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1 INTRODUCTION 

 

Diffusion Weighted Magnetic Resonance Imaging (DW MRI) is a magnetic resonance imaging 

technique which uses specifically designed sequences to detect the characteristics of the 

Brownian Motion phenomena of water molecules contained in biological tissues. As a novel 

sequence technique around the middle of 1980s (Le Bihan et al., 1986), Diffusion Weighted 

Imaging (DWI) indeed led to many exciting applications in MRI clinical routine (Baliyan et 

al., 2016). With decades of constant developments, more advanced technologies such as 

Diffusion Tensor Imaging (DTI) became an irreplaceable diagnosis method in current MR 

neuroimaging (Tae et al., 2018). Compared with earlier DWI, the sequence optimization led to 

a reduced acquisition time (Baete et al., 2013), less susceptibility to motion (Taylor et al., 2016) 

and higher reliability of the derived parameters (Wang et al., 2012) which in turn increased the 

interest of clinicians and researchers in this technique. 

Several quantitative parameters can be determined from DTI: Fractional Anisotropy (FA), 

Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) (Tae et al., 2018). 

These parameters have been used frequently in the pathologies evaluation for central nervous 

system tumors, demyelinating and infectious diseases, as well as in vascular system disease 

(Alves et al., 2012). DWI can provide a reliable detection of ischemia because it can detect 

subtle changes in water compartmentalization even before the net brain water content increases 

during the subacute phase of the infarct (Alexander et al., 2001; Assaf and Basser, 2005). 

Compared with conventional Magnetic Resonance (MR) sequences, DTI provides diagnostic 

parameters. The Apparent Diffusion Coefficient (ADC), for example, serves as a biomarker in 

grading of gliomas (Server et al., 2014). Post processing of nerve tracking based on DTI data 

can also be supportive in surgical planning for brain or spinal cord tumors and provide 

boundary information as reference for resection in surgery.  

In addition to the variety of applications of DTI in the Central Nervous System (CNS) the 

technique has recently also been applied in the Peripheral Nervous System (PNS). 

Neuropathies are characterized by microstructural alternations in the nerves and this may lead 

to decreased anisotropy indices such FA and increased ADC values. The loss of diffusion 

directionality causes decreased FA, and the loss of myelin and axonal membranes causes 

increased ADC (Neetu et al., 2016). With aid of such indices, DTI can be used to detect the 
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complex morphologic and spatial changes of the peripheral nerve anatomy both in trauma and 

soft tissue tumors, which can be difficult to achieve with conventional MR imaging (Jeon et 

al., 2018). Recent developments have led to the application of DTI in polyneuropathies of 

various origins, e.g. in diabetic polyneuropathy (dPNP) (Vaeggemose et al., 2017). There are, 

however, several challenges mainly arising from the small caliber of peripheral nerves. Due to 

the smaller dimensions compared to the structures in CNS, higher spatial resolution is needed 

which in turn leads to a low signal-to-noise ratio. This problem in part can be overcome by 

increasing the number of diffusion directions, which in turn leads to long acquisition times. 

 

1.1 General Description of Diffusion Tensor Imaging (DTI) 

1.1.1 Concept of Self-Diffusion and its Development to DTI 

 

The term ‘diffusion’ is most commonly used for the particles’ random movement from a high 

concentration region to a low concentration region. However, even in absence of a 

concentration gradient there is random motion in gasses and fluids. In 1828, the botanist Robert 

Brown observed the natural phenomena from the random motion of suspended pollen in water 

which was then named after him (Brown, 1828). According to kinetic theory, when the 

temperature is over absolute zero (0 kelvin), the particles composing a given fluid will always 

keep in constant motion and the higher the temperature, the more violent the Brownian motion. 

For a single particle, due to the Brownian motion, it will experience a random displacement 

after a certain period of time which will then expand to a group of particles. Because of the 

lack of knowledge of atom and molecular motion, it was impossible to explain mechanisms 

behind the Brownian motion. Not until 1905, Albert Einstein proved that Brownian motion was 

the result of the water molecules’ kinetic movement (Einstein, 1905). 
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An illustration of the mathematical image of the Brownian motion in space is shown in Figure 

1.1. 

 

Figure 1.1: Particle path of a molecule experiencing 3-dimensional Brownian motion 
(Generate in the MATLAB environment with aid of the build-in function: ´ brwnm3´).  

 

The initial development of conventional MR imaging mainly focused on contrast generated 

through proton density in tissues and the difference of relaxation times. The work of Lauterbur 

PC, Mansfield P and Ernst R brought clinical MRI application into the field of medicine (Geva, 

2006). Initially, the contrasts were based on T1 (spin-lattice relaxation time) and T2 (spin-spin 

relaxation) relaxation properties, but researchers soon began to explore other methods to 

generate extra contrast between tissues in MR scanning. Taking advantage of the water 

molecules diffusion in biological tissues, the researchers further explored the method of 

Diffusion Weighted Imaging. The signal contrast of DWI is based on the differences in 

Brownian motion. DWI was first developed by Stejskal and Tanner (Stejskal and Tanner, 1965) 

and applied to human tissue by Le Bihan (Le Bihan, 2014). Based on the work of Stejskal and 

Tanner in the 1960s, Denis Le Bihan assumed that using specific magnetic gradient pulses can 

allow for encoding of the diffusion process in real time scanning. But it was challenging to get 
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satisfying image results by integrating diffusion encoding gradients into the conventional 

sequences. Firstly, due to additional long period gradient pulses, the acquisition process was 

very slow and it was very sensitive to motion artifacts due to respiration and other physiological 

involuntary movements. Not until the invention of the Echo-Planar Imaging (EPI) technique in 

the early 1990s, DWI found its way into practical application in clinical imaging (Le Bihan, 

2014; Turner et al., 1990). The diffusion sequences based on EPI are faster and successfully 

avoid motion artifacts. 

In the standard DWI sequence, diffusion encoding gradients are introduced on either side of 

the 180° RF (Radio Frequency) refocusing pulse. The diffusion weighting is described by the 

parameter “b value” which depends on the duration and the strength of the diffusion gradient 

and on the time between dephasing and rephasing gradients. Diffusion can be measured and 

evaluated by the so-called apparent diffusion coefficient. Tissues with restricted diffusion are 

bright on the diffusion-weighted images and are displayed as hypo intense on their ADC map.  

Mosley and coworkers observed that the diffusion coefficient of white matter changes 

depending on the orientation of the diffusion gradient with regard to the fiber direction 

(Moseley et al., 1990). This effect was explained by Douek, who hypothesized that the 

Brownian motion of the water molecules was less restricted along the fibers than perpendicular 

to them, because the myelin sheath acts as a diffusion restriction (Douek et al., 1991). This 

phenomenon is called anisotropic property. The initial attempts of using an ADC map from 

diffusion measurements in perpendicular directions to judge anisotropy were not very 

impressive. The ability to depict fiber bundles in three dimensions (3D) resulted in a new 

concept: the diffusion tensor. With the use of a tensor formalism by Basser (Basser et al., 1994), 

modern diffusion tensor imaging became highly interesting to researchers in MR 

Neuroimaging. Peter Basser originally proposed to use DTI in magnetic resonance imaging in 

1994. Initial clinical applications of DTI were naturally limited to the central nervous system 

due to their high anisotropic property. During that time, susceptibility artefacts and the relative 

lower image resolution for the smaller diameter of peripheral nerves prevented its application 

in the peripheral nervous system. Yet, with constant development of sequence and hardware 

technology in MRI, DTI has also currently extended its application to the peripheral nervous 

system (Naraghi et al., 2015). Nowadays as a noninvasive magnetic resonance imaging 

technique, its popularity and significance has become widespread in different MRI application 

routines such as imaging for brain pathologies, and brain aging research, as well as in 

neuroscience studies and even cardiac scanning. DTI provides quantitative evaluations about 
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the degree and direction of water molecule diffusion within the nerves or muscles. Additionally 

DTI data can also be used for fiber tracking, i.e. to visualize for example the orientation of the 

axons of a nerve, and further to assess their integrity. 

 

1.1.2 Derivation of Diffusion Tensor D and Anisotropy Indices in MRI 

 

To give out the exact expression of a diffusion coefficient, it is reasonable to start the analysis 

with a one dimensional case and then expand to the 3D situation. Albert Einstein adopted the 

Probability Density Function (PDF) as statistic method to solve the diffusion equation for one 

dimensional Brownian motion. Nowadays, the PDF is a common method to describe the 

probability associated with a random variable or random vector. 

To comprehensively understand the solving process of a diffusion equation, it is necessary to 

first introduce the well accepted concept of mean square displacement (MSD), which is used 

to describe the position change of the random movement from a particle over given period of 

time (Michalet, 2010). In a one-dimensional coordinate system, given the initial position of 

particle is x0 over the given period tΔ, the possible location of a random moving particle is 

position x, then with repeating observation times NA, the MSD is defined as follows: 

𝑀𝑆𝐷 = 〈(𝑥 − 𝑥 ) 〉 =
1

𝑁
[𝑥 (𝑡 ) − 𝑥 (0)]  

Equation 1.1 
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The one-dimensional PDF used by Einstein for the stochastic analysis of Brownian motion 

with continuous variable x is given as: 

𝑃(𝑥|𝑥 , 𝑡 ) =
1

4𝜋𝐷𝑡
𝑒

( )

 

Equation 1.2 

 

Where D is the diffusion coefficient. 

If a random variable x follows the Gaussian distribution, then equation 1.2 becomes a Gaussian 

PDF with a mean value of μ=x0 and variance σ2=2DtΔ, in which σ is normally defined as the 

standard deviation and μ represents the mean of distribution. 

 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑃𝐷𝐹 (𝑥; 𝜇, 𝜎 ) =
1

√2𝜋𝜎
𝑒

( )

 

Equation 1.3 

 

Obviously equation 1.3 is completely governed by parameters μ and σ2. Instead of NA discrete 

observations (equation 1.1), one can use the continuous variable x to express the first order 

moment (μ) and second order moment (σ2) of the Gaussian PDF: 

𝜇 = 〈𝑥〉 = 𝑥
1

4𝜋𝐷𝑡
𝑒

( )

𝑑𝑥 = 𝑥  

𝜎 = 〈(𝑥 − 𝜇) 〉 = (𝑥 − 𝜇)
1

4𝜋𝐷𝑡
𝑒

( )

𝑑𝑥 = 〈(𝑥 − 𝑥 ) 〉 

Equation 1.4 

 

Comparing equation 1.2 and equation 1.3, the relationship between the variance of the 

Gaussian PDF and the diffusion coefficient is: 

𝜎 = 〈(𝑥 − 𝑥 ) 〉 = 2𝐷𝑡  

Equation 1.5 
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In the case of the one dimensional Brownian motion, the mean square displacement is 

proportional to the diffusion coefficient D and diffusion time tΔ. By a similar deviation process, 

the Gaussian distribution of the single variable will be expanded to a multi variable 

environment with x, y, z in 3 dimension. In the covariance matrix Σ: 

𝛴 =

𝜎 𝜎 𝜎 𝜎 𝜎

𝜎 𝜎 𝜎 𝜎 𝜎

𝜎 𝜎 𝜎 𝜎 𝜎

 

Equation 1.6 

 

The diagonal elements indicate the variances along the corresponding dimensions of variables 

and the off-diagonal elements express the correlations between the variables. Therefore, 

according to the Einstein-Smoluchowsky equation (Doob, 1942), the three dimensional 

Gaussian distribution will be: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑃𝐷𝐹 (𝐼; 𝜇, 𝛴) =
1

(2𝜋) ⁄ |𝛴| ⁄
𝑒( ( ) ( ) ) 

Equation 1.7 

 

Where the symbol | | indicates the determinant of the content. 

The Brownian motion of particles in three-dimensions will be interpreted as spatial position 

𝑟. Its initial position will be 𝑟⃗= (𝑥 , 𝑦 , 𝑧 ) and the position after tΔ is 𝑟 ⃗=(𝑥 , 𝑦 , 𝑧 ), 

then the displacement of particle after time period tΔ can be expressed as following: 

𝑟⃗ = 𝑟 ⃗ − 𝑟⃗ 

Equation 1.8 

 
And PDF in 3 dimension (Jaffe, 2005) will be derived as: 

𝑃 (𝑟|𝑟⃗, 𝑡 ) =
1

4𝜋𝐷𝑡
𝑒

⃗

=
1

4𝜋𝐷𝑡
𝑒

( )

 

Equation 1.9 
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Combined with equation 1.7, diffusion coefficient D in three-dimensions (which is also called 

diffusion tensor) will be derived as: 

𝐷 = 𝛴 2⁄ =
1

2

𝜎 𝜎 𝜎 𝜎 𝜎

𝜎 𝜎 𝜎 𝜎 𝜎

𝜎 𝜎 𝜎 𝜎 𝜎

=

𝐷 𝐷 𝐷

𝐷 𝐷 𝐷

𝐷 𝐷 𝐷
 

Equation 1.10 

 

Which means D is proportional to Σ and the diffusion tensor elements Dij ~ Σij (i , j=1,2,3). 

The covariance matrix D is positive definite and symmetric. 

When analyzing a phantom filled with a homogeneous substance, for example agarose or fluids 

such as water, the diffusing performances of particles are same in all directions. Thus, such 

substances are called isotropic media and are characterized by a diffusion coefficient (D) with 

identical diagonal elements and all off-diagonal elements being zero (Gullmar et al., 2002). 

That also means the eigenvalues are equal and independent in each eigenvector direction in 

isotropic materials. 

𝐷 =
𝐷 0 0
0 𝐷 0
0 0 𝐷

 

Equation 1.11 

 

MRI uses the signal of the hydrogen nucleus of a water molecule. In biological tissues like 

nerves, which are highly and anisotropically structured due to cell wall and nerve sheath, the 

diffusion coefficients vary along different directions. In other words, all biological tissues 

demonstrate a certain degree of anisotropy. This is most obvious in nerve and muscle tissues: 

here, the cell membrane or myelin sheath is tightly structured and coherently aligned along the 

axons, allowing for the water molecules’ diffusion in the direction perpendicular to the 

fibrillary structure (radial diffusion). Radial diffusion is much slower than axial diffusion along 

the axis direction. The phenomenon is more prominent for white matter because of its dense 

parallel arranged fiber bundles compared to other antistrophic tissues such as muscle and 

tendons even though they also demonstrate significant anisotropic property. 
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For quantitative analysis and evaluation of anisotropy in biological tissues, the diffusion tensor 

given in equation 1.10 is used to describe the water molecule’s diffusion phenomenon. The 

three diagonal elements (Dxx, Dyy, Dzz) of the tensor D represent diffusion coefficients 

measured in the laboratory coordinate correspondingly along the three principal axis (X-, Y- 

and Z-). Other six off-diagonal terms (Dxy, Dyx, Dxz, Dzx, Dyz, Dzy) reflect the correlation 

between each pair of principal axis as marked by the footnote. 

In diffusion MR imaging, the diffusion tensor cannot be directly obtained from practical 

measurements, but its individual elements can be estimated through the comparison between 

images with and without diffusion weight. The proton’s phase dispersion after a diffusion 

gradient pulse can cause the signal loss which will indicate the extent of diffusion in various 

directions. With these methods, however, the measured signal loss is not coming only from 

diffusion, there are several processes responsible, for example: blood and lymphatic flow, 

involuntary motions caused by cardiac pulsations or respiration. All of these processes could 

contribute to the final signal loss, and furthermore the inevitable phase dispersion due to 

susceptibility (caused by both the magnetic field and the tissues’ inner microenvironment) 

which will impede the accuracy of the calculation of tensor elements. Signal loss and the 

estimations of tensor elements based on that also vary according to different types of pulse 

sequences and applied detail parameters during acquisition. 

Because of these limitations, the term ‘apparent diffusion coefficient’ is adopted to refer to 

estimated diffusion extents in DTI research work. ‘Apparent’ is used because it is not a direct 

measure of the “intrinsic” diffusion, but rather the parameter which indirectly reflects the 

interactions between the water molecules’ diffusion process and the micro-structures of studied 

object in voxel size level. 

