundance change 

values from Mock to 18 hpi. This combined analysis successfully identified a list of RBPs that 

may bind to viral RNA and have a higher protein abundance at 18 hpi compared to Mock (Table 

3). An example of predicted binding specificity for protein PABPC4 along the Sindbis virus 

genome is shown in Figure 33. 

 

Table 3, Output of the DeepBind analysis showing the proteins that bound to viral RNA and had a higher 

protein abundance at 18 hours post infection compared to Mock (binding p-value <0.3) 
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Figure 33, Predicted binding scores across the SINV genome using DeepBind for the PABPC4 protein. 

The x-axis shows the virus genome while the y-axis gives the binding score calculated by DeepBind. 

 

3.4) Discussion 

 

Our data reveals that virus infection causes a pervasive remodeling of the RBPome, modulating 

the activity of more than two hundred RBPs. These changes are likely driven by a combination 

of effects including global alterations of the transcriptome, and activation of cellular pathways 

related to RNA degradation and protein synthesis. We also revealed that RNA degradation plays 

a particularly critical role in regulating the RNA level in cell at 18hpi. Further, RNA regulation 

is likely modulated by the RNA binding protein XRN1. XRN1is a crucial molecular component 

of the 5’ to 3’ degradation pathway and is highly expressed at 18hpi. It is also demonstrated that 

the infection alters the codon composition at 18 hpi to favor the efficient synthesis of virus 

proteins. 

  

 

Although we demonstrated that some of the human RBPs which increased their binding at 18 hpi 

have the potential to bind virus RNAs, it remains unclear which RBPs are exploited by virus. 

Our collaborative partner in the Castello group at Oxford University did a follow-up study with 
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i-CLIP using a stimulated ‘Gem-associated protein 5’ (GEMIN5) at 18 hpi (Garcia-Moreno, M., 

2019). This analysis showed that GENIM5 binds to the cap and the 5’ and 3’ untranslated regions 

(UTR) in SINV RNAs at 18 hpi. Taking GEMIN5 as an example, it is likely that some other 

stimulated RBPs at 18 hpi may also interact with the Sindbis virus, and demonstrate either pro- 

or anti-viral activities. 

  

3.4.1) Lack of annotation of rRNAs in public databases 

 

The GENECODE annotation file only features four regions on chromosome 21 which are 

annotated as 8s rRNA and no 28s rRNA is annotated. The newest annotation file from 

ENSEMBL has fewer regions annotated as 8s rRNA on chromosome 21, and also has no 

annotated information about 28s rRNA. Unexpectedly, in this study we found a relatively 

comprehensive annotation of rRNAs in the human genome. For instance, in a sample of Mock 

experiment, which has the same experimental setup as other samples, more than 90% of the 

mapped reads had annotations as rRNA, as shown in Figure34. 

 

Figure 34, Distribution of mapped reads in different rRNAs in an example sample at Mock stage, the 

corresponding percentage are shown under each section. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Garcia-Moreno%20M%5BAuthor%5D&cauthor=true&cauthor_uid=30799147
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3.4.2) Peak on reverse strand of virus genome at 18 hpi 

 

Amongst our findings, the sharp peak on the reverse strand of the viral genome at 18 hpi drew 

special attention (Figure 21 in 3.3.1). This small peak at the 7800-8000bp region and has more 

than 10 fold increased expression compared to other peaks in its vicinity. Approximately 93.6% 

of the reads mapped to this region are paired reads, and only a small fraction of the reads were 

mismatches, suggesting the peak is not a false positive. After closer investigation, we found that 

this region maps to an adenovirus (Figure 35). In 1973, malignant transformation of the HEK293 

cell line was achieved by integrating of human adenovirus type 5 into the healthy human 

embryonic kidney cells in Alex van der Eb's laboratory. It seems that this piece of DNA has been 

latent and carried by HEK293 cell line as a part of its genetic information ever since. Although 

our experiment has not been affected, this phenomenon does raise some concerns about studying 

virus infection models within virus-transformed cell-lines. 
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Figure 35, The local alignment of Sindbis virus and Adenovirus type 5, showing a considerable 

overlapping region between adenovirus type 5 (13548-13923) and Sindbis virus (7665-8038). The x axis 

and y axis represent the genome of adenovirus type 5 and Sindbis virus respectively. Regions with 

significant similarities are shown in color. A local sequence alignment is also shown in below. 

