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Abstract

During animal development, embryonic cells assemble into intricately structured organs by working
together in organized groups capable of implementing tightly coordinated collective behaviors,
including patterning, morphogenesis and migration. Although many of the molecular components
and basic mechanisms underlying such collective phenomena are known, the complexity emerging

from their interplay still represents a major challenge for developmental biology.

Here, we first clarify the nature of this challenge and outline three key strategies for addressing it:
precision perturbation, synthetic developmental biology, and data-driven inference. We then present
the results of our effort to develop a set of tools rooted in two of these strategies and to apply them
to uncover new mechanisms and principles underlying the coordination of collective cell behaviors

during organogenesis, using the zebrafish posterior lateral line primordium as a model system.

To enable precision perturbation of migration and morphogenesis, we sought to adapt optogenetic
tools to control chemokine and actin signaling. This endeavor proved far from trivial and we were
ultimately unable to derive functional optogenetic constructs. However, our work toward this goal
led to a useful new way of perturbing cortical contractility, which in turn revealed a potential role for

cell surface tension in lateral line organogenesis.

Independently, we hypothesized that the lateral line primordium might employ plithotaxis to
coordinate organ formation with collective migration. We tested this hypothesis using a novel optical
tool that allows targeted arrest of cell migration, finding that contrary to previous assumptions

plithotaxis does not substantially contribute to primordium guidance.

Finally, we developed a computational framework for automated single-cell segmentation, latent
feature extraction and quantitative analysis of cellular architecture. We identified the key factors
defining shape heterogeneity across primordium cells and went on to use this shape space as a
reference for mapping the results of multiple experiments into a quantitative atlas of primordium cell
architecture. We also propose a number of data-driven approaches to help bridge the gap from big

data to mechanistic models.

Overall, this study presents several conceptual and methodological advances toward an integrated

understanding of complex multi-cellular systems.
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Zusammenfassung

Die Entwicklung tierischer Embryonen ist ein Prozess, bei dem Zellen eng zusammenarbeiten um
vielfaltig strukturierte Organe zu bilden. Dabei kommen gut koordinierte kollektive Abldaufe zum
Einsatz, insbesondere Musterbildung, Morphogenese und Zellmigration. Obwohl die molekularen
Komponenten und Mechanismen, die diesen Phdanomenen zugrunde liegen, bereits weitestgehend
bekannt sind, ist die durch deren Wechselwirkung emergierende Komplexitdt nach wie vor eine

grosse Herausforderung fir die Entwicklungsbiologie.

Wir beleuchten zunichst diese Herausforderung genauer und schlagen drei Strategien zu ihrer
Bewiltigung vor: Prazisionsperturbation, synthetische Entwicklungsbiologie und datengestiitzte
Inferenz. Dann prasentieren wir unsere Versuche, basierend auf zwei dieser Strategien neue
Methoden zu entwickeln und die Prinzipien der Koordination kollektiver Entwicklungsprozesse zu

studieren, wozu wir das Seitenlinienprimordium des Zebrabarblings als Modellsystem nutzten.

Wir adaptierten mehrere optogenetische Methoden mit dem Ziel, Zellmigration und Morphogenese
durch Prazisionsperturbationen untersuchen zu kdénnen. Es erwies sich jedoch als nicht moglich,
funktionale optogenetische Konstrukte zu entwickeln. Indirekt hat sich aus dieser Arbeit aber eine
neue Methode zur Erhéhung kortikaler Kontraktilitat ergeben, wodurch wir Hinweise darauf erhalten
haben, dass die Zelloberflachenspannung eine wichtige Rolle in der Entwicklung des Seitenlinien-

organs spielen kdnnte.

Davon unabhangig haben wir die Hypothese verfolgt, dass die Organbildung und die kollektive
Migration des Seitenlinienprimordiums durch Plithotaxis gekoppelt sein kénnten. Eine direkte Uber-
prifung dieser Hypothese unter Einsatz einer neu entwickelten optischen Methode zum gezielten
Anhalten migrierender Zellen sprach jedoch entgegen etablierter Annahmen nicht fiir die Existenz

eines solchen Mechanismus.

Schliesslich haben wir ein computergestiitztes System zur automatischen Segmentierung einzelner
Primordiumzellen sowie zur Messung und Analyse charakteristischer Eigenschaften der Zell-
architektur entwickelt. Insbesondere haben wir die verschiedenen Zellformen des Primordiums
guantitativ beschrieben und als Referenz dazu genutzt, mehrere unabhangige Experimente zu einem
Atlas der Zellarchitektur zu kombinieren. Basierend darauf schlagen wir Methoden vor, um die Liicke

zwischen "Big Data" und mechanistischen Modellen zu schliessen.

Insgesamt prasentiert diese Studie mehrere konzeptuelle und methodologische Fortschritte in

Richtung eines integrierten Verstandnisses komplexer mehrzelliger Systeme.
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1 Introduction

1.1 Cell Collectives as Integrated Systems

The essential feature of multi-cellular life is that cells cooperate to collectively perform functions
they could not perform as individuals, enabling the evolution of a diverse range of organisms that

could otherwise not exist.

This is exemplified most strikingly in the diversity of multi-cellular structures and functions arising
during animal development. Derived from a single zygote, genetically identical embryonic cells
cooperate to form a multitude of differently organized assemblies that mature into fundamentally

different functional organs.

Common collective behaviors required to achieve this are the establishment of spatial patterns of cell
identity (patterning), the alteration of tissue geometry in three-dimensional space (morphogenesis),

and the relocation of groups of cells within the embryo (migration) (see section 1.4).

To accomplish these tasks, cells must be capable of measuring their surroundings, communicating
and interpreting information, changing their shape, and exerting mechanical forces — all in a well-
coordinated fashion within and across tissues. Much is known about the basic molecular modules
that underpin these cellular capabilities (see section 1.4) and it is through the use and reuse of such
modules in a myriad different configurations that cell collectives produce the diverse phenomena

observed in a developing embryo.

However, this integration of modules is not merely an additive assembly of building blocks. Instead,
modules are linked into dynamic, highly coupled and multi-layered systems teeming with feedback
loops and non-linearities that drive unexpected and context-sensitive system behaviors (see section
1.2). This emergent complexity explains why it remains extremely challenging to understand and
predict collective cell behavior despite the large amount of knowledge available about the building
blocks themselves. In other words, the very source of the versatility that accelerates the evolution of

multi-cellular life also makes multi-cellular life hard to study.

It is therefore necessary to investigate multi-cellular systems from an integrated perspective (see
section 1.3), taking into account the emergent properties and methodological challenges that arise
from the interplay of multiple biological processes within a system. Only from such a perspective can

we hope to fully elucidate the principles of collective cell behavior.



1.2 Complexity in Biological Systems

To confront the challenge presented by the highly interconnected and convoluted nature of cells and
cell collectives, it is useful to consider the high-level properties of such systems, the most notable of

which is complexity.

Despite being frequently used by biologists, the terms complexity and complex system lack
universally acknowledged definitions and are often interpreted in wildly different ways or used in a
colloquial and vague manner. This lack of a clear terminology and by extension the lack of a common
logical framework or language for reasoning about complex systems adds another layer of difficulty

to an already very hard problem.

Although addressing this issue in full is beyond the scope of this thesis, this section aims to carve out
a useful definition of complexity and to introduce how it relates to biological systems, including its
implications for study design. All research presented in this thesis is fundamentally inspired by these

considerations.

1.2.1 Introduction & Definition

The term complexity has a different meaning in everyday language (where it is a synonym for
complicatedness) and in each of multiple different fields of science, notably computer science [Dean,
2016], physics [Holovatch et al., 2017], and chemistry [Zayed et al., 2009]. However, the most useful
notion of complexity for biological systems is what has also been referred to more specifically as

deterministic complexity [Manson, 2001; Mazzocchi, 2008].

Deterministic complexity is best understood in contrast to two related pairs of terms: simple and
complicated and ordered and chaotic. The first pair relates to system architecture, i.e. the number
and diversity of parts and interactions making up the system. The second pair, ordered and chaotic,
describes system behavior and in particular the predictability of system behavior. Both simple and

complicated systems can exhibit ordered or chaotic behaviors.

Chaotic systems are unpredictable in the sense that any error in the estimation of their initial
conditions or parameters will lead to a completely different prediction from the outcome that is
observed. Although chaotic systems may be deterministic in principle and thus completely
predictable given perfect information about the system, in practice they are unpredictable because
even the measurement error on the initial conditions is enough for prediction and reality to diverge

rapidly [Persson & Wagner, 1995; Manson, 2001].

As an example, consider the flow of a viscous liquid around a cylindrical obstacle (Fig. 1.1a-c) [Van
Dyke, 1982]. This is a comparatively simple system since it only consists of the molecular components

of the liquid and of the obstacle, which we can assume to be governed by relatively straightforward



and uniform kinetic and electrostatic rules. Given a low-viscosity fluid, a stable laminar flow is
established (Fig. 1.1a). In this case, the trajectory of a drop of a dye added upstream of the obstacle
can be predicted easily and accurately, even with a simplified model that does not account for every
individual molecule involved. However, if the viscosity of the fluid is sufficiently high, the flow behind
the obstacle becomes turbulent and for most initial positions of the drop of dye the final outcome is
impossible to predict without a perfect model and perfect knowledge of the initial state (Fig. 1.1c).
Note that such true chaos is likely rare in cellular and multi-cellular systems because it would prevent

a controlled link between heritable information and fitness-relevant biological outcomes.

Complexity is a type of system behavior found at the interface of ordered and chaotic domains,
combining aspects of both (definition 1). Remarkably, this combination does not simply result in
ordered behavior with the occasional random fluctuation — instead, new and surprising behaviors
emerge. This becomes immediately evident in the fluid flow example if the viscosity is tuned just

right (Fig. 1.1b).

Definition 1: Let complexity be a system property manifest in system behaviors that combine
aspects of ordered and chaotic behaviors. A system that has complexity is a complex

system and exhibits complex behaviors.

Complexity in this sense is distinct from both the colloquial use of the word, which indicates simply a
high complicatedness (i.e. a large number of distinct parts and interactions), and from another
common way in which the term complexity is used in biology, which is to indicate that a system
produces macroscopic behaviors that are not trivially related to the system's components (often
expressed in the phrase "the whole is greater than the sum of its parts"). However, this notion is
already suitably encompassed in the term emergence (definition 2) and its conflation with complexity

is therefore not useful. Incidentally, complexity (as defined here) is itself an emergent property.

Definition 2: Let emergence be the phenomenon of macroscopic system properties and behaviors
arising from the interactions of the system's parts (and thus not being inherent in
those parts). Macroscopic properties and behaviors arising in this way are emergent

properties and emergent behaviors.

Given the issues surrounding the multiple uses of the term complexity, it could be argued that the
term should be left to its colloquial use and new terms should be introduced to capture the different
concepts currently termed "complexity". Although this may be an important semantic question, it is a
qguestion best addressed elsewhere, which is why in this thesis the term complexity is used in

accordance with definition 1.
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Figure 1.1: Complex systems and pattern generation from physics to chemistry to biology.

