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Abstract: We investigate possible extensions of the Standard Model according to
the either elementary or composite nature of the Higgs boson. In the former scenario,
we present a model of �avored axion�Higgs uni�cation in which electroweak symmetry
breaking occurs dynamically and selects a small region for the axion decay constant that
will be fully tested at forthcoming dark matter and �avor experiments. Moreover, if the
Higgs is elementary, yukawa couplings are regarded as fundamental interactions: this
relates to possible UV completions based on asymptotic safety for which we provide new
insights by studying models containing a large multiplicity of fermion �elds. Finally,
we introduce a new realization of a composite Higgs that resolves the tension with
null-signals of new physics at the LHC. It is based on a new symmetry structure that
we call soft breaking, whose realization in the context of a warped extra dimension is
particularly simple and straightforward. When combined with other possible symmetries
this allows for a completely natural model to emerge predicting composite resonances
above 2 TeV with �ne-tuning at the minimum 10% already implied by LEP and thus
restoring naturalness in the light of the LHC data.

Zusammenfassung: Wir untersuchen mögliche Erweiterungen des Standardmod-
ells in Hinblick auf die Natur des Higgs Bosons als elementares oder zusammengesetztes
Teilchen. Für das erste Szenario präsentieren wir ein Modell zur Axion�Higgs Verein-
heitlichung mit Flavor-Struktur, in dem die elektroschwache Symmetrie dynamisch ge-
brochen und ein kleiner Bereich der Zerfallskonstante des Axions selektiert wird. Dieser
wird vollständig durch zukünftige dunkle Materie- und Flavorexperimente getestet wer-
den. Wenn das Higgs elementar ist, werden zudem die Yukawa-Kopplungen als funda-
mentale Wechselwirkung angesehen; dies stellt mittels des Konzepts von "asymptotic
safety" eine Verbindung zu möglichen UV Komplementierungen her, für die wir neue
Resultate, gewonnen durch die Untersuchung von Modellen mit einer Vielzahl fermion-
ischer Felder, vorstellen. Schlieÿlich führen wir eine neuartige Realisierung von Mod-
ellen zusammengesetzer Higgs Teilchen ein, die Diskrepanzen im Zusammenhang mit
fehlenden Signalen neuer Physik am LHC au�öst. Diese basiert auf einer neuen Sym-
metriestruktur, die wir "soft breaking" nennen und die im Zusammenhang mit einer
zusätzlichen, gefalteten Dimension besonders einfach und natürlich realisiert werden
kann. Die Kombination mit möglichen zusätzlichen Symmetrien ermöglicht ein voll-
ständig natürliches Modell, welches Resonanzen jenseits von 2 TeV bei einem minimalen
"�ne-tuning" von 10%, was bereits durch LEP Daten impliziert ist, vorhersagt und daher
gut mit den LHC Daten übereinstimmt.





Da quel giorno in poi [. . . ] volli, e volli sempre, e fortissimamente volli.

Vittorio Al�eri (1749 - 1803)
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Chapter 1

Introduction

The Standard Model of particle physics (SM) contains 18 free parameters that are phys-
ical: their actual values are not predicted within the theory and can only be determined
by comparison with the experiments. When accounting for massive neutrinos this num-
ber increases either to 25 or 27 depending on their Dirac or Majorana nature, and one
more parameter is found when considering the topological terms for the gauge �elds.
Since the origin behind all these free parameters is unknown, each of them represents
an opportunity for learning something more about Nature at the fundamental level.

When seeking for new physics, however, one should not forget the huge theoretical
breakthrough that has lead to the formulation of the SM itself. Probably the most
formidable aspect of it is the common understanding of the fundamental forces in the
language of gauge theories, and it is interesting to notice that this already brings several
hints for possible extensions. The �rst of them is related to the semi-simple nature of
the SM gauge symmetry,

SU(3)c × SU(2)L × U(1)Y , (1.1)

and the fact that the electric charges of the proton and the electron cancel each other
at the level of one part out of 10 21 without a rigid structure to ensure it. This fact is
known as �charge quantization� and is intimately related to the presence of the abelian
factor U(1)Y . This, together with the intriguing convergence of all the gauge couplings
at energies as high as ∼ 1016 GeV with ∼ 20% accuracy, is in fact one of the best
motivations for the existence of a Grand Uni�ed Theory (GUT) [1,2] based on a larger
gauge group in which the SM symmetry is embedded. Thus, the three parameters
corresponding to the strong and electroweak gauge couplings, gS , g and g

′, respectively,
could be reconciled in a single force at high energies.

In this respect, it is worth mentioning that the gauge symmetry in (1.1) can be
straightforwardly extended if three right-handed neutrinos (RHNs) are included in the
theory. In this case, the baryon (B) and lepton (L) numbers which are accidental global
symmetries of the SM can be used to form an anomaly-free combination, U(1)B-L, that
can be gauged [3]. The RHNs naturally explain the tiny masses of the active neutrinos
via the seesaw mechanism if they are as heavy as ∼ 1013 GeV which in turn sets the
natural scale for the spontaneous breaking of U(1)B-L. As this is not too far from the
naive GUT scale, the gauging of this symmetry can also be seen as a preliminary step
towards uni�cation.

There is however another mystery that follows from the gauge symmetry of the SM
and is related to the inclusion of a topological term for each of the group factors in (1.1).
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Chapter 1. Introduction

As we shall see in Chapter 2, these terms are total derivates and do not contribute to
the equations of motion; nonetheless they are relevant as for instance they induce CP
violation. One can show that including the topological terms brings three free parameters
that are de�ned in the interval [0, 2π) and thus correspond to angular variables. However,
not all of them are physical: the topological term for U(1)Y vanishes upon integration at
the space-time boundaries and can be neglected. The story is more subtle for the non-
abelian factors: the SU(2)L topological term turns out to be unphysical as well because
of baryon and lepton numbers which are global symmetries and can be used to rotate it
away. However, there is no symmetry of the SM that can remove the topological term
for the SU(3)c color group, and its consequences must be dealt with. In particular, the
astonishing conservation of CP in the strong interactions implies that the actual size
of the QCD θ-angle needs to be as small as θ < 10−10. This apparent �ne-tuning is
interpreted as a severe lack of understanding of the high-energy completion of the SM
and is referred to as the strong CP problem.

Of course, our original counting for the free parameters in the SM was implicitly
assuming that we stick to renormalizable operators O with mass dimension [O] 6 4.
Once all these parameters are �xed by low-energy observables, renormalizability ensures
that the model remains predictive up to extremely high scales as the �rst internal in-
consistency is truly set by the hypercharge Landau pole at ∼ 1040 GeV. However, there
are many reasons to regard the SM as an e�ective theory, and it makes sense to look at
what happens if we start considering higher-dimensional operators. At dimension �ve,
the only invariant that is allowed by gauge symmetry is remarkably the one by Wein-
berg [4] which violates lepton number by two units and thus induces a Majorana mass
for the neutrinos. This may actually explain why massive neutrinos are indeed the �rst
sign of physics beyond the SM (BSM), as for comparison proton decay is generated only
at dimension six. The natural cuto� suppressing the Weinberg operator can be related
to the mass of the RHNs discussed above, and points again to energies as high as the
GUT scale. The surprise comes when realizing that the only term in the SM with mass
dimension [O] = 2, whose natural value within this e�ective-theory approach should
correspond to these high-energy scales, is the electroweak mass of the Higgs boson!

Probably the most puzzling sector of the SM is in fact the one responsible for the
spontaneous breaking of the electroweak symmetry, SU(2)L ×U(1)Y , down to the elec-
tromagnetic group, U(1)em. This is realized through a mexican-hat potential for the
Higgs doublet, h, which is given by

V (h) =
1

2
µ2(h†h) +

1

4
λ(h†h)2 (1.2)

and is in fact minimized by con�gurations with h†h = v2/2, where v = 246 GeV corre-
sponds to the Fermi scale of the weak interactions. This is possible because the coe�-
cient µ2 is negative, and the origin, h†h = 0, corresponds to a local maximum. On the
other hand, the quartic coupling, λ, needs to be positive to ensure that the electroweak-
breaking vacuum is a minimum and the potential is bounded from below. The Higgs
mass, m2

h, according to (1.2) is given as m2
h = −µ2 = λv2/2. The electroweak gauge

bosons, W and Z, become massive due to the Higgs mechanism, and similarly for the
SM fermions thus solving the issue of mass generation in chiral gauge theories.

From a structural point of view, the potential in (1.2) is the simplest e�ective theory
that can describe a second-order phase transition. This was �rst introduced by Landau
as a Taylor expansion of the free energy for the order parameter, m2, acquiring di�erent

2



values in the broken (m2 6= 0) and unbroken phase (m2 = 0). This directly relates to
(1.2) with the identi�cation m2 = h†h. Clearly, the theory by Landau was never meant
to be fundamental, and the origin of the coe�cients parameterizing the phase transition
can be understood only within a microscopic description of the system. In a similar way,
the quantities describing the Higgs potential are supposed to become calculable once the
underlying theory beyond the SM will be unconvered.

On the other hand, the necessity for a deeper understanding of electroweak symmetry
breaking emerges when trying to extrapolate the potential in (1.2) to energies much
above the electroweak scale. In fact, regarding the SM as an e�ective theory valid up to
a certain cuto� Λ� v, the quantum corrections to the Higgs mass set its natural value
to be anyway ∼ Λ2 which is in tension with the light Higgs boson discovered at the
Large Hadron Collider (LHC). This statement is independent of the way the theory is
regularized, as physical thresholds will still contribute quadratically also in dimensional
regularization, see e.g. [5]. In the absence of an underlying mechanism to cancel this
quadratic sensitivity, a large �ne-tuning is needed to keep the Higgs light: this is referred
to as the hierarchy problem.

In addition to the (in)stability of the Higgs mass, the scalar quartic, λ, introduces
a puzzle as well. As mentioned above, the scalar quartic needs to be positive to ensure
that the symmetry-breaking vacuum is in fact a minimum. However, even if this is the
case at the electroweak scale, the value of λ can be seen as e�ectively changing with
the energy according to its renormalization-group evolution and is predicted to turn
negative within the SM at energies ∼ 1011 GeV [6]. This means that our vacuum is
actually a local minimum, as there exist con�gurations at much larger �eld values that
are more favorable energetically. Nevertheless, the vacuum that we observe turns out to
be long-lived enough to be compatible with the cosmological evolution of our Universe,
so that this cannot be considered as a real inconsistency of the theory. Nevertheless,
the fact that the SM remarkably sits in a small metastability region can be seen as a
further hint for the theory to be extended with new particles and new interactions to
ensure that λ remains positive at least up to the Planck scale.

Let us now move to discuss the last sector of the SM describing the yukawa inter-
actions between the Higgs and the elementary fermions. After performing all possible
�eld rede�nitions, one there �nds 13 (!) free parameters that are physical: three masess
for the leptons, e, µ, τ , six masses for the up quarks, u, c, t, and down quarks, d, s, b,
three mixing angles and a CP violating phase, δ, contained in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The occurrence of these parameters is intimately linked to
the SM being redundant in the fermion content, as all gauge eigenstates appear in ex-
act three replicas �without no one ordering it�. In fact, while we could motivate the
existence of leptons as a �x to the chiral anomalies of the quarks, there is absolutely
no need for repeating this three times. In this sense, it is quite remarkable that the
large �avor symmetry related to the SM families, [U(3)]5, is actually broken only by the
interaction with the Higgs, whereas gauge forces are �avor universal. When considering
BSM scenarios with a relatively low new-physics scale, this property is so important
that one usually needs to assume that these yukawas in fact remain the only source of
�avor violation [7]. Moreover, the actual size of the SM fermion masses is found to
span several orders of magnitude, from ∼ 1MeV to ∼ 170GeV. On the other hand,
the way the quarks are mixing is far from being random: the CKM matrix shows a
clear structure with dominant diagonal entries and sizeable mixing among the two light
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Chapter 1. Introduction

�avors, while third-generation mass and gauge eigenstates mostly coincide. Since the
origin of the hierarchical fermion masses and mixings cannot be understood in the SM,
this introduces what is called a ��avor puzzle�.

When compared to the SM of particle physics, the Standard Model of Cosmology
(ΛCDM) contains less free parameters but is certainly not less mysterious. In fact, the
initial conditions for the standard cosmological evolution describe a Universe that is
remarkably �at and also homogeneous on scales that are too large for these regions to
have ever been in causal contact. Explaining these initial conditions is indeed one of
the best motivations for cosmic in�ation. Moreover, 70% of the energy budget of the
Universe comes in a form of energy density that is not diluted during the expansion [8]
and is in fact compatible with a cosmological constant. In a sense, it is surprising that
we were even able to know about this as the Universe needs to have expanded enough for
the vacuum energy to become relevant, and this has happened only recently giving rise to
a �coincidence problem� 1. The next-to-leading component amounting to the 25% of the
energy budget consists of a form of non-relativistic matter that has no electromagnetic
charge and is therefore �dark�. Only the remaining 5% appears as ordinary baryon
matter, whereas relativistic degrees of freedom contribute today with 0.01 %. Moreover,
it is also apparent that our Universe is favoring a population of baryons with respect
to anti-baryons: since these two species are equivalent from a relativistic point of view,
this suggests the presence of a mechanism responsible for this asymmetry.

It is reasonable to expect the microscopic theory of Nature to account for (at least
some of) the puzzles emerging from the ΛCDM. When trying to do so with the SM,
one encounters the soundest arguments for claiming that its description is necessarily
incomplete. In fact, even forgetting about in�ation and vacuum energy, whose resolution
may actually arise from a better understanding of the gravity side, the nature of dark
matter and the origin of baryon asymmetry should both be possibly addressed within a
particle physics framework. This is particularly motivated given that there is no clear
way of accounting for these facts with the help of astrophysical objects such as primordial
black holes. However, it turns out that no particle in the SM can be considered as a
candidate for dark matter, as none of them can meet the essential requirements of being
dark, cold, and stable. Moreover, although baryon number can be violated in the SM
at the non-perturbative level, the baryon asymmetry cannot be generated both because
of a too little amount of CP violation due to the speci�c �avor structure, and because
of the lack of non-equilibrium processes that could have ever been triggered in the early
Universe according to SM physics only.

We conclude that despite being very successful in reproducing an incredible amount
of data at the terrestrial level, and also crucial processes in the early Universe such
as big bang nucleosynthesis, the SM can only be regarded as an e�ective description,
whereas a more fundamental theory will provide an explanation for (at least some of)
the quantities that are currently paremeterizing our ignorance.

In this thesis, we will investigate possible solutions to the shortcomings of the SM
from the perspective of the Higgs boson. In fact, the fragile nature of electroweak
symmetry breaking and the yukawa couplings being the core of the �avor puzzle allow
the Higgs to play a relevant role in many extensions of the SM. In doing so, we will
consider two distinct scenarios. In the �rst one, the Higgs is an elementary particle

1The concept of �recently� is questionable, as it depends on the way time is measured. Still, the
actual value of the vacuum energy turns out to be rather special, see e.g. [9].
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and the hierarchy problem may or may not be solved in this framework. As a matter
of fact, the reason for a light Higgs could rely on something completely di�erent than
what has been traditionally thought, such as the selection of our vacuum due to some
early-Universe dynamics [10], or even on mere anthropic reasons. Bearing this in mind,
we will explore the consequences of having a fundamental scalar in the theory when
discussing its interplay with the open questions of the SM that are not directly related
to the hierarchy problem. For the second scenario we will instead reverse this point of
view: we will in fact follow the idea that uncovering the mechanism behind a natural
electroweak symmetry breaking will also provide new insights for the other puzzles in
the SM. We will then turn to discuss composite Higgs models with the aim of resolving
the present tension with the continued absence of new physics at the LHC, which is in
fact endangering the idea of a natural electroweak scale.

When considering an elementary Higgs, we will �rst focus on the �avor puzzle and
the strong CP problem. As mentioned above, the latter is related to the unnatural
value of the QCD topological term, θ < 10−10. One of the most attractive solutions
consists of making the θ-angle, which in the SM is just a free parameter, a dynamical
�eld by introducing a new spontaneously broken Peccei-Quinn symmetry, U(1)PQ, and
a new pseudoscalar particle, the axion [11,12]. The apparent conservation of CP in the
strong interactions then follows simply from the fact that the con�guration with θ � 1
is energetically more favorable. The couplings of the axion with the SM particles need
however to be tiny in order to pass present constraints, thus requiring the spontaneous
breaking of U(1)PQ to occur much above the Fermi scale. Besides solving the �ne-tuning
issue related to the strong CP problem, it was soon realized that axions produced non-
thermally can account for all the dark matter in our Universe. This is particularly
relevant in present times since one of the primary candidates for dark matter, namely
a weakly-interacting massive particle with a mass in the GeV�TeV range, has not been
found in direct-detection experiments which already cut deeply in the parameter space
[13]. Conversely, the natural region for the QCD axion to be dark matter remains
basically unconstrained.

The simplest solution to the �avor puzzle is probably the one based on the Froggatt-
Nielsen mechanism [14], namely the existence of a new global symmetry, U(1)H, under
which the SM fermions are chirally charged. This symmetry controls the generation of
fermion masses such that the large hierarchies that we observe are accounted for starting
with O(1) couplings to a new scalar particle, the �avon, that realizes the spontaneous
breaking of U(1)H. In a similar way, this simple mechanism can naturally explain the
mixings between the di�erent quark families as described by the CKM matrix.

Recently, it has been shown that these two distinct solutions to the strong CP prob-
lem and �avor puzzle, respectively, can actually be realized in a uni�ed framework in
which the Peccei-Quinn symmetry itself is a �avor symmetry, thereby identifying the
U(1)PQ as the Froggatt-Nielsen �avor charge, U(1)H. Thus, the axion and the �avon
are identi�ed as the axial and radial components, respectively, of the same complex
scalar �eld that we will refer to as the axi�avon [15, 16]. A very interesting feature of
this model is that the axion couplings to matter are now predicted by the SM fermion
masses and mixings and feature a �avor violation that is sizeable enough to be possibly
detected in forthcoming experiments.

In this uni�ed solution to several puzzles in the SM, the Higgs and the axi�avon
have been considered as two independent objects. In Chapter 2, we will discuss a possi-
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Chapter 1. Introduction

ble scenario in which all the scalars in the theory are crucially uni�ed within the same
multiplet of an enlarged global symmetry at high energies [I]. In this setup, the Higgs
will be realized as an elementary pseudo-Nambu-Goldstone boson in order to provide
a rationale for it being lighter than the other states. However, since the generic scale
of new physics is tied to the Peccei�Quinn scale, the hierarchy problem becomes ex-
plicit. Nevertheless, the hypothesis of scalar uni�cation will generate correlations in the
radiatively-generated Higgs potential such that, once the Higgs mass is phenomenolog-
ically set to the experimental value, only a small range of the axion decay constant is
selected. This range is close to the natural window for axion dark matter and entirely
within the reach of forthcoming �avor and dark matter experiments, thus making this
minimal solution to the SM puzzles with scalar uni�cation fully testable in the near
future.

Regarding the Higgs as an elementary particle also allows us to explore di�erent per-
spectives for the UV completion of the SM. One possibility is to assume that the quantum
�eld theory in which the SM is embedded features an interacting ultraviolet (UV) �xed
point for its renormalization-group �ow which in turn de�nes a fundamental theory valid
up to arbitrarily short distances. The occurrence of this scenario is called asymptotic
safety [17], and has many relevant implications. First of all, asymptotic safety can o�er
an alternative point of view on quantum gravity. In fact, it is well known that general
relativity (GR) is perturbatively non-renormalizable and is supposed to lose its predic-
tive power for energies above the Planck scale. However, if the renormalization-group
�ow for GR is connected to a UV �xed point this would automatically de�ne a consistent
theory of quantum gravity. Examples where this is actually the case are known from
condensed-matter systems such as the Gross-Neveu model in three dimensions, in which
the existence of such an interacting UV �xed point can be proved rigorously despite the
characteristic interaction being power-counting non-renormalizable, see e.g. [18]. This
also means that asymptotic safety can be interpreted as a common framework in which
the SM quantum �eld theory and gravity can be married, see e.g. [19]. In addition, it
has been shown that the presence of yukawa interactions is a fundamental requirement
for asymptotic safety to emerge in the perturbative regime [20], thus providing a com-
pletely di�erent motivation for the existence of elementary scalars like possibly the Higgs
boson. Moreover, asymptotic safety may also have a saying on the hierarchy problem:
in fact, even if the UV �xed point is reached at a very high scale this does not represent
a hard cuto� and the masses of the scalar �elds will be insensitive to it [21].

One class of theories in which asymptotic safety has been proven rigorously are
those containing a large number of �avor degrees of freedom, Nf , together with a large
number of colors for the gauge interactions, Nc [22]. Following this �rst result and
motivated by the search of asymptotically safe extensions of the SM, there has been
some interest in investigating the complementary case in which Nf is large but Nc is
small. Our contribution to this research is presented in Chapter 3, where we will enlarge
the tools for the investigation of gauge�yukawa theories at high energies by considering
the novel setup in which a yukawa coupling features a large-Nf enchancement as is
the case in Froggatt-Nielsen-inspired models [II, III]. Moreover, we will analyze the
connection between the large-Nf formalism and condensed-matter theory by working out
the relations between β-functions and critical exponents correspoding to Wilson-Fisher-
type of �xed points [IV]. This new perspective will also have relevant implications for
asymptotic safety and large Nf [V].
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The search of alternative paradigms for the UV completion of the SM is certainly
motivated by the null signals of new physics at the LHC, which are in fact threatening
natural models of electroweak symmetry breaking. Nevertheless, extensions of the SM
that provide a structural solution to the hierarchy problem still represent one of the most
appealing scenarios for new physics. A renown example of this is given by composite
Higgs models [23�25]. Here, the Higgs boson is no longer a fundamental scalar but
rather a bound state of a new strong dynamics, resolvable only at short distances.
Thus, quantum corrections are cut o� at the compositeness scale, and the Higgs mass is
saturated in the IR, screening it from large corrections.

In order to reduce the mass of the Higgs boson with respect to the other composite
resonances which generically have to be in the multi-TeV range, the Higgs also needs
to be a pseudo Nambu-Goldstone boson of a spontaneously broken global symmetry of
the new strong sector. This has the added bene�t that the Higgs potential becomes
calculable since it is radiatively generated by the couplings of the composite sector to
the SM, which generically break the global symmetry. Moreover, the presence of a light
Higgs boson in the spectrum allows this class of models to be more easily compatible
with the electroweak observables that have been precisely measured by LEP. From these
measurements one is already able to tell that some �ne-tuning ∼ 10% is at least needed
in order to realize a viable composite Higgs. This degree of accidental cancellation would
however be considered as a fair price for making the Higgs mass insensitive to any other
thresholds up to the Planck scale.

Besides solving the hierarchy problem, Higgs compositeness provides a very elegant
solution to the �avor puzzle called partial compositeness. In fact, the spread of the SM
fermion masses is easily obtained as a renormalization-group e�ect in presence of strong
dynamics starting from small di�erences in the anomalous dimensions of the operators
that couple to the di�erent families. Other shortcomings of the SM such as dark matter
and electroweak baryogenesis can also be addressed in this framework, see e.g. [26].

However, while consistency with the electroweak precision tests does not require much
�ne-tuning, the situation is in practice much worse when considering the constraints
coming from the LHC. In fact, minimal realizations generically predict a Higgs mass
that is still too heavy due to the large yukawa coupling associated to the top quark.
This requires anomalously light colored states, called top partners, below the generic
scale of new physics to keep the Higgs light. However, the LHC data by now exclude
the presence of top partners with mass . 1.3TeV, thus posing a serious threat to a
natural composite Higgs. In fact, the only way in which minimal models can comply
with the LHC bounds is to make the Higgs more elementary, thus decoupling all the
e�ects associated with the composite sector. This implies that concrete realizations
become less natural and the overall tuning is pushed towards the percent level.

In Chapter 4 we will present a new idea in composite Higgs models that we call �soft
breaking� and is based on a structural change in the way the Higgs potential is generated.
As we shall see, this corresponds to a simple modi�cation of partial compositeness that
will help mitigating the e�ect of the top yukawa and allow for a light Higgs while avoiding
the prediction of light top partners [VI]. This new resolution of the tension does not
rely on making the Higgs more elementary and thus is not necessarily increasing the
tuning. In fact, we will show that when implementing soft breaking with other possible
symmetries of the strong dynamics, a natural spectrum of composite resonances above
the LHC bounds becomes now compatible with the minimal tuning from LEP [VII].
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Chapter 1. Introduction

Our concrete realization shows that the non-observation of new physics at the LHC
can be reconciled with natural electroweak symmetry breaking, as this model becomes
practically testable only now, at the High-Luminosity phase (HL-LHC) or at the Future
Circular Collider (FCC).
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Chapter 2

The Higgs and the �avored axion

Two major issues of the SM are certainly the lack of a candidate to explain dark matter
in our Universe and the astonishing conservation of CP in the strong interactions. It has
been known for a long time that these issues can be simultaneously solved by introducing
a new, spontaneously broken Peccei-Quinn global symmetry, U(1)PQ, together with a
new light particle, the axion [11,12]. The axion solution to the strong CP problem has
therefore drawn a lot of interest in the community and several e�orts are ongoing on the
experimental side aiming for a discovery. Indeed, axion physics can be constrained in
many di�erent ways by means of both terrestrial experiments and astrophysical obser-
vations. Moreover, the possibility of axion dark matter motivates the developement of
tailored direct-detection experiments. On the other hand, the scale at which the Peccei-
Quinn symmetry is broken is generically much above the electroweak scale thus making
the axion a very light and feebly interacting particle.

A powerful strategy for discovering the axion is to investigate rare processes in the
SM as those related to �avor-violating neutral currents. In fact, axions can feature
sizeable o�-diagonal couplings in �avor-space to the SM fermions and can mediate �avor
transitions such as d → s or µ → e, which are already severely constrained by current
measurements and will be further investigated in future searches. A possible issue with
this strategy is that axion couplings to matter considerably depend on the way the SM
particles feel the U(1)PQ global symmetry, and this introduces a certain degree of model
dependence. It is therefore important to construct well-motivated models to be used as
benchmarks for this kind of searches.

An interesting way to do this is by connecting the axion solution to the strong CP
problem to other issues in the SM. A prime candidate for this is the ��avor puzzle�,
namely the observation that the fermion masses in the SM span several orders of magni-
tude without a mechanism that can explain it. Also, the structure of the CKM matrix is
far from being random, and this reinforces the idea of an underlying symmetry. Probably
the simplest way of addressing the �avor puzzle is to implement the Froggatt-Nielsen
mechanism [14]. This is based on a new, spontaneously broken, U(1)H global symmetry
under which the SM fermions are chirally charged, together with a new heavy scalar
�eld, the �avon. The breaking of this U(1)H controls the fermion mass generation and
reproduces the observed pattern in the CKM matrix as well as the mass hierarchies in
a natural way. It has been recently pointed out in Refs. [15,16] that the solution to the
strong CP problem and the �avor puzzle can actually be combined by identifying the
Peccei-Quinn symmetry with the U(1)H symmetry of the Froggatt-Nielsen mechanism,
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Chapter 2. The Higgs and the �avored axion

thereby providing a uni�ed solution to all these open questions. As a consequence, the
axion couplings are now dictated by the observed pattern of masses and mixings of the
SM fermions, making the model extremely predictive. In particular, these couplings
inherit the �avor structure of the SM, and d → s transitions are sizeable, as they are
only suppressed by the Cabibbo angle.

This setup was realized in Refs [15, 16] by employing an e�ective-�eld-theory ap-
proach motivated by the large separation between the axion decay constant and the
electroweak scale. In particular, the Higgs was considered there as an independent �eld
with respect to the axion and the �avon that have instead been crucially uni�ed in a sin-
gle complex scalar� the axi�avon. In Ref. [I] we took a further step in this direction and
provided a model that is based on a non-trivial interplay between the scalar �elds in the
game. In particular, we have analyzed the possibility that all the scalars actually have
a common origin, thereby linking the Higgs to the axi�avon. In this setup, it is natural
to assume that both the Higgs and the axion are realized as pseudo Nambu-Goldstone
bosons of an enlarged global symmetry group as a means to explain their lightness when
compared to the �avon. This provides a concrete example of axion-Higgs uni�cation [27]
(see also Ref. [28]) in a renormalizable context. A major consequence is that electroweak
symmetry breaking occurs dynamically and is controlled by the microscopic parameters
of the model via the Coleman-Weinberg potential for the Goldstone Higgs. Reproducing
the correct electroweak vacuum provides then a powerful requirement on the system that
in turn will select a very small region of the axi�avon parameter space increasing the
predictivity of the model.

This chapter is organized as follows. In Sec. 2.1 we will review the strong CP problem
and its connection to the vacuum structure of QCD as well as the picture in the SM. In
Sec. 2.2 we will discuss the axion solution to the strong CP problem by looking at the
e�ective �eld theory below the Peccei-Quinn and electroweak-symmetry-breaking scale.
The status of axion searches is discussed in Sec. 2.3, with particular emphasis on the
constraints coming from �avor experiments. The idea of interpreting the Peccei-Quinn
as a �avor symmetry is presented in Sec. 2.4. Finally, Sec. 2.5 is devoted to our model
that combines the Higgs with the axi�avon and is mainly based on Ref. [I]. A summary
of our �ndings is given in Sec. 2.6.

2.1 Strong CP problem, θ-vacua and the SM

The strong CP problem concerns the so-called QCD θ-term, a dimension-four topological
operator built with the gluon �eld strength G and the Levi-Civita symbol ε,

Lθ = θ
αS
8π

1

2
εµναβ TrGµνGαβ, (2.1)

where the trace runs over SU(3)c indices. An equivalent way of writing the θ-term is to
introduce the dual �eld strength G̃ as G̃µν ≡ 1

2ε
µναβGαβ ,

Lθ = θ
αS
8π

TrGµνG̃
µν . (2.2)

This operator is called topological as it is independent of the space-time metric: the
Lorentz indices are in fact simply contracted by anti-symmetrization with the ε symbol.
One can also check that the θ-term is in fact a total derivative, GG̃ ≡ ∂µK

µ, and thus
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2.1. Strong CP problem, θ-vacua and the SM

only concerns the information at the boundary. As a consequence, it does not contribute
to the classical equation of motion, and no e�ect can be found in perturbation theory.
Nevertheless, the contribution from this operator cannot be neglected as important
physical observables crucially dependend on it, as we shall see.

The existence of the θ-term is connected with the non-trivial vacuum structure of
QCD [29] that we will brie�y review (see e.g. [30,31]). In the temporal gauge, A0(x) = 0,
the vacuum condition at the space-time boundary, |x| → ∞, is Fµν = 0 and is solved by
time-independent �eld con�gurations,

Ai(x) = g−1(x)∂i g(x) (2.3)

that are obtained acting on the simplest con�guration, Ai(x) = 0, via the gauge trans-
formation g(x). The relation above de�nes a mapping between the physical space at the
boundary and the QCD group, SU(3)c. Each gauge con�guration as in (2.3) can then
be labelled according to the winding number n ∈ Z of the corresponding class in the
Πd−1(SU(3)c) homotopy group, where d = 4 is the dimension of space time:

n =
ig3
S

24π2

∫
d3xTr εijk A

n
i (x)Anj (x)Ank(x), (2.4)

where An is related to the gauge transformation gn as in (2.3). One thus realizes that
there exists a plethora of vacuum states that can be labelled by |n〉, and are actually
connected by gauge transformations as

g1|n〉 = |n+ 1〉. (2.5)

Standard perturbation theory assumes the vacuum to be Ai(x) = 0 corresponding to
|0〉 in this notation. The crucial question is then: do the |n 6= 0〉 vacua actually have
an impact on the path-integral? Remarkably, the answer is yes [29], and the transition
probability gets instanton contributions:

〈n|n+ 1〉 ∝ exp(−2π/αS). (2.6)

As we can see, the transition probability among vacua is non-zero and non-analytical at
αS = 0, and therefore this e�ect cannot be captured in perturbation theory!

This also shows that |0〉 cannot be considered the true vacuum of the theory, nor
can any of the other |n〉 states. A step towards the resolution of this ambiguity is to
construct gauge invariant vacua. This is possible by taking a coherent superposition of
the |n〉 states as

|θ〉 =
∑
n

e−inθ|n〉, (2.7)

where θ is a real number in the interval θ ∈ [0, 2π). Under a gauge transformation, gn,
one has

gn|θ〉 = einθ|θ〉, (2.8)

showing that |θ〉 is in fact stable under gauge transformations. The crucial property of
the θ-states is that

〈θ|θ′〉 = 0 for θ 6= θ′, (2.9)

11



Chapter 2. The Higgs and the �avored axion

meaning that transition among θ-vacua are forbidden. Moreover, the path integral
formulation of the theory based on the θ-vacuum is given by

〈θ|θ〉 =

∫
DA eiSe� , (2.10)

where Se� contains the θ-term in (2.1),

Se� = S0 + θ
αS
8π

∫
d4xTrGµνG̃

µν , (2.11)

and S0 is the standard Yang-Mills action containing the kinetic terms and gauge interac-
tions. Therefore, we can see that the e�ects of topologically di�erent �eld con�gurations
in the path integral can be accounted for as a new θ-term in the e�ective action of the
standard path integral. As transitions between di�erent θ-vacua are forbidden, θ should
be regarded as a new free parameter of the theory.

The presence of the θ-term a�ects the energy of the QCD vacuum and acts as a
source of C and CP violation. As for the vacuum energy, E(θ), one has [32]

E(θ) ' −e−2π/αS cos θ. (2.12)

As we can see, the energy has a minimum at θ = 0; however, as transitions between
θ-vacua are forbidden, the system cannot relax to it. Moreover, the θ-term induces a
CP-violating electric dipole moment for the neutron, dN , of the order

dN ' e
mq

m2
N

θ, (2.13)

where e is the electric charge, mN is the mass of the neutron and mq is the mass scale
of the light up and down quarks. Experimentally, constraints on the size of dN imply
that θ . 10−10 [33]. As θ cannot relax to its minimum, this gives rise to the strong CP
problem in QCD, namely the question why in our Universe the free parameter θ, that
could be any number in the range [0, 2π), was set so close to zero without any dynamical
explanation.

This �ne-tuning becomes even worse when discussing the strong CP problem in
the full SM. In fact, the fermion masses in the SM originate from yukawa interactions
with the Higgs �eld: these yukawa matrices contain o�-diagonal terms and complex
entries. By implementing a bi-unitary transformation acting on the left- and right-
handed fermions, UL and UR, it is always possible to obtain a mass matrix, Mdiag, that
is real and diagonal:

Mdiag = U †LMqUR, (2.14)

where Mq is the (block diagonal) mass matrix collecting up and down quarks prior
rotations. The unitary transformations can be decomposed with respect to U(1)×SU(N)
as

UL,R = eiφL,RSL,R. (2.15)

The presence of these two phases signals that a chiral rotation is needed in the process
of diagonalization. However, the U(1)A group of chiral rotations is anomalous under
QCD 1: the corresponding axial current made of quarks,

Jµ5 = q̄γµγ5 q, (2.16)

1This axial anomaly is indeed the reason why no additional light pseudo scalar is observed in the
hadron spectrum besides the pion triplet.
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is not conserved, ∂µJ
µ
5 6= 0. This non conservation is relevant for the θ-term discussed

above; in particular, one has

∂µJ
µ
5 = nf

αS
2π

TrGµνG̃
µν (2.17)

where nf = 6 is the number of quarks. Hence, the chiral rotations in (2.15) actually
introduce an independent contribution to the operator in (2.1), thus shifting θ by an
amount that is determined by φL,R:

θ → θ̄ = θ + arg detMq = θ + arg detU †RUL = θ + nf (φL − φR), (2.18)

where we have used that Mdiag is real, and detSL,R = 1. The actual value of these
phases is unknown within the SM, as they only contribute through the topological term.
However, we do know that the SM yukawa matrices have complex entries, and one of
them, δ, is responsible for CP violation in the weak interactions [34]. As this phase is
δ ∼ O(1), see e.g. [35], one naturally expects the same order of magnitude for φL,R.
Thus, the strong CP problem in the SM is somehow worse than what discussed in the
previous section, as the question is now why the combination of the two independent
contributions from the QCD θ-term and from the electroweak sector cancel to O(10−10)
accuracy.

Before discussing possible solutions to this �ne-tuning problem, let us mention that
similar topological terms can be written also for the electroweak group SU(2)L×U(1)Y .
Similarly to QCD, these terms are total derivatives; this turns out to be su�cient to
make the U(1)Y topological term vanish upon integration at the boundaries (in the
absence of monopoles) [36]. As for SU(2)L, it is possible to use the baryon plus lepton
number, B+L, which is an accidental global symmetry of the SM Lagrangian with non-
zero anomaly, to rotate the topological term away [37]. However, there is no symmetry
in the SM that can absorb the QCD θ-term.

In general, there exist three classes of solutions to the strong CP problem. The
�rst one builds on the fact that if any of the bare quark masses, say the up mass mu,
was zero, θ̄ would be unphysical, as it could be always rotated away by anomalous
transformations acting on the up quark 2. The bare up mass could instead be generated
by non-perturbative QCD dynamics in order to comply with lattice results that solidly
exclude the possibility of massless quarks [38]� see [39] for a recent revival of this idea.

The second class of solutions was �rst presented in the works of A. E. Nelson [40]
and S. M. Barr [41, 42]. The main idea is to forbid the bare θ-term by imposing CP as
a true symmetry of the theory. CP is then broken spontaneously in order to account
for its apparent violation by the weak interactions due to the CKM phase, δ. The main
challenge is then to construct the theory such that arg detMq � 1 while δ ∼ O(1) after
spontaneous CP breaking. A characteristic of the Nelson-Barr solution is that, unlike
the mu = 0 case and the axion solution, it leaves the low-energy QCD unchanged, and
the strong CP problem is solved at the scale at which the SM yukawas are generated.

The third class of solution was proposed by R. Peccei and H. Quinn in 1977 [11,12].
It relies on the existence of a spontaneously broken U(1)PQ symmetry that is anomalous
under QCD. The most important prediction that comes along with this is the presence
of a light, feebly-coupled pseudoscalar in the low energy theory, the axion. This will be
the focus of the next sections.

2 Notice that the case of massless quarks is indeed special, as detMq = 0, and its argument in (2.18)
is not de�ned.
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2.2 The axion solution

We have seen that the CP-converving vacuum with θ = 0 is actually the one favoured by
energy consideration; see (2.12). However, the θ-angle cannot relax to zero, as it is just
a static parameter, and transitions among di�erent vacua are forbidden. The essence of
the axion solution to the strong CP problem relies on making θ a dynamical quantity.
This is done by identifying θ with the axion vacuum expectation value (vev), 〈a〉, whose
smallness follows from the fact that the axion potential is minimized at 〈a〉 = 0, as we
shall see 3.

Let us discuss the Peccei-Quinn (PQ) solution to the strong CP problem in a model-
independent way. The crucial ingredient is a new chiral U(1)PQ symmetry with a non-
zero QCD anomaly. This requires the existence of colored fermions with non-zero PQ
charge. If U(1)PQ were unbroken, the strong CP problem would be solved similarly to
the case of a massless quark, as this extra symmetry could be used directly to rotate
the θ-term away. However, the strong CP problem can also be solved in case U(1)PQ is
spontaneously broken. In this case, by the Goldstone theorem, a light scalar, the axion,
appears in the spectrum.

Below the scales of Peccei-Quinn and electroweak symmetry breaking, the e�ective
axion Lagrangian reads [43,44]:

La =
1

2
(∂µa)2 +

1

2fa
(∂µa) Jµ +

αS
8π

(
θ +

a

fa

)
GµνG̃

µν +
αem
8π

a

fa

E

N
FµνF̃

µν , (2.19)

where Jµ is a model-dependent current involving the SM fermions, E and N are the
electromagnetic and strong-interaction anomaly coe�cients of the PQ current, respec-
tively. The PQ symmetry is non-linearly realized in (2.19) as a shift symmetry on the
axion �eld,

a(x)→ a(x) + αfa, (2.20)

whereas the fermions do not transform 4. The fact that the PQ symmetry is actually
broken by anomalies is ensured by the last two terms involving non-derivative couplings
between the axion and the topological terms. The axion shift symmetry makes the θ
angle in (2.19) a spurious quantity, as it can always be eliminated by an appropriate
transformation (2.20) with α = −θ with no other e�ect 5. The θ-angle in (2.19) is then
fully replaced by the axion �eld.

In passing, let us mention that the use of the axion shift symmetry to eliminate the
bare θ-angle relies on the fact that U(1)PQ is supposed to be an exact global symmetry of
the classical Lagrangian which is only broken by anomalies. However, global symmetries
are usually understood as accidental symmetries arising at the renormalizable level (as,
for instance, baryon and lepton number in the SM) and are believed to be broken by
higher dimensional operators. By taking the cuto� to be the Planck scale and fa '
1011 GeV 6, it turns out that one can tolerate only operators O with dimensionality

3The actual minimum is slightly shifted from 〈a〉 = 0 due to the CP violation in the yukawa sector
of the SM. This e�ect is nevertheless far below the current bound on θ, and does not spoil the solution
to the strong CP problem.

4This is consistent also in case SM fermions are charged under PQ; see [43].
5The induced constant topological term −θ αem

8π
E
N
FF̃ can be safely neglected [36].

6Lower values of fa help reducing this issue but they are more severely constrained experimentally,
as we shall see.
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[O] > 13 not to spoil the solution to the strong CP problem, see e.g. [36]. Despite this
being possible, the question of how a global symmetry can exhibit such a spectacular
degree of conservation is still an open question and is usually referred to as the �axion
quality problem�.

Going back to our discussion, eliminating the bare θ-term is still not enough to solve
the strong CP problem as one needs to ensure that the axion vev is actually driven to
zero. Yet, we already know that this has to be the case as (2.12) implies that the CP-
conserving vacuum is energetically favourable. As the axion shift symmetry is explicitly
broken by the QCD anomaly, a potential for the axion will be generated at the non-
perturbative level. In order to evaluate it, one can employ chiral perturbation theory.
The strategy is to get rid of the aGG̃ term in (2.19) by performing a chiral rotation on
the light u and d quarks. This reults in a �dressed� axion-dependent mass matrix for
the quarks that eventually enters the pion Lagrangian to keep track of the explicit chiral
symmetry breaking. This procedure allows to take into account the mixing between the
axion and the other QCD mesons, as the neutral pion π0, that a�ects axion physics, as
for instance its e�ective coupling to photons. After integrating out all the hadrons, one
�nds the following potential for the physical axion [44]:

V (a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
, (2.21)

which implies a mass ma given by

ma =

√
mumd

(mu +md)2

mπfπ
fa

' 6× 10−4 eV

(
1010 GeV

fa

)
, (2.22)

where fπ ' 92MeV is the pion decay constant. As we can see, the minimum is at a = 0,
thus solving the strong CP problem.

Eqs (2.19) and (2.22) show two very important phenomenological properties of the
axion: all its interactions as well as its mass become extremely small if the PQ breaking
scale, fa, becomes large. Axions of this type are thus referred to as �invisible� and are
broadly classi�ed into DFSZ [45, 46] and KSVZ [47, 48] models, depending on whether
or not the SM fermions are charged under PQ. Visible axions with fa ≈ v, including
the original PQWW model [11, 49, 50], are by now excluded experimentally. Axion
physics can indeed be constrained in many di�erent ways exploiting for instance the
axion coupling to photons, nucleons, leptons, and also gravity.

Before moving to the di�erent strategies that can be used to detect the axion, let
us discuss a very important property of the axion solution to the strong CP problem,
namely that it can simultaneously account for the total abundance of dark matter in
the Universe [51�53]. Despite being extremely light, typically far below the eV scale,
axions can still behave as cold dark matter if the axion population is produced non-
thermally. Assuming that the Peccei-Quinn symmetry is broken during in�ation, our
Universe started with a constant value of the axion �eld everywhere, parametrized by
θ0 = a(t0)/fa ∈ (−π, π) 7. The axion �eld then evolves in the Friedmann-Lemaître-
Robertson-Walker metric according to the equation of motion

ä(t) + 3H(t)ȧ(t) +m2
aa(t) = 0, (2.23)

7 The occurrence of in�ation after PQ symmetry breaking solves the issue related to dangerous
topological relics of the U(1)PQ breaking, such as domain walls, that are always produced whenever the
color anomaly N is N > 1. However, isocurvature-perturbation bounds apply [54].
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where H(t) = ˙̃a(t)/ã(t) is the Hubble rate, and ã(t) is the scale factor. As long as
H & ma, the axion �eld is frozen to its initial value. However, for H . ma, the axion
starts oscillating with a frequency that is dicated by its mass. During these coherent
oscillations around the a = 0 minimum, the axion energy density ρa,

ρa =
1

2
ȧ(t)2 +

1

2
m2
aa(t)2, (2.24)

actually red-shifts like dust, ρa ∼ ã−3. As a result, axions are good dark matter can-
didates, and the relic abundance is �xed by the angle θ0 corresponding to the initial
misalignment. For this reason, this mechanism is referred to as the �misalignment mech-
anism�. According to the energy density in (2.24) for the simple harmonic potential, the
relic abundance of axions, Ωah

2, is given by [31]

Ωah
2 ' 2× 10−3

(
fa

1010 GeV

)7/6

θ2
0. (2.25)

Through (2.22) we can rewrite the expression above in terms of ma:

Ωah
2 ' 3.5

(
µeV

ma

)7/6

θ2
0. (2.26)

Since θ2 < π2, Eq. (2.26) sets an upper bound on the axion mass when requiring that
all dark matter, Ωch

2 ' 0.12 [8], is accounted by axions produced by misalignment:

ma . 130µeV. (2.27)

For larger masses, the axion can still be a subdominant component. Assuming that
axions are a relevant fraction of dark matter, one could detect them directly via interac-
tions with the dark matter halo of our galaxy. Experiments of this type are ADMX [55]
and its future upgrade [56], CAsPEr [57], MADMAX [58], and ABRACADABRA [59].

In the next section, we will discuss the axion searches according to the exploited
physical mechanism. As we shall see, these constraints apply regardless of the axion
being dark matter or not.

2.3 Axion searches

Even though the axion has no electromagnetic charge, it couples to photons due to a
generically non-zero contribution from the electromagnetic anomaly and from its cou-
plings to QCD. This interaction can be described by a single parameter gaγγ :

Laγγ = gaγγ
αem
8π

a

fa
FF̃ , (2.28)

where
gaγγ = |E/N − 1.92|. (2.29)

The �rst term, E/N , comes directly from (2.19) and re�ects the fact that the PQ
symmetry can have a non-zero electromagnetic anomaly. This depends on the particular
UV completion of (2.19) and is therefore model-dependent. Conversely, the second term
arises from the axion couplings to QCD and is model independent.
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2.3. Axion searches

Whenever the fermions charged under PQ �ll complete SU(5) representations such
as in the original DFSZ models, one has E/N = 8/3, see e.g. [60]. However, it could
also be that the fermions responsible for the PQ color anomaly are electroweak singlet,
as in the KSVZ type of models, and thus E/N = 0. Taking into account this model
dependence, there have been various attempts to identify the possible window for gaγγ .
The �standard� axion window is obtained by looking at di�erent variants of the DFSZ
and KSVZ models and reads [61]

gaγγ ∈ (0.07, 7). (2.30)

Recently, this has been revisited in [62], �nding that the axion coupling to photons could
be as big as gaγγ ≈ 60 compatibly with cosmology and internal consistency of the theory.

As for the axion couplings to matter, let us refer to the e�ective Lagrangian in (2.19)
and write down the fermion current Jµ more explicitly:

1

2fa
∂µa(x) Jµ(x) =

1

2fa
∂µa(x) Ψ̄(x)γµ (CV + CAγ5) Ψ(x), (2.31)

where Ψ collects the SM fermions in their mass eigenstates:

Lkin = Ψ̄(i/∂ −m diag)Ψ. (2.32)

The CV,A matrices contain couplings in the �avor space. Also note that below the
QCD condensation scale the couplings to quarks induce axion couplings to nucleons,
C nn, where n refers to protons or neutrons. Notice that only the o�-diagonal entries of
the matrix CV matter, as the diagonal terms, C ii

V , can always be eliminated by vector
transformations

Ψi → exp

(
i

1

2fa
C ii
V a(x)

)
Ψi (2.33)

that are not anomalous and induce a new contribution from the kinetic term,

Lkin → Lkin −
1

2fa
(∂µa)Ψ̄iC

ii
V Ψi, (2.34)

that exactly cancels against the one from (2.31). This is relevant when discussing possible
long-range force constraints on the axion parameter space which are in fact automatically
evaded as for instance the vector coupling to electrons, C ee

V , is unphysical, and its axial
counterpart, C ee

A , can only induce spin-dependent interactions that are suppressed for
macroscopic bodies (unless they are polarized), see e.g. [31].

Constraints on the axion parameter space can be divided according to the physical
e�ect that is exploited. We will discuss energy loss due to axion production, conversion
to photons via Primako� e�ect, and �avor violation, as detailed below.

Energy loss

If the axion mass allows for e�cient thermal production, the consequent axion �ux
represents an additional source of energy loss for astrophysical objects. This is because
the axion, similarly to neutrinos, interacts feebly with matter and can easily stream
away. From the analysis of the evolution of globular clusters, one can set a bound on
the rate of axion-photon conversion inside the stars for masses ma . 0.1MeV [63]:

gaγγ < 0.6
fa

107 GeV
. (2.35)
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Chapter 2. The Higgs and the �avored axion

An order of magnitude weaker bound on gaγγ , but valid for axion masses ma . 50 MeV,
can be placed by the supernova event SN1987a [64].