 

This analysis uncovered 19 proteins that existed in both the DeepBind and ECLiP dataset. Given 

our hypothesis that binding to the viral genome will extend the functional life of proteins, we 

investigated the relationship of these proteins expression levels with the number of binding sites 

on their viral genome of these protein (DeepBInd value > 2). However, these proteins did not 

show correlation between the DeepBind binding score and their change in protein intensity. We 

speculate that this could be because this set of proteins could also bind to other RNAs, and the 
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RBPs that are exploited by the virus may not directly bind to the virus genome. Better conclusions 

can be made if there are more available RBPs in the eCLiP datasets. 
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4. The online interactive proteome differential analysis tool ‘Pepro’ 

 

4.1) Introduction 

 

The identification and quantification of the proteome from biological samples has markedly 

improved with the advent of ‘next generation’ proteomics. However, proteomics data is 

unfortunately still somewhat ‘user unfriendly’ and is normally handled by trained experts only. 

Here we address the unmet need for a user friendly, accessible analysis tool with the development 

of our web-based application ‘Pepro’. Pepro uses a combination of well-established statistical 

methods for proteome analysis, offering an easy-handling and a friendly interface for differential 

analysis of quantified peptides. The software is running as online web application, which is 

available at https://nishuai.shinyapps.io/pepro/. Therefore, an up-to-date web browser is the only 

prerequisite for using the softare.  

 

The Pepro application contains features which carry out peptides mapping to the proteome, 

quality checking, and removal of batch effects, interactive data visualization, and differential 

analysis. The core of Pepro lies in the implementation of a false discovery rate (FDR) controlled 

moderated t-test for peptide differential analysis. The input for Pepro is a table containing peptide 

sequence and their measured intensity in each experimental condition. This type of data can be 

found handy from popular next generation proteomics software such as MaxQuant (Tyanova, S., 

2016; Cox, J., 2011). After feeding the data, Pepro guides users through initial peptide 

quantification to the visualization and download of results using simple step by step procedures. 

A comprehensive analysis pipeline of Pepro is shown in Figure 36. 

 

https://nishuai.shinyapps.io/pepro/
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Figure 36, a schematic diagram of Pepro data analysis workflow 

 

4.2) Methods 

 

4.2.1) Shiny app platform 

 

R is a programming environment that integrates statistical analysis and graphical display. It can 

run on both Windows and UNIX like operating systems. Compared with other statistical analysis 

software, R has the following features that contribute to its high popularity. First and foremost, 

it is free and open-source; all parts of R and R source code can be freely downloaded and 

distributed under GNU license. A second essential feature is its flexibility as a statistically 

orientated programming language, compared to popular statistical software like Stata or SAS. 

Packages and functions can be shared, and other users can edit or modify functions to meet their 

specific needs, to form a growing user ecosystem. So far, there are more than 8000 packages 

available for various types of analysis in different disciplines. 
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Shiny is an open-source R package that provides a framework for building interactive web 

applications. Taking advantage of R’s strong capability in statistical computing and graphics, 

Shiny makes it easy to embed statistical analysis pipelines into a user-friendly web interface, 

without knowing other web-development languages. The web interface also very helpful in 

aiding people with no programming background to use statistical tools and visualize their data. 

  

4.2.2) Quantitative proteome differential analysis 

 

Proteins relevant to regulation may change expression under different biological conditions. To 

screen for these differentially expressed proteins, an accurate quantification of peptide/protein 

expression levels is critical. The differential protein screening process is achieved by statistical 

inference of the quantitative results and provides insight into biological significance. In this 

study, the proteome differential analysis was used to identify RNA binding proteins in human 

cell lines. The moderated t-test uses every single protein for differentiation. This produces a large 

number of independent tests which can elevate the FDR. We corrected the p-values for multiple 

testing by controlling the false discovery rate using the Benjamini-Hochberg method (Benjamini, 

Y., 1995) 

 

Low or non-detectable protein abundance, technical issue with experimental design, 

miscleavage, imperfect ionization, and peptide misidentification can all lead to missing values 

that reduce the power to detect differentiated proteins. These challenging issues result in a high 

rate of missing data and limit the power to detect differentiated proteins (Tebbe, A., 2015; 

Wieczorek, S., 2017).  Fortuntely, statistical approaches have been developed to overcome the 

challenge of missing values (Cho, H., 2007, Zhang, B., 2006, Karpievitch, Y., 2009, Ryu, S.Y., 

2014). In Pepro, we choose a moderated t-test for protein differential analysis (Smyth, G.K., 

2004). This test modifies the standard Student’s t-test by replacing the ordinary standard 

deviation with posterior residual standard deviations for each comparison, providing a more 

robust test in a setting of high missingness (Smyth, G.K., 2004). We note that this t-test has only 

been found to work better than classical methods when the number of biological replications is 

larger or equal to 3 (Zhang, B., 2006). However, a minimum of 3 or more biological replicates 

is swiftly becoming a field standard (Unterlander, N., 2018; Gordon, A., 2018). 
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4.2.3) Semi-quantitative proteome differential analysis  

 