(a-c) Photographs showing viscous fluid flow around a cylindrical obstacle, resulting in ordered flow at low
viscosity (a) and chaotic flow at high viscosity (c). If the viscosity is tuned just right, complex flow (b)
emerges. Images reproduced with minor modifications (cropping, contrast enhancement) from [Van Dyke,
1982]. (d-e) Belousov-Zhabotinsky reactions implement a simple chemical oscillator based on the oxidation
of cerous ions (Ce3*) that feeds back to inhibit itself through the delayed production of bromide ions
[Zhabotinski, 1991]. (d) shows the core scheme of the reaction, reproduced from [Zhabotinski, 2007]. (e) and
(f) show patterns that emerge when the reaction takes place on a flat surface, reproduced with minor
modifications (cropping, contrast enhancement) from [Zhabotinski & Zaikin, 1973]. (g-i) Turing/Gierer-
Meinhardt models show that the simple activator-inhibitor system in (g) is sufficient to generate a wide
range of patterns, such as the simulated stripes in (h) or the real (left) and simulated (right) sea shell patterns
in (i). Reproduced with minor modifications (cropping, contrast enhancement) from (g) [Meinhardt, 2006],
(h) [Kondo & Miura, 2010], and (i) [Meinhardt, 1998].



1.2.2 Biological Relevance

There are two main arguments for why complexity is relevant to biology. First, complexity tends to
emerge in systems that feature non-linear interactions and both negative and positive feedback
[Manson, 2001; Ross & Arkin, 2009], all of which are abundant across biological systems. Second, the
behaviors spontaneously generated by complex systems are reminiscent of phenomena observed in

biology, including symmetry breaking and pattern formation.

A rudimentary example of this can be found in chemistry in the form of Belousov-Zhabotinsky
reactions [Belousov, 1959 (ru); Zhabotinsky, 1964 (ru); Zhabotinsky, 1991 (en)]. Through a relatively
simple set of non-linear feedback loops (Fig. 1.1d), these purely chemical systems generate
oscillations in time and — when spread out on a flat surface — intricate patterns in space (Fig. 1.1e-f)

[Zhabotinski & Zaikin, 1971].

Similar feedback-based systems have been proposed as mechanisms of biological pattern formation.
For instance, Turing already demonstrated in 1952 that patterns can be generated through the
reaction of two substances that diffuse at different rates [Turing, 1952], a mechanism that was later
generalized by Gierer and Meinhardt into a model that combines short-range self-activation and
long-range self-inhibition (Fig. 1.1g) [Gierer & Meinhardt, 1972]. Turing/Gierer-Meinhardt models
have since been demonstrated to be capable of generating a wide range of biologically relevant
patterns in simulations [Meinhardt & Gierer, 2000; Kondo & Miura, 2010], including dots and stripes
(Fig. 1.1h), and have been used to explain a number of real biological patterning events, including the
formation of the vertebrate limb [Newman et al., 2018], the distribution of bird feather buds [Jung et
al., 1998], and sea shell pigmentation (Fig. 1.1i) [Meinhardt, 1998]. More recently, they have also
been further generalized to show that the inclusion of additional signaling factors (to a total of three
or four interacting species) allows Turing patterns to emerge more robustly [Marcon et al., 2016] and
that network topology can be used to predict and engineer key properties of such systems [Diego et

al., 2018].

Reaction-diffusion-based patterning is only one example of how complex behaviors can underpin
biological phenomena. Given the prevalence of feedback loops and non-linearities in other biological
subsystems, including intracellular signaling, gene-regulatory networks and the cytoskeleton, as well
as in combinations of all of the above (see section 1.4), there is little doubt that complexity is a

pervasive and important property of biological systems.

In summary, the topology of biological systems implies that many of them are capable of exhibiting
complex behavior and the capacity of complex systems for spontaneous pattern generation suggests

that biology may widely use them as a means of self-organization.



1.2.3 The Methodological Consequence

Because variations in individual components can have a disproportionate effect on overall system
behavior, complex systems are notoriously sensitive to initial conditions (although not as strikingly so
as chaotic systems) and may exhibit a behavior known as a cascade failure [Manson, 2001; Buldyrev
et al., 2010]. In a cascade failure, a perturbation of a single component propagates through the
system and changes its state drastically, often completely breaking the dynamics observed in the

unperturbed state.

Much of classical developmental biology is built on perturbation experiments such as gene knock-
outs, which are often performed at large scale in the form of genetic screens on model organisms, an
approach popularized by pioneering successes such as the screens of C. elegans movement [Brenner,
1974] and of Drosophila embryonic patterning [Nusslein-Volhard & Wieschaus, 1980]. Classically, the
differences between the wild-type and the resulting phenotype are taken as a starting point for
inferring the function of the perturbed gene. For instance, a gene whose knock-out leads to the

arrest of an otherwise migrating tissue might be considered to function in motility or guidance.

However, if biological systems are in fact complex systems, it is expected that genetic perturbations
would frequently lead to cascade failures. In such cases, the difference between a perturbation
phenotype and the wild-type will usually be uninformative and sometimes even misleading for
attempts to infer the function of the perturbed gene [Welf & Danuser, 2014]. In the simple example
mentioned above, the perturbed gene could just as easily be involved in proliferation or cell
differentiation, which when perturbed could have knock-on effects that disrupt migration. This issue
can be understood as the methodological consequence (of complexity) and will be referred to as such

throughout this thesis.

Given the methodological consequence, it seems surprising that the genetic perturbation approach
has historically proven incredibly powerful; indeed, it constitutes one of the main sources of most of
the field's established knowledge. In part, this is because genetic screens are very effective as a
means of finding the set of genes involved in a given system, a type of conclusion that unlike
functional inference is not subject to the methodological consequence. In addition, the apparent
success of genetics may also partially be explained by a positive selection bias, both in terms of which
genes are studied (predominantly those that happen to yield interesting phenotypes in a screen) and
which results are published (almost exclusively those where some sort of insight could be gained

from the analysis).

In order to progress beyond such cases, it will be necessary to complement classical loss-of-function
genetic studies with novel approaches more suitable for the dissection of complex biological systems.
Fortunately, several such new methodologies — including those presented in this thesis — have

recently been developed or are currently in development (see section 1.3). These new approaches



harbor the potential for biologists to investigate complex biological systems in an integrative rather
than a reductive way, which will hopefully lead to more general and transferable biological models

and to an increase in their explanatory and predictive power.



1.3 Novel Approaches for the Study of Complex Biological Systems

At present there are no simple solutions that fully overcome the methodological consequence of
complexity. However, the rapid technological progress of the past decade together with new
experimental and algorithmic tools has led to the advent of a set of methodologies that (in tandem
with classical genetic and molecular work) can be expected to propel the biology of complex systems

forward.

These novel approaches can be summarized in three categories: precision perturbation, synthetic
developmental biology, and data-driven biology. All three are briefly introduced in this section and
two of them — precision perturbation and data-driven biology — are at the core of much of the work
presented in this thesis. Common to all of them is that they focus on native system states rather than

perturbed states and thereby avoid the problem of cascade failure.

1.3.1 Precision Perturbation and Optogenetics

Although complex systems may exhibit cascade failure when perturbed, they are often robust within
a limited domain (unlike chaotic systems), which has been called the region of linear biology [Welf &
Danuser, 2014]. In this domain, a perturbation of a certain magnitude will have consequences of a
similar magnitude, which can be expected to be caused through the same chain of reactions that
mediates the natural behavior of the system. Therefore, tools for precise and subtle perturbation
experiments (alongside tools for measurements and analyses of matching sensitivity) promise a way
to overcome the methodological consequence by allowing complex biological systems to be studied

within their linear region.

Perturbations can be made more precise by reducing their magnitude, confining them spatially or
confining them temporally. Spatial confinement is especially interesting when the effects of a local
perturbation can be observed as they propagate through the surrounding unperturbed system and
temporal confinement is particularly useful when normal conditions can be maintained right until the
experiment begins, which excludes artifacts resulting from chains of knock-on effects that begin

earlier on in development and are unobserved.

Historically, many different strategies have been employed to achieve higher precision compared to
complete genetic knock-outs. These include knock-downs where some residual gene product may
persist and hypomorphic alleles and titration of drug treatments to reduce the magnitude of the
perturbation. Furthermore, tissue-specific knock-downs, knock-outs or overexpression can confer
spatial confinement, and temperature-sensitive alleles or heat-/drug-inducible promoters allow
temporal confinement. All of these methods have been successful to some extent and often yielded

new insights into biological systems.



The next step is to take precision perturbation to the single-cell level and below on the spatial scale
and to the level of minutes or seconds on the temporal scale. Laser ablation was the first routine
method to achieve this by means of light-based sample manipulation [Amy & Storb, 1965; Gayathri
Vegesna et al., 2017]. It is, however, relatively crude and limited in terms of the specific nature of its
interaction with the sample. Caged compounds and photolabile drugs that can be locally activated or
degraded using light provide more specific biochemical activities but are only sparsely available and
must first be delivered to the tissue of interest [Ellis-Davies, 2007]. All of these drawbacks now stand

to be overcome by a recent addition to the precision perturbation toolbox: optogenetics.

Optogenetics combines the precision of light with the specificity of biochemical interactions [Repina
et al., 2017; Guglielmi et al., 2016], which sets them up to be the ultimate precision perturbation
tool. The recent burst of progress in the field began with the use of an algal channelrhodopsin that
functions as a light-activated ion channel to optically control neuronal activity [Boyden et al., 2005].
Subsequently, an ever-growing set of naturally occurring light-responsive proteins or protein
domains was adapted for optogenetic purposes and optimized to be sensitive to different
wavelengths and to have different response kinetics [Tischer & Weiner, 2014; Karunarathne et al.,
2015; Zhang & Cui, 2015]. Different approaches have been pursued for coupling light-dependent
conformational change to desirable biochemical outputs, including chimeric fusions of different light-
sensitive domains and signaling domains of receptors [Kim et al., 2005], releasable steric blocking of
active sites [Wu et al., 2009], and recruitment of effectors from the cytoplasm to specific sites of

activity by light-induced heterodimerization [Kennedy et al., 2010].

These tools have already been applied to control many cellular processes [Tischer & Weiner, 2014],
including gene expression and epigenetics [Konermann et al., 2013], a wide range of signaling
cascades [Karunarathne et al., 2015; Zhang & Cui, 2015], organelle transport and positioning [van
Bergeijk et al., 2015], and cell contractility and mechanotransduction [Valon et al., 2017]. Now, the
use of optogenetic tools is being expanded into multi-cellular tissues and developmental systems
[Johnson & Toettcher, 2018], as highlighted in a recent study that brings a complete morphogenetic
process under optogenetic control, namely epithelial invagination by means of apical constriction in
the Drosophila blastoderm [lzquierdo et al., 2018]. A similar goal was also pursued as part of this

thesis (see section 1.6.1).

The field of optogenetics is growing and maturing rapidly. Combined with careful experimental
design and analysis, it will allow biological systems to be studied within their region of linear behavior
and will thus enable significant advancements toward overcoming the methodological consequence

of complexity.



1.3.2 Synthetic Developmental Biology

There are many more ways to break a complex system than there are to build one. More specifically,
it is unlikely that there are many different ways of constructing a synthetic complex system that
behaves in the same way as a natural complex system, especially if it is syntesized from largely the
same components. It follows that any success at such an endeavor gives weight to the hypothesis
that the natural system functions based on the same principles that guided the construction of the
synthetic one. Thus, synthesis constitutes a means for testing hypotheses that are hard to test using

perturbation due to the misleading effects of cascade failure.

In addition, synthetic approaches may allow a disentanglement of the complicated and complex
aspects of a system. Multi-cellular systems tend to be both complex and complicated, with the latter
making the study of the former much harder. Successfully reproducing key aspects of a system's
behavior with only a subset of the naturally present parts and interactions indicates that this subset
lies at the core of the system's behavior, whilst additional components may only have auxiliary
functions (such as coupling the core system to upstream inputs and downstream outputs). In other
words, synthetic approaches may demonstrate the sufficiency rather than just the necessity of a
subsystem. Once such a sufficient subsystem is established, it is easier to study than its more

complicated natural counterpart, even if its behavior remains complex.