As for couplings to matter, the white-dwarf luminosity function can place a constraint
on the axion coupling to electrons when the energy loss due to the axion �ux is compared
to the neutrino �ux. This provides the following limit [65]:

C ee
A < 0.5

fa
109 GeV

. (2.36)

On similar grounds, the SN1987a event can place a bound on the average axion coupling
to nucleons [66]:

C nn
A < 0.7

fa
109 GeV

. (2.37)

Primako� e�ect

In the presence of a magnetic �eld, an axion can be converted to a photon (and vice
versa) due to the Primako� e�ect [67] sourced by the gaγγ coupling. Taking this into
account, the SN1987a can set an upper limit on gaγγ from the non-observation of gamma
rays resulting from axion conversion mediated by the magnetic �eld of our galaxy [68]:

gaγγ < 0.5
fa

108 GeV
(2.38)

for ma . 4×10−10 eV. Moreover, axions can be emitted by stars like our Sun and travel
to Earth where they can be converted to photons in regions where a strong magnetic
�eld is applied. This strategy has been employed at the CERN Axion Solar Telescope
(CAST), setting a bound that is similar to (2.35) [69]:

gaγγ < 0.6
fa

107 GeV
(2.39)

for ma . 10−2 eV. This bound will likely be improved by the new generation of �helio-
scopes� such as IAXO [70] by one order of magnitude. The same concept is used in the
Light-Shining-Through-a-Wall experiments, where the astrophysical source is replaced
by a laser. The idea is to let the light pass through a barrier by converting it into axions
with the help of a strong magnetic �eld, and convert it back to photons on the other
side of the barrier in order to detect it. Currently, the strongest bound is given by the
Any Light Particle Search (ALPS) experiment at DESY [71]:

gaγγ < 0.6
fa

104 GeV
. (2.40)

This limit is expected to be further improved by ALPS II by three orders of magnitude
[72].

Flavor violation

Axions can mediate �avor-changing neutral currents whenever the CV,A matrices in
(2.31) have non-zero o�-diagonal elements. Two couplings that are particularly relevant
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2.3. Axion searches

for current and future experiments are C ds in the quark sector and C eµ in the lepton
sector 8.

The d→ s transition can be looked for in heavy meson decays. The strongest bound
is found for K+ → π+a, for which the main SM background is given by the K+ → π+νν̄
rare decay. The current best limit on this branching ratio is [74]:

B(K+ → π+a) < 0.73× 10−10. (2.41)

This bound is expected to be improved by the NA62 experiment at CERN by one order
of magnitude [75]. The theoretical calculation for K+ → π+a depends on C ds as [73]

B(K+ → π+a) ' 1

64πΓK

|CdsV |2

f2
a

m3
K

(
1− m2

π

m2
K

)3

. (2.42)

Notice that only the vector component contributes, as the decaying particle has no spin.
From (2.41) one �nds

fa > 3.5× 1011|C ds
V |GeV ⇔ ma <

2× 10−5

CdsV
eV. (2.43)

The Ceµ coupling mediates a process that violates charged-lepton �avor. It can be
searched for directly as a rare muon decay, µ → ea or in combination with a photon,
µ → eaγ. The main SM background for µ+ → e+a is the β decay µ+ → e+νν̄. The
strongest limit is obtained if one assumes isotropic decays, namely either fully vectorial
or axial, and is given by [76]

B(µ+ → e+a) < 2.6× 10−6, (2.44)

whereas bounds on anisotropic decays can be one order of magnitude weaker [77]. These
limits are going to be largely improved by future experiments, as Mu3e [78] and MEG
II [79]. The theoretical calculation for this branching ratio follows (2.42) with the kaon
mass and width replaced by the analogous for the muon, and the pion mass replaced by
the electron mass. The e�ective coupling entering the width is now |C eµ|2 = |C eµ

V |2 +
|C eµ
A |2. Considering the case of isotropic decays, namely either a purely vectorial or

axial coupling, one obtains a bound on fa given by

fa > 2.8× 109 |C eµ|GeV ⇔ ma <
2× 10−3

|C eµ|
eV, (2.45)

and similarly for anisotropic decays. By looking at (2.43) and (2.45), we see that preci-
sion �avor observables are very relevant in constraining the QCD axion parameter space
and new experiments have the potential of discovering an axion independently of the
other searches. However, axion couplings to SM fermions are model-dependent quanti-
ties and are ultimately related to their PQ charges. For instance, CV,A = 0 in the KSVZ
model, and CV = 0, CA ∝ 1 in the simplest DFSZ model, so that no �avor-violating
e�ect is found. On the other hand, non-vanishing o�-diagonal couplings such as C ds or
C µe are generic predictions of PQ charges that are �avor non-universal.

8Although the axion �eld in (2.19) is not the physical one, its o�-diagonal couplings are unchanged
after the axion-pion system is diagonalized [73], as the QCD anomaly is insensitive to �avor.

19



Chapter 2. The Higgs and the �avored axion

Figure 2.1: Constraints on the axion parameter space by setting all the relevant CV,A
couplings and gaγγ to 1. Arrows indicate the sensitivity of future experiments. Graphics
taken from Ref. [80].

To see how this works, let us consider the charged-lepton sector before electroweak
symmetry breaking. Indicating by

Xe
L = diag(xeL , xµL , xτL), Xe

R = diag(xeR , xµR , xτR) (2.46)

the �avor-diagonal, but not universal, matrices collecting the PQ charges for the left- and
right-handed charged leptons as gauge eigenstates, one has that the current Jµch.lep.(x)
coupled derivatively to the axion is:

∂µa(x)

fa
Jµch.lep.(x) =

∂µa(x)

fa

[
1

N
l̄L(x)γµXe

LlL(x) +
1

N
l̄R(x)γµXe

RlR(x)

]
, (2.47)

where l = (e, µ, τ) and N is the color anomaly. The current above can be thought as
originating from the lepton kinetic terms after a chiral rotation at high energies of angle
iXL,R a(x)/(faN). After electroweak symmetry breaking, charged leptons obtain their
masses from the yukawa interaction with the Higgs. Flavor and mass eigenstates are
thus not aligned, but rather connected via a bi-unitary transformation, lL = ULl

′
L and

lR = URl
′
R. Rewriting (2.47) in the mass basis, one �nds:

Jµch.lep.(x) =
1

N
l̄′L(x)γµ U †LX

e
LUL l

′
L(x) +

1

N
l̄′R(x)γµ U †RX

e
RUR l′R(x), (2.48)

so that when comparing with (2.31) one sees that the coupling matrices CV,A are related
to the charges XL,R as

CV =
1

N

(
U †RXR UR + U †LXL UL

)
, CA =

1

N

(
U †RXR UR − U †LXL UL

)
. (2.49)

Analogous structure holds for the SM quarks. Thus, whenever the PQ charges X do not
commute with the yukawa matrices, �avor-diagonal couplings arise. This is in fact the
case whenever the charges are not �avor-universal. Conversely, when the PQ charges
are �avor universal, X ∝ 1, one trivially �nds U †X U = 1 with no �avor violation.

To summarize, �avor-violating axion couplings are potentially sizable and o�er an
excellent probe of the axion parameter space. However, this statement crucially depends
on the PQ charges of the SM fermions that are model-dependent quantities. In the
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next section we will discuss a particularly predictive scenario which interpretes the PQ
symmetry as a �avor symmetry. The PQ charges are then no longer arbitrary but rather
�xed by the observed pattern of fermion masses and mixings in the SM. As we shall see,
this model o�ers interesting predictions for �avor observables such as K → πa.

2.4 Peccei-Quinn as �avor symmetry

The idea that the PQ symmetry and �avor symmetries may be related actually goes
back to Wilczek [81]. Before investigating this possibility in a new concrete realization,
let us recall that a ��avor puzzle� can be identi�ed as the observation that:

1. the yukawa couplings between the Higgs and the SM fermions span several orders
of magnitude, from O(1) to O(10−5) (not considering neutrinos), re�ected in a
large mass hierarchy;

2. the CKM matrix shows a clear pattern with O(1) diagonal couplings and approx-
imate U(2) symmetry for the �rst two quark generations:

CKM ≈

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (2.50)

where λ = sin θC ' 0.2 is the sine of the Cabibbo angle.

Perhaps the simplest �avor symmetry one can advocate to explain these observations
is the Froggatt-Nielsen (FN) mechanism [14]. The idea is to chirally charge the SM
fermions under a new horizontal (namely, �avor non-universal) U(1)H symmetry. Sim-
ilarly to what happens with the electroweak symmetry and the Higgs, the masses and
mixings of the SM fermions are now controlled by the breaking of U(1)H. This can be
achieved by introducing a new scalar �eld Φ, charged under U(1)H, that acquires a vev.
Because of its role in addressing the �avor puzzle, the radial component of Φ is referred
to as the �avon.

In addition to the new scalar, Φ, the SM �eld content needs to be augmented by
new vector-like fermions, ξj , dubbed the FN messengers, which connect the di�erent
SM-fermion chiralities, bridging their U(1)H charge di�erence via a chain of Φ inser-
tions. Taking the FN messengers to reside much above the electroweak scale, they can
be integrated out in favor of an IR e�ective description. Once the U(1)H is sponta-
neously broken by the �avon vev 〈Φ〉 ≡ f/

√
2, the SM yukawa couplings are e�ectively

reproduced starting with O(1) couplings in the UV theory.
To show this, consider an up-type quark u chirally charged under U(1)H such that

H(qL) = l and H(uR) = r. Taking Φ to carry unitary PQ charge, SM gauge symmetry
and U(1)H together imply that the up mass, mu, comes from the following operator:

Ou =
1

Λl−r
λu q̄L h̃Φl−r uR, (2.51)

where h is the Higgs doublet and h̃ = iσ2h
∗. This operator can be visualized as the

result of integrating out the FN chain shown in Fig. 2.2, where wiggly lines are the FN
messengers, simple crosses stand for insertions of Φ, and the circled cross represents the
Higgs. The main di�erence with respect to the standard yukawa coupling in the SM is

21



Chapter 2. The Higgs and the �avored axion

Figure 2.2: Froggatt-Nielsen chain made of the vector-like fermions ξj (wiggly lines)
to bridge the charge di�erence of the two fermion chiralities. Simple crosses represent
insertions of the Φ vev, and the circled cross stands for the Higgs vev. Graphics adapted
from [14].

that Ou is higher dimensional and suppressed by the large scale Λ. After U(1)H and
electroweak symmetry breaking, the mass mu is given by

mu =
1√
2
λuv

(
f√
2Λ

)l−r
≡ 1√

2
yuv. (2.52)

Therefore, the e�ective yukawa yu can actually be very small starting from λu ∼ O(1) as
a consequence of integrating out the FN chain. The scale Λ is here related to the mass
scale of the FN messengers, which needs to be parametrically larger than f . Lighter
fermions are then resulting from a larger separation of chiral charges l − r, whereas the
top quark features l = r so that yt ' λt = O(1).

In order to see what structure is predicted for the CKM matrix, let us write down
the analogous of (2.51) including down quarks and considering all the three �avors:

Lyukawa = q̄ iL λ
ij
u

(
Φ

Λ

)li−ruj
h̃ u jR + q̄ iL λ

ij
d

(
Φ

Λ

)li−rdj
h d jR, (2.53)

where l stands for the H charge of the left-handed quark doublets and ru,d is the H
charge of the right-handed up and down quarks, respectively. The i, j indices run over
the three families. Setting Φ and h to their vev, one �nds the following mass matrices:

Lmass = ū iLM
u
iju

j
R + d̄ iLM

d
ijd

j
R, (2.54)

where

Mu
ij =

1√
2
λiju v

(
f√
2Λ

)li−ruj
, Md

ij =
1√
2
λijd v

(
f√
2Λ

)li−rdj
. (2.55)

These mass matrices can be diagonalized by the usual bi-unitary transformations,

uL,R → UL,R uL,R, dL,R → VL,R dL,R, (2.56)

such that

U †LM
uUR = diag(mu,mc,mt) V †LM

dVR = diag(md,ms,mb). (2.57)

Because of the peculiar structure of Mu,d in (2.55), the CKM matrix is predicted to be:

CKM ≡ U †LVL ≈

 1 ε l1−l2 ε l1−l3

ε l1−l2 1 ε l2−l3

ε l1−l3 ε l2−l3 1

 , (2.58)
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where we have de�ned ε ≡ f/(
√

2Λ). One can see that this exactly matches (2.50)
by identifying ε with λ and choosing the following charges for the left-handed quark
doublets, see e.g. [16]:

ε = λ ' 0.2 and (l1, l2, l3) = (3 + l3, 2 + l3, l3). (2.59)

So far we have focussed only on the mass matrix arising from (2.53) by setting Φ to
its vev. However, the complex scalar �eld carries another dynamical degree of freedom,
a(x), that enters as a phase:

Φ =
1√
2

(σ(x) + f)eia(x)/f , (2.60)

where σ(x) is �avon excitation around the vev f . From (2.53) we see that even though
it plays no role in the derivation of the �avor structure the �eld a(x) does couple to SM
fermions. Actually, one could decide to make a chiral transformation,

q iL → e
i
a(x)
f
liq iL, u iR → e

i
a(x)
f
rui u iR, d iR → e

i
a(x)
f
rdi d iR, (2.61)

with the e�ect of introducing derivative interactions between a(x) and a current made
of SM fermions, together with a new contribution to the θ-term of QCD given by

Lθ =

(
θ +

N

f
a(x)

)
αS
8π
GG̃, (2.62)

where the color anomaly, N , is here explicitly given by

N =
∑
i

2li − rui − rdi . (2.63)

The U(1)H charges of the SM fermions are clearly �avor non-universal, as they re�ect
the �avor hierarchies in the SM. From what we have concluded in the previous section,
o�-diagonal couplings between a(x) and the SM �avors will be generated. It is thus
clear that a(x) behaves exactly as a �avored axion with decay constant fa = f/N , and
N ' 30 for typical charge assignments. There is however one caveat: since the aim of
the FN mechanism is not to solve the strong CP problem, one does not need to assume
that U(1)H is exact at the classical level. Consequently, a(x) can receive a large mass
by sources of explicit U(1)H breaking other than the QCD anomaly. By making a(x)
heavy, the constrains of the previous section can be automatically avoided.

However, as �rst realized in [15,16], there is nothing preventing one to identify U(1)H
with U(1)PQ, thus solving several puzzles of the SM at the same time. We can also see
that the PQ and the FN mechanism actually complement each other, as the angular
degree of freedom that plays no role in the FN mechanism is now the axion that solves
the strong CP problem, and the radial component of the PQ �eld that is usually simply
ignored is now responsible for the �avor structure of the SM. We will thus refer to the
complex �eld Φ in (2.60) as the �axi�avon�.

An immediate implication of this is that a(x) can obtain a non-vanishing mass
through the QCD anomaly only, and axion constraints immediately apply. Therefore,
the U(1)H breaking scale f needs to be large enough for the axion to be �invisible�,
whereas the FN mechanism can be viable already for f in the multi-TeV region.
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The identi�cation of U(1)H as the PQ symmetry allows to �x the axion couplings
to the fermion current in (2.31). This prediction is accurate up to O(1) factors, as the
FN charges for the SM fermions are not unique due to the O(1) arbitrariness of the λij
coe�cients in (2.55). Choosing the charges as speci�ed in [16] (implying N = 26), one
�nds that the coe�cients controlling the relevant processes K → πa and µ → ea are
given by:

CdsV =
1

N
5 ε ' 0.04 (2.64)

and
CeµV = CeµA =

ε

N
' 0.008, (2.65)

with ε �xed due to the Cabibbo angle, see below (2.58). As we can see, �avor-violating
e�ects are only suppressed by the Cabibbo angle and are therefore sizable. Referring to
(2.43) and (2.45), one �nds

fa|K→πa & 1.4× 1010 GeV, fa|µ→ea & 2.2× 107 GeV. (2.66)

The strongest bound comes from kaon decay and translates to the following axion mass:

ma < 500 µeV, (2.67)

which is not far from the natural window for the axion to constitute all the dark matter,
see (2.27) and below.

The identi�cation of the PQ with the FN charge also �xes the possible values of
E/N . The electromagnetic anomaly is given in terms of the charges as

E =
∑
i

4

3
(li − rui ) +

1

3
(li − rdi ) + Li − ei, (2.68)

where L and e refer to the charges of left- and right-handed leptons, respectively. The
charges can be related to the fermion masses up to O(1) factors as in (2.55). This leads
to [15]:

E

N
=

8

3
− 2

logdetmd
detme

− logαde

logdetmudetmd
v6

− logαud
, (2.69)

where αde and αud contain the O(1) number uncertainties. Taking a �at distribution
around (1/3, 3) for αde and αud one �nds from (2.29) the 99.9% range

E

N
∈ (2.4, 3.0)⇒ gaγγ ∈ (0.5, 1.1). (2.70)

Therefore, we see that the axi�avon setup predicts a narrow band within the KSVZ/DSFZ
standard window (0.07, 7) in (2.30). The summary of the constraints and the predicted
sensitivity of future experiments that can test the axi�avon setup is shown in Fig. 2.3.
As we can see, the tightest constrain for 10−10 eV < ma < 10−2 eV is given by �avor
violation in the K → πa decay.

Let us conclude this section by noting that up to this point the Higgs and the
axi�avon have been treated as independent objects. In the following, we will move to
discuss a scenario in which all the scalar degrees of freedom are uni�ed at high energies.
As we shall see, this hypothesis bears relevant implications for the viable axi�avon
parameter space.
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Figure 2.3: Summary of the constrains on the axi�avon parameter space. The axi�avon
gray band lies within the KSVZ/DSFZ standard window. The �avor constraint from
K+ → π+a is found to be the most relevant for the range ma ∈

(
10−10, 10−2

)
eV. Plot

taken from [15].

2.5 Axi�avon-Higgs uni�cation

We will present here a possible completion of the axi�avon e�ective theory in (2.53)
which focusses on the non-trivial interplay between the scalar �elds. In particular, we
will entertain the possibility that the axi�avon and the Higgs share a common origin.
This section is based on Ref. [I].

Let us recall that, because of the identi�cation of the PQ symmetry with the U(1)H
charge, the U(1)H symmetry breaking scale, f , needs to be well above the electroweak
scale for the axi�avon model to be viable and solve the strong CP problem. Moreover,
the FN mechanism requires the presence of new fermionic states (the FN messengers, ξ)
to connect the opposite chiralities of the SM fermions as in Fig. 2.2, and the mass scale
of the messengers has to be identi�ed with the cuto� scale Λ in (2.53). Furthermore, for
the e�ective theory to be consistent (and reproduce the CKM structure) the messengers
need to be even heavier than f .

Driven by these considerations, we can ask ourselves what is the size of the corrections
to the Higgs mass within this setup. Generically, we identify two possible sources: (i)
tree-level corrections due to a portal interaction between the axi�avon �eld and the
Higgs, λP (Φ∗Φ)(h†h); (ii) loop corrections due to the yukawa coupling of a FN messenger
ξ to a SM fermion q via the Higgs, y ξ̄ h q. This gives the following estimante for δ m2

h:

δm2
h ' λPf2 +Nc

y2

16π2
m2
ξ (2.71)

where the �rst contribution to δm2
h comes from the portal term after setting the �avon

to its vev, and the second one is a simple one-loop diagram with q and ξ as internal
lines. Note also that, as the purpose of the FN mechanism is to eliminate hierarchies
among the fundamental parameters of the theory, the yukawa coupling y is O(1). Thus,
by looking at (2.71), it is fair to say that whenever the FN mechanism is realized at a
scale f & 10TeV, the Higgs mass receives large corrections that need to be �ne-tuned
to reproduce its observed value. What we have just seen is a particular example of the
Higgs hierarchy problem, namely the high sensitivity of the Higgs mass to UV scales in
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the theory. Of course, �ne-tuning does not represent an inconsistency of the theory, and
one can take di�erent approaches about it: for instance, the corrections to the Higgs
mass discussed above can in fact be ignored as they can always be subtracted away with
an adequate choice of the bare Higgs mass.

In this section, we will take a di�erent perspective and concentrate on whether we
can learn something from requiring the Higgs to remain light. The �rst observation is
that after the U(1)H symmetry breaking the radial component σ (the �avon) obtains a
mass mσ ∝ f , whereas the axion mass behaves in the opposite way: ma ∝ 1/f . The
reason for this is simply that the axion is a pseudo Nambu-Goldstone boson (pNGB):
its mass is protected by a shift symmetry, a→ a+αf , and must be proportional to the
explicit breaking of such symmetry. In this case, this is given by non-perturbative QCD
e�ects, and thus ma ∼ mπfπ/fa making the axion naturally much lighter.

Following the same reasoning, one could then try realize the Higgs as pNGB as
well in order to explain its apparent hierarchy with the �avon mass. This has the
immediate advantage of removing all tree-level contributions to its potential thus setting
the tree-level λP term in (2.71) equal to zero. However, the loop correction ∝ m2

ξ

in (2.71) is generically present, and its precise form depends on how the Higgs shift
symmetry is broken. These loop contributions are actually needed in order to generate
a non-vanishing Higgs potential in the �rst place. As its parameters are no longer
free inputs but rather calculable quantities starting from the microscopic theory, one
needs to make sure that the overall contribution to the potential can successfully trigger
electroweak symmetry breaking. Of course, the natural size of the Higgs mass will still be
m2
h ∝ f2 � v2 so that �ne-tuning is needed to generate the electroweak scale. However,

the condition of reproducing the correct Higgs mass will narrow down the possible values
of the Higgs quartic coupling and in turn the value of the scale f itself, as we shall see
in Sec. 2.5.2. In this sense, we can say that the �ne-tuning in this model will be traded
for increased predictivity.

Before discussing our setup in detail, let us outline the relevant model-building steps
that will be employed. According to the previous discussion, we will assume that the
Higgs and the axi�avon �eld, Φ, containing the axion a and the �avon σ, actually
originate from the same source, namely a common multiplet Σ. The axion and the
Higgs are much lighter than σ because of their pNGB nature. In particular, the axion
and the Higgs need to share the same decay constant fa providing an explicit example
of axion-Higgs uni�cation [27]. Indeed, the vanishing of the Higgs quartic coupling in
the SM around µ ∼ 1011 GeV [6] can already hint for a pNGB nature of the Higgs.
Moreover, the vicinity of this scale to the natural scale for the axion to be dark matter
can be taken as a further clue for the uni�cation.

As for the symmetry of the model, G, the axion solution to the strong CP problem
requires at least the presence of a U(1)H global symmetry, whereas the pNGB Higgs
requires G to contain also the full electroweak group:

G ⊃ U(1)H × SU(2)L × U(1)Y . (2.72)

The simplest choice for G is to keep the �avor symmetry U(1)H as an abelian factor with
respect to the electroweak group. Thus, we shall take G = G′ × U(1)H. The minimal
choice for G′ would be SU(3)×U(1)X and the next-to-minimal SO(5)×U(1)X

9, which
is often employed in Composite Higgs models, as we shall see. The di�erence between

9The U(1)X factor is necessary to accommodate the hypercharge of up and down quarks.
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2.5. Axi�avon-Higgs uni�cation

these two constructions is that the former provides no custodial protection making it
generically less favourable. However, this would not be a problem if the Higgs decay
constant is much larger than the electroweak scale, as we are envisaging here. In any
case, both groups result in a similar structure, and in the following we shall focus on
SO(5). This is also motivated by the attempt of lowering fa by adopting a non-standard
axion model, as we shall see in Sec. 2.5.3.

In practice, we will formulate the theory at the scale f as a linear σ-model for the
�eld Σ realizing the global symmetry breaking pattern

[SO(5)× U(1)H]× U(1)X → SO(4)× U(1)X , (2.73)

and the SM hypercharge, Y , is related to SU(2)R and U(1)X as Y = T 3
R+X. The coset

structure implies that there are �ve Nambu-Goldstone bosons, θi, in the spectrum that
transform as

θi ∼ (2,2)⊕ 1 (2.74)

under SO(4) ∼ SU(2)L×SU(2)R. The bi-doublet in fact has the right quantum numbers
to be identi�ed with the Higgs, and the singlet is the axion. To generate a non-zero Higgs
potential, the global SO(5) has to be broken explicitly. This is realized by electroweak
gauging and by yukawa interactions between the SM fermions, the FN messengers, and
Σ that are introduced as a microscopic realization of the FN mechanism. In particular,
the FN messengers are de�ned as full representations of SO(5), and the actual breaking
originates due to the presence of the SM fermions only. On the other hand, U(1)H needs
to be exact at the classical level and only broken through anomalies to solve the strong
CP problem.

Before moving to our model setup, let us note that this construction can also be
seen as adding a �avor story to the recently proposed elementary-Goldstone-Higgs sce-
nario [82, 83]. Including the axi�avon can in fact address fermion masses and mixings
while providing a solution to the strong CP problem. This is a compelling renormaliz-
able alternative to partial compositeness generating �avor hierarchies in composite-Higgs
models that will be discussed in Chapter 4.

2.5.1 Model setup

We present here the explicit model setup. The symmetry-breaking pattern that leads
to the uni�ed realization of the Higgs doublet and the axion as pNGBs is the one in
(2.73). This is obtained within a linear σ-model for the �eld Σ living in the fundamen-
tal representation 5 of SO(5) with �avor charge H(Σ) = 1 and null X charge. The
renormalizable tree-level potential for Σ is

V (Σ) = λ1(Σ†Σ)2 − λ2 (ΣTΣ) (Σ†Σ∗)− µ2Σ†Σ . (2.75)

The electroweak gauge group is embedded in SO(5) by de�ning the SU(2)L×SU(2)R ∼=
SO(4) generators as detailed in AppendixA. The SO(4)-preserving minimum is given
by

〈Σ〉 = (0, 0, 0, 0, f/
√

2)T , (2.76)

with µ2 = (λ1− λ2)f2, and after the breaking, (2.73), the scalar degrees of freedom can
be parametrized by angular and radial �elds:

Σ = exp[i(
√

2T âhâ + a)/f ]

(
H̃

1√
2
(f + σ)

)
, (2.77)
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Chapter 2. The Higgs and the �avored axion

where T â are the SO(5) broken generators in the fundamental representation, T̂ â〈Σ〉 6= 0,
given in (A.2). As for the physical states, one �nds a heavy Higgs doublet, H̃, with mass
m2
H̃

= 2λ2f
2, and a heavy �avon, σ, with mass m2

σ = 2(λ1 − λ2)f2, while the SM-like

Higgs doublet, hâ, and the axion, a, are instead pNGBs and their masses vanish at the
classical level 10. The potential is bounded from below for λ1 > λ2 ≥ 0.

Let us now move to the fermion sector. The FN messengers are denoted by ξj ,
where the subscript refers to the U(1)H charge, H(ξj) = j. As mentioned above, we
will assume that all the ξj �elds come as complete SO(5) representations. Among the
possible choices, we will commit to the spinorial representation 4, of SO(5), because it
turns out to be the best option in constructing the FN chain as in Fig. 2.2 11. Moreover,
we shall take X = 1/6 for all the messengers, such that they can interact with the SM
fermions, as we shall see. The ξj components read (suppressing the subscript j):

ξ = (ξ
1/6
+ , ξ

1/6
− , ξ

2/3
0 , ξ

−1/3
0 )T , (2.78)

where ± refers to the ±1
2 eigenvalues with respect to T 3

L, and zero means that those
components are singlets under SU(2)L. The superscripts instead indicate the weak
hypercharge obtained as Y = X + T 3

R. The generators TL,R are given explicitly in
(A.3) for the spinorial representation. Moreover, the ξs need to be vector-like under the
full global symmetry G (namely, left- and right-handed components are in the same G
representation) as their mass should not come from the �avon vev, but rather be slightly
larger (f/

√
2mξ ' 0.2). Because of their vector-like nature, the FN messengers do not

contribute to the U(1)H anomaly which thus entirely depends on the chiral charges of
the SM fermions.

The SM quarks, qiL, u
i
R, and d

i
R (with i = 1, 2, 3 a �avor index), in general do not �ll

complete SO(5) representations, and their couplings to the FN messengers are a source
of explicit SO(5) breaking. The interactions between them are more easily written if
the SM fermions are embedded as spurious Ψi

f multiplets in the spinorial representation
with X = 1/6:

Ψi
qL
≡ ∆T

Lq
i
L =


uiL
diL
0
0

 , Ψi
uR
≡ ∆T

uu
i
R =


0
0
uiR
0

 , Ψi
dR
≡ ∆T

d d
i
R =


0
0
0
diR

 , (2.79)

where

∆L =

(
1 0 0 0
0 1 0 0

)
, ∆u = (0, 0, 1, 0) , ∆d = (0, 0, 0, 1) . (2.80)

Comparing with the quantum numbers of the components in (2.78), one can see that this
choice reproduces the correct quark quantum numbers. The matrices ∆L,u,d have mixed
indices, namely the columns represent SU(2)L indices (doublet and singlet representation
for ∆L and ∆u,d, respectively), whereas the rows correspond to SO(5) indices in the
spinorial representation 4. The fact that the SM fermions come as incomplete SO(5)
representation is now clearly signaled by the null entries in (2.79).

10Notice that the point with λ2 = 0 corresponds to a larger SO(10) symmetry that is broken to

SO(9). In that case, the H̃ doublet becomes a pNGB as well.
11 The other possibility would be a mixture of fundamental and singlet representations.
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2.5. Axi�avon-Higgs uni�cation

The U(1)H charge of each Ψi
f is chosen such that the correct pattern of masses

and mixings is reproduced. The larger the charge di�erence between the left- and right-
handed components of a given fermion, the more suppressed is the resulting mass. Notice
that the Ψ-�elds have to be considered only as SO(5) spurions, while the U(1)H needs
to be exact at the Lagrangian level to solve the strong CP problem. For both the
SM fermions and the FN messengers, the U(1)X charge is chosen to match the correct
hypercharge, Y = T 3

R +X, and will be omitted in the following.

We now have all the ingredients to write down the classical Lagrangian L of the
system. It contains all the renormalizable interactions between Ψi

f , ξj , and Σ allowed
by symmetries:

−L =V (Σ) +
∑
j

mj ξ̄j ξj +
(
aj ξ̄j+1 Γα Σα ξj + h.c.

)
+
∑
i,f

zfi Ψ̄i
f Γα Σα ξj + z̃fi ξ̄j+2 Γα Σα Ψi

f + h.c.

+ x Ψ̄3
qL

Γα Σα Ψ3
uR

+ h.c.

(2.81)

The �rst line in (2.81) describes the SO(5)-symmetric sector, namely the scalar poten-
tial in (2.75), the vector-like masses for the FN messengers mj , and yukawa couplings
between the latter and Σ which represent the inner links of the FN chain in Fig. 2.2. The
matrices Γα connect the spinorial representation with the fundamental representation
and are given explicitly in (A.5). They are de�ned such that the combination ξ̄j+1 Γαξj
transforms as the fundamental 5 that is eventually contracted with Σα to make an SO(5)
invariant.

The second line in (2.81) consists of yukawa couplings involving the SM fermions and
the FN messengers, where f = qL, uR, dR, and the index j selects the ξ �eld that makes
each term U(1)H invariant, j ≡ j(f, i) = H(f i)− 1. Notice that the use of the spinorial
representation is particularly suitable for the purpose of building the FN chain, as both
ξ-�elds appear symmetrically in the yukawa coupling, and thus only a single species of
FN messengers is needed, see footnote 11.

Finally, the third line accounts for the fact that the top mass features no FN
suppression� namely, the top yukawa is already O(1)� and thus a direct coupling
of tL and tR via the Σ-�eld must be allowed.

Due to the presence of the spurions Ψf , the last two lines of (2.81) break the SO(5)
symmetry explicitly, and a potential for the Higgs is generated at the loop level. Before
presenting the computation of the Higgs potential, let us discuss a simple example to
show how the FN mechanism is explicitly realized in our setup.

Mass hierarchies from broken U(1)H

To see how the FN mechanism works in our setup, let us consider the mixing between the
(left-handed) top tL and the (right-handed) charm quark cR. This mixing will eventually
contribute to the CKM matrix. In our notation, tL and cR are found in the Ψ3

qL
and

Ψ2
uR

multiplets, respectively, as given in (2.79). Their �avor charges are �xed in order
to reproduce the observed �avor structure as

H(q3
L) = 1 and H(u2

R) = 4. (2.82)
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Chapter 2. The Higgs and the �avored axion

For these �elds to communicate, we need to include at least two messengers with H
charge 2 and 3, ξ2,3. We can then pick the relevant terms coming from the �rst and
second line of (2.81):

− L ⊃ (a2 ξ̄3 Σ′ ξ2 + z Ψ̄2
uR

Σ′ ξ3 + z̃ ξ̄2 Σ′Ψ3
qL

+ h.c.) +m
(
ξ̄2ξ2 + ξ̄3ξ3

)
, (2.83)

where we have de�ned Σ′ to include the Γα matrices, Σ′ ≡ Γα Σα. The dimensionless
couplings z and z̃ are assumed to be O(1). Moreover, we have taken the masses for ξ2

and ξ3 to be the same for simplicity, m2 = m3 = m. By integrating out ξ2 and ξ3 on
the classical equations of motion, one �nds an e�ective Lagrangian, Le�, which at the
leading order in 1/m reads

Le� = −z z̃ a2
1

m2
Ψ̄2
uR

Σ′Σ′Σ′Ψ3
qL

+ h.c. (2.84)

As we can see, the e�ective operator shows three powers of Σ′, which is in fact the
4− 1 �avor-charge di�erence corresponding to (2.82). Notice that for the more minimal
chain between two light fermions that di�er only by ∆H = 2 units of �avor charge, the
corresponding e�ective Lagrangian would be

Le� ∝ Ψ̄3
qL

Σ′Σ′Ψ2
uR

= q̄3
L∆LΣ′Σ′∆T

u u
2
R ≡ 0 (2.85)

due to ΣαΣβΓαΓβ = ΣαΣα 1, and ∆L∆T
u = 0.

Below the symmetry-breaking scale, one can also integrate out the �avon and the
second Higgs doublet, as their mass is ∝ f . Thus, the Σ-�eld can be written as

Σ =
f√
2
eia/f

(
0, 0, sin

h

f
, 0, cos

h

f

)T
, (2.86)

where we have chosen the unitary gauge to get rid of the NG modes that will be eaten
by the W and the Z bosons, so that h represents the physical Higgs �eld, and a is the
axion. Using (2.86), we can single out the contribution to the mass matrix in (2.84):

Le� ⊃ −
1√
2
m32 c̄R tL + h.c., m32 = z z̃ a2

f2

2m2
f sin(〈h〉/f) + . . . (2.87)

where f sin(〈h〉/f) ≡ v = 246GeV is to be identi�ed with the electroweak scale and the
dots stand for higher orders in f2/2m2. De�ning δij ≡ H(qiL)− H(qjR), we see that the
suppression with respect to the top mass is

m32

mt
'
(

f√
2m

)|δ32|−1

, (2.88)

with δ32 = 3 in the present case. The addtional −1 in the exponent, which is not
present in the usual FN setup, compensates for the Higgs carrying one unit of �avor
charge, since it is uni�ed in the Σ-�eld. One can show that this result holds in general
for odd |δij |, while for even |δij | the corresponding term vanishes due to the properties
of the Γ matrices, see (2.85). We thus conclude that a general entry in the fermion mass
matrix, mij , corresponding to a charge di�erence of |δij | is suppressed with respect to
the top mass by

mij

mt
'
(
f2

2m2

) |δij |−1

2

, |δij | odd . (2.89)
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2.5. Axi�avon-Higgs uni�cation

Eq. (2.89) shows that f2/(2m2) ≡ ε is the smallest building block we can use to reproduce
the �avor hierarchies, and therefore we identify ε ' 0.2 with the sine of the Cabibbo
angle.

2.5.2 Successful matching

We compute here the Higgs potential generated by the interaction with the top quark
and the FN messengers which directly couple to it and can be used to connect its
opposite chiralities, tL and tR. Subleading contributions will be discussed at the end
of this section. A charge assignment that is compatible with the top mass must satisfy
|δ33| ≡ |H(q3

L) − H(u3
R)| = 1 12, and we take H(q3

L) = 1 and H(u3
R) = 2. Referring to

(2.81), this corresponds to the following terms

−L ⊃
(
a0e

iαξ̄1Σ′ξ0 + h.c.
)

+m(ξ̄0ξ0 + ξ̄1ξ1)

+
(
xeiζΨ̄3

qL
Σ′Ψ3

uR
+ zLe

iζLΨ̄3
qL

Σ′ξ0 + zRe
iζRΨ̄3

uR
Σ′ξ1 + h.c.

)
,

(2.90)

where we have de�ned zL ≡ zqL3 , zR ≡ zuR3 , and potential phases have been pulled out
into ζL,R. Note that we are here assuming mass degeneracy for the messenger �elds,
m0 = m1 = m and we are neglecting interactions involving other FN messengers, as for
instance ξ2 and ξ3 in (2.83), which will give a subleading contribution.

Let us �rst compute the top mass according to (2.90) in the background of h. This
can be done by solving the characteristic polynomial for the fermion mass matrix, or
alternatively by integrating out the heavy �elds at tree level. The expression for mt is
obtained as an expansion in f2/2m2 = ε and h/f as

m2
t (h) =

1

2

(
α0 − α1ε− α2ε

2
)
f2sin2(h/f)− 1

2
β ε2f2sin4(h/f) + h.o., (2.91)

where h.o. stands for higher-order terms in f2/2m2 and (h/f)n terms with n ≥ 6, and

α0 = x2,

α1 = x2
(
z2

L + z2
R

)
− 2x zL zR a0 cosΩ,

α2 = −x2
(
z4

L + z2
Lz

2
R + z4

R

)
+ a2

0

(
3x2z2

L + z2
R(3x2 − z2

L)
)

− 2a0xzLzR

(
a2

0 − z2
L − z2

R

)
cosΩ,

β = x4
(
z2

L + z2
R

)
− 6x3 zL zR a0 cosΩ,

(2.92)

with Ω ≡ α− ζL + ζ − ζR. The expression of Eq. (2.91) needs to coincide with the SM
result, m2

t = 1
2y

2
t v

2 implying x ' yt and f2 sin2(〈h〉2/f2) = v2 at the leading order.
Our strategy for the Higgs potential is to calculate it in the UV theory speci�ed

by (2.81), whose leading contribution is given by (2.90), and match it with the Higgs
potential in the SM extrapolated at the scale m & f where the new particles appear.
By doing so, we shall keep m as a free parameter, which will in fact be �xed by the
condition of a successful matching.

In the axi�avon-Higgs (AFH) picture, the Higgs potential arises at one-loop and it
is given in terms of the �eld-dependent masses of the physical eigenstates, namely the

12This di�ers from the usual FN mechanism, where δ33 = 0, as the Higgs carries here unit �avor
charge.
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SM particles and the FN messengers. Considering the top sector in (2.90), the standard
Coleman-Weinberg formula [84] yields at one-loop:

V
(1)
AFH = − Nc

16π2

m4
t (h)

(
log

m2
t (h)

m2
− 3

2

)
+
∑
j

m4
ξj

(h)

(
log

m2
ξj

(h)

m2
− 3

2

) . (2.93)

Notice that the sum over j involves all the components included in ξ0 and ξ1, see (2.78),
namely eight states in total.

In the SM alone, the e�ective potential for the Higgs includes tree-level plus radiative
corrections. Keeping only the contribution from the top quark, the potential reads:

V
(1)
SM =

1

4
λ(m)h4 − 1

2
µ2(m)h2 − Nc

16π2
m4
t (h)

(
log

m2
t (h)

m2
− 3

2

)
. (2.94)

Notice that both e�ective potentials are evaluated at the scale m ≈ f corresponding to
the threshold of the new states. Then, by requiring

V
(1)
SM = V

(1)
AFH, (2.95)

we obtain

V ≡ 1

4
λ(m)h4 − 1

2
µ2(m)h2 = − Nc

16π2

∑
j

m4
ξj

(h)

(
log

m2
ξj

(h)

m2
− 3

2

)
. (2.96)

Notice that the contribution from the top eigenstate appears on both side of Eq. (2.95),
and therefore it cancels. Such cancellation takes care of the large logarithm arising from
the hierarchy between the electroweak and the �avon scale. We expect this behavior to
persist beyond the one-loop level, given that the pure SM contribution always appears
on both sides, so that Eq. (2.96) gives the leading-order matching condition.

The RHS of (2.96) can be computed as an expansion in f2/2m2 = ε. To this end,
we parametrize the �eld-dependent FN masses as

m2
ξj

(h) = m2 + fj(h), (2.97)

where fj(h) ∼ f ×m. By expanding the logarithm, we �nd that

V = − Nc

16π2

∑
j

[
−2fj(h)m2 +

f3
j (h)

3m2
−
f4
j (h)

12m4
+
f5
j (h)

30m6
−
f6
j (h)

60m8
+ h.o.

]
, (2.98)

where we dropped a constant term. The computation of Fn =
∑

j f
n
j (h), n = 1, . . . , 6,

can be done recursively as

F1 =
∑
j

fj(h) = Tr
[
m†(h)m(h)

]
−m2

t (h),

F2 =
∑
j

f2
j (h) = Tr

[(
m†(h)m(h)

)2
]
− 2F1m

2 −m4
t (h),

(2.99)

and so on. Bym(h), we indicate the �eld dependent mass matrix for the fermionic �elds.
By direct inspection, the terms F5 and F6 turn out to be higher order. We eventually
�nd for the RHS of (2.96):

V =
Nc

32π2
f4
[
(γ0 + γ1ε) sin

2(h/f) + δ ε sin4(h/f)
]

(2.100)
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where it turns out that γ0 and δ are related to α1 and β in (2.92) as γ0 = α1, δ = β,
and

γ1 =
1

3

(
−3x2

(
z4

L + z2
Lz

2
R + z4

R

)
+ a2

0

(
3x2z2

L + z2
R

(
3x2 − z2

L

))
+ 2a3

0zLxzR cosΩ
)
.

(2.101)
Expanding the trigonometric functions and focussing on the term ∝ h2, we see that the
matching requires

− 1

2
µ2(m)h2 !

=
Nc

32π2
f2 (γ0 + γ1ε)h

2 . (2.102)

The relation above makes the tuning in the model explicit: the natural value of µ2 is not
much below the scale f2. However, the Higgs mass turned out to be at the electroweak
scale and we here remain agnostic about the actual reason behind the cancellation on
the RHS of (2.102) that makes it� f2. Rather, we investigate the physical implications
of this fact regarding the consequent possible values of the Higgs quartic coupling. Ac-
cording to our expansion in ε, reproducing the correct value of the Higgs mass requires
γ0 and γ1 to be both γ0,1 � 1. The matching for h4 is then driven only by the sin4(h/f)
term in (2.100), which implies

1

4
λ(m)h4 !

=
Nc

32π2
δ ε h4. (2.103)

Moreover, the condition γ0 = α1 � 1 gives, with reference to (2.92),

x2(z2
L + z2

R) ' 2xzLzRa0 cos Ω ⇒ δ ' −2x4(z2
L + z2

R), (2.104)

which �nally yields for λ(m):

λ(m) = − Nc

4π2
x4(z2

L + z2
R) ε < 0. (2.105)

Now, since the running Higgs quartic coupling λ(m) is entirely predicted in the SM
below the threshold of the new states, the relation above can be used to determine the
scale m at which a successful matching is achieved. What is interesting about (2.105) is
that the sign on λ is predicted to be negative. Interestingly, this happens in the SM at
around the scale µ ' 1011 GeV [6], which is indeed the right order of magnitude for the
axion decay constant to make the axion dark matter. This observation was already made
in Ref. [27] in the context of realizing the Higgs and the axion as composite pNGBs.
Here, we �nd it arising again in a concrete incarnation of axion-Higgs uni�cation in the
context of a renormalizable model.

In order to quantitatively tell at which scale the matching is possible, we recall that
the goal of the FN mechanism is to construct a model where there is no hierarchy among
the fundamental parameters. Since we know from (2.91) that x ' yt(m), the top yukawa
at the scale m �xes the overall magnitude of the other couplings. Thus, Eq. (2.105) can
be rewritten as (Nc = 3)

λ(m) = − 3

2π2
y6
t (m)(1 + δ̄)6 ε, (2.106)

where we have parametrized an average yukawa coupling as yt(m)(1 + δ̄). In Fig. 2.4
we show the SM running of λ(m) in red (the band takes into account the uncertainty in
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Figure 2.4: Matching of the Higgs quartic coupling at the scale m in the SM (red band)
with the prediction of (2.106), considering a yukawa coupling spread of δ̄ = ±0.6 (light
blue band), δ̄ = ±0.3 (light gray band), and δ̄ = 0 (dashed black line). The intersection
corresponds to the allowed range for m. See text for details.

the initial conditions) and the RHS of (2.106) for δ̄ = ±0.6 (light blue band), δ̄ = ±0.3
(light gray band), and δ̄ = 0 (dashed black line). The matching is possible only for
negative values of λ(m), which selects 109 GeV . m . 1014 GeV. By recalling ε ' 0.2,
we conclude that

7× 108 GeV . f . 7× 1013 GeV. (2.107)

Since the �avon expectation value, f , is related to the axion decay constant by fa = f/N ,

N =
3∑
i=1

2H(Ψi
qL

)− H(Ψi
uR

)−H(Ψi
dR

) ≈ 50, (2.108)

the previous bound yields

107 GeV . fa . 1012 GeV. (2.109)

Notice that the color anomaly N is double the one used above (2.64) because of the
peculiarity of our setup discussed in (2.89), which generically requires double charge
di�erences.

It is useful to confront this region with constraints following from the �avor-violating
couplings of the axi�avon. Taking into account the bound from the kaon decay K+ →
π+a as in Ref. [15], one �nds a relatively thin stripe 13 of

fa ≈ (1011 − 1012)GeV. (2.110)

Interestingly, this range will almost entirely be tested by the NA62 experiment, as dis-
cussed below (2.41).

Before moving to the next section, let us discuss the contribution from states other
than the ones from the �top sector� in (2.90). As for the SM gauge bosons, their con-
tribution equally appears on both sides of Eq. (2.95) and thus do not alter the one-loop
matching condition; the same reasoning applies to the other SM eigenstates. However,

13 Note that the axion couplings to fermions di�er by approximately a factor of two with respect to
the axi�avon case of [15], which is however cancelled to good approximation by a similar factor entering
Eq. (2.108).
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2.5. Axi�avon-Higgs uni�cation

an additional contribution is expected when the FN messengers mixing with the light
fermions are included. We have calculated this for the FN messengers related to the
charm quark as in (2.83). Their contribution to the Higgs potential is found to be O(ε)
for the sin2(h/f) and O(ε2) for the sin4(h/f) term, which is subleading compared to
the top sector contribution, O(ε0) and O(ε1), respectively. This con�rms the intuitition
that lighter quarks give a subdominant contribution to the Higgs potential.

In the SM, this easily follows from the fact that lighter quarks have a smaller direct
yukawa to the Higgs, and thus contribute less to the e�ective potential. In the axi�avon-
Higgs setup, however, all fundamental yukawas are actually O(1). Nonetheless, the top
quark is still the only one featuring a direct coupling to the Higgs, see the last line of
(2.81), and this term is also the only one where two spurions appear at the same time.
Hence, interacting with the top is more e�cient in transmitting the SO(5) explicit
breaking, explaining why the leading contribution is found from (2.90).

2.5.3 Including right-handed neutrinos

So far we have mainly focussed on the quark sector, as the leading contribution to the
Higgs potential arises from it as long as the particle content of the SM is concerned.
However, the picture can actually change if right-handed neutrinos (RHNs) are included
in the game. In fact, the FN mechanism is quite e�cient in explaining the hierarchies
in the quark sector in terms of an εn suppression, where n is the di�erence of �avor
charges. For neutrinos, however, much larger charge di�erences would be needed to
explain sub-eV states. Thus, a more natural option is to combine the FN mechanism
with the standard Type I seesaw [85�90]:

M =

(
0 mD

mD M

)
, (2.111)

where mD is the Dirac mass connecting lefth-handed and right-handed neutrinos, that
will feature the usual FN suppression, and M is the Majorana mass for the RHNs.
Such Majorana mass is usually associated with some heavy new-physics scale; it is then
natural to connect it to the scale f in our setup, as we shall see shortly.

Starting with a single-family example, we shall consider the left-handed lepton dou-
blet lL and the RHN NR coming as SO(5) spurions in the spinorial 4 of SO(5), similarly
to what we have assumed for the quarks in (2.79):

ΨL = ∆T
L lL, ΨN = ∆T

uNR. (2.112)

The Type I seesaw explains the lightness of the left-handed neutrino due to a large mass
scale associated with the right-handed counterpart. In our model, such mass scale can
be naturally interpreted as the �avon vev f . We will then assume that the RHNs have
charge H(ΨN ) = 1/2, so that their mass is generated dynamically from Σ through the
following term:

− LN =
1√
2
yN Ψ̄NΣ′CΨ̄T

N + h.c. = −1

2
yNf cos(h/f)N̄RCN̄T

R e
ıa/f + h.c., (2.113)

which yields a Majorana mass

m2
NR

(h) = y2
Nf

2 cos2(h/f). (2.114)
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Chapter 2. The Higgs and the �avored axion

The Dirac mass term, mD, is obtained by integrating out the FN chain as usual. The ac-
tual size ofmD thus depends on the charge di�erence of right- and left-handed neutrinos,
δν = H(lL)−H(NR):

mD ∼ mtε
|δν |−1

2 . (2.115)

The light neutrino mass, mν , is then given by

mν ∼ mt
mt

mNR

ε|δν |−1, (2.116)

which shows a double suppresion originating from the type-I seesaw and from the FN
mechanism, as mentioned above.