To accomplish this, the well accepted Stejskal-Tanner imaging sequence (Stejskal and Tanner, 

1965) is typically used. The Stejskal-Tanner sequence uses two relative strong gradient pulses 

(compared to normal imaging gradient pulses for encoding), their amplitudes, time duration 

and interval can be used for controlling diffusion weighting. The diffusion gradient pulses are 

symmetrically positioned on both sides of the 180o RF refocusing pulse, (figure 1.2).  
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Figure 1.2: Diagram example of the Stejskal-Tanner diffusion gradients applied in spin echo 
sequence (Stejskal and Tanner, 1965). 

 

The first diffusion gradient is applied between the 90o excitation RF pulse and the 180o 

refocusing RF pulse and induces a de-phase processing for all targeted spins. The second 

diffusion gradient pulse is applied symmetrically after the 180o refocusing RF pulse with 

identical amplitude and pulse duration. Due to the reversal effect of the 180o refocusing RF 

pulse, in principle, the previous phase shift of the targeted spins will be cancelled by the 

reversal phase changing from the second diffusion gradient pulse. In fact, as figure 1.3 shows, 

this only happens on static spins which experience de-phase and re-phase operations at same 

location. But for those spins that have diffused in one or multi directions during the time 

interval of diffusion gradients: Δ , their final phase status will be disordered due to the location 

change from Brownian. Therefore, the sum of magnetic moments in such a voxel with those 

diffused spins will be lower than the voxel with static spins. The introduced signal loss can be 

used for comparison with signal intensity without diffusion weight to derivate ADC map. 
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Figure 1.3: The comparison of phase changes between ´static´ spins and diffused spins after 
diffusion gradients application (the gradient direction as arrows shown). The sum of magnetic 
moments M from diffused spins in a certain voxel will be weaker than the sum of magnetic 
moments from ´static´ spins with the same size of voxel because of the diffusion process.  

 

The signal loss due to the diffusion process can be expressed with aid of signal intensity which 

is denoted as S0 without diffusion weight (Le Bihan et al., 1986). 

𝑆 = 𝑆 ∗ 𝑒 ( ) = 𝜌 ∗ 𝑒 ( ⁄ ) ∗ 𝑒 ( ( ⁄ ) ) 

Equation 1.12 

 

Where Sk is the signal intensity with a certain diffusion gradient weight produced by gk ; S0 is 

the signal intensity without diffusion weight; ρ is the proton density function of the measured 

object; TE is the echo time; T2 is the spin-spin relaxation time; γ is the gyromagnetic ratio (42 

MHz/Tesla for water proton spin); as shown in figure 1.2, G is the amplitude of diffusion 

gradient pulses; δ is the diffusion gradient pulse duration ; Δ is the time interval of the diffusion 

gradients ; and D is the diffusion coefficient. 

Equation 1.12 shows that within the same voxel, the diffusion signal attenuation compared with 

S0 is determined by the parameters of gradient amplitude, diffusion pulse duration, the time 

interval between the two diffusion gradients and the local diffusion coefficient. Here, in order 
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to separate the tissue’s intrinsic factor and external factor, the combined parameter called b-

value is introduced as the expression: 

b = γ δ (Δ − 𝛿 3)⁄ |G|  

Equation 1.13 

 

Generally with known values of the parameters γ, δ, and Δ, one measurement without diffusion 

weighting S0 and at least six measurements with diffusion weighting Sk using different non-

collinear diffusion gradients are typically required to estimate the symmetric 3×3 diffusion 

tensor D. By inserting normalized gradient vectors: 𝑔 =
| |

 and with help of logarithm 

operation on both sides, equation 1.12 can be transferred to: 

ln
𝑆

𝑆
=

1

ln 𝑒
= ln(𝑆 ) − ln(𝑆 ) = 𝑏𝑔 𝐷𝑔 ; 

Equation 1.14 

 

Making reference of the interpretation method from Ketil Oppedal (Oppedal, 2005), the 

practical scanning with the six directions scheme of multi-directional diffusion weighting 

(MDDW) from vendor was performed on an anonymous volunteer. The images of sciatic nerve 

are used as representation of signal intensities in figure 1.4: 
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Figure 1.4: Diffusion measurements example, 𝑆 : signal intensity of an image without 
diffusion weight; 𝑆 : (𝑖 = 1 … 6) signal intensity of an image with diffusion weight; 𝑔 : (𝑖 =
1 … 6): diffusion gradient vectors from SIEMENS multi-directional diffusion weighting with 
six directions. 

 

Combining measurement data S0, Sk and the known parameters b, 𝑔 , the diffusion tensor 

elements Dij (i,j=1,2,3) can be resolved through following linear equation system: 

 

ln(𝑆 ) −ln(𝑆 ) = 𝑏𝑔 𝐷𝑔 ; 

ln(𝑆 ) −ln(𝑆 ) = 𝑏𝑔 𝐷𝑔 ; 

ln(𝑆 ) −ln(𝑆 ) = 𝑏𝑔 𝐷𝑔 ; 

ln(𝑆 ) −ln(𝑆 ) = 𝑏𝑔 𝐷𝑔 ; 

ln(𝑆 ) −ln(𝑆 ) = 𝑏𝑔 𝐷𝑔 ; 

ln(𝑆 ) − ln(𝑆 ) = 𝑏𝑔 𝐷𝑔 ; 

Equation 1.15 
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For more than six diffusion gradient directions: g1 …gk …gK as K > 6, the Least-Squares (LS) 

estimation method for obtaining the diffusion tensor D is the obvious choice. Assigning the 

diffusion weighted measurements results still as Sk for k = 1 . . . K; K ≧ 6, equation 1.15 can 

be expressed as: 

ln(𝑆 ) − ln(𝑆 )

𝑏
= 𝑔 𝐷𝑔 = 𝑔 𝐷 𝑔 = ϒ 𝛬;              𝑘 = 1 … 𝐾  

Equation 1.16 

 

When 
( ) ( )

 is denoted by vector Yk; the matrix of diffusion gradients ∑ ∑ 𝑔 𝑔  

is represented by ϒ  with a size of 9 x K and the vector which is composed by diffusion tensor 

elements is denoted as 𝜦=(𝐷 … 𝐷 ) . Then the square sum Q with respect to 𝜦 will be: 

𝑄 = 𝑌 − ϒ 𝛬 = (𝑌 − ϒ𝛬) (𝑌 − ϒ𝛬) = 𝑌 𝑌 − 2𝛬 ϒ 𝑌 + 𝛬 ϒ ϒ𝛬 

Equation 1.17 

 

Minimizing Q with respect to 𝜦 by differentiating Q with respect to 𝜦. 

𝑑𝑄

𝑑𝛬
= 0 

Equation 1.18 

 

With known diffusion gradient scheme information of ϒ and measurement data Y, the solution 

of equation 1.18 will be: 

𝛬 = (ϒ ϒ) ϒ 𝑌 

Equation 1.19 

 

In order to estimate the FA values in the simulation section of this study, the above operations 

for resolving diffusion tensor D have been implemented in the MATLAB program with the 

corresponding build-in functions 
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Furthermore, in order to describe the intrinsic diffusion properties of a scanned object 

independent from the coordinate system of the scanner, the concept of eigenvectors and 

eigenvalues which are derived from the tensor was introduced (Pierpaoli et al., 1996). In 3D, 

3 eigenvalues with respective notations λ1, λ2 and λ3 are defined in conjunction with 3 

orthogonal eigenvectors 𝜀⃗, 𝜀⃗, 𝜀⃗ (which are perpendicular to each other within the studied 

fiber frame) as shown in figure 1.5. 

 

Figure 1.5: Eigenvalues λ1 λ2 and λ3 along corresponding eigenvectors 𝜀⃗ 𝜀⃗ 𝜀⃗ in Isotropic 
and Anisotropic situations.  

 

Unlike tensor notation D, a matrix whose diagonal elements are composed by three eigenvalues 

and off-diagonal elements equal to zero could be considered another tensor denoted by D . 

Since D is symmetric and positive definite, the relationship between D and D  will be 

expressed by diagonalization of D with matrix E: 
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𝐷 = 𝐸𝐷 𝐸  

Equation 1.20 

 

Here E is the transformed matrix which could be composed by vectors [ 𝜀⃗ 𝜀⃗ 𝜀⃗ ], and 

correspondingly D  as the transforming result will be: 

𝐷 = 𝐸 𝐷𝐸= 
𝜆 0 0
0 𝜆 0
0 0 𝜆

 

Equation 1.21 

 

The orthogonal vectors 𝜀⃗ 𝜀⃗ 𝜀⃗ (figure 1.5) are the three eigenvectors from tensor D, they 

indicate three uncorrelated directions within the fiber frame along which the water molecule 

diffused. In the coordinate system of the eigenvectors 𝜀⃗ 𝜀⃗ 𝜀⃗, the largest eigenvalue is λ1 

along 𝜀⃗ , reflecting the highest diffusivity (that is normally along the fiber orientation) and 

the smallest eigenvalue is λ3 corresponding to 𝜀⃗, indicating the smallest diffusivity (that is 

usually perpendicular to fiber orientation) (Basser et al., 1994). 

Based on the eigenvalues, several further useful indices can be calculated and they are also 

independent from the coordinate system of the diffusion gradients: Fractional Anisotropy, 

Mean Diffusivity, Axial Diffusivity and Radial Diffusivity. 

Axial Diffusivity =𝜆 ; 

Equation 1.22 

 

Radial Diffusivity =(𝜆 + 𝜆 ) 2⁄ ; 

Equation 1.23 

 

Mean Diffusivity =(𝜆 + 𝜆 + 𝜆 ) 3⁄ ; 

Equation 1.24 
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Fractional Anisotropy =
 ∑ ( ), ,

∑ , ,
; 

Equation 1.25 

 

1.1.3 DTI in Peripheral Nerves 

 

With more meaningful parameters, diffusion tensor imaging has become widely used to assess 

and visualize the white matter tracts in the central nervous system. Because of the diffusion 

sequence’s inherent susceptibility to motion, magnetic field inhomogeneity, and strong T2-

weighting (Jeon et al., 2018), the application of DTI in peripheral nerves became feasible only 

after several significant developments in MR hardware such as high performance gradient coil 

systems, better magnet homogeneity, and multi-channel coils enabling parallel imaging 

techniques to shorten acquisition time, occurred (Chianca et al., 2017; Naraghi et al., 2015; 

Schmid et al., 2018).  

Although anisotropic indices such like ADC and FA are quantitative parameters, they still 

depend on the scanning environment for example the magnetic field strength, type of coil, type 

of sequence and corresponding adopted b-value range. Previous studies showed that the normal 

FA of peripheral nerves ranges between 0.3 and 0.7 (Chhabra et al., 2013) and by means of 

their FA, peripheral nerves can be clearly distinguished from the surrounding tissues. However,  

there are also limitations to assessing the intrinsic properties of the PNS, since the FA values 

of peripheral nerves are strongly correlated with axon density and axon diameter, rather than 

myelin-related parameters (Khalil et al., 2010). This is based on the theory that anisotropy is 

decisively influenced by the membranes of an axon and only slightly by the myelin sheaths 

(Takagi et al., 2009). 

To assess peripheral nerves in clinical practice, establishing normative DTI indices is crucial 

for reliably detecting pathology, particularly in milder forms of peripheral neuropathy that may 

only result in subtle changes in DTI indices. However, so far multiple studies have only 

demonstrated a rather wide range in DTI values of the upper extremity peripheral nerves in 

healthy volunteers (Jeon et al., 2018). The results of these studies examining DTI metrics also 

vary widely from study to study due to factors such as hardware differences from vendors or 

the type of diffusion sequences and their specified parameters. Additionally, the DTI indices 
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such as FA and ADC showed significant variation along the nerve: FAs shows a proximodistal 

increase, whereas ADC shows a proximodistal decrease (Paniandi et al., 2018; Stein et al., 

2009). There are differences in FA and mean diffusivity between different nerves, which in part 

may be explained by an insufficient spatial resolution or low Signal-to-Noise Ratio (SNR) 

(Naraghi et al., 2015). Due to the small caliber of the nerves, DTI in peripheral nerve requires 

high in-plane spatial resolution. However, there is a trade-off between spatial resolution, SNR 

and acquisition time. There are several approaches to overcome the limitations of DTI in the 

PNS including advanced RF coils that are optimized for the extremities, optimized pulse 

sequences and dedicated post processing software. Although facing various challenges, DTI 

has meanwhile gained importance in DTI of the PNS. DTI provides additional and 

complementary information compared to conventional MR Neurography. The parameters 

"axial diffusivity" and "radial diffusivity", which one can derive from the diffusion tensor, are 

markers of axon integrity and myelin sheath integrity, respectively. “Axial diffusivity” 

characterizes the water movement parallel to the axonal tracts. Changes in intracellular water 

due to impaired axonal transport leads to reduced axial diffusivity which can be used to 

characterize axonal damage in the acute phase (Aung et al., 2013). Demyelination (or myelin 

pathology) is associated with an increase in “radial diffusivity” which characterizes the water 

movement perpendicular to the axonal tracts. (Budde et al., 2008). Compared to conventional 

structural MRI, the ability of distinguishing pathologic changes in axons and myelin by DTI 

can offer the information for potential pathologies well before the apparent structural changs 

or functional symptoms appear (Aung et al., 2013). This is particularly relevant for the 

diagnosis and treatment in the early stages of a disease. 

 

1.2 DTI Limitations on PNS 

 

Although a quantitative noninvasive imaging method, DTI has provided insight into the 

microstructure of the brain and its usage in fiber tracking also presented the anatomical 

connectivity of white matter, its applications in the PNS still faces a certain number of 

challenges because of nerve size, long acquisition time, artifacts and the lack of standardized 

post processing. On the other hand, there are also certain advantages of the PNS when 

performing DTI, e.g. the well-known and uniform direction of the nerves within the extremities.  
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In this thesis two ways are investigated to increase SNR: Using a diffusion gradient scheme 

adapted to the characteristics of the PNS, and post-hoc correction for low SNR. 

 

1.2.1 Selection of Gradient Vectors Scheme 

 

 

For DTI, a minimum of six non collinear gradients are required. The higher the number of 

gradients, the better the accuracy of the parameters calculated from DTI. There is, however, a 

trade-off between accuracy and acquisition time. DTI is most often performed by spreading the 

gradient directions in space evenly (uniform coverage) (Jones et al., 1999). Several studies 

have investigated the influence of the number of gradient directions on the accuracy of FA and 

mean diffusivity (Lagana et al., 2010; Landman et al., 2007). As shown by these studies, at 

least 20 diffusion gradient directions are necessary to guarantee reliable estimation of FA, while 

at least 30 directions are needed for robust calculation of the tensor orientation and mean 

diffusivity (Jones, 2004). 

In the peripheral nerve system, however, the anatomical complexity is much lower than in the 

brain: With only a few exceptions (brachial and lumbar plexus) there is no fiber crossing and 

much less fiber branching than in the brain. Therefore, a smaller number of gradients is likely 

to be sufficient for DTI of the PNS. Zhou et al. compared the reliability of DTI in the median 

nerve for 7, 21, and 42 diffusion gradient directions and found that there was a significant 

underestimation of FA when using only 7 directions (Zhou et al., 2014). This suggests, that 

also in the PNS it is not sufficient to use the lowest number of diffusion gradients that is 

theoretically possible. 

In all diffusion tensor acquisition schemes mentioned by previous studies, Jones’ optimal 

schemes (Jones et al., 1999) and the schemes developed by Downhill Simplex Minimization 

(DSM) are considered optimal in terms of lowering noise and bias (Skare et al., 2000a). A 

parameter characterizing the noise performance of a DTI acquisition scheme is the condition 

number (CN) (Skare et al., 2000a). Referring to equation 2.12, the matrix C with size of 6 x N 

(N is the number of gradient directions), also referred to as transformation matrix between 

tensor and measurement data, is measurement data, only depends on the orientation of the 

diffusion-weighting gradients (or diffusion gradient scheme). The condition number of the 



INTRODUCTION 

20 
 

transformation matrix defines the lower and upper bounds of the error propagation from the 

practical measurements data to the estimated diffusion tensor. Due to CN’s objectiveness and 

quantitative property, the numerical algorithms based on the minimization of the condition 

number can naturally be used for searching new DTI schemes (Skare et al., 2000a). 