Synthetic approaches such as reconstitution (that is the assembly of functional systems from existing
biological building blocks) have long been used with great success in molecular biology [Kron &
Spudich, 1986] and are increasingly employed in cell biology [Liu & Fletcher, 2009] but technical
limitations have made it difficult to extend them to multi-cellular systems. The sheer number of
components involved across multiple scales presents a massive challenge for any attempt to distill
and synthesize a working synthetic model. Nevertheless, progress has been made toward this goal
along two promising avenues — mathematical modeling and tissue engineering — and further steps

are on the horizon.

Mathematical Modeling & Simulation

First-principle mathematical modeling and computational simulation is a powerful tool for in silico
synthetic biology. Freed from the constraints of real-life biological engineering, synthetic systems can
be created and iteratively improved upon in a fast and efficient fashion. Parameters can then be
screened or fitted based on data from the natural system in order to investigate or demonstrate how

well the model approximates reality and in order to make new predictions [Brodland, 2015].

Whilst computational models usually require drastic simplification, which is a potential downside, the
mathematical language by which models are formulated also forces assumptions to be made explicit,
which can identify researchers' biases and blind spots, i.e. aspects of the biological system that have

not yet been investigated sufficiently [Brodland, 2015]. Furthermore, if a mathematical model is
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capable of reproducing non-trivial behaviors observed in a natural system, it follows that the model
is in fact sufficiently expressive to describe the core of the system. In this case, the simplified nature

of the model turns from a weakness into a strength.

A guestion that is often left open is how to determine whether a model is actually reproducing non-
trivial system behaviors. If a model with sufficiently many parameters is fit to data, its capability to
reproduce the data in question is always trivial (this is also known as overfitting). By now, however,
there exist a host of basic and advanced techniques to counter this issue, including investigation of
the model's parameter space [Gramacy et al.,, 2004], information-theoretical criteria for model
selection [Konishi & Kitagawa, 1996], and efficient computational parameter estimation and model
selection using novel methods such as Approximate Bayesian Computation [Toni et al., 2009; Toni &
Stumpf, 2010]. Furthermore, the best way of testing a computational model is the same as for any
scientific model: by making novel predictions and checking experimentally whether they hold true,

for instance by means of precision perturbation of the system under study (see section 1.3.1).

One particularly promising aspect of mathematical models is the ease with which their properties can
be explored once they are established. Initial conditions, boundary conditions, parameters and
model topology can be varied and the outcomes simulated. This makes it possible to chart the many
different behaviors that even a relatively simple complex system can produce, providing an entry
point for the discovery of general core principles that may be reused to produce very different

outcomes in different contexts [Brodland, 2015].

A powerful example of the successful application of such techniques are the Turing/Gierer-Meinhardt
systems discussed in section 1.2.2, which were both discovered and later massively extended by
means of mathematical modeling [Kondo & Miura, 2010], including comprehensive model space

exploration [Marcon et al., 2016].

Tissue Engineering

Experimentally synthesizing biological systems is harder than mathematical modeling but benefits
from its inclusion of actual biological context, which imposes real-world constraints on the model and

therefore naturally counters issues such as oversimplification and overfitting [Davies, 2017].

Presently, synthesis of tissue-scale biological systems from scratch by means of chemical and physical
processes is still impossible to realize. Instead, early successes have come through approaches that
use pre-existing biological entities (such as cultured cells) as a chassis within which genetically
engineered systems can be implemented. Using genetic logic like transactivation and regression,
systems such as biological oscillators and gradient-based pattern interpreters have been synthesized
and each such success has contributed to an enhanced understanding of the principles underlying

these systems [Purnick & Weiss, 2009; Davies, 2017].
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Although some of this work has been aimed at synthetic morphogenesis [Teague et al, 2016], most of
it so far was based on 2D cell cultures or on cells in solution [Davies, 2017]. Given recent successes in
the field of organoid culture [McCauley & Wells, 2017; Artegiani & Clevers, 2018], this is liable to
change in the near future. Currently, the organoid field is mostly focused on finding conditions that
sufficiently mimic the in vivo environment to allow development to proceed quasi-normally, which
does not strictly constitute synthesis. Nevertheless, because of their experimental accessibility and
controlled environment, organoids will no doubt present an excellent chassis for advanced synthetic

work.

One particularly interesting avenue is to engineer and control specifically the environment of cells
and organoids. By varying initial and boundary conditions in a precise and controlled fashion and
then observing the behavior of cells and cell collectives in these different contexts, the adaptive
capacity of a biological system can be interrogated, which — akin to mathematical models — allows
the delineation of core principles from which a wide range of context-specific behaviors can emerge.
Interesting examples of such work include the generation of patterned adhesive surfaces to constrain
and shape cells [Singhvi et al., 1994], the use of hydrogels to engineer microenvironments [Gong &
Mills, 2018], and the controlled delivery of signaling molecules or drugs through microfluidics

[Occhetta et al., 2015].

The synthetic approach is not limited to in vitro studies; as more precise and less invasive tools for
the manipulation of biological systems become available (see section 1.3.1), it becomes feasible to
employ the same approach in the context of living organisms. This presents another step up in terms
of technical challenge but also closes the gap between synthetic and natural systems, allowing

hypotheses about the latter to be tested by bringing them under the control of the former.

1.3.3 Data-Driven Biology and Inference Without Perturbation

Perturbation experiments are widely considered necessary in order to demonstrate causal relation-
ships instead of 'mere' correlations. However, given the difficulty of interpreting perturbation
experiments performed on complex systems, approaches to test hypotheses or infer causal models
without resorting to perturbation are likely to be extremely valuable [Vilela & Danuser, 2011; Welf &

Danuser, 2014].

The ever increasing sensitivity and scale at which biological data can be acquired, coupled with the
rapid growth of computational power and data analysis tools over the past decade, are opening up
several new avenues to pursue in this direction, all of which rely on natural variation within either a
population of samples or a stream of time points, as opposed to inducing variation exogenously by

means of perturbation.
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Exploratory Machine Learning

One such avenue is the detection of non-random structures within large amounts of data, i.e. big
data. This is the domain of machine learning, which has seen rapid progress over the past seven or so
years and is a perfect match for the rapidly growing omics approach in biology [Libbrecht & Noble;

Camacho et al., 2018; Ching et al., 2018].

When large datasets with hundreds of features and thousands of samples are collected — for instance
by means of single-cell transcriptomics — the distribution of samples within the feature space is
expected to be highly structured rather than random. Machine learning approaches, in particular
unsupervised learning, present a powerful means of detecting and exploring this structure. Thus,
information can be retrieved from a single large dataset describing the wild-type population rather
than from a comparison of specific features between two conditions such as a wild-type and a

perturbation [Haghverdi et al., 2015; Buettner et al., 2015; Angerer et al., 2017; Deng et al., 2018].

This approach has the potential to become a means for hypothesis generation that does not rely on
large-scale perturbation screening but instead detects components or dynamics of interest based on

their distribution in a wild-type population.

Generative Models

Another avenue is data-driven generative modeling. In addition to the synthetic first-principle
approach to mathematical modeling discussed in section 1.3.2, machine learning allows models to be

built in a mechanism-agnostic, data-driven fashion.

Currently, this is accomplished by taking general-purpose models, such as neural networks, and
training them to reproduce the structure observed within a large dataset, thus learning a generative
model of the data [Salakhutdinov, 2015]. Whilst useful for technical applications such as image
segmentation [Badrinarayanan et al., 2016] and dimensionality reduction [Way & Greene, 2018], this
methodology is limited due to a substantial drawback common to present-day neural network
approaches, namely that the resulting models are usually not interpretable [Lipton, 2017; Samek et
al., 2017; Doshi-Velez & Kim, 2017]. In essence, the final model is simply a complicated mathematical
function that generates data looking similar to the training data. This function does not reflect
anything about the real-world system under study in an interpretable way. Fortunately, this problem
is well-known in the machine learning field and much work is being done to address it [Lundberg &

Lee, 2017; Alverez-Melis & Jaakkola, 2018].

A particularly promising prospect might lie at the interface of first-principle modeling and data-driven
modeling: given a set of pre-established constraints, components and interactions, a data-driven
inference engine builds and evaluates first-principle models that — once a good fit is found — are

readily interpretable for researchers. Hybrid first-principle/neural-network models are also a
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promising option to explore, as demonstrated recently by the development of an impressively

successful hybrid algorithm for automated chemical retrosynthesis [Segler et al., 2018].

Causal Inference from Basal Fluctuations

A third and highly promising avenue is the possibility of inferring causal relationships from time
course measurements of basal fluctuations [Vilela & Danuser, 2011; Welf & Danuser, 2014].
Components of biological systems are always subject to stochastic variation over time, introduced at
the biochemical level by thermal fluctuations (often exacerbated by low abundances) [Averbukh et
al., 2018] and at larger scales by supervening stochastic effects such as transcriptional bursting [Raj
& Van Oudenaarden, 2008]. If these fluctuations can be measured precisely enough across multiple
components of a system, they can be exploited to track causal relationships within the system by
determining how strongly fluctuations in one component are transferred to another. In other words,
natural fluctuations can be exploited as micro-perturbations of the system. This avoids the
methodological consequence because such fluctuations are by definition within the linear region of

system behavior — otherwise they would frequently cause cascade failures within wild-type systems.

The actual mathematical implementation of such an inference approach is non-trivial, but fortunately
there already exists a good starting point in the field of mathematical economics, where the notion
of Granger causality was developed for exactly this purpose [Granger, 1969; Vilela & Danuser, 2011].
Granger causality holds that a time-dependent variable X is causally upstream of another time-
dependent variable Y if the past dynamics of X are informative for predicting the future of Y better
than what would be possible from the past dynamics of Y alone. This is based on the two intuitions
that a cause must occur before its effect and that a cause must have unique information about its
effect [Granger, 1969; Eichler, 2012]. Early implementations of Granger causality were limited to
linear models with a single dependent variable, non-parametric and multivariate generalizations

have been developed since [Dhamala et al., 2008; Barret et al., 2010].

Although Granger causality has become a popular tool in neurobiology for the analysis of information
flow in the brain [Friston et al., 2013], it has so far not been widely adopted for biological systems,
likely due to the challenging mathematics and perhaps due to a lack of sufficiently high-quality time
series data. However, recent use cases have begun to appear, for instance in causal network
inference from gene expression data [Finkle et al., 2018] and from high-throughput imaging data
[Lock et al., 2014]. Furthermore, it is known that a generalized implementation of Granger causality
capable of coping with the feedback-dense topology of complex biological systems is currently being

developed in the lab of Gaudenz Danuser [Welf & Danuser, 2014; and unpublished data].
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Data Science for Biology

All of the approaches described above fall within the scope of the young field of data science, which
utilizes computational tools to study systems in ways that go beyond what is possible with human
reasoning alone. Data science is at the heart of a powerful trend toward the use of data-driven
methods and machine learning across virtually all fields of science [see e.g. Chen et al., 2018; Radovic
et al., 2018; Ray et al., 2018; Segler et al, 2018] and — even more notably — across much of the private
sector [see e.g. Parloff, 2016; Lewis-Kraus, 2016; Evans, 2018]. The rapid spread of useful inventions

across all of these fields also promises rapid advancements for data-driven biology.

However, there are also pitfalls and limitations associated with this trend, which should be given due

consideration.

For instance, data science in some ways reflects a departure from the hypothetico-deductive model
of classical sciencel. It still uses empirical data and still produces predictive models, but does so in a
data-driven rather than a hypothesis-driven way. This is not a problem per se — it can and should be
seen as an enrichment of classical science — but it may become a problem if classical science is

replaced entirely by data-driven methods.