Let us now discuss the impact of (2.113) to the Higgs potential. First, the term in
(2.113) features a similarity with the yukawa interaction between the top quark and Σ�
third line of (2.81)� as two spurions (ΨN in this case) are directly connected with the
Higgs. This already tells us that the RH neutrinos will contribute sizeably to the Higgs
potential. Moreover, RHNs are absent in the SM, and therefore their contribution will
not cancel in the matching condition (2.95).

Let us then rederive the matching condition in case RHNs are included. The strategy
is the same of the previous section: calculating the e�ective potential in the AFH setup
and investigate at which scale it can be matched with the SM e�ective potential. The
contribution from the top sector is unchanged by the presence of RHNs. We thus focus

on the additional part due to the RHNs, ∆V
(1)
AFH, given by:

∆V
(1)
AFH =− 2

64π2
m4
NR

(h)

(
log

m2
NR

(h)

m2
− 3

2

)

=− 1

32π2
y4
Nf

4 cos4(h/f)

[
log

(
y2
N

f2

m2

)
+ log

(
1− sin(h/f)2

)
− 3

2

]
'− 1

32π2
y4
Nf

4

[
2

(
1 + log

1

ε̃

)
sin2(h/f)− log

1

ε̃
sin4(h/f)

]
,

(2.117)

where we have de�ned ε̃ ≡ (yNf/m)2. The matching conditions in (2.102) and (2.103)
are modi�ed as:

− 1

2
µ2(m)h2 !

= − f2

32π2

[
2y4
N

(
1 + log

1

ε̃

)
−Ncγ0 −Ncγ1ε

]
h2, (2.118)

and
1

4
λ(m)h4 !

=
1

32π2

[
log

1

ε̃
y4
N +Nc δ ε

]
h4. (2.119)

At the leading order in ε, the new condition for µ2(m) gives

2y4
N (1 + log 1/ε̃)−Ncγ0 � 1, (2.120)

which implies that a cancellation between the lepton and quark sector must occur to
keep the Higgs light.

As for the quartic λ(m), we see that the leading order is now driven by the con-
tribution from the RHNs. This is because the direct contribution from the top quark
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Figure 2.5: Matching of the Higgs quartic coupling at the scale m in the SM (red band)
with the prediction of (2.121), considering a yukawa spread of δ̄ = ±0.6 (light blue
band), δ̄ = ±0.3 (light gray band), and δ̄ = 0 (dashed black line). The intersection
corresponds to the allowed range for m. See text for details.

cancels in the matching condition, whereas this is not the case for RH neutrinos. As-
suming three almost degenerate RH neutrinos, with a typical coupling yN parametrized
as yN = (1 + δ̄)yt, Eq. (2.119) becomes

λ(m) =
3

8π2
log

(
1

2y2
t (m)(1 + δ̄)2ε

)
(1 + δ̄)4y4

t (m) > 0. (2.121)

In Fig. 2.5 we show the SM running of λ(m) in red and the RHS of (2.121) for δ̄ = ±0.6
(light blue band), δ̄ = ±0.3 (light gray band) and δ̄ = 0 (dashed black line). The
matching is now possible for smaller values of m with respect to the case without RH
neutrinos, because the RHS of (2.121) is positive. The allowed region for f is:

3× 105 GeV . f . 1011GeV. (2.122)

Furthermore, since mNR
' yN f with yN ≈ 1, Eq. (2.122) also sets the range of the RH

neutrino masses. Eventually, we �nd:

6× 103 GeV . fa . 2× 109 GeV . (2.123)

One can immediately see that, when comparing with the limits coming from the non-
observation of K → πa, such low values of fa as in (2.123) are already excluded. This
is then a good opportunity to revisit the assumptions behind these �avor bounds. For
the QCD axion, the mass is in one-to-one correspondence with fa, yielding meV mass
for fa ≈ 1010 GeV. Thus, the kaon decay proceeds on-shell as mK > mπ and the
axion is practically massless. However, if the axion mass and the decay constant could
be disentangled, low-fa models could become viable by pushing the axion mass at the
GeV or even TeV scale, in order to kinematically forbid the kaon decay. In this case,
astrophysical bounds are also automatically evaded (recall that the bounds in Sec. 2.3
could apply only for a light axion) and the axion becomes visible at the LHC, as for
instance a → γγ decays could be detectable. Concrete examples of this have been
recently presented in Refs [91, 92]. As a drawback, the axion can no longer be dark
matter because it is not stable on cosmological scales; nevertheless, it still solves the
strong CP problem.
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Although we are not attempting to construct a concrete model, it is worth mentioning
that a heavy axion would be compatible with the AFH setup including right-handed
neutrinos with fa as low as fa ∼ 5TeV. This would provide an axion that is potentially
detectable at the LHC, and largely reduce the �ne-tuning related to the Higgs mass.

2.6 Summary

In this chapter, we have discussed the strong CP problem as a serious �ne-tuning issue of
the SM, as the topological term from the QCD θ-vacuum and the electroweak sector need
to cancel at O

(
10−10

)
accuracy to comply with current bounds on CP violation. Among

the possible solutions to this puzzle, the axion is certainly one of the most intriguing
possibilities as it can simultaneously explain dark matter and provide several interesting
signatures one can look for.

When considering the ways the axion can communicate with the SM particles, it
turns out that �avor-violating couplings are generically possible, and can be constrained
(or discovered) very e�ciently by future experiments. Flavored axions, however, contain
a certain degree of model dependence. A very predicted and motivated scenario is found
by identifying the U(1)PQ as the simplest �avor symmetry that addresses the �avor
puzzle in the SM, namely the U(1)H of the Froggatt-Nielsen mechanism. These two
approaches interestingly complement each other by giving a purpose to both the degrees
of freedom, a (the axion) and σ (the �avon), within the complex �eld Φ, which is referred
to as the axi�avon� see (2.60) and below. The axion couplings to the SM fermions are
�xed by the observed pattern of masses and mixings in the SM: the model thus predicts
a sizable contribution to �avor-violating axion couplings, in particular for the d → s
transition that is only suppressed by the sine of the Cabibbo angle, sinθC ' 0.2.

In Sec. 2.5 we took a further step and analyzed a scenario in which the axi�avon and
the Higgs, which were previously considered as independent �elds, are uni�ed at high
energies within a common multiplet Σ [I]. Both the Higgs and the axion are then real-
ized as pseudo Nambu-Goldstone bosons to explain their lightness with respect to the
�avon. The main consequence is that the Higgs potential is generated dynamically by
loops involving the SM fermions and the Froggatt-Nielsen messengers, that are explicitly
introduced as a microscopic realization of the Froggatt-Nielsen mechanism. Electroweak
symmetry breaking is thereby connected with the origin of the SM-fermion mass hierar-
chies. Taking this into account narrows down the possible values that the axion/Higgs
decay constant can take, leaving only a small strip after �avor constrains are applied,
fa ≈ (1011, 1012) GeV, which is visualized in Fig. 2.6. Interestingly, this region is a prime
target of future axion searches by NA62 and ADMX [93,94].

Such sharp prediction for fa could actually be avoided introducing RHNs in our
setup. This would account for the smallness of the active-neutrino masses through a
combined Froggatt-Nielsen/Type I seesaw suppresion. This new ingredient can make
low-scale fa models viable, with fa as low as fa ∼ 5 TeV, but requires additional model-
building to disentangle the axion mass from its decay constant, see e.g. [91, 92]. This
gives up the axion as dark matter but still solves the strong CP problem. Moreover, the
resulting axion can now be visible at the LHC, for instance through the decay a→ γγ,
and the �ne-tuning in order to reproduce the correct Higgs mass in our uni�ed scenario
would be largely cut-down.
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2.6. Summary

Figure 2.6: The Axi�avon-Higgs parameter space. The red region is exluced as it does
not lead to a successful electroweak symmetry breaking, whereas the blue region is
constrained by �avor. The remaining strip corresponding fa ≈ (1011, 1012) GeV will
be almost fully tested by future searches. The model-variant with RHNs and low-scale
axion is not displayed. Plot taken from [95].
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Chapter 3

Gauge�Yukawa β�functions at large
Nf

In Sec. 2.5, we have presented a concrete UV completion of the Froggatt-Nielsen mecha-
nism to explain the hierarchies in the SM fermion masses and the structure of the CKM
matrix. The model consists of a potentially large number of vector-like fermions, the
FN messengers ξ, coupled to the �avon �eld via yukawa interactions (considering O(10)
messengers in the spinorial 4 of SO(5) already gives O(40) states, not including color).
These are the key ingredients to construct the chain in Fig. 2.2, which is the microscopic
realization of the low-energy operators suppressing the mass of the light SM fermions.
Besides our concrete model, the existence of many fermionic degrees of freedom seems
to be a necessary ingredient for the FN mechanism to work. This poses some questions
about the UV behavior of the model itself, as for instance the messengers will generically
have a strong impact in the renormalization-group (RG) evolution of the system. This
is encoded in the β-functions for the couplings that de�ne the UV theory, including the
SM gauge interactions. However, it is not obvious how the β-functions for such models
with many degrees of freedom should be calculated in the �rst place, as the presence of
large multiplicities may interfer with the standard perturbation theory.

In this chapter, we will investigate the RG evolution for gauge�yukawa theories that
contain a large number of matter �elds, Nf , of which the FN setup discussed above
can be seen as a possible example. As we shall see shortly, this study �nds several
applications both in high-energy physics and condensed-matter theory.

Our analysis will employ resummation techniques for the calculation of the β-functions
that are alternative to the conventional loop expansion. This is particularly suitable to
keep track of the all-order contribution stemming from the Nf multiplicity. We will
thus reorganize the perturbative series by replacing the conventional loop expansion in
a generic coupling α

1

α2
β(α) = a1-L + a2-L α+ a3-L α

2 . . . (3.1)

with inverse powers of Nf :

1

(αNf )2
β(αNf ) = F (0)(αNf ) +

1

Nf
F (1)(αNf ) +

1

N2
f

F (2)(αNf ) + . . . (3.2)

where β(αNf ) = Nfβ(α). As we can see, the 1/Nf expansion is actually established
by de�ning a 't Hooft coupling K ≡ αNf which ideally remains constant in the limit
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Figure 3.1: Dressing of a gauge propagator with n fermion bubbles.

of Nf →∞. The quantities F (n) are then non-trivial functions of the rescaled coupling
that one needs to calculate. In most cases of interest, the function F (0) is completely
determined at one-loop. Conversely, the higher order functions, F (n≥1), get contributions
from (in�nite) Feynman diagrams with an increasing number of loops corresponding to
well de�ned classes. Thus, resummation techniques are needed and calculations can be
successfully carried out only for the �rst few orders, F (1) and F (2).

To get a feeling of how this works, consider the case of a U(1) gauge symmetry with
Nf fermion �avors. Let us focus on a generic loop diagram that contains an internal
gauge line. The main observation is that dressing this line with n fermion loops does not
change the order in the 1/Nf expansion (although it does change the loop order of the
diagram), see Fig. 3.1. The reason is that any fermion loop brings an additional power
of α that gets compensated by a factor of Nf due to the fact that all �avors circulate in
the loop. This amounts to correct the original gauge propagator as

1

q2
→

(αNf )n(Π(1))n

(q2)1+n(4−d)/2
, (3.3)

where Π(1) is the one-loop bubble and d = 4− ε according to dimensional regularization.
Dealing with large-Nf β-functions thus requires to resum expressions like the one in
(3.3) within a given Feynman diagram, whose basic topology can be one-loop, two-loop
etc., as we shall see in detail. Remarkably, the contribution from n bubbles as in (3.3)
is regular enough to make it possible to resum the whole series in a closed form, at least
for the very �rst orders in the 1/Nf expansion.

In the following, we will engage in the calculation of the �rst non-trivial functions in
(3.2) for models that contain an arbitrary number of degrees of freedom, Nf , and also
exhibit a large �avor symmetry such as SU(Nf ). The presence of this symmetry ensures
that all these degrees of freedom contribute in the same way, thus making it possible to
account for their multiplicity in a general way.

These models turn out to be relevant also for condensed-matter theory, where β-
functions of this type are used to investigate the existence of quantum phase transitions
corresponding to the �xed points of the RG �ow, and to calculate the corresponding
critical exponents. In particular, our calculation will be relevant for the QED3-Gross-
Neveu-Yukawa model that has recently attracted some interest because of its critical
behavior in d = 3. As the �xed point there turns out to be strongly-coupled, one
possibility to extract information about the phase transition is to perform the analysis
in d = 4 − ε, where the theory is weakly coupled for ε → 0, and extrapolate to d = 3
through the �ε-expansion� [96, 97]. In this respect, we will be able to complement the
information about the critical exponents coming from standard perturbation theory by
providing the large-Nf counterpart. This is presented for the �rst time in Sec. 3.4.3.

On the other hand, the RG �ow of gauge-yukawa theories is certainly important for
high-energy physics in d = 4, as it provides information on the UV behavior of possi-
ble extensions of the SM. This is particularly relevant for scenarios in which the Higgs
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is an elementary scalar, as the requirement of a UV �xed point for the SM quantum
�eld theory could be used as a guiding principle for new physics (alternatively to com-
positeness and also to supersymmetry). Intriguingly, the very existence of the Higgs
boson can be actually linked to the requirement of having yukawa interactions in the
theory, which have been shown to be crucial in generating interacting �xed points in
perturbation theory [20]. (The occurrence of a UV interacting �xed point is referred
to as �asymptotic safety� as opposed to asymptotic freedom, where the �xed point is
simply the non-interacting Gaussian one as in QCD.) In this respect, large-N techniques
are useful for investigating asymptotic safety in a complementary way with respect to
standard perturbation theory. In fact, the result of Ref. [22] proves the existence of inter-
acting UV �xed points in a theory with a large number of colors of the gauge dynamics,
Nc, and fermion �avors, Nf , in the Veneziano limit (namely, Nc/Nf → constant when
Nc,f →∞). After that, there has been a lot of activity in considering the complementary
scenario in which Nc is �xed while Nf is taken large, such as large-Nf QED (Nc = 1)
and large-Nf QCD (Nc = 3). In particular, by using the properties of the resummed
large-Nf β-functions, some attempts to construct asymptotically-safe extensions of the
SM have been carried out, see [98�100] 1.

The necessary ingredient for all these studies is of course the explicit form of the F (n)

functions in (3.2). The �rst direct calculation ever performed in this context involves
the U(1) gauge β-function with Nf �avors [101,102] (large-Nf QED), where the authors
managed to obtain F (1) in a closed form. This result was later extended to non-abelian
gauge theories due to the work in [103], see also Refs [104, 105] 2. Recently, the leading
1/Nf contribution from the gauge sector to a single yukawa coupling was calculated in
Ref. [106], whereas an extension to semi-simple gauge groups can be found in Ref. [107].

Nonetheless, the case in which a scalar �eld couples to several fermion �avors through
yukawa interactions (as in Froggatt-Nielsen-inspired UV models) was not yet studied. In
the following, we will bridge this gap in the literature and compute the β-function for the
pure yukawa interaction up to O(1/Nf ) [II] and also extend this result to include gauge
interactions [III]. We will also discuss the connection between resummation and critical-
point method, thereby making contact with condensed matter theory [IV]. Driven by
this new perspective, we will �nally present an alternative approach to large-N and
asymptotic safety [V].

This chapter is organized as follows: the framework we will be using is speci�ed in
Sec. 3.1 whereas the actual calculation is presented in Sec. 3.2 for the pure yukawa case
[II] and in Sec. 3.3 for the gauge contribution [III], respectively. Sec. 3.4 is devoted to the
critical-point method and contains the connections with condensed-matter systems [IV].
A new way of dealing with large-Nf singularities [V] is �nally discussed in Sec. 3.5.

3.1 The framework

Let us here introduce the model we will be dealing with in this chapter. It consists of a
U(1) gauge theory in d = 4 with Nf fermion �avors and a gauge-singlet real scalar �eld

1These results make use of singularities of the F (1) function at physical values of the couplings to
enforce the UV �xed point. An alternative way of dealing with such singularities will be discussed in
Sec. 3.5.

2The non-abelian gauge β-function at O(1/Nf ) was actually not obtained through resummation but
rather via the critical-point method; more on this in Sec. 3.4
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Figure 3.2: Photon self-energy corrections.

coupling to the fermionic multiplet, ψ, via yukawa interaction:

L = −1

4
FµνF

µν +
1

2
∂µφ∂

µφ− 1

2
m2
φφ

2 + ψ̄(i/∂−mψ)ψ+ yψ̄ψφ− igAµ ψ̄γµψ−λφ4. (3.4)

This model is known as the QED3-Gross-Neveu-Yukawa model in condensed matter
language, but it can also mimic the system responsible for the FN mechanism, where
φ is the �avon and ψ corresponds to the FN messengers, that are vector-like under
the SM gauge symmetry mimicked here by the gauged U(1). The common yukawa
coupling y would correspond to the couplings aj in (2.81), although the latter exhibit a
nearest-neighbour type of structure that needs diagonalization to be properly compared
with (3.4). The masses for ψ and φ will be neglected in the following, as they do not
contribute to the β-functions. As for the scalar quartic coupling, λ, we will set it to zero
at tree-level, as it considerably complicates the calculation. The impact of a non-zero
tree-level λ will be discussed in Sec. 3.4.2; for the moment, we just notice that setting
λ = 0 at tree-level is consistent given that the loop-induced quartic will be higher-order
in the 1/Nf expansion. As mentioned below (3.2), we de�ne the rescaled gauge and
yukawa 't Hooft couplings E and K as

E ≡ e2

4π2
Nf , and K ≡

y2

4π2
Nf , (3.5)

which are kept constant in the limit Nf →∞.
Our purpose is to derive the coupled system of β-functions for E and K at the 1/Nf

level

βK ≡ K2

[
F (0) +

1

Nf
F

(1)
1 (K) +

1

Nf
F

(1)
2 (K,E) +O

(
1/N2

f

)]
, (3.6)

βE ≡ E2

[
F̃ (0) +

1

Nf
F

(1)
3 (E) +

1

Nf
F

(1)
4 (K) +O

(
1/N2

f

)]
. (3.7)

The �rst coe�cients F (0) = 1 and F̃ (0) = 2/3 simply correspond to the one-loop β-

function, whereas the pure-gauge contribution to the gauge β-function, F
(1)
3 (E), has

been computed in Ref. [102]. Our task is thus to provide a closed formula for F
(1)
1 (K),

F
(1)
2 (K,E) and F

(1)
4 (K).

In the following, we will use dimensional regularization in d = 4− ε dimensions and
minimal subtraction (MS) scheme for determining the divergences for ε→ 0 (in any case,
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the O(1/Nf ) β-functions are scheme independent [105]). The β-functions can then be
extracted from:

βE ≡
dE

d lnµ
= E

(
K

∂

∂K
+ E

∂

∂E

)
G1(K,E), (3.8)

βK ≡
dK

d lnµ
= K

(
K

∂

∂K
+ E

∂

∂E

)
H1(K,E), (3.9)

where G1 and H1 are de�ned by

logZE ≡ logZ−1
3 =

∞∑
n=1

Gn(K,E)

εn
, (3.10)

logZK ≡ log(Z−1
S Z−2

f Z2
V ) =

∞∑
n=1

Hn(K,E)

εn
, (3.11)

and Z3, ZS , Zf , and ZV are the renormalization constants for the photon, the scalar,
and the fermion wave function, and the 1PI vertex, respectively. In the following, we
will give explicit formulas for the structure of the various counterterms up to O(1/Nf )
as this is preparatory for the actual calculation of the β-functions:

• The photon wave-function renormalization constant, Z3, is given by

Z3 = 1− div
{
Z3Π0(p2, ZKK,ZEE, ε)

}
, (3.12)

where Π0 is the photon self-energy divided by the external momentum squared,
p2, and we denote the poles of X in ε by divX. At O(1/Nf ), the self-energy can
be rewritten as

Π0(p2,K0, E0, ε) = E0 Π
(1)
E (p2, ε) +

1

Nf

∞∑
n=2

(
En0 Π

(n)
E (p2, ε) + E0K

n−1
0 Π

(n)
K (p2, ε)

)
,

(3.13)

where Π
(1)
E is the simple one-loop fermion bubble (Fig. 3.1 with n = 1) and Π

(n)
E

and Π
(n)
K contain the n-loop part consisting of n− 2 fermion bubbles in the gauge

and yukawa chains summing over the topologies given in Fig. 3.2. Hereafter the
subscripts for K0 and E0 indicate the bare couplings before renormalization.

• The scalar wave-function renormalization constant, ZS , is determined via

ZS = 1− div
{
ZSS0(p2, ZKK,ZEE, ε)

}
, (3.14)

with the scalar self-energy S0 given by

S0(p2,K0, E0, ε) = K0S
(1)
K (p2, ε) +

1

Nf

∞∑
n=2

(
Kn

0 S
(n)
K (p2, ε) +K0E

n−1
0 S

(n)
E (p2, ε)

)
,

(3.15)

where S
(1)
K is the one-loop result, and S

(n)
K and S

(n)
E the n-loop terms consisting of

n−2 fermion bubbles in the yukawa and gauge chains summing over the topologies
shown in Fig. 3.3.
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Chapter 3. Gauge�Yukawa β�functions at large Nf

Figure 3.3: Scalar self-energy corrections.

• For the fermion self-energy and vertex renormalization constants Zf and ZV ,
respectively, the lowest non-trivial contributions are already O(1/Nf ), and we have

Zf =1− div
{

Σ0(p2, ZKK,ZEE, ε)
}
, (3.16)

Σ0(p2,K0, E0, ε) =1 +
1

Nf

∞∑
n=1

(
Kn

0 Σ
(n)
K (p2, ε) + En0 Σ

(n)
E (p2, ε)

)
, (3.17)

where Σ
(n)
K and Σ

(n)
E are depicted in Fig. 3.4 (a) with n − 1 fermion bubbles.

Similarly, one has for the vertex

ZV = 1− div
{
V0(p2, ZKK,ZEE, ε)

}
, (3.18)

V0(p2,K0, E0, ε) = 1 +
1

Nf

∞∑
n=1

(
Kn

0 V
(n)
K (p2, ε) + En0 V

(n)
E (p2, ε)

)
, (3.19)

where V
(n)
K and V

(n)
E contain n−1 fermion bubbles and are shown diagrammatically

in Fig. 3.4 (b).

The task of determining the coupled system in (3.6) and (3.7) can actually be splitted in
two parts. In Sec. 3.2, we will �rst calculate the β-function for the yukawa coupling by

switching o� the gauge interactions, thus determining F
(1)
1 (K). The remaining mixed

contributions, F
(1)
2 (K,E) and F

(1)
4 (K), are tackled in Sec. 3.3.

3.2 Pure yukawa

In this section, we will set E = 0 and work out the contribution from the pure yukawa

interaction. This allows to eavaluate F
(1)
1 (K) in (3.6) in a closed form. The starting

point is the calculation of the counterterms ZS , Zf and ZV as a series in the number
of fermion bubbles. The series for each counterterm needs to be resummed in order to
extract the 1/ε pole (the knowledge of these counterterms will be very useful also when
evaluating the mixed contributions in Sec. 3.3). The β-function is then simply obtained
by taking derivatives as in (3.8) and (3.9). This section is based on Ref. [II].
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3.2. Pure yukawa

Figure 3.4: Gauge and yukawa contributions to fermion self-energy and the vertex cor-
rections due to a chain of fermion bubbles.

3.2.1 Renormalization constants

Let us start by evaluating the counterterm for the scalar self-energy, ZS . Our starting
point is (3.14). The contributions we are considering are the pure-yukawa diagrams
depicted in the �rst row of Fig. 3.3. Using the expansion of the scalar self-energy in
(3.15) we obtain

ZS = 1− div

{
ZSZKKS

(1)
K (p2, ε) +

1

Nf

∞∑
n=2

ZS(ZKK)nS
(n)
K (p2, ε)

}
. (3.20)

Recalling that ZK ≡ Z−1
S Z−2

f Z2
V and substituting (3.16) and (3.18), the �rst term

between brackets can be written as

div
{
ZSZKS

(1)
K (p2, ε)K

}
= Kdiv

{
S

(1)
K

}
+

1

Nf
div
{

2K div
{

Σ0(p2, ZKK, ε)− V0(p2, ZKK, ε)
}
S

(1)
K (p2, ε)

}
.

(3.21)

The S
(1)
K part corresponds to the one-loop diagram and is given by

S
(1)
K (p2, ε) ≡ div

{
S

(1)
K

}
︸ ︷︷ ︸

= 1/ε

+S
(1)
F (p2, ε) =

1

(4π)d/2−2

G(1, 1)

2
(−p2)d/2−2

(3.22)
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where d = 4 − ε, the loop function, G(1, 1), is given in (B.2) in Appendix B, and we

have introduced the notation S
(1)
F to indicate the �nite part of S

(1)
K . Then,

div
{
ZSZKS

(1)
K (p2, ε)K

}
=
K

ε
+

1

Nf
div

{
2K div

{
Σ0(p2, ZKK, ε)− V0(p2, ZKK, ε)

}
×
(
div
{
S

(1)
K

}
+ S

(1)
F (p2, ε)

)}
=
K

ε
+

1

Nf
div
{

2KS
(1)
F (p2, ε)

[
Σ0(p2, ZKK, ε)− V0(p2, ZKK, ε)

]}
+ higher poles,

(3.23)

where the higher poles, i.e., higher than 1/ε, arise from the product of two divergent
parts and will be omitted because they play no role in what follows. Then, at the lowest
order in 1/Nf ,

ZS = 1− K

ε
+O (1/Nf ) . (3.24)

Therefore, every time ZKK appears in the argument of Σ0 and V0, it can be replaced

by K
(
1− K

ε

)−1
; the additional contributions are higher order in 1/Nf . By using (3.17)

and (3.19), we can rewrite Eq. (3.23) as

div
{
ZSZKS

(1)
K (p2, ε)K

}
=
K

ε
+
∞∑
n=1

Kn+1div

{
2S

(1)
F (p2, ε)

(
1− K

ε

)−n [
Σ

(n)
K (p2, ε)− V (n)

K (p2, ε)
]}

. (3.25)

Similarly, the second term of (3.20) reads

1

Nf
div

{ ∞∑
n=2

ZS(Z−1
S K)nS

(n)
K (p2, ε)

}
=

1

Nf

∞∑
n=2

Kndiv

{(
1− K

ε

)1−n
S

(n)
K (p2, ε)

}
.

(3.26)
Altogether, we can write ZS as

ZS = 1−K
ε
− 1

Nf

∞∑
n=2

Kn

{(
1− K

ε

)1−n (
2S

(1)
F

[
Σ

(n−1)
K − V (n−1)

K

]
+ S

(n)
K

)}
, (3.27)

where the explicit functional dependence on (p2, ε) has been omitted to lighten the
notation. Using the negative-binomial expansion,(

1− K

ε

)1−n
=
∞∑
i=0

(
n+ i− 2

i

)
Ki

εi
(3.28)

and performing a shift in the summation, n→ n− i, we �nd our �nal expression for ZS :

ZS = 1−K
ε
− 1

Nf

∞∑
n=2

Kndiv

{
n−2∑
i=0

(
n− 2
i

)
1

εi

(
2S

(1)
F

(
Σ

(n−i−1)
K − V (n−i−1)

K

)
+ S

(n−i)
K

)}
.

(3.29)
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3.2. Pure yukawa

We notice that Eq. (3.29) di�ers essentially from its counterpart in the U(1) gauge theory
(QED) in Ref. [102] because of the contribution from the fermion self-energy and the
vertex, which exactly cancel in QED because of the Ward identity. As we shall see, they
are instead fundamental for a yukawa theory as they will ensure that the counterterms
are momentum independent.

Let us now move to evaluate the fermion self-energy and vertex counterterms Zf
and ZV , respectively. As for the former, the expression for Zf involves the pure-yukawa
diagrams in Fig. 3.4 (a) and can be derived from (3.16) similarly to ZS :

Zf = 1− 1

Nf

∞∑
n=1

Kndiv

{(
1− K

ε

)−n
Σ

(n)
K (p2, ε)

}

= 1− 1

Nf

∞∑
n=1

Kndiv

{
n−1∑
i=0

(
n− 1
i

)
1

εi
Σ

(n−i)
K (p2, ε)

}
,

(3.30)

where we have again used the negative-binomial expansion and performed the same shift
n → n − i in the last line. The derivation of ZV is completely analogous, and we can
readily write

ZV = 1− 1

Nf

∞∑
n=1

Kndiv

{
n−1∑
i=0

(
n− 1
i

)
1

εi
V

(n−i)
K (p2, ε)

}
. (3.31)

3.2.2 Resummation

In the previous section, the expressions for ZV , Zf and ZS were given as a series in
the number of fermion bubbles, n. We will here perform an explicit resummation and
provide closed formulas for all these renormalization constants.

Let us start with the vertex counterterm ZV in (3.31). In order to resum this

series, we need to investigate the explicit form of V
(n)
K . According to the left diagram in

Fig. 3.4 (b) we �nd the n-loop contribution to be

V
(n)
K (p2, ε) =

(−1)n

4

(
1

(4π)d/2−2

)n(G(1, 1)

2

)n−1

(−p2)n(d/2−2)

×G (1, 1− (n− 1)(d/2− 2)) ,

(3.32)

where G(n1, n2) is the loop-function de�ned in (B.2). Since the calculation of the β-
function requires to obtain the 1/ε pole of the various counterterms, it is useful to rewrite

V
(n)
K by extracting the highest degree of divergence in 1/ε. This is done by noticing that,

as in Ref. [102], Eq. (3.32) allows for the following expansion:

V
(n)
K (p2, ε) = (−1)n

1

nεn
vK(p2, ε, n)

2
, (3.33)

where

vK(p2, ε, n) =

∞∑
j=0

v
(j)
K (p2, ε)(nε)j , (3.34)

and v
(j)
K (p2, ε) are regular in the limit ε→ 0 for all j. In particular, v

(0)
K (ε) is independent

of p2 and is explicitly given by

v
(0)
K (ε) =

2Γ(2− ε)
Γ
(
1− ε

2

)2
Γ
(
2− ε

2

)
Γ
(
ε
2

)
ε
. (3.35)
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Substituting (3.32) and (3.33) in (3.31), we �nd:

ZV = 1− 1

Nf

∞∑
n=1

(−K)ndiv


n−1∑
j=0

1

εn−j

n−1∑
i=0

(
n− 1
i

)
(−1)i(n− i)j−1 v

(j)
K (p2, ε)

2

 .

(3.36)
The advante of using the expressions in (3.33) and (3.34) is that the sum over j in (3.36)
is cut o� at j = n − 1 as higher terms will be �nite in ε and therefore irrelevant for
the β-function 3. This leads to a dramatic simpli�cation of (3.36) that follows from the
binomial properties. In fact, as noticed in Ref. [102], one has:

n−1∑
i=0

(
n− 1
i

)
(−1)i(n− i)j−1 = −δj,0

(−1)n

n
, j = 0, . . . , n− 1, (3.37)

and Eq. (3.36) gets simpli�ed to

ZV = 1 +
1

2Nf

∞∑
n=1

Kn

εn
v

(0)
K (ε)

n
. (3.38)

where we can see that only the function v
(0)
K given in (3.35) actually matters, justifying

the expansion in (3.34). Notice also that (3.37) crucially holds only for j < n, namely
for the divergent part only: larger values of j correspoding to �nite terms will instead
give contributions ∼ n! that would need a special treatment such as Borel transform.

The simple form in (3.38) for the divergent part in ε allows for a straightforward
resummation. In particular, since only the 1/ε pole contributes to the β-function, one

can simply Taylor-expand v
(0)
K (ε) around ε = 0, isolate the 1/ε contribution in (3.38),

and reconstruct v
(0)
K back. In practice, one has

v
(0)
K (ε) =

∞∑
j=0

v
(0)
j εj , (3.39)

and keeping only the 1/ε pole of (3.38) we �nd the closed formula for ZV :

ZV = 1 +
1

2εNf

∞∑
n=1

Kn

n
v

(0)
n−1 = 1 +

1

2εNf

∫ K

0
v

(0)
K (t)dt, (3.40)

which is our �rst achievement in this section and the prototype for the next calculations.

For future comparison, it is worth noticing that the ultimate product of this resum-
mation, (3.40), is to replace the quantity ε, that originally appeared as the argument

of v
(0)
K (ε) in (3.38) and corresponds to the space-time dimension as d = 4 − ε, with an

integral function in (3.40) that depends only on the coupling K. The reason for this
can be understood when considering the Wilson-Fisher �xed for this theory in d = 4− ε
dimensions and will be further discussed in Sec. 3.4.

3 However, these terms should be taken into account if one is interested in resumming the �nite parts
of these diagrams.
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3.2. Pure yukawa

Similar resummation strategy can be employed to treat the fermion self-energy in
(3.30). The n-loop contribution shown in the left panel of Fig. 3.4 (a) is found by direct
calcuation to be

Σ
(n)
K (p2, ε) =− (−1)n

8

(
1

(4π)d/2−2

)n(G(1, 1)

2

)n−1

(−p2)n(d/2−2)

× [G(1, 1− (n− 1)(d/2− 2))−G(1,−(n− 1)(d/2− 2))] ,

(3.41)

where G(n1, n2) is again the loop-function given in (B.2). Similarly to Eq. (3.32),
Eq. (3.41) can be expanded as

Σ
(n)
K (p2, ε) = −(−1)n

1

nεn
σK(p2, ε, n)

4
, (3.42)

where

σK(p2, ε, n) =
∞∑
j=0

σ
(j)
K (p2, ε)(nε)j , (3.43)

and σ
(j)
K (p2, ε) are regular for ε→ 0. Again, σ

(0)
K (ε) is independent of p2, and it is given

by

σ
(0)
K (ε) = −

25−εΓ
(

3
2 −

ε
2

)
√
π(4− ε)Γ

(
− ε

2

)
ε

sin
(
πε
2

)
πε

. (3.44)

Using the same procedure shown for the vertex counterterm ZV , we �nd that only σ
(0)
K (ε)

eventually contributes to Zf . Keeping only the 1/ε pole, the closed formula for Zf is

Zf = 1− 1

4εNf

∫ K

0
σ

(0)
K (t)dt, (3.45)

which is fully analogous to (3.40).
Finally, let us tackle the scalar self-energy expression in (3.29). Evaluating the

bubble diagrams in the upper row of Fig. 3.3 is quite cumbersome and the formula is

given in (B.3). Here, we just notice that the expression for S
(n)
K (p2, ε), n ≥ 2, allows for

the following expansion:

S
(n)
K = −3

2

(−1)n

n(n− 1)εn
πK(p2, ε, n), (3.46)

where

πK(p2, ε, n) =
∞∑
j=0

π
(j)
K (p2, ε)(nε)j , (3.47)

and π
(j)
K (p2, ε) are regular for ε→ 0. Similarly to the previous cases, π

(0)
K (ε) is indepen-

dent of p2. In view of Eq. (3.29), we de�ne

2S
(1)
F (p2, ε)

(
Σ

(n−1)
K (p2, ε)− V (n−1)

K (p2, ε)
)

+ S
(n)
K (p2, ε) ≡ (−1)n

n(n− 1)εn
ξK(p2, ε, n),

(3.48)
where

ξK(p2, ε, n) ≡ nεS(1)
F

(
σK(p2, ε, n− 1)

2
+ vK(p2, ε, n− 1)

)
− 3

2
πK(p2, ε, n), (3.49)
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and

ξK(p2, ε, n) =
∞∑
j=0

ξ
(j)
K (p2, ε)(nε)j , (3.50)

with ξ
(j)
K (p2, ε) regular for ε → 0 for all j. Notice that (3.49) is de�ned for n > 1. In

particular, ξ
(0)
K (ε) is independent of p2 and is explicitly given by

ξ
(0)
K (ε) = − (1− ε)Γ(4− ε)

Γ
(
2− ε

2

)
Γ
(
3− ε

2

)
πε

sin
(πε

2

)
(3.51)

Then, using the above de�nitions, (3.29) can be written as

ZS = 1− K

ε
− 1

Nf

∞∑
n=2

Kndiv

{
n−2∑
i=0

(
n− 2
i

)
1

εi
(−1)n−i

(n− i)(n− i− 1)εn−i
ξK(p2, ε, n− i)

}

= 1− K

ε
− 1

Nf

∞∑
n=2

(−K)ndiv


n−1∑
j=0

1

εn−j
ξ

(j)
K (p2, ε)

n−2∑
i=0

(
n− 2
i

)
(−1)i

(n− i)j−1

(n− i− 1)

 .

(3.52)

The expression above can now be reduced by using the properties of the binomials. We
in fact �nd a new formula which resembles the original one in (3.37):

n−2∑
i=0

(
n− 2
i

)
(−1)i

(n− i)j−1

(n− i− 1)
=

{
(−1)n

n j = 0
(−1)n

n−1 j = 1, . . . , n− 1
, (3.53)

and therefore the expression for ZS can be signi�cantly simpli�ed:

ZS = 1− K

ε
− 1

Nf

∞∑
n=2

Kn div

ξ
(0)
K (ε)

nεn
+

1

(n− 1)εn

∞∑
j=1

ξ
(j)
K (p2, ε)εj


= 1− K

ε
− 1

Nf

∞∑
n=2

Kn div

{
ξ

(0)
K (ε)

nεn
+
ξK(p2, ε, 1)− ξ(0)

K (ε)

(n− 1)εn

}
,

(3.54)

where in the �rst line we extended the sum over j up to ∞ without a�ecting the result,
since all the terms for j > n− 1 are �nite. The function ξ(p2, ε, 1), corresponding to

ξK(p2, ε, 1) ≡
∞∑
j=0

ξ
(j)
K (p2, ε)εj , (3.55)

can be actually evaluated by taking in (3.49) the limit n → 1, although the latter is
formally de�ned for n > 1. We �nd the following expression:

ξK(p2, ε, 1) = − Γ(4− ε)
Γ
(
2− ε

2

)
Γ
(
3− ε

2

)
πε

sin
(πε

2

)
≡ ξK(ε), (3.56)

where ξK(ε) is actually related to ξ
(0)
K (ε) in (3.51) as

ξK(ε) =
ξ

(0)
K (ε)

1− ε
. (3.57)
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3.2. Pure yukawa

Few comments are in order: Eq. (3.56) ensures that ZS is independent of the external
momentum p2, as it should due to renormalizability. This result comes from an exact
cancellation among all the di�erent contributions of the scalar self-energy, the fermion
self-energy, and the vertex in (3.49). In particular, we �nd that

πK(p2, ε, 1) =
2

3

(
σ

(0)
K (ε)

2
+ v

(0)
K (ε)

)[
1 + ε S

(1)
F (p2, ε)

]
, (3.58)

and therefore

ξK(ε) = −
σ

(0)
K (ε)

2
− v(0)

K (ε), (3.59)

which is equivalent to (3.56). All in all, the p2 independence of Eq. (3.56) provides a
non-trivial check for our computation.

We are now ready to resum the series in (3.54). By expanding ξ
(0)
K (ε) as

ξ
(0)
K (ε) =

∞∑
j=0

ξ
(0)
j εj , (3.60)

the 1/n term in (3.54) is given by

∞∑
n=2

Kn

εn
ξ

(0)
K (ε)

n
=

1

ε

( ∞∑
n=0

Kn+1 ξ
(0)
n

n+ 1
−Kξ(0)

0

)
=

1

ε

∫ K

0

[
ξ

(0)
K (t)− ξ(0)

K (0)
]

dt, (3.61)

where we have neglected higher poles in 1/ε. As for the 1/(n− 1) term in (3.54), using

ξ
(0)
K (ε) = (1− ε)ξK(ε) and expanding ξK(ε) as

ξK(ε) =
∞∑
j=0

ξ̃jε
j , (3.62)

we �nd

∞∑
n=2

Kn

εn
ξK(ε)− (1− ε)ξK(ε)

n− 1
=
K

ε

∫ K

0
ξK(t)dt+ higher poles. (3.63)

Finally, putting together (3.63) and (3.61), the closed formula for ZS reads

ZS = 1− K

ε
− 1

εNf

∫ K

0

[
ξ

(0)
K (t)− ξ(0)

K (0) + ξK(t)K
]

dt. (3.64)

3.2.3 The β-function

Using the results derived for ZS , Zf and ZV , we can �nally proceed to evaluating the
pure-yukawa contribution to the β-function. First, we �nd that H1(K) in (3.11) reads:

H1(K) = K +
1

Nf

∫ K

0

(
ξ

(0)
K (t)− ξ(0)

K (0) + ξK(t)K +
σ

(0)
K (t)

2
+ v

(0)
K (t)

)
dt, (3.65)
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Figure 3.5: The function ξK(t) given in (3.68) and πE(t) given in (3.72).

and straightforwardly for the βK :

βK =K2 +
K2

Nf

{
3/2 + ξK(K) +

σ
(0)
K (K)

2
+ v

(0)
K (K) +

∫ K

0
ξK(t)dt

}
, (3.66)

where we have used ξ
(0)
K (0) = −3/2. Recalling (3.59), Eq. (3.66) can be further simpli�ed

to

β(K)

K2
= 1 +

1

Nf

{
3

2
+

∫ K

0
ξK(t)dt

}
, (3.67)

where ξK(t) is explicitly given by

ξK(t) = − Γ(4− t)
Γ(2− t

2)Γ(3− t
2)πt

sin

(
πt

2

)
(3.68)

Finally, by comparison with (3.6), we see that F (0) = 1 and

F
(1)
1 (K) =

3

2
+

∫ K

0
ξK(t)dt. (3.69)

We plot the integrand, ξK(t), in Fig. 3.5. We have checked that our β-function agrees at
the leading order in Nf up to four-loop level by comparing with the result of Ref. [108],
and, as we shall see in Sec. 3.4, with the result extracted from the critical exponents
in Gross�Neveu�Yukawa model computed using a di�erent technique [109]. Finally, let
us comment on the pole structure: the integrand, ξK(t), has the �rst pole occuring at

t = 5, which results in a logarithmic singularity for F
(1)
1 (K) around K = 5. Due to the

sign of ξK(t), we see that F
(1)
1 (K) approaches large negative values for K → 5−.
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3.3 Gauge-yukawa

Let us summarize the �ndings of the previous section by rewriting (3.6) amd (3.7)

including (3.69) and the known result for F
(1)
3 from Ref. [102]:

βK =K2

[
1 +

1

Nf

(
3

2
+

∫ K

0
ξK(t)dt

)
+

1

Nf
F

(1)
2 (K,E)

]
+O(1/N2

f ), (3.70)

βE =E2

[
2

3
+

1

4Nf

∫ 2/3E

0
πE(t)dt+

1

Nf
F

(1)
4 (K)

]
+O(1/N2

f ), (3.71)

where

πE(t) =
Γ(4− t)(1− t)

(
1− t

3

) (
1 + t

2

)
Γ
(
2− t

2

)2
Γ
(
3− t

2

)
Γ
(
1 + t

2

) , (3.72)

and ξK is given in (3.68). The function πE(t) is shown in Fig. 3.5.
In this section, we will mainly follow Ref. [III] and provide closed formulas for the

remaining two unknowns, F
(1)
2 and F

(1)
4 , corresponding to the mixed contributions. In

doing so, one can take advantage from the results of the pure-yukawa case, such as the
knowledge of ZS , Zf and ZV . In particular, the crucial point is that a bubble-chain
constructed with yukawa interactions di�er from the same chain with gauge interactions
just by an overall factor. In fact, analogously to (3.3), a yukawa chain with n bubbles
correspond to a modi�ed propagator

i

k2
→ i

k2

(
iS(1)(k2)

k2

)n
(3.73)

where each bubble evaluates to

S(1)(p2) = iπ
p2

(4π)d/2−1
K02Nc(−p2)d/2−2G(1, 1), (3.74)

whereK0 is the bare coupling before renormalization. As for the gauge chain, the dressed
propagator is

−i
k2

(
gµν −

kµkν
k2

)(
−Π(1)

γ (k2)
)n

(3.75)

where the 1-loop bubble evaluates to

Π(1)
γ (p2) =

2(d− 2)

d− 1
E0

π

(4π)d/2−1
(−p2)d/2−2G(1, 1), (3.76)

with E0 being the bare coupling before renormalization. The correspondence is then:

−igµν
k2

(
−Π(1)

γ

)n
/
i

k2

(
iS(1)(k2)

k2

)n
= −gµν

(
d− 2

d− 1

)n(E0

K0

)n
(3.77)

(Notice that gµν is the only relevant Lorentz structure in the photon propagator, since
the kµkν term does not contribute to the β-function.) Thanks to (3.77), some of the
results of the pure-yukawa case can be used to evaluate the mixed contributions. Rather
than detailing all the steps, we will thus highlight the similarities with the previous
calculation.
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3.3.1 Mixed contribution

We present here the calculation for the mixed contributions in (3.70) and (3.71), namely

F
(1)
2 (K,E) and F

(1)
4 (K). Let us start with the yukawa contribution to the U(1)

β-function.
The yukawa contribution to the photon self-energy, depicted in the lower row of

Fig. 3.2, is obtained by substituting (3.13) in (3.12). We get:

Z3(K) = − E

Nf
div

{ ∞∑
n=1

(ZKK)nΠ
(n+1)
K (p2, ε)

}
. (3.78)

The calculation of ΠK is mainly carried out by referring to SK in (3.46) and using (3.77).
However, one also needs to carefully take into account the di�erence due to the algebra
of the γ-matrices. We �nd:

Π
(n)
K (p2, ε) = (−1)n−1 3

4(d− 1)nεn−1
πK(p2, ε, n), (3.79)

where πK(p2, ε, n) can be expanded as

πK(p2, ε, n) =
∞∑
j=0

π
(j)
K (p2, ε)(nε)j , (3.80)

with π
(j)
K (p2, ε) regular for ε→ 0. Recalling that ZK =

(
1− 1

εK
)−1

+O(1/Nf ), we can
evaluate Z3(K) from (3.78):

Z3(K) = − E

Nf
div

{ ∞∑
n=1

Kn
n−1∑
i=0

(
n− 1
i

)
1

εi
Π

(n−i+1)
K (p2, ε)

}

= − 3E

4Nf

1

ε

∫ K

0

π
(0)
K (t)

t− 3

(
1− t

K

)
dt+ higher poles.

(3.81)

The function π
(0)
K is independent of p2, as it should and reads

π
(0)
K (t) =

(t− 2)(t− 1)Γ(5− t)
6Γ(3− t

2)2πt
sin

(
πt

2

)
. (3.82)

The contribution of Z3(K) to βE , Eq. (3.8), is encoded in F
(1)
4 (K) and after some

simpli�cation is found to be

F
(1)
4 (K) =

3

4

∫ K

0

π
(0)
K (t)

t− 3
dt ≡ 3

4

∫ K

0
πK(t)dt. (3.83)

We show the function πK(t) ≡ π
(0)
K (t)/(t − 3) in Fig. 3.6. Since πK(t) has a �rst order

pole at t = 3, the �rst singularity of βE occurs at K = 3 and is a logarithmic one.
Let us now consider the gauge contribution to the yukawa β-function. The U(1)

contributions to the fermion self-energy and to the yukawa vertex, correspoding to right
diagrams of Fig. 3.4 (a-b), are closely related to the pure-yukawa case. The crucial point
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here is again that the gauge chain is equivalent to the yukawa chain besides an overall

factor, (3.77). In fact, Σ
(n)
E and V

(n)
E are related to Σ

(n)
K and V

(n)
K as

Σ
(n)
E (/p) = (d− 2)

(
d− 2

d− 1

)n−1

Σ
(n)
K (/p), (3.84)

V
(n)
E (p2) = −d

(
d− 2

d− 1

)n−1

V
(n)
K (p2), (3.85)

where the factors (d− 2) and −d come from the algebra of the γ-matrices. We thus �nd
something very similar to (3.45) and (3.40):

Zf (E) = − 1

Nf

∞∑
n=1

div
{

(ZEE)nΣ
(n)
E (p2, ε)

}
= − 1

Nf

3

4ε

∫ 2
3
E

0
σ

(0)
E (t)dt, (3.86)

ZV (E) = − 1

Nf

∞∑
n=1

div
{

(ZEE)nV
(n)
E (p2, ε)

}
= − 1

Nf

3

ε

∫ 2
3
E

0
v

(0)
E (t)dt, (3.87)

where we kept only the 1/ε pole. The functions σ
(0)
E and v

(0)
E are independent of p2, and

are given by

σ
(0)
E (t) =

2Γ(4− t)
3πΓ

(
1− t

2

)
Γ
(
3− t

2

)
t

sin

(
πt

2

)
, (3.88)

v
(0)
E (t) =

(
1− t

4

1− t
2

)2

σ
(0)
E (t). (3.89)

The U(1) contribution to the scalar self-energy is shown in the lower row of Fig. 3.3.
The calculation and resummation is analogous to the one performed for SK starting
from (3.46). Jumping to the result, we �nd for ZS :

ZS(E) =
3K

εNf

{
3

2E

∫ 2
3
E

0

(
ξ

(0)
E (t)− ξ(0)

E (0)
)

dt+

∫ 2
3
E

0

ξE(t)− ξ(0)
E (t)

t
dt

}
. (3.90)

The analog of (3.59) is

ξE(p2, t, 0) = −2v
(0)
E (t) +

1

2
σ

(0)
E (t) ≡ ξE(t). (3.91)

De�ning ξ̃E(t) ≡ (ξE(t) − ξ(0)
E (t))/t, the functions ξE(t) and ξ̃E(t) are explicitly given

by

ξE(t) = − 2(t− 3)2Γ(2− t)
3Γ
(
2− t

2

)
Γ
(
3− t

2

)
πt

sin

(
πt

2

)
, (3.92)

ξ̃E(t) =
1

6
(5 + 2t− t2)ξE(t). (3.93)

With Eqs (3.86), (3.87) and (3.90) at hand, we can compute the U(1) contribution to

the yukawa β-function. This results in F
(1)
2 (K,E) given by:

F
(1)
2 (K,E) = −3

{∫ 2
3
E

0
ξ̃E(t)dt+

3

2
+

(
1− 2E

3K

)
ξE

(
2

3
E

)}
. (3.94)

We plot the function ξE(t) in Fig. 3.6, whereas ξ̃E(t) is related to it as in (3.93).
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Figure 3.6: The function πK(t) ≡ π(0)
K (t)/(t− 3) as in (3.82) and ξE(t) given in (3.92).