For proteins for which the protein intensity was ‘zero’ in one of the two conditions compared, 

we applied a semi-quantitative approach that assumed proteins without quantitative information 

were below the detection limit, as described in Sysoev, V.O., et al. (Sysoev, V.O., 2016). This 

approach counts the number of replicates in each condition in which a given protein has an 

intensity value. When comparing two conditions and three biological replicates, this leads to a 

matrix with 16 different groups (detected 0, 1, 2 or 3 times in condition one versus detected 0, 1, 

2 or 3 times in condition 2). A protein is classified as a ‘dynamic RBP’ by the semi-quantitative 

method if an intensity value is assigned to it in 2 or 3 of the replicates in one of the two conditions, 

with only 1 or 0 intensity values assigned to it in the other condition.  

  

To validate the semi-quantitative method, the similarity of both quantitatively and semi-

quantitatively identified RBPs in the A549 cell line to a known RBPome were measured. The 

known RBPome contains three sets of RBPs previously identified in 3 different human cell lines 

(Castello A., 2016). Using the A549 proteome, we classified the proteome into the following 

three categories: quantitatively identified RBP, semi-quantitatively identified RBP, and other 

proteins. The proteins in each category were further separated by counting instances where a 

protein matched with a known RBPome in the 3 cell lines. This could occur 0, 1, 2 and 3 times. 

The number 0 indicated that the identified A549 protein had not been previously reported as a 

RBP in any of the 3 cell lines, while 3 meant the identified proteins were reported as a RBPs in 

all 3 cell lines in the RBPome dataset and so forth. We termed this the “similarity distribution”. 

Next, we checked if the similarity distribution of semi-quantitatively identified RBPs resembled 

the similarity distribution of quantitatively identified RBPs, as shown in the Figure 37. 
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Figure 37: The similarity distribution in 3 categories to the known RBPome, identified RBPs by semi-

quantification methods shows similar pattern to quantitatively identified RBPs 

 

4.3) Discussion 

 

4.3.1) Reactivity of Pepro 

 

Reactivity is a deeply embedded part of Shiny and is one of Shiny’s most essential features. With 

reactivity, web applications can instantly update in accordance with user input such as hovering, 

clicking, and zooming. Pepro takes advantage of reactivity in various ways to improve the user 

experience. In Pepro, the information provided by the user can simultaneously affect an 
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upcoming request from Pepro. For example, when defining pairs of samples for differential 

analysis, the user is provided with an input panel with two input areas where all sample names 

are available to choose from. Instantly after the user has filled the input panel with two sample 

names, the input panel is pushed down, and a new input panel will appear for more input. At the 

same time, Pepro will ensure that a sample can no longer be selected if it has has already been 

paired with all other samples. Besides the programmed reactivity, Pepro also makes use of 

recently developed packages to provide a sophisticated interactive display (Xie, Y., 2018, Dean 

Attali, D., 2016, Sievert, C., 2017). This means all plots and tables generated in Pepro are also 

interactive. To guide the user throughout the analysis pipeline, Pepro also gives users a global 

message that guides them through every step of the analysis and changes its content to inform 

the user about the next steps. 

 

4.3.2) Robustness of Pepro 

 

Pepro is designed to be an online app that serves a significant number of users. Therefore it is 

critical to have the ability to handle erroneous user input and exceptional operations. Pepro 

improves robustness in three main ways: via input control, modularization, and the use of 

wrappers for situations where the program might fail. Moreover, the input area in Prepro has 

been designed in different forms to ensure the input is restricted to a particular format. For 

example, when defining the number of conditions, a slider is used to expect an integer input; 

however when assigning sample names to conditions, the user is only allowed to select from a 

list of previously defined sample names. Controlling the input allows Pepro to ensure efficient 

and error-free analysis. 

  

The Pepro backend is divided into four modules that perform cross checks before proceeding to 

the next module. To proceed, the user needs to click a button, which is only active when a defined 

condition is met. This condition validation feature ensures that all inputs and variables are valid 

in regard to the next module. The button becomes inactive again if the condition changes. 

  

User-specified file uploading is an input area that is subject to an unpredictable input type where 

Pepro has less control. Even a robust file reading function will fail at some point given potentially 
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unlimited input file formats. To deal with this problem, Pepro uses a wrapper to the file reading 

function that encloses the potential error inside a smaller environment, limiting the possibility of 

more widespread ramifications. According to the wrapper test result, Prepro will continue to read 

the file or inform the user to check their input. 

 

4.3.3) Protect user genetic privacy 

 

Personal proteomics data contains a significant amount of sensitive information about an 

individual. Therefore it should be handled with special care to protect an individual's genetic 

privacy. It is advised that even sharing this type of data even anonymously should be restricted, 

especially if the data contains sufficient information to identify an individual, for example, in 

patient proteome sequencing data. While Pepro does not save or use any uploaded user-specific 

information, we cannot preclude the inherent risk that comes from uploading data to any server. 