Consider for example that machine learning currently produces models that are predictive but not
explanatory, due to the lack of interpretability described above [Lipton, 2017]. Unlike classical
scientific models, such black box models cannot be checked for consistency with independent facts
and accepted theories. They also cannot be generalized, extended or transferred to other problems
by means of human reasoning. Last but not least, whilst purely predictive models may be useful in
many scenarios of applied science, they do not satisfy human curiosity and do not produce human
understanding, which is why on their own they cannot substitute the contribution of classical science
to the formation of an enlightened society. It is therefore critical to ground discoveries from data-

driven biology within accompanying mechanistic work.

A more practical limitation that is highly relevant for biology is the need for big data in order for most
modern machine learning approaches (in particular deep learning) to perform well [Marcus, 2018].
Whilst the omics technologies can readily produce such big data, they usually do not capture
biological context (such as the original distribution of cells within a tissue) and they usually require
the fixation or destruction of the sample itself, preventing the observation of live dynamics. These
limitations make it hard to study complex biological systems, even if cascade failures are eliminated
as a source of error. On the other hand, methods that readily produce context-rich and in vivo data,
such as fluorescence microscopy, are hard to scale up for measuring hundreds of components in
thousands of samples, and the resulting data is difficult to cast into computational representations

that are readily usable for data-driven investigation.

1 To what extent the hypothetico-deductive model describes classical scientific practice accurately is admittedly debatable in the first
place, but that debate is beyond the scope of this thesis.
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In short, there is currently a dichotomy between big data and rich data in biology, which represents
an interesting challenge for the field and is bound to spur new experimental and computational

developments.

On the omics side, progress toward more rich datasets is being made by combining different omics
approaches (multi-omics) [Huang et al., 2017; Argelaguet et al., 2018] and by developing novel high-
throughput methods that work in situ, one example being imaging mass cytometry [Giesen et al.,
2014]. On the microscopy side, the throughput of acquisition can be scaled up by automated
microscopy, including cases where the data itself informs the next acquisition (called feedback
microscopy or smart microscopy) [Tischer et al., 2014], e.g. to track moving cells [Rabut & Ellenberg,
2004] or to identify and follow interesting spontaneous events such as cell divisions [Conrad et al.,
2011]. The limited number of channels in fluorescence microscopy and thus the limited number of
components that are simultaneously observable has also been tackled, for instance by cycling
through multiple stainings on the same sample with intermittent washing or bleaching steps [Lin et
al., 2015; Gut et al., 2018].

On the computational side, there are some ongoing efforts to improve the analysis of small-scale but
context-rich data, although the field is currently mainly focused on big data. The important goal of
overcoming the limited multiplexing capabilities of fluorescence microscopy can also be addressed
computationally, namely by means atlas mapping. Much like different geopolitical and geological
features can be overlaid on a geographical reference map, different measurements acquired during

different experiments can be mapped onto each other based on a common reference measurement.

Recently, this approach has been used to merge time courses of mitosis of 28 independently imaged
endogenously tagged proteins, creating a dynamic protein atlas of cell division [Cai et al., 2018]. The
use of generative machine learning models to create a similar atlas of adherent human induced
pluripotent stem cells has also been reported recently [Johnson et al., 2018]. Atlas approaches are
not limited to the cellular scale, as illustrated by a whole-embryo gene expression atlas of Platynereis
dumerilii generated by whole-mount in situ hybridization and subsequent registration [Vergara et al.,
2017]. Even dynamic subcellular processes can be studied by atlas mapping, demonstrated
impressively in a study that employs highly time-resolved temporal registration of lamellipodial
proteins based on local movement of the lamellipodial front to extract a temporal hierarchy of the
actin regulatory cascade [Lee et al., 2015]. Finally, atlas methods can be used to combine big data
and rich data approaches, for instance by mapping single-cell expression data back into the embryo
through reference measurements such as in situ hybridization data [Satija et al., 2015; Achim et al.,

2015].

Taken together, the computational methods outlined in this section present a massive opportunity

for the future of biological research in general and for the study of complex biological systems in
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particular — provided that potential pitfalls are avoided and that current challenges can be overcome,

which is among the main goals of the work described in this thesis.
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1.4 The Interplay of Patterning, Morphogenesis and Migration

As introduced in section 1.1, cells and cell collectives perform a range of impressive feats of self-
organization in the context of the developing embryo. In order to build a functioning adult organism
from a single-celled zygote, cells must grow and divide (proliferation), adopt specific spatial
configurations (patterning), change their molecular composition (differentiation) and subcellular
architecture (e.g. acquisition of polarity), change their shape and generate three-dimensional tissue
structures (morphogenesis), change their position within organs or within the embryo entire

(migration), and sometimes self-destruct in a controlled manner (apoptosis).

Although there are still open questions about the molecular basis of each of these phenomena, much
is already known about the components and mechanisms involved. However, developmental
processes do not occur in isolation; for fully functional organs and organisms to form, they must be
combined in myriad ways and coordinated in space and time over multiple orders of magnitude,
giving rise to sophisticated and robust developmental programs. Relatively little is known,

comparatively speaking, about this integration and the resulting emergent behaviors.

This section provides a brief overview of the established knowledge in the field, in particular the
multi-cellular phenomena of patterning, morphogenesis and collective migration, the integration of

which is the main subject under study in this thesis.

1.4.1 Patterning

Patterning is the generation of non-random distributions of cellular features within tissues or
organisms. Any cellular feature can be patterned, including gene expression, biochemical activities,
polarity and subcellular organization, cell shape, and mechanical properties. Usually, multiple such
features are patterned alongside each other and often the pattern of one induces or reinforces the
pattern of another. Patterns can be generated in space or time or both, and again one may lead to
the other, a famous example of this being somite segmentation in vertebrates [Oates et al., 2012].
Patterning can be transient or made permanent by coupling it to differentiation through expression

of transcription factors that prevent reversibility or through epigenetic modifications.

Most molecular components found to be relevant for patterning are embedded in signaling or signal
integration modules. This includes diffusible signals (morphogens) and their corresponding receptors,
most of which are G-protein coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs) [Alberts
et al., 2002]. Also included are modules for direct contact signaling such as the Notch-Delta module
[Artavanis-Tsakonas et al., 1999] and — discovered more recently — modules for mechanosensing
such as the cadherin-catenin complex [Buckley et al., 2014]. In addition to sensing and receiving
signals, cells must process and integrate the information they receive, which happens both through

intracellular signaling cascades involving for instance MAPK, PI3K or Rho GTPases [McKay and
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Morrison, 2007] and through changes in gene expression that are parsed through gene regulatory
networks [Levine & Davidson, 2005]. Finally, there are a plethora of additional factors allowing
modulation and fine-tuning of patterns, including regulators of receptor sensitivity (e.g. B-arrestins)
[Reiter & Lefkowitz, 2006] and of morphogen diffusion (e.g. heparan sulfate glycans; HSPGs) [Yan &
Lin, 2009].

A series of commonly occurring higher-order mechanisms or processes, here referred to as
developmental motifs, have been discovered that make use of the aforementioned molecular

modules to implement patterning events.

One of the most fundamental motifs is that of morphogen gradients (Fig. 1.2a) [Rogers & Schier,
2011]. Local production and subsequent diffusion of a morphogen produces a concentration
gradient, which can be maintained and shaped through sink activity and modulation of diffusion
[Wartlick et al., 2009]. Cells can measure the local levels and thereby gain information about their
location relative to the source, which informs their cellular response [Ashe & Briscoe, 2006]. By
integrating multiple gradients from different sources, tissues can be patterned into exceedingly
precise and complicated domain structures [Briscoe & Small, 2015], as seen for instance in the well-
known case of the continuously refined body axis patterning at the blastoderm stage of Drosophila

[Jaeger et al., 2012].

Another common motif is lateral inhibition (Fig. 1.2b), which allows the generation of salt-and-
pepper patterns as well as local pattern refinement [Sjoqvist & Andersson, 2017]. In lateral inhibition,
cells moving along a particular developmental trajectory signal to their neighbors to prevent them
from following the same trajectory, which includes preventing them from producing the lateral
inhibition factor themselves. In a field of roughly uniform cells, those expressing a lateral inhibition
factor at a slightly higher level than others will inhibit its expression in their neighbors, which —
usually in combination with an additional positive feedback — leads to the emergence of a salt-and-
pepper pattern [Turing, 1952], as seen for instance in Drosophila neurogenesis [Cabrera, 1990].
Alternatively, cells can express a lateral inhibition factor in response to a signaling cue such as a
morphogen or chemokine gradient. In this case, the cell receiving the highest amount of inductive
signal will suppress the others [Sjoqvist and Andersson, 2017], a mechanism used to refine shallow
morphogen and chemokine patterns, as seen in C. elegans vulval development [Sternberg & Horvitz,

1989] and in angiogenic sprouting [Phng & Gerhardt, 2009].

At the next higher level, motifs such as gradient sensing and lateral inhibition are combined to yield
complex pattern generators that can create a near-infinite variety of different patterns. One such
generator is the Turing/Gierer-Meinhardt model discussed in section 1.2.2, which combines short-
range self-activation with long-range self-inhibition and is thought to underlie patterning events
ranging from zebrafish pigment stripe formation [Yamaguchi et al., 2007] to Hydra body plan

organization [Meinhardt, 1993]. Depending on the parameters, boundary conditions and initial
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conditions, this combination of feedback loops can lead to very different outcomes [Kondo & Miura,

2010].

Morphogen
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Figure 1.2: Common modules and motifs that drive patterning events.

(a) Diffusible signaling and sensing modules such as morphogens (green spheres) and GPCRs (see inset) allow
cells to communicate over long distances. Morphogens diffusing away from a source (green cell on the left)
can form a gradient that encodes spatial information. This in turn informs the behavior of receiving cells
which may for instance differentiate differently (blue, white and red cells) depending on whether they sense
a morphogen concentration above certain thresholds (dashed gray lines). Inset adapted from [Stewart et al.,
2012], main figure reproduced from [Rogers & Schier, 2011]. (b) Cell-cell contact signaling modules such as
Notch signaling (inset) are employed to mediate lateral inhibition, which can generate and refine patterns
locally. For instance, cells expressing a ligand on their surface (blue cells) can inhibit surrounding cells (brown
cells), generating a salt-and-pepper pattern. The distance of inhibition can be extended beyond immediate
neighbors through filopodial protrusions. Figure adapted from [Sjoqvist & Andersson, 2017]. (c)
Homophilic and heterophilic cell-cell adhesion molecules (upper left inset) mediate differential adhesion
between cells (lower left inset) through homotypic (blue and yellow junctions) and heterotypic (red
junctions) adhesion. A mixed aggregate of cells differentially expressing such adhesion molecules can cluster
and ultimately separate through a passive physical unmixing process (left to right series). Figure adapted
from [Fagotto, 2014].
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Not all patterning is based on cell-cell communication. One important exception is the differential
adhesion hypothesis (DAH), which was first brought forward to explain homotypic cell sorting in
embryonic amphibian cells [Townes & Holtfreter, 1955] by proposing that mixed populations of cells
favoring homotypic over heterotypic adhesion would naturally segregate as a consequence of
physical energy minimization (Fig. 1.2c) [Steinberg, 1970]. DAH-based phenomena have since been
found to be involved in a range of developmental processes [Steinberg, 2007]. In more recent work,
the DAH has been generalized by reformulating it in terms of interface tension rather than adhesion,
producing the differential interface tension hypothesis (DITH) [Brodland, 2002], which also explains
patterning phenomena emerging from differential cell surface tension, for example the sorting of
high-tension cells to the inside of the embryo during mouse blastocyst formation [Maitre et al.,
2016].