3.3.2 Coupled system

Here we summarize and discuss our results for the coupled system. Combining Eqs (3.70)
and (3.71) with the results in Eqs (3.83) and (3.94), we obtain the full system atO(1/Nf ):

βK
K2

=1− 3

Nf

{
1− 1

3

∫ K

0
ξK(t)dt+

∫ 2
3
E

0
ξ̃E(t)dt+

(
1− 2E

3K

)
ξE

(
2

3
E

)}
, (3.95)

βE
E2

=
2

3
+

1

4Nf

{∫ 2
3
E

0
πE(t)dt+ 3

∫ K

0
πK(t)dt

}
. (3.96)

The functions ξK(t) and πE(t) are given in (3.68) and (3.72), respectively, whereas

πK(t) ≡ π(0)
K (t)/(t− 3), ξE(t), ξ̃E(t) are given in (3.82), (3.92) and (3.93), respectively.

It is possible to make connection between our system of large-Nf β-functions and
standard perturbation theory by simply expanding the closed forms of βK and βE around
the Gaussian �xed point (K = 0, E = 0) that corresponds to the free theory. By doing
so, one can obtain the leading-Nf coe�cients of the standard perturbative series. The
explicit formulas can be found in Sec. B.2.1 up to �ve-loop. These expansions allow us
to compare our �ndings with known results in standard perturbation theory and also to
predict new coe�cients that may serve themselves as a crosscheck for future perturbative
calculations.

We have made sure that our expansions agree with the four-loop results [97,110�113]
in the leading order in Nf . Furthermore, the − 2E

3K ξE
(

2
3E
)
part in the last term of

(3.95) corresponds to the result of Refs [106, 107], and we have checked that our result
agrees with those. Going beyond four-loop, it is of course impossible for us to predict
the full �ve-loop β-function, as our calculation captures only the leading 1/Nf terms.
Nonetheless, we provide the leading new coe�cients at �ve-loop in the last line of (B.7)
and (B.8); higher orders can be obtained just by further expanding the closed forms of
the β-functions above.

Let us now comment on the radius of convergence for βK and βE . This is simply
de�ned as the maximum value of the coupling that one can reach without running into
singularities. The �rst singularity of the pure-U(1) β-function is located at E = 15/2,
whereas for the pure-yukawa case it occurs at K = 5. These singularities are now
accompanied by the ones from the mixed contributions that arise at K = 3 for βE and at
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Figure 3.7: The �ow diagram for the coupled system with Nf = 30 in d = 4. The arrows
point towards UV.

E = 15/2 for βK . The RG �ow is shown in Fig. 3.7. The boundaries are dictated by the
radius of convergence. As we can see, both couplings increase towards the UV, suggesting
the presence of a Landau pole. Actually, if the singularities near the boundaries were
to be taken seriously, the β functions would approach a �xed point exponentially close
to the boundaries of our �ow at (K∗, E∗) = (0, 15/2), which is the only point in which
both β-functions vanish due to the e�ect of the singularities. However, this possibility
will turn out to be disfavored by our analysis in Sec. 3.5, where a more careful way of
dealing with these large-Nf singularities is presented.

3.4 Relation to critical exponents

From the high-energy physics point of view, our original motivation to look into the
large-Nf β-functions was being able to treat systems with many fermionic degrees of
freedom, as those inspired by UV completions of Froggatt-Nielsen-like models. This was
also motivated as part of a larger program aiming to investigate the UV fate of gauge-
yukawa theories, with the goal of discovering more examples of asymptotic safety in four
dimensions.

In this section, which is mainly based on Ref. [IV], we will instead discuss how all
of this is actually intimately related to the infrared (IR) properties of the theory and
relevant for condensed matter physics. To do so, one needs to move slightly away from
d = 4 (and not only for the purpose of dimensional regularization). In fact, alternatively
to explicit bubble resummation, the large-Nf β-functions can be calculated by evaluating
the critical exponents at the Wilson�Fisher (WF) �xed point in arbitrary dimension for
theories in the same universality class� see e.g. Refs [103, 109, 114�126] and Ref. [127]
for a recent review.

To sketch how this works, let us consider a theory with only one relevant coupling,
g > 0 (for QED, g ∼ α). The β-function in d dimensions is given by

β(g) = (d− dc)g + a1g
2 + a2g

3 + . . . , (3.97)
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where dc is the critical dimension (for QED, dc = 4). Let us assume a1 > 0, cor-
responding to a theory for which asymptotic freedom is lost. Perturbing around dc,
d = dc−ε, one obtains the WF �xed-point by balancing the �rst term against the others
(as opposed to Banks-Zaks �xed points, where one-loop is balanced against two-loop).
Requiring β(gc) = 0, one can obtain gc within the ε-expansion:

gc =
ε

a1
+O(ε2). (3.98)

Fixed points in a quantum �eld theory de�ne universality classes and often describe
phase transitions in the real world. During a phase transition, the correlation length
diverges and all physical quantities show a power-law behavior. The system can thus
be described by the corresponding critical exponents, containing information about the
classical scaling plus quantum corrections. Particularly relevant for us is the exponent
ω that is related to the β-function as

ω(d) = β′(gc). (3.99)

Physically, the exponent ω represents the leading correction to the scaling exponent ν
that controls the correlation length ξ,

ξ ∼ |x|−ν(1 + C|x|ω + . . . ), (3.100)

where x = (χ − χc)/χc measures how close the system is to criticality. It is worth
mentioning that, at the WF �xed point, the only variable is indeed the dimension d as
the coupling gc has been traded for the dimensionality in (3.98) (recall that d = dc− ε).
This is clearly reminescent of our resummation procedure, where the parameter ε in
the various loop functions was eventually traded for the coupling� see discussion below
(3.40)!

Working out the QFT at the WF �xed point has its advantages, as for instance all
propagators have power-law behavior. In particular, the large-Nf critical-point method
developed by Vasiliev et al. and Gracey (see references above) exploits the conformal
properties of the theory at the WF �xed point and allows to calculate ω(d) as an ex-
pansion in 1/Nf ,

ω(d) ≡
∞∑
n=0

ω(n)(d)

Nn
f

. (3.101)

The connection among these results and the large-Nf β-functions we are interested in is
simply contained in (3.99). This has been actually known for long time, and the QCD
β-function was indeed obtained in Ref. [104] by using the exponent ω from Ref. [103]. In
fact, direct resummation becomes infeasible already at O(1/Nf ) for non-abelian gauge
theories due to diagrams with the simultaneous presence of two distinct bubble chains
which do not allow for explicit resummation. This is the actual reason why higher orders
in the 1/N expansions are in general di�cult to obtain, and the few known results are
in fact based on the corresponding critical exponents which are more powerful in this
respect. Notice also that the calculation in Ref. [103] is not performed for QCD directly,
but rather within the non-abelian Thirring model, which is in the same universality class
of QCD in the large-Nf limit.

However, a systematic and general analysis of how to connect critical exponents and
β-functions was missing, and most of the high-energy community was not aware of this.
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Moreover, it was unclear whether this connection could be used in the same way as
Ref. [104] to calculate the system of β-functions for multi-coupling systems (the answer
will be negative, as we shall see shortly). In the following, we will systematically state
the interplay between the critical-point method and bubble resummation in one-coupling
models and extend these considerations to multi-coupling theories. By doing so, we will
also go back to the system in (3.4) and include the missing λφ4 term in Sec. 3.4.2. What
follows is mainly taken from [IV], whereas some results in Sec. 3.4.3 are new.

3.4.1 One-coupling model

In this section, we discuss the general ansatz for the β-function in the large-Nf expansion
for any system with one coupling, g. Our goal is to derive a general form for the β-
function once the critical exponent ω = β′(gc) is known. The ansatz for the β-function
is:

β(g) ≡ (d− dc)g + g2

(
bNf + c+

∞∑
n=1

F (n)(gNf )

Nn−1
f

)
, (3.102)

where d is the space-time dimension, dc the critical dimension, b and c are model-
dependent one-loop coe�cients, and F (n) are the resummed functions we are interested
in, all satisfying F (n)(0) = 0 by de�nition.

This ansatz is conceptually the same as (3.2) but this new de�nition is more conve-
nient for our purpose here. First, we need to �nd the position of the WF �xed point:
setting β(gc) = 0, we �nd an implicit expression for the critical coupling

gc = − d− dc
bNf + c+

∑∞
n=1

F (n)(gcNf )

Nn−1
f

. (3.103)

The slope of the β-function at criticality can then be expanded in 1/Nf to yield

β′(gc) = −(d− dc) +
(d− dc)2

b2

∞∑
m=1

F (n) ′(gcNf )

Nm
f

×
∞∑
k=0

(−b)−k(k + 1)

(
c

Nf
+
∞∑
n=1

F (n)(gcNf )

Nn
f

)k
!

=
∞∑
n=0

ω(n)(d)

Nn
f

,

(3.104)

where we have used (3.99) for the last equality and the primed functions are understood
as derivatives. Thus, by using Eqs (3.104) and (3.103), we can relate the functions F (n)

to ω(n). To obtain the result in a closed form, it is necessary to compute gc order by
order in 1/Nf according to (3.103). This, in turn, enters the argument of the functions
F (n), which then need to be Taylor-expanded to include all the relevant contributions.

This analysis makes clear that the various F (n) functions for one-coupling models
can be fully reconstructed if the critical exponent ω(n) as a function of d is known at the
same order in the 1/Nf expansion, the dictionary being provided by (3.103) and (3.104).
In the following, we will give explicitly the �rst two orders. At O(1/Nf ), we obtain

(d− dc)2

b2
F (1) ′

(
dc − d
b

)
= ω(1)(d), (3.105)
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which, de�ning t ≡ (dc − d)/b, results in (x = gNf )

F (1)(x) =

∫ x

0
dt
ω(1) (dc − bt)

t2
. (3.106)

At O(1/N2
f ), the expansion of (3.104) gives

F (2)(x) =

∫ x

0
dt

(
c+ F (1)(t)

b
(tF (1) ′′(t) + 2F (1) ′(t)) +

ω(2) (dc − bt)
t2

)
. (3.107)

Note that the critical exponent ω(1) contributes to the β-function also beyond O(1/Nf )
through F (1) and its derivatives, as can be seen explicitly in (3.107). The same structure
is found at higher orders: F (n) receives contributions from ω(n−1), . . . , ω(1)�or, equiv-
alently, from F (n−1), . . . , F (1)�and their derivatives, together with a pure ω(n)-term as
in (3.107). Therefore, if F (1) has a singularity say at x = xs, it will propagate to F

(n)

with a stronger degree of divergence up to the n-th derivative of F (1). However, the
very fact that this illustrative singularity at x = xs would appear at any order in the
1/Nf -expansion at the same coupling value suggests that a resummation could exist
such that the β-function is regular at xs, as we shall see in Sec. 3.5.

In what follows, we apply our �ndings for F (1) and F (2) to the Gross-Neveu model,
extending previous studies on the possible appearance of an IR �xed point.

Gross�Neveu model in d = 2

As a prime example, we consider the Gross�Neveu (GN) model [128]. This is a bench-
mark model for studying asymptotic freedom and chiral-symmetry breaking in a simpler
environment with respect to QCD. It has only one relevant coupling and the Lagrangian
is given by

LGN = iψ̄ /∂ψ +
g

2
(ψ̄ψ)2, (3.108)

where ψ is a fermion multiplet containing Nf �avors. Usually, the Lagrangian above
is rewritten with help of an auxiliary �eld φ that is non dynamical and only acts as a
Lagrange multiplier:

LGN = iψ̄ /∂ψ + φψ̄ψ +
1

2g
φ2. (3.109)

Integrating out φ gives back (3.108). The advantage is that the four-fermion interaction
has now been turned into a yukawa coupling. The form in (3.109) is useful to make
contact with the next section. The critical exponents for this model have been extensively
studied; see e.g. Refs [119,122,124,125].

Recently, the possibility of an IR �xed point in the GN model at d = 2 was studied
in Ref. [129] using the perturbative four-loop result [130] with Padé approximants. On
the other hand, the presence of an IR �xed point in the large-Nf limit has already been
excluded taking the O(1/Nf ) contributions into account [131].

Here, we extend the analysis to O(1/N2
f ) by using the results of the previous section

and the known results for ω(d) which is currently available up to O(1/N2
f ) [124]. By

doing so, we will also predict new coe�cients for the perturbative expansion that can
be used as crosschecks for future calculations. The O(1/Nf ) exponent, ω(1), is explicitly
given by

ω(1)(t) =
4tΓ(t+ 2) sin(πt/2)

π(t+ 2)Γ(t/2 + 1)2
, (3.110)
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3.4. Relation to critical exponents

while the expression for ω(2)(t) is relatively lengthy and can be explicitly found in
Ref. [124] (where it is called λ). Referring to (3.102), the GN model is characterized by
dc = 2, b = −1 and c = 2. For Nf = 2, the GN model turns out to be equivalent to
the abelian Thirring model [132], and thus the β-function identically vanishes [133,134];
we can therefore implement this additional information already at the ansatz level, and
improve our original form in (3.102) as:

β(g) = (d− 2)g + (Nf − 2)g2

(
−1 +

F̃ (1)(gNf )

Nf
+
F̃ (2)(gNf )

N2
f

+ . . .

)
, (3.111)

where

F̃ (1)(x) =

∫ x

0

ω(1)(t)

t2
dt (3.112)

and

F̃ (2)(x) =

∫ x

0

{
−2ω(2)(t) + 4ω(1)(t) + 4ω(1)(t)F (1)(t)

t2
− t[2 + F (1)(t)]F (1) ′′(t)

}
dt.

(3.113)

The functions F̃ (1),(2) are related to F (1),(2) of the standard ansatz as F̃ (1) = F (1) and
F̃ (2) = F (2) + 2F (1), so that the two ansätze only di�er at O(1/N3

f ). On the other hand,
the β-function for the GN model is known perturbatively up to four-loop level [130]:

β4L(g) =(d− 2)g − (Nf − 2)g2 + (Nf − 2)g3

+
1

4
(Nf − 2)(Nf − 7)g4

− 1

12
(Nf − 2)

[
N2
f + (66ζ3 + 19)Nf − 204ζ3 − 48

]
g5.

(3.114)

We �nd that the improved ansatz, (3.111), additionally reproduces the �rst subleading
1/N3

f terms, in particular providing the correct three-loop coe�cient 4. Furthermore,
the prediction for the leading orders in Nf for the �ve-loop β-function based on (3.112)
and (3.113) is

β5L(g) =
1

96
(Nf − 2)

[
(3− 6ζ3)N3

f + (297ζ4 + 120ζ3 + 1)N2
f + . . .

]
g6. (3.115)

We show the β-function of (3.111) truncated to O(1/Nf ), β1/N , and to O(1/N2
f ),

β1/N2 , along with the four-loop perturbative result in Fig. 3.8 as a function of the rescaled
coupling x = gNf for Nf = 10 (left) and Nf = 15 (right). We conclude that there is
no clear hint for the IR �xed point at intermediate Nf in the region where the 1/Nf

expansion is under control.

4Notice that while the leading Nf coe�cient is scheme independent [105], the subleading ones are
not. The result obtained with the critical exponent method should be compared with perturbation
theory where MS dimensional regularisation is employed.
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Chapter 3. Gauge�Yukawa β�functions at large Nf

Figure 3.8: The β-function of (3.111) truncated to O(1/Nf ), β1/N , and to O(1/N2
f ),

β1/N2 along with the four-loop perturbative result, β4L, as a function of the rescaled
coupling x = gNf for Nf = 10 (left) and Nf = 15 (right).

3.4.2 Two-coupling model: Gross�Neveu�Yukawa

We will consider here a two-coupling model, the Gross�Neveu�Yukawa (GNY) model
[135] in d = 4, that will be de�ned shortly. The main message of this section is that, con-
versely to the one-coupling case, the knowledge of the critical exponent ω is not su�cient
to reconstruct the β-function of the system for models with two or more couplings. In or-
der to obtain the β-functions we will have to rely again on explicit bubble-resummation.

The GNY model is the bosonised GN model in (3.109) with the auxiliary scalar �eld
φ promoted to a dynamical degree of freedom. It thus describes N massless fermion
�avors, ψ, coupling to a massless real scalar, φ, via yukawa interaction

LGNY = ψ̄i/∂ψ +
1

2
∂µφ∂

µφ+ g1φψ̄ψ + g2φ
4. (3.116)

It is a good moment to compare the GNY model above with our prototype in (3.4). In
fact, the system in (3.4) is well known in condensed matter theory and it is referred to as
the QED3-GNY model. The reason is simply that it di�ers from GNY for the fermions
being charged under a gauged U(1). For the QED3-GNY model the critical exponents
have not yet been determined at O(1/Nf ). Actually, the closest attempt turns out to
be our result for the system of β-functions in Sec. 3.3, as in fact one could obtain the
critical exponents just by reversing the logic in the relation β′(gc) = ω(d). However,
the quartic coupling has been neglected in our analysis in Sec. 3.3, meaning that our
knowledge of the system of β-functions is still incomplete. In the following, we will
focus on the GNY model, restoring a non-zero quartic coupling in (3.4), but neglecting
the gauge interactions. Although more missing pieces will be uncovered at the end of
this section, the results presented here are still not enough to calculate the system of
β-functions for QED3-GNY

5. Completing this task is desirable and left for future work.
Going back to the GNY in (3.116), the critical exponents were recently computed

up to 1/N2
f [109,126], and on the other hand, they are known perturbatively up to four-

loop level [108, 136]. This is thus the right model to carry on our discussion about the
relation between critical exponents and β-functions beyond one-coupling. We follow the
notations of Refs [108, 136] in order to provide for a straight-forward comparison with
the perturbative result and de�ne rescaled couplings

y ≡ g2
1µ

ε

8π2
, K ≡ 2yNf , and λ ≡ g2µ

ε

8π2
. (3.117)

5We will nevertheless comment on the possibility of extracting the QED3-GNY critical exponents
later on.
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3.4. Relation to critical exponents

The critical dimension is dc = 4 and we will work in d = 4− ε dimensions. The yukawa
β-function at O(1/Nf ) depends only on the yukawa coupling, y:

βy = (d− dc)y + y2(2Nf + 3 + ϕ
(1)
1 (yNf )). (3.118)

Notice that ϕ
(1)
1 corresponds to the pure yukawa contribution to the yukawa β-function,

and we have already calculated it in Sec. 3.2. As we shall see, ϕ
(1)
1 can be determined

independently with the help of the GNY critical exponents, thus providing a non-trivial
crosscheck of our calculation.

Conversely, the β-function for the quartic coupling, λ, at O(1/Nf ) is

βλ =(d− dc)λ+ y2(−Nf + ϕ
(1)
2 (yNf )) + λ2(36 + ϕ

(1)
3 (yNf )) + yλ(4Nf + ϕ

(1)
4 (yNf )).

(3.119)

According to Eqs (3.118) and (3.119), the coupled system of β-functions at O(1/Nf )

contains four unknown functions, namely ϕ
(1)
1 , ϕ

(1)
2 , ϕ

(1)
3 and ϕ

(1)
4 . Note that ϕ

(1)
1−4 are

functions of the rescaled yukawa coupling only due to the 1/Nf counting. Diagrammat-
ically this corresponds to chain of fermion bubbles. Similar diagrams of scalar bubbles
lack the Nf enhancement, and these chains are subleading.

Because of the two-coupling system, the GNY critical exponents ω± are the eigen-
values of the Jacobian of the β-functions evaluated at the WF �xed point:

J(y,λ)(βy, βλ) =

(
∂yβy ∂yβλ
∂λβy ∂λβλ

) ∣∣∣∣
WF

=

(
∂yβy ∂yβλ

0 ∂λβλ

) ∣∣∣∣
WF

, (3.120)

where we have noticed that βy in (3.118) does not depend on λ at O(1/N). This means
that at the WF �xed point one simply has

∂yβy = ω−, ∂λβλ = ω+. (3.121)

In order to gain information on ϕ
(1)
1−4 exploiting the knowledge of ω± we need to determine

the couplings at the WF �xed point, namely we have to solve βy,λ = 0. Using d−dc = −ε,
we �nd

yc =
ε

2Nf + 3 + ϕ
(1)
1 (ycNf )

, λc =
ε− yc

(
4Nf + ϕ

(1)
4 (ycNf )

)
+
√

∆c

2
(

36 + ϕ
(1)
3 (ycNf )

) , (3.122)

where we have taken the positive solution for λc and de�ned

∆c ≡
[
−ε+ yc(4Nf + ϕ

(1)
4 (ycNf ))

]2
− 4

(
36 + ϕ

(1)
3 (ycNf )

)
(yc)2

(
−Nf + ϕ

(1)
2 (ycNf )

)
.

(3.123)

Up to leading order in 1/Nf , we have

yc =
ε

2Nf
+O(1/N2

f ), λc =
ε

4Nf
+O(1/N2

f ). (3.124)
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Now we are ready to evaluate (3.121) at criticality by using (3.122) (notice that using
(3.124) is not enough):

∂βy
∂y

= ε+
1

4Nf
ε2ϕ

(1) ′
1 (ε/2)

!
= ε+

1

Nf
ω̃

(1)
− (ε), (3.125)

∂βλ
∂λ

= ε+
ε

2Nf

(
30− 2ϕ

(1)
1 (ε/2) + ϕ

(1)
3 (ε/2) + ϕ

(1)
4 (ε/2)

)
!

= ε+
1

Nf
ω̃

(1)
+ (ε). (3.126)

where we have de�ned ω̃
(1)
± (ε) ≡ ω

(1)
± (4 − ε) for simplicity. As we can see, (3.125)

completely �xes ϕ
(1)
1 (t) which is readily found to be

ϕ
(1)
1 (t) =

∫ t

0

ω̃
(1)
− (2ε)

ε2
dε. (3.127)

The explicit form of ω̃± is [109,126]

ω̃
(1)
− (t) = − tΓ(4− t)

πΓ
(
2− t

2

)
Γ
(
3− t

2

)sin(πt
2

)
, (3.128)

ω̃
(1)
+ (t) =

3t− 10

t
ω̃

(1)
− (t). (3.129)

As mentioned above, ϕ
(1)
1 (t) in (3.125) is closely related to F

(1)
1 (K) in (3.69). We

have checked that our result achieved with direct bubble resummation matches the one
following from the critical point method. In particular, with respect to (3.69) one simply
has

ξK(x) =
ω̃

(1)
− (x)

x2
. (3.130)

Actually, we could have obtained F
(1)
1 directly this way rather than going through the

calculation in Sec. 3.2. However, the direct resummation provided us with the necessary
ingredients (namely, the renormalization constants) to tackle the mixed gauge contribu-
tions in Sec. 3.3, for which there is no critical exponent available. The same counterterms
will be crucial also for the calculation at the end of this section, as we shall see.

Considering (3.126), one �nds

30− 2ϕ
(1)
1 (ε/2) + ϕ

(1)
3 (ε/2) + ϕ

(1)
4 (ε/2) = 2

ω̃
(1)
+ (ε)

ε
. (3.131)

As we can see, βλ cannot be computed with the knowledge of ω±, since only the combi-

nation ϕ
(1)
3 + ϕ

(1)
4 can be accessed. In particular, ϕ

(1)
2 is fully unconstrained.

This shows that the critical exponents encoding the slope of the β-function can
fully determine the β-function only for single-coupling theory, while for multi-coupling
theory they are sensitive only to certain combinations. Notice that the problem is not
the discrepancy between the number of the eigenvalues (two) and the entries of the
Jacobian (four), but rather that, for multi-coupling models, the number of the possible
coupling structures proliferates too fast (there are already three of them in (3.119): y2,
λ2 and yλ). Therefore, either more information is input or one needs to rely on a direct
resummation to get βλ in a closed form. Nevertheless, the knowledge of ω± can be
used to obtain independent cross-checks and gain information regarding the radius of
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Figure 3.9: The �rst two coe�cients of the 1/Nf expansion of the critical exponents

ω̃± =
∑∞

n=1 ω̃
(n)
± /Nn

f . The explicit formulae for the O(1/N2
f ) coe�ecients can be found

in Ref. [126].

convergence of the 1/Nf expansion. We show the critical exponents ω̃
(1)
± (t) along with

the O(1/N2
f ) results [126], ω̃

(2)
± (t), in Fig. 3.9. The O(1/N2

f ) results indicate that there
is a new singularity not present at O(1/Nf ) occurring at t = 3. Correspondingly, this
would suggest a shrinking in the radius of convergence for the β-functions when higher
orders are included. However, as we will see shortly, this singularity is actually already

present at O(1/Nf ), namely in the functions ϕ
(1)
2,3,4, but it exactly cancels in ω̃

(1)
+ , (3.131)!

Going beyond O(1/Nf ) the sitution gets worse as the system of β-functions at

O(1/N2
f ) contains seven more unknowns. The knowledge of ω± at O(1/N2

f ), ω
(2)
± , can

only constrain two linear combinations of them, similarly to (3.131)� see Appendix A
in Ref. [IV] for the explicit formulas.

Bubble resummation

The knowledge of the critical exponent ω− at O(1/Nf ) is enough to obtain the explicit
form of βy in (3.118) at the same order in 1/Nf . This is not the case for βλ in (3.119),

as the information contained in ω+ can only constrain a linear combination of ϕ
(1)
1 , ϕ

(1)
3

and ϕ
(1)
4 , see (3.131). In order to obtain βλ at the order 1/Nf , we have thus to rely on

explicit bubble resummation.

The β-function for λ is obtained by acting with derivatives on the 1PI vertex coun-
terterm, Zλ, and on the scalar self-energy counterterm, ZS . The bare coupling, λ0, and
the renormalized coupling, λ, are related via

λ0 = ZλZ
−2
S λ, (3.132)

and the β-function is

βλ = λ

(
λ
∂

∂λ
+K

∂

∂K

)
ln
(
ZλZ

−2
S

)
1/ε
. (3.133)

The self-energy renormalization constant due to the yukawa interaction, ZS , has been
computed in Sec. 3.2 up to O(1/Nf ), see (3.64), and needs no further calculation. How-
ever, Zλ needs to be computed. It is obtained by solving

Zλ = 1− div{ZλΛ0(λ0,K0, p
2, ε)}, (3.134)
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Chapter 3. Gauge�Yukawa β�functions at large Nf

where K0 is the rescaled yukawa coupling, and Λ0 contains the 1PI contributions to the
four-point function. At the order O(1/N), we have

Λ0 =λ0

∞∑
n=0

Kn
0 Λ

(n+1)
λ (p2, ε) +

1

λ0Nf
K2

0Λ
(1)
K (p2, ε) +

1

λ0N2
f

K3
0

∞∑
n=0

Kn
0 Λ

(n+2)
K (p2, ε)

+
1

Nf
K2

0

∞∑
n=0

Kn
0L

(n+2)(p2, ε) +
1

λ0N2
f

K4
0

∞∑
n=0

Kn
0 Λ′K

(n+3)
(p2, ε).

(3.135)

These terms are de�ned via the corresponding Feynman diagrams, as explained in the
following. The �rst term corresponds to a basic candy diagram where the yukawa cou-
plings only enters through the chain of fermion bubbles and is depicted in Fig. 3.10.
The second and third terms correspond to the basic one-loop box diagram and a box
diagram with an additional internal scalar propagator, respectively, shown in Fig. 3.12.
The fourth term is a candy with two di�erent vertices, namely one λ and one e�ective
quartic made of a fermion loop represented in Fig. 3.11. The last term is a three-loop
candy diagram with two fermion loops as e�ective quartics, which is given in Fig. 3.13.
Since we assume that λNf is a 't Hoof coupling, we will consider λ ∼ 1/Nf to catch all
possible contributions. The p2 in the arguments refers generically to the IR regulator.
We use two IR regulation strategies depending on the subclass of diagrams: For fermion-
box type diagrams, we use a convenient choice of non-zero external momenta, and for
the scalar-candy-type diagrams we give a non-zero regulating mass for the propagating
scalars. The sum of the contributions in each of these subclasses is IR �nite, justifying
the di�erent regularisations.

Notice that the candy diagrams in Figs 3.10, 3.11 and 3.13 contain double chains.
This is usually a no-go for performing a direct resummation as mentioned below (3.101).
Nevertheless, in case a suitable choice of external momenta allows to have the same loop
momentum �owing in both chains, it is possible to treat them as to be e�ectively one
and perform the resummation successfully, as shown in Ref. [107]. This is the main
reason for choosing the IR regulator for the candy diagrams as mentioned above.

After trading the bare couplings with the renormalized couplings,

λ0 = ZλZ
−2
S λ, K0 = Z−1

S (ZV Z
−1
f )2K, (3.136)

where ZV,f = 1 +O(1/Nf ) are the renormalisation constants for the 1PI yukawa vertex
and fermion self-energy that were already calculated in (3.40) and (3.45), resp., and
keeping only term that contribute up to O(1/Nf ), we eventually �nd for Zλ:

Zλ = 1− div

{
λZ−2

S

∞∑
n=0

(Z−1
S K)nΛ

(n+1)
λ +

1

Nf
K2Z−2

S

∞∑
n=0

(Z−1
S K)n

(
L(n+2) − 2DΛ

(n+1)
λ

)
+

1

λNf
K2(ZV Z

−1
F )4Λ

(1)
K +

1

λN2
f

K3Z−1
S

∞∑
n=0

(Z−1
S K)nΛ

(n+2)
K

+
1

λN2
f

K4Z−2
S

∞∑
n=0

(Z−1
S K)n

(
D2Λλ

(n+1) −DL(n+2) + Λ′K
(n+3)

)}
,

(3.137)
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Figure 3.10: Diagram for ϕ
(1)
3 (yNf ). The gray blob represents a bubble chain.

where we have iterated (3.134) to include all the contributions up to O(1/Nf ), and we
have de�ned D as

D = div{Λ(1)
K }. (3.138)

Notice that, despite the explicit 1/N2
f dependence, the 1/λN2

f contributions are actually
O(1/Nf ) when interpreted in terms of the rescaled quartic. After taking derivatives
according to (3.133), the �rst non-trivial term in (3.137) will give the λ2-contribution

in (3.119), namely the function ϕ
(1)
3 , and the second term will give ϕ

(1)
4 . All the other

terms in the second and third line of (3.137) behave like 1/λ and will correspond to the

pure yukawa contribution, ϕ
(1)
2 .

ϕ
(1)
3 , ϕ

(1)
4 and cross-check

In principle, it would be enough for us to calculate either ϕ
(1)
3 or ϕ

(1)
4 , and obtain the

remaining one with the help of (3.131). However, we will rather calculate both ϕ
(1)
3 and

ϕ
(1)
4 and use (3.131) as a cross-check.

Diagrammatically, ϕ
(1)
3 corresponds to Fig. 3.10, where the internal scalar lines are

dressed with fermion bubbles. To obtain its expression, we refer to the �rst non-trivial
term of (3.137) and compute:

T3 ≡− div

{
λZ−2

S

∞∑
n=0

(Z−1
S K)nΛ

(n+1)
λ

}

=− div

{
λ

∞∑
n=0

Kn
n∑
i=0

(
n+ 1
i

)
(−1)i

εi
Λ

(n−i+1)
λ

} (3.139)

The function Λ
(m)
λ is found to be

Λ
(m)
λ =

1

εm
l(ε,m) =

1

εm

∞∑
j=0

(mε)jlj(ε). (3.140)

After resummation, and keeping only the 1/ε pole of T3, we �nd

T3 = −1

ε
λ l0(K) + . . . , (3.141)

where

l0(t) =
9 · 24−tΓ

(
3
2 −

t
2

)
sin
(
πt
2

)
π3/2tΓ

(
2− t

2

) . (3.142)
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Figure 3.11: Diagram for ϕ
(1)
4 (yNf ). The gray blob represents a chain of fermion bubbles.

The labels N and T correspond to non-twisted and twisted fermion bubbles, respectively,

and are pictorially represented below the ϕ
(1)
4 diagram.

With our rescaled-coupling convention, the function F3 is

ϕ
(1)
3 (t) = l0(2t) + 2tl′0(2t)− 36 (3.143)

where −36 removes the one-loop contribution.

To compute ϕ
(1)
4 , we start from the second term in the �rst line of (3.137), which

diagrammatically corresponds to Fig. 3.11:

T4 ≡ −
K2

Nf
div

{
Z−2
S

∞∑
n=0

(Z−1
S K)n

(
L(n+2) − 2DΛ

(n+1)
λ

)}

= −K
2

Nf
div

{ ∞∑
n=0

Kn
n∑
i=0

(
n+ 1
i

)
(−1)i

εi
Γ(n+ 2− i, ε)

}
(3.144)

where we have introduced

Γ(m, ε) ≡ L(m) − 2DΛ
(m−1)
λ =

1

mεm
(−1)mγ(ε,m), (3.145)

with

γ(ε,m) =
∞∑
j=0

(mε)jγj(ε). (3.146)

After resummation, and keeping only the 1/ε pole of T4, we �nd

T4 =
1

εNf

(
Kγ(K, 1)−

∫ K

0
γ0(t)dt

)
+ . . . , (3.147)

where

γ0(t) =
3 · 23−t(t− 3)Γ

(
3
2 −

t
2

)
π3/2tΓ(2− t/2)

sin

(
πt

2

)
, (3.148)

and

γ(t, 1) =
1

1− t/3
γ0(t). (3.149)
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Figure 3.12: Di�erent types of box diagrams for F2(yNf ). The gray blob represents a
chain of fermion bubbles.

Besides T4, the function ϕ
(1)
4 gets contribution from ZS in (3.64). Altogether, it is given

by

ϕ
(1)
4 (t) = 2γ(2t, 1)− 2γ0(2t) + 4tγ′(2t, 1) + 4ξ

(0)
K (2t) + 8tξK(2t) + 6 + 4

∫ 2t

0
ξK(x)dx.

(3.150)

With the results of (3.143) and (3.150) together with (3.127), one can check that
(3.131) is ful�lled. This provides a powerful cross-check for our computation.

The function ϕ
(1)
2

The function ϕ
(1)
2 can be computed evaluating the 1/λ terms in the last two lines of

(3.137), corresponding to the one-loop box diagram, the box diagrams with additional
internal scalar propagator in Fig. 3.12 and the candy diagrams in Fig. 3.13.

Let us start with the box contribution, ϕ
(1)
2box. The counterterms ZV and Zf have

been computed up to O(1/Nf ) in the Sec. 3.2. Notice that we need to use the full
expression for ZV,f and not only the 1/ε pole:

ZV = 1 +
1

2Nf

∞∑
n=1

Kn

εn
v

(0)
K (ε)

n
, Zf = 1− 1

4Nf

∞∑
n=1

Kn

εn
σ

(0)
K (ε)

n
. (3.151)

The �rst term in the second line of (3.137) gives a divergent part

Tb1 ≡
4K2

λNf

[
D

4
+ div

{
(Z̃f − Z̃V )Λ

(1)
F (p2, ε)

}]
, (3.152)

where Z̃f,V ≡ Zf,V − 1, and we have de�ned the �nite part of the one-loop box diagram
as

Λ
(1)
F = Λ

(1)
K −D. (3.153)

The �rst term in (3.152) gives the basic one-loop contribution of the box diagram and
will be omitted in the following. Using (3.151) and keeping only the 1/ε pole of Tb1 , we
have:

Tb1 =
K2

ελN2
f

∫ K

0
Λ

(1)
F (p2, t)(σ

(0)
K (t) + 2v

(0)
K (t))dt + . . . (3.154)
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As for the second term in the second line in (3.137), we have

Tb2 ≡
K3

λN2
f

∞∑
n=0

Kndiv
n∑
i=0

{(
n
i

)
1

εi
Λ

(n+2−i)
K (p2, ε)

}
. (3.155)

The quantity Λ
(m)
K allows for the following expansion:

Λ
(m)
K (p2, ε) =

1

εmm(m− 1)
λ(p2, ε,m), (3.156)

where λ(p2, ε,m) is regular for ε→ 0 and can be written as

λ(ε,m) =

∞∑
j=0

(mε)jλj(p
2, ε). (3.157)

Plugging (3.156) and (3.157) in (3.155) and using the usual summation formulas, we
�nd for the 1/ε pole:

Tb2 =
K

ελN2
f

∫ K

0

(
λ0(t)− λ0(0) +K

λ(p2, t, 1)− λ0(t)

t

)
dt + . . . (3.158)

When the 1/ε poles of Tb1 and Tb2 are put together, the p2 dependence of λ(p2, t, 1)
cancels. We �nd the 1/ε pole of Zbox

λ to be

Zbox
λ = −(Tb1 + Tb2) = − K

ελN2
f

∫ K

0

(
λ0(t)− λ0(0) +K

5− t
4− 5t+ t2

λ0(t)

)
dt, (3.159)

where the function λ0(t) is given by

λ0(t) = (t− 1)
Γ(4− t) sin

(
πt
2

)
πtΓ

(
2− t

2

)2 . (3.160)

In the coupling convention of (3.119), ϕ
(1)
2 box reads

ϕ
(1)
2box(t) =

∫ 2t

0

x− 5

x2 − 5x+ 4
λ0(x)dx+ λ0(0)− 4

4− 10t+ 4t2
λ0(2t). (3.161)

Let us now compute the contribution of the candy diagrams in Fig. 3.13, Zcandy
λ ,

arising from the last line of (3.137). This will lead to the calculation of our last ingredient,

ϕ
(1)
2 candy, and corresponds to the �rst large-Nf resummation that is performed on a three-

loop basic diagram. To this end, it is convenient to de�ne

Tc ≡
K4

λN2
f

div

{ ∞∑
n=0

Kn
n∑
i=0

(
n+ 1
i

)
1

εi
C(n+1−i)

}
, (3.162)

where
C(n+1−i) ≡ D2Λλ

(n+1−i) −DL(n+2−i) + Λ
′ (n+3−i)
K . (3.163)

The structure of C(m) is:
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Figure 3.13: Candy diagrams for ϕ
(1)
2 (yNf ). The basic diagram is the three-loop diagram

Λ′K . The fermion loops A,B are either of the form N (non-twisted) or T (twisted), cf.
Fig. 3.11. The diagrams DL and D2Λλ come from Λ′K when A or B are shrunk to a
counterterm vertex D, which is the same for N and T .

C(m) =
1

εm+2

1

(m+ 1)(m+ 2)
c(p2, ε,m), (3.164)

where the function c(p2, ε,m) is regular for ε→ 0 and can be expanded as

c(p2, ε,m) =
∞∑
j=0

(mε)jcj(p
2, ε). (3.165)

The IR regulator, p2, stands here for a soft mass for the scalar �eld. Plugging Eqs (3.164)
and (3.165) in (3.162) yields

Tc =
K4

λN2
f

div


∞∑
n=0

Kn

εn+3

n+2∑
j=0

εjcj(p
2, ε)S(n, j)

 , (3.166)

where

S(n, j) =

n∑
i=0

(
n+ 1
i

)
(−1)i

(n+ 2− i)j−1

n+ 3− i
. (3.167)

We �nd

S(n, j) =


(−1)n n+1

2(n+3) j = 0,

(−1)n (n+1)(n+4)
2(n+2)(n+3) j odd,

(−1)n 8+n(n+5)
2(n+2)(n+3) j even.

(3.168)

Equation (3.168) tells that three functions are relevant: c0(ε), ce(ε), and co(ε),

ce(ε) ≡
∞∑

j even

εjcj(ε) =
c(p2, ε, 1) + c(p2, ε,−1)

2
− c0(ε),

(3.169)

co(ε) ≡
∞∑
j odd

εjcj(ε) =
c(p2, ε, 1)− c(p2, ε,−1)

2
,
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where the summation over j has been extended to in�nity without a�ecting the result
(namely, �nite terms in the ε→ 0 limit), and all the resulting functions are found to be
independent of the IR regulator. They read

c0(t) = −3
24−t Γ

(
5
2 −

t
2

)
sin
(
πt
2

)
π3/2tΓ

(
2− t

2

) , ce(t) =
t2

6(3− t)
c0(t), co(t) =

t(6− t)
6(3− t)

c0(t). (3.170)

After performing the sum over n using Eqs (3.168), and retaining only the 1/ε pole, we
arrive at

Tc =
1

ελN2
f

(
1

2
K2 (c0(K) + c0(0)) +

K3

6− 2K
c0(K) +

1

3
K

∫ K

0
(t− 3−K)c0(t)dt

)
+ . . .

(3.171)

In the convention of (3.119), we �nd

ϕ
(1)
2 candy(t) =

9− 24t+ 8t2

2(2t− 3)2
c0(2t) +

3t

2t− 3
c′0(2t)− 1

6

(
3c0(0)− 2

∫ 2t

0
c0(x)dx

)
.

(3.172)

Combining Eqs (3.161) and (3.172), we obtain the �nal form of ϕ
(1)
2 (t)

ϕ
(1)
2 (t) = ϕ

(1)
2box(t) + ϕ

(1)
2 candy(t) (3.173)

which completes our calcuation of the O(1/Nf ) system of β-functions in (3.118) and
(3.119).

3.4.3 QED3�Gross�Neveu�Yukawa critical exponents (new)

Let us summarize here our �ndings in this section and also present a new result for the
QED3-GNY critical exponents at O(1/Nf ) that can be actually deduced from them with
small additional information.

Our �rst observation was that for one-coupling systems the knowledge of the critical
exponent ω is always enough to reconstruct the β-function at the same order in the 1/Nf

expansion. We have therefore stated the general procedure to relate β and ω and shown
explicit formulas up to O(1/N2

f ).
The picture changes when considering multi-coupling systems. To investigate this

we have focussed on the GNY model that contains two relevant interactions. We in fact
showed that the critical exponents ω

(1)
± could not provide the full system of β-functions,

(3.118) and (3.119), but rather constrain some combinations of ϕ
(1)
1−4 as in (3.127) and

(3.131). We hence had to rely on explicit bubble resummation to obtain the β-functions

in a closed form 6. The functions ϕ
(1)
1−4 are shown together in Fig. 3.14. We notice that

ϕ
(1)
2−4 feature the �rst singularity at t = 3/2. This singularity is actually not signaled by

ω
(1)
± , as it gets exactly cancelled in the combination ϕ

(1)
3 +ϕ

(1)
4 entering (3.131), but does

6 However, we envisage that it might be possible to reconstruct the full system of RG functions in a
multiple-coupling theory within the critical-point formalism through extraction of the operator-product-
expansion coe�cients. This is in line with the recent analyses carried out in [137�140].
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Figure 3.14: The functions 10× ϕ(1)
1 (t) (red), ϕ

(1)
2 (t) (black), ϕ

(1)
3 (t) (blue) and ϕ

(1)
4 (t)

(grey) given in Eqs (3.127), (3.173), (3.143), (3.150), respectively. We notice that ϕ
(1)
1

has the �rst singularity at t = 5/2, whereas ϕ
(1)
2−4 show a second-order pole at t = 3/2.

show up in ω
(2)
± at O(1/N2

f ). We thus conclude that the radius of convergence for the

GNY β-function does not necessarily shrink when moving from O(1/Nf ) to O(1/N2
f ) as

one would have naively guessed just by looking at the critical exponents, because the
�new� singularity for ω is already present in the O(1/Nf ) β-functions.

With the closed form of ϕ
(1)
1−4 at hand we can expand around (y = 0, λ = 0), thus

comparing our results with standard perturbation theory and predicting new coe�cients.
We have checked that our expansions agree with the known leading-Nf four-loop per-
turbative result [108]. This, together with our predictions for the �ve- and six-loop
leading-Nf terms is shown in Sec. B.2.2.

Finally, let us comment on the possibility of combining the results in this section
with the ones in Sec. 3.3 which include gauge interactions. As mentioned below (3.116),
this could lead to the set of the O(1/Nf ) β-functions for the QED3-GNY model that
contains gauge, yukawa and scalar quartic couplings at the same time. However, the
calculation in Sec. 3.3 was lacking the inclusion of the quartic λ, and uncovering the

ϕ
(1)
1−4 functions is still not enough to complete the system. To make this statement more

precise and discuss which ingredients are still missing, let us write down the ansatz
for the QED3-GNY β-functions at O(1/Nf ) (in doing so, we will follow the coupling
convention of [97] to have a straightforward comparison with the perturbative results):

βy = (d− dc)y + y2
[
4Nf + 6 + ϕ

(1)
1 (2yNf ) + F̃

(1)
1 (αNf )

]
+ y α

[
−12 + F̃

(1)
2 (αNf )

]
,

βλ = (d− dc)λ+ y2
[
−2Nf + ϕ

(1)
2 (2yNf ) + X

(1)
1 (αNf )

]
+ λ2(72 + ϕ

(1)
3 (2yNf ))

+ yλ
[
8Nf + ϕ

(1)
4 (2yNf ) + X

(1)
2 (αNf )

]
,

βα = (d− dc)α+ α2
[
8/3Nf + F̃

(1)
3 (αNf ) + F̃

(1)
4 (yNf )

]
,

(3.174)

where we have noticed that the quartic coupling λ does not a�ect the β-function for the

QED coupling, βα. The functions ϕ
(1)
1−4 have been calculated in this section. Also, the

functions F̃
(1)
1−4 can all be obtained from a comparison with the explicit results in (3.95)

and (3.96). Thus, the only remaining unknowns are X
(1)
1 and X

(1)
2 .
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Actually, we notice that determining X
(1)
2 does not involve any new ingredient, as

this term ∝ yλ comes from the gauge contribution to the scalar self-energy, ZS , that has

been already resummed in (3.90). Hence, X
(1)
2 can be obtained by simply acting with

derivatives upon ZS . Conversely, X
(1)
1 requires to perform a calculation similar to the

one for ϕ
(1)
2 , namely replacing the internal scalar chains in Fig. 3.12 and Fig. 3.13 with

gauge chains. This does not introduce any new technical di�culties, and the relations

in (3.77) can still be used to translate the known result for ϕ
(1)
2 . The task of completing

the full system of β-functions for QED3-GNY is certainly interesting and left for future
work.

If all the terms in (3.174) were known, the critical exponents ω could be evaluated
by computing the O(1/Nf ) eigenvalues of the Jacobian at criticality:

J(y,λ,α)(βy, βλ, βα) =

 ∂yβy ∂yβλ ∂yβα
0 ∂λβλ 0

∂αβy ∂αβλ ∂αβα

 . (3.175)

Nevertheless, it turns out by direct inspection that X
(1)
1 does not enter the critical

exponents ω at O(1/Nf ), and therefore these are calculable by simply combining the
results of this chapter. The procedure is analogous to what discussed in (3.120) and
below: one needs to calculate the position of the QED3-GNY �xed point at O(1/Nf ) and
substitute it in (3.175), which is evaluated with the help of (3.174). The diagonalization
of the Jacobian provides then the critical epxonents. Explicitly, we �nd:

ω0(ε) = ε+
1

Nf

(8− 3ε)Γ(5− ε)
(2− ε)Γ

(
2− ε

2

)
Γ
(
3− ε

2

)
π
sin
(πε

2

)
+O(1/N2

f ), (3.176)

ω±(ε) = ε+
1

Nf

[
(2− ε)(12 + ε− ε3)±

√
∆(ε)

]
Γ(4− ε)

4(4− ε)(2− ε)Γ
(
2− ε

2

)2
π

sin
(πε

2

)
+O(1/N2

f ),

(3.177)

where

∆(ε) = 576− 864ε+ 372ε2 + 196ε3 − 143ε4 − 24ε5 + 42ε6 − 12ε7 + ε8. (3.178)

The smallest eigenvalue turns out to be ω− and is to be identi�ed with the leading
correction in (3.100) (this is also referred to as �stability exponent�). Expanding around
ε = 0, we can check with known perturbative results:

ω−(ε) = ε+
3

4Nf
ε2 − 1

4Nf
ε3 − 53

64Nf
ε4 +

(
3

16Nf
ζ3 −

7

192Nf

)
︸ ︷︷ ︸

�ve-loop prediction

ε5 + . . . , (3.179)

where the �rst four terms coincide with the leading-Nf four-loop result of [97], and the
last term is our prediction for the �ve-loop leading-Nf coe�cient.