 

1.2.2 Noise Impact on Anisotropy Indices 

 

As both the diffusion gradients and a relatively long TE lead to signal attenuation in DTI, noise 

and its correction become an important topic in DTI, particularly if high spatial resolution is 

needed. Several authors have studied the effect of low SNR on the parameters derived from 

DTI (Farrell et al., 2007; Landman et al., 2008; Polzehl and Tabelow, 2016). Depending on the 

selection of the b-value, the noise in the DW images will propagate through a least-squares 

model into variances in the diffusion tensor elements, and then such variances in diffusion 

tensor elements further propagate to the errors in anisotropy indices, such as FA (Poonawalla 

and Zhou, 2004). 

Due to the low SNR in vivo diffusion weighted images, the simple operation of magnitude 

averaging against phase instabilities induced by the diffusion sensitizing gradients are 

commonly used for stable calculation of the diffusion tensor. However, averaged magnitude 

images reduce the uncertainty but have no effect on the bias of the diffusion signal, the so-

called noise floor (Gudbjartsson and Patz, 1995; Henkelman, 1985). This becomes increasingly 

prominent at high resolutions, high b values or pathological high ADCs. In these cases, the 

acquired signal probably already is lower than the floor of background noise, since it decays 

rapidly with high diffusion gradients, especially when the gradient pulse is applied parallel or 

along principal diffusion direction of the studied object (Laun et al., 2009). Jones et al. have 

shown that this results in a significant underestimation of FA and ADC (Jones and Basser, 

2004).  

Besides sequence optimization and hardware improvement, the post-hoc noise correction is an 

important method to lower the impact of noise on the parameters calculated from DTI.  

Previously introduced noise correction ideas such as ‘power images’ correction (Miller and 

Joseph, 1993) and Rician distribution correction (Gudbjartsson and Patz, 1995) mainly focused 
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on conventional magnitude MR imaging and are still in a theoretical analysis phase or not yet 

considered in diffusion application. 

 

1.2.2.1 Noise Correction Method: Power Image 
 

The abovementioned usage of power images for correcting noised MRI data was introduced 

by Miller and Joseph (Miller and Joseph, 1993). Their proposal was based on the zero mean of 

Gaussian noise induced from each quadrature detection channel (imaginary and real) during 

signal acquisition. The mean of powered measurement signal: M can be expressed by the 

addition of the powered true signal: A and two times of the powered noise standard deviation: 

σ which can be acquired by the average value of Region of Interest (ROI) over any region that 

is known to have no object signal, e.g. the corners of an image. The true signal can be estimated 

by the square root of the subtraction between<M2> and σ2. Without further simulation and 

practical investigation, Miller and Joseph also mentioned the potential of this method in the 

application of diffusion coefficients.  

 

1.2.2.2 Noise Correction Method: Rician distribution correction 
 

Ultimately, Gudbjartsson and Patz presented an approximation method with two different 

factors for noise correction (Gudbjartsson and Patz, 1995) based on Raleigh noise distribution 

which lead to the Rician distribution of an magnitude signal. The target of this approximation 

method is the true power of noise standard deviation: σ  which can be estimated according to 

the probability distribution equation of Rayleigh either from the approximated mean of 

measured noise by an approximate factor  or the approximated standard deviation of 

measured noise by an approximate factor  . They postulated the square root of the absolute 

subtracted result between:M  (power of the mean measured signal) and σ2 being close to the 

true signal: A. However, the mathematical model had not been verified in DTI application yet.  

Fairly recent research in noise correction from Dietrich O (Dietrich et al., 2001) provided an 

analysis of two situations: Gaussian noise and Non-Gaussian noise. The correction of the 

Gaussian noise case was very similar to the approximation method as described by 
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Gudbjartsson and Patz (Miller and Joseph, 1993). For the arbitrary non-Gaussian noise, the 

correction has to be assessed in relation to the true signal and measured noise. In identifying 

this relation, both, the iteration process and water phantom reference imaging from Dietrich O 

seemed quite time consuming with respect to practical application, especially regarding the 

relative long acquisition time in diffusion measurements. Additionally, the noise pattern 

changed according to complicated factors from both, scanner hardware and physiological status 

of the scanned object, thus the repeating reference imaging obviously increased the acquisition 

burden. Therefore, the arbitrary noise correction will not be focused in this project. 

 

1.3 Aim of the Project 

 

The aim of this project is to increase the accuracy and reliability of DTI in PNS by reducing 

the noise bias. This project will follow two approaches in order to achieve this goal: 

(1) Choice of the diffusion gradient scheme: As shown above, high angular resolved 

diffusion imaging is a powerful approach to reduce the bias of noise. On the other hand, 

this approach leads to long acquisition times which in turn increases the susceptibility 

of DTI to motion artifacts. Therefore, a gradient scheme that takes into account the 

orientation and geometry of the peripheral nerve system is proposed. 

(2) Post-hoc noise correction does not require additional acquisition time. Therefore, 

focusing on the effect of different noise correction schemes on the reliability of the 

parameters calculated from DTI, two correction schemes (power image method and 

approximation method) will be compared in a simulation study and in measurements in 

a dedicated PNS phantom.  
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2 MATERIAL UND METHOD 

 

In this chapter, the development of a non-uniform gradient scheme is described. The 

performance of the developed gradient schemes with a relatively dense distribution around the 

main direction of the nerve was tested using the Mont Carlo simulation method and was 

verified in a phantom study as well. Finally the scheme was compared to established, uniform 

gradient schemes. 

In the second part of this chapter, two established noise correction methods are applied for DTI 

of the PNS. The efficacy of these methods was examined by Monte-Carlo simulation and in a 

phantom study.  

 

2.1 Tailored Diffusion Gradient Scheme for Peripheral Nerves 

2.1.1 General Requirements for Gradient Vector Numbers 

 

The number of diffusion gradient directions (N) used in the diffusion gradient scheme plays an 

important role during DTI data acquisition. The influence of N on anisotropy evaluation has 

been discussed in several studies and corresponding diffusion gradient schemes have been 

published and evaluated in the literature (Jones et al., 1999; Papadakis et al., 1999; Skare et al., 

2000a). Increasing N typically improves the precision of DTI tensor elements calculation and 

the estimation of FA, ADC, RD, or AD and produces more accurate data for fiber tracking and 

better quality of anisotropy maps (Bernstein et al., 2004). However, when maintaining the same 

acquisition time, the gain in image quality becomes progressively less when the number of 

directions exceeds around 25 by trading off the acquisition time (Bernstein et al., 2004; 

Poonawalla and Zhou, 2004).  

To estimate the diffusion tensor, acquisitions must be performed for at least six non collinear 

spatial orientations of diffusion gradients (Basser et al., 1994).The more uniformly the 

diffusion directions are distributed in space, the more accurate the estimation in each voxel is 

(Jones et al., 1999). Furthermore, increasing the number of orientations considerably improves 

the SNR in the ADC measurement, which is also defined by Xing as the diffusion-to-noise 

ratio (Xing et al., 1997) and consequently the information about the microscopic tissue 
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structure is more accurate (Papadakis et al., 1999). Increasing the number of orientations, 

however, directly leads to an increase in acquisition time.  

There is a set of rules that need to be satisfied in designing the gradient vectors scheme. These 

rules guarantee that the linear equations are nonsingular for the estimation of the diffusion 

tensor and they require to select at least six valid diffusion gradients and further non collinear 

gradient directions will help the accuracy of estimation. (Ozcan, 2005). 

1. Fundamentally, no any pair of two gradient vectors should point to the same direction.  

2. In case of a triplet of vectors belonging to a two dimensional subspace that conform to 

rule (1), the remaining triplet must be linearly independent. 

3. Additionally, no four gradient vectors should belong to the same two dimensional 

subspace. 

 

2.1.2 Tailored Gradient Vector Scheme for Peripheral Nerves  

 

Satisfying the basic rules for producing non-collinear vectors, and aiming at time efficient 

scanning, a specified diffusion gradient scheme, the Directional Gradient Vector scheme 

(DGV), will be introduced. With the prior known range of PNS orientation, this non-uniform 

gradient scheme has a concentrated distribution around the studied tensor. 

 

2.1.2.1 Preparing DGV scheme 
 

The peripheral nerves exhibit a preferred direction which corresponds approximately with the 

z-axis of the MR scanner. Therefore, the question arises whether one can exploit the knowledge 

about the preferred direction and the cylindrical structure of the nerve to simplify the gradient 

scheme and reduce the number of diffusion gradients. Figure 2.1 shows the different 

distribution pattern between a conventional scheme and the DGV scheme. 



MATERIAL UND METHOD 

25 
 

 

Figure 2.1: Comparison between conventional scheme and DGV scheme. (a) conventional 
uniformly distributed gradient vectors scheme (blue vectors) around nerve (yellow). (b) non-
uniform distributed directional gradient vectors scheme (blue vectors) around nerve (yellow).  
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To determine the relationship between DTI parameters in the peripheral nerve and the DGV 

scheme used for DTI, a model is needed that distributes the diffusion directions with prior 

knowledge of the diffusion propagator (figure 2.2). The diffusion propagator indicates the 

probability that a water molecule experiences a net displacement in a certain direction. 

 

Figure 2.2: Diffusion propagator of the nerve tissue (Orientation: Z-direction) and DGV 
scheme in spherical coordinates (dotted lines). The sphere confines the tip of the gradient vector. 
The arrows forming a cone indicate the diffusion vectors which should result in the same 
diffusivity due to the cylindrical shape of the nerve.  

 

Firstly assuming a ‘cigar’ shaped diffusion propagator to represent directional diffusion in 

nerve tissue. Secondly, it can be seen in the cross section view of the combined model (figure 

2.3), the vectors of the tailored DGV scheme will be inside the cone defined by the angle: Θmax. 
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Figure 2.3: Cross section displaying the diffusion propagator (With eigenvalues λ1 and λ2=λ3) 
of the nerve and the cone (defined bymax), in which the diffusion directions are confined.  

 

The eigenvalues are 1, 2 and 3, it is due to the axial symmetry of the ellipsoid, λ2 equals λ3. 

The normalized gradient direction vector gk is defined by: 

𝑔 = (𝑔  𝑔  𝑔 )  

𝑔 + 𝑔 + 𝑔 = 1 

Equation 2.1 

 

For the sake of simple calculation, the setting of λ1=1 and λ2/λ3=1 is adopted as stated above. 

In a second step, the gradient distribution within the cone defined bymax can be calculated. 

The number of gradient sampling orientations (N) will be 6, 10, 20 and 30, respectively. The 

normalized gradient vectors are defined by θ (Angle between gradient vector and Z axis) and 

ϕ (Angle between the projection of the gradient vector on X-Y plane and X axis). The DGV 

coverage is restrained by max. Within the cone defined by max, the gradient vectors will be 

distributed uniformly with regards to ϕ. 
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As stated above, it requires at least six non-collinear spatial orientations of diffusion gradients 

to determine the diffusion tensor. If the space filled by the gradients exceeds a hemisphere, 

there could be incompetent gradient vectors combination produced in experiments. Therefore 

in the simulation, such incompetent gradients vectors will be filtered out. 

 

2.1.2.2 Producing the possible combination of homogeneous distributed N 
gradient vectors 
 

To calculate the individual gradient vectors for a given total number of gradients N, max will 

be equally divided by N to produce θk (𝑖=1, 2, 3…N) and the maximum range of ϕ (=360°) will 

also be equally divided by N to produce ϕk (𝑖=1, 2, 3…N). By the design criteria introduced in 

chapter 2.1.1, the subset of N gradient vectors can be selected from the whole set of gradient 

vectors. In principle, there are N! different possibilities of combination. If N=6, there would be 

6! =720 different gradient vector combinations. With N = 10, the number of combinations 

would be 362,880. For N=20 and N=30, the number of combinations would be too large to 

allow for an exhaustive search.  

Thus, for the gradient schemes with by N=20 and N=30, the random sampling method will be 

used. 

For each max, the full set of gradient vectors combinations (N=6 and 10) and a partial set of 

gradient vectors combinations (N=20 and 30) are calculated. The calculation is described below 

for N=6 and different max (15°, 30°, 45°, 60°, 75°, 90°). 
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Step 1: Calculate the increment of Δϕ and Δθ: Δϕπ and Δθ=Θmax/6. 

Step 2: Prepare the permutations of coefficient vector [x1, x2, x3, x4, x5, x6] which will multiply 

the increment of Δϕ and Δθ for defining the spatial direction of each gradient vector. Assigning 

[x1, x2, x3, x4, x5, x6] = [1, 2, 3, 4, 5, 6], then the full permutation of coefficient vector’s elements 

can be expressed as a matrix denoted as PER with size of [720 x 6]: 

𝑃𝐸𝑅 =

⎣
⎢
⎢
⎢
⎡
𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .

𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .

𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .

⋮
𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .

 

⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑥     𝑥     𝑥     𝑥     𝑥      𝑥
𝑥     𝑥     𝑥     𝑥     𝑥      𝑥
𝑥     𝑥     𝑥     𝑥     𝑥      𝑥

⋮
𝑥     𝑥     𝑥     𝑥     𝑥      𝑥

 

⎦
⎥
⎥
⎥
⎤

 

Equation 2.2 

 

Each row of matrix PER can produce one scheme, all together 720 rows represent 720 

possibilities scheme pattern by 6 diffusion gradient directions. 

Step 3: Calculate all possible combinations gradient vectors [g1, g2, g3, g4, g5, g6] to form the 

schemes. For simple interpretation, the last row from PER is taken out as an example. 

The increment coefficients from the last row of PER as following: 

𝑃𝐸𝑅 = [𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .     𝑝 .  ] = [𝑥     𝑥     𝑥     𝑥     𝑥      𝑥  ]

= [1   5   4   6   2   3 ] 
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The corresponding gradient vectors for the scheme from the first row of PER is: 

𝑔 =

sin(𝛥𝜃 ∗ 𝑥 ) ∗ sin(𝛥𝜙 ∗ 𝑥 )

𝑠𝑖𝑛(𝛥𝜃 ∗ 𝑥 ) ∗ cos(𝛥𝜙 ∗ 𝑥 )

cos(𝛥𝜃 ∗ 𝑥 )
 

𝑔 =

sin(𝛥𝜃 ∗ 𝑥 ) ∗ sin(𝛥𝜙 ∗ 𝑥 )

𝑠𝑖𝑛(𝛥𝜃 ∗ 𝑥 ) ∗ cos(𝛥𝜙 ∗ 𝑥 )

cos(𝛥𝜃 ∗ 𝑥 )
 

𝑔 =

sin(𝛥𝜃 ∗ 𝑥 ) ∗ sin(𝛥𝜙 ∗ 𝑥 )

𝑠𝑖𝑛(𝛥𝜃 ∗ 𝑥 ) ∗ cos(𝛥𝜙 ∗ 𝑥 )

cos(𝛥𝜃 ∗ 𝑥 )
 

𝑔 =

sin(𝛥𝜃 ∗ 𝑥 ) ∗ sin(𝛥𝜙 ∗ 𝑥 )

𝑠𝑖𝑛(𝛥𝜃 ∗ 𝑥 ) ∗ cos(𝛥𝜙 ∗ 𝑥 )

cos(𝛥𝜃 ∗ 𝑥 )
 

𝑔 =

sin(𝛥𝜃 ∗ 𝑥 ) ∗ sin(𝛥𝜙 ∗ 𝑥 )

𝑠𝑖𝑛(𝛥𝜃 ∗ 𝑥 ) ∗ cos(𝛥𝜙 ∗ 𝑥 )

cos(𝛥𝜃 ∗ 𝑥 )
 

𝑔 =

sin(𝛥𝜃 ∗ 𝑥 ) ∗ sin(𝛥𝜙 ∗ 𝑥 )

𝑠𝑖𝑛(𝛥𝜃 ∗ 𝑥 ) ∗ cos(𝛥𝜙 ∗ 𝑥 )

cos(𝛥𝜃 ∗ 𝑥 )
 

Equation 2.3 

 

It is easier to formulate the vectors in spherical coordinates: gk(r,θ,ϕ). As r is normalized to 1 

(figure 2.4(a)), so the gradient vector can be simplified to g (θ, ϕ), where θ can adopt the 

following values [    2    3      …   N  ], while ϕ can adopt the values 

[    2    3   …N ] (see figure 2.4(b)). 