1.4.2 Morphogenesis

Morphogenesis is the adoption of specific geometric configurations by cells, tissues and organisms.
Most morphogenetic processes involve shape changes of individual cells, which through collective
action in a tissue compound into larger-scale deformations such as curving, folding, elongation or
compaction. For such collective transformations to proceed normally, tight spatial and temporal

coordination of the individual cells' behaviors is required.

Because morphogenesis requires physical forces to be generated and transmitted, the molecular
module predominantly responsible for morphogenetic processes is the actomyosin cytoskeleton
[Munjal & Lecuit, 2014]. Cortical actomyosin mediates the mechanical stability and dynamics of cell
shapes and — through cross-cellular coupling via adhesion molecules — also maintains supracellular
mechanical integrity within tissues [Lecuit & Lenne, 2007]. The forces generated by actin
polymerization and/or by motor proteins such as non-muscle myosin Il (Myoll) allow actin to form
extensile or contractile networks [Belmonte et al., 2017], respectively mediating the outgrowth of
cell membrane domains such as lamellipodia and filopodia [Ridley, 2011], and the contraction of
entire cells or of specific subcellular sections such as the apical domain [Salbreux et al., 2012; Martin
& Goldstein, 2014]. The actomyosin module is controlled by an extensive set of regulators [Zaidel-Bar
et al., 2015], most notably the small GTPases RhoA, Rac and Cdc42, which themselves are part of a
complex regulatory network [Van Aelst & D'Souza-Schoray, 1997; De Curtis & Meldolesi, 2012]. In
addition to the actomyosin module, multiple other modules with the capacity of modifying physical
properties or behaviors of the cell can be involved in morphogenetic events, including microtubules
[Cearns et al., 2016], adhesion molecules [Niessen et al., 2011], ECM components [Rozario &

DeSimone, 2010], and intermediate filaments [Sanghvi-Shah & Weber, 2017].
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Figure 1.3: Motifs of morphogenesis.

(a-b) Constriction of actomyosin networks is a common force generator of morphogenetic cell deformations.
In an epithelial sheet, local constriction on the apical side together with force transmission through adherens
junctions (a) can lead to tissue-scale bending and invagination (b). Figures adapted from [Martin & Goldstein,
2014]. (c-d) Convergent extension of tissues can occur either through laterally polarized protrusion and
contraction (c) or through junctional shortening and neighbor exchange (d). Both produce a convergence of
the tissue along one axis and simultaneously and extension along the other. Figures adapted from (c) [Keller
et al., 2000] and (d) [Bertet et al., 2004]. (e-f) Two examples of supracellular actin cables that allow tissues to
act as a mechanical unit: the response of embryonic epidermal cells to local wounding (e) and Drosophila
dorsal closure (f). Figures adapted from [Roper, 2013].
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A number of morphogenetic motifs that build upon cells' ability to deform themselves and to exert
forces on their surroundings are frequently observed to play a role in different morphogenetic

events.

The most-studied such motif is apical constriction, wherein a contractile actomyosin network
contracts the apical surface of cells in an epithelial sheet (Fig. 1.3a) [Martin & Goldstein, 2014].
Depending on the geometrical configuration and the mechanical properties of surrounding tissues,
this can (1) drive invagination and tissue folding (Fig. 1.3b) as seen in Drosophila gastrulation
[Sweeton et al., 1991], (2) lead to the formation of radially organized rosettes such as during
pancreatic branching morphogenesis [Villasenor et al.,, 2010], or (3) exert a pulling force on the

surrounding tissue as for example in Drosophila dorsal closure [Solon et al., 2009].

Another common motif is convergent extension, which is the convergence of a tissue along one axis
coupled to the concomitant extension along another [Tada & Heisenberg, 2012]. Convergent
extension occurs for instance during Xenopus gastrulation [Shih & Keller, 1992] and in Drosophila
germ band extension [Irvine & Wieschaus, 1994]. Whilst the former is driven by polarized protrusive
activity that generates directional cell traction (Fig. 1.3c) [Keller et al., 2000], the latter occurs
through a myosin-powered junctional remodeling process that shortens cell-cell junctions along the
converging axis, which in turn drives neighbor exchanges and cell intercalations that increase the

total length of junctions along the extending axis (Fig. 1.3d) [Bertet et al., 2004].

Due to junction-mediated force transmission cells in a tissue form a collective mechanical system.
This is particularly evident in the formation of supracellular actin cables and rings, a third common
motif of morphogenesis (Fig. 1.3e-f) [Roper, 2013]. The strong mechanical coupling provided by such
cables can allow tissues to act as a single mechanical entity, as for instance in the aforementioned
dorsal closure process in Drosophila, where force generation by apical constriction of the central
amnioserosa cells is converted into an irreversible ingression of the peripheral epidermis by means of

a continuous actin cable that shrinks as closure proceeds [Solon et al., 2009].

1.4.3 Collective Migration

Both single cells and entire tissues have the ability to migrate large distances within the developing
embryo or in the adult organism. Most commonly, they do so either by crawling along an ECM
surface such as a basal lamina (e.g. border cells in Drosophila [Montell, 2003]) or by dragging
themselves through a three-dimensional meshwork of cells and ECM within another tissue (e.g. in
angiogenic sprouting [Betz et al., 2016]). In order for migrating cells to reach their intended
destination a guidance cue is usually required, which may take the form of an extracellular gradient
of a soluble chemoattractant (chemotaxis) [Dormann & Weijer, 2003] but may also take a range of
other forms, including ECM-bound chemoattractants (haptotaxis) [Weber et al., 2013] or gradients in

substrate stiffness (durotaxis) [Lo et al., 2000].
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The molecular underpinnings of cell migration have been studied extensively. Generally, cells must
adopt a polarity along the axis of migration, a process that is directed by the guidance cue and its
receptors and orchestrated by the cytoskeleton (Fig. 1.4a), the small GTPase system, and a variety of
other factors depending on the particular context [Affolter & Weijer, 2005]. Cells must then protrude
in the direction of migration, for instance by forming lamellipodia or other protrusions through actin
polymerization (Fig. 1.4a) [Le Clainche & Carlier, 2008] or alternatively by selectively releasing the
membrane from the cortex and pushing it outward through internal pressure (blebbing) [Charras &
Paluch, 2008]. In order to generate traction force, attachments to the surrounding ECM must then be
established (e.g. focal adhesions) [Le Clainche & Carlier, 2008], which is generally followed by
myosin-mediated rear-end contraction to actually move the cell body in the direction of the
protrusion [Chrzanowska-Wodnicka & Burridge, 1996]. Finally, rear-end ECM attachments must be

dissolved in order for migration to progress [Rid et al., 2005].

These cellular and molecular mechanisms underlie both the migration of single cells and the
migration of cell collectives. However, collectively migrating cells must additionally maintain cell-cell
contacts and mechanical integrity through junctional machineries (Fig. 1.4b-c) [Friedl & Gilmour,
2009; llina & Friedl, 2009]. This provides a basis for emergent supracellular behaviors, including the
displacement of coupled cells without their active contribution [llina & Friedl, 2009], the
coordination of cell polarity within the moving group [Theveneau et al., 2010], and coordinated
protrusion and retraction behaviors [Vitorino & Meyer, 2008]. Importantly, the mechanics of moving
cell groups are complicated and likely complex [Trepat et al., 2009] and may directly feed back on cell
behavior by means of plithotaxis, wherein the principal axis of mechanical stress serves as a guidance
cue for cell migration [Tambe et al., 2011; Trepat & Fredberg, 2011], possibly through a

mechanosensitive cadherin-keratin complex [Weber et al., 2012].

There are a number of additional capabilities conferred to migrating tissues by virtue of their
collectivity. For instance, a cell collective may be able to sense guidance cues with greater sensitivity,
precision and robustness, since the total area of signal integration is larger [Malet-Engra et al., 2015;
Varennes et al., 2016]. Similarly, a collective can migrate far more robustly than an single cell, as
directionality can be maintained even if some cells in the tissue occasionally lose polarity, especially
in cases where the collective motion of the tissue directly contributes to the polarization of its

constituent cells [Haas & Gilmour, 2006].

Importantly, collectively migrating cells generally establish a tissue-scale directional asymmetry in
addition to the migrational polarity of individual cells [Vitorino & Meyer, 2008; Rgrth, 2012]. A
common pattern is for cells at the leading edge (so-called leader cells) to adopt a mesenchyme-like
organization, characterized by polarization in the direction of migration, high protrusive activity at
the leading edge and more fluid-like cell surface dynamics, whereas cells in the rear (follower cells)

become more epithelial-like, exhibiting apico-basal polarity, tight-junction formation and more
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elastic cell mechanics (Fig. 1.4c) [Pastor-Pareja, 2004; Lecaudey et al., 2008; Fischer et al., 2009;

Friedl & Gilmour, 2009]. These phenotypic leader-follower differences are also reflected at the level

of gene expression, for instance in different expression levels of chemokine receptors [Aman &

Piotrowski, 2008], metalloproteinases [Nabeshima et al., 2000], and adhesion proteins [Revenu et al.,

2014]. Interestingly, follower cells may simultaneously perform additional tasks, such as

morphogenesis and differentiation, which must be coordinated with migration to achieve the desired

final embryo architecture (see section 1.4.4).
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Figure 1.4: Individual and collective
cell migration.

(a) A single migratory cell showing the
polarized organization of the actin
cytoskeleton and associated proteins,
which mediate leading edge growth
by branched actin polymerization and
rear-end retraction by myosin-based
contractility. Adapted from [Blanchoin
et al, 2014]. (b-c) Collective cell
migration on a 2D ECM surface (b)
and within a 3D ECM matrix (c).
Collectively migrating cells show a
similar pattern of actin organization
along the axis of migration but
simultaneously maintain junctions
with their partners. In addition,
migrating collectives generally exhibit
tissue-scale asymmetry, with highly
motile and protrusive tip/leader cells
(darker blue cells in c) and more
epithelial followers. Communication
between collectively migrating cells
may occur through biochemical cues
but also through tissue mechanics or
remodeling of the ECM by secretion
of new ECM components (green) or
metalloproteinases (yellow). Both (c)
and (d) are adapted from [Friedl &
Gilmour, 2009].



1.4.4 Interplay

In recent years, a number of examples of feedback between morphogenesis, patterning and/or
migration have been found, indicating that these processes do not occur in a simple sequential step-

by-step fashion during embryogenesis [Gilmour et al., 2017].

For instance, morphogenesis can feed back onto patterning through changes in tissue shape which
affect the distribution and dynamics of diffusible signals. This was found to be the case during the
embryonic formation of gut villi, where tissue bending leads to a geometry that favors the local
accumulation of the morphogen sonic hedgehog at the tip of nascent villi. This in turn leads to a local
upregulation of BMP, which inhibits intestinal stem cell fate and thus restricts the stem cell niche to

regions outside the villi [Shyer et al., 2015].

A related mechanism was discovered to act in the zebrafish lateral line, where rosette-shaped
clusters of cells organize around a central microlumen, a small interstitial space sealed off from the
rest of the tissue by tight junctions. Within this microlumen, apically secreted FGF is concentrated,
which feeds back on the behavior of the rosette cells [Durdu et al.,, 2014]. In this case, the
microlumen acts as a spatial insulator of signaling, preventing nearby cells that are not directly
participating in rosette formation from seeing high levels of FGF. In addition, the microlumen may
fulfill a coordinative function: since it is only capable of trapping FGF if it is fully formed, it may act as
a control point for proper morphogenetic rosette assembly, coordinating the completion of the

morphogenetic event with the downstream events triggered by FGF (see also section 1.5.2).