It is worth mentioning that the most interesting application related to the QED3-
GNYmodel is actually found in d = 2+1 where it can describe quantum phase transitions
occuring for fermionic systems on the lattice [96]. However, the underlying quantum �eld
theory turns out the be strongly coupled at the �xed point in d = 3, and therefore one
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needs to rely on alternative methods in order to extract the correspoding critical ex-
ponents. One possibility is in fact to investigate the theory between the lower- and
upper-critical dimension, 2 < d < 4, and then extrapolate to the desired dimensionality.
The case of d = 4−ε is particularly suitable as all the couplings are marginal and within
perturbative control at the �xed point for ε � 1. The idea is then to calculate the
critical exponents as precisely as possible (namely, including higher orders in perturba-
tion theory) and then extrapolate the results to d = 3 employing other methods such
as Padé approximants [97]. In this respect, our results in (3.176) and (3.177) stemming
from the large-Nf expansion provide complementary information with respect to stan-
dard perturbation theory, and can help improving the extrapolation to d = 3. Moreover,
we envisage that the calculation of the various renormalization constants accomplished
throughout this chapter can be used to access other critical exponents besides ω char-
acterizing the �xed point at large-Nf in d = 4 − ε. We leave this analysis for future
investigation.

3.5 Treatment of the singularities

As noticed throughout this chapter, the large-Nf resummed functions show a �nite
radius of convergence, namely they feature singularities at �nite, physical values of the
coupling. This is a consequence of the large-Nf results arising from the resummation
of a power series in the rescaled coupling. As a matter of fact, such singularities can
dramatically a�ect the RG evolution and, if the singularity has the right sign, enforce
a zero in the β-function. This turns out to be the case in very familiar examples of
quantum �eld theories, such as gauged U(1) and SU(3), namely large-Nf QED and
QCD. The presence of such a zero would then suggest that these theories may actually
feature a UV interacting �xed-point, thus providing an example of asymptotic safety in
four dimension. This has been exploited in several works to obtain asymptotically safe
extensions of the SM, see [98�100,141�144].

However, some shadow on the existence of the �xed point as a consistent conformal
�eld theory (CFT) is cast already by studying anomalous dimensions of other operators
in the vicinity of the β-function singularity: in the case of large-Nf QED, the O(1/N)
anomalous dimension of the fermion mass diverges at the putative �xed point [101,102]
(which is enough to rule out this possibility), and it was recently pointed out that in
the large-N QCD the anomalous dimension of the glueball operator breaks the unitarity
bound near the singularity [145] (which could however be reconciled by saying that this
operator is decoupled at the �xed point).

In this section based on Ref. [V], we will provide further evidence against the in-
terpretation of these singularities as �xed-points by employing the results of Sec. 3.4
regarding the connection of ω and β-function for one-coupling models, where the latter
is given in (3.102).

The main idea is that, as a singularity in the β-function at O(1/Nf ) was actually
found to propagate to all higher-order functions at the same value of the coupling�
see discussion below (3.107)� these singularities can actually be resummed away when
fully exploiting the knowledge of the critical exponent ω. In fact, we have seen that the
critical exponent ω(1) contributes to the β-function also beyond O(1/Nf ). Same holds
for each ω(j): it contributes to all F (n) with n ≥ j. In the following, we denote the
contribution of ω(1), . . . , ω(j) to F (n), n ≥ j, by F (j, n). It is worth to stress that these
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Chapter 3. Gauge�Yukawa β�functions at large Nf

contributions are necessary in order to obtain the correct perturbative result from the
critical point formalism.

Since ω(1), or equivalently F (1), is known, all the F (1, n) can be computed from (3.104)
and (3.106). We �nd these induced terms in closed form as (x = gNf )

F (1,1)(x) ≡ F (1)(x) =

∫ x

0

dt

t2
ω(1)(dc − bt) (3.180)

F (1, n>1)(x) =

∫ x

0

dt

t2

n−1∑
`=1

1

`!
c

(`)
n−`−1

(
t

b

)` d`

dt`

[
t2F (1) ′(t)

]
, (3.181)

where the c
(k)
m are de�ned iteratively:

c
(k)
0 = (F (1) + c)k (3.182)

c(k)
n =

1

n(F (1) + c)

n∑
q=1

(qk + q − n)F (q+1)c
(k)
n−q. (3.183)

One can check that this is consistent at 1/N2
f with (3.107). It follows from (3.181) that

if F (1) features a negative singularity (as it is the case for (non)-abelian gauge theories)
at a given x, this results into sequence of singularities of alternating signs in F (1, n) at
the same point x with increasingly high divergent power. This means that the putative
�xed point in the β-function driven by the singularity of F (1) alone is not guaranteed to
persist when all the F (1, n) are taken into account. As we shall see, all the F (1, n) can be
actually resummed, and the �nal result features no singularity.

A direct resummation of the F (1, n) terms as presented in (3.181) is not straightfor-
ward, and we therefore employ a di�erent approach. Denoting

F(x,Nf ) ≡
∞∑
n=1

F (n)(x)

Nn−1
f

, (3.184)

the relation β′(gc) = ω(d) is rewritten as

− (d− dc) +
x2
c

Nf
∂xF(xc, Nf ) = ω(d), (3.185)

where we have used that β(gc) = 0, and the dimension d and the critical coupling are
related via

d = dc − xc
(
b+

c+ F(xc, Nf )

Nf

)
. (3.186)

Equation (3.185) would provide an exact solution, if ω were known to all orders. How-
ever, in practice this is not the case, but rather we have access to the contributions
induced by ω(1), . . . , ω(j) only. Nonetheless, a consistent solution to (3.185) incorporat-
ing all known coe�cients can be achieved by truncating the critical exponent to

ω(d) = −(d− dc) +

j∑
n=1

1

Nn
f

ω(n)(d), (3.187)

which corresponds to truncating F (n) to F (j, n) in F(x,Nf ) in (3.184). The resulting
function is denoted by F (j)(x,Nf ).
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Let us now concentrate on the simplest case j = 1 correspoding to the O(1/Nf )
critical epxonent ω(1), where the truncation leads to the following di�erential equation
for F (1):

∂xF (1)(x,Nf ) =
1

x2
ω(1)

(
dc − x

(
b+

c+ F (1)(x,Nf )

Nf

))
, (3.188)

where we have used (3.186). Notice that the brackets in ω(1)(. . . ) enclose the argument
of ω(1) as a function. If the critical exponent is known, this is a non-linear �rst-order
di�erential equation for F (1).

First, we notice that when neglecting the backreaction of F (1) on the RHS of (3.188)
the di�erential equation gives back the O(1/Nf ) part of the β-function, namely F (1)

only, that can be obtained analytically� it is in fact (3.180)� and is shown as the
red solid line in Fig. 3.15 in the case of large-Nf QCD with Nf = 50. This of course
coincides with the standard O(1/Nf ) result for QCD [104] derived from (3.180) directly,
and shows a putative UV �xed point at x = 3.

However, the advantage of our approach is that we can solve (3.188) as it is and
only afterwards take the large-Nf limit 7. This treatment encodes the fact that, if F (1)

diverges around x = 3, the backreaction on the RHS of (3.188) is certainly not small.
Equivalently, this amounts to resumming all the F (1, n)'s, given explicitly in (3.181), that
we know to be increasingly important near the singularity.

Equation (3.188) can be solved numerically, but let us �rst provide a simple asymp-
totic solution. The case we are interested in is when b (the large-Nf one-loop coe�cient)
and the sign of the singularity are of opposite sign, as it happens in large-Nf QED and
QCD 8. In this case, denoting by xs the position of the would-be-singularity, we �nd that
F (1) approaches the form:

F (1)(x,Nf ) = Nf

(a
x
− b
)
− c, x & xs, (3.189)

where a is typically O(1) and implicitly de�ned by

aNf = −ω(1)(dc − a), (3.190)

where a and b need to have the same sign. This indicates that the alternating singularities

in the F
(1)
n can be resummed to yield a �nite contribution. By using (3.189) and recalling

that x = gNf , the β function is found to be

β(g) = ag, g & gs. (3.191)

Including ω(2) in the game yields the same conclusion, and similarly for any �xed-order
truncation ω(j).

We are now ready to evaluate the β-function for large-Nf QCD by solving (3.188) for
a benchmark value Nf = 50. In our notation, SU(3) corresponds to b = 2/3, c = −11.

7 Note that, if the large-Nf expansion were under control, these two results should be approximately
the same, as all the F (1, n) in (3.181) are formally higher orders. However, this will not be the case
exactly because of the singularity.

8If b and the singularity in ω are of same sign, the higher-order terms would just enhance the original
singularity and lead to a Landau pole as is the case of super-QED at O(1/Nf ) [146] and in O(N) model
at O(1/N2) [147].
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SU(3) Νf = 50

Figure 3.15: The β-function for SU(3) for Nf = 50 computed according to (3.188). The
red line shows the singular solution one encounters neglecting the back-reaction of F (1)

on the right-hand side of (3.188), whereas the blue line is the full numerical solution.
As we can see, the two lines depart around x = gNf ≈ 3, where in fact the backreaction
on the RHS of (3.188) becomes important.

The critical exponent is known up to O(1/Nf ) and reads [103]:

ω(1)(2µ) =
η(1)(2µ)

TF

(
(2µ− 3)(µ− 3)CF −

(4µ4 − 18µ3 + 44µ2 − 45µ+ 14)CA
4(2µ− 1)(µ)

)
,

where µ = d/2, TF = 1/2 and CF = 4/3 are the index and quadratic Casimir of the
fermion representation, respectively, CA = 3 is the Casimir of the adjoint representation,
and η(1) reads

η(1)(2µ) =
(2µ− 1)(µ− 2)Γ(2µ)

4Γ(µ)2Γ(µ+ 1)Γ(2− µ)
. (3.192)

The asymptotic solution in (3.191) is given by aQCD ≈ 1.985.
The blue line in Fig. 3.15 shows the numerical solution to Eq. (3.188) for SU(3) with

Nf = 50. The asymptotic solution is reached at x = gNf . 4. As expected from the
general analysis above, the singularity and the putative UV �xed points at x = gNf ≈ 3
have disappeared. This shows that the higher order contributions in (3.181) are actually
important and the naked singularity in F (1) can in fact be resummed away.

We thus conclude that the singularities that have inspired speculations of UV �xed
points can actually be resummed away when exploiting the structure of the higher-order
functions coming from the critical exponents. No hint for a �xed point is thus found
within this framework, as its existence relied entirely on the presence of a singularity.
This is also in line with the �rst, although not yet conclusive, results from the lattice
[148].

3.6 Summary

In this chapter we have investigated the β-functions for theories that exhibit a large
�avor symmetry such as SU(Nf ) and thus contain a large number of degrees of freedom.
Because of the large multiplicity Nf , the perturbative series is conveniently reorganized
within the 1/Nf expansion, whose elements are resummed functions of the rescaled
couplings that are all-order in the number of loops.
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3.6. Summary

The novelty of our analysis with respect to previous studies was to consider the case
in which a scalar �eld couples directly to a multiplicity of fermions through yukawa in-
teractions, as inspired by UV completions of the Froggatt-Nielsen mechanism. We have
then obtained the O(1/Nf ) β-function for the pure yukawa theory in Sec. 3.2 and in-
cluded the gauge counterpart in Sec. 3.3 by means of direct bubble resummation. These
results provide new tools for analyzing the UV behavior of gauge�yukawa theories and
are in fact relevant for investigating extensions of the SM with elementary scalars like
possibly the Higgs itself, in which yukawa couplings should then be regarded as funda-
mental interactions.

In Sec. 3.4 we have taken a di�erent perspective and discussed the connection between
the large-Nf β-functions and the critical exponent ω related to the Wilson-Fisher �xed
point in d = 4−ε dimensions for theories in the same universality class. In fact, these two
quantities are related by the simple relation β′(gc) = ω(d). Nonetheless, a systematic
analysis of this correspondence was missing.

We found that for one-coupling models the knowledge of ω(d) obtained through the
critical-point method is enough to fully reconstruct the β-function at the same order
in the 1/Nf expansion, and we also provided the explicit dictionary connecting ω and
β. We have then considered the Gross-Neveu model in d = 2 as a case of study for
applying our procedure and investigated the possible appearence of an IR �xed point by
using the β-function at O(1/N2

f ) obtained from the critical exponent. The putative �xed
point turns out to be disfavored in agreement with previous studies employing di�erent
techniques.

For multi-coupling models the one-to-one relation between ω and the β-function no
longer holds and the knowledge of the exponents can only constrain certain combinations
of the resummed functions appearing in the β-functions. We have shown this explicitly
for the Gross-Neveu-Yukawa model, where we have employed direct bubble resummation
in order to calculate the full system of β-functions atO(1/Nf ), while using the knowledge
of the critical exponent ω to crosscheck our results.

Furthermore, we have commented on the possibility of extracting information re-
garding the QED3-Gross-Neveu-Yukawa model which combines all types of interactions
that have been discussed throughout this chapter (namely gauge, yukawa and scalar
quartic) at the same time. Although the full system of β-functions could not be re-
constructed combining the results of this chapter, it was nevertheless possible to obtain
the O(1/Nf ) critical exponents ω corresponding to the �xed point in d = 4 − ε for the
�rst time. These results obtained in the large-Nf framework complement the ones in
standard perturbation theory and may help the extrapolation to d = 2 + 1 where this
theory is supposed to describe quantum phase transitions for fermionic systems on a
lattice plane in a strongly-coupled regime.

Finally, our analysis also bears implications for asymptotic safety at large Nf . In
fact, after asymptotic safety was proven in d = 4 both within perturbation theory and
in the Veneziano limit, Nf/Nc → const., there has been some speculation about the ap-
pearence of the same behavior for gauge-yukawa theories in the complementary case of
large Nf but �xed Nc. In addition to previous considerations about the (in)consistency
of the correspoding conformal �eld theory, in Sec. 3.5 we have provided further evi-
dence against the large-Nf �xed points by taking advantage of the connection with
the critical exponent ω established in Sec. 3.4. We were in fact able to identify a class
of formally higher-order contributions to the β-function which always comes together
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Chapter 3. Gauge�Yukawa β�functions at large Nf

with the original singularity that was supposed to drive the system to the �xed point.
These contributions become increasingly important while approaching the singularity,
and cannot be neglected. Remarkably, these terms can actually be resummed through
the di�erential equation in (3.188) and the resulting β-function features no singularity.
We thus conclude that no hint for a �xed point is found within the large-Nf limit alone,
as this was entirely relying on the singular structure of the β-function.
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Chapter 4

A Soft Composite Higgs

In the previous chapters we have discussed the interplay of an elementary Higgs with
other aspects of physics beyond the SM, such as axions/�avor puzzle and the question of
the UV fate for gauge�yukawa theories. These topics are intrinsically related to physics
happening much above the scale of the electroweak interactions and our take regarding
the Higgs hierarchy problem was to leave it aside favoring an agnostic point of view. This
is certainly legit as �ne-tuning is by no means an inconsistency of the theory and in the
worst case it just represents a lack of understading. In fact, even though the mechanism
that keeps the Higgs light is unknown, or even if there is no mechanism at all, one can
still investigate the implications of a light and elementary Higgs, for instance trading
�ne-tuning for predictivity as in Chapter 2 or calculating the β-functions for yukawa
couplings as in Chapter 3 motivated by new paradigms for the UV completion of the SM
such as asymptotic safety.

Nevertheless, natural models for electroweak symmetry breaking still represent one
of the most appealing scenarios for physics beyond the SM. In this class of models the
Higgs is light due to the intrinsic properties of the underlying theory. A cornerstone
solution is provided by Higgs compositeness, where the Higgs emerges as a bound state
of a new strong dynamics that condenses not too far from the electroweak scale. The
sensitivity of the Higgs mass to any new physics threshold above the condensation scale
is automatically removed and so is the hierarchy problem. So far, all the scalar particles
that we know in Nature have turned out to be bound states. Nonetheless, the agreement
between a composite Higgs and the current results from the LHC is far from obvious.
In fact, minimal models are under pressure because of the null-observation of light top
partners, namely new colored fermions with the top quark quantum numbers that seem
to be a necessary ingredient to ensure a light Higgs. The main source of �ne-tuning
in these models is thus dictated by the compliance with the LHC data and has long
surpassed the minimal 10% tuning that was already implied by LEP.

In this chapter, we will present a new realization of Higgs compositeness that is based
on one single assumption [VI]: the SM fermions and the composite resonances of the
strong sector interact in a way that respects the global symmetry under which the Higgs
is a (pseudo-)Nambu-Goldstone boson. As we shall see, this requires to introduce new
vector-like fermions in the theory that complete the SM fermions to full representations
of the global symmetry. The latter is in turn broken �softly� by the vector-like masses
that make these states heavy to be compatible with current constraints and at the same
time generate a viable Higgs potential. As we shall see, this is enough to release the
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Chapter 4. A Soft Composite Higgs

tension between a composite Higgs (CH) and the current LHC data. Moreover, when
combined with other possible symmetries of the strong sector, soft-breaking leads to a
model in which the Higgs is light, and all the new states are above 2 TeV with only
10% tuning [VII]. All the ingredients that we require in constructing our model turn
out to have a very simple interpretation in the context of warped extra dimensions,
that is the language in which the original minimal composite Higgs model (MCHM)
was presented. In particular, soft breaking means universal boundary conditions for the
5D bulk fermions which are then modi�ed dynamically due to the presence of brane-
localized spinors. The resulting setup is as simple as the original holographic Higgs, but
more successful phenomenologically.

This chapter is organized as follows. After reviewing the basic concepts behind a
CH in Sec. 4.1 and the relevant experimental constrains in Sec. 4.2, we will introduce
the idea of soft-breaking in Sec. 4.3, where we also provide a quantitative analysis in the
context of phenomenological multi-site models according to [VI]. Sec. 4.4 is devoted to
the combination of soft-breaking with maximal symmetry that turns out to be a perfect
match in terms of tuning and compliance with the LHC bounds. The implementation
of soft-breaking in the context of warped extra dimension is presented in Sec. 4.5. These
last two sections are based on, [VII]. We summarize our �ndings in Sec. 4.6.

4.1 The standard picture

The mechanism underlying electroweak symmetry breaking is one of the major open
questions in the SM. Quite generically, the dynamics responsible for it can be either
weakly or strongly coupled. The former corresponds to the standard Higgs model, in
which an elementary and weakly-interacting scalar �eld breaks the electroweak symmetry
due to a non-zero condensate, 〈h†h〉 = v2/2. The scalar sector responsible for the
condensate can be treated perturbatively, and the Higgs model is in fact very predictive.
Moreover, due to an accidental global symmetry of the scalar potential the theory is
endowed with an approximate SU(2) custodial symmetry in the broken phase that makes
it extremely successful in reproducing the experimental data. The second possibility still
entails the formation of a condensate, but unlike the Higgs mechanism this occurs non-
perturbatively in the strong-coupling regime of a new hidden sector. Probably the best
known example of this kind of behavior is QCD: below the condensation scale of the
color group, ΛQCD, quarks and anti-quarks form a condensate, 〈q̄q〉, that breaks the
SU(2)L × SU(2)R chiral symmetry of the up and down quarks down to the diagonal
subgroup SU(2)V . It is interesting to notice that in a Higg-less version of the SM this
mechanism would actually provide a mass ∼ ΛQCD for the electroweak gauge bosons
while ensuring custodial protection due to the unbroken SU(2)V . In fact this shows
that a simple scaled-up version of QCD with a condensation scale Λ ∼ v may be a
good candidate for triggering electroweak symmetry breaking in the SM, and this class
of models is generically called technicolor to stress the analogy with the QCD group
[149�151].

From a phenomenological point of view, these two paradigms for electroweak symme-
try breaking lead to very di�erent predictions. In particular, due to the weakly-coupled
nature of the Higgs model, the spectrum must contain a scalar particle which is light and
narrow. As for technicolor models, they do predict scalar bound states in the theory
(mesons), but these resonances are generically expected to be heavy and broad. The
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4.1. The standard picture

discovery at the LHC of a light scalar with 125 GeV mass and a width of few MeV is
certainly a milestone in the understanding of electroweak symmetry breaking as it shows
the characteristic features of the Higgs model. Nonetheless, the very existence of a light
and elementary scalar particle is certainly puzzling from a theoretical point of view, as
we know that its mass is extremely sensitive to any new physics threshold between the
electroweak and (possibly) the Planck scale. These thresholds are particularly probable
given the open questions in the SM, such as strong CP problem and Grand Uni�ed
Theories. Thus, it is reasonable to regard the Higgs mechanism in the SM should as
a very successful parameterization for physics at the electroweak scale, whereas a more
fundamental description� also accounting for the shortcomings in the SM� is supposed
to replace it at even higher scales. In this respect, it is curious to notice that if Nature
had chosen technicolor as the mechanism behind electroweak symmetry breaking, the
issue with the stability of the Fermi scale would have been automatically solved. The
reason is what is called dimensional transmutation: a scale f is generated in QCD-like
theories as the point in which a (marginal) gauge coupling leaves the perturbative regime
as a result of its renormalization group evolution. The scale f has therefore a dynami-
cal origin and is largely insensitive to new physics thresholds, as they introduce only a
logarithmic dependence through the running.

Composite Higgs models arise as a synergy between the standard Higgs model and
technicolor [23�25], see e.g. [152�156] for reviews. The main idea is to introduce a new
strongly-coupled sector which con�nes at a certain scale f ∼ 1 TeV that is generated via
dimensional transmutation and is therefore stable under quantum corrections. Generi-
cally, the new strong dynamics can feature a global symmetry group G that undergoes
spontaneous breaking to a subgroup H due to the formation of a condensate at the scale
f . In order to obtain a viable model, one has to require that the full electroweak and
color gauge groups are contained in the subgroup H such that the SM gauge symmetry
is still unbroken at the scale f . By the Goldstone theorem, a certain number of light
scalar particles corresponding to the G/H coset appear in the spectrum. The choice
G = SO(5) × U(1)X and H = SO(4) × U(1)X

1 corresponds to the MCHM [157, 158],
in which the spectrum of NG bosons just coincides with the SM Higgs, and the theory
features the SO(4) symmetry that will lead to the custodial protection. Realizing the
Higgs as a pNGB makes it generically ligther than the other resonances which are usually
above the scale f . Having a light scalar in the spectrum solves almost all the problems
of technicolor constructions in terms of electroweak precision tests and is in agreement
with the h(125) discovery at the LHC. Moreover, as the Higgs is now a bound state,
the corrections to its mass are anyway cuto� at the scale f ∼ 1 TeV, thus solving the
hierarchy problem.

If the global symmetry G were exact, the Higgs would be a true NG boson, and
its potential would vanish identically. This means that one has to allow some explicit
breaking of G such that a potential for the Higgs is generated beyond tree level. It is
in fact this radiatively-induced potential that eventually triggers electroweak symmetry
breaking similarly to the Higgs model at the scale v . f .

As the theory is strongly coupled below the condensation scale, a quantitative anal-
ysis of CH models is possible either by means of holography or within an e�ective-
�eld-theory approach. In the following, we will follow the latter and postpone the
extra-dimensional discussion to Sec. 4.5. The e�ective theory is based on the Goldstone

1The presence of the unbroken SU(3)c is understood.
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matrix U :

U = exp

(
i

√
2

f
T âhâ(x)

)
(4.1)

where f is identi�ed with the Higgs decay constant, and hatted indices â = 1, . . . , 4
correspond to the broken generators T â after the G → H spontaneous breaking, see
(A.2). The Goldstone matrix U has peculiar transformation properties under SO(5):

U → g U h†(hâ, g), g ∈ SO(5), h ∈ SO(4). (4.2)

The simplest operator that accounts for the dynamics of the Goldstone degrees of free-
dom contains two derivatives and two insertions of U :

L∂2 =
f2

2
DµΦDµΦ, Φ = U · Φ0, (4.3)

where Φ0 = (0, 0, 0, 0, 1)T stands for the SO(4)-preserving direction and Dµ is the stan-
dard covariant derivative that includes the electroweak gauging,

Dµ = ∂µ − igWµT
i
L − ig′YµT 3

R, (4.4)

where we have used that the Goldstone matrix carries no X charge and the hypercharge
is simply Y = T 3

R. The formulas for T
3
L,R are given in (A.1).

A simpler description of the theory is obtained by choosing the unitary gauge such
that the would-be-Goldstone modes within the Higgs doublet are removed. Setting the
Higgs to its vev 〈h〉 in (4.3), one can read out the mass for the W and the Z bosons
after electroweak symmetry breaking:

m2
W =

g2

4
f2sin2(〈h〉/f), m2

Z =
g2 + g′ 2

4
f2sin2(〈h〉/f), (4.5)

implying that the electroweak scale v is related to f as

v2 = f2 sin2(〈h〉/f). (4.6)

It is thus convenient to de�ne the misalignment ξ as

ξ ≡ v2

f2
= sin2(〈h〉/f), (4.7)

in order to keep track of the relative size between v and f . The intuitive picture is that ξ
measures the angle between the true vacuum and SO(4)-preserving direction, Φ0, which
would instead correspond to unbroken electroweak symmetry. Eq. (4.5) shows that the
ρ parameter, de�ned as

ρ =
m2
W

m2
Z cos

2θW
, (4.8)

is equal to one as long as the simplest operator in (4.3) is concerned. Actually, the
custodial protection intrinsic of the SO(5)/SO(4) setup ensures that ρ = 1 is preserved
at tree-level at any order in the e�ective theory. In fact, the presence of an operator
bringing a subleading correction ∼ v2/f2 to ρ would already imply a very strong bound
on the scale f of the order of f & 8 TeV, see e.g. [154,159]. Such large hierarchy between
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4.1. The standard picture

v and f will make the model unnatural, as we shall see, and in fact this is the reason
why the more minimal coset SU(3)/SU(2)×U(1) without custodial protection is much
less favourable. From (4.3), one can also determine the Higgs couplings to V = W,Z:

cV ≡
gCHhV V
gSMhV V

=
√

1− ξ, c̃V ≡
gCHhhV V
gSMhhV V

= (1− 2ξ), (4.9)

which are in fact modi�ed with respect to the SM at the O(ξ) level. By looking at
(4.9), we can see that the CH approaches the SM Higgs boson whenever ξ → 0, or
equivalently f → ∞. On the other hand, the case in which ξ = 1, or v = f , can be
seen as the technicolor limit in which the electroweak symmetry is broken directly at
the condensation scale of the new strong dynamics. CH models can then be seen as
interpolating between these two limiting cases. As we shall see, agreement with current
observation will require ξ . 0.1.

Let us now move to discuss the Higgs potential. Because of the pNGB nature,
the Higgs can enter the theory only as trigonometric functions of argument h/f . The
potential can then be written as

V (h) = α sin2(h/f) + β sin4(h/f) + . . . (4.10)

where the dots indicate higher powers of sin(h/f) which are subleading in determining
the minimum as we already know that the misalignment will be small, ξ ∼ 0.1. The
potential in (4.10) is readily minimized with respect to h, yielding a possible position
for the minimum at

ξ = sin2(〈h〉/f) = − α

2β
. (4.11)

The relation above implies that a non-trivial vacuum with ξ . 0.1 can appear at the
price of a little tuning of the parameters. In fact, the trivial extrema would be 〈h〉 = 0 or
〈h〉 = πf corresponding to no electroweak breaking and technicolor limit, respectively.
Intuitively, the minimal tuning ∆ corresponding to a certain misalignment ξ can be
estimated as

∆ ∼ 1

ξ
=
f2

v2
(4.12)

showing that con�gurations with smaller ξ becomes more and more disfavored in this
respect. This statement can be made more precise by referring to an explicit measure for
the tuning, as the one by Barbieri and Giudice [160], nonetheless (4.12) provides a good
estimate. In particular, taking ξ = 0.1 already implies a tuning of order ∆−1 ∼ 10%. The
tolerable amount of tuning in a given theory certainly depends on taste, but few percent
is generically considered a mild tuning for models that solve the hierarchy problem all
the way up to the Planck scale.

One intriguing feature of CH models with a pNGB Higgs is that the potential is sat-
urated in the low-energy and is in principle calculable as an expansion in the parameters
that break the global SO(5). In order to determine the structure of the Higgs potential,
one can start by considering all the sources of this breaking. Since the electroweak group
is only a subgroup of SO(5), the SM gauge bosons break the global symmetry explicitly.
The size of this contribution to the Higgs mass can be estimated by naive dimensional
analysis:

δm2
h ∼

g2

16π2
Λ2, (4.13)
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where g2/16π2 takes into account that this is a one-loop contribution proportional to the
explicit breaking induced by the gauge coupling g and Λ is an e�ective UV cuto�. The
appropriate value for Λ is given in CH models by the mass threshold of the composite
states, as the new strong dynamics is indeed supposed to screen the Higgs potential from
physics above the condensation scale. In case of the gauge contribution, these new states
are spin-1 resonances, generically indicated by ρ, that have the right quantum numbers to
mix with the W and Z boson. Therefore, one simply has Λ ' mρ in (4.13), with typical
values of mρ at the multi-TeV scale. Despite this contribution being sizeable, it turns
out not to be enough to trigger electroweak symmetry breaking because the induced
Higgs mass is always positive. In fact, as shown in Ref. [161], the gauge contribution
in QCD-like gauge theories that con�ne always tries to align the vacuum such that the
gauge symmetry is preserved.

However, one can �nd a simple way out by considering the fermionic sector. In
fact, the SM fermions interact with the Higgs in a way that is only gauge-invariant and
this generically breaks the SO(5) global symmetry. This interaction needs to be there
anyway in order to provide masses for the SM fermions after electroweak symmetry
breaking. Among the di�erent ways to realize this, there is a very intriguing possibility
called partial compositeness [157, 158, 162, 163] which assumes that the SM fermions
couple linearly to composite operators OL,R of the strong sector:

Llinear = λL q̄L(∆L)OR + λR ūR(∆R)OL, (4.14)

where we have just considered left-handed quarks, qL, and right-handed up quarks, uR,
for simplicity, and ∆L,R are the spurions that connect the SU(2)L × U(1)Y quantum
numbers with the SO(5) representation of OL,R, as will be explained below. The reason
that makes partial compositeness preferable with respect to other realizations, as for
instance bilinear couplings λ q̄ qO, is �avor physics. In fact, models with bilinear terms
struggle to achieve heavy-enough SM quarks and at the same time suppress dangerous
�avor-violating couplings. This issue is so severe that in simple realizations one would
need to raise the condensation scale f much above the electroweak scale thus introducing
a large �ne-tuning according to (4.12). Conversely, linear couplings comply more easily
with �avor constraints and o�er in addition a very elegant means to explain the �avor
puzzle in the SM. In fact, a small di�erence in the quantum scaling of the operators Oi
that couple to the di�erent SM families can result in a large hierarchy for the e�ective
yukawa couplings to the Higgs. This occurs naturally in case of a large separation
between f and the scale at which the coupling λ q̄iOi is generated, together with sizeable
anomalous dimension for Oi. Remarkably, these conditions can be satis�ed by linear
couplings without reintroducing the hierarchy problem and without running into formal
inconcistencies for the underlying (nearly-)conformal �eld theory. This has a very simple
interpretation in holographic Higgs models, as we shall see in Sec. 4.5 2.

Let us now discuss the implications of partial compositeness from a low-energy per-
spective. To this end, we notice that below the condensation scale the operator O can
excite a tower of massive fermion resonances from the vacuum. As the symmetry is now
broken from SO(5) to SO(4), these resonances can be organized as SO(4) multiplets.

2However, when considering purely four-dimensional theories of partial compositeness [164, 165],
having a di�erent operator for each SM �avor requires a large number of fermionic degrees of freedom
in the fundamental theory above f . This generically con�icts with the requirement that the new strong
dynamics con�nes in the IR. In these models, only third-family quarks are then partially composite.
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For concreteness, let us consider the case in which the lowest resonances are Q ∼ 4 and
T̃ ∼ 1 of SO(4). The e�ective Lagrangian is then

Lmixing =λL f (q̄L∆L)I

(
aL UIiQ

i
R + bL UI5 T̃R

)
+ λR f (t̄R∆R)I

(
aR UIiQ

i
L + bR UI5 T̃L

)
−mQQ̄LQR − m̃T

¯̃TLT̃R + h.c.,

(4.15)

where I = 1, . . . 5 and i = 1, . . . 4 are SO(5) and SO(4) indices, respectively, and we have
considered only the top quark as it gives the largest contribution to the Higgs potential.
The size of the explicit breaking of SO(5) is given by the dimensionless parameters λL,R,
which need to be smaller than the typical interaction strength g∗ among the composite
states to treat the SO(5) breaking perturbatively. The appearence of the U matrix is
consistent with the Callan�Coleman�Wess�Zumino construction [166,167] and takes into
account that the presence of the SO(4) multiplets Q and T̃ is linked to the spontaneous
(rather than explicit) breaking of SO(5). In fact, when considering the transformation
properties of the Goldstone matrix U in (4.2), one has that the combinations U ·Q and
U · T̃ indeed transform linearly under SO(5):

U → g U h†, Q→ hQ ⇒ U ·Q→ g (U ·Q), (4.16)

and similarly for T̃ .

One can see that the form of (4.15) actually describes a physical mixing between the
SM quarks and the composite resonances. Before electroweak symmetry breaking, qL
mixes with the one doublet with the SM quantum numbers within the fourplet Q and
tR with T̃ . The mixing angle θL,R is then related to the parameters in (4.15) as

sin θL ∼
λLf

mQ
, sin θR ∼

λRf

m̃T
. (4.17)

After electroweak symmetry breaking, this mixing induces a mass for the top quark that
is given by

mt ∼ sin θL sin θRm∗ sin (〈h〉/f), (4.18)

where we have indicated by m∗ the mass scale of the top partners. Thus, we can see
that the more a SM �eld mixes with the composite states, the heavier it will be after
electroweak symmetry breaking. More precisely, one �nds [168]:

mt '
λLλRf√

2mT

v, (4.19)

where mT = min(mQ, m̃T ). With the Lagrangian (4.33), one can estimate the contri-
bution to the Higgs potential from loops involving the top quark and the partners Q
and T̃ . Unlike the gauge sector, the sign of the fermion contribution is unconstrained,
and the vacuum can actually be misaligned in the right way. The Higgs mass can then
be evaluated from (4.10) as:

m2
h =

∂2V

∂h2

∣∣∣∣
〈h〉

=
8β

f2
(1− ξ)ξ. (4.20)
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The coe�cient β was estimated in Ref. [168] according to (4.15) to be

β ' Nc

16π2
f4λ2

Lλ
2
R, (4.21)

where Nc = 3. Thus, combining (4.19) with (4.20) one obtains the following relation:

mh '
√

3

π
mt

mT

f
. (4.22)

As we can see, the relation above tightly connects the top mass, the Higgs mass and the
mass of the top partners [158,168�171]. Eq. (4.22) is found to hold in minimal CH models
with partial compositeness independently of the details of the concrete realization 3. For
ξ = 0.1 correspoding to f ∼ 800 GeV one obtains mT ∼ 1 TeV in order to reproduce the
correct Higgs mass. Such partner masses are actually rather odd as the mass m∗ of a
generic composite state is supposed to be parametrically larger than the scale f . In fact
one usually has m∗ = g∗f with typical values g∗ ∈ (4, 8) assuming an underlying CFT
with a number of colors Nc ∈ (3, 10), see e.g. [173]. On the other hand, anomalously
light top partners with mT ∼ f seem to be a necessary ingredient in order to reproduce
a light Higgs. This information is certainly crucial for the LHC searches of new colored
states that can in fact be produced in this mass range, as we shall see in the next section.

4.2 Survey of experimental constraints

As discussed in the previous section, CH models generically predict new states at the
TeV scale and modi�cations of the Higgs couplings to SM particles. This can result
in potentially large modi�cations of the electroweak observables, precisely measured by
LEP in the 90's. In particular, new physics contribution to the oblique Peskin-Takeuchi
parameters S and T [174] is already severely constrained: too large corrections to the
S parameter are in fact one of the main reasons to favor CH models with respect to
technicolor. These parameters refer to tree-level or loop corrections to the propagators of
the electroweak gauge bosons γ, Z andW . The term oblique is used as opposed to direct,
the latter describing vertex and box corrections to a generic electroweak observable.

Let us now brie�y review how CH models are supposed to contribute to S and T (see
Refs [154,155] for a more complete discussion). The �rst class of corrections comes from
the non-linear nature of the pNGB Higgs and is fully speci�ed by the coset structure.
It is therefore dubbed IR contribution, and is unavoidable in any CH realization. This
correction involves loop diagrams as in Fig. 4.1, where capital and small letters stand
for gauge bosons and Higgs degrees of freedom (including the electroweak Goldstones),
respectively. These one-loop corrections occur in the SM as well, where the overall
contribution turns out to be �nite due to the renormalizability of the theory. However,
in the e�ective theory describing a composite Higgs, a logarithmic sensitivity to the
scale of the new resonances appears. Technically, this comes from the fact that di�erent
divergent contributions no longer cancel due to the modi�ed Higgs couplings to vector
bosons, see (4.9). These log-enhanced contributions are proportional to the misalignment

3An exception is given by the MCHM14, where the SM fermions are embedded in the 14 of SO(5).
In this case the relation (4.22) can be violated, and a light Higgs can emerge at the price of ad hoc

cancellations [172,173].
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Figure 4.1: Loop contributions to Ŝ and T̂ involving the Higgs doublet.

ξ that measures the non-linearity of the Higgs and its deviation from the SM expectation.
For the SO(5)/SO(4) coset one �nds:

∆Ŝh =
g2

192π2
ξ log

(
m2
ρ

m2
h

)
' 1.4× 10−3ξ,

∆T̂h = − 3g′2

64π2
ξ log

(
m2
ρ

m2
h

)
' −3.8× 10−3ξ,

(4.23)

where ∆ indicates that the SM contribution has been subtracted and the scale of the
vector resonance ρ is set to mρ = 3 TeV for the numerical estimate. The hatted pa-
rameters are related to S and T as Ŝ = (α/4 sin2θW )S and T̂ = αT . Notice that
the parameter T̂ receives logarithmic corrections (rather than quadratic) because of the
custodial symmetry of the SO(5)/SO(4) coset.

Besides the IR contribution due to the modifed Higgs couplings to vector bosons,
there are other two sources that a�ect Ŝ and T̂ , namely the contribution from the vector
boson resonances ρ and the one from the fermion sector. As mentioned below (4.13), a
vector boson ρ can have the right quantum numbers to mix with a Z or W boson. The
vector resonances therefore a�ect the propagation of W and Z already at tree level and
give the following contribution to Ŝ:

∆Ŝρ =
m2
W

m2
ρ

' 10−3 (4.24)

with mρ = 3TeV. This potentially large tree-level e�ect is indeed the reason for taking
ρ in the multi-TeV region. The contribution to the T parameter from the vector reso-
nances turns out to be zero at tree-level again because of the custodial invariance. The
radiative contribution is instead non-vanishing but lacks the logarithmic enhancement
and is expected to be subleading with respect to ∆T̂h in (4.23).

The contribution of the fermionic sector can be similarly divided in IR contribution
from loops involving the top quark and UV contribution by the fermionic resonances.
Similarly to (4.23), the IR contribution is important as it can feature a logarithmic
enhancement. The reason for this is the analogous modi�cation of the top yukawa with
respect to the SM value. The exact change depends on the coset structure and on the
way the SM fermions are embedded in the theory. Nevertheless all changes are always
O(ξ), and for the MCHM5 one has

ct =
yCHt
ySMt

=
1− 2ξ√

1− ξ
. (4.25)
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Figure 4.2: Left: Exclusion lines for Ŝ and T̂ at 1,2,3σ CL from the electroweak precision
tests [176]. CH models generically require cancellations among fermion and vector
contributions to pass the electroweak precision tests. Larger values of the misalignment
ξ correspond to larger cancellations. Plot taken from Ref. [177]. Right: Exclusion lines
at 1,2,3σ CL for the misalignment ξ coming from the direct measurement of the Higgs
couplings at the LHC. The green (light blue) line corresponds to the MCHM5 (MCHM4).
Plot taken from Ref. [178].

The e�ect for the T̂ parameter is estimated as [175]

∆T̂top =
3y4
t

16π2g2
∗
ξ log

(
m2

Ψ

m2
t

)
' 10−2ξ, (4.26)

where g∗ is the coupling strength among the resonances, and we have taken g∗ = 3 and
mΨ = 1.5TeV for the numerical estimate. The IR e�ect from the top quark on Ŝ is
instead subleading with respect to the IR e�ect from the Higgs. Other contributions to
Ŝ and T̂ are found when considering the e�ect of the fermionic resonances, and can be
as sizeable as (4.26), especially in case of anomalously light top partners, see e.g. [154].

The way the possible sources discussed so far act on the (Ŝ, T̂ ) parameter space is
shown in the left panel of Fig. 4.2. As we can see, O(1) values of ξ are strongly disfavored
by the electroweak precision tests. However, a misalignment as large as ξ ∼ 0.25 could
become possible due to the interplay of the vector and fermion contributions as in (4.24)
and (4.26), respectively. This possibility, however, relies on suitable cancellations and
is therefore disfavored by �ne-tuning arguments. For this reason, we shall always focus
on the parameter space with ξ . 0.1 so that considering the IR-e�ect alone one is still
close to the 3σ region. Of course, even with this choice of ξ the agreement with the
electroweak precision tests is not a given and all contributions should be in principle
evaluated in a speci�c model.

In any case, it is fair to say that the LEP data alone already imply that the deviations
from the SM for the Higgs couplings must be rather small, and this translates into
a constrain on the misalignment angle as strict as ξ . 0.1. According to our naive
estimate in (4.12), this already bears a certain amount of �ne-tuning in CH models of
the order ∆−1 ∼ 10%. Actually, with the rise of the LHC era, the parameter ξ can also
be constrained directly by measuring the coupling of the Higgs boson to SM particles
and looking for deviations as in (4.9) and (4.25). As we can see from the right panel of
Fig. 4.2, these constraints are becoming more and more competitive and values of ξ & 0.2
are highly disfavored in some benchmark models as the MCHM5, further motivating the
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4.2. Survey of experimental constraints

Figure 4.3: Results from a di�erent combination of CMS (left) and ATLAS (right)
searches for a vector-like quark T2/3. Plots taken from [180].

.

choice of ξ . 0.1 4.

Besides electroweak precision observables and Higgs couplings, CH models can be
tested at the LHC by searching directly for fermion and vector resonances at the TeV
scale. While vector bosons in the multi-TeV range are anyway favoured by electroweak
precision tests, fermionic resonances are expected at the TeV scale or even lighter by
consideration related to the top quark, as discussed below (4.22). If the top partners
are not too heavy, they can be produced at the LHC either singly or in pairs. For top-
partner masses around 1 TeV, pair production through strong coupling is the dominant
mechanism [179]. For a T state with electromagnetic charge 2/3, the main decay channels
are T → ht,Wb, Zt. The relative importance of these channels depends on whether T
is a singlet or a doublet under SU(2)L. A combination of di�erent ATLAS and CMS
searches for a vector-like quark T2/3 is shown in Fig. 4.3. Both searches make use of 36
fb−1 data for collisions at center of mass energies of

√
s = 13TeV, These analyses cover

the possible range for two relevant branching ratios, B(ht) and B(bW ), whereas the
third one B(Zt) is easily deduced from the other two. As we can see, top partners with
a mass mT < 1.3TeV are disfavored regardless of the details of the branching ratios. On
the other hand, the region mT > 1.4TeV remains largely unconstrained.

When comparing these constraints with (4.22), one sees that minimal incarnations
as the MCHM5 with ξ = 0.1 are almost excluded as the light top partners should have
already been seen at the LHC. Clearly, minimal models can be rescued by simply raising
the decay constant f above the TeV scale or, equivalently, further decreasing ξ. In this
sense, the lack of signals at the LHC represents a stronger constrain on ξ than the one
from LEP. However, this way of resolving the tension has two immediate drawbacks:
(i) increasing the Higgs decay constant f pushes the tuning of the model towards the
percent level as it scales (at least) quadratically with f , see (4.12); (ii) a larger value for
f explains the lack of signals in a very trivial way, as we already know that the limit of
large decay constant is just the SM, and by doing so all signals of Higgs compositeness
are simultaneously suppressed because of the non-observation of the top partners.

In the next section, we will introduce a new way of breaking the SO(5) global sym-
metry such that the prediction of anomalously light top partners is avoided due to a

4The light-blue line in the right panel of Fig. 4.2 corresponds to embedding the SM fermions into
spinorial representations 4 of SO(5). This was in fact our choice for the axion-Higgs uni�cation in
Sec. 2.5. There, the misalignment ξ was realized as ξ � 1, and all bounds are easily avoided.
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di�erent parametric structure of the Higgs potential. As we shall see, this modi�es the
relation in (4.22) such that heavy top partners will become compatible with a light Higgs
without the need of raising f .

4.3 Softening the explicit breaking

As discussed in Sec. 4.1, CH models are not only a means to address the stability of the
electroweak scale: partial compositeness explains the hierarchy in the masses of the SM
�avors as a result of relatively small di�erences among the quantum scaling dimensions of
the composite operators they mix with, which are then spread throughout several orders
of magnitude by RG running. Besides generating their masses, the mixing between
SM fermions and composite operators is linked with the Higgs potential itself, as SM
�elds act as a source of explicit SO(5) breaking. Loops containing SM fermions then
contribute to the Higgs potential and can help misaligning the vacuum in the right way.
Quantitatively, the top quark plays the major role as it features the largest interaction
with the strong sector. As we have seen in (4.22), this very appealing construction brings
along a sharp prediction that connects the top mass, the Higgs mass and the mass of
the top partners. The latter is crucial for the searches of new colored particles, and the
so-far null signals of new physics from the LHC around the TeV scale put the idea of
Higgs compositeness under pressure.

The core assumption that leads to anomalously light top partners is the symmetry-
breaking property of partial compositeness. There, the top yukawa is a hard source of
explicit breaking and tries to push the Higgs mass above its observed value unless new
particles come at a relatively low scale to rescue it.

In this section, we will mainly follow Ref. [VI] and present a novel way of tackling
this issue based on a structural change of the way the elementary and composite sectors
talk to each other. In particular, SM fermions will still couple linearly to composite
operators not to spoil the nice features of partial compositeness. However, we shall
assume that this mixing preserves the global symmetry SO(5) such that the top yukawa
is no longer a direct source of explicit breaking. This is possible by uplifting the SM
fermions to complete representations of SO(5), and a direct consequence of this is the
appearence of new elementary fermions charged under the SM gauge group. The global
SO(5) still needs to be broken to misalign the vacuum: this is achieved by introducing
vector-like masses for the new elementary fermions that provide the source of explicit
breaking and at the same time account for the non-observation of light fermions other
than the SM ones. In practice, the explicit breaking of SO(5) has been moved from the
interaction between the elementary and strong sector to the structure of the elementary
sector itself. In particular, the microscopic interactions between the elementary fermions
and the costituents of the strong sector no longer break the global symmetry. This is
broken only by vector-like masses that are �soft� terms as opposed to �hard� dimensionless
couplings 5.

Our immediate aim is to consider the low energy theory below the condensation scale
f and investigate whether this new way of realizing the explicit SO(5) breaking is of
any help regarding the issue of light top partners. In doing so, the key parameter is
going to be the mass scale of the new vector-like fermions, mV . In fact, two relevant

5We envisage that this can have some implications also when investigating possible completions of
the CH e�ective theory.
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limits exist: when mV exceeds the typical scale of the composite resonances, the new
elementary states are e�ectively decoupled, and the soft-breaking assumption becomes
indistinguishable from the standard partial compositeness. On the other hand, the whole
Higgs potential becomes small in the limit of vanishing mV , as the vector-like masses
represent the only source of explicit breaking in the fermionic sector. Despite having
no practical use, these two limits are conceptually helpful as we can understand the
soft-breaking setup as smoothly interpolating between a scenario with no electroweak
symmetry breaking at all, mV � f , and conventional CH models with partial compos-
iteness, mV � f , the intermediate region being the target of our analysis.

4.3.1 Minimal realization

Our starting point is the e�ective Lagrangian in (4.15) correspoding to the MCHM5,
where the subscript refers to the emebedding of the SM fermions qL and tR as funda-
mental representations 5 of SO(5) with X = 2/3. The hypercharge is as usual

Y = X + T 3
R. (4.27)

The spurions ∆L,R for this choice of the representations are explicitly given by 6

∆L =
1√
2

(
0 0 1 −i 0
1 i 0 0 0

)
, ∆R = −i

(
0 0 0 0 1

)
. (4.28)

The presence of ∆L,R in (4.15) signals that qL and tR act as an explicit source of SO(5)
breaking.