To guarantee that the vector scheme is non-collinear, each θ and each ϕ can only be used one 

time. Then N sets (θ ,ϕ ) results in one DGV scheme; changing the combination of θ and ϕ 

results in  N! DGV patterns. Figure 2.4(b) shows one example of a DGV scheme for N=6. 

Figure 2.4(c) shows possible diffusion gradient vectors for different max 

(15°, 30°, 45°, 60°, 75°, 90°). 
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Figure 2.4: Example of DGV with N=6. (a): Gradient vector g(r θ ϕ) in spherical coordinates. 
(b): Example of a DGV scheme for N=6, the projection of the vector tip upon the X-Y plane is 
displayed. (c): Set of possible diffusion gradient vectors for different max (15°, 30°…90°).  
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2.1.2.3 Monte-Carlo simulation and searching the optimal gradient scheme 

in different sphere coverages. 

 

To examine the influence of the tailored diffusion gradient scheme upon the parameters 

calculated from DTI, the well accepted method of Monte Carlo simulation was performed. To 

keep the simulation as realistic as possible, specified Gaussian noise according to selected SNR 

was added to the calculated signal intensities. The simulation process consists of the following 

steps.  

1. Selection of a range of typical FAs in peripheral nerves FAs: definition of a diffusion tensor 

with eigenvalues matching the eigenvalues found in volunteers/patients (Kronlage et al., 2018). 

2. Selection of the b values (b=0 and b=1000 s/mm2), number of gradients N and gradient 

sampling scheme. 

3. Selection of a signal-to-noise ratio which is similar to the SNR achieved in DTI at 3 Tesla in 

peripheral nerves (the reference comes from evaluation of practical measurements on the 

scanner and coil which used for validation in this project). 

4. Definition of the fiber direction. 

5. Definition of the theoretical S0 for b0=0 and calculation of Sk for each gradient direction g . 

6. Mixing of noise with noise level defined in step 3 to each defined/calculated S0 and Si. 

7. Calculation of the diffusion tensor. 

8. Calculation of eigenvalues and FA from the tensor. 

9. Repeat steps of 6–8 minimum 10000 times. 

10. Repeat steps 4–9 for a set of directions.  

The individual steps of the simulation are performed in detail as given below:   

1. In a comprehensive study in healthy volunteers of different age, Kronlage et al have found 

that FA varies between 0.34 and 0.79 (Kronlage et al. 2018). As representative values for this 

physiological range, three FA values: 0.4, 0.6, and 0.8 were selected with λ3=λ2<λ1, and for 

λ1=1, the λ3=λ2 is calculated as follows: 
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𝜆 = 𝜆 =
(FA ∗ √3 − 2 ∗ 𝐹𝐴  − 1) 

(2 ∗ (2 ∗ 𝐹𝐴 − 1))
 

Equation 2.4 

 

To guarantee integer ratios of λ1 and λ3=λ2, the FAs chosen initially were slightly changed. For 

the range of values of RD, AD, and FA obtained from the study of Kronlage (Kronlage et al., 

2018), the tensor was calculated according to table 2.1. 

Table 2.1: FA, b value and corresponding derived diagonal tensor D0 and ratio of the 
eigenvalues used in simulations.  

b value Principle FA D0 λ1:λ2:λ3 

1000 0.408 . 0011 0 0
0 . 0011 0
0 0 . 00213

 
2:1:1 

1000 0.603 . 00071 0 0
0 . 00071 0
0 0 . 00213

 
3:1:1 

1000 0.808 . 00036 0 0
0 . 00036 0
0 0 . 00065

 
6:1:1 

 

2. Selection of a b value and gradient sampling scheme.  

To calculate ADC map, it requires measurements with at least two b values. Usually, one is 

with lower value such as 0 s/mm2 or similar level with imaging gradients around 1–5 s/mm2. 

The second b value for diffusion weight is typically chosen as about 1,000 s/mm2, but this is 

just the parameter that is often adapted to the structure of interest; b values of 3,000 s/mm2 or 

even higher. More than 2 of higher b are rarely used in DTI, as this requires the method of 

least-squares fit to acquire the ADC in each direction. Furthermore in clinical practice two or 

more b-values >0 are not feasible as this leads to a significant extension of acquisition time. 

Therefore, in the present simulation studies two b-values are used with b=0 and 1000 s/mm2. 

In this simulation, different gradient sampling schemes for N=6, N=10, N=20, and 30 are 

compared. As shown in chapter 2.1.2.2, for N=6 and N=10 all permutation (720 for N=6, 
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362880 for N=10) can be used, while, for N=20 and N=30, gradient schemes are selected by a 

random sampling method; this process is repeated 10 times 

3. Selection of a signal-to-noise ratio. 

The SNR of a DTI simulation usually refers to the SNR of the b0 _data. Data with a b-value >0 

have lower SNR, depending on the value of b and the diffusivity Di in the respective diffusion 

direction. In DTI studies in peripheral nerves that we have performed in our department, we 

typically find an SNR value of 15:1 to 30:1. This can be increased by signal averaging. It may 

be useful to include simulations with high SNR (50:1 or higher) to reveal intrinsic properties 

and trends. In this study, it is important to consider the Rician statistics bias in low SNR which 

can introduce artifacts into the data (Farzinfar et al., 2013). Experiments with the fiber phantom 

at the 3 Tesla scanner (TIM Trio, Siemens Healthineers, Erlangen, Germany) using 15-channel 

Transmit/Receive knee coil (Quality Electrodynamics 700 Beta Drive, Suite 100 Mayfield 

Village, OH 44143, USA. distributed by SIEMENS Healthineers, Erlangen, Germany) showed 

that SNR is about 15:1. Therefore, in this simulation study SNR was set to 15:1. 

4. Setting up the fiber direction. 

Although the large trunks of the peripheral nerves roughly run along the body axis which in 

turn equals the scanner axis (Z-direction), there are always slight variation from the main 

direction. This means that the coordinate system of the nerve (X, Y, Z) may be tilted by Θ and 

rotated by Φ. Therefore simulations were performed for Θ=0o, 10o, 20o, and 30o. As the 

diffusion propagator is rotationally symmetric with respect to its z-axis, results should be 

independent of Φ. Therefore, Φ was set to =0 throughout simulations. Within the simulation 

process, the diffusion tensor is calculated for all gradient schemes defined in step 2 under 

random noise pollution (SNR as defined in step 3) for each fiber orientation angle Θ. 
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Figure 2.5: Coordinate systems of the scanner and nerve. (a) If the nerve is aligned with the 
scanner axis, scanner coordinate system (X, Y, Z) corresponds to the nerve coordinate system 
(x, y, z). (b) Shows the configuration if the nerve is slightly tilted with regards to the scanner 
coordinate system. In this case the nerve coordinate system is tilted (Θ) and rotated (Φ) with 
respect to the scanner coordinate system.  

 

The diagonal matrix of the diffusion tensor in figure 2.5(a) will be represented by assigning the 

eigenvalues λi according to equation 1.21 

𝐷 = 𝐷 =

𝜆 0 0
0 𝜆 0
0 0 𝜆

 

If the nerve is tilted by Θ with regards to the scanner coordinate system (Φ=0) the respective 

representation of the diffusion tensor within the scanner coordinate system can be calculated 

using the rotation matrix R:  

𝑅 =  
𝑐𝑜𝑠𝛩 0 −𝑠𝑖𝑛𝛩

0 1 0
𝑠𝑖𝑛𝛩 0 𝑐𝑜𝑠𝛩

 

Equation 2.5 
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Then the diffusion tensor is: 

𝐷 =  𝑅  𝐷  𝑅  

Equation 2.6 

 

5. With S0 (b0) =1, the diffusion weighted signals Sk for each gradient direction 𝑔  can be 

calculated using equation 1.12. As gradient vectors number is N, the signal matrix will be 

composed as follows: 

[𝑆  𝑆  𝑆  … 𝑆 ] 

Equation 2.7 

 

6. Mixing noise into the signal S0 and Sk: Gaussian distributed noise is added separately to the 

real part nR and the imaginary part nI, respectively. With this, the noise magnitude n 

𝑛 = 𝑛 + 𝑛  

Equation 2.8 

exhibits a Rayleigh distribution. 

Random noise n is produced for each signal within the matrix (see equation 2.7): 

[𝑛  𝑛  𝑛  … 𝑛 ] 

Equation 2.9 

 

In a final step, the noise contaminated signal is obtained by adding matrix (Equation 2.7) and 

matrix (Equation 2.9).   

7. Calculation of the tensor Dn according to equation 1.12 can be performed analytically if the 

measurements are performed in six directions. However, it requires a fitting procedure for more 

than six directions. Therefore, for N>10 the least squares estimation method is used. 

8. From Tensor Dn, FA calculation is performed by using equation 1.25. Other parameters as 

MD, AD, RD and eigenvectors, are not the focus in this study, therefore they were not 

calculated. 
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9. Monte Carlo simulation with at least 10000 simulations is considered sufficient by industry 

standards. Therefore, steps 6-8 were repeated with different random noise 10000 times. This 

resulted in 10000 FAs for each number of diffusion directions, gradient scheme and nerve 

tilting angle. 

10. Mean value and standard deviation were derived from the collected FAs. 

11. The entire simulation process was repeated for different FA, SNR, sampling scheme 

(number of directions, N, gradient orientations, nerve orientation). 

The Monte-Carlo computer simulation was implemented as a MATLAB program on the basis 

of 𝑀𝑎𝑡ℎ𝑊𝑜𝑟𝑘𝑠 𝑀𝐴𝑇𝐿𝐴𝐵 𝑅2017𝑎.  

 

2.1.2.4 Criteria of evaluation. 

 

For a specified diffusion direction number N, there are infinite possibilities to design the 

distribution for the N non-collinear gradient directions in 3D space. Finding the optimal 

distribution currently is an area of research in DTI. So far, the consensus is to distribute the 

diffusion gradient directions as uniformly as possible within the three dimensions (Bernstein 

et al., 2004). A common criterion which is already well accepted in evaluating the diffusion 

gradient scheme is to minimize the condition number of the transformation matrix of the 

diffusion gradient scheme (Skare et al., 2000a). 

The condition number as a quality metrics is used in the evaluation of noise propagation within 

DTI (Skare et al., 2000a). By numerical analysis, the condition number measures how much 

the output value of a function will change for a small change in the input. Since the diffusion 

tensor is correlated with the measured ADC values by the transformation matrix which 

correlates with diffusion gradient scheme, theoretically the CN of this transformation matrix 

can be used to measure how sensitive the diffusion tensor is to changes or errors in the acquired 

ADC. Hence, the CN is a measure for the difference between the measured diffusion tensor Dn 

and the true diffusion tensor D0. The CN can therefore be regarded as an index of noise 

sensitivity of the given gradient scheme. 
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The transformation matrix for a DTI diffusion gradient scheme (Skare et al., 2000a) will be 

expressed based on the equation 1.10 and equation 1.14, supposing the elements of 

transformation matrix are ck: 

𝑐 = 𝑔 . 𝑔 = (𝑔  𝑔  𝑔  2𝑔 𝑔  2𝑔 𝑔  2𝑔 𝑔 )  

Where k=1,2,3…N 

Equation 2.10 

 

The tensor elements can be grouped to a vector d: 

𝑑 = (𝐷  𝐷  𝐷  𝐷  𝐷  𝐷 )  

Equation 2.11 

 

For the measurements using a generalized DTI gradient vector scheme with N≥6 different 

gradient directions, a matrix C with dimension Nx6 can be defined as: 

𝐶 = (𝑐  𝑐  𝑐  … 𝑐 )  

Equation 2.12 

 

It is referred to as the transformation matrix for the corresponding DTI scheme. 

With regard to the vector d, the Euclidean norm of the vector ‖𝑑‖ can be expressed as: 

‖𝑑‖ = ( 𝑑

. …

)  

Equation 2.13 

 

The norm of a matrix C reflects how much extent by matrix C can stretch the vector d:  

‖𝐶‖ = 𝑚𝑎𝑥
‖𝐶𝑑‖

‖𝑑‖
 

Equation 2.14 

The scalar quantity ‖𝐶‖‖𝐶 ‖ is the CN of matrix C and is denoted by Cond (C) in this study. 

In the present study, the CN was calculated using a dedicated MATLAB function. 
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To find the optimum gradient scheme a two-step process was used. Firstly, for each Θmax the 

directional distribution was singled out that showed the lowest standard deviation in FA for the 

10000 repetitions of step 6 to 8 within the simulation. This results in an optimum gradient 

scheme for each number of gradients (6, 10, 20, 30). 

The results of the simulation study were verified in phantom as described in chapter 3.1.3. 
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2.1.3 Conventional Gradient Vector Schemes  

 

In order to check the performance of the final optimal DGV schemes in phantom experiments, 

these schemes were compared to three different gradient schemes with uniform gradient 

distribution: the standard gradient scheme of the manufacturer (SIEMENS Healthineers, 

Erlangen, Germany), Jones’ optimal schemes (Jones, 2004) and the schemes developed by 

Downhill Simplex Minimization (Skare et al., 2000a). In order to do that, schemes with the 

same number of gradients (6, 12, 20, 30) were calculated for these three gradient distributions: 

Siemens standard gradient scheme: 

The gradient directions with N=6 follows orthogonal distribution which are along 

±X, ±Y and ± Z . For N=10, 20 and 30 the schemes are calculated according to certain 

geometric shapes (e.g.: platonic solids and their variants). 

Jones’ optimal schemes: 

Based on the uniformly distributed gradient vectors, this scheme is optimized by the 

minimization of error propagation for the estimation of the tensor trace (Jones, 2004). 

Downhill Simplex Minimization:  

This scheme is based on the electrostatic repulsion phenomenon: The tips of the gradients 

represent positive charged particles which are arranged on a spherical surface according to the 

laws of electrostatic repulsion. In order to do this, the sum of electronic repulsive force between 

those particles is calculated and minimized by DSM. 