Another link between patterning and morphogenesis is established by mechanical forces and their
transduction into biochemical signals. As groups of cells undergo shape changes and movements,
they exert mechanical forces both within that group and beyond it. These forces are sensed through
mechanically-driven conformational changes of junctional [Charras & Yap, 2018] or actin-binding
proteins [Harris et al., 2018] and subsequently integrated into cellular decision making through a
variety of mechanisms [Mammoto & Ingber, 2010], including direct modification of gene expression
by nuclear translocation of 3-Catenin [Farge, 2003], NF-kB [Chen et al., 2003] or YAP/TAZ [Dupont et
al.,, 2011]. A wide range of developmental processes such as Drosophila anterior-gut induction
[Farge, 2003], murine blood vessel remodeling [Lucitti et al., 2007], human mesenchymal stem cell
lineage committment [McBeath, 2004], and many others [Mammoto & Ingber, 2010] have been

shown to be at least partially under mechanical control.

The addition of collective migration into the mix further complicates things. Collectively migrating
tissues are generally patterned themselves, with leader cells in front and follower cells in the rear, as
well as potentially intermediates in between [Vitorino & Meyer, 2008; Rgrth, 2012; Friedl & Gilmour,
2009]. This pattern can be established and maintained by a number of different mechanisms, for

instance Notch-based lateral inhibition and subsequent differentiation [Ghabrial & Krasnow, 2006;
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Hellstrom et al., 2007], leader cell-mediated local modification of the extracellular matrix
[Nabeshima et al., 2000], or morphogen signaling between leaders and followers [Aman &
Piotrowski, 2008]. Given that migrating tissues are subject to complicated patterns of mechanical
stress [Trepat et al., 2009], tissue mechanics are bound to also play a major role not only in their
guidance [Tambe et al., 2011] but also in their internal organization. This role, however, remains to

be elucidated.

As discussed in section 1.4.3, leader cells are generally mesenchymal-like but follower cells may
adopt an epithelial-like organization, including apico-basal polarity and tight junctions [Pastor-Pareja,
2004; Lecaudey et al., 2008]. This makes it possible for followers to undergo additional epithelial
morphogenesis concomitant with migration, be it through apical constriction, convergent extension,
and/or through the formation of supracellular actin structures. Prominent examples include the
formation of a tubular inner lumen during tracheal branching morphogenesis [Caussinus et al., 2008]
and the assembly of radially organized rosettes during lateral line migration in fish [Villablanca et al.,
2006; Lecaudey et al., 2008]. In such systems, collective migration and follower cell morphogenesis
must be properly coordinated, as the relative timing of the two determines the final outcome. Thus,
migration can have considerable influence on the overall organization and behavior of a tissue and

vice versa.

Taken together, these examples illustrate the complicated and undoubtedly complex nature of
integrated developmental processes. This runs contrary to an earlier view of development which
generally assumed a loosely linear progression from patterning to differentiation to morphogenesis,
inspired chiefly by the temporal separation of main body axis patterning and the first morphogenetic
events in Drosophila [Nisslein-Volhard & Wieschaus, 1980]. If developmental processes are instead
feeding back on each other in a multitude of ways, the resulting emergent complexity dramatically
increases the range of possible dynamics and outcomes they can produce (see section 1.2). In this
case, the established knowledge discussed in this section likely represents only the very tip of the

iceberg, leaving many specific mechanisms and general principles yet to be discovered.
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1.5 The Zebrafish Posterior Lateral Line Primordium as a Model

To study the complex interplay of developmental processes in an in vivo context we made use of the

zebrafish posterior Lateral Line Primordium (pLLP) as a model system.

The pLLP is a group of about 100 cells that collectively migrate directly under the skin along the flank
of the developing zebrafish embryo from the back of the head to the tip of the tail, depositing a
number of rosette-shaped clusters along the way that go on to form the lateral line sensory system in
adult fish (Fig. 1.5) [Ghysen & Dambly-Chaudiere, 2007]. It is an ideal model system for this study
both because it represents a case where patterning, morphogenesis and collective migration are

tightly integrated and because of its experimental accessibility.

This section introduces the pLLP, describes the known mechanisms of self-organization at work

within it and briefly explains its strengths as an experimental model system.

Figure 1.5: The zebrafish posterior lateral line primordium.

(a) Stitched maximum intensity-projected overview of a zebrafish embryo at approx. 35hpf. The lateral line
and a few other tissues (including the periderm) are labeled by claudinB::lyn:EGFP [Haas & Gilmour, 2006].
Arrows indicate (A) the developing otic vesicle, (B) the lateral line ganglion, (C) a developing (pro)neuromast,
(D) interneuromast chain cells, and (E) the pLLP itself. Scale bar: 200um. (b) Maximum intensity-projected top
view of the pLLP with lyn:EGFP membrane labeling, showing highly protrusive leader cells (section A), an
intermediate transition zone (section B), epithelialized follower cells forming a rosette (section C), and an
assembled proneuromast that will soon be deposited (section D). Scale bar: 10um. Both images were acquired
on the Zeiss LSM880 AiryScan (see Materials & Methods, section 2.2.1).
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1.5.1 Developmental Context and pLLP Physiology

The lateral line is a mechano-sensory system dedicated to the perception of water movement in fish
and amphibians, endowing them with a sense of "touch-at-a-distance" important for a diverse range
of behaviors including schooling, hunting, and courtship [Dijkgraaf, 1963]. It consists of a set of
discrete sensory organs called neuromasts that are dotted across the surface of the adult body in a
species-specific pattern, each locally sensing water motion through mechano-sensory hair cells and
forwarding the information to the brain via lateral line neurons [Dijkgraaf, 1963; Ghysen & Dambly-

Chaudiére, 2004].

Lateral line development overall is a complicated multi-stage process starting with the formation of
cranial placodes and continuing throughout adult life as additional neuromasts are added to account
for the organism's growth [Schlosser, 2006; Ghysen & Dambly-Chaudiere, 2007]. Here, we use as our
model specifically the posterior Lateral Line Primordium (pLLP) in zebrafish embryos, which combines
collective migration and simultaneous morphogenesis to distribute a first set of neuromasts along

the flank of the fish.

The pLLP derives from the lateral line placode, a group of cells of the cranial ectoderm located on
either side of the head just behind the otic placode (Fig. 1.5a) [Schlosser, 2006]. Following the
placodal cells' delamination at 18—20hpf, they split into a smaller anterior group (about 20 cells)
which undergo neurogenesis to form the neurons of the lateral line ganglion and a larger posterior
group (about 100 cells) which form the lateral line primordium itself [Schlosser, 2006; Ghysen &
Dambly-Chaudiére, 2007].

The primordium begins to collectively migrate along the horizontal myoseptum at about 20hpf,
crawling on top of the basement membrane directly underneath the embryonic surface ectoderm
[Ghysen & Dambly-Chaudiere, 2007]. It assumes the typical tissue-scale polarity with mesenchymal-
like leaders at the front and epithelial-like followers at the rear (Fig. 1.5b) [Lecaudey et al., 2008].
Follower cells undergo apical constriction to form discrete rosette-shaped clusters of about 20 cells
(so-called proneuromasts) [Lecaudey et al., 2008], which synchronously slow their migration and
decouple from the rest of the migrating primordium [Gompel et al., 2001; Haas & Gilmour, 2006]. In
this way, the primordium intermittently deposits five proneuromasts along the flank of the fish
before reaching the tail at about 40hpf, at which point it fragments to form 2-3 terminal

proneuromasts in relatively quick succession [Gompel et al., 2001].

Following deposition, proneuromast cells further differentiate into mechanosensory hair cells,
support cells and mantle cells, organized concentrically from inside to outside [Hernandez et al.,
2007]. The hair cells project kinocilia outside the periderm (protected by a mucous cupula secreted

by the mantle cells), which allows them to sense motion in the surrounding water [Dijkgraaf, 1963].
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In between proneuromasts, the pLLP continuously deposits a chain of more mesenchymal-like
progenitors called interneuromast cells which later go on to form additional neuromasts (Fig 1.5a)
[Gompel et al., 2001; Grant et al.,, 2005; Ghysen & Dambly-Chaudiére, 2007]. Furthermore, the
primordium is closely pursued by outgrowing axons projected from the lateral line ganglion, which
innervate proneuromasts upon deposition [Metcalfe, 1985; Gilmour et al., 2004]. Together with glial
cells that migrate along these neurites and provide myelination [Gilmour et al., 2002], they form the
lateral line nerve, which is responsible for relaying the neuromasts' mechanical measurements to the

brain.

1.5.2 Self-Organization of the pLLP

The mechanisms underlying the organization and behavior of the pLLP are known to some extent and

have been found to be interesting cases of developmental self-organization.

Patterning of the pLLP into a leader and follower zone is thought to be implemented by mutual
repression of Wnt/B-catenin and FGF signaling, where high Whnt activity in leaders suppresses FGF
signaling via Sef and high FGF signaling in followers suppresses Wnt via Dkk1 (Fig. 1.6a) [Aman &
Piotrowski, 2008; Ma & Raible, 2009]. Furthermore, FGF signaling in followers is amplified through
positive feedback, partly by Fgf-driven expression of Fgfr1 [Aman & Piotrowski, 2008] and partly by
rosette formation (see below) [Durdu et al., 2014]. Such simultaneous mutual repression and self-
amplification is a common patterning motif that implements a bistable switch [Ferrell, 2014] and is a
special case of both lateral inhibition and the Turing/Gierer-Meinhardt system (see sections 1.2.2 and
1.4.1). There may also be a positive feedback loop stabilizing the leader state in the pLLP but its
mechanism is as of yet unknown. With their specific domains of activity stably established, Wnt and
FGF signaling can control leader-specific and follower-specific gene expression, respectively (Fig.

1.6a) [Aman & Piotrowski, 2008; Lecaudey et al., 2008].

Migration of the pLLP is guided by the chemokine Cxcl12a/Sdfla, which is produced along the
horizontal myoseptum and sensed by the cells of the primordium through the canonical chemokine
receptor Cxcr4b [David et al., 2002]. However, unlike one might expect, Cxcl12a is not externally pre-
patterned as a gradient for the pLLP to follow. Instead, it is uniformly distributed within the
interstitial space of the horizontal myoseptum, which is impressively demonstrated by the fact that
the primordium can perform a "U-turn" and migrate back toward the head in cases where Cxcl12a
has been selectively removed in a segment of the embryo's trunk [Haas & Gilmour, 2006]. Directional
information is therefore not derived from the environment but is created by the tissue-scale polarity
of the primordium itself: FGF signaling in the follower cells induces the expression of the non-
canonical chemokine receptor Cxcr7b, which is thought to be a non-signaling scavenger receptor that
locally reduces the extracellular concentration of Cxcl12a (Fig. 1.6b-c) [Burns et al., 2006; Dambly-

Chaudiere et al., 2007]. Indeed, when Cxcr4b activity is visualized using a tandem fluorescence timer
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approach, it appears graded from front to back — and this gradient disappears upon Cxcr7b depletion
(Fig. 1.6b) [Dona et al., 2013]. Thus, selective expression of a scavenger receptor in the follower cells
carves a self-generated gradient from the uniformly present chemokine which in turn informs the

directional polarity of the primordium.