Therefore, on the welcome page, Pepro users are reminded of data privacy concerns and asked 

to make sure they adhere to privacy regulations in their institute and country. The only 

information Pepro collects is the user IP region and total active time to compile basic usage 

statistics. 

  

Although it is not advisable to share any individual identifiable proteomics data, two types of 

data are generally regarded as relatively safe. The first is proteomics data derived from well-

known cell lines because it is publicly available for every research entity. The second is protein 

expression data, which does not contain an individual's genetic information. Although an 

individuals' SNP genotypes can potentially be predicted from RNA expression data (Schadt, E.E., 

2012), the sheer size of public proteomics expression databases and lack of links between 

genotype to protein expression, make it is almost impossible to make that type of prediction from 

expression data. For this reason, Pepro is also offers differential analysis based on protein 

expression values and human gene identifiers, instead of peptide sequences. 
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5. Conclusions 

 

 

This research is a combined effort of wet-lab experiments and statistical analysis workflows. 

Most of the experimental work in this study were carried at the Castello’s lab at Oxford 

university, while Bernd and I focus on data analysis and development of the statistical 

methodologies. Some of the analytical tools we developed segued into independent side projects 

which will help others with similar research needs. Besides Pepro and RBDetect, we also created 

a web-based tool for comparing 2 groups of cell growth curves, named Growthcurves. 

Growthcurves can be used to discriminate differences between HEK293 cell growth under 

multiple culture conditions. This web application can be found at 

https://nishuai.shinyapps.io/growthcurves/.  

 

The RIC shows great potential for identifying RNA-binding proteins and is experimentally robust 

and simple to implement. However, there are some experimental limitations that affect its 

specificity and sensitivity in RBP identification. It is reported that some DNA binding proteins 

and protein complexes also bind to RNAs (Conrad, T., 2016), making it possible that some 

proteins may be falsely classified as RBPs. Moreover, RNA interactome capture may 

underestimate the abundance of some RNA-binding proteins and their RNA counterparts. For 

instance, If the RNA-protein interaction site is spatially close to the mRNA poly(A) tail, it may 

obstruct the poly(A) tail exposure and inhibit oligo(dT) capture. This results in underestimation 

of the number of these RNA molecule and effects measurement precision of the corresponding 

RBP. However, these phenomena so rare it is extremely unlikely they will affect any global 

observations. 

 

The standard application of mRNA sequencing usually involves the analysis of differential gene 

expression and alternative splicing events. However, the diversity of RNA species enabled us to 

uncover a lot of more interesting aspects with the examination of total cellular RNA. For 

example, by investigating the identified tRNA abundance and their associated anti codons, this 

study demonstrated that viral infection alters the codon composition of infected cells. We then 

show that these changes in codon composition favor translation of Sindbis viral proteins. This 

https://nishuai.shinyapps.io/growthcurves/
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finding is consistent previous research on other RNA viruses and underlines the utility of our 

methods (Zhou, J., 1999, Pavon-Eternod, M., 2012). 

 

There is a strong focus in proteomics data analysis on peptide identification and quantification 

techniques, however, there is lack of user-friendly statistical methods for downstream differential 

protein analysis (Efstathiou, G., 2017). With its intuitive interface and straightforward design, 

Pepro makes the analysis of specialized proteomics data structures possible for end users with 

little knowledge in statistics. Users can set the experimental design, remove batch effects, carry 

out sophisticated quantitative and semi-quantitative differential expression analysis, interactively 

visualize, and save results in word or pdf format. Although some efforts have made to develop 

other user-friendly software (Efstathiou, G., 2017, Wieczorek, S., 2017), Pepro stands out from 

the crowd as one of the first truly comprehensive web-based toolkit that enables all the above-

mentioned features. It fulfills an unmet need in a growing omics field that often includes many 

biologists who are non-specialists in this area. 

 

In conclusion, this thesis reviewed the interplay dynamics between RNA and RBPs in human 

HEK293 cell line at three different viral infection stages. We observed a remodelling of binding 

activities of RBPs and the subsequent activation of the immune responses in the host cell. To our 

surprise most RBPs demonstrating altered RNA binding did not show protein-level changes. 

Besides using statistical methods to evaluate the relative effects of different RNA processes, we 

also demonstrated that RNA degradation pathways had the biggest contribution to changes in 

RNA abundance change in SINV infected cells. Similar machinery may also apply to other 

alphaviruses, such as Chikungunya and Mayaro viruses, and thus we hope this study may 

contribute for the development of drugs to help solving public health problems caused by similar 

viruses in some developing countries. 
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