The conventional gradient schemes are listed in table 2.2-2.4 
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Table 2.2: SIEMENS gradient Schemes 

N=6 

 

    gx        gy        gz 

N=20 

 

    gx        gy        gz 

N=30 

 

    gx        gy        gz 

1.0000 0.0000 1.0000 
-1.0000 0.0000 1.0000 
0.0000 1.0000 1.0000 
0.0000 1.0000 -1.0000 
1.0000 1.0000 0.0000 

-1.0000 1.0000 0.0000 
 

1.0000 0.0000 0.0000 
0.0000 1.0000 0.0000 

-0.0320 0.7996 0.5997 
0.8567 0.4938 -0.1489 
0.8344 0.3092 0.4562 
0.8344 -0.3092 0.4562 
0.8567 -0.4938 -0.1489 
0.8222 0.0000 -0.5692 
0.5508 0.4259 -0.7178 
0.4682 0.8343 -0.2911 
0.5159 0.8089 0.2820 
0.3919 0.5159 0.7618 
0.4782 0.0000 0.8783 
0.3919 -0.5159 0.7618 
0.5159 -0.8089 0.2820 
0.4682 -0.8343 -0.2911 
0.5508 -0.4259 -0.7178 
0.1110 -0.2640 -0.9581 
0.1110 0.2640 -0.9581 
0.0320 0.7996 -0.5997 

 

-0.2081 0.5255 0.8500 
0.2024 0.5261 0.8510 
0.4100 0.1753 0.9183 

-0.4126 0.7426 0.5659 
-0.2071 0.9595 0.2801 
-0.8727 0.5255 0.0648 
-0.7468 0.5261 0.4554 
-0.4152 0.1755 0.9158 
-0.7466 0.1753 0.6736 
-0.6657 0.7426 -0.2176 
-0.3304 0.9595 -0.1105 
-0.3313 0.5255 -0.8100 
-0.6639 0.5261 -0.5695 
-0.9993 0.1755 -0.1119 
-0.8714 0.1753 -0.5019 
0.0012 0.7426 -0.7004 
0.0029 0.9595 -0.3484 
0.6680 0.5255 -0.5654 
0.3365 0.5261 -0.8074 
0.2024 -0.1755 0.9850 
0.2081 0.1753 -0.9838 
0.6665 0.7426 -0.2153 
0.3322 0.9595 -0.1049 
0.2051 0.9584 0.2854 
0.4126 0.7426 0.5659 
0.7461 0.1753 0.6742 
0.7441 0.5255 0.4606 
0.8719 0.5261 0.0705 
0.8743 0.1755 -0.4968 
1.0000 0.1753 -0.1061 

 

N=10 

 

    gx        gy        gz 

0.0000 0.8090 0.6180 
0.0000 0.1910 1.0000 

-0.5878 0.8090 0.1910 
-0.9511 0.1910 0.3090 
-0.3633 0.8090 -0.5000 
-0.5878 0.1910 -0.8090 
0.3633 0.8090 -0.5000 
0.5878 0.1910 -0.8090 
0.5878 0.8090 0.1910 
0.9511 0.1910 0.3090 
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Table 2.3: Jones gradient schemes 

N=6 

 

    gx        gy        gz 

N=20 

 

    gx        gy        gz 

N=30 

 

    gx        gy        gz 

1.0000 0.0000 0.0000 

0.4460 0.8950 0.0000 

0.4470 0.2750 0.8510 

0.4480 -0.7230 -0.5250 

0.4470 -0.7240 0.5260 

-0.4490 -0.2770 0.8500 
 

1.0000 0.0000 0.0000 

0.3360 0.9420 0.0000 

-0.4050 0.6060 0.6850 

0.8250 -0.5130 -0.2360 

0.0060 -0.3630 0.9320 

-0.8110 -0.2870 0.5100 

0.8520 -0.3200 0.4140 

-0.2400 0.9590 0.1490 

0.8350 0.2720 0.4780 

0.0090 -0.9040 0.4270 

-0.0630 -0.8120 -0.5800 

-0.2690 -0.3900 -0.8810 

-0.4220 -0.6240 0.6580 

-0.6010 0.7790 -0.1770 

-0.5160 0.0860 -0.8520 

-0.7900 -0.6070 0.0870 

0.7290 -0.1810 -0.6610 

0.2650 -0.0960 -0.9600 

-0.5610 -0.7010 -0.4400 

-0.4050 0.6310 -0.6620 
 

1.0000 0.0000 0.0000 

0.1660 0.9860 0.0000 

-0.1100 0.6640 0.7400 

0.9010 -0.4190 -0.1100 

-0.1690 -0.6010 0.7810 

-0.8150 -0.3860 0.4330 

0.6560 0.3660 0.6600 

0.5820 0.8000 0.1430 

0.9000 0.2590 0.3500 

0.6930 -0.6980 0.1780 

0.3570 -0.9240 -0.1400 

0.5430 -0.4880 -0.6830 

-0.5250 -0.3960 0.7530 

-0.6390 0.6890 0.3410 

-0.3300 -0.0130 -0.9440 

-0.5240 -0.7830 0.3350 

0.6090 -0.0650 -0.7910 

0.2200 -0.2330 -0.9470 

-0.0040 -0.9100 -0.4150 

-0.5110 0.6270 -0.5890 

0.4140 0.7370 0.5350 

-0.6790 0.1390 -0.7210 

0.8840 -0.2960 0.3620 

0.2620 0.4320 0.8630 

0.0880 0.1850 -0.9790 

0.2940 -0.9070 0.3020 

0.8870 -0.0890 -0.4530 

0.2570 -0.4430 0.8590 

0.0860 0.8670 -0.4910 

0.8630 0.5040 -0.0250 
 

N=10 

 

    gx        gy        gz 

1.0000 0.0000 0.0000 

0.6780 0.7350 0.0000 

-0.5560 0.5040 0.6610 

0.6720 -0.7330 0.1060 

-0.0120 -0.8010 0.5980 

-0.6800 -0.3100 0.6440 

-0.0450 -0.0110 0.9990 

-0.0240 0.9660 0.2570 

0.4580 0.5210 0.7210 

0.6580 -0.2500 0.7100 
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Table 2.4: DSM Schemes 

N=6 

 

    gx        gy        gz 

N=20 

 

    gx        gy        gz 

N=30 

 

    gx        gy        gz 

0.9100 0.4160 0.0000 

0.0000 0.9100 0.4160 

0.4160 0.0000 0.9100 

0.9100 -0.4160 0.0000 

0.0000 0.9100 -0.4160 

-0.4160 0.0000 0.9100 
 

0.9990 -0.0130 0.0440 

0.1390 0.9890 0.0480 

-0.2730 0.2920 0.9170 

0.9050 -0.4210 -0.0490 

0.0630 -0.2010 0.9770 

-0.8530 -0.2680 0.4490 

0.9590 -0.0540 0.2770 

-0.2410 0.9610 0.1370 

0.8750 0.2170 0.4330 

-0.0430 -0.9230 0.3820 

-0.0250 -0.8970 -0.4420 

-0.2240 -0.3320 -0.9160 

-0.2820 -0.6390 0.7160 

-0.5890 0.8070 -0.0430 

-0.3420 -0.0470 -0.9380 

-0.8580 -0.5120 0.0490 

0.7960 -0.2050 -0.5690 

0.2260 -0.0600 -0.9720 

-0.3420 -0.9280 -0.1510 

-0.3830 0.5860 -0.7140 
 

0.9950 0.0790 0.0680 

0.0290 0.9950 0.0970 

-0.1280 0.5330 0.8360 

0.9780 -0.1960 0.0680 

-0.0850 -0.6320 0.7700 

-0.8870 -0.2550 0.3850 

0.5410 0.4860 0.6870 

0.4430 0.8890 0.1210 

0.9710 0.2030 0.1250 

0.4590 -0.8870 0.0510 

0.3890 -0.9120 -0.1320 

0.6020 -0.5100 -0.6140 

-0.2870 -0.4170 0.8630 

-0.8070 0.5660 0.1660 

-0.1620 -0.2090 -0.9640 

-0.3280 -0.9170 0.2260 

0.5520 0.0190 -0.8340 

0.3200 -0.0460 -0.9640 

-0.0370 -0.9820 -0.1850 

-0.6570 0.2930 -0.6950 

0.3620 0.8200 0.4430 

-0.6860 0.1640 -0.7090 

0.9770 -0.1710 0.1290 

-0.0140 0.2290 0.9730 

-0.1100 0.2600 -0.9590 

0.1920 -0.9210 0.3400 

0.9880 0.0530 -0.1460 

0.1930 -0.0770 0.9780 

0.0050 0.9610 -0.2750 

0.8730 0.4590 -0.1660 
 

N=10 

 

    gx        gy        gz 

0.9970 0.0470 -0.0630 

0.4790 0.8420 0.2480 

-0.2990 0.5490 0.7800 

0.7160 -0.6980 0.0280 

0.0010 -0.8640 0.5040 

-0.8050 -0.2300 0.5470 

-0.0260 -0.1910 0.9810 

-0.0030 0.9970 0.0710 

0.2350 0.0580 0.9700 

0.8970 0.0140 0.4410 
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2.2 Noise Correction 

 

In order to obtain an effective noise correction in DTI images, it is necessary to understand 

firstly the general noise propagation process in multi order function and to figure out its actual 

situation in DTI. 

 

2.2.1 Noise propagation in DTI 

 

Noise is the deviation of a measured variable, such as electronic current, voltage of signal, from 

the true value. In MRI, noise can occur from various sources and normally has no particular 

pattern. The parameters, e.g. in DTI derived from noisy signal intensities exhibit noise. Noise 

can introduce a bias (systematic deviation) as well as scatter (random deviation) in the data. In 

principle, noise introduced during MRI measurements is supposed to have a mean of zero, 

which means, there are equal probabilities of negative and positive deviations from the true 

signal intensity value. It is considered to have a Gaussian distribution with mean values denoted 

as μ and standard deviation denoted as σ. In addition to noise, the digitalization process from 

analog signal to digital data which can be used in computing can arouse another type of error 

mixed in noise, it is call Rounding Error (or Round-off Error), however in MRI, with advanced 

sampling hardware, such error is usually much smaller than the noise level, and is commonly 

ignored in consideration and simulations.  

When noisy data are used for the calculation of other parameters, the noise in the data 

propagates into the other parameters in predictable ways (Bevington and Robinson, 2003). The 

commonly used propagation-of-error formulas assume a first-order linear approximation of a 

function. The noise in a calculated parameter can be estimated from the noise in the original 

data by standard propagation-of-error formulas (Farrance and Frenkel, 2012), here the 

examples are based on a function f with the variable: u, and u is a function of the variables r, i. 

The variance of function f can be expressed as:  
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𝜎 [𝑓(𝑢)] = 𝜎 (
𝜕𝑓

𝜕𝑢
)  

𝜎 = 𝜎 (
𝜕𝑢

𝜕𝑟
) + 𝜎 (

𝜕𝑢

𝜕𝑖
)  

Equation 2.15 

 

Propagation of errors from r and i into function f yields: 

𝜎 = 𝜎 (
𝜕𝑓

𝜕𝑢
) = 𝜎 (

𝜕𝑓

𝜕𝑢
) (

𝜕𝑢

𝜕𝑟
) +𝜎 (

𝜕𝑓

𝜕𝑢
) (

𝜕𝑢

𝜕𝑖
)  

Equation 2.16 

 

Applying the above mentioned formulas to noise propagation in DTI, the final variance on 

tensor elements can be derived from original Gaussian variances step by step. 

The signal magnitude is derived as square root of the sum of real part and imaginary part of the 

signal. This signal in turn is a result of the Fourier Transformation of the measured signal. On 

the other hand, the signal magnitude is further processed for derivation of the diffusion tensor. 

Thus, there are three stages that determine the error propagation: the first stage is the Fourier 

transformation which produces the variables r, i as real and imaginary parts respectively and 

the second stage is assuming function u as the square root operation for r and i : u(r, i)=(r2+i2)1/2; 

the third consideration will be made for DTI derivation: according to equation 1.16, the 

magnitude signal will go through the logarithm operation for linear calculation of the tensor 

elements, thus, it is reasonable to assume the function f as logarithm process for the obtained 

magnitude signal intensity: f(u)=ln(u).  

Furthermore, due to the linear and orthogonal characteristics of the Fourier transform, the real 

and imaginary part are successfully inherit the Gaussian characteristics of the original 

quadrature detected data, then the variances σr
2=σi

2 follow the σ2 from the Gaussian distribution. 

For the second stage of square root operation (which is non-linear mapping), even though the 

variance of u will follow its actual probability distribution according to SNR (Rayleigh 

distribution with SNR lower than 1 and gradually approximate to Gaussian distribution with 

SNR larger than 3) (Gudbjartsson and Patz, 1995), this will not affect the final variance’ 

derivation for f(u) in third stage. 
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According to the equation 2.16: 

𝜎 = 𝜎 ( ) (𝑟) +𝜎 ( ) (𝑖) =
( ) ( )

( ) ( )
=𝜎  

Equation 2.17 

 

For the sake of a simple interpretation, the tensor elements vector d was expressed according 

to the six directions gradient scheme G: 

𝑑 = [𝐷 , 𝐷 , 𝐷 , 𝐷 , 𝐷 , 𝐷 ]  

Equation 2.18 

 

𝐺 = [𝑔 , 𝑔 , 𝑔 , 2𝑔 𝑔 , 2𝑔 𝑔 , 2𝑔 𝑔 ] 

𝐺 = [𝐺 𝐺 𝐺 𝐺 𝐺 𝐺 ]  

Equation 2.19 

 

The ADC can be derived from equation 1.16 

𝑓 (𝑢) = 𝐷 = −ln(𝑆 𝑆⁄ ) /𝑏 

𝐹 = [𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 ] = [𝐷 , 𝐷 , 𝐷 , 𝐷 , 𝐷 , 𝐷 ]  

Equation 2.20 

 

 

In the presence of noise, equation 1.16 can be expressed as another form: 

F = Gd 

Equation 2.21 
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With known diffusion, the gradient scheme’s information G and obtained measurement data F, 

the solution from the following equation system will be the expression of tensor elements. 

𝑓 = 𝑔 𝐷 + 𝑔 𝐷 + 𝑔 𝐷 + 2𝑔 𝑔 𝐷 + 2𝑔 𝑔 𝐷 + 2𝑔 𝑔 𝐷  

⋮ 

𝑓 = 𝑔 𝐷 + 𝑔 𝐷 + 𝑔 𝐷 + 2𝑔 𝑔 𝐷 + 2𝑔 𝑔 𝐷 + 2𝑔 𝑔 𝐷  

Equation 2.22 

 

Equation 2.22 can be resolved through an inverse function which is a commonly build-in 

function in MATLAB. The solution indicates that each diffusion tensor element could be 

expressed by one order linear function of [𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 ]: 

 

𝐷 = 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑏  

𝐷 = 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑏  

𝐷 = 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑏  

𝐷 = 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑏  

𝐷 = 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑏  

𝐷 = 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑎 𝑓 + 𝑏  

Equation 2.23 

 

The constant matrix [𝑎 ] k,l=1,2,3,4,5,6; and constant vector [𝑏 ] k=1,2,3,4,5,6, are correlated 

with and derived from the diffusion gradient scheme G.  

According to equation 2.23, the final error propagation on each tensor element is correlated 

with the Gaussian variant by the constant coefficients which are determined by the diffusion 

gradient scheme. 
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2.2.2 Noise correction methods 

 

Several studies have shown, that diffusivity is underestimated in the presence of noise, as there 

is a “noise floor” due to the Rician noise in diffusion-weighted images (Wirestam et al., 2006). 

With other indices such as FA or RD and AD, things are even more complicated. Jones and 

Basser have shown, that in the presence of noise, FA will be overestimated for low to mid-

range b-values, but will be underestimated for high b-values (Jones and Basser, 2004). They 

also showed that within the diffusion propagator, noise mainly affects the axial diffusion. 

As stated above, diffusion weighted imaging is more sensitive to noise than standard 

morphologic imaging techniques. This affects the parameters calculated from DTI as well. 

Therefore, noise correction in DTI post processing plays an important role. Noise in magnitude 

images is originating from RF detection and governed by Rician distribution (Basu et al., 2006; 

Gudbjartsson and Patz, 1995). In this thesis two noise correction methods which are well 

accepted in routine MR magnitude imaging are compared: the power images method (Miller 

and Joseph, 1993) and the correction factor method (Gudbjartsson and Patz, 1995). 

Table 2.5 lists the parameters that play a role in noise correction. 

Table 2.5: Table of variables used in the noise correction.  

 A: Signal intensity without noise. 

M: Noisy signal intensity. 

M0: Noise only signal intensity. 

σ: Standard deviation of true noise. 

<>: Average over fluctuations. 

n: Noise. 

nR: Gaussian noise in real part. 

nI: Gaussian noise in imaginary part. 
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2.2.2.1 Power images method 
 

The correction method using power images (Miller and Joseph, 1993) assumes that the MR 

signal is measured by quadrature coils. In this case, signal A is composed of a real part A  

and an imaginary part A  as well as the complex noise n from quadrature detectors n  and 

n : 

𝑀 = (𝐴 + 𝑛 ) + (𝐴 + 𝑛 ) = 𝐴 + 𝐴 + 2𝐴 𝑛 + 2𝐴 𝑛 + 𝑛 + 𝑛  

Equation 2.24 

 

The average power of M can be expressed as: 

< 𝑀 >= 𝐴 + 𝐴 + 2𝐴 < 𝑛 > +2𝐴 < 𝑛 > +< 𝑛 > +< 𝑛 > 

Equation 2.25 

 

Assuming that the noise from the real and imaginary parts have an independent Gaussian 

distribution with zero mean and standard deviation σ, then equation 2.25 will be simplified as 

follows: 

< 𝑀 > =  𝐴 + 2 ∗ 𝜎  

Equation 2.26 

 

If A=0, the average of the noise power M0 will be <𝑀 >=2 ∗ 𝜎 . Then the true signal A can be 

estimated as: 

𝐴 =< 𝑀 > −< 𝑀 > 

Equation 2.27 

 

One can use this to calculate the diffusivity D from the signal of a diffusion-weighted 

sequence with diffusion weighting b: 

𝐴 (𝑏) = 𝑆 𝑒[ ( )] 

Equation 2.28 
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2.2.2.2 Correction factor method 
 

Gudbjartsson and Patz used a different method to correct for noise. They assumed that the noise 

intensity M0 is described by a Rayleigh distribution with known mean and variance. This noise 

distribution can be measured in regions where no signal of the object and no artifact-related 

signal (ghosts or wrap-around artifacts) is presented (Gudbjartsson and Patz, 1995). In this case: 

 

𝑀 = 𝜎 ∗
𝜋

2
    𝑜𝑟   𝜎 = 2 −

𝜋

2
∗ 𝜎  

Equation 2.29 

 

The true noise power σ2 according to equation 2.29 can be used together with the measured 

signal intensity M, to estimate the correct signal A which can be derived as follows:  

𝐴 = |𝑀 − 𝜎 | 

Equation 2.30 

 

This in turn can be applied in the diffusion equation for tensor matrix derivation: 

𝐴(𝑏) = 𝑆 𝑒[ ( )] 

Equation 2.31 

 

2.2.2.3 Simulation 
 

Instead of single pixel simulation for optimization of the gradient scheme (chapter 2.1.2.3), 

the simulation for correction methods is based on image matrix. 