As mentioned above, we want to explore here a setup in which partial compositeness
respects the global symmetry SO(5). This implies that the SM fermions need to be
completed to full SO(5) representations, and new degrees of freedom exist in order to
�ll the gaps in (4.28). The set of new elementary fermions that can achieve this is not
unique. For concreteness, we will now consider the setup that requires the least number
of new states in the elementary sector that we shall refer to as soft MCHM5 (sMCHM5).
It consists of three vector-like fermions: a singlet s and two doublets v and w that
complete the SM fermions to full SO(5) multiplets, ψtL and ψtR, as [VI]:

ψtL = ∆†L qL + ∆†wwL + ∆†ssL, ψtR = ∆†RtR + ∆†wwR + ∆†vvR, (4.29)

where ∆s = ∆R, ∆v = ∆L, and

∆w =
1√
2

(
−1 i 0 0 0
0 0 1 i 0

)
. (4.30)

Notice that the Weyl spinors sR and vL are left out of the ψtL,R multiplets; their pres-
ence is however necessary in order to write down vector-like masses for s and v. In
components, (4.29) amounts to

∆†qLqL =
1√
2


bL
−ibL
tL
itL
0

 −→ ψtL =
1√
2


bL − w1

L

−ibL − iw1
L

tL + w2
L

itL − iw2
L

i
√

2sL

 , (4.31)

6These new spurions for the fundamental 5 di�er from the ones in (2.80) for the spinorial 4, but we
prefer to keep the same symbols throughout this chapter for simplicity.
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SU(3)c SU(2)L U(1)Y
s 2 1 2/3

v 2 2 1/6

w 2 2 7/6

Table 4.1: New elementary vector-like fermions in the sMCHM5 and their SM quantum
numbers.

and

∆†tRtR =


0
0
0
0
−itR

 −→ ψtR =
1√
2


v2
R − w1

R

−iv2
R − iw1

R

v1
R + w2

R

iv1
R − iw2

R

i
√

2tR

 . (4.32)

The SM charges of s, v and w are given in Table 4.1. As we can see, v and s share the
same quantum numbers of qL and tR, respectively, whereas w is an exotic quark. The
partial compositeness Lagrangian now simply reads

Lmixing =λL fπ ψ̄
t
LI

(
aL UIiQ

i
R + bL UI5 T̃R

)
+ λR fπ ψ̄

t
RI

(
aR UIiQ

i
L + bR UI5 T̃L

)
−mQQ̄LQR − m̃T

¯̃TLT̃R + h.c.,

(4.33)

where the linear mixings in the �rst and second line are now truly SO(5)-invariant as
opposed to (4.15). At this point, we still need to include mass terms for s, v and w
together with possible mixings with qL and tR. This is done by considering all the terms
in the elementary sector that are allowed by the SM gauge symmetries:

−Lel =ms(s̄LsR + s̄RsL) +mv(v̄LvR + v̄RvL) +mw(w̄LwR + w̄RwL)

+ (δ1 s̄LtR + δ2 q̄LvR + h.c.) .
(4.34)

The elementary Lagrangian, Lel, can be rewritten in terms of ψtL,R, sR and vL as

− Lel = ms ψ̄
t
L∆†s sR +mvv̄L ∆vψ

t
R + ψ̄tL(mwΓw + δ1Γs + δ2Γv)ψ

t
R + h.c. (4.35)

where we have de�ned the matrices (Γa)IJ ≡ (∆†a)I(∆a)J for a = s, v, w. Eq.(4.35)
accounts for the vector-like masses of the new elementary fermions and at the same time
provides the explicit breaking of SO(5), as it is now apparent due to the presence of the
∆ and Γ spurions.

Because of the new way of breaking the global symmetry, the soft-breaking setup
results in a parametrically di�erent structure for the Higgs potential. In the MCHM5,
the linear mixings λL∆L and λR∆R always come together with the Goldstone matrix
U . Therefore, a one-loop diagram with two propagators is already enough to provide
a non-zero contribution to the Higgs potential, see the right panel of Fig. 4.4. In the
sMCHM5, however, the SO(5) breaking is given by the vector-like masses in the ele-
mentary sector, and thus two extra steps are needed� from Lmixing to Lel, and back�
for the Goldstone matrix to enter the loop together with one of the spurions in (4.35) 7.

7At least one spurion should appear in the diagram to give a non-vanishing contribution.
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sR ψtL

QR/TRψtL

ms∆s

λLU

λLU

ms∆s

qL λL∆LU

QR/TRλL∆LU

Figure 4.4: Typical contribution to the Higgs potential in the sMCHM5 (left) from a
sR loop as compared to a qL loop in the MCHM5 (right). Two more propagators are
needed in the sMCHM5 to have the spurions ∆ and the Goldstone matrix U appearing
at the same time.

This is schematically shown in the left panel of Fig. 4.4. A larger number of propagators
generically softens the UV behavior of a given diagram, thus further reducing the UV
sensitivity of the Higgs potential.

In the next section, we will discuss the consequences of this in terms of divergences
and renormalization in a class of phenomenological models for the CH called multi-site
models.

4.3.2 Multi-site models: divergences and predictivity

Multi-site models are phenomenological incarnations of Higgs compositeness that allow
for a calculable description of the low-energy e�ective theory [171, 181]. These are
inspired by the extra-dimensional realization of the new strong dynamics based on the
AdS/CFT correspondence [182]. As we shall see in Sec. 4.5, holographic models in 5D
feature a Higgs potential that is always �nite and thus captures the essential idea of the
CH, namely that its potential is saturated by physics in the IR. This is indeed the core
of the solution to the hierarchy problem, as the Higgs bound state disappears above the
condensation scale.

It has been shown that the extra dimension can actually be discretized to a �nite
collection of sites, thus providing a purely 4D e�ective theory that re�ects the key
properties of the 5D construction. Physically, each site describes a new layer of composite
resonances. The symmetry structure at the i-th site is based on a

SO(5)
(i)
R × SO(5)

(i+1)
L /SO(5)

(i)
L+R (4.36)

non-linear sigma model, and the Goldstone �elds Ωi are used to connect the sites forming
a chain of nearest-neighbour interactions. All the Goldstone �elds but one are eventually
eaten as an iteration of the Higgs mechanism that provides the mass for the spin-1
resonances ρi. The remaining one is instead identi�ed with the pNGB Higgs. At the
left-most site of the chain the symmetry is just the SM gauge group, and this corresponds
to the elementary sector, whereas at the right-most site one has the usual SO(5)/SO(4)
coset structure that mimics the spontaneous SO(5) → SO(4) breaking at the scale f .
This setup is visualized in Fig. 4.5.

This class of models takes advantage from a property that is called collective sym-
metry breaking. The idea is that a contribution to the Higgs potential is generated only
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Figure 4.5: Graphical visualization of the structure of multi-site models. Figure taken
from [183].

when several sources of explicit breaking come together at the same time. In this case,
there are two sources of SO(5) breaking: one is found at the elementary site at the one
end of the chain, where the symmetry is only SU(2)×U(1); the second source is located
at the other end of the chain which is only SO(4)-symmetric by construction. Since
both these breakings need to appear at the same time, one needs to travel from one
boundary to the other in order to obtain a non-vanishing contribution to the Higgs po-
tential. Because of the nearest-neighbour interactions, this requires several propagators,
and the loops become �nite. Obtaining a calculable Higgs potential is then just a matter
of considering a large-enough number of sites. This mechanism is closely related to the
holographic description in 5D, where the ends of the chain are identi�ed with the UV
and IR brane. As we shall see in Sec. 4.5, the source of explicit breaking is there given
by speci�c �eld boundary conditions on the branes and only loops that stretch from one
boundary to the other can know about it. This cuts o� any UV divergence yielding a
potential that is proportional to the �nite volume of the warped extra dimension.

Multi-site models are advantageous because of their transparency and calculability
without having to rely on the full extra-dimensional picture. The simplest construc-
tion one can think of is in fact the two-site model. This includes the elementary SM
fermions and only one layer of resonances, and is obtained by removing all the bulk sites
from Fig. 4.5. This setup has been discussed for instance in Ref. [168] as a simple and
powerful tool to derive quantitative relations for the spectrum of the top-partners. The
Lagrangian of the two-site model is:

Ltwo-site = λLq̄
i
L (∆L)iI ψ̃

I
R + λR t̄

i
R (∆R)I ψ̃

I
L −mQQ̄Q− m̃T

¯̃T T̃ , (4.37)

where ψ̃ = U(Q, T̃ ). Comparing with (4.15), we see that the two-site Lagrangian simply
corresponds to aL = bL and aR = bR.

Let us now brie�y discuss what kind of divergences are found within the conventional
two-site model de�ned by (4.37). Referring to the parameterization of the Higgs potential
in (4.10), one can check that α receives one-loop contributions from the right diagram
in Fig. 4.4 and the analogous one with qL replaced by tR. The explicit calculation gives:

α =
3

8π2
(2λ2

R − λ2
L)f2

∫ Λ

0
p3 dp

(
1

p2 + m̃2
T

− 1

p2 +m2
Q

)
. (4.38)

An interesting property of (4.38) is that the quadratic divergence ∝ Λ2 for α that one
would naively guess from dimensional analysis is actually replaced by a logarithmic one
∼ logΛ. This is precisely because of collective symmetry breaking and shows that multi-
site models are indeed e�ective in curing the divergences of the Higgs potential. This
is even more apparent when looking at the coe�cient β, which turns out to be �nite
already within the two-site model.
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If one bulk site is added, thus switching to a three-site model, one �nds that α
becomes �nite giving a fully calculable potential. This is simply understood as better
reconstructing the �fth dimension. However, one can still keep the simplicity of the
two-site model by employing standard renormalization techniques to get rid of the log-
divergence in (4.38). The reasoning is as follows: it is su�cient to introduce a single
counterterm in the Lagrangian (4.37) of the form δα sin

2(h/f) to keep α+δα �nite order
by order in perturbation theory. This means that the coe�cient of sin2(h/f) is not
predictable in the two-site model, and the idea is to �x it once all the other parameters
are given in order to reproduce the correct Higgs vev. However, the two-site model still
predicts the crucial relation between the Higgs mass and the top partner mass through
the coe�cient β which is indeed always �nite and related to the Higgs mass through the
basic relation in (4.20). Indeed, the derivation of (4.22) did not require the calculation
of α, and we thus conclude that the two-site model is still highly predictive.

Let us now move to discuss in detail the two-site model for the soft-breaking setup
discussed in the previous section. The two-site Lagrangian is very similar to (4.37), with
the crucial di�erence that qL and tR are completed to full multiplets ψtL,R [VI]:

L soft
two-site = λLfπψ̄

t
L ψ̃R + λR fπψ̄

t
R ψ̃L −mQQ̄Q−mT

¯̃T T̃ , (4.39)

together with Lel in (4.35). In principle, we could expect a di�erent divergence structure
because of the di�erent number of propagators that are required to generate α, see again
the left plot of Fig. 4.4. Indeed, it turns out that the �rst two terms in (4.35) proportional
to ms and mv do provide a �nite α; however, the remaining terms proportional to mw,
δ1 and δ2 give a log-divergent contribution making α not predictable within the soft
two-site model either. In particular, one �nds that w contributes to α as

α = · · ·+ 3

4π2
λLλRf

2

∫ Λ

0
p3 d p3 mw

p2 +m2
w

(
mQ

p2 +m2
Q

− m̃T

p2 + m̃2
T

)
, (4.40)

which is indeed log-divergent with Λ. Notice that decoupling the w state by giving it a
large mass would be of no help, as the lack of these propagating degrees of freedom would
reintroduce the log-divergence in the other terms. In Sec. 4.4.2 we will comment on the
possibility to make the potential fully calculable in the soft two-site by choosing a slightly
less minimal �eld content for the elementary vector-like fermions. In the following, we
will stick to the minimal embedding in (4.29) and deal with this divergence similarly
to what has been done for the standard two-site model in (4.37). In particular, when
providing analytical estimates of the main relations in our model, it is su�cient to focus
on β which is fully calculable. It can be derived from the Coleman-Weinberg potential,

V (h) = −2Nc

8π2

∫ Λ

0
dp p3 log det

[
p2
1+m†m(h)

]
, (4.41)

where m(h) is the �eld-dependent fermion mass matrix such that

det
[
p2
1+m†m(h)

]
= 1 + a(p2) sin2(h/f) + b(p2) sin4(h/f), (4.42)

where a(p2) and b(p2) are functions of the fermion masses. Expanding the logarithm up
to sin4(h/f), one �nds (4.10) where

α = −2Nc

8π2

∫ Λ

0
dp p3a(p2), β = −2Nc

8π2

∫ Λ

0
dp p3

(
b(p2)− a2(p)

2

)
. (4.43)
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Since α is log-divergent with Λ, we will assume that a counterterm δα has been introduced
such that the Higgs gets the correct vev. As for β, the integral is convergent and the
cuto� can be safely sent to in�nity; we will then use the very expression in (4.43).

Instead, when performing numerical scans, we will refer to the renormalized version of
the Coleman-Weinberg potential, where the freedom in the �nite part of the counterterm
δα translates to an arbitrary renormalization scale µ:

V (h) = − Nc

16π2

∑
i

mi(h)4

[
log

(
mi(h)2

µ2

)
− 3

2

]
, (4.44)

andmi(h) are the �eld-dependent fermion masses. The value of µ is determined, once all
the other parameters are �xed in order to reproduce the correct Higgs vev. In particular,
we require µ to be below the cuto� of the e�ective theory, Λ ≈ 4πf , so that µ can actually
be interpreted as an e�ective parameter capturing the e�ect of the heavier resonances,
or, equivalently, of the additional sites.

As we have seen at the beginning of this chapter, another crucial quantity besides
the Higgs potential in determining (4.22) is the mass of the top quark. In the two-site
model, this evaluates to

m2
t =

λ2
Lλ

2
Rf

2(mQ − m̃T )2

2(m2
Q + λLf2)(m̃2

T + λRf2)
v2, (4.45)

which is in agreement with (4.19). A similar expression formt is found in the soft two-site
model where however there are more states that can mix with the top, namely the singlet
s and the doublet v. The explicit formula for mt is therefore more involved although it
brings no conceptual di�culty. For instance, setting δ1 = δ2 = 0 for simplicity, one has

m2
t =

λ2
Lλ

2
Rf

2m2
sm

2
v(mQ − m̃T )2

2(m2
Qm

2
v + λ2

Lf
2m2

v + λ2
Lλ

2
Rf

4)(m̃2
Tm

2
s + λ2

Rf
2m2

s + λ2
Lλ

2
Rf

4)
v2. (4.46)

In the limit of large ms and mv, one can check that the elementary �elds e�ectively
decouple and (4.46) approaches (4.45). In general, as long as ms,v & λL,Rf , the new
expression for mt gives basically the same result as the standard one, namely the top
mass is only mildly a�ected by promoting the SM fermions to complete SO(5) multiplets.

The vector-like masses for the new elementary fermions, ms, mv andmw, are a priori
independent quantities, and their values could be predicted only in a more complete
theory for the elementary sector. In the following, we will simply regard the vector-like
masses as phenomenological parameters that can be arbitrarily varied with the aim of
exploring which region of parameter space has the strongest impact, and refer to Sec. 4.5
for a possible rationale behind their actual values. In particular, we will retain the
possibility that some mild hierarchies exist in the vector-like masses. Such hierarchies
need not be extreme: whenever a state exceeds the typical scale of the composites ∼ 4πf ,
it no longer contributes to the Higgs potential. Thus, we will consider two cases: First,
we will assume that only the singlet s is active below the condensation scale. This
drastically reduces the number of new free parameters with respect to the conventional
two-site model and makes the analysis very simple and transparent. In the second case,
all vector-like fermions participate to the dynamics, and we will then mainly rely on a
scan over the parameter space.
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4.3. Softening the explicit breaking

4.3.3 Two-site model analysis

We present here the analysis within the soft two-site model introduced in the previ-
ous section considering the case of mild hierarchies among the elementary vector-like
fermions as well as the general case in which all the new states are active below the
condensation scale. What follows is based on Ref. [VI].

Singlet case

We start by considering the case in which v and w are heavier than s and reside above the
condensation scale. We will thus remove these degrees of freedom from the model: this
can be done either directly from (4.29) or by leaving (4.29) unchanged and eventually
take the limit for mv,w → ∞. The only state that is possibly active is then the singlet
state s. The full Lagrangian describing this setup is deduced from (4.35) and (4.39) and
reads:

L singlet = λLfψ̄
t
L ψ̃R + λRf ψ̄

t
R ψ̃L − ms ψ̄

t
L∆†s sR + δ1ψ̄

t
LΓsψ

t
R

−mQQ̄LQR − m̃T
¯̃TLT̃R + h.c.,

(4.47)

where we recall that ψ̃ = U(Q, T̃ ), and w and v have been decoupled leaving only

ψtL = ∆†L qL + ∆†ssL, ψtR = ∆†RtR. (4.48)

As we can see, there are two more parameters when comparing with the conventional
two-site in (4.37), namely ms and δ1. In order to derive simple estimates for our model,
we will set δ1 = 0 as the qualitative behavior is left unchanged (the case of a non-zero
δ1 will be considered when performing a numerical scan). Within this assumption, the
top mass is given by:

m2
t =

λ2
Lλ

2
Rf

2m2
s(mQ − m̃T )2

2m′2T [m2
T̃
m2
s + λ2

Lλ
2
Rf

4]
v2 (4.49)

where m′2T = m2
Q +λ2

Lf
2, m2

T̃
= m̃2

T +λ2
Rf

2. From (4.49) we can see that the expression
for mt is always slightly smaller than its counterpart in (4.45). By itself, this e�ect
would imply even lighter the top partners. However, this is actually not the case when
the more important modi�cation in the Higgs potential is taken into account. To show
this let us calculate β through (4.43). We �nd that a2(p2) is always negliglible in this
case, and β is given by

β '
∫ ∞

0
dp p3

λ2
Lλ

2
Rf

4(mQ − m̃T )2
[
m2
s(p

2 +m2
Q)− p2(p2 +m′2T )

]
2p2(p2 +m2

Q)(p2 +m′2T )(m̃2
T (p2 +m2

s) + (p2 + λ2
Rf

2)(p2 +m2
s + λ2

Lf
2)
.

(4.50)
In the limit of λL,Rf much smaller than the mass of the vector-like fermions, one can

approximate the top mass and β through analytical formulas. We will then introduce
two dimensionless parameters, q and r, that will simplify our notation:

q ≡ mQ/m̃T , r ≡ m̃T /ms. (4.51)

In case of q = 1, the fourplet and singlet masses are exactly degenerate, thus removing
the source of SO(5) breaking at the right end of the chain in Fig. 4.5. From the discussion
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in the previous section, this means that the potential generated in the fermionic sector
will exactly vanish in this limit. Conversely, the parameter r controls the impact of the
singlet state, s, on the potential. The case of r � 1 coincides with the singlet being fully
decoupled, and the model will become indistinguishable from the conventional two-site.
On the other hand, r � 1 means that s is much lighter than the composite resonances,
thus introducing by hand a very light state in the theory. Therefore, the region of interest
is r ∼ 1. In the limit of λL,Rf � ms,mQ, m̃T we can rewrite the top mass in terms of
q as

m2
t '

λ2
Lλ

2
Rf

2

2m2
Q

(q − 1)2v2, (4.52)

whereas the momentum integral in (4.50) can be performed analytically, giving

β(r2) ' Nc

16π2
y2
Ly

2
Rf

4 (1− q)2

1− q2r2

[
(r2 + 1/q2)F (q2)− 2F (r2)

]
, (4.53)

where we have de�ned

F (x2) ≡ x2

1− x2
ln

1

x2
. (4.54)

It is interesting to see how β is modi�ed for a non-zero value of r with respect to the
standard case. In fact, one �nds that

β(r2)− β(0) = −C2F (q2)− F (1/r2)

q2 − 1/r2
≤ 0, (4.55)

where C2 is a positive constant, and we have used F (1/x2) = F (x2)/x2 together with
the property that F ′(x) > 0 for x > 0. The β(0) term in (4.55) corresponds to the case
in which the new singlet s is in�nitely heavy and decouples. We have checked that it
coincides with the conventional formula for β in the two-site MCHM5, namely

β(0) ' Nc

16π2
λ2
Lλ

2
Rf

4 (1− q)2

q2
F (q2). (4.56)

The inequality in (4.55) is very important as it shows that including the singlet s always
reduces the amount of explicit breaking leading to a lighter Higgs boson. Combining
(4.52), (4.53) and the general form for the Higgs mass, (4.20), we �nd

m2
Q =

1

16
λ2
Lλ

2
Rf

2 (1− q)2

β(r2)

(
mh

mt

)2

, (4.57)

which relates the Higgs mass to the spectrum of resonances. For concreteness, let us
take q = −1 and evaluate (4.57) to see explicitly how (4.22) is modi�ed in our setup.
One �nds:

mh ' 0.6mt

√
1− r

1 + r/3

mQ

f
. (4.58)

For r = 0 we obtain the standard result, namely mQ ' 1.1 TeV for f = 800 GeV
(ξ = 0.1). However, when ms is of the same order of mQ, heavier top partners become
compatible with a light Higgs. For instance, ms ≈ 2mQ already gives mQ ' 1.8 TeV
without the need of raising f .

By inspecting (4.53), we notice that β(r2) actually vanishes for q2r4 = 1 and it
becomes negative for q2r4 > 1, the latter case being in con�ict with a viable electroweak
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Figure 4.6: Left: The mass of the lightest stateml for di�erent values of |q| as a function
of r = m̃T /ms for mh = 125GeV. The dashed vertical lines indicate the value of r above
which β(r) turns negative. The plots are symmetric for r → −r. Right: Scatter plot of
(mh,ml) for |r| ∈ (0.5, 2) (black points) and r = 0 (gray points). We scan in the range
|λL,R| ∈ (0.5, 2), |m̃T | ∈ (0.5, 4.5) TeV, q ∈ (−2,−0.3) and |δ1| ∈ (0, 2) TeV.

symmetry breaking. We will therefore restrain ourselves to the region q2r4 < 1. As an
estimate for the mass of the lightest eigenstate of the system, ml, we take

m2
l ' min{m2

Q, m̃
2
T ,m

2
s} = m2

Q ×min

{
1,

1

q2
,

1

q2r2

}
= m2

Q ×min

{
1,

1

q2

}
(4.59)

where m2
Q is given in (4.57). The estimate above is correct up to mixing terms ∼ λL,Rf .

The last equality in (4.59) is derived as follows. By de�nition, ms can be the lightest
state only for r2 ≥ 1 and r2 ≥ 1/q2. Moreover, r and q must satisfy r2 ≤ r2

0 = 1/|q|, as
discussed below (4.57). However, if |q| > 1 one immediately derives the contradiction
r2 < 1, while if |q| < 1 one has r2 ≥ 1/q2 = r4

0 > r2
0, which is clearly not compatible

with r2 ≤ r2
0. In conclusion, the spectrum favors a con�guration with the elementary

singlet s not residing at the bottom. When s is about to become the lightest state, β
�ips sign, and the electroweak vacuum is no longer a minimum.

The value of ml as predicted by (4.59) is shown in the left panel of Fig. 4.6 as a
function of r for di�erent values of q. We take mt ' 150GeV for the top mass at the
scale f . The standard result is recovered for r = 0 and gives ml . 1 TeV. As we can
see, the mass of the lightest state always increases with r until it hits q2r4 = 1 shown
by the dotted vertical lines for each value of q. It is important to notice that ml can be
signi�cantly heavier than in the standard case for values of r and q which are far from
the vertical line. Thus, a heavier ml does not correspond to �ne tuning in the parameter
space but rather to a general prediction of the soft-breaking hypothesis. This is con�rmed
by the results shown in the right panel of Fig. 4.6, where (mh,ml) are obtained as an
output from a numerical scan using the general form of the Coleman-Weinberg one-loop
potential given in (4.44). The window mh ∈ (100, 125) GeV visualized by the blue band
is considered to take into account running e�ects on the actual value of the Higgs mass
at the scale f . The value of r is scanned between 0.5 ≤ |r| ≤ 2 (black points). Gray
points correspond to the standard case, i.e. r = 0. The e�ect of the singlet s can be seen
as e�ectively reducing the Higgs mass which is consistent with a certain value of ml.
For instance, ml = 3TeV is compatible with mh ∼ 100GeV in our setup, whereas that
would require mh > 300GeV in the conventional case. This is just an equivalent way
of looking at (4.55), where the ratio β(r2)/β(0) = m2

h(r2)/m2
h(0) < 1 gives the correct
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estimate for the softening of the Higgs mass.

General case

We present here the analysis for the case in which there are no hierarchies among the
masses of the elementary vector-like fermions s, v and w. We then derive an expression
for β following the same procedure that lead to (4.53), setting mv = mw ≡ md for
simplicity, which we will refer to as β̃ in the following 8. The relative spread between
the elementary states is parameterized by x = md/ms, while r = m̃T /ms relates the
elementary state s to the composites as in (4.51). We notice that in this case the a2(p2)
term in (4.43) can actually be important and needs to be taken into account. The mass
of the lightest state, ml, is now estimated as

m2
l ' min{m2

Q, m̃
2
T ,m

2
s,m

2
d} = m2

Q ×min

{
1,

1

q2
,

1

q2r2
,
x2

q2r2

}
, (4.60)

while the top mass is still well approximated by (4.52). The quantity mQ obeys (4.57),
where β is now replaced by the new quartic β̃. We have checked that β̃ approaches zero
for r � 1 corresponding to massless elementary fermions and thus restoring the SO(5)
global symmetry. In practice, such limit is not of much use because it would introduce
very light states in the spectrum. However, its existence shows how drastically the Higgs
potential can be modi�ed with soft-breaking when compared to the conventional models.

When all the elementary fermions are kept in the spectrum, we identify three di�erent
regions depending on the value of x = md/ms. First of all, the case of a large |x| simply
corresponds to the singlet case discussed in the previous section. Conversely, for |x| ≤ 2
we �nd that the improvement in the top partner masses is not dramatic and ml can be
roughly as heavy as 2TeV. Thus, we focus here on the intermediate case 2 ≤ |x| ≤ 4
as it shows the main new e�ect. The analytical prediction based on β̃ is shown in the
left panel of Fig. 4.7 for x = 2.7. For all the lines, the knee signals that the elementary
singlet becomes the lightest state. This happens for r such that r2 ≥ r2

q = max(1, 1/q2).
Notice that this was not possible in the case in which the w and v doublets are in�nitely
heavy, since it would give a negative value of β, as discussed below (4.59). The dotted
lines show the location of r such that β̃ formally vanishes. The values of r beyond the
dotted lines actually lead to a viable ml, its value being just too large to be shown in the
plot. Although such high masses are cut o� in a realistic scenario, this shows that the
range of r leading to a viable electroweak symmetry breaking is enlarged with respect
to the singlet case.

Since the largest possible ml is typically found above the knee, a heavy top partner
favors the case of the singlet s as the lightest particle, as opposed to the case in which v
and w were decoupled. This also implies that a viable spectrum can be obtained without
requiring the spin-1/2 resonances to lie much below the naive cuto� of the e�ective
picture, as opposed to the conventional case in which the presence of anomalously light
resonances is required to reproduce the correct Higgs mass. We explore this region of
the parameter space in the right panel of Fig. 4.7, where (mh,ml) are obtained after a
numerical scan according to (4.44). We assume m̃T to be in the range (5, 10) TeV, where
the latter coincides with the cuto� scale 4πf for ξ = 0.1. Moreover, we scan 1.5 ≤ |r| ≤ 5,

8Although analogous to (4.53), the expression for β̃ is too involved to justify the inclusion of its
explicit form.
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Figure 4.7: Left: The mass of the lightest state ml for di�erent values of q as a function
of r with mh = 125GeV and x = 2.7. The vertical dotted lines indicate r such that
β̃ = 0. Dashed curves show con�gurations for which a decrease in ml is driven by the
lightness of the singlet s. Right: The mass of the lightest state ml as a function of
mh in the sMCHM5 (black points) and in the MCHM5 (gray points). The scan for the
sMCHM5 assumes |λL,R| ∈ (1, 2), q ∈ (−2,−0.3), |m̃T | ∈ (5, 10)TeV, |r| ∈ (1.5, 5) and
|δ1,2| ∈ (0, 2) TeV. The doublet masses mw,v are scanned independently in the range
|mw,v/ms| ∈ (2, 4).

while the doublet masses are independently scanned in the range 2 ≤ |mv,w/ms| ≤ 4.
To obtain the correct top mass, we consider 1 ≤ |λL,R| ≤ 2. As we can see, the result is
qualitatively the same as in Fig. 4.6 allowing for heavy top partners in the blue region
compatible with the Higgs mass.

4.3.4 Remarks

Our analysis in Sec. 4.3.3 shows that heavy top partners become compatible with a light
Higgs when implementing the soft-breaking idea. To show how the spectrum can look
like, we choose two benchmark points, corresponding to the singlet and general case,
respectively. For the former we take Bs as

Bs : {λL = 1.4, λR = 1.3, m̃T = 3TeV, ms = 3.8TeV, δ1 = 0} , (4.61)

corresponding to r = m̃T /ms ' 0.8 and q = −0.9 and mt ' 140GeV in the notation
of (4.51). The lightest eigenstate is the mainly composite singlet state T̃−, with a
mass ml ' 2.7TeV and electromagnetic charge Q = 2/3. The Higgs mass is found
to be mh ' 110GeV. The spectrum is shown in the left panel of Fig. 4.8. The states
colored black correspond to mainly composite states, whereas the purple ones are mostly
elementary. The composite resonances lie in the range 2.7− 3.0 TeV. The heaviest state
is the mainly elementary singlet T̃+ with a mass around 4 TeV.

For the general case we consider the following point

Bf : {λL = 1.8, λR = 1.8, m̃T = 9, ms = 3.5, mv = 9.8, mw = 8.7, δ1,2 = 0}, (4.62)

where dimensionful quantities are measured in TeV giving q ' −0.4 and mt ' 140GeV.
The lightest state is now the mostly elementary singlet T̃− with ml ' 3.4TeV and again
electromagnetic charge Q = 2/3. The Higgs mass is mh ' 120GeV. The spectrum is
given in the right panel of Fig. 4.8, where the same color convention is used to distinguish
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Figure 4.8: Left: The spectrum from the benchmark point Bs. The lightest particle
mainly overlaps with the composite singlet T̃ , with a mass ml ' 2.7TeV. Right: The
spectrum from the benchmark point Bf . The lightest particle is mainly the elementary
singlet s, with a massml ' 3.4TeV. For both spectra, states colored by black are mainly
composites, whereas purple ones are mainly elementary.

the mostly elementary states from the mainly composites. The overall e�ect of bringing
the doublets v and w down with respect to left panel (where they are instead decoupled)
is to lift the lightest state which is now mostly elementary.

It is also quite interesting to see what happens if we perturb around our assumption
of SO(5)-symmetric partial compositeness introduced in Sec. 4.3.1. In our setup, the
new vector-like fermions are embedded together with the SM quarks to form complete
SO(5) multiplets and thus couple to the strong resonances in exactly the same way. The
explicit breaking is then given only by the non-zero masses for the vector-like fermions.
If we now relax this assumption and still think of adding some elementary vector-like
fermions in the theory, their couplings to the strong sector no longer need to be the same
as the SM fermions. In practice, we introduce a common �perturbation� κ acting on the
couplings of s, v and w such that the case κ = 1 will reconstruct SO(5) symmetric
couplings and give the results of the previous section, whereas κ = 0 will decouple the
new fermions from the composite resonances. We then recalculate the coe�cient β in
the Higgs potential that we refer to as βκ. The ratio βκ/β0 thus measures the relative
degree of explicit breaking between a setup with generic couplings and the conventional
case in which only the SM fermions talk to the composites. This ratio is also directly
related to the di�erent predicitions for the Higgs mass through (4.20).

We show βκ/β0 via a contour plot in Fig. 4.9, where again r = m̃T /ms, x = md/ms,
with md the degenerate mass of the doublets v and w, for a reference value of q =
mQ/m̃T = −0.7 and x = 2.7. At the bottom of the plot, βκ/β0 is trivially equal to one.
For larger values of κ, the amount of explicit breaking is reduced up to the point κ > 1.5
beyond which it is actually monotonically enhanced (note that points with r ≈ 0 give
no change as the new states are too heavy). As we can see, the optimal region with
the smallest amount of explicit breaking is around κ ≈ 1, namely the SO(5) symmetric
point for partial compositeness which is automatically obtained within the soft-breaking
setup. Thus, organizing the new elementary fermions (when possible) to complete full

106



4.4. Enhanced symmetries for a light Higgs

-6 -4 -2 0 2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

κ

x = 2.7, q = -0.7

βκ/β0

0

0.2

1.0

5.0

9.0

Figure 4.9: The ratio βκ/β0 as a contour plot in the (r, κ) plane for x = 2.7 and q = −0.7.
The value of κ = 1 that yields an SO(5)-symmetric partial compositeness is highlighted
by the red dashed line and corresponds to the smallest amount of explicit breaking. The
plot is symmetric for κ→ −κ.

SO(5) representations is not only motivated by symmetry arguments but it turns out
to be in general the safest option to keep the Higgs light.

Let us now summarize our �ndings in this section. In Sec. 4.3.1 we have proposed a
new way of breaking the global symmetry in CH models which controls the generation
of a non-vanishing Higgs potential. Instead of breaking it in the conventional way due
to the SM fermions not �lling complete representations of the global symmetry� SO(5)
in our case� we break it �softly� via vector-like masses for the additional degrees of
freedom that complete the SM fermions to full SO(5) representations. In this way, the
tight relation in (4.22) between the Higgs mass and anomalously light top partners that is
in tension with the current LHC data is relaxed, allowing heavy top partners with a light
Higgs already in minimal models such as the MCHM5. We have provided quantitative
evidence for this by performing a detailed analysis within the two-site realization of our
setup, which is supposed to capture the main features of our model. While this is a
necessary step to reconcile the CH idea with the so-far null signals of new physics at the
LHC, another very important topic has not been tackled yet, namely how soft breaking
impacts the �ne-tuning that is needed to achieve the correct electroweak symmetry
breaking. This will be discussed in Sec. 4.4.

4.4 Enhanced symmetries for a light Higgs

In the previous section we have introduced the idea of softening the explicit breaking
of the global symmetry under which the CH is a pNGB, and provided a quantitative
analysis based on the two-site model of the minimal sMCHM5. Our main result was that
anomalously light top partners can be successfully avoided without making the Higgs
more and more elementary, as the conventional relations between the Higgs mass and
the mass of the top partners are modi�ed by the new symmetry structure. The two-
site model discussed above had the major advantage of simplicity, but it also has the
drawback of still yielding a divergent α. Besides the lack of a fully calculable potential,
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which would be anyway desirable, this implies that evaluating the tuning in the model
is not straightforward. Nonetheless, some considerations can be made.

In Sec. 4.1 we have seen that a misalignment ξ brings in a certain amount of intrinsic
tuning of order ∆ ∼ 1/ξ. On top of that, there can be actually other sources of tuning
that depend on the details of the CH model, as for instance the embedding of the
SM fermions. Our concrete example was based on the MCHM5, where the fermions are
embedded in the fundamental 5 of SO(5), and it is therefore useful to review what is the
actual tuning that is expected in the conventional picture. This can be estimated most
easily using spurion analysis. Referring to (4.15), the embedding of the SM fermions
into the 5 of SO(5) is achieved through the matrices ∆L and ∆R that are the spurions
characterizing the symmetry breaking due to the embedding of the SM fermions into
SO(5) representations, even though they do not form complete multiplets. The explicit
form of these spurions is given in (4.28). Since they connect di�erent groups, spurions
have mixed indices: the columns transform under the elementary SU(2)0

L and the rows
under SO(5),

∆L ∼
[
SU(2)0

L × U(1)0
Y

]
× SO(5), ∆R ∼ U(1)0

Y × SO(5), (4.63)

whereas the U(1)Y appears as an arbitrary phase. These spurions fully encode the
e�ects of the explicit breaking due to using incomplete multiplets, and can be used to
obtain information on the possible structure of the Higgs potential. In practice, one �rst
treats the spurions as dynamical �elds and identi�es the transformations that would
formally restore SO(5) as a true symmetry of the model. Physical quantities, such as
the Higgs potential, need to be invariant when all the �elds, including the spurions, are
transformed. This requirement constrains the possible combinations of �elds that can
enter the Higgs potential. Once all the invariants are constructed, the spurions can be
set to their actual form in (4.28) that can be regarded as the vacuum expectation value
of the corresponding �eld.

The relevant symmetries here are the elementary SU(2)0
L × U(1)0

Y and the SO(5)
global symmetry. As the Higgs boson only transforms under SO(5) 9, see (4.2), the
spurions are forced to always appear in hermitian conjugated pairs with the SM indices
(labeled by Greek letters) contracted among themselves, and complex conjugation en-
suring U(1)Y invariance. This means that the spurions can enter the Higgs potential
only through the following combinations [168]:

(ΓL)IJ ≡ (∆∗L)αI (∆L)αJ , (ΓR)IJ ≡ (∆∗R)I(∆R)J , (4.64)

with α = 1, 2 being the SU(2)0
L indices, while I, J = 1, . . . , 5 are SO(5) indices. As the

latter are the only free indices left, the ΓL,R spurions only transform under SO(5):

ΓL,R → g ΓL,R g
†, g ∈ SO(5). (4.65)

Because of its NG nature, the Higgs belongs to the SO(5)/SO(4) coset and always
appears through the Goldstone matrix U in (4.1). Actually, for symmetric cosets as
SO(5), there exists an automorphism V with V TAV † = sAT

A, where sA = +/− for

9The electroweak group in fact corresponds to the gauged diagonal SU(2)L × U(1)Y subgroup of
the elementary and composite global symmetries, and we omit an additional U(1)X factor that is not
crucial here [154,171].
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the unbroken/broken generators A= a/â, that can be used to de�ne a new Goldstone
matrix, Σ 10, with linear transformation properties:

Σ = U2 V → gΣ g†, g ∈ SO(5). (4.66)

This is explained in detail in AppendixC.1. The ΓL,R spurions and the linear Gold-
stone matrix Σ de�ned in (4.64) and (4.66), respectively, are the ingredients needed
to investigate the fermion contribution to the Higgs potential. As already mentioned,
higher orders in perturbation theory correspond to larger number of insertions of the
couplings that explicitly break the global symmetry. In this case, this corresponds to
more insertions of the Γ spurions (keeping the same order in the loop expansion). The
leading order for the potential thus corresponds to one spurion insertion. One �nds that
at this order there are only two di�erent invariants:

VLO(h) = cLTr (Σ ΓL) + cRTr (Σ ΓR) = (2cR − cL) sin2(h/f), (4.67)

where the coe�cients cL,R can only be �xed in an explicit calculation. The issue with
(4.67) is that it does not allow for extrema besides the trivial ones at h = 0, πf . There-
fore, one needs to balance next-to-leading order contributions to the potential with the
leading order in (4.67) in order to obtain a non-trivial vacuum with v . f . Intuitively,
this means that the tuning in the MCHM5 is actually worse than the naive estimate
∆ ∼ 1/ξ because of the particular structure of the Higgs potential. As higher orders
are supposed to come with higher powers of λL,R/g∗, the tuning in order to obtain the
125GeV Higgs in the MCHM5 was estimated in Ref. [172] as

∆5 '
1

ξ

(
α

2β

)
' 1

ξ
× g2
∗ =

f2

v2
× 10, (4.68)

where (α/2β) is understood as the natural size of these parameters (namely, before
tuning), and we have taken g∗ ∼ 3 as a typical value. As we can see, on top of the
irreducible tuning f2/v2 there is an extra factor ∼ 10, that is referred to as double tuning.
This additional amount of tuning could be avoided by choosing ad hoc representations;
however, as we shall see in Sec. 4.4.1, there exists a symmetry of the strong sector called
maximal symmetry [184, 185] that can remove the double tuning without the need of
changing the fermion representation.

For our purposes, it is interesting to see how the tuning in the MCHM5 depends on
the mass of the lightest top partner. This can be done straightforwardly by trading the
scale f for mT in the standard relation (4.22). One �nds

∆5 ' 100
( mT

1TeV

)2
, (4.69)

where the quadratic growth simply follows from the fact that one can raise the top
partner masses only by raising f , and the large prefactor is due to the double tuning.
As we can see, the tuning is already at the 1% level even with light partner masses.

We can try to estimate the tuning in the sMCHM5 along the same lines of (4.68):

∆soft
5 ' 1

ξ
×
(
αs
2βs

)
, (4.70)

10This Goldstone matrix Σ is a new object and should not be confused with the multiplet de�ned in
(2.77) for the axi�avon-Higgs uni�cation.
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where αs, βs are the natural values in our model with soft breaking. The main di�erence
between these two setups is the modi�ed relation between the Higgs mass and mT . In
particular we have shown that βs can be naturally smaller than in the standard MCHM5,
thus modifying (4.22) to

mh = 130
√
βs/β

mT

1.4f
GeV. (4.71)

By solving (4.71) with mh = 125 GeV, we �nd βs ' (1.3f/mT )2β, while αs will remain
unchanged, αs ∼ α 11. Therefore, one has

∆soft
5 '

(
mT

1.3f

)2

× 1

ξ

(
α

2β

)
. (4.72)

The last two factors are now related to the standard MCHM5, where they are indeed
the only source of tuning and must coincide with the expression in (4.68). We then take
α/2β ∼ 10 by comparison and �nally get

∆soft
5 '

( mT

1TeV

)2
× 100, (4.73)

where we have taken f ' 800GeV or equivalently ξ ' 0.1. As we can see, the overall
tuning is practically unchanged with respect to the conventional case. In fact, even
though it is possible to raise the top partner masses without increasing the decay con-
stant, f , the fact that β is reduced while α is unchanged worsens the tuning to obtain
the correct misalignment angle. Eventually, the tuning in the MCHM5 and sMCHM5 is
estimated to be of the same order, see (4.69) and (4.73).

The main point, however, is that the leading source of tuning in the soft-breaking
setup is not irreducible, as it does not come from an increasingly small misalignment ξ,
and thus can be largely cut down whenever other ingredients are added to model. As we
shall see shortly in Sec. 4.4.1, a perfect match is obtained when combining soft-breaking
with maximal symmetry.

4.4.1 What is maximal symmetry?

The Higgs potential of the MCHM5, (4.67) contains only one trigonometric function at
the leading order in the explicit breaking parameters. Since this cannot lead to successful
electroweak symmetry breaking, one needs additional tuning such that next-to-leading
terms can allow for the correct minimum. This fact introduces an extra degree of tuning
on top of the irreducible one ∼ 1/ξ readily pushing the overall tuning to the percent
level also with light top partners.

In this section, we will review what maximal symmetry [184, 185] is, and how it
can eliminate double tuning following the spurion analysis presented in Ref. [VII]. To
this end, let us focus on the composite fermionic resonances that will appear in the
spectrum below the condensation scale. In general, these states do not need to �ll
complete SO(5) representations (but they always have to obey the unbroken SO(4)
global symmetry). The assumption leading to maximal symmetry is that such resonances
nevertheless still come in complete SO(5) multiplets. For generic values of the resonance

11We envisage that α may also be softened in the sMCHM5 similarly to what happens for β. However,
this cannot be seen at the level of the estimate and could be supported only through explicit computation;
we therefore conservatively assume αs ∼ α.
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masses, the residual symmetry is still only SO(4). However, if we neglect these masses for
a moment we see that the original SO(5) would be actually doubled to the chiral group
SO(5)L × SO(5)R, meaning that each chirality can transform indipendently under �its
own� SO(5) group. Interestingly, there exists a value of resonance masses that exhibits
a residual symmetry larger than SO(4), which is referred to as maximal symmetry. This
can in fact be de�ned as the largest group that can be preserved by turning on non-
zero masses for the composite states that still gives a non-vanishing Higgs potential. In
practice, maximal symmetry turns out to be the SO(5)′ subgroup of SO(5)L × SO(5)R
that satis�es

gL V g
†
R = V, gL ∈ SO(5)L, gR ∈ SO(5)R, (4.74)

where V = diag(1, 1, 1, σ3) is the automorphism introduced above (4.66). Another

possibility would be the diagonal subgroup de�ned by gL1g
†
R = 1, which however would

make the Higgs an exact NG boson as long as the fermion sector is concerned.
Let us now go back to the estimate of the potential in the MCHM5 and see how

maximal symmetry solves the double tuning. As discussed above, maximal symmetry is
a symmetry of the composite resonances. These are supposed to appear as full SO(5)
multiplets, and their masses are such that the residual symmetry is SO(5)′ de�ned in
(4.74). Referring to the conventional partial-compositeness Lagrangian in (4.15), this
means that maximal symmetry forces aL = bL and aR = bR such that full multiplets
Ψ = (Q, T̃ ) are reconstructed, and the mass of the composite resonances need to satisfy
mQ = −m̃T = M for the SO(5)′ group to be a symmetry. The linear mixing in (4.15)
then becomes

−Lmass = λLf q̄L∆L U ΨR + λRf t̄R∆R U ΨL +MΨ̄LVΨR + h.c. (4.75)

The key quantities to estimate the Higgs potential are still represented by the ΓL,R
spurions in (4.64) and the Goldstone matrix Σ in (4.66). However, when SO(5)′ is
promoted to a symmetry of the theory, more insertions of the spurions are needed in
order to generate a potential. Indeed, possible contributions are now more constrained
as they need to be invariant not only under SU(2)0

L × U(1)0
Y and SO(5) as before, but

also under SO(5)′. To see this explicitly we �rst have to identify the transformation
properties of ΓL,R under SO(5)′. The starting point is to perform a transformation on
the chiral components of Ψ:

UΨL → gL (UΨL), UΨR → gR (UΨR). (4.76)

The invariance of (4.75) requires the spurions ∆L and ∆R to transform as

∆L → ∆L g
†
R, ∆R → ∆R g

†
L. (4.77)

At the level of the ΓL,R spurions in (4.64), this implies that the transformation under
SO(5)′ is a simple �chiral� generalization of (4.65):

ΓL → gR ΓL g
†
R, ΓR → gL ΓR g

†
L. (4.78)

The only twist is that due to partial compositeness qL couples to the right-handed
composites that by de�nition transform with SO(5)R, and similarly for tR. As for the
Goldstone matrix Σ, we can de�ne the action of SO(5)′ as [184]

Σ→ gLΣ g†R = Σ. (4.79)
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SO(5) SO(5)′

ΓL ΓL → g ΓL g
† ΓL → gR ΓL g

†
R

ΓR ΓR → g ΓR g
† ΓR → gL ΓR g

†
L

Σ Σ→ gΣ g† Σ→ gL Σ g†R

Table 4.2: Transformation properties of the spurions ΓL,R de�ned in (4.64) and the linear
Goldstone matrix Σ under the global symmetry group, SO(5), and maximal symmetry,
SO(5)′.

It is now apparent that both the terms in (4.67) are forbidden by maximal symmetry, as
they are not invariant under (4.78) and (4.79). The leading contribution to the potential
actually requires at least two spurions to appear simultaneously, i.e.,

VLO(h) = cLRTr(Σ ΓL Σ† ΓR) = 2 cLR sin
2(h/f) cos2(h/f). (4.80)

A summary of the transformation properties that we have used to derive (4.67) and
(4.80) can be found in Table 4.2. The main di�erence compared to (4.67) is that now a
non-trivial minimum occurs already at the leading order, thus solving the double-tuning
problem. However, we can actually see that this minimum is still rather special, as it
corresponds to α = −β and thus implies

ξ = sin2(〈h〉/f) = 0.5 (4.81)

independently of any choice of the parameters! Such a value of ξ is by now excluded
experimentally� but in principle the gauge sector can come to rescue since it contributes
to the Higgs potential as well and, with a small degree of accidental cancellation, can
help misaligning the vacuum in the right way. The reason of this sharp prediction for ξ
is the appearance of a discrete exchange symmetry

sin(h/f)↔ − cos(h/f). (4.82)

For a symmetric coset, this trigonometric parity is always a symmetry related to the
existence of the automorphism V . Requiring maximal symmetry practically ensures that
it remains a symmetry of the whole theory. Trigonometric parity in fact plays a crucial
role in forbidding the linear terms in (4.67) and hence reduces the corrections to the
Higgs mass, similarly to what happens in Twin Higgs constructions [186].

As the maximally symmetric version of the MCHM5 is free from double tuning one
simply has ∆ ∼ 1/ξ, mainly coming from the cancellation between fermion and gauge
sectors. However, the relation between the Higgs mass and the top partner mass mT is
still unchanged. This leads to a quadratic sensitivity of the tuning on mT similarly to
(4.69):

∆max sym
5 ' 9

( mT

1TeV

)2
. (4.83)

Despite the model with maximal symmetry being certainly more natural with respect
to (4.69), we can still identify two ways of further improvement. In fact, (i) it would be
nice to get rid of the unwanted prediction of ξ = 0.5 within the fermion sector while still
removing the double tuning, so that the cancellation against the gauge sector is no longer
necessary to obtain a viable ξ. Moreover, the soft-breaking setup can accommodate for
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heavier top partners without raising the scale f due to a parametric reduction of the
coe�cient β. However, the estimate for α is unchanged with respect to the conventional
MCHM5 and the overall tuning turns out to be of the same order, see (4.73) and below.
Thus, (ii) if maximal symmetry and soft breaking could be combined the coe�cients α
and β would be related via trigonometric parity ensuring a fully softened Higgs potential
and consequently a natural spectrum of resonances above the current LHC bounds. As
we shall see, both options are possible and explained in detail in the next sections.

4.4.2 Combining soft-breaking and maximal symmetry

Our aim here is to investigate whether the soft-breaking setup is compatible with maxi-
mal symmetry. This is motivated by the search of a CH model that can provide a natural
spectrum of top partners that is compatible with the current LHC bounds. First, let us
notice that maximal symmetry and soft-breaking are actually rather similar concepts:
the former forces the composite states to �ll out complete SO(5) multiplets, whereas the
latter is based on completing the SM fermions to full SO(5) multiplets as well. There-
fore, it feels quite natural to try to combine them. The most naive way of doing so is
discussed in the following preliminaries, and, as we shall see, it does not work. Yet, it
is important for deriving the conditions that lead to a successful combination, which is
then presented at the end of this section. What follows is based on Ref. [VII].