Interestingly, expression of Cxcr4b is not required across the entire pLLP, as just a few Cxcrdb-
expressing cells can rescue migration of a mutant primordium by taking the position of tip cells [Haas
& Gilmour, 2006]. They are not, however, mechanically pulling the entire primordium along but
instead somehow confer directionality to the Cxcr4b-mutant cells, indicating that migrational polarity
can be induced by pathways other than Cxcr4b signaling [Haas & Gilmour, 2006]. Fgf has been
suggested to fulfill this function by acting as a chemokine produced and secreted by leader cells
under Wnt control [Dalle Nogare et al., 2014] (whilst being prevented from signaling in the leaders
themselves by Whnt-based feed-forward inhibition via Sef, as discussed above) but evidence for this
model remains weak and somewhat contradictory to the established role of Fgf as an inducer of
follower cell epithelialization [Lecaudey et al., 2008; Durdu et al., 2014]. As an alternative, it has been
suggested that pulling forces generated by motile leader cells might polarize follower cells along the
same axis through plithotaxis [Lecaudey & Gilmour, 2006], although conclusive experiments in

support of this model are still missing.

Morphogenesis of the pLLP is driven by apical constriction of follower cells leading to rosette
formation [Lecaudey et al., 2008]. This behavior is under the control of FGF-Ras-MAPK signaling and
mediated by apically localized RhoA-Rock-Myoll activity, as one might expect in a classical sequence
of patterning and morphogenesis events [Lecaudey et al., 2008; Harding & Nechiporuk, 2012]. There
is, however, also a direct feedback from rosette architecture to FGF signaling (Fig. 1.6d-e) [Durdu et
al., 2014]. As a rosette assembles, the apical surfaces of participating cells enclose a small interstitial
space known as a microlumen, which is sealed shut by tight junctions. This microlumen then begins
to fill up with Fgf ligand, which continues to be secreted apically by rosette cells (Fig. 1.6d).
Consequently, FGF signaling is both amplified and spatially restricted such that the cells participating
in a mature rosette are selectively exposed to very high signaling levels, which induces them to
terminate migration and detaches the proneuromast from the migrating primordium (Fig. 1.6e)
[Durdu et al., 2014]. In other words, rosette maturation and deposition is coordinated through a

feedback between rosette architecture and FGF signaling.

As all of these self-organizing sub-systems are interlinked both biochemically (in particular through
FGF signaling) and biomechanically, they together form an integrated higher-order system that
guides the behavior of the pLLP — a perfect model for studying the emergent effects resulting from

such interplay.
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Figure 1.6: Mechanisms of self-organization in the pLLP.

(a) Simplified interaction graph of the most relevant known and hypothesized mechanisms of pLLP self-
organization involving the mesenchymal-like leader state and the epithelial-like follower state, including
mutual inhibition of the Wnt and Fgf domains, positive feedback within each domain (in particular via
luminal signaling in the follower cells, see d-e), the chemokine gradient generated by the scavenger receptor
Cxcr7 (see b-c), a putative Fgfgradient, and putative mechanical interactions such as plithotaxis.
(b) Ratiometric images of a Cxcr4b tandem fluorescence timer: low ratios indicate high Cxcr4b signaling,
which can be seen in the front of the wild-type primordium or in the entire tissue in the absence of
scavenger receptor Cxcr7. Scale bar: 10um. (c) Illustration of the self-generated gradient model, where
follower cells carve a gradient from an otherwise uniform chemokine distribution. (d) Proneuromast showing
accumulation of Fgf3 in the microlumen. Scale bar: 5um. (e) lllustration of luminal signaling, where local
trapping of a ligand leads to restricted and amplified signaling in cells participating in the lumen. (b) and (c)
are adapted from [Dona et al., 2013] and (d) and (e) from [Durdu et al., 2014].
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1.5.3 Advantages as a Model System

Aside from its biological significance as an example of integrated patterning, morphogenesis and

migration, the lateral line model system features a number of technical advantages.

Since pLLP migration and development occurs directly underneath a thin transparent layer of
embryonic skin, live imaging is straightforward. Existing tissue-specific Gal4 [Distel et al., 2009] and
chemically inducible LexPR [Emelyanov & Parinov, 2008; Durdu et al., 2014] driver systems coupled
with the ease of zebrafish transgenics allow for relatively rapid and versatile development, testing
and use of new live reporters and genetically encoded perturbation constructs. This combination of
genetic and optical accessibility makes the pLLP ideal for the adaptation of optogenetic constructs

into an in vivo context.

These advantages are compounded with the general advantages of zebrafish as a model organism
[Lele & Krone, 1996; Nisslein-Volhard & Dahm, 2002], including its ease of maintenance and
husbandry, its large number of progeny resulting from crosses, its external development which
allows embryos to be collected without sacrificing adults, and its well-established genetics and
transgenics, including recently developed efficient CRISPR-based genome editing methods [Auer &

Del Bene, 2014; Burger et al., 2016].

Taken together, the multi-facetted nature of the lateral line primordium combined with its
experimental accessibility make it an ideal model for the establishment of novel approaches to study
complex biological systems and for the investigation of how development integrates signaling, shape

and movement to give rise to diverse and intricate organs and organisms.
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1.6 Aims of this Study

Two overall aims were pursued in this work. Firstly, the discovery of mechanisms and principles of
coordination and integration of different aspects of multi-cellular development, in particular
patterning, morphogenesis and collective migration. Secondly, the establishment of methods capable
of better addressing the challenge presented by the complexity of biological systems, in particular
optogenetic precision perturbation and data-driven computational analysis, and the subsequent

employment of these methods toward accomplishing the first aim.

These aims were approached from a variety of different angles which can be grouped into three

distinct but synergistic projects:

1) Adapting optogenetic tools for the precise manipulation of chemokine and actin signaling in

the lateral line primordium.

2) Investigating whether rosette morphogenesis feeds back to regulate pLLP migration by

orienting and increasing mechanical tension along the tissue.

3) Developing a computational framework for image-based 3D single-cell segmentation and

guantitative analysis of cell shape and architecture across the pLLP.
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2 Materials and Methods

2.1 Molecular Biology and Zebrafish Work

2.1.1 Molecular Biology

The plasmids used in this study were generated by MultiSite Gateway cloning (Invitrogen, USA).
Sequences of interest were cloned from zebrafish embryonic (30hpf) cDNA extracted using the
RNeasy Micro Kit (Qiagen, Germany) and reverse transcribed using SuperScript Il reverse
transcriptase (Invitrogen, USA) or were amplified directly from existing templates. KAPA HiFi hot-
start polymerase (Kapa Biosystems, USA) was employed for PCR amplification and products were
checked by Sanger sequencing performed by an off-site service (GATC Biotech, Germany). PCR
products were inserted into MultiSite Gateway entry clones by BP reactions, which were checked by
sequencing and subsequently combined with promoters (see section 2.1.4) and if required with other
coding sequences (e.g. for fluorescent proteins) into Tol2-flanked expression vectors by LR reactions
according to the Tol2kit protocol [Kwan et al., 2007]. The destination vectors used contained one of
three co-injection markers: cImc2::EGFP (green heart), cryebb::ECFP (blue eyes), or cryebb::mKate2
(red eyes)®. Final expression vectors were double-checked by restriction analysis using FastDigest
(Thermo Fisher Scientific, USA) or NEB (New England Biolabs, USA) restriction endonucleases.
Bacterial transformation was performed using Stellar (Clontech Laboratories, USA) or TOP10

(Invitrogen, USA) chemically competent E. coli cells.

In-vitro transcription (IVT) for the production of To/2 transposase mMRNA used to generate stable
transgenic lines from expression vectors (see section 2.1.4) as well as for the production of mRNA
used to test expression constructs prior to the generation of stable lines was performed using the

MMESSAGE mMACHINE kit (Ambion, USA).

2.1.2 Optogenetic Constructs and chemoARHGEF

PA-Racl [Wu et al.,, 2009] was kindly provided by Prof. Dr. Klaus Hahn and Gateway-cloned into
expression constructs LexOP::mCherry:PA-Rac1? and UAS::mNeonGreen:PA-Racl (mNeonGreen was
kindly provided by Prof. Dr. Alex Hajnal). PA-Cxcr4b was originally described as a chimera of bovine
rhodopsin and human CXCR4 [Xu et al., 2014]; we modified the intracellular domains to match
zebrafish Cxcr4b and had the resulting sequence synthesized by GeneArt gene synthesis (Thermo

Fisher Scientific, UAS). This sequence was then cloned into a UAS::PA-Cxcr4b:EGFP expression

1 These destination vectors had been previously established by a former member of the lab, Andreas Kunze.
2 This construct was cloned by a former member of the lab, Erika Dona.
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vector!. bOpsin [Karunarathne et al., 2013a] was kindly provided by Prof. Dr. N Gautam and cloned
into UAS::bOpsin:tagRFP-T (tagRFP-T was kindly provided by Dr. Jan Ellenberg).

The components of the CRY2-CIBN system [Kennedy et al., 2010] were also kindly provided by Prof.
Dr. N Gautam and were used to engineer the membrane recruitment system. A set of 8 constructs
was created based on CIBN: UAS::CIBN:CaaX, UAS::CIBN:mNeonGreen:CaaX, UAS::Lyn:CIBN, UAS::
Lyn:mNeonGreen:CIBN, bAct::CIBN:CaaX, bAct::CIBN:mNeonGreen:CaaX, bAct::Lyn:CIBN and bAct::
Lyn:mNeonGreen:CIBN, all directed to the plasma membrane by fusion to either the prenylation
motif CaaX [Casey & Seabra, 1996] or the palmitoylation sequence of the tyrosine-protein kinase Lyn
(here abbreviated as simply Lyn) [Teruel et al., 1999]. bAct denotes the near-ubiquitously active -
actin promoter. CRY2 was cloned into both middle and 3' entry vectors to allow the combinatorial
generation of a range of CRY2-effector fusions, although initial tests were performed without
effectors, using either UAS::CRY2:tagRFP-T or UAS::tagRFP-T:CRY2, or matching versions under the

bAct promoter.

The four effector constructs were assembled using LR reactions as described in section 2.1.1. The
GRK3ct used in UAS::CRY2:tagRFP-T:GRK3ct was another kind gift by Prof. Dr. N Gautam. For the
RGS4A of UAS::CRY2:tagRFP-T:RGS4A we tested both the rat version (rnRGS44, also kindly provided
by Prof. Dr. N Gautam) and a cloned version of the zebrafish RGS4 (zfRGS44) identified via ZFIN
(zfin.org). For UAS::CRY2:tagRFP-T:Tiamla-Gd and UAS::CRY2:tagRFP-T:ARHGEF25b-Gd, the closest
zebrafish homologues to the corresponding effectors reported in literature [Levskaya et al., 2009;
Van Unen et al., 2015] were found using NCBI's BLAST (blast.ncbi.nim.nih.gov) [Altschul et al., 1997]
and the catalytically active GEF domains were predicted using SMART (smart.embl-heidelberg.de)
[Letunic & Bork, 2017]. They were then cloned from zebrafish embryonic cDNA as described in

section 2.1.1.

To construct constitutively membrane-localized versions of the Tiam1a and ARHGEF25b effectors for
chemically inducible expression under the LexOP promoter, the same active domains cloned for the
CRY2 versions were coupled to Lyn to enforce membrane localization, yielding LexOP::Lyn:

tagRFP-T:Tiam1a-Gd and LexOP::Lyn:tagRFP-T:ARHGEF25b-Gd.

Any relevant sequences that are not already published elsewhere can be found in appendix A1l.