1. Simulated image was composed by matrix size of 10x10 pixels.  

2. The anisotropy in noise correction simulation only focus on FA=0.6. 

3. Selection of the b values (b=0 and b=1000 s/mm2). While all gradient schemes 

(Siemens, Jones, DSM, and tailored diffusion gradient schemes) were used for 
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simulation to retrieve the optimum gradient scheme, simulation for noise correction 

was performed using the Siemens gradient scheme with N=6, 10, 20 and 30.  

4. In order to put stress on the error propagation through noise, SNR was set to 6 to match 

the SNR obtained in the DTI measurements of phantom (chapter 2.3.2).  

5. Fiber direction fixed on (Θ=0, Φ=0). 

6. Preparing the theoretical S0 10x10 matrix for b0 and calculating Sk 10x10 matrix for 

each gradient direction g . Producing the corresponding noise matrixes n0 and nk, 

mixing them to S0 matrix and Sk matrix respectively.  

The operation on matrix followed the steps of 7-10 as described in chapter 2.1.2.3. 

To simulate noise correction, the uncorrected FA was determined as mean value of the FA map 

derived from the simulations. Corrected FAs were determined by using of the powered noise 

(chapter 2.2.3.1.) for the power image method; for the correction factor method the results of 

two approximations to noise variance σ were compared: < 𝑛 >  and   𝜎      .To 

assess the effectiveness of noise correction, the Full Width at Half Maximum (FWHM) and the 

median of the FA histogram were adopted.   

 

2.2.3 Options of Signal Combination in Practice 

 

The signals received in multichannel phase array coils must be combined before image 

reconstruction. The most commonly used method is the so-called sum-of-squares (SOS) 

method, which computes the pixel magnitude by the root-mean square average of the 

corresponding pixel values from each coil element. The advantage of this method is that the 

detailed coil element’s sensitivity profiles are not required which in turn provides an easy and 

practical way of calculation and makes the reconstruction independent from the pulse sequence. 

With respect to SNR only, the SOS algorithm works best for high SNR. Furthermore, as no coil 

sensitivity profiles are used, artifacts arising from individual coil elements result in the same 

artifact in the final magnitude image (Larsson et al., 2003). 

Another option of signal combination is so called Adaptive Combine (AC) method. In this 

algorithm, the individual signals are combined using the pre-determined coil element 

sensitivity profile as coefficients. The advantage of this method is that it suppresses the noise 

floor and reduces the artifacts (e.g.: flow and motion artifacts in Cardiac MRI) (Walsh et al., 
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2000). As there is no clear consensus, whether it is more important to keep a high SNR or to 

reduce the bias from possible artifacts, both signal combination methods have been examined 

in this study. 

2.3 Phantom Experiments 

 

In order to evaluate quantitatively measured diffusion parameters based on the DGV scheme 

in terms of anisotropy and fiber orientation and also verifying the actual effects of noise 

correction methods on clinical MR scanner, a dedicated synthetic phantoms with a well-

structured and tight enough fiber bundle is preferable while confirming the simulation results 

with practical measurements. 

 

2.3.1 Peripheral Nerve Phantom 

 

Comparing the gradient schemes as demonstrated in chapter 2.1.2.3 is not feasible in patients 

or volunteers, since the total acquisition time is too long. Therefore, a peripheral nerve phantom 

was used. This phantom was custom-made by HQ Imaging (HQ Imaging, Heidelberg, 

Germany) taking into account the tissue properties and morphology of human peripheral 

nerves. In this phantom, a straight bundle of parallel unwounded fiber filaments represents the 

peripheral nerve; this fiber bundle is immersed in water. Requirements to the fiber material 

were: high strength, light weight, ultra-hydrophobicity, and chemical inertness and 

impermeability to water. This would guarantee for reproducible measurements and low 

susceptibility differences to the surrounding water. Figure 2.6 shows the configuration of the 

phantom. The fiber strand in the center of the cylindrical phantom (rectangle, size 

approximately 15 mm x 20 mm, T2=450ms) is surrounded by a cylinder of silicone (diameter: 

60mm) providing insulation and separation from the bright signal of the surrounding water, 

which fills the volume outside the silicone cylinder (diameter: 120mm, length: 200mm). Due 

to a high packing density of the polyester fibers (diameter 15m) a high FA (approximately 

0.65) is reached.  
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Figure 2.6: Phantom description: (a): Phantom without silicon surrounding. (b): Construction 
sketch. (c): finished phantom long axis view. (d): finished phantom crossing section view. (e): 
MRI of phantom in sagittal. (f): MRI of phantom in axial.  

 

2.3.2 MR System and Protocol 

 

Phantom measurements were performed at a 3T MRI system (TIM TRIO, Siemens 

Healthineers, Erlangen, Germany) with SYNGO software version VB19, using a 15-channel 

Transmit/Receive knee coil (Quality Electrodynamics 700 Beta Drive, Suite 100 Mayfield 

Village, OH 44143, USA. Distributed by SIEMENS). 

After acquisition of scout sequences, DTI was performed as follows: 

Diffusion sequence description: 

(1) For the SNR reference data (simulation of DGV), a diffusion-weighted spin-echo echo 

planar imaging (EPI) sequence was used with the sequence parameters: TR=4000ms; 

TE=100ms; slice thickness=5mm; orientation: transversal; slice number=1; 

matrix=128x128 with interpolation; Bandwidth (BW)=1502Hz/Pixel; 𝑏 =0 and 

b=1000 s/mm2; no fat saturation; no parallel imaging; diffusion mode: multi-directional 

diffusion weighting (MDDW); diffusion directions: 6.  For validation of the CN 

criteria on the selected DGV schemes, the diffusion mode was changed to ‘free’, which 

allows to use the respective DGV scheme. 
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(2) To test the methods for noise correction, SNR was further decreased by changing the 

sequence protocol given above by reducing the slice thickness to 2mm and lowering 

the BW to 758Hz/Pixel. Diffusion mode was set to MDDW. The measurement was 

performed for different numbers of diffusion directions (N=6, 10, 20, 30); all 

measurements were repeated 100 times. The experiment was repeated 100 times.   

 

2.3.3 Post-processing of Acquired MRI Data 

 

(1) To determine FA based on the phantom measurement the FA map was calculated using 

the evaluation tool of the SYNGO software (Siemens Healthineers, Erlangen, 

Germany). A region of interest comprised of 100 pixels was defined within the fiber 

strand of the phantom and copied to each FA map to ensure that FA was calculated at 

the same region for all experiments.   

(2) For testing the noise correction methods, FA was calculated as described in (1). Besides 

that, signal and noise were determined as shown in figure 2.7 for the image without and 

with diffusion weighting. From these data the signal intensities were corrected as 

follows:  

Power image method: 

𝑆 = 〈𝑀 〉 − 〈𝑛 〉 

Equation 2.32 

 

Factor methods: 

𝑆 = 〈𝑀 〉 −
2

𝜋
∗ 〈𝑛 〉  

𝑜𝑟 

𝑆 = 〈𝑀 〉 −
2

4 − 𝜋
∗ 𝑠𝑡𝑑(𝑛 )  

Equation 2.33 
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Where nk denoted noise data set; Mk denoted measured data set; Sk denoted corrected 

signal input; N denoted gradient directions number (k=0,1,2,…N). 

< > represented: mean value; std represented: standard deviation; ││represented: 

absolute. 

After correction, FA was calculated on a pixel-by-pixel basis and the FA histograms 

were determined from a ROI inside the fiber strand. 

 

Figure 2.7: Data sets extraction for the inputs of FA derivation in MATLAB program.  
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3 RESULTS 
 

3.1 Tailored Gradient Vectors Scheme 

 

In a first step, the results of the optimization of the tailored DGV scheme is presented. Then- 

in a second step – the optimized tailored DGV scheme is compared to other established DGV 

schemes. 

 

3.1.1 Coverage of the DGV scheme 

 

The simulation results show that the deviation of the determined FA from the true FA values 

depends on the value of FA, the number of the diffusion vectors and the angle of the cone max 

(cf. figure 3.1-3.4).  

For N=6 and true FA=0.8 the determined FA showed least deviation from the true FA for all 

max. In case of max >30°, the determined FA was within a 5% margin of the true FA value. 

For FA =0.6 and FA=0.8 the deviation was higher than 5% even for full coverage of the 

diffusion direction sphere, i.e. for max=180° (cf. figure 3.1); FA was overestimated. The higher 

the number of diffusion gradients, the higher the accuracy of the determined FA. The maximum 

cone angle necessary to guarantee that FA is within an error margin of 5% from the true FA, 

depended on the number of diffusion directions and on the true FA. For N=10, the 5% error 

margin criterion was reached for max=30° (FA=0.8), for max=45° (FA=0.6), and for max=60° 

(FA=0.4), cf. figure 3.2. For N=20, FA was within the 5% error margin from max=30° 

(FA=0.8), and from max=45° (FA=0.6 and 0.4), cf. figure 3.3. For N=30, the 5% error margin 

criterion was reached for max=30° (FA=0.8 and 0.6), and for max=45° (FA=0.4), cf. figure 

3.4. 
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Figure 3.1: Result of the simulation for DGV with N=6 and different coverage (Θmax)The symbols (circles, squares, diamonds) mark the simulated 
results, the dashed lines in the same color mark the theoretical value of FA that was used as input for the simulation and the corresponding mean 
and standard deviation of 10,000 times simulated FA display below the dashed lines.  
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Figure 3.2: Result of the simulation for DGV with N=10 and different coverage (Θmax). The symbols (circles, squares, diamonds) mark the simulated 
results, the dashed lines in the same color mark the theoretical value of FA that was used as input for the simulation and the corresponding mean 
and standard deviation of 10,000 times simulated FA display below the dashed lines.  
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Figure 3.3: Result of the simulation for DGV with N=20 and different coverage (Θmax). The symbols (circles, squares, diamonds) mark the simulated 
results, the dashed lines in the same color mark the theoretical value of FA that was used as input for the simulation and the corresponding mean 
and standard deviation of 10,000 times simulated FA display below the dashed lines.  
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Figure 3.4: Result of the simulation for DGV with N=30 and different coverage (Θmax). The symbols (circles, squares, diamonds) mark the simulated 
results, the dashed lines in the same color mark the theoretical value of FA that was used as input for the simulation and the corresponding mean 
and standard deviation of 10,000 times simulated FA display below the dashed lines.  
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3.1.2 Finding the Optimum DGV 

 

In order to single out the optimum DGV schemes for each anisotropy level, the schemes that 

showed the lowest deviation from the expected FA were analyzed by calculation of CN for each 

N and Θmax. CN showed a distinct decrease for low max with a minimum CN between max=90° 

and 120°. For max>120° CN increased slightly.  

The dependency of CN from max did not vary significantly between N=10, 20 and 30. There 

was, however, a more undulating curve for CN (max) for max>90° (see figure 3.5). 

 

 

Figure 3.5: Condition Number CN as function of Θmax and N, which are calculated from the 
premium DGV for each Θmax by means of lowest deviation from the expected FA. In the figure, 
CN was calculated for Θmax between 15° and 180° in steps of 1o and only the DGVs with CN<10 
are displayed for sake of clarity.  
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3.1.3 Validation of simulation results in Phantom study 

 

In addition to calculation of the condition numbers the phantom experiments were performed 

with the optimum DGV found in chapter 3.1.2. In these experiments, FA was calculated from 

the measurements for different max and N. Figure 3.6 shows the results: For all N, FA is 

overestimated for max=15°, while there is a slight underestimation of FA for max=45° and 60° 

for N>6. From max>75°, there is no significant difference between the calculated FA and the 

real FA (0.65). Interestingly, the underestimation of FA for max=45° and 60° could not been 

shown in the simulation study (chapter 3.1.1). 

 

 

Figure 3.6: FA determined from the phantom experiments for different N and max. 
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Based on the minimization of CN, the optimum DGV schemes for N=6, 10, 20 and 30 were 

selected as shown in table 3.1. 

 

Table 3.1: Final Optimal DGV Schemes 

N=6 

(CN=1.82) 

   gx        gy        gz 

N=20 

(CN=1.50) 

gx        gy        gz 

N=30 

(CN=1.53) 

gx        gy        gz 

0.4988 0.8639 -0.0698 

-0.3657 0.6334 0.6820 

-0.9793 0.0000 0.2022 

-0.1350 -0.2339 0.9628 

0.4442 -0.7693 0.4592 

0.5200 0.0000 0.8542 
 

0.9456 0.3072 0.1071 

0.6819 0.4955 -0.5380 

0.2558 0.3521 0.9003 

0.3016 0.9282 0.2181 

0.0000 0.7837 0.6211 

-0.2775 0.8541 -0.4399 

-0.0660 0.0909 0.9937 

-0.6865 0.4987 0.5292 

-0.6743 0.2191 0.7053 

-0.9736 0.0000 -0.2284 

-0.7391 -0.2402 -0.6293 

-0.2681 -0.1948 0.9435 

-0.3137 -0.4317 0.8457 

-0.2921 -0.8990 0.3264 

0.0000 -1.0000 -0.0052 

0.2910 -0.8957 -0.3363 

0.3675 -0.5058 0.7804 

0.7302 -0.5305 0.4305 

0.2123 -0.0690 0.9748 

0.9931 0.0000 -0.1175 
 

0.9743 0.2071 -0.0883 

0.8714 0.3880 -0.3002 

0.7143 0.5190 0.4695 

0.1904 0.2115 0.9587 

0.4336 0.7510 -0.4980 

0.1091 0.3357 0.9356 

0.0984 0.9361 0.3376 

-0.0843 0.8019 0.5915 

-0.3090 0.9509 -0.0163 

-0.2097 0.3633 0.9078 

-0.3237 0.3595 0.8752 

-0.1737 0.1262 0.9767 

-0.9061 0.4034 0.1276 

-0.7449 0.1583 0.6481 

-0.8290 0.0000 -0.5592 

-0.9095 -0.1933 -0.3681 

-0.6512 -0.2899 0.7013 

-0.1163 -0.0845 0.9896 

-0.3651 -0.4055 0.8380 

-0.0360 -0.0624 0.9974 

-0.2784 -0.8567 -0.4342 

-0.1024 -0.9747 0.1988 

0.1007 -0.9579 0.2689 

0.2826 -0.8697 0.4046 

0.3023 -0.5236 0.7965 

0.6605 -0.7336 -0.1599 

0.5343 -0.3882 0.7509 

0.7736 -0.3444 0.5319 

0.9766 -0.2076 0.0558 

0.9730 0.0000 -0.2306 
 

N=10 

(CN=1.52) 

   gx        gy        gz 

 

0.3109 0.2259 0.9232 

0.3034 0.9339 0.1891 

-0.0606 0.1864 0.9806 

-0.5741 0.4171 0.7046 

-0.9205 0.0000 -0.3907 

-0.7490 -0.5442 0.3778 

-0.1724 -0.5304 0.8300 

0.3090 -0.9510 -0.0070 

0.6746 -0.4901 0.5519 

0.9792 0.0000 -0.2028 
 

 

 

 



RESULTS 

64 
 

3.1.4 Comparison with Established Gradient Schemes 

 

In a final step, we compared the final optimized DGV schemes for different N (see chapter 

3.1.3) with other gradient schemes developed for applications outside peripheral nerve imaging: 

The standard gradient scheme of the manufacturer (SIEMENS), Jones’ optimal schemes (Jones, 

2004) and the schemes found by Downhill Simplex Minimization (DSM) (Skare et al., 2000a). 