Preliminaries

Let us try to implement soft breaking in the maximally symmetric Lagrangian (4.75) in
the most naive way, namely by promoting qL and tR to full SO(5) multiplets according
to the minimal embedding (4.29),

−Lmass = λLf ψ̄
t
L U ΨR + λRf ψ̄

t
R U ΨL +MΨ̄LVΨR + h.c. , (4.84)

and by introducing the elementary Lagrangian (4.35) containing the explicit breaking
unchanged. As always, the contributions to the Higgs potential must be proportional to
the terms that explicitly break the SO(5). In the soft-breaking setup these are given in
(4.35). For the moment, let us focus on the contribution from the term proportional to
mw,

∆L = mwψ̄
t
LΓwψ

t
R + h.c., (4.85)

where the explicit form of Γw is given by

Γw =
1

2
diag (12×2 + σ2, 12×2 − σ2, 0) . (4.86)

In order to predict the contribution to the Higgs potential, we need to derive the trans-
formation properties of the spurion Γw under maximal symmetry. To this end, we recall
that the chiral components of Ψ transform under SO(5)′ as in (4.76), and in turn this
implies that the elementary multiplets ψtL,R transform as

ψtL → gR ψ
t
L, ψtR → gL ψ

t
R (4.87)

to make the linear mixing in (4.84) invariant. Thus, we see that (4.85) is formally
invariant if the spurion Γw transforms as

Γw → gRΓwg
†
L . (4.88)
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The problem with (4.88) is that the following term is allowed in the Higgs potential:

VLO(h) = cwTr (Σ Γw) ∝ mw sin
2(h/f), (4.89)

which contains only one Σ insertion and whose explicit form is actually rather similar to
what we have calculated in (4.40) just with mQ = −m̃T . The leading-order potential in
(4.89) does not allow for non-trivial minima, and similarly to what we concluded below
(4.67) the double tuning is reintroduced despite our attempt of employing maximal
symmetry. This is a consequence of trigonometric parity being badly broken by the
spurion Γw. The same conclusion holds when considering the δ1,2 terms in (4.35). In
general, whenever ψtL and ψtR have a direct interaction term as in (4.85), one �nds that
trigonometric parity is badly broken and double tuning is reintroduced 12.

We conclude that the simplest realization of soft-breaking in the MCHM5 speci�ed by
the new vector-like fermions in (4.29) is not directly compatible with maximal symmetry.
However, we will see shortly that a slight change in the embedding (4.29) allows us to
successfully combine maximal symmetry and soft breaking. This will lead to an increase
in the mass of the top partners with minimal tuning, and also to the disappearence of
the unwanted prediction for the misalignment angle.

The model

We are now ready to introduce our simple model in which maximal symmetry and
soft breaking are successfully combined resulting in a composite resonance spectrum
naturally above the LHC bounds. The obstacle for this turned out to be the mass of the
vector-like fermion w which reintroduced the double tuning. We will now show that there
is a simple way to avoid this. All we need to do is to further split the vector-like fermion
w into two: rather than marrying up wL appearing in ψtL directly with wR appearing in
ψtR, we introduce separate partners for these two w's. Hence our embedding in (4.29)
will be modifed as

ψtL = ∆†qLqL + ∆†w1
w1L + ∆†ssL, ψtR = ∆†tRtR + ∆†w2

w2R + ∆†vvR, (4.90)

where ∆w1 = ∆w2 = ∆w, the last given in (4.30). For the mass terms of the elementary
�elds, we will take a simple modi�cation of (4.34) 13:

−Lel =mw1(w̄1Lw1R + w̄1Rw1L) +mw2(w̄2Lw2R + w̄2Rw2L)

+mv(v̄LvR + v̄RvL) +ms(s̄LsR + s̄RsL) .
(4.91)

Note that there are additional mixing terms that would be allowed by the SM gauge
symmetries and are not included in the Lagrangian above. We will discuss these below
in (4.95).

It is convenient to collect the chiralities that do not enter either of ψtL,R in two
multiplets

ηR ≡ (w1R, sR), ξL ≡ (w2L, vL). (4.92)

12 Clearly, trigonometric parity is restored if s, v, w become in�nitely heavy, since the maximally
symmetric MCHM5 is e�ectively recovered.

13We notice that by choosing this less minimal embedding the correspoding two-site model would
provide a fully calculable Higgs potential even without maximal symmetry, as mentioned in Sec. 4.3.2.
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The full Lagrangian of our model in terms of these �elds is then

−L = ψ̄tLM
†
R ηR + ψ̄tRM

†
L ξL + λLfψ̄

t
LUΨR + λRfψ̄

t
RUΨL +MΨ̄LVΨR + h.c., (4.93)

where V is the usual automorphism, V = diag (1, 1, 1, σ3). The �rst two terms corre-
spond to a compact way of writing (4.91) via matrices accounting for the masses of the
elementary vector-like fermions:

M †R =
1√
2


mw1 0 0
imw1 0 0

0 mw1 0
0 −imw1 0
0 0 ims

 , M †L =
1√
2


mw2 0 0 mv

imw2 0 0 −imv

0 mw2 mv 0
0 −imw2 imv 0
0 0 0 0

 ,

(4.94)
where the columns correspond to the SO(5) indices and the shape of the matrices re�ects
the dimensionality of ηR (triplet) and ξL (fourplet).

As we mentioned above, there are three more mixing terms between the elementary
�elds that would be allowed in (4.91) which are given by

−Lodd = δ1s̄LtR + δ2q̄LvR + δ12w̄1w2 + h.c.

≡ ψ̄tL∆(δ1, δ2)ψtR + ξ̄L∆′(δ12)ηR + h.c.,
(4.95)

where the last line de�nes the spurions ∆(δ1, δ2) and ∆′(δ12). Based on the discussion
in the previous section, it is clear that a non-zero value for any of the δ's in (4.95) would
be incompatible with maximal symmetry and reintroduce the double tuning; we thus
require δ1 = δ2 = δ12 = 0. This can be easily achieved by introducing a Z2 symmetry
under which the parities of ψtL and ηR are opposite to the parities of ψtR and ξL, for
example ψtL, ηR : + and ψtR, ξL : −. When considering the whole Lagrangian in (4.93),
the Z2 is actually broken softly by the the composite mass M . In the 5D picture (see
Sec. 4.5.3) this corresponds to a Z2 symmetry that is only broken on the IR brane.

Let us now investigate the key properties of our main model de�ned in (4.93) regard-
ing double tuning and trigonometric parity by using spurion analysis. For this we need
to derive the transformation properties of the MR,L spurions in (4.94). First, as long as
the electroweak gauge interactions are neglected, andMR,L = 0, the �elds ηR and ξL are
�free� and exhibit a large symmetry of their kinetic terms, i.e. U(3)0×U(4)0 (notice that
ηR is a triplet and ξL a fourplet). This large symmetry extends the SU(2)0

L × U(1)0
Y ,

see the discussion above Eq. (4.64), and similarly implies that ML,R enter the potential
only through quadratic combinations

ΓR ≡M †RMR, ΓL ≡M †LML, (4.96)

which transform under SO(5)′ similarly to (4.78) (except with L↔R):

ΓR → gR ΓR g
†
R, ΓL → gL ΓL g

†
L. (4.97)

The explicit forms of ΓL and ΓR read

ΓL =


m2
v +m2

w2 i(m2
v −m2

w2) 0 0 0
−i(m2

v −m2
w2) m2

v +m2
w2 0 0 0

0 0 m2
v +m2

w2 −i(m2
v −m2

w2) 0
0 0 i(m2

v −m2
w2) m2

v +m2
w2 0

0 0 0 0 0

 (4.98)
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and

ΓR =


m2
w1 −im2

w1 0 0 0
im2

w1 m2
w1 0 0 0

0 0 m2
w1 im2

w1 0
0 0 −im2

w1 m2
w1 0

0 0 0 0 m2
s

 (4.99)

which can also be rewritten in terms of the Pauli matrices similarly to (4.86). We notice
that, unlike in the conventional case, higher orders in the expansion parameter λL,R/g∗
do not correspond to more insertions of the spurions ΓL,R, which in fact only depend on
the vector-like masses. The leading-order Higgs potential is rather determined by the
least number of Σ insertions, since the Higgs only enters through the Goldstone matrix
that always appears together with λL,R in (4.93). Due to (4.97), the leading contribution
requires two Σ's to appear simultaneously, and its structure is �xed as:

VLO(h) = cLR

∞∑
i,j=1

aij Tr(Σ
†ΓiLΣ ΓjR), (4.100)

where i, j are arbitrary powers for the ΓL,R matrices, for which (4.100) is still formally
invariant under SO(5)′, and the coe�cients can be determined from explicit calculation.
Next-to-leading terms in the potential correspond to more insertions of Σ. On the other
hand, since the elementary vector-like masses are not necessarily small, all powers of
ΓL,R contribute. Anyway, in order to have a feeling of the structure in (4.100), we can
evaluate the �rst term corresponding to i = j = 1:

V
(1,1)
LO (h) ∝

(
m2
sm

2
v +m2

sm
2
w2 − 2m2

w1m
2
w2

)
sin2(h/f)

+ (m2
vm

2
w1 −m2

sm
2
v +m2

w1m
2
w2 −m2

sm
2
w2) sin4(h/f),

(4.101)

which would give ξ = 0.1 for instance forms = 2.4 TeV, mw1 = 3 TeV, mw2 = 4 TeV and
mv = 5 TeV (although the actual value of ξ can change when including the terms with
i, j > 1). An actual calculation of ξ within our model that takes into account all powers
of ΓL,R is shown in Fig. 4.10 as a function of mv, �xing the other parameters such that
the Higgs mass and the top mass are correctly reproduced at the point ξ = 0.1. As we
can see, ξ is slowly varying with mv implying that reproducing ξ = 0.1 does not require
signi�cant tuning.

We thus conclude that the soft MCHM5 with maximal symmetry speci�ed in (4.93)
is free from double tuning, because the structure in the potential is rich enough to
provide a non-trivial minimum for electroweak symmetry breaking at the leading order.
Moreover, we notice that ξ is not constrained to be ξ = 0.5 as it was found for the
leading-order potential in (4.80). As we have seen, this implication for the misalignment
ξ is controlled by trigonometric parity and we can ask ourselves what is its fate in the
soft-breaking setup. While a detailed analysis is presented in Sec. C.2, here we just give
the result, which is that trigonometric parity is always broken in the soft-breaking setup
already within the fermion sector, unless the masses of the new vector-like fermions are
given very particular values:

sh ↔ −ch is unbroken ⇔ ξ = 0.5 ⇔ (m2
v −m2

w2
)m2

w1
= 0. (4.102)

We then conclude that, for generic values of the vector-like masses, the unwanted pre-
diction ξ = 0.5 can be avoided in our setup already within the fermion sector without
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Figure 4.10: The value of ξ ≡ sin2(〈h〉/f) = −α/2β as a function of mv for M = 2.6
TeV, mw1 = mw2 = 8 TeV, ms = 2.4TeV.

reintroducing the double tuning, as trigonometric parity is broken in a controlled way
by the vector-like masses (besides very particular points).

In the next section, we will provide a quantitative analysis of the potential in (4.100)
and calculate the tuning in our model, which will turn out to be natural also with top
partner masses above 2 TeV.

4.4.3 Heavy top partners with minimal tuning

We present here the quantitative results for our model and calculate the amount of
tuning needed to achieve correct electroweak symmetry breaking together with heavy
top partners above the LHC bounds. Using the standard parametrization of the poten-
tial (4.10), we �nd at leading order in λL,R

α+ β = −C
∫ ∞

0
p3 dp

M2m2
w1

(m2
v −m2

w2
)

(M2 + p2)2(m2
w1

+ p2)(m2
w2

+ p2)(m2
v + p2)

, (4.103)

and

β = C

∫ ∞
0

p3dp
M2(2m2

vm
2
w2

+ (m2
v +m2

w2
)p2)(m2

s(m
2
w1

+ 2p2)−m2
w1
p2)

p2(p2 +M2)2(p2 +m2
s)(p

2 +mv)2(p2 +m2
w1

)(p2 +m2
w2

)
, (4.104)

where

C =
2Nc

8π2
λ2
Lλ

2
Rf

4. (4.105)

In particular, since ξ = −α/(2β), the point corresponding to unbroken trigonometric
parity ξ = 0.5 is realized if the integrand in (4.103) vanishes. This happens when
m2
w1

(m2
v − m2

w2
) = 0, in agreement with (4.102), and can be checked explicitly by

looking again at Fig. 4.10.
In addition to the terms from the top sector, the potential also contains a contribution

from the gauge sector. It mainly a�ects α, and we will take this into account by adding
the following term [187]:

αg =
9

64π2
g2f2m2

ρ, (4.106)

where mρ is the mass of the spin-1 vector resonance ρ.
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In order to quantitatively estimate the tuning of the theory ∆, we adopt the Barbieri-
Giudice measure [160,172]:

∆ = max{|∆i|}, ∆i =
2xic

2
h

shm
2
hf

2

∂2V

∂xi∂sh
, (4.107)

where sh ≡ sin(h/f) and similarly for ch, and the independent variables xi are

xi = {λL, λR, f,mρ,M,ms,mv,mw1 ,mw2}. (4.108)

Before moving to an actual calcuation using (4.107), let us estimate the tuning in our
model (4.93) where maximal symmetry and soft breaking are successfully combined.
To this end we recall that the maximally symmetric version of the MCHM5 is free
from double tuning and the estimate is simply ∆ ∼ 1/ξ. With maximal symmetry
alone, however, heavier top partners can be achieved only at the price of decreasing ξ
yielding the quadratic growth in (4.83). Crucially, this is not the case when maximal
symmetry and soft breaking are married as heavier top partners are now compatible
with a light Higgs without raising the scale f . Moreover, since α and β are now related
via trigonometric parity the reasoning that lead to (4.73) is not applicable and the
quadratic growth with mT is avoided. We can then estimate the tuning in our model
where maximal symmetry and soft breaking are successfully combined to be, as a �rst
approximation, independent of the top-partner masses and equal to the minimal tuning
as in Ref. [184] with ξ = 0.1 and mρ > 2TeV:

∆ ' 1

ξ
− 2 = 8. (4.109)

This is in fact the essence of combining soft breaking and maximal symmetry: the
former allows to raise the top partner masses without raising f and the latter provides
the connection α ≈ β via trigonometric parity ensuring a fully softened potential. As we
shall see, (4.109) is in fact a good approximation of the tuning for top partner masses
satisfyingmT . 2TeV: up to this value, obtaining a light Higgs will require no additional
tuning; for larger masses, however, �xing the Higgs mass to 125GeV implies a certain
amount of extra cancellations in the potential and the overall tuning will deviate from
the minimal one in (4.109).

The tuning in the various models discussed in this section as a function of the top
partner mass, mT , is presented in Fig. 4.11. Solid lines correspond to the simple analytic
estimates given in Eqs (4.69) and (4.73) (blue), (4.83) (red) and (4.109) (green), while
the dots to numerical calculations using the expression of the one-loop Higgs potential as
well as the measure in (4.107). As we can see, for the soft maximal symmetry case (green
color) the tuning is in fact independent of mT in the low-mass region and coincides with
the estimate in (4.109); on the other hand, for mT & 2TeV the tuning is driven by the
requirement of a light Higgs and the result deviates from (4.109). The model turns out
to be nonetheless rather natural also for heavier mT and ρ masses: we actually �nd
∆ ' 20 for mT ' 2.5 TeV, whereas taking a more stringent cut on the ρ mass, mρ > 3
Tev, will change the mT -independent estimate in (4.109) from 8 to 16.

We can then clearly see that the sMCHM5 with maximal symmetry allows for mini-
mal tuning, at the level of ∆−1 . 10%, while avoiding the anomalously light top partners
disfavored by the LHC. In particular, the region in which the tuning increases due to
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Figure 4.11: Comparison of the tuning ∆ in several models as a function of the mass
of the lightest top partner mT . Solid lines correspond to the analytical estimates and
dots to a numerical calculation according to Eq. (4.107). The mass of the spin-1 vector-
resonance, ρ, is taken mρ > 2 TeV.

the non-observation of the top partners is postponed in our model to mT & 2TeV.
Thus, in contrast to other minimal realizations, this natural CH is only just about to
be tested now, at the HL-LHC, or FCC [188�191]. In fact, even before turning on the
LHC, electroweak precision tests told us that ξ . 0.1 and therefore the tuning for a
CH was to be expected at the 10% level, see again the discussion in Sec. 4.2. However,
for the conventional MCHM5 and also for its maximally symmetric version, the tuning
is actually driven by the non-observation of light top partners that is already cutting
values of ξ previously unconstrained by LEP. On the contrary, Fig. 4.11 con�rms that
the LHC limit on top partners is not driving the tuning in our model, bringing us back
to the pre-LHC era.

4.5 Warped 5D implementation

In this section, we will discuss CH models from the perspective of extra-dimensional
theories, where all the ingredients that we have introduced in the 4D relization of our
model presented in Sec. 4.4.2 will turn out to have a very simple interpretation [VII].

The link between Higgs compositeness and extra dimensions is provided by the
AdS/CFT correspondence [182], which relates d-dimensional conformal �eld theories
to d + 1 models in anti-de Sitter (AdS) space-time. The reason why this is convenient
boils down to the fact that the strongly coupled regime of the CFT corresponds to weak
coupling in the extra-dimensional model ensuring calculability. This is clearly advanta-
geous for studying CH models, as the Higgs emerges as a bound state of a new strong
dynamics which is close to conformality until it condenses generating the scale f . This
said, it is certainly true that, as explored in the previous sections, phenomenological
models in 4D already provide an excellent tool to make a quantitative analysis of the
low-energy theory.

There are however two good reasons to look at our new model from the extra-
dimensional perspective. The �rst one is (i) investigating the origin of the soft-breaking
setup itself. As we shall see, this has to do with the fact that the elementary multiplets
that we have completed to full SO(5) representations by adding the new elementary
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fermions are actually the fundamental objects to start with in the 5D model. Also, the
appearance of discrete symmetries as the Z2 parity that forbids the terms in (4.95) is
more easily understood in 5D as an interplay of di�erent symmetries at the boundaries
of AdS. The second reason is (ii) to provide a rationale behind the mass scale of the
elementary vector-like fermions that has been so-far considered as a phenomenological
free parameter. In fact, the new fermions can impact the Higgs potential only if they are
light enough to be active below the condensation scale, thus having a mass comparable
to the composite resonances. This can be viewed as a sort of �coincidence� problem. In
fact, even if the Planck scale is the only scale in the game, it is easy to accommodate a
TeV-scale composite resonance by dimensional transmutation. This mechanism is clearly
not at work for elementary fermions, and a bare mass which is much smaller thanMPl is
rather ad hoc. On the other hand, fermion masses are technically natural due to chiral
symmetry and thus this does not represent a real �ne-tuning problem. Anyway, besides
any naturalness issue, the generation of elementary vector-like masses at the TeV scale
is certainly worth investigating and, as we shall see, the 5D picture can easily provide a
mechanism for this.

Let us get started by introducing the �ve-dimensional space-time that we are going
to use throughout this section, see e.g. [152, 192, 193] for reviews. It consists of a slice
of AdS space, delimited by two 4D branes that are connected along the extra dimension
z. The UV brane is located at z = R and the IR brane at z = R′ with R′ > R. The
conformally-�at AdS5 metric is

ds2 = a(z)2(ηµνdx
µdxν − dz2), (4.110)

where ηµν describes the standard Minkowski space time with µ, ν = 0, . . . , 3 and the
�fth coordinate z can vary as z ∈ [R,R′]. The warping factor a(z) reads

a(z) =
R

z
. (4.111)

Notice that a(R′) < 1, meaning that energy scales are warped down on the IR brane
with respect to the UV brane, and hence their names. The position R of the UV brane
is related to the smallest distance at which the theory can be trusted, and thus it is
usually set to the Planck scale: R−1 ∼ MPl. Conversely, the IR brane represents the
scale at which the strong sector of the dual 4D theory loses conformality (see e.g. [194])
and thus provides an IR cuto�, namely the condensation scale. Since we expect the
Higgs decay constant f to be around 1 TeV, one takes R′ −1 ∼ 1TeV.

As for the �eld content and symmetries, we will assume that the bulk of AdS5

(namely, everywhere between the branes) possesses an SO(5)×U(1)X gauge symmetry.
This is because gauge symmetries in the extra dimension are known to correspond to
global symmetries in the 4D dual. There are then exactly 10+1 gauge bosons AαM (x, z),
where M = µ, 5 (µ = 0, . . . , 3) is a space-time index according to the �ve-dimensional
Lorentz group SO(4, 1), and α = 1, . . . , 11 counts the dimensionality of the adjoint of
SO(5)× U(1)X .

From the perspective of a 4D observer the symmetry of the space-time is the standard
SO(3, 1), and thus each gauge boson decomposes as a vector Aαµ and a scalar �eld Aα5
with respect to the standard Lorentz group:

AαM (x, z) =

(
Aαµ(x, z)

Aα5 (x, z)

)
. (4.112)
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Since space-time has boundaries along the �fth dimension, a crucial role is played by
the boundary conditions that are assigned to a given �eld. In particular, the boundary
conditions for the gauge �elds are chosen to reproduce the following symmetry reduction
on the branes:

• SO(5) × U(1)X → SO(4) × U(1)X on the IR brane at z = R′. This mimics the
SO(5)/SO(4) breaking due to condensation of the new strong dynamics.

• SO(5)× U(1)X → SU(2)L × U(1)Y on the UV brane at z = R. This implements
the fact that the elementary �elds only respect the SM gauge symmetry.

From general arguments, we know that the pNGB Higgs is associated with the broken
generators of SO(5)/SO(4). This remains true also in the 5D model, where the Higgs
degrees of freedom are identi�ed as the �fth components of the SO(5) gauge bosons Aâ5,
â = 1, . . . , 4, corresponding to these broken directions. These degrees of freedom are
indeed Lorentz scalars, as discussed above (4.112). As the Higgs is embedded within
an extra-dimensional gauge �eld, this setup realizes what is also called gauge-Higgs
uni�cation, and the tree-level Higgs mass is now forbidden by gauge symmetry. However,
the gauge symmetry is broken by the presence of the UV and IR branes, and thus a
potential for the Higgs will be generated radiatively, as in the usual pNGB picture.

Let us now move to discuss how matter �elds, including the SM fermions, are in-
cluded. First of all, let us note that standard dimensional analysis implies that the
canonical dimension of a fermion �eld Ψ in d = 5 is:

[Ψ] =
d− 1

2
= 2. (4.113)

In d = 4, spin-1/2 irreducible representations of the Lorentz group are known to be
chiral Weyl fermions. However, the smallest representation of the Lorentz group for
spin-1/2 particles in 5D contains both chiralities and is instead a Dirac fermion:

Ψ(x, z) =

(
χα(x, z)
ψ̄α̇(x, z)

)
, (4.114)

where we are using two-component spinor notation, α, α̇ = 1, 2. This clearly poses an
issue when trying to identify the SM fermions within these 5D multiplets, as we know
that they are fully chiral under the SM gauge symmetry. However, the two chiralities
within Ψ can be actually �separated� by assigning them di�erent boundary conditions
on the branes. This procedure is called orbifolding and has been shown to be successful
in reproducing a chiral spectrum of fermions at low energy. The choice of the boundary
conditions for Ψ impacts the Higgs potential as well, as they will also break the 5D
gauge symmetry and contribute to it similarly to the gauge bosons.

In the next section, we will discuss the role of boundary conditions on a slice of AdS
and discuss the physical interpretation of this from the perspective of a 4D observer.

4.5.1 Boundary conditions and Kaluza-Klein modes

Let us here focus on the 5D fermionic sector as we �nd there the crucial new element of
our soft-breaking setup.

As a �rst step, we need to write down a 5D action for the fermions from which
we can derive the classical equations of motion (eom). Neglecting for the moment the
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SO(5)×U(1)X gauge interaction, the free Lagrangian for 5D fermions in curved space-
time is, see e.g. [195],

S =

∫
d4x

∫ R′

R
dz
√
g

(
i

2
(Ψ̄eMa γ

aDMΨ−DM Ψ̄eMa γ
aΨ)−mΨΨ̄Ψ

)
, (4.115)

where eMa = (z/R)δMa is the fünfbein and γa′s are Dirac matrices. By DM , we indicate
the covariant derivative on the curved space-time, DµΨ = (∂µ + γµγ5/4z), D5Ψ = ∂5Ψ.
The action in (4.115) can be expanded in terms of the chiral components in (4.114) as

S =

∫
d4x

∫ R′

R
dz

(
R

z

)4{
− ıχ̄σ̄µ∂µχ− ıψσµ∂µψ̄+

1

2
(ψ
←→
∂5χ− χ̄

←→
∂5 ψ̄) +

c

z
(ψχ+ χ̄ψ̄)

}
,

(4.116)

where we have rewritten the fermion mass in units of R, mΨ = c/R, and
←→
∂5 =

−→
∂5 −

←−
∂5.

The symbols σµ, σ̄µ are related to the Pauli matrices, σi, as σµαα̇ = (−1, σi) and σ̄µ α̇α =
(−1,−σi) [196].

The Euler-Lagrange eom are obtained in the standard way by varying the action
with respect to the �elds:

δS =

∫
d4x

∫ R′

R
dz

{(
δL
δφa
− ∂M

δL
δ∂Mφa

)
δφa + ∂M

(
δL

δ∂Mφa
δφa
)}

= 0. (4.117)

Notice that the second term, that is a total derivative, does not necessarily vanish as the
5D space-time has boundaries. Requiring the �rst term to vanish enforces the following
eom in the bulk� recall that L here contains also the (R/z)4 prefactor:

δL
δχ̄
− ∂M

δL
δ∂M χ̄

=

(
R

z

)4(
−ıσ̄µ∂µχ−

1

2
∂zψ̄ +

c

z
ψ̄

)
− ∂z

[(
R

z

)4 1

2
ψ̄

]

=

(
R

z

)4(
−ıσ̄µ∂µχ− ∂zψ̄ +

c+ 2

z
ψ̄

)
,

(4.118)

and similarly

δL
δψ
− ∂M

δL
δ∂Mψ

=

(
R

z

)4(
−ıσµ∂µψ̄ + ∂zχ+

c− 2

z
χ

)
. (4.119)

As for the total derivative in (4.117), the standard 4D space-time components can be
neglected as there is no boundary. The term with M = 5 however gives the following
contribution:

1

2

∫
d4x

[(
R

z

)4

(δχ̄ ψ̄ + ψ δχ− δψ̄ χ̄− χ δψ)

]z=R′
z=R

. (4.120)

We see that (4.120) is generically non-zero unless suitable boundary conditions are chosen
for the �elds. At each boundary z̃ = R,R′ there are exactly two possibilities: either

χ(x, z̃) = 0 (δχ = 0) ⇒ ∂zψ̄(x, z̃) =
2 + c

z
ψ̄(x, z̃) (4.121)

where the implication follows by using the bulk eom in (4.118), or

ψ(x, z̃) = 0 (δψ = 0) ⇒ ∂zχ(x, z̃) =
2− c
z

χ(x, z̃) (4.122)
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where we have used (4.119). Either way, we can see that the boundary conditions at
z = R,R′ for the two chiralities χ and ψ are not independent, as they are connected
through the eom. The condition φ(x, z̃) = 0 is denoted as Dirichlet, and it implies
a condition on the opposite chirality which for c = 0 and �at space-time reduces to
Neumann boundary condition, ∂zφ(x, z̃) = 0.

Going back to the Dirac fermion Ψ, we will denote by Ψ[+] a Dirichlet boundary
condition for its right-handed component, namely ψ = 0 as in (4.122), and by Ψ[−] a
Dirichlet boundary condition on the left-handed component, χ = 0 as in (4.121). In the
actual case of two boundaries, we will use Ψ[a, b] (a, b = + or -) where a and b refer to
the UV and IR branes, respectively.

Let us now move to discuss the relevance of the Kaluza-Klein (KK) decomposition
for �elds that live on a compact space. This applies to our discussion because the �fth
dimension is limited by the UV and IR branes. The idea is to decompose each 5D �eld
as an in�nite sum of pure 4D �elds, the weight of each given by a pro�le function that
only depends on the coordinate in the extra dimension z. For fermions, we shall use the
following decomposition:

χ(x, z) =
∑
n

gn(z)χn(x), ψ̄(x, z) =
∑
n

fn(z)ψ̄n(x, z). (4.123)

Each 4D spinor then satis�es the 4D Dirac equation with mass mn:{
−ıσ̄µ∂µχn +mnψ̄n = 0

−ıσµ∂µψ̄n +mnχn = 0
. (4.124)

By plugging the ansatz (4.123) in the bulk eom, (4.118) and (4.119), and using the 4D
eom (4.124), one �nds the following equations for the pro�les:{

g′n −mnfn + c−2
z gn = 0

f ′n +mngn − c+2
z fn = 0

. (4.125)

Moreover, the various 4D modes need to satisfy orthonormalization conditions of the
kinetic terms that are given by∫ R′

R
a(z)4gn(z)gm(z) dz =

∫ R′

R
a(z)4fn(z)fm(z) dz = δn,m. (4.126)

It is extremely relevant for the low-energy phenomenology whether massless fermions can
appear in the spectrum. Let us then set m0 = 0 in (4.125) and solve the consequently
two uncoupled equations. One simply �nds

g0 = A0

( z
R

)2−c
, f0 = B0

( z
R

)c+2
, (4.127)

where A0 and B0 are two independent constants. We see that a zero-mode can appear
only if the boundary conditions Ψ[a, b] are such that a = b. In particular,

Ψ[+,+] ⇒ B0 = 0 and g0 = A0

( z
R

)2−c
LH zero mode,

Ψ[−,−] ⇒ A0 = 0 and f0 = B0

( z
R

)2+c
RH zero mode.

(4.128)
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It is also important to understand the qualitative behavior of the zero-mode pro�les
along the extra dimension. In particular, it is crucial to determine where a given zero
mode has the largest wave function in order to understand its properties. As we shall
see, this is how the SM �avor puzzle is solved in the 5D dual of partial compositeness
that we referred to in Sec. 4.1. Generically one identi�es two possibilities: either UV
localization or IR localization. This property is however not straightforward by just
looking at the pro�le functions in (4.128). The best way to see this is to look at the
pro�les in a covariant way, namely including the fact that the extra dimension is warped.
Let us then calculate the normalization condition in (4.126) for a LH zero mode:∫ R′

R
a4(z)g2

0(z) dz = A2
0R

2c

∫ R′

R
z−2c dz = 1. (4.129)

In order to understand where this zero mode is localized, we can now consider the limit
in which either brane is removed, namely R → 0 or R′ → ∞. If the mode remains
normalizable, namely the integral is �nite, it means that it is localized on the other
brane. It is now easy to see that for a LH mode c > 1/2 implies UV localization,
whereas the mode is IR localized for c < 1/2. The same relations hold for a RH zero-
mode but with c → −c : c < −1/2 implies UV localization and c > −1/2 gives IR
localization. As mentioned before, this very simple fact provides the solution to the SM
�avor puzzle, and will also be relevant for the mass scale of the elementary vector-like
fermions in our model of soft breaking.

Let us now move to discuss massive modes, which are truly called KK excitations.
One can rewrite (4.125) increasing the order in the derivatives but disentangling the gn
and fn pro�les as g

′′
n − 4

zg
′
n +

(
m2
n − c2+c−6

z2

)
gn = 0

f ′′n − 4
zf
′
n +

(
m2
n − c2−c−6

z2

)
fn = 0

. (4.130)

The two equations are the same modulo c → −c, so we can just focus on the �rst one.
As it is a second-order di�erential equation, there exist two independent solutions, that
are customarily indicated as warped sine S(z,m, c) and warped cosine C(z,m, c), see
e.g. [197,198], that are de�ned in the Sec. C.3. The generic solution to both (4.125) and
(4.130) is:

gn(z) =

(
R

z

)c−2

[bnS(z,mn, c)− anC(z,mn, c)] ,

fn(z) =

(
R

z

)−c−2

[anS(z,mn,−c) + bnC(z,mn,−c)] ,
(4.131)

where an, bn are arbitrary coe�cients that are �xed by imposing boundary and normal-
ization conditions, and the masses mn are obtained by quantization conditions as we
shall see. The warped trigonometric functions satisfy useful equalities

C(R,m, c) = 1, S(R,m, c) = 0, (4.132)

which make them ideal to impose Dirichlet boundary conditions at z = R, together with
the Wronskian relation

C(z,m, c)C(z,m,−c) + S(z,m, c)S(z,m,−c) = 1 (4.133)
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that generalizes cos2θ + sin2θ = 1.
Let us now discuss how the masses mn of the various KK excitations are obtained.

For each Dirac state (χn, ψ̄n) there are two arbitrary constants an and bn. However, there
are two boundary conditions that need to be satis�ed together with ortho-normalization
requirements for the 4D kinetic terms, (4.126). As the system is over-constrained, all
requirements can be met only if the two boundary conditions are actually linearly de-
pendent. This happens only for suitable (discrete) values of the masses mn, which are
indeed determined this way.

To see how this works, let us take for example a fermion with boundary conditions
Ψ[−,+]. Referring to the pro�le solution in (4.131), one has gn(R) = fn(R′) = 0 which
implies an = 0 together with

C(R′,mn,−c) = 0, (4.134)

where the latter condition actually gives all the possible values of mn. For instance,
c = −0.3 and R′ = 1 TeV−1 gives m1 ∼ 2 TeV. For each mn, the last parameter bn is
then �xed by the normalization of the kinetic terms, (4.126)

b2n

∫ R′

R
dz

(
R

z

)2c

S2(z,mn, c) = 1, (4.135)

and all the other normalization conditions are automatically satis�ed.
The KK decomposition of gauge bosons can be carried out in a similar way. There

one �nds that imposing a Dirichlet boundary condition for the vector part Aαµ implies
Neumann for the scalar component Aα5 , and vice versa. This has the same implication
in terms of KK decomposition and zero modes as for the fermions. In particular, the
broken gauge bosons of SO(5), Aâµ, need to have Dirichlet boundary conditions on both

branes to allow for the zero modes within Aâ5 corresponding to the pNGB Higgs degrees
of freedom. Conversely, the three SM gauge bosons corresponding to SU(2)L emerge for
instance as zero modes of Aiµ, i = 1, 2, 3 once Dirichlet boundary conditions are set for
Ai5 on both branes.

4.5.2 The holographic Higgs

We discuss here the 5D setup that represents the holographic dual of the conventional
MCHM5, which is in fact the way this model was �rst introduced in Ref. [157]. The
symmetry structure is the same as always, namely a SO(5)×U(1)X gauge symmetry in
the bulk which is reduced to SU(2)L × U(1)Y and SO(4) × U(1)X on the UV and IR
branes, respectively. The values for R and R′ are �xed by phenomenological consider-
ations. As mentioned already, the position R of the UV brane is given by the smallest
distance at which the theory can be trusted, and thus it is usually set at the Planck scale:
R = 1/MPl. Conversely, the IR brane represents the IR cuto� of the theory and needs
to be identi�ed with the scale at which the strong sector of the dual 4D theory loses
conformality, and thus coincides with the condensation scale. Since we expect the Higgs
decay constant to be around 1 TeV, one assumes R′ ∼ 1TeV. The choice of embedding
the quark doublet qL and the singlet tR as 5 of SO(5) corresponds here to introducing
two di�erent 5D fermion �elds Ψq and Ψt in the 52/3 representation of SO(5)×U(1)X :

Ψq =

(
wu[−,+] t[+,+]
wd[−,+] b[+,+]

)
⊕ s[−,+], Ψt =

(
w′u[+,−] vu[+,−]
w′d[+,−] vd[+,−]

)
⊕ t′[−,−]. (4.136)
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The �elds have been presented according to 4⊕1 representations of SO(4). The bound-
ary conditions for (t, b) are such their LH components allow for a zero mode, which is
then identi�ed with the SM quark doublet qL. Similarly, the boundary conditions for
t′ allow for a RH zero mode correspoding to tR. The other �elds instead only have
opposite boundary conditions on the UV/IR branes and thus only give massive KK ex-
citations, that correspond to the resonances of the strong sector. This choice is dictated
by avoiding light zero modes for exotic quarks. The notation introduced for s, v, w and
w′ makes contact with the �elds that we have been using throughout this chapter. As
we can see, the boundary conditions on the UV brane in (4.136) are only SU(2)L sym-
metric. In the partial compositeness picture, this corresponds to incomplete multiplets
as in (4.15) where the null entries of the spurions in (4.28) are here interpreted as the
lack of zero-modes for the corresponding 5D �elds.

The action for Ψq and Ψt has exactly the same form of (4.115), with the only
di�erence that gauge �elds are included in the covariant derivatives:

Dµ = ∂µ +
1

4z
γµγ5 + ig5T

αAαµ + ıgXXµ, D5 = ∂5 + ig5T
αAα5 + ıgXX5, (4.137)

where g5 and gX are the gauge couplings correspoding to SO(5) and U(1)X respectively,
and have mass dimension [g5,X ] = −1/2. The interaction with the Higgs is found by
looking at the �fth component of the SO(5)/SO(4) broken generators, α = â:

∆L =
∑
k=q,t

Ψ̄k(x, z)γ
5T âΨk(x, z) g5A

â
5(x, z) + h.c., (4.138)

In the unitary gauge, only â = 4 will describe the physical interaction with the Higgs.
Thus, performing KK decomposition on A4

5

A5
5(x, z) = fh(z)h(x) +

∑
n

fn(z)hn(x), (4.139)

and keeping only the h(x) zero mode, we �nd

∆L ⊃
∑
k=q,t

g5 fh(z) Ψ̄k(x, z)γ
5 T 4 Ψk(x, z)h(x) + h.c. (4.140)

Although the interaction above has the structure of a yukawa coupling, the Higgs me-
diates no link between qL and tR as there is no cross-interaction between Ψq and Ψt.
Thus, in order to give a mass to SM fermions after electroweak symmetry breaking one
needs to add at least a localized action that lives in the IR brane:

SIR =

∫
d4x

(
R

R′

)4 (
µ4Ψ̄4

q (x,R′)Ψ4
t (x,R′) + µ1Ψ̄1

q (x,R′)Ψ1
t (x,R′) + h.c.

)
, (4.141)

where 4 and 1 refer to the decomposition in fourplet and singlet in (4.136) and µ4,1 are
dimensionless parameters.

At this point, we should also notice that (4.131) gives the solution to the bulk
eom only for a free 5D fermion. However, the Higgs couples to the fermions through
the covariant derivative in the bulk as we have just seen, and this interaction cannot
be neglected if one wants to investigate the generated Higgs potential. This leads to
coupled di�erential equations among the di�erent SO(5) components of the Ψq,t �elds
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considerably complicating their eom which also pick a dependence on the Higgs vev.
The new KK decomposition for a Weyl spinor χ(x, z) taking this into account becomes

χ(x, z) =
∑
n

gn(z, 〈h〉)χn(x), ψ̄(x, z) =
∑
n

fn(z, 〈h〉) ψ̄n(x), (4.142)

which gives back (4.123) for 〈h〉 = 0.

Fortunately, there exists a gauge transformation that allows to remove the Higgs vev
from the bulk. It is called holographic gauge and reads [199]

Ψf (x, z)→ Ω(z)Ψf (x, z), (4.143)

where f = q, t together with

TαAαM (x, z)→ Ω(z)TαAαM (x, z) Ω(z)T − (i/g5) ∂MΩ(z) Ω(z)T , (4.144)

and Ω(z) is the Wilson line de�ned as

Ω(z) = exp

(
−ıg5T

4〈h〉
∫ z

R
dz̃ fh(z̃)

)
. (4.145)

After applying Ω(z) the dependence on the Higgs vev from all bulk pro�les drops out,
and one can relate gn(z, 〈h〉) to gn(z, 0) simply by

gan(z, 〈h〉) = Ω(z)ab gbn(z, 0), fan(z, 〈h〉) = Ω(z)ab f bn(z, 0), (4.146)

where a, b = 1, . . . , 5 are SO(5) indices. Hence, the boundary conditions that are orig-
inally de�ned for gn(z, 〈h〉) and fn(z, 〈h〉) can be easily related to the free pro�les via
(4.146). Notice that, as Ω(R) = 1, both pro�les coincide on the UV brane and thus have
the same boundary conditions.

The actual picture, however, is modi�ed by the presence of brane-localized terms.
To see this, we refer explicitly to the IR-localized that was given in (4.141) by simply
taking the value of the 5D �elds at z = R′. Introducing such boundary terms, however,
requires a more careful treatment in order to comply with the variational principle and
we will here follow the procedure outlined in Ref. [195]. According to the notation in
(4.114), we will indicate by χq,t and ψ̄q,t the LH and RH component of Ψq,t, respectively.
Moreover, each Weyl component comes with SO(4) indices representing either the 4 or
the 1 of SO(4). With this notation, (4.141) can be expanded in terms of the χ and ψ
�elds as

SIR =

∫
d4x

(
R

R′

)4 [
µ4

(
ψ 4
q (x,R′)χ4

t (x,R′) + χ̄4
q (x,R′)ψ̄4

t (x,R′)
)

µ1

(
ψ 1
q (x,R′)χ1

t (x,R′) + χ̄1
q (x,R′)ψ̄1

t (x,R′)
)

+ h.c.

]
.

(4.147)

Moreover, we will simplify the expression above by using directly the boundary condi-
tions in (4.136), ψ4,1

q (x,R′) = 0 and χ4,1
t (x,R′) = 0. This leads to

SIR =

∫
d4x

(
R

R′

)4 [
µ4 χ̄

4
q (x,R′)ψ̄4

t (x,R′) + µ1 χ̄
1
q (x,R′)ψ̄1

t (x,R′) + h.c.
]

(4.148)
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However, recalculating the Euler-Lagrange eom from the bulk action together with SIR,
we will �nd that the boundary terms will no longer vanish with the standard set of
Dirichlet conditions as in (4.136) exactly because of the new terms in (4.148). In order
to have a consistent variational principle, one needs to rely on a certain prescription
when introducing a boundary action. We will follow the one that �rst moves all the
terms in (4.148) away from the IR brane by ε > 0, yielding

SIR =

∫
d4x

∫
d z

(
R

z

)4 [
µ4 χ̄

4
q (x, z)ψ̄4

t (x, z)+µ1 χ̄
1
q (x, z)ψ̄1

t (x, z)+ h.c.
]
δ(z−R′+ε),

(4.149)
where δ(x) is the Dirac delta-function. The eom now give:

− ıσ̄µ∂µχr
q − ∂zψ̄r

q +
cq + 2

z
ψ̄r
q + µr ψ̄

r
t δ(z −R′ + ε) = 0,

− ıσµ∂µψ̄r
t + ∂zχ

r
t +

ct − 2

z
χr
t + µr χ

r
q δ(z −R′ + ε) = 0,

(4.150)

where we have introduced r = 4,1 to keep the notation compact. The idea is now to
integrate the eom in (4.150) around the δ-functions from z = R′−ε to z = R′ and obtain
a new set of boundary conditions. One can see that the wave functions that enter the
modi�ed eom with ∂z will undergo a jump at z = R′ − ε, whereas all the other pro�les
will receive modi�cations that vanish when ε→ 0. Performing the integral, one �nds:

ψ̄r
q(x,R

′ − ε)−�����ψ̄r
q(x,R

′) + µr ψ̄
r
t (x,R

′ − ε) +O(ε) = 0,

�����χr
t (x,R

′) − χr
t (x,R

′ − ε) + µr χ
r
q(x,R

′ − ε) +O(ε) = 0,
(4.151)

where we have used the original boundary conditions at z = R to simplify the expression.
The new boundary conditions are then de�ned by taking the ε→ 0 limit in (4.151){

frq (R′, 〈h〉) = 0

grt (R
′, 〈h〉) = 0

−→

{
frq (R′, 〈h〉) + µr f

r
t (R′, 〈h〉) = 0

grt (R
′, 〈h〉)− µr grq(R′, 〈h〉) = 0

, (4.152)

which fully capture the e�ect of having the IR-localized action in (4.148). In the equation
above we stressed that these new conditions actually hold for the Higgs-dependent pro-
�les. However, using (4.146) we can obtain the �nal sets of the IR boundary conditions
in terms of the free pro�les, whose general solution is given in (4.131), as:{

fq(R
′) + Ω−1(R′)M Ω(R′)ft(R

′) = 0,

gt(R
′)− Ω−1(R′)M Ω(R′)gq(R

′) = 0,
(4.153)

where M = diag (µ4, µ4, µ4, µ4, µ1), and f, g are expressed as SO(5) vectors. Notice
that in the particular case µ4 = µ1, we have M ∝ 15×5 and the Higgs vev is removed
from the theory (namely, it is unphysical) showing that the Higgs would be an exact
NG boson as long as the fermion sector is concerned. This has to do with the �collective
breaking� of the multi-site models discussed in Sec. 4.3.2, which indeed take inspiration
from the 5D models. In fact, it is not only necessary to break SO(5) on the UV brane
(or the elementary site in the dual picture) but also on the IR brane.

While referring to Ref. [157] for the actual details, let us note here that the new
boundary conditions in (4.153) make apparent that the mass of the SM fermions, which
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Figure 4.12: Scatter plot of the (mh,mT ) parameter space as obtained from the holo-
graphic MCHM5. As we can see, reproducing the correct Higgs mass generically requires
top parterns below 1 TeV. The left and right panels correspond to di�erent choices of
the IR-brane masses µ4 and µ1. Plot taken from [173].

is linked to the Higgs vev and thus to Ω(R′), will strongly depend on the behavior of
the corresponding zero modes around the IR brane. As discussed in Sec. 4.5.1, this
can be understood in terms of their localizations: when a zero mode is UV localized,
its overlap with the IR brane will be highly suppressed, whereas an IR-localized mode
will be largely a�ected by the Higgs vev. Thus, it is clear that one can reproduce the
SM spectrum by UV localizing the light generations, whereas the third generation will
feature IR localization. This automatically gets rid of the large hierarchies of the yukawa
couplings in the SM, as completely di�erent masses are here obtained simply depending
on whether c > 1/2 or c < 1/2, see again the discussion below (4.129).

On similar grounds, one can show that the largest contribution to the Higgs potential
is given by the zero modes that are the most IR localized, which simply correspond to
the SM fermions that have the largest yukawa to the Higgs. Similarly to what happens
in purely 4D models, one then �nds a very tight relation between the top mass, the
Higgs mass and the mass of the partners, which is qualitatively the same as (4.22) and
actually hints for even lighter top partners. These are here interpreted as anomalously
light KK modes, whose natural scale would be set instead by geometrical consideration
as ∼ π/R′ ∼ 3TeV. This is shown in Fig. 4.12 for the holographic dual of the MCHM5

de�ned in (4.136). We thus conclude that the 5D models describing a holographic Higgs
are (even more) in tension with the LHC. Again, one could solve this by simply raising
the Higgs decay constant, f , (which in the 5D picture is given as f = 2R1/2/g5R

′, see
e.g. [173]) whose drawbacks have already been discussed at the end of Sec. 4.2.

In the next section, we will discuss how to implement the soft breaking in the holo-
graphic picture. As we shall see, the idea behind our setup becomes even more trans-
parent in the 5D approach where all its features can be interpreted in a very simple
way.

4.5.3 Universal boundary conditions for a light Higgs

We present here a realization of the soft-breaking idea using the warped 5D setup, where
we will see that every ingredient of the 4D models have a very natural implementation
[VII]. The resulting 5D model is in fact quite simple and natural, and in no way more
contrived than the original [157] holographic MCHM5, but phenomenologically more
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successful.
The implementation of soft breaking is very simple and natural in 5D. All one needs

to do is impose SO(5)-universal boundary conditions on the bulk �elds Ψq,t that the
SM fermions are embedded into. This means all SO(5) components of the �elds have
the same boundary conditions, and (4.136) simply becomes

Ψq[+,+], Ψt[−,−]. (4.154)

With no further ingredient, such universal boundary conditions would produce a full
SO(5) multiplet of zero modes for every bulk fermion, which is clearly not viable phe-
nomenologically. This can however be avoided by including a brane-localized action
similar to (4.141), but this time at the UV boundary so that the zero modes can be
lifted due to the presence of 4D spinors, sR, vL, w1R and w2L, which can mix with
the bulk fermions on the UV brane. To obtain the same mixing pattern as in our 4D
setup in which maximal symmetry and soft breaking can be successfully combined, the
Lagrangian for the localized �elds is chosen as

SUV =

∫
d4x

{
−iηRσµ∂µη̄R−iξ̄Lσ̄µ∂µξL+

1√
R
χq(R)M †R ηR+

1√
R
ψt(R)M †L ξL+ h.c.

}
,

(4.155)
where χq (ψt) is the LH (RH) chirality of the SO(5) multiplet Ψq (Ψt) as in (4.114). The
4D spinors ηR, ξL are the same �elds as in (4.92) and MR,L are the the dimensionless
mass matrices analogous to (4.94), where the masses are now measured in units of
R ∼ 1/MPl and are replaced by the dimensionless coe�cients µi = miR (the presence
of the 1/

√
R factor is due to the di�erence mass dimension of 4D and 5D fermions).

The expression above is tailored to the model in (4.93). It is however straightforward to
write down the 5D dual also for the minimal model of soft breaking with the elementary
Lagrangian given in (4.35): in this case, the mass for w would correspond to a direct
yukawa interaction between χq and ψt, which is formally the same as the one in the IR-
localized action. In the following, we will stick to the setup in (4.155) as we have seen
that the combination with maximal symmetry is very important to reduce the tuning.