For this comparison, we performed simulations according to the simulations described in 

chapter 2.1.2.3, and also calculated CN of the respective schemes.  

The results of these simulations/calculations are given in figure 3.7. They show that for high 

N, the DSM scheme produces the lowest condition number, followed by the DGV scheme 

developed in this project. The standard gradient scheme of the manufacturer (SIEMENS) and 

the Jones scheme show higher systematic errors compared to DGV and DSM. For N=6, the 

Jones scheme is superior to the DGV and SIEMENS scheme.  

With respect to the standard deviation of FA, the SIEMENS and Jones scheme are superior to 

DSM and DGV. This difference, however, decreases with the number of gradients. For N>20 

standard deviation of FA is comparable for all schemes. 

 

Figure 3.7: Comparison of the optimum Directional Gradient Vector schemes with other 
optimized gradient vector schemes for different number of gradients, N: (a) Condition number. 
(b) Standard deviation of FA.  



RESULTS 

65 
 

In a final step, we tested the susceptibility of all schemes with regards to small deviations of 

the nerve axis from the z-axis (scanner axis). This is important, because the general concept of 

DGV is based on the fact that even for the peripheral nerves there are slight variations in 

alignment with regard to the body (and scanner) axis.  

The results (figure 3.8) show that all schemes except the SIEMENS scheme produce consistent 

results even for an angle of 30° between nerve and z-axis. The SIEMENS scheme, however, 

underestimates the FA for low N (N=6), if the tilting angle between nerve and z-axis exceeds 

10 degrees.  
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Figure 3.8: Simulation results of Fractional Anisotropy (FA) for N=6 and N=30 for different 
tilting angles of the nerve structure with respect to the z-axis (tilt).E: optimized DGV scheme, 
S: SIEMENS scheme, J: Jones scheme, D: DSM scheme.  
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3.2 Noise Correction 

 

In simplest case of a one channel receiving coil, the MRI image is reconstructed by Fourier 

transform as magnitude image from received complex signal. In this case, the background noise 

follows a Rayleigh distribution. Nowadays multichannel phase array receiving coils allow for 

a faster data acquisition with higher SNR. At the same time, statistical distribution of image 

noise is affected by the signal combination. In this case, the conventional practice to calculate 

SNR using the signal mean value and the standard deviation of a background ROI will lead to 

inaccurate estimations of the true SNR (Dietrich et al., 2007).  

In this study, the different performances of the noise correction methods presented in chapter 

2.2.2 was examined in a simulation study and in a phantom scanning experiment for different 

coil combination algorithms. 

 

3.2.2 Noise propagation correction 

 

To evaluate the efficacy of the noise correction methods, these methods were applied to the 

simulated DTI data. After correction, FA was calculated. Figure 3.9 shows the FA histograms 

derived from the DTI data without and with noise correction. A distinct underestimation of the 

pre-defined FA value was found, due to the noise bias (Damon, 2008; Dietrich et al., 2001; 

Jones and Basser, 2004). Without correction, the median FA (FAmedian) was 0.583 instead of the 

pre-defined FA=0.603. Furthermore, the high FWHM (0.050 without correction) reveals a high 

uncertainty of the calculated FA. FWHM is 0.050 without correction. Both power images 

correction and the correction factor method (correction factor: power of deviation from 

background noise value) lead to a significant decrease of FWHM (power images: 

FWHM=0.006, correction factor: FWHM=0.010) and to a shift of the median FA toward the 

real FA (power images: FAmedian=0.603, correction factor: FAmedian=0.605). 
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Figure 3.9: Efficacy of different noise correction methods: the simulation study(a) FA without 
noise correction. (b) FA with power images correction method. (c) FA with correction factor by 
mean of noise values. (d) FA with correction factor by power of deviation from noise values. 
The solid blue line marks the pre-defined FA, the dotted blue line marks the median FA of the 
simulated data and the dashed red line FWHM.  

 

In order to verify the results of the simulation study, a phantom study was performed as 

described in chapter 2.3.2. Different from the simulation study, there is no absolute certainty 

about the ground truth of FA. Therefore, when testing the efficacy of the correction methods, 

we had to rely on the assumption that the FA value given by the phantom manufacturer FA=0.65 

is the true value. Furthermore, due to time restriction, the measurements were repeated 100 

times instead of 10000 times as done in the simulation study. 

Figure 3.10 displays the FA histograms derived from the phantom study. It confirmed that FA 

is underestimated without noise correction: FAmedian was 0.595 instead of the reference 

FA=0.65. Furthermore, the phantom study revealed a FWHM (FWHM=0.04) comparable to 

that of the simulation study (FWHM=0.05) which shows in turn that the noise level in the 

simulation study was chosen appropriately. The power images correction method lead to an 

increase of FAmedian to 0.65, i.e. produced exactly the FA value specified by the manufacturer. 

Also FWHM was reduced considerably to 0.02. The correction factor method (correction factor: 
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mean of noise) performed better than in the simulation study: FA was shifted toward the 

reference FA (FAmedian=0.626), and FWHM was reduced (FWHM=0.03). The correction factor 

method (correction factor: power of deviation) in turn performed less well than in the 

simulation study: Although FA was shifted towards the reference value (FAmedian=0.620), 

FWHM was not reduced (FWHM=0.04) and the histogram showed a double peak in contrast 

to the histogram of the uncorrected data and the histograms of the other correction methods. 

 

 

Figure 3.10: Efficacy of different noise correction methods: the phantom measurements results 
with coil combination by Sum-Of-Squares (SOS). (a) FA without noise correction. (b) FA with 
power images correction method. (c) FA with correction factor by mean of noise values. (d) FA 
with correction factor by power of deviation from noise values. The solid blue line marks the 
FA specified by the manufacturer, the dotted blue line marks the median FA of the simulated 
data and the dashed red line marks the FWHM. 
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Figure 3.11 shows the histograms of signal and noise for SOS signal combination for different 

number of diffusion gradients. While the level of signal from b=0 and the noise level stay 

constant for all numbers of diffusion gradients, the diffusion weighted signal in the 

measurements for N≥10 is lower than the diffusion weighted signal for N=6. This leads to an 

underestimation of FA for N≥10 after noise correction. Combination of all data from N=6, 10, 

20 and 30, in turn, lead to the double peak found in Figure 3.10(d). 

 

 

Figure 3.11: Phantom measurement with coil combination by Sum-Of-Squares (SOS). (a): 
histograms of noise and signal intensity for b=0 and 1000s/mm2 for N=6. (b): histogram of 
corrected FAs by the correction factor method with power of noise deviation. (c): histograms 
of noise and signal intensity for b=0 and 1000s/mm2 for N=10, 20 and 30. (d): Assembled 
histogram of corrected FA by the correction factor method with power of noise deviation. 
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The noise floor is expected to be lower when using the Adaptive Combine algorithm for coil 

combination compared to the noise floor when using SOS. Figure 3.12 shows the FA histogram 

derived from phantom scanning data sets with the AC coil combination. Without noise 

correction, the median FA (0.616) is closer to the reference FA (0.650) than the uncorrected FA 

with SOS signal combination (0.595). The FWHM for the uncorrected FA based on AC signal 

combination, however, is even higher (0.050) than that based on SOS (0.040). The correction 

factor method (mean of noise values) lead to a shift of the median FA towards the reference FA 

without resulting in a decreased FWHM. In contrast to this method, the power image method 

and the correction factor method (power of deviation) showed equally good results with a shift 

of the median FA (0.654) to the reference FA (0.650) and narrowing down the FWHM to 0.020. 

The AC signal combination eliminated the double peaks in the factor correction method (power 

of noise deviation) that was seen in the SOS signal combination method.  

 

 

Figure 3.12: Efficacy of different noise correction methods: the phantom measurements results 
with coil combination by Adaptive Combine (AC). (a) FA without noise correction. (b) FA with 
power images correction method. (c) FA with correction factor by mean of noise values. (d) FA 
with correction factor by power of deviation from noise values. The solid blue line marks the 
FA specified by the manufacturer, the dotted blue line marks the median FA of the simulated 
data and the dashed red line marks the FWHM. 
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To examine the influence of the noise floor upon FA calculation for AC coil combination, 

histograms of signal and noise and histograms of FA were examined for different numbers of 

gradient directions. Figure 3.13 shows the respective histograms. In contrast to SOS coil 

combination (figure 3.11), the histograms of signal and noise based on AC coil combination 

follow Rayleigh distribution; furthermore the histogram maxima for noise, S0 and Sk are 

comparable for all numbers of diffusion directions. As a result of this distribution, the FA 

histograms for N=6 and N≥10 are centered around the same FA value. 

 

 

Figure 3.13: Phantom measurement with coil combination by Adaptive Combine (AC). (a): 
histograms of noise and signal intensity for b=0 and 1000s/mm2 for N=6. (b): histogram of 
corrected FAs by the correction factor method with power of noise deviation. (c): histograms 
of noise and signal intensity for b=0 and 1000s/mm2 for N=10, 20 and 30. (d): Assembled 
histogram of corrected FA by the correction factor method with power of noise deviation. 
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To focus on the pure effects of correction methods without influence of the number of diffusion 

gradient directions, the simulation data for N=30 are separately displayed in figure 3.14. Best 

results regarding median FA and FWHM were achieved by the power image correction method, 

directly followed by the correction factor method (using power of noise deviation). The 

correction factor method (using mean of noise values) in turn did not result in any improvement 

compared to the original distribution. 

 

Figure 3.14: Efficacy of different noise correction methods: the simulation study results with 
N=30. (a) FA without noise correction. (b) FA with power images correction method. (c) FA 
with correction factor by mean of noise values. (d) FA with correction factor by power of 
deviation from noise values. The solid blue line marks the pre-defined FA, the dotted blue line 
marks the median FA of the simulated data and the dashed red line FWHM.  
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When comparing the correction methods in phantom experiments (figure 3.15), however, the 

performance of the methods is different to that of the simulation study. The correction method 

using power images performed best with consistently good results for both methods of coil 

combination. The correction factor method (using power of deviation) did only perform well 

for AC coil combination but did fail for SOS coil combination. The correction factor method 

(using mean of noise values) enabled a shift of the FA median towards the reference FA; this 

method, however, failed to reduce FWHM. 

 

 

Figure 3.15: Efficacy of different noise correction methods: the phantom measurements results 
with N=30. The blue histograms originate from coil combination by AC and the yellow 
histograms originate from coil combination by SOS. (a) FA without noise correction. (b) FA 
with power images correction method. (c) FA with correction factor by mean of noise values. 
(d) FA with correction factor by power of deviation from noise values. The solid blue line marks 
the FA specified by the manufacturer, the dotted blue line marks the median FA of the simulated 
data and the dashed red line marks the FWHM.  
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Comparison of the noise pattern in simulation and in the phantom study (figure 3.16) showed 

that noise followed Rayleigh distribution for b=0 and 1000 s/mm2 in simulation and in the 

phantom experiment. Deviation from the Rayleigh curve in the phantom experiment at b=0 

resulted from low number of pixels.  

 

 

Figure 3.16: Histograms of noise distribution for N=30 resulting from simulation and phantom 
experiment. (a) Statistic noise data of in simulation for b=0. (b) Statistic noise data in 
simulation for b=1000s/mm2. (c) statistic noise data within the phantom image at b=0. (d) 
statistic noise data within the phantom images (30 directions) at b=1000s/mm2.  
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4 DISCUSSION 
 

4.1 Tailored diffusion gradient scheme for peripheral nerves 

 

The optimized gradient schemes published so far were designed without consideration for the 

preferential direction of the imaged anatomical structure. Regardless of the respective 

algorithm (uniform principal, geometric shapes or electrostatic repulsion), the gradient vector 

scheme is designed to cover the sphere of possible directions as uniformly as possible. The 

higher the number of gradient directions, the more precise the directional resolution; however, 

this comes at the cost of long acquisition time (Jones et al., 1999; Papadakis et al., 1999; Xing 

et al., 1997). Uniformly distributed gradient schemes are widely applied in DTI of the brain as 

there is a wide variety of fiber directions as well as fiber branching and fiber crossing. However, 

even in the brain there are substructures that show a limited range of directions, e.g. the 

corticospinal tract. Peng and Arfanakis showed that in this case it might be advantageous to 

use a non-uniformly distributed set of gradients (Peng and Arfanakis, 2007). They performed 

their simulations and experiments in structures with higher FA (around 0.8) than that of the 

peripheral nerves and used only 6 directions. Peng et al. used the ICOSA6 gradient scheme 

(Hasan et al., 2001) and adjusted the gradient vector distribution to minimize the total variance 

of FA for tensors whose primary eigenvectors were uniformly scattered within a cone with a 

30° opening angle around the Z-axis. They showed that a gradient scheme which is uniformly 

distributed in space is not the ideal scheme if the imaged structure has a limited range of 

orientation. A restriction of the gradient scheme to diffusion directions close to the axis of the 

imaged structure was also applied by Yanasak and coworkers (Yanasak et al., 2008). They also 

found that by restricting the phase encoding directions to a cone aligned to the preferred 

direction of the structure, the accuracy of FA increased. 

Although the present study uses a different gradient distribution and different numbers of 

gradients than the studies of Peng et al. and Yanasak et al, we could confirm the finding that 

restricting the gradient directions to a cone aligned to the direction of the nerve produces more 

reliable FA than the uniformly distributed gradient scheme. Depending on the FA of the 

structure, a cone with Θmax of 45-60° was sufficient for a reliable determination of FA although 

the condition number called for larger Θmax. Furthermore, the tailored DGV performed equally 

well as the Jones- and DSM schemes in case of slight variation of the structure orientation, and 
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performed better than the gradient scheme used by the manufacturer, when using only the 

minimum number of gradient directions. 

The study presented here also shows that the number of gradient vectors is an important factor 

influencing the reliability of FA determination. 

Principally, the diffusion tensor can be estimated from one image with b0 and six diffusion 

weighted images (encoding gradients applied along six non-collinear orientations). However, 

due to noise and more complicated structures such as fiber crossings and fiber branching, 

studies have revealed that the minimum number of non-collinear encoding directions for a 

robust estimation of FA is between 18 and 21 (Bastin et al., 1998). In contrast to the study of 

Bastin et al., Jones found in a simulation study that the minimum number of diffusion gradients 

for a robust estimation of FA is 20, and 30 for a robust estimation of the eigenvectors and the 

mean diffusivity (Jones, 2004). For DTI of white matter, such a high number of gradient 

directions is reasonable because there is no prior knowledge of the direction of the tissue 

structure. An alternative to a high number of gradient directions could be the use of only a basic 

set of gradient directions in addition to signal averaging. However, Ni and coworkers found 

that for a given acquisition time, a gradient scheme with a high number of diffusion directions 

is superior to the use of a low number of diffusion directions in addition to signal averaging, 

as it reveals more reliable FA (Ni et al., 2006).  

In the present study, it has been shown that in case of predictable and limited directions of the 

fibers within the imaged structure, it is possible to narrow down the range of the gradients; 

nevertheless, the use of more non-collinear gradients was beneficial for an accurate calculation 

of the parameter FA. In contrast to the study of Yanasak (Yanasak et al., 2008), which used 15 

to 36 gradient directions, the present study also examined whether a lower number of non-

collinear gradients is sufficient to reliably calculate FA. The results showed that with the lowest 

possible number of gradients (N=6), there is a systematic error in FA even for high . However, 

when using 10 or more non-collinear gradients, FA could be determined reliably for Θmax ≥ 60°. 

This may be due to the fact, that the majority of diffusion information in a highly oriented 

tissue is contained in the cone with  between 15° and 45°, as shown by Yanasak and 

coworkers (Yanasak et al., 2008). 