Note that in (4.155) we are again forbidding couplings of the type ηR−ξL and χq−ψt
in order to avoid reintroducing the double tuning, as discussed below (4.95). In the 5D
version this can be enforced by introducing a Z2 symmetry under which the entire Dirac
multiplet in the bulk, Ψq, (both χq and ψt) as well as ηR have negative parity, while
the other �elds have positive parity. This Z2 symmetry will only be broken on the IR
brane, where the χq−ψt terms in (4.148) are necessary to give masses to the SM quarks.
This is quite natural in the 5D approach, as we have seen that the symmetry content
of the two branes has di�erent meanings, namely symmetry of the elementary �elds
vs. symmetry of the strong sector. In this respect, implementing maximal symmetry is
straightforward: as this is a symmetry of the strong sector, one simply needs to require
that the IR action in (4.148) possesses the SO(5)′ symmetry de�ned in (4.74). This
simply amounts to setting µ4 = −µ1 in (4.153).

In complete analogy to the 4D model, the explicit breaking of the Higgs shift sym-
metry is fully encoded in the dimensionless matrices MR,L with elements µi. Actually,
brane localized �elds analogous to ηR and ξL were already considered in [200] as classi-
cal Lagrangian multipliers to enforce the desired boundary conditions in the holographic
approach: soft breaking can thus be seen as making those �elds dynamical and control-
ling their impact through their masses µi. In the limit of µi � 1, ηR and ξL become
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in fact true Lagrange multipliers enforcing opposite boundary conditions for the SO(5)
components not corresponding to SM fermions. In this limit, all results from conven-
tional holographic CH models are recovered. However, as long as the brane �elds are
dynamical they will contribute to the Higgs potential and realize the 5D analogy of soft
breaking. In practice, one can now interpolate between true zero modes for the new
vector-like quarks (µi = 0) and pure KK excitations (µi � 1) by dialing µi. For inter-
mediate values, partially elementary KK states appear in the low energy spectrum, and
the model is expected to modify the Higgs potential similarly to its 4D dual.

How large values of µi should we choose to get a realistic model reproducing the suc-
cess of the 4D picture? The most naive answer would be that µi ∼ TeV/MPl and hence
unnaturally small. However it is known that in 5D an e�ective TeV state can arise from
a Planckian mass due to wave-function suppression or, equivalently, renormalization-
group running in presence of large anomalous dimension for the corresponding operator
[201, 202]. To see how this works, we need to investigate how the original boundary
conditions on the UV brane are modi�ed by the presence of the UV action. This can
be done similarly to the case of SIR: �rst we impose the conditions (4.154) in SUV and
then recalculate the eom including the bulk action with the UV action moved ε-away
from the brane:

SUV =

∫
d4x

∫ R′

R
dz

(
R

z

)4

δ(z −R− ε)LUV(x, z), (4.156)

where LUV is deduced from (4.155). We �nd the following new equations of motion:

− iσµ∂µη̄R(x) +
1√
R
χq(x,R+ ε)M †R = 0, −iσ̄µ∂µξL(x) +

1√
R
MLψ̄t(x,R+ ε) = 0,

− iσµ∂µψ̄t(x, z) + ∂zχt(x, z) +
ct − 2

z
χt(x, z) + δ(z −R− ε) 1√

R
M †LξL(x) = 0,

− iσ̄µ∂µχq(x, z)− ∂zψ̄q(x, z) +
cq + 2

z
ψ̄q(x, z) + δ(z −R− ε) 1√

R
η̄R(x)MR = 0.

(4.157)

Integrating the last two equations around the δ-function one obtains:

χt(x,R+ ε)−�����χt(x,R) +
1√
R
M †LξL(x) +O(ε) = 0,

�����ψ̄q(x,R) − ψ̄q(x,R+ ε) +
1√
R
η̄R(x)MR +O(ε) = 0.

(4.158)

Applying the −iσ̄µ∂µ (−iσµ∂µ) operator to the �rst (second) equation in (4.158), and
substituting the expression for ηR and ξL in the �rst line of (4.157), we obtain the �nal
set of boundary conditions for the 5D �elds that describes our soft-breaking setup:{

ψq(x,R) = 0

χt(x,R) = 0
−→

{
−iσµ∂µψ̄q(x,R) + 1

Rχq(x,R)ΓR = 0

−iσ̄µ∂µχt(x,R)− 1
RΓLψ̄t(x,R) = 0

(4.159)

where ΓL,R are exactly the dimensionless equivalent of the spurions in (4.96). As we can
see, the e�ect of the brane localized spinors η and ξ can be recasted as a set of relations
involving the 5D �elds only. In particular, one can check that in the limit of very large
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brane terms, ΓL,R, this set of boundary conditions gives back the standard assignments
in (4.136) for the di�erent SO(5) components.

However, the new UV boundary conditions contain derivative operators and it is not
obvious how to interpret them at �rst sight. In order to gain some understanding, we
will explicitly investigate the KK spectrum for the simpli�ed case in which only the UV-
localized singlet spinor sR(x) ∈ ηR(x) is dynamical. This actually corresponds to the
5D dual of the singlet case discussed in Sec. 4.3.3. We then consider the SO(4)-singlet
component of Ψq consisting of two Weyl spinors, sL ∈ χq and σR ∈ ψq, that are KK
decomposed as:

sL(x, z) =
∑
n

gn(z)χn(x), σ̄R(x, z) =
∑
n

fn(z)ψ̄n(x), (4.160)

where χn(x) and ψn(x) solve the 4D Dirac equation with massmn, (4.124), and gn(z), fn(z)
are the bulk pro�les. One also needs to expand the brane-localized �eld, sR ∈ ηR, in the
same basis in order to account for the mixing in (4.155) with the 5D �eld:

s̄R(x) =
∑
n

enψ̄n(x). (4.161)

The boundary conditions for sL(x, z) and sR(x, z) can be read out from (4.159) by
picking the SO(4) singlet component in ψ̄q and χq, namely σ̄R and sL, respectively. The
derivative operator can be simpli�ed by plugging in the KK decomposition in (4.160)
and using the 4D eom. The new UV boundary condition is then

fn(R)− µ2
s

mnR
gn(R) = 0 ⇒ bn +

µ2
s

mnR
an = 0 (4.162)

whereas fn(R′) = 0 is una�ected (we are for the moment neglecting all e�ects from the
IR brane) and implies

anS(R′,mn,−cq) + bnC(R′,mn,−c) = 0, (4.163)

where we have used the explicit form of the free pro�les in (4.131). Notice that the
condition above reduces to [+,+] in case µs = 0, implying an additional zero mode, and
to [−,+] if µs � 1 implying that the lightest state is a pure KK excitation, as mentioned
above. As we shall see, for intermediate values of µs a partially elementary state can
instead appear in the spectrum. The modi�ed boundary condition can be rewritten by
requiring (4.162) and (4.163) to be linearly dependent. One �nds:

S(R′,mn,−cq)−
µ2
s

mnR
C(R′,mn,−cq) = 0. (4.164)

Moreover, the orthonormalization of the pro�les requires:

e2
n +

∫ R′

R
a(z)4g2

n(z) = 1,

∫ R′

R
a(z)4f2

n(z) = 1, (4.165)

which di�er from the standard (4.126) because we have to take into account the presence
of the brane component, en. The warped sine and cosine can actually be expanded for
small masses, mz . 1:

S(z,m, c) = (mR)ZS(z, c) +O(m3z3), C(z,m, c) = 1− (mR)2ZC(z, c) +O(m4z4)
(4.166)
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where

ZS(z, c) =
1

1 + 2c

[( z
R

)1+2c
− 1

]
(4.167)

and

ZC(z, c) =
1

2(1− 4c2)

[
1− 2c+ (1 + 2c)

( z
R

)2
− 2

( z
R

)1+2c
]
. (4.168)

One then obtains from (4.164) that the lightest state, m1, has a mass given by:

m2
1 =

µ2
sR
−2

ZS(R′,−cq) + µ2
sZC(R′,−cq)

. (4.169)

For small µs, one can actually neglect the ZC term and obtain

m2
1 ∼

{
(2cq − 1)µ2

sR
−2 cq > 1/2 ⇒ UV

(1− 2cq)µ
2
sR
′−2 ( R

R′

)−1−2cq
cq < 1/2 ⇒ IR

. (4.170)

The dependence of m1 on the various parameters as µs and cq can be understood as
follows. First, when µs → 0 the lightest state becomes massless due to the emergence
of the [+,+] boundary condition that implies a LH zero mode. Instead, for µs 6= 0 the
mass of m1 strongly depends on the localization of the would-be zero mode. In case
of UV localization corresponding to cq > 1/2, the mass of this state is indeed simply
given by the mass term on the UV brane, which is exactly µsR

−1 (remember that µs
was measured in units of Planck mass). Thus, unless µs is tuned tiny, µs ∼ 10−16, the
UV-localized spinor sR decouples from the low-energy theory, and the state with mass
m1 would be indistinguishable from a standard KK mode coming from an e�ective [−,+]
boundary condition.

However, what is interesting about (4.170) is that a TeV-scale state with a sizable
overlap with the elementary spinor sR and mass m1 ∼ R′−1 can now emerge from a
Planckian mass, µs . 1, in case of deep IR localization, cq ≈ −1/2, due to the e�ect of
the wave-function suppression given by the factor (R/R′)1−2cq . The picture is simply
that a large Planckian mass on the UV brane can be diluted to much smaller values due
to the fact that one mode has very little overlap with the UV brane itself. Moreover,
we notice that, since the occurrence of such a partially elementary state is linked to the
presence of IR-localized zero modes, it is relevant only for the third generation fermions,
which are exactly those that contribute the most to the Higgs potential and usually
require light partners. Hence the issue of light partners is getting naturally resolved in
this setup, and no additional tweaking of the model is needed.

To investigate this in a more quantitative way, let us evaluate what is the degree of
�elementariness� of the state with mass m1 as a function of the UV-brane mass µs. To
this end, we will obtain the mass of the lightest state directly from the exact condition
(4.164) and calculate the value of en according to (4.165). The point is that, as long
as en is sizeable, the lightest state has a large elementary component, and the e�ect of
the soft breaking can be important. Conversely, if en is very small the top partner looks
e�ectively as a standard KK excitation.

The comparison between the approximate formula (4.170) shown in orange and the
true numerical result shown in blue is displayed in Fig. 4.13 for cq = −0.3 (left) and
cq = −0.4 (right), where R′ = 1/3TeV−1. The two lines depart at values of µs such
that the ZC term becomes important. The green lines in Fig. 4.13 show the elementary
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Figure 4.13: The mass of the lightest state, m1, as a function of µs for cq = −0.3 (left)
and cq = −0.4 (right). The blue line is the true numerical value, that is compared
with the approximate formula (4.170) in orange. The two lines depart for values of
µs for which the ZC term becomes important. The green line reprents the overlap of
this state with the UV-localized spinor, sR, and 1 means 100%. When such overlap
becomes negligible, the [−,+] boundary condition is e�ectively recovered and there is
no elementary state in the spectrum at low energy.

content of the lightest state with mass m1, corresponding to the numerical value of
e2

1 in (4.161) after canonically normalizing χ1(x). As expected it is almost completely
elementary in the µs → 0 limit and becomes mostly composite for large values of µs,
approaching the limit of the [−,+] boundary condition. We notice that the closer cq is
to −0.5, the more natural the value of µs can be: for cq = −0.4 a largely elementary
state with ∼ 1TeV mass is realized for µs ∼ 0.01, whereas cq = −0.3 requires µs ∼
0.001, but allows for m1 & 2TeV. In fact, for larger values of µs, the elementary state
�migrates� towards higher KK excitations and decouples from the low-energy theory.
Slightly smaller values of µs show instead a sizable elementary component of the lightest
excitation, thus realizing the 4D low-energy theory discussed in the previous section.
Notice that due to the almost complete IR localization, the mass of this state is very
similar to the mass of a light custodian from a [−,+] boundary condition to which it
asymptotes, m1 . mcust [158]. Of course, even though the mass is similar, this state
is substantially di�erent from a light custodian due to its degree of �elementariness�
and correspondingly di�erent impact on the Higgs potential. If one wants to keep µs ∈
(0.001, 0.01) and therefore cq ∈ (−0.4,−0.3), we need to raise R′ to compensate the
suppression typical of a light custodian, if we want to realize m1 & 2TeV. This is the
reason behind the choice of R′ = 1/3TeV−1 in Fig. 4.13. With f = 800GeV, such value
of R′ implies g∗ ∼ 7.5 and thus NCFT ∼ 3 14.

Let us �nally move to consider the more realistic setup in which an IR action is
included to provide a mass for the top after electroweak symmetry breaking. We thus
implement the IR boundary conditions in (4.153) where the Higgs appears through the
Wilson line Ω(R′). Our aim is to calculate the top mass together with the mass of the
partially elementary KK state as in (4.170). This can be regarded as a �rst step in
providing a full 5D calculation of the singlet setup. Our �ndings are shown in Fig. 4.14
as a function of µs assuming that all the other brane localized �elds are decoupled and
thus replaced by the corresponding static boundary conditions. We have chosen the

14Allowing for (technically natural) smaller µs makes it possible to keep R′ = 1TeV−1.
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Figure 4.14: The top mass and the top-partner mass as a function of µs for cq = −0.3,
ct = −0.2, µ4 = −µ1 = 0.12 and R′ = 1/3 TeV−1. As its mass is largely varying with
µs, the top partner shows a sizeable elementary component in the region where the top
mass is correctly reproduced, showing that soft breaking in 5D is phenomenologically
viable.

localization for Ψq and Ψt as cq = −0.3 and ct = −0.2, whereas the IR-localized mass
terms in (4.148) are µ4 = −µ1 ' 0.12, R′ = 1/3 TeV−1 and R = 1/MPl. As we can
see, the top mass is reproduced correctly as mtop ∼ 150 GeV almost independently
of µs, con�ming the �ndings in Sec. 4.3.3 where the top mass was found to be almost
insensitive to the singlet mass ms. As for the top partner, we can see that the mass mT

is still varying with µs in a region where the top mass is already at its correct value. The
change with µs implies that this state has a sizeable elementary component, as shown
explicitly in Fig. 4.13, meaning that partially elementary KK states are compatible with
reproducing the correct top mass.

The calculation of the Higgs potential follows from the set of boundary conditions
derived in this section. This study, together with a detailed phenomenology of the 5D
setup, is however left for future work.

4.6 Summary

Higgs compositeness is arguably one of the most appealing solutions to the hierarchy
problem. Minimal models, however, are in tension with the null signals of new physics
from the LHC. In particular, the prediction of light top partners that seem to be a
necessary ingredient to ensure a light Higgs is clashing with the experimental bounds
that force these new colored states to be as heavy as mT & 1.4 TeV. The simplest way
of dealing with this is by raising the Higgs decay constant f as much as necessary to
meet the present constraints. Physically, this corresponds to make the Higgs more and
more SM-like, thus generically suppressing all possible signals of new physics. Moreover,
raising f worsens the tuning required to reproduce the correct electroweak symmetry
breaking, pushing the minimal models towards the percent-level.

Instead, we have proposed a new way of realizing a CH that removes the sharp
prediction for the light top partners. This is so because of a structural change in the way
the explicit breaking is realized in our model. In particular, the couplings responsible for
partial compositeness are assumed to respect the global symmetry of the theory (SO(5)
for the minimal realizations). This is possible by completing the SM fermions to full
representations introducing new elementary fermions. These are vector-like under the
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SM gauge symmetry and their masses account both for the soft breaking of SO(5) and
their non-observation.

In Sec. 4.3, we have shown how the Higgs mass and the top-partner mass can be
disentangled in this setup avoiding the prediction of light partners without the need of
raising f . This represents a �rst and necessary step in releasing the tension between CH
models and the current LHC data. The e�ect of soft breaking on the tuning has been
investigated in Sec. 4.4. There, we have found that the tuning can generically be tamed
in minimal models with the help of soft breaking. In particular, we have explored the
possibility of combining the soft breaking with an additional symmetry of the strong
sector, called maximal symmetry, which similarly requires the composite fermions to �ll
out complete SO(5) representations and enhances the symmetry of the theory. These
two approaches turn out to be a perfect match: maximal symmetry removes the double
tuning while soft breaking raises the top partners allowing a complete natural model to
emerge. In fact, top partners as heavy as 2 TeV are now compatible with the minimal
10% tuning already implied by LEP. This means that, contrary to other realizations in
which the tuning is driven by the lack of signals at the LHC, our model becomes testable
only now at the HL-LHC or FCC.

In Sec. 4.5 we have shown how all the ingredients that we have employed in the 4D
models can be naturally realized in the context of warped extra dimensions. In particular,
soft breaking corresponds to a simple modi�cation of the conventional holographic Higgs
in which the UV boundary conditions are universal for all the SO(5) components of the
bulk �elds. On top of this, brane-localized spinors are included in order to lift the
resulting full multiplet of would-be zero modes ensuring a viable phenomenology and
a non-vanishing Higgs potential. This can be seen as replacing the static boundary
conditions of the conventional models by dynamical �elds. Moreover, the coincidence
problem of having elementary vector-like fermions at the same scale as the composite
states is solved in the 5D picture due to the large wave-function suppression which is in
fact automatically there for the third-generation quarks.

Moving towards a detailed analysis of the 5D model, we have also shown that the
top mass can be successfully reproduced in presence of partially-elementary Kaluza-Klein
states. The calculation of the Higgs potential in the 5D setup and a phenomenological
analysis of other possible e�ects connected to soft breaking are left for future work.

136



Chapter 5

Conclusion

The discovery of the Higgs boson at the LHC and the measurement of its properties
represent a giant step in understanding the electroweak symmetry breaking. Nonetheless,
the remarkable con�rmation of the SM as the e�ective theory describing the physics
below the TeV scale leaves many aspects unexplained. The hierarchy problem stands
amongst them as the immediate drawback of the minimal Higgs model featuring an
elementary scalar �eld in the theory. The other shortcomings only make the hierarchy
problem worse: whenever a new high-scale mechanism is proposed, as for instance the
axion solution to the strong CP problem, the stability of the weak scale is threatened
and �ne-tuning is automatically introduced in the theory. We can identify two possible
ways to deal with this when exploring new physics beyond the SM. The �rst one is to
leave the hierarchy problem aside by focussing on the other open questions. After all,
�ne-tuning is not an inconsistency of the theory, and there are more concrete issues that
beg for an explanation as for instance the nature of dark matter. In fact, the hierarchy
problem may not be a problem at all, or its resolution can simply rely on something that
cannot be captured by e�ective-�eld-theory considerations. This is the case for solutions
that involve a selection of our vacuum for anthropic or dynamical reasons in the early
Universe, such as relaxation. The second approach is the exact opposite. It is based
on the belief that uncovering the mechanism behind the generation of the electroweak
scale will also bring along new insights for the other puzzles in the SM. As a matter
of fact, natural models of electroweak symmetry breaking as supersymmetry or Higgs
compositeness can also address the open questions at the cosmological level such as
dark matter and matter-antimatter asymmetry. In doing so, one still needs to accept a
certain �ne-tuning in the theory, say 10%, that may be however a fair price for solving
the hierarchy problem once and for all above a certain scale f . However, this class of
models is currently under pressure due to the null signals of new physics at the LHC
which is questioning naturalness as a paradigm, and the �ne-tuning is in practice much
worse than that motivating the search of alternative realizations.

The work presented in this thesis is inspired by the interplay of the Higgs boson with
the open questions in the SM. In particular, both the approaches regarding the hierarchy
problem outlined above have been discussed throughout our work. In Chapter 2, our
focus has been on the axion solution to the strong CP problem and dark matter. As
recently pointed out, the �avor puzzle in the SM can also be addressed in a uni�ed
framework by identifying the Peccei-Quinn symmetry as a �avor symmetry itself, namely
the U(1) charge characteristic of the Froggatt-Nielsen mechanism. The axion and the
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�avon, which represent the main actors in this framework, belong now to the same
complex scalar �eld (the axi�avon) such that both angular and radial components play
a crucial role. This model provides a benchmark for testing axion physics by searching
for rare processes in the SM such as �avor and lepton number violation. In fact, the
axion couplings to matter are �xed by the observed pattern of SM fermion masses and
mixings. Therefore, �avor transitions such as d→ s are only suppressed by the Cabibbo
angle and hence sizeable, making this axion model within the reach of future �avor
experiments.

Our new element was to take into account a non-trivial interplay between the ax-
i�avon �eld and the Higgs in the spirit of the �rst approach to the hierarchy problem
mentioned above. In particular, we have investigated a UV completion of this setup
based on the idea that all the scalar degrees of freedom may be uni�ed at high energies.
It is then reasonable to realize both the axion and the Higgs as pseudo-Nambu-Goldstone
bosons in order to provide a rationale for their lightness with respect to the �avon, thus
providing an example of (�avored)axion-Higgs uni�cation. The hierarchy problem is not
addressed in this setup as the natural size of the Higgs mass is still close to the axion
scale fa. However, the assumption of uni�cation and the dynamical origin of electroweak
symmetry breaking allow us to grasp more information about the model than simply
regarding the Higgs and the axi�avon as independent �elds. In fact, the requirement of
reproducing the correct Higgs mass turns out to be powerful enough to constrain the
scale fa of the axion physics to be around the point in which the Higgs quartic coupling
turns negative according to its running within the SM. This is interestingly close to the
natural scale for the axion to be dark matter, and due to the properties of this �avored
axion will be fully tested at forthcoming �avor experiments. Thus, while the origin of
the Fermi scale is still unsolved, the interplay of an elementary Higgs with shortcom-
ings of the SM other than the hierarchy problem has allowed us to trade �ne-tuning for
increased predictivity.

There is however another relevant implication of having an elementary Higgs in the
theory: the yukawa couplings between fermions and scalars should now be regarded
as fundamental interactions, as opposed to their �original� purpose of describing the
e�ective theory of nucleons and pions. This clears the path to other paradigms for
the high-energy completion of the SM such as asymptotic safety. The general idea is
that the SM should be extended in such a way that the renormalization-group �ow of
the new theory is connected to an interacting �xed point in the UV, which in turn
de�nes a consistent quantum �eld theory valid at arbitrarily short distances. Besides
this being very attractive on its own, asymptotic safety can also be seen as a common
framework in which the SM and quantum gravity could be married. A crucial role in
uncovering this kind of UV behavior is played by the β-functions which govern the �ow
of the relevant interactions in the theory. Interestingly, it has been shown that yukawa
couplings are a necessary ingredient for interacting �xed points to emerge in perturbation
theory, thereby providing a completely independent raison d'être for the Higgs (and other
elementary scalars) besides breaking the electroweak symmetry. Moreover, additional
examples of four-dimensional asymptotically safe quantum �eld theories have been found
by looking at systems with many degrees of freedom that are organized according to a
large �avor symmetry, SU(Nf ), and a large color group, SU(Nc), in the Veneziano limit.
Driven by the search of asymptotically safe extensions of the SM, the exploration has
been recently moved further to discuss the complementary case in which Nf is large but
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Nc is small, such as large-Nf QED or QCD, with Nc = 1 and Nc = 3, respectively.

Motivated by the aforementioned considerations about yukawa couplings, and by
the large multiplicity of fermions coupled this way in generic UV completions of the
Froggatt-Nielsen mechanism, our contribution to this �eld was to �rst consider the case
of a pure yukawa theory at largeNf which was still unexplored. We have bridged this gap
in the literature by calculating the corresponding large-Nf β-functions in combination
with abelian gauge interactions, thus providing new ingredients for the investigation of
gauge-yukawa theories at high energies.

The calculation of the β-functions at large Nf involves resummation techniques that
account for the appearence of the multiplicity Nf at all orders in perturbation theory.
There is however another perspective on this that has opened for us another interesting
line of research at the interface with condensed matter. In fact, the β-functions at large
Nf turn out to be tightly connected to the Wilson-Fisher-type of �xed points for the
same theory in d = 4− ε dimensions that emerge as a balance between the classical and
the quantum scaling of the correspoding interactions. The critical coupling is related
to the dimensionality and in particular is controlled by ε: this is in fact reminiscent of
what happens in the last step of the large-Nf resummation, when the ε introduced in the
context of dimensional regularization is eventually replaced by the coupling. By taking
advantage of the conformal (and universal) properties of the theory at the Wilson-Fisher
�xed point, one can calculate the critical exponents that characterize the correspoding
phase transition within the 1/Nf expansion. In particular, the exponent ω describing
the subleading scaling of the correlation length in the vicinity of the �xed point is related
to the slope of the β-function at criticality, β′(gc) = ω.

Although it was known that the large-Nf β-functions could be obtained from ω
without having to rely on direct resummation, a systematic analysis of this connection
was still missing. In this respect, we have found that explicit resummation and critical-
point method are equivalent only for one-coupling models, in which the knowledge of ω
is in fact enough to reconstruct the β-function. By taking advantage of this, we have
extended previous studies on the possible appearance of an IR �xed point for the Gross-
Neveu model in d = 2, and found it to be disfavoured con�rming earlier results. Beyond
one-coupling, this one-to-one correspondence is broken and ω can constrain only few
combinations of the resummed functions entering the β-functions. We have specialized
our analysis to the Gross-Neveu-Yukawa model in d = 4 where we have shown this
explicitly by providing the full system of β-functions through explicit calculation, and
using the information from ω as a non-trivial crosscheck.

The new insights that we have acquired by investigating the connection between
β-functions and critical exponents have led us to a di�erent perspective on asymptotic
safety and gauge β-functions at large Nf . In fact, it turns out that the singular structure
that has originally inspired the speculation of a UV �xed point for non-abelian gauge
theories at large-Nf can be resummed away when employing the whole information
stemming from the critical exponents. The resulting β-function features no singularity,
and we thus �nd no hint for asymptotic safety within the 1/Nf expansion for this class
of theories.

Besides gaining information on the structure of the β-functions from the knowledge of
the critical exponents, it was eventually possible to reverse the logic and learn something
about the critical exponent ω for the QED3-Gross-Neveu-Yukawa model by combining
all our results for the β-functions in Chapter 3. This is presented in Sec. 3.4.3 for the
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�rst time and represents a new result with respect to the original papers on which this
thesis is based. The QED3-Gross-Neveu-Yukawa model is relevant in condensed-matter
theory as it is supposed to describe quantum phase transitions among fermions on a
two-dimensional lattice such as graphene. In fact, the transition of interest takes place
in d = 2 + 1 and our result in d = 4 − ε is not directly applicable. However, the �xed
point in d = 3 is strongly coupled and a direct calculation is still lacking. For this reason,
there have been attempts to calculate the critical exponents in d = 4 − ε in standard
perturbation theory by exploiting that the �xed point is weakly coupled for small ε,
and then extrapolate to ε = 1 with the help of other techniques. Our result provides
complementary information stemming from the large-Nf perspective and may improve
the quality of this extrapolation to lower dimension.

After discussing the possible implications of an elementary Higgs boson, in Chapter 4
we have started our exploration of physics beyond the SM by focussing directly on the
Higgs and the electroweak symmetry breaking as the portal to new physics. The guiding
principle is naturalness as a solution to the hierarchy problem based on quantum-�eld-
theory arguments. A cornerstone solution is represented by Higgs compositeness in
which the Higgs emerges as a bound state of a new strong dynamics that condenses at
a scale f not much above the electroweak scale. The Higgs mass becomes insensitive to
new physics thresholds as its fundamental constituents are resolved at short distances.
From a phenomenological point of view, the appearence of a new strong dynamics close
to the electroweak scale has plenty of implications for colliders and cosmology. The
minimal model that describes the Higgs as a composite Nambu-Goldstone boson requires
the new strong dynamics to have a global SO(5) symmetry that is broken down to
the subgroup SO(4) at the condensation scale. This is the minimal coset that ensures
custodial protection and contains no additional light scalars besides the Higgs. It is worth
mentioning that the strong dynamics that is responsible for this group structure does not
have a clear interpretation in terms of a four-dimensional quantum �eld theory, and the
best realization of this model is by means of holography. Of course, this does not mean
that the model cannot be realized in four dimensions, but just that the correspoding �eld
theory is something completely di�erent than those we have discovered so far. Besides
solving the hierarchy problem, this model provides a very elegant means to explain
the �avor puzzle in the SM as a result of renormalization-group evolution in presence
of strong dynamics, which is referred to as partial compositeness. However, minimal
models for a composite Higgs are under pressure due to the non-observation of new
physics at the LHC, and in particular due to the lack of light colored states, called top
partners, that seem to be a necessary ingredient to keep the Higgs light.

Our work in Chapter 4 was devoted to present a new idea in composite-Higgs models
that keeps the appealing features of partial compositeness but removes the unwanted
prediction of light top partners. This is based on the single assumption that partial
compositeness respects the global symmetry of the strong sector, SO(5) in the mini-
mal models. This immediately implies that there exist new elementary fermions that
complete the SM multiplets to full SO(5) representations. The explicit breaking of the
Higgs shift symmetry is no longer directly related to the largest yukawa coupling as in
the conventional models, but rather to the �soft� vector-like masses of the new fermions
that are introduced along with the SM quarks. These masses make the new states rela-
tively heavy and account for their non-observation at the electroweak scale; at the same
time, these mass terms provide the explicit breaking of SO(5) that is required to gen-
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erate a viable Higgs potential. In practice, the explicit breaking has been moved from
the interaction between the elementary �elds and the new strong sector to the struc-
ture of the elementary sector itself. In Sec. 4.3, we have shown that the soft-breaking
assumption gets rid of the tight correlation between the Higgs mass and the top-partner
mass allowing for a light Higgs without light partners and releasing the tension with the
current results from the LHC without making the Higgs more elementary. This means
that the �ne-tuning in a composite-Higgs model with soft breaking can be drastically
reduced with respect to conventional realizations.

The implications for the �ne-tuning have been explored in Sec. 4.4, where we have
investigated the combination of soft breaking with maximal symmetry, the latter being
an additional global symmetry of the strong sector which borrows ideas from Twin-
Higgs models such as trigonometric parity. What we have shown is that enhancing
the symmetries on both the elementary side (with soft breaking) and the composite
side (with maximal symmetry) leads to a model in which the tuning coincides with
the minimal amount already implied by LEP, while accommodating gauge and fermion
resonances above the LHC bounds. In this sense, we challenge the common lore that the
so-far null signals of new physics at the LHC are disfavoring naturalness, as our natural
minimal model becomes testable only now at the HL-LHC or at the FCC.

These results were derived within a four-dimensional e�ective-theory approach for the
strong dynamics below the condensation scale. The only minor drawbacks that we could
identify were the motivation for completing the SM quarks to full SO(5) representations
in the �rst place, and the �coincidence problem� of having elementary vector-like fermions
in the theory with a mass comparable to the composite states. In Sec. 4.5 we have
shown that both these requirements can be naturally understood from the corresponding
warped 5D implementation. In fact, our complete representations are the fundamental
objects one starts with in 5D as the global SO(5) is there promoted to a gauge symmetry.
Moreover, the implementation of soft breaking simply amounts to replace the static
and speci�c boundary conditions of the conventional realizations with new boundary
conditions that are universal and dynamical due the presence of UV-localized (and hence
elementary) spinors. The bare masses of these spinors are not yet to be identi�ed with
the vector-like masses that we have considered in the phenomenological models. Indeed,
as these �elds are stuck on the UV brane whose position corresponds to R−1 ∼ MPl,
their bare mass is also expected to be of order MPl. Nevertheless, we have shown that
the UV-localized spinors do not decouple from the low-energy theory even in presence
of a Planckian mass as partially-elementary TeV-scale states can arise due to the wave-
function suppression that is automatically at work for third-generation quarks. This
means that the 5D implementation can straightforwardly reproduce all the main features
of our four-dimensional model thus corroborating this new way of realizing a natural
composite Higgs in the light of the LHC data.
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Appendix A

SO(5) generators and spinorial

representation

We provide here the explicit form of the SO(5) generators in the fundamental repre-
sentation, 5, and in the spinorial, 4, as well as the expression for the Γα matrices that
connect them. The convention we are using follows closely Ref. [152].

In general, the SO(5) generators can be divided in two sets: the �rst set consists
of six elements, T aL,R with a = 1, 2, 3, that generate the SO(4) ' SU(2)L × SU(2)R
subgroup, whereas the second set contains four elements, T â, â = 1, . . . , 4, which do not
form a subgroup and coincide with the broken generators of the SO(5)/SO(4) coset. We
will use the same symbols, T aL,R and T â, for both representations, as it is always clear
from the context which representation they refer to.

For the fundamental 5, the generators are 5 × 5 matrices. The generators de�ning
the SU(2)L × SU(2)R subgroup are given by:

(
T aL,R

)
ij

= − i
2

[
1

2
εabc(δbi δ

c
j − δci δbj)± (δai δ

4
j − δaj δ4

i )

]
, i, j = 1, . . . , 5, (A.1)

whereas the broken generators read

T âij = − i√
2

[
δâi δ

5
j − δâj δ5

i

]
, i, j = 1, . . . , 5. (A.2)

As for the spinorial 4, the generators are 4× 4 matrices. They are given by

T aL =
1

2

(
σa 0
0 0

)
, T aR =

1

2

(
0 0
0 σa

)
, (A.3)

and

T â =
i

2
√

2

(
0 σâ

−σâ † 0

)
, σâ = (σi,−i12×2), (A.4)

where σi are the Pauli matrices.

The 5 and the 4 can be connected through a set of Γα matrices, α = 1, . . . , 5, that
are given by

Γâ =

(
0 σâ

σâ † 0

)
, Γ5 =

(
12×2 0

0 −12×2

)
, (A.5)
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Appendix A. SO(5) generators and spinorial representation

where â = 1, . . . , 4 and σâ are those in (A.4). The properties of the Γα are such that
given two multiplets, ξj and ξj+1, transforming as two spinorial representations 4, the
following combination

ξ̄j+1Γαξj (A.6)

transforms as the fundamental 5. Thus, the �current� in (A.6) can be coupled to a �eld
Σα ∼ 5 in a SO(5)-invariant manner as in (2.81). This is analogous to what happens
for the Lorentz group and spin-1/2 representations, where ψ̄γµψ can in fact couple to a
Lorentz vector, Aµ.
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Appendix B

Loop integrals and large-Nf
perturbative results

In this Appendix we present supplementary material related to the β-functions at large
Nf discussed in Chapter 3.

B.1 Loop integrals

The basic object for our calculations is the one-loop function G(n1, n2) related to the
following momentum integral:

∫
ddk

(2π)d
1

Dn1
1 Dn2

2

= i
1

(4π)d/2
(−p2)d/2−n1−n2(−1)n1+n2G(n1, n2), (B.1)

where D1 = (k + p)2 and D2 = k2, and is explicitly given by [203]:

G(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d/2− n1)Γ(d/2− n2)

Γ(n1)Γ(n2)Γ(d− n1 − n2)
. (B.2)

This function is particularly suitable for our purpose because it is valid for arbitrary
values of n1 and n2, including non-integer values that often arise when dealing with
large-Nf resummation. In fact, we have seen that the basic e�ect of having a bubble
chain is to replace the simple propagtor 1/q2 to a more complicated power as in (3.3).

The calculation of the pure yukawa β-function carried out in Sec. 3.2 has required the
calculation of the three renormalization constants related to vertex correction, fermion
self-energy and scalar self-enegy. The loop integrals correspoding to the vertex correction
and fermion self-energy correspond to basic one-loop topologies and only involve the
function G(n1, n2) in (B.2); their explicit expression have been already evaluated in
(3.32) and (3.41).

The case of the scalar self-energy is however more complicated, as the basic topologies
are two-loop diagrams and one needs to go beyond (B.2). The correspoding n-loop
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Appendix B. Loop integrals and large-Nf perturbative results

contribution, indicated by S
(n)
K is given by the following integral (n ≥ 2):

p2S
(n)
K (p2, ε) =− (4π2)2(−1)n

(
1

(4π)d/2−2

G(1, 1)

2

)n−2

(−1)α
∫

ddk1

(2π)d

∫
ddk2

(2π)d{
6

(p+ k1)2k2
2((k1 − k2)2)1−α −

2

k2
1(p+ k1)2k2

2((k1 − k2)2)−α

− 2p2

k2
1(p+ k1)2k2

2((k1 − k2)2)1−α +
2p2

k4
1(p+ k1)2k2

2((k1 − k2)2)−α

− 2p2

k2
1(k1 + p)2(k2 + p)2k2

2((k1 − k2)2)−α

}
,

(B.3)

where α = (n− 2)(d/2− 2) = −(n− 2)ε/2. Evaluating (B.3) requires two-loop integrals
which can be performed according to the formula in Ref. [203]:∫

ddk1

(2π)d

∫
ddk2

(2π)d
1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

= (−1)1+
∑
ni
πd(−p2)d−

∑
ni

(2π)2d
G(n1, n2, n3, n4, n5),

(B.4)
where D1 = (k1 +p)2, D2 = (k2 +p)2, D3 = k2

1, D4 = k2
2, D5 = (k1−k2)2. The functions

G(n1, n2, n3, n4, n5) are symmetric with respect to the index exchanges (1 ↔ 2, 3 ↔ 4)
and (1 ↔ 3, 2 ↔ 4). Moreover, they reduce to a product of G(n1, n2) if at least one of
the entries is zero:

G(n1, n2, n3, n4, 0) = G(n1, n3)G(n2, n4), (B.5)

G(0, n2, n3, n4, n5) = G(n3, n5)G(n2, n3 + n4 + n5 − d/2). (B.6)

It turns out that the �rst four integrals in (B.3) can always be written in terms of
G(n1, n2) making use of (B.5) and (B.6). However, the last integral in (B.3) involves
G(1, 1, 1, 1, (n−2)ε/2) and, for n > 2, its expression can be obtained in terms of hyperge-
ometric functions 3F2 by means of the Gegenbauer technique [204]. We have evaluated
the function G(1, 1, 1, 1, (n − 2)ε/2) recursively according to Eqs (2.19) and (2.21) in
Ref. [203].

The other loop integrals that we have encountered for the calculations in Chapter 3
can be carried out with the help of G(n1, n2) and G(n1, n2, n3, n4, n5), as the basic
topologies before the dressing of the gauge or scalar propagators with bubble chains are
either one-loop or two-loop. The only three-loop basic topology we have encountered is
the one in Fig. 3.13 for the Gross-Neveu-Yukawa model that can however be splitted as
two distinct two-loop and one-loop diagrams.

All the formulas for the loop integrals that one encounters in the large-Nf renormal-
ization of the pure yukawa theory are given explicitly in (3.32), (3.41) and (B.3). The
analogous formulas for the gauge contributions in Sec. 3.3 and the ones for the Gross-
Neveu-Yukawa model in Sec. 3.4.2 are too cumbersome to justify their inclusion in this
thesis.
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B.2. Perturbative results

B.2 Perturbative results

We present here the expansions of the O(1/Nf ) β-functions that we have calculated in
a closed form in Chapter 3 to make contact with standard perturbation theory, thereby
checking the validity of our results while predicting new coe�cients.

B.2.1 Gauge-yukawa

Let us start with the couple system of β-functions corresponding to the gauge-yukawa
theory discussed in Sec. 3.3.2. Expanding the β-function, for the rescaled yukawa cou-
pling, βK in (3.70), and for the rescaled gauged coupling, βE in (3.71), around K = 0
and E = 0 we �nd:

βE =
2

3
E2 +

1

2Nf
E3 − 1

4Nf
E2K − 11

72Nf
E4 +

7

32Nf
E2K2

− 77

1944Nf
E5 − 3

64Nf
E2K3

+
107 + 144ζ3

15552Nf
E6 − 9 + 16ζ3

1024Nf
E2K4︸ ︷︷ ︸

�ve-loop prediction

+ . . .

(B.7)

βK =

(
1 +

3

2Nf

)
K2 − 3

Nf
EK − 3

2Nf
K3 +

5

4Nf
EK2 +

5

6Nf
E2K

+
7

16Nf
K4 − 1

2Nf
E2K2 +

35

108Nf
E3K

+
11

96Nf
K5 +

1

3888Nf
(−1625 + 1296ζ3)E3K2 +

1

648Nf
(83− 144ζ3)E4K

+
19− 48ζ3

512Nf
K6 − 8125− 144π4 + 3600ζ3

77760Nf
K2E4 +

325− 8π4 + 400ζ3

6480Nf
KE5︸ ︷︷ ︸

�ve-loop prediction

+ . . .

(B.8)

We have checked that our expansions agree with the four-loop results [97, 110�113] in
the leading order in Nf .

B.2.2 Gross-Neveu-Yukawa

We provide here the expansion of the functions ϕ
(1)
1−4 appearing in the O(1/Nf ) sys-

tem of β-functions, (3.118) and (3.119), of the Gross-Neveu-Yukawa model analyzed in
Sec. 3.4.2. We will therefore check against the known perturbative results and predict
the O(1/Nf ) terms that would appear up to six-loop order.

First, for the yukawa β-function in (3.118), we have

y2ϕ
(1)
1 (yNf ) =− 6y3Nf +

7

2
y4N2

f +
11

6
y5N3

f

+

(
19

16
− 3ζ3

)
︸ ︷︷ ︸

�ve-loop prediction

y6N4
f +

(
7

8
+

14

5
ζ3 −

18

5
ζ4

)
︸ ︷︷ ︸

six-loop prediction

y7N5
f + . . . (B.9)
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As for the quartic-coupling β-function, (3.119), one can predict the coe�cients based

on ϕ
(1)
2 , ϕ

(1)
3 and ϕ

(1)
4 . Their contribution to the β-function is:

y2ϕ
(1)
2 (yNf ) = 4y3Nf −

157

8
y4N2

f +

(
42ζ3 −

193

6

)
y5N3

f

+

(
−2623

64
− 157

4
ζ3 + 90ζ4

)
︸ ︷︷ ︸

�ve-loop prediction

y6N4
f +

(
−3993

80
− 491

5
ζ3 −

426

5
ζ4 + 234ζ5

)
︸ ︷︷ ︸

six-loop prediction

y7N5
f + . . .

(B.10)

λ2ϕ
(1)
3 (yNf ) =− 72yλ2Nf − 108y2λ2N2

f + 144(2ζ3 − 1)λ2y3N3
f

−180(1 + 2ζ3 − 3ζ4)︸ ︷︷ ︸
�ve-loop prediction

λ2y4N4
f −216(1 + 2ζ3 + 3ζ4 − 6ζ5)︸ ︷︷ ︸

six-loop prediction

λ2y5N5
f + . . .

(B.11)

yλϕ
(1)
4 (yNf ) = 7λy2Nf +

217

2
λy3N2

f +

(
1685

12
− 228ζ3

)
λy4N3

f

+

(
699

4
+ 248ζ3 − 450ζ4

)
︸ ︷︷ ︸

�ve-loop prediction

λy5N4
f +

(
3359

16
+

2123

5
ζ3 +

2409

5
ζ4 − 1116ζ5

)
︸ ︷︷ ︸

six-loop prediction

λy6N5
f + . . .

(B.12)

We have checked that the expansions up to O(N3
f ) agree with the known leading-Nf

four-loop perturbative result [108]. The O(N4
f ) and O(N5

f ) terms are the leading-Nf

prediction for the �ve- and six-loop terms, respectively.
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Appendix C

Additional material for a soft

composite Higgs

In this Appendix we collect additional material that is relevant for the discussion in
Chapter 4.

C.1 Symmetric coset and linear Goldstone matrix

In Sec. 4.4 we have used the fact that SO(5)/SO(4) is a symmetric coset and de�ned a
Goldstone matrix, Σ, with linear transformation properties under g ∈ SO(5), (4.66). We
detail here what this actually means and how Σ is related to the �standard� Goldstone
matrix, U , in (4.1).

As mentioned, the �rst ingredient is the presence of a symmetry coset G/H. De-
noting by TA the generators of the G algebra, where A = a, â for the unbroken/broken
generators after the G→ H spontaneous breaking, one generically has

[T a, T b] = ıfabc T
c, [T a, T â] = ıfab̂ĉ T

ĉ (C.1)

and
[T â, T b̂] = ıf âbc T

c + ıf âb̂ĉ T
ĉ. (C.2)

The �rst two equalities are general and follow from the property of H being a subgroup.
Conversely, (C.2) takes a special form for symmetric cosets, which are de�ned by the
property

f âb̂ĉ ≡ 0. (C.3)

It follows that [T â, T b̂] ∼ T c, and this allows for the presence of a discrete symmetry V
acting on the generators as

T a → V T aV † = T a, T â → V T âV † = −T â. (C.4)

Notice that the transformations in (C.4) leave (C.2) invariant only for symmetric cosets.
As mentioned above (4.66), the existence of V allows to de�ne a linear representation

for the standard Goldstone matrix in (4.1). The �rst step is to introduce a new matrix
Ũ as

Ũ = V UV = exp

(
ı

√
2

fπ
hâV T âV

)
= exp

(
−ı
√

2

fπ
hâT â

)
= U †. (C.5)
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Under g ∈ SO(5), the matrix Ũ transforms as

Ũ → V (gUh†)V = V gV (V UV )V h†V = V gV Ũh†, (C.6)

where we have used that V 2 = 1, and for the last equality we have used that h ∈ H and
thus V h†V = h†.

With Ũ at hand, one can de�ne the new Goldstone matrix Σ as

Σ = UŨ †V = U2V. (C.7)

Under a transformation g ∈ G, one �nds:

Σ→ (gUh†)(h Ũ †V g†V )V = g(U Ũ †V )g† = gΣg†, (C.8)

namely that Σ transforms linearly with g ∈ G. In our basis for the SO(5) generators,
one has that V = diag (1, 1, 1, 1,−1) and in the unitary gauge Σ is given by

Σ =

13×3 0 0
0 cos(2h/f) − sin(2h/f)
0 − sin(2h/f) − cos(2h/f)

 (C.9)

C.2 Trigonometric parity and soft breaking

In this section we discuss the fate of trigonometric parity in the soft-breaking setup
de�ned by the Lagrangian in (4.93).

To this end, we recall that the trigonometric parity sin(h/f) ↔ − cos(h/f) can be
de�ned as the following discrete symmetry [184]:

Σ→ V ΣP ′, ΨL → PΨL, ΨR → V PV ΨR, ψL → V ψL, ψR → P ′ ψR, (C.10)

where P = diag (1, 1, 1, σ1), P ′ = diag (1, 1, 1,−σ3).
The transformation (C.10) would be a symmetry of the Lagrangian (4.93) if ML,R

were to transform as

MR → V MR, ML → P ′ML ⇒ ΓR → V ΓR V, ΓL → P ′ ΓLP
′, (C.11)

where ΓL,R are de�ned in (4.96).
Whether trigonometric parity is eventually preserved or not depends on the spu-

rion vacuum expectation values, namely on their explicit form in (4.96). The parity-
conserving vacuum is found by solving

ΓR = V ΓR V and ΓL = P ′ ΓL P
′. (C.12)

The �rst condition is always trivially satis�ed; while the second one implies

(mv −mw2)(mv +mw2) = 0. (C.13)

Moreover, we notice that there is another way to implement trigonometric parity in
addition to (C.10), namely interchanging the left and right chiralities in (C.10):

Σ→ V ΣP ′, ΨL → V PV ΨL, ΨR → PΨR, ψL → P ′ψL, ψR → V ψR, (C.14)
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Similar arguments then imply the following spurion transformations:

ΓR → P ′ ΓR P
′, ΓL → V ΓL V, (C.15)

so that another parity-preserving vacuum exists if

ΓR = P ′ ΓR P
′ and ΓL = V ΓL V. (C.16)

The second condition is satis�ed identically, whereas the �rst one requires:

m2
w1

= 0. (C.17)

Combining (C.13) and (C.17), we conclude that trigonometric parity is a true sym-
metry of the theory if and only if

(m2
v −m2

w2
)m2

w1
= 0. (C.18)

Thus, we see that ξ = 0.5 can be avoided in our setup within the fermion sector besides
very particular values of the fermion masses. Moreover, this way of breaking trigono-
metric parity still ensures that double tuning is avoided, see discussion below (4.100).

C.3 Warped Sine and Cosine

We give here the explicit form of the warped sine and cosine used in the warped 5D
implementation in Sec. 4.5. Let us �rst consider the following di�erential equation

y′′ − 4

z
y′ +

(
m2 − c2 + c− 6

z2

)
y = 0 (C.19)

and look for two solutions, y1(z) and y2(z), that satisfy the following boundary conditions
at z = R:

y1(R) = 1, y2(R) = 0. (C.20)

These two solutions are in fact given in terms of the warped sine and cosine as

y1(z) =

(
R

z

)c−2

C(z,m, c), y2(z) =

(
R

z

)c−2

S(z,m, c), (C.21)

where (see also Ref. [170])

S(z,m, c) =
π

2
mR

( z
R

)1/2+c [
J1/2+c(mR)Y1/2+c(mz)− J1/2+c(mz)Y1/2+c(mR)

]
,

C(z,m, c) =
πmR

2 cos (cπ)

( z
R

)1/2+c [
J−1/2+c(mR)J−1/2−c(mz) + J1/2+c(mz)J1/2−c(mR)

]
.

(C.22)

The funcions Jν(x) and Yν(x) are the Bessel functions of the �rst and second kind,
respectively. The S and C functios satisfy the basic properties at z = R

C(R,m, c) ≡ 1, S(R,m, c) ≡ 0, (C.23)

and also
C ′(R,m, c) = 0, S′(R,m, c) = m, (C.24)

where the derivative has been taken with respect to the �rst argument, z.
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