In our study we restricted the range of FA to 0.4 – 0.8 to match the situation in peripheral 

nerves. Several groups have shown that FA is within this range for healthy subjects of different 

age (Kronlage et al., 2018) and for patients with different types of nerve pathology 

(Guggenberger et al., 2012; Simon et al., 2017). The present study showed, that Θmax slightly 
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varied between 45° and 60o depending on the given FA and N. However, for Θmax ≥ 60° all 

gradient schemes performed well. 

The condition number (CN) of the DGV scheme developed in the present study was in the 

range of the CN values determined from other established gradient schemes, but produced 

higher values than the Jones and DSM schemes. However, we expected higher CN values for 

the DGV scheme than for schemes with uniform gradient distribution, as uniform gradient 

distribution should in theory be least sensitive to noise and other input errors (Skare et al., 

2000a). 

A systematic input error to a non-uniform gradient scheme occurs if the structure orientation 

does not match the axis of the diffusion gradient cone. The present study, however, could show 

that the developed DGV scheme is insensitive to small deviations (≤30°) between structure- 

and cone axis. This condition is valid for all major peripheral nerves (e.g. sciatic nerve, 

peroneal nerve, tibial nerve), if the patient is positioned appropriately within the scanner. 

 

4.2 Robust noise correction method in DTI 

 

Noise and its correction is an important topic in diffusion, particularly due to the extremely low 

SNR in high spatial resolution PNS DTI. The noise in the DW images propagates into the 

diffusion tensor elements and produces systematic errors and uncertainties in parameters 

calculated from DTI, such as FA (Jones and Basser, 2004).  

To correct for noise effectively, prior knowledge of the noise distribution pattern is mandatory. 

However, it is very difficult to precisely describe the noise distribution because there are several 

sources of noise which exhibit different noise properties. Noise arising from RF electronics can 

be described well by a probability distribution function (McVeigh et al., 1985). Noise arising 

from physiological processes, on the other hand, has no defined distribution and is difficult to 

model (Brooks et al., 2013).   

It is well accepted that in magnitude MR images, noise arising from hardware components 

follows the Rayleigh distribution. Several studies have shown this distribution and have 

developed methods to reduce this noise component (Dietrich et al., 2001; Gudbjartsson and 

Patz, 1995; Skare et al., 2000b). There are many papers on noise reduction by hardware 

improvement (Kathiravan and Kanakaraj, 2013) and sequence optimization (Lagana et al., 
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2010; Nana et al., 2008). In comparison to this, however, a-posteriori noise correction methods 

are discussed and applied less commonly. So far, there are mainly two different methods for 

noise correction, which were developed in the 1990s: The power image method (Miller and 

Joseph, 1993) and correction factor method (Gudbjartsson and Patz, 1995). Both methods, 

however, have not yet been applied for DTI in practice. In the present work, the two methods 

were applied for the first time in DTI, to examine their effectiveness and feasibility in DTI of 

the PNS in particular.   

The results revealed that the power image method is the most effective and robust method and 

lead to correction of systematic errors (elimination of FA bias) and to correction of the statistic 

errors (decrease of FWHM). The method worked well regardless of the method used for 

combination of the coil channels (AC and SOS). In contrast, the correction factor method using 

the power of deviation from noise showed good results for AC but not for SOS. The correction 

factor method using the mean of noise values did not lead to a substantial reduction of 

systematic and statistic FA arising from noise. In the phantom study, the power image method 

again performed best and lead to the lowest FWHM; furthermore, the measured FA was closest 

to that given by the phantom manufacturer. The efficacy of the power image method was 

independent from the number of diffusion gradients used.  

 

Although the correction factor method based on the mean of noise did not perform well in the 

simulation study, it was able to reduce the FA bias in the phantom study. However, it could not 

significantly decrease the FWHM, i.e. it could not address the statistical error. This is in 

contrast to its use in routine magnitude MR images, where it is able to effectively correct for 

noise (McGibney and Smith, 1993). The most likely reason for the failure in FA correction is 

the insufficient correction of the signal intensity. From equation 2.25, the signal magnitude in 

first order can be approximated as follows: 

𝑀 ≈ 𝐴 + 𝐴 + 2 ∗ 𝑆𝑁𝑅 ∗ 𝑛  < 𝑛 > +2 ∗ 𝑆𝑁𝑅 ∗ 𝑛 < 𝑛 > +< 𝑛 > +< 𝑛 > 

With 𝑛  ≈ < 𝑛 > and 𝑛  ≈ < 𝑛 >, the term 2 ∗ 𝑆𝑁𝑅 ∗ 𝑛  < 𝑛 > +2 ∗ 𝑆𝑁𝑅 ∗ 𝑛 <

𝑛 > +< 𝑛 > +< 𝑛 > can be approximated by  

(2 ∗ 𝑆𝑁𝑅 + 1)(< 𝑛 > +< 𝑛 >) 

Which falls in the range of [ < 𝑛 > +< 𝑛 >, (2 ∗ 𝑆𝑁𝑅 + 1)(< 𝑛 > +< 𝑛 >)] 

according to value of SNR, while the correction of σ = ∗ (𝑀 ) ≈ 0.64*(< 𝑛 > +< 𝑛 >) 



DISCUSSION 

80 
 

is obviously out of this range. This shows that the correction of signal intensity is not sufficient, 

even in the case of SNR=1. This under-correction of signal intensities is the reason why the 

method failed to correct for the systematic and statistical errors in FA.  

In contrast, the correction factor method based on the power of deviation from the background 

(equation 2.29) is actually the direct transformation of powered true variance which performed 

better than using mean of noise. 

In the present study, we used different coil combination modes: SOS and AC. Both combination 

modes can be used in clinical MRI scanning, yet sometimes the mode is changed within a study. 

This is critical when using the correction factor method, because SOS produces a higher noise 

floor than AC while the correction factor method worked well for AC, but does not for SOS.  

A general problem in DTI experiments is the definition of SNR, because SNR depends not only 

on the b-value, but also on the anatomical location and the direction of the diffusion gradient. 

Therefore, most studies dealing with SNR in DTI refer to the SNR of the b0 image. For DTI in 

the PNS, the application relevant for this study, SNR is about 6 in the images without diffusion 

weighting and is between 1 and 3 in the diffusion weighted images. According to Gudbjartsson 

and Patz this is the range, where noise is no longer governed by Gaussian distribution 

(Gudbjartsson and Patz, 1995). This is in accordance with our findings from both simulation 

and phantom study, where we found that the noise was governed by Raleigh distribution.  
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5 SUMMARY 
 

Diffusion Tensor Imaging (DTI) is a method widely used in research and clinical application, 

particularly for the depiction and connectivity analysis of the white matter tracts within the 

brain. Regardless of the many possibilities offered by DTI, this method suffers from an 

inherently low signal-to-noise ratio (SNR) as both the long echo time and the diffusion 

gradients have a signal-reducing effect. The SNR is particularly low if a high spatial resolution 

is mandatory, e.g. in DTI of peripheral nerves. Low SNR leads to systematic and statistical 

errors in parameters derived from DTI, e.g. in fractional anisotropy (FA). This downside can 

be overcome in part by increasing the number of diffusion directions and by applying methods 

for post-hoc noise correction. It is generally accepted that for anatomical structures of unknown 

orientation, the most robust method is to uniformly cover the space with the diffusion gradients. 

If the preferred direction of the anatomical structure is known beforehand, however, it might 

be advantageous to restrict the diffusion gradients to a cone centered around the axis of the 

structure. The aim of this thesis was to develop an optimized DTI method with increased 

accuracy and reliability for application in peripheral nerves. Two methods to reduce noise bias 

were examined: (1) A newly developed tailored diffusion gradient vector (DGV) scheme with 

vectors restricted to a cone with an aperture angle anddifferent post-hoc noise correction 

methods.  

The examinations were performed using Monte Carlo simulation based on realistic 

assumptions of diffusivity, FA and noise levels that were obtained from clinical examinations 

and studies performed in the Department of Neuroradiology, University Hospital Heidelberg. 

Furthermore, the methods were tested in a custom-built phantom that simulates diffusion in 

peripheral nerves (FA=0.65) using a 3 Tesla whole-body Magnetic Resonance (MR) scanner. 

In both parts of the study systematic deviations of FA from the ground truth and statistical 

errors of FA were measured to determine the accuracy and reliability of DTI incorporating 

these methods for noise correction. The newly developed tailored DGV scheme was also 

compared to gradient schemes with uniform coverage (Jones scheme, downhill simplex method 

(DSM) scheme, gradient scheme of the manufacturer) by means of their condition number 

(CN).  

The study showed that the tailored DGV is able to measure FA accurately if  is at least 45° 

or 60°. This minimum  depends on the number of gradient directions and on the FA of the 
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measured structure. Generally, the tailored DGV performed better, the higher the FA value and 

the higher the number of gradients. For N=30, DGV allowed accurate determination of FA for 

the whole range of FA examined in this study (0.4 – 0.8) for ≥45°. It could also be shown 

that a small tilt of the structure (up to 30°) from the cone axis does not impact the accuracy of 

the tailored DGV scheme. The condition number of the tailored DGV scheme was higher than 

CN of the Jones’ and the DSM scheme for N=6, and higher than CN of the DSM scheme for 

N≥10; however, it cannot be expected that a method restricting the gradient vectors to a limited 

space performs as well as other schemes with uniform gradient distribution when it comes to 

the susceptibility to small perturbances. Nevertheless, CN of the tailored DGV scheme was in 

the same range as the other schemes.  

Comparing of the different post-hoc noise correction techniques revealed that the power image 

method is the most effective and robust method, eliminating the systematic errors in FA as well 

as the statistic errors. The efficacy of the power image method is independent from the number 

of diffusion gradients used. Furthermore, the method works reliably regardless of the method 

used for coil combination (sum of squares or adaptive combination). In contrast, both 

correction factor methods used in this study showed less or no correction and depended on the 

method of coil combination.  

In conclusion, the tailored DGV scheme developed in this study in combination with the power 

image method for post-hoc noise correction allow for DTI of peripheral nerves with high SNR, 

high accuracy and reliability of the parameters determined from DTI and without further 

increasing acquisition time. Therefore, the results of this study call for application of the 

tailored DGV scheme and the power image method in clinical practice and in research.  
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Zusammenfassung auf Deutsch: 

Die Diffusions-Tensor-Bildgebung (DTI) ist eine in Forschung und Klinik weit verbreitete 

Methode, insbesondere zur Darstellung und Konnektivitätsanalyse der Weißen Hirnsubstanz. 

Ungeachtet der vielen Möglichkeiten, die DTI bietet, leidet dieses Verfahren unter einem 

inhärent niedrigen Signal-Rausch-Verhältnis (SNR), da sowohl die lange Echozeit als auch die 

Diffusionsgradienten das Signal schwächen. Das SNR ist vor allem bei hoher Ortsauflösung 

niedrig, z.B. bei der DTI von Nerven. Ein niedriges SNR führt zu systematischen und 

statistischen Fehlern bei Parametern, die aus der DTI berechnet werden, z.B. bei der 

fraktionalen Anisotropie (FA). Ein niedriges SNR kann teilweise kompensiert werden, indem 

die Zahl der Diffusionsrichtungen erhöht wird oder Methoden für eine a posteriori 

Rauschkorrektur verwendet werden. Das robusteste Verfahren bei anatomischen Strukturen mit 

unbekannter Orientierung besteht darin, die Diffusionsgradienten gleichmäßig im Raum zu 

verteilen. Wenn jedoch die Vorzugsrichtung der anatomischen Struktur im Voraus bekannt ist, 

kann es vorteilhaft sein, die Diffusionsgradienten auf einen um die Achse der Struktur 

zentrierten Kegel zu beschränken. Ziel dieser Arbeit war es, eine DTI-Methode mit hoher 

Genauigkeit und Zuverlässigkeit für die Anwendung in peripheren Nerven zu entwickeln. Es 

wurden zwei Methoden zur Reduzierung des Bildrauschens untersucht: (1) Ein neu 

entwickeltes Schema von Diffusionsgradienten-Vektoren (DGV), bei dem die Vektoren auf 

einen Kegel mit einem Öffnungswinkel  um die Achse des Nervs beschränkt sind und (2) 

verschiedene Methoden für eine a posteriori Rauschkorrektur.  

Hierzu wurden Monte-Carlo-Simulationen durchgeführt, die auf realistischen Werten für 

Diffusivität, FA und Rauschen beruhen, die aus klinischen Untersuchungen und Studien 

gewonnen wurden. Außerdem wurden die Methoden in einem speziell angefertigten Phantom 

getestet, das die Diffusion in peripheren Nerven simuliert (FA = 0,65). Diese Untersuchungen 

wurden an einem 3-Tesla-Ganzkörper-Magnetresonanz (MR)-Scanner durchgeführt. Um die 

Genauigkeit und Zuverlässigkeit der DTI unter Verwendung der jeweiligen Meß- oder 

Korrekturverfahren zu bestimmen, wurden systematische Abweichungen von FA vom 

Ausgangswert und der statistische Fehler von FA gemessen. Das neu entwickelte DGV-Schema 

mit eingeschränkter Raumabdeckung wurde mit Gradientenschemata mit uniformer 

Raumabdeckung (Jones, Downhill-Simplex-Methode (DSM), Gradientenschema des 

Herstellers) anhand ihrer Konditionszahl (CN) verglichen. 
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Die Studie zeigte, dass mit dem neu entwickelten DGV Schema FA mit hoher Genauigkeit 

gemessen werden kann, wenn  mindestens 45° bzw. 60° beträgt. Das minimale  hängt dabei 

von der Zahl der Gradientenrichtungen und von FA ab. Grundsätzlich ist die Genauigkeit des 

DGV Schemas umso besser, je höher der FA-Wert und je größer die Zahl der Gradienten ist. 

Für N = 30 ermöglichte die DGV eine genaue Bestimmung der FA für den gesamten in dieser 

Studie untersuchten FA-Bereich (0,4 - 0,8), wenn ≥45° war. Es konnte gezeigt werden, dass 

bei Verwendung des neuen DGV-Schemas eine geringfügige Neigung der untersuchten 

Struktur (≤30°) keinen Einfluss auf die Genauigkeit von FA hat. CN des entwickelen DGV-

Schemas war für N = 6 höher als CN des Jones-Schemas und des DSM-Schemas; für N≥10 

war CN des neuen DSM-Schemas kleiner als die des Jones-Schemas. Es ist jedoch auch nicht 

zu erwarten, dass ein Verfahren, das die Gradientenvektoren auf ein begrenztes Segment des 

Raums  konzentriert, ebenso unempfindlich gegenüber Störungen ist wie Schemata mit 

gleichmäßiger Gradientenverteilung. Trotzdem lag die CN des neuen DGV-Verfahrens in der 

gleichen Größenordnung wie die der anderen Verfahren. 

Ein Vergleich der verschiedenen a posteriori Korrekturverfahren ergab, dass die Power-Image-

Methode die effektivste und robusteste Methode ist und sowohl die systematischen als auch 

die statistischen Fehler von FA kompensiert. Die Effizienz der Power-Image-Methode ist 

unabhängig von der Anzahl der verwendeten Diffusionsgradienten. Darüber hinaus 

funktioniert das Verfahren zuverlässig - unabhängig von der für die Spulenkombination 

verwendeten Methode (Quadratsumme versus adaptive Kombination). Im Gegensatz dazu 

waren beide in dieser Studie verwendeten Korrekturfaktor-Verfahren weniger effizient 

hinsichtlich der Korrektur des Rauschens; außerdem hing die Korrektureffizienz von der 

Methode der Spulenkombination ab. 

Zusammenfassend lässt sich festhalten, dass eine Kombination des neu entwickelten DGV-

Schemas mit der Power-Image-Methode für die a posteriori Korrektur es ermöglicht, DTI von 

peripheren Nerven mit hohem SNR, hoher Genauigkeit und Zuverlässigkeit der berechneten 

Parameter (z.B. FA) durchzuführen, ohne dass zusätzliche Akquisitionszeit erforderlich ist.  

Bislang ist allerdings eine Anwendung dieser neu entwickelten und getesteten Verfahren in 

Studien bzw. bei klinischen Untersuchungen noch nicht erfolgt.  
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