2.1.3 Fish and Embryo Handling

Growth, maintenance and breeding of zebrafish (Danio rerio) was handled according to standard
procedures [Westerfield, 2000]. In accordance with EMBL internal policy 65 (IP65) and European
Union Directive 2010/63/EU, all experiments were performed on embryos younger than 3dpf. Unless

stated otherwise, embryos were kept in E3 buffer at 27°C or 30°C.

! This work was performed by a former member of the lab, Erika Dona.
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2.1.4 Transgenic and Mutant Lines

For transient expression and transgenic line establishment, embryos were microinjected at the one-
cell stage with an injection mix containing 0.05% phenol red and either 200ng/ul of mRNA or 25ng/ul
of plasmid DNA and 100ng/ul of Tol2 transposase in nuclease-free water (Thermo Fisher Scientific,
USA). Embryos were then either imaged or raised to adulthood and screened by checking F1 progeny
for expression of fluorescent co-injection markers included in the backbone of expression vectors
(see section 2.1.1). Experiments on stable transgenic lines were performed either on F1 embryos

positive for the selection markers or on subsequent generations derived from selected F1 embryos.

Unless otherwise specified, one of two transactivation systems was used to drive expression of
transgenic constructs. The first consists of a 6xUAS promoter driven by a GAL4/UAS:mCherry
enhancer trap line (ETL GA346) [Distel et al., 2009] where the mCherry coexpression marker has been
removed by CRISPR/Cas9-mediated deletion [unpublished data?]. The second is comprised of a LexOP
promoter driven by the transactivator LexPR, which is chemically inducible by the drug mifepristone
(RU486) [Emelyanov & Parinov, 2008] and is expressed in the lateral line under control of the Cxcr4b
upstream regulatory region in a BAC transgenic line [Durdu et al., 2014]. The two expression systems

are referred to as UAS and LexOP throughout this thesis.

Several of the transgenic and mutant lines used in this study have been generated by other members
of lab or by other labs and have been or will be described elsewhere. These include claudinB::
Lyn:EGFP (green membrane marker) [Haas & Gilmour, 2006], cxcr4b::NLS:tdTomato (red nucleus
marker) [Dona et al., 2013], ETL GA346 (Gal4-UAS driver line, described above), cxcr4b::LexPR (LexPR-
LexOP driver line, described above), Cxcr4b::Cxcr4b:tagRFP (used as a red membrane marker) [Dona
et al., 2013], Cxcr7::Lyn:mKate2:sfGFP (a red-green membrane marker labeling the Cxcr7 expression
domain) [unpublished data?], LexOP::NLS:mIRFP (a far-red nucleus marker) [unpublished data3],
UAS::B4galT1(1-55Q):tagRFP-T (trans-Golgi) [unpublished data?], UAS::CDMPR:tagRFP-T (trans-Golgi
network and late endosomes) [unpublished datad], UAS::mKate2:GM130 (cis-Golgi) [unpublished
datad], UAS::mKate2:Rab5a (early endosomes) [unpublished data4], UAS::mKate2:Rablla (recycling
endosomes) [unpublished data4], cxcr4bt?6035/126035 (Cxcr4b-/- null mutant) [Knaut et al., 2002],
cxcr7219/5316 (Cxcr7-/- null mutant) [Kettleborough et al., 2013], and cxcl12at3%51%/ 830516 (Cxc/12g-/- null

mutant) [Valentin et al., 2007].

All other transgenic lines were made as detailed above and in section 2.1.1. They include the UAS
versions of the optogenetic constructs described in section 2.1.2, namely UAS::mNeonGreen:PA-
Racl, LexOP::mCherry:PA-Racl, UAS::PA-Cxcrdb:EGFP, UAS::bOpsin:tagRFP-T, UAS::Lyn:CIBN, UAS::
CRY2:tagRFP-T:GRK3ct, UAS::CRY2:tagRFP-T:RGS4A, UAS::CRY2:tagRFP-T:Tiamla-Gd, UAS::CRY2:

1 This work was performed by a former member of the lab, Andreas Kunze, and will be described elsewhere.

2This line was generated by a former member of the lab, Alejandra Guzman Herrera, and will be described elsewhere.
3 This line was generated by another member of the lab, Elisa Gallo, and will be described elsewhere.

4 These lines were generated by another member of the lab, Mie Wong, and will be described elsewhere.
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tagRFP-T:ARHGEF25b-Gd, LexOP::Lyn:tagRFP-T:Tiamla-Gd, and LexOP::Lyn:tagRFP-T:ARHGEF25b-
Gd. They also include four actin reporters: UAS::mNeonGreen:UtrCH, UAS::tagRFP-T:UtrCH, UAS::
LifeAct:mNeonGreen, and UAS::LifeAct:tagRFP-T. Here, UtrCH is the actin-binding CH-domain of
Utrophin and LifeAct is an actin-binding peptide derived from the yeast protein ABP140. Both have
previously been described as probes suitable for visualizing F-actin in vivo [Burkel et al., 2007; Ried|I
et al., 2008]. UtrCH was kindly provided by Dr. Péter Léndrt and LifeAct by Prof. Dr. Roland Wedlich-
Soldner. Finally, they also include a UAS::mNeonGreen:Gy9 reporter line. The G-protein Gy9 has been
shown to translocate from the cell membrane to intracellular membranes upon GPCR activation and
could thus be used as a reporter of GPCR signaling activity [Saini et al., 2007; Karunarathne et al.,

2013a]. The Gy9 used here was a kind gift by Prof. Dr. N Gautam.

2.1.5 Chemical Treatments

If required, embryo pigmentation was prevented by treating embryos with 0.002% N-phenylthiourea
(PTU) (Sigma-Aldrich, USA) from 24hpf. Unless otherwise stated, expression of LexOP constructs was
chemically induced by treatment with 20uM of Mifepristone (RU486) (Sigma-Aldrich, USA) from
25hpf until the time of mounting (usually approx. 33hpf).

Para-nitroblebbistatin and azido-blebbistatin treatments [Képird et al., 2012] were at first carried out
as has been described for the lateral line primordium [Képird et al., 2015], using 0.1% DMSO in E3 as
a negative control, 10uM of Para-nitroblebbistatin (Optopharma, Hungary) in E3 with 0.1% DMSO as
a positive control, and 1uM of azido-blebbistatin (Optopharma, Hungary) in E3 in 0.1% DMSO.
Embryos aged approximately 30hpf! were incubated in these solutions in the dark for 10min, then
mounted as described in section 2.2.1, and after solidification of the agarose incubated with the
inhibitors for another 10min prior to 2-Photon uncaging (see section 2.2.5). However, based on
experience with other compounds the incubation time before and after mounting was later

increased to 30min each and different concentrations of the inhibitors were tested.

For the EDTA treatment to reduce cell-cell adhesion and thus induce cell rounding, embryos were
mounted normally (see section 2.2.1) and prepared for imaging at the microscope. Then, the E3 in
the dish was exchanged for 0.5M EDTA in PBS. Imaging was performed between 30min and 1h after
the addition of the drug.

1 Képird and colleagues noted "1 day post fertilization" in their protocols. However, the position of the pLLP in their figures best
corresponds to approx. 30hpf at our incubation temperatures.
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2.2 Microscopy

2.2.1 Live Imaging: Sample Preparation and Microscopes

Embryos were prepared for live imaging between 26 and 36hpf, depending on experiment specifics.
If required, embryos with the correct genotype and/or transgene expression were selected under a
widefield epifluorescence microscope. Embryos were then manually dechorionated using forceps
and anaesthetized with 0.01% tricaine (Sigma-Aldrich, USA) prior to being briefly immersed in 1%
peqGOLD Low Melt Agarose (Peglab, Germany) in E3 (containing 0.01% tricaine and kept liquid at
42°C) and immediately transferred to MatTek Glass Bottom Microwell Dishes (35mm petri dish,
10mm microwell, 0.16-0.19mm coverglass) (Mattek Corporation, USA). Using a weighted needle tool,
the embryos were gently arranged such that one of their lateral sides flatly rests directly atop the
glass slide. Following agarose cooling, E3 with 0.01% tricaine was added to the dish. Up to 20
embryos were mounted in a single dish for immediate imaging but at most 10 embryos were
mounted for overnight time course experiments. Mounting of early embryos at 8 to 12hpf to test

expression and activity of mRNA constructs was performed in the same way but without any tricaine.

The following microscopes were used: PE Ultraview ERS spinning disk confocal (PerkinElmer, USA)
(henceforth ERS), PE Ultraview VoX spinning disk confocal (PerkinElmer, USA) (henceforth VoX), Zeiss
LSM780 (NLO) scanning confocal with 2-Photon capability (Carl Zeiss, Germany) (henceforth
LSM780), Zeiss LSM880 with AiryScan technology (Carl Zeiss, Germany) (henceforth LSM880),
Olympus FV1200 with pulsed UV ablation lasers (Olympus, Japan) (henceforth FV1200). Unless stated
otherwise, images were acquired using either 20X 0.8NA air objectives or 40X 1.2NA water objectives
with Immersol W immersion fluid (Carl Zeiss, Germany). Where relevant, a more detailed account of

microscopy parameters is given with the description of particular experiments.

2.2.2 Optogenetics: Activation and Imaging

For global activation, a channel was configured to use the activating wavelength as if it were used to
image a corresponding fluorophore. Where possible, another channel was configured to use a non-
activating wavelength for simultaneous imaging of a reporter. To measure the initial state, a stack or
short time course was first acquired using only the non-activating channel. Following this, a time
course using both channels was run to observe the consequences of illumination with an activating

wavelength.

Overnight time courses with low time resolution were also run using both wavelengths to test for
tissue-scale phenotypes. In particular, primordium migration was scored at approximately 50hpf by
measuring the distance from the end of the embryo's yolk extension to the tip of the primordium and
normalizing it to the length of the tail (specifically the distance from the end of the yolk extension to

the end of the tail) by division, yielding the "pLLP / tail ratio".
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For local activation, non-activating channels were configured identically but the FRAP tool (on the
VoX) or the region tool (on the LSM780) were set up to use an activating wavelength at a comparable
power to illuminate only a small specific region of the sample. Time courses were started using the
non-activating channel and after a short time the activating wavelength was triggered to briefly

illuminate the region of interest, followed by continued imaging with the non-activating channel.

Activating wavelengths tested were 440nm and 458nm for PA-Racl, 488nm for PA-Cxcrdb, 405nm,
440nm and 458nm for bOpsin, and 488nm for the CRY2-CIBN system, although other wavelengths
were also tested briefly for each construct. Imaging at 561nm and 633nm was considered non-
activating for all constructs and was used to image independent reporters. Some reporters were only
available with EGFP or mNeonGreen labeling, in which case imaging them was considered to be
either equivalent with global activation (for PA-Cxcr4b and CRY2-CIBN) or to possibly be slightly
activating (for PA-Racl and bOpsin).

For all constructs, we kept embryos in the dark prior to mounting and imaging to avoid possible side-
effects of premature activation. Importantly, when working with the CRY2-CIBN system we noticed
early on that exposure to ambient light or bright-field illumination during mounting is sufficient to
induce complete and long-lasting translocation. We therefore worked with red ambient lighting and
introduced a yellow long-pass filter (commonly known as a yellow Post-It note) into our bright-field

illumination light path, which proved effective in preventing premature activation.

2.2.3 chemoARHGEF Imaging

Chemical induction of chemoARHGEF or NLS:mIRFP expression via the LexPR-LexOP system was
performed as described in section 2.1.5 for all endpoint experiments. High-resolution 3D stacks were

acquired at the LSM880 as described in section 2.2.7.

For live imaging of induction, embryos were also treated with 20uM RU486 at 24hpf and then
mounted at 28hpf as described in section 2.2.1, with both the agarose and E3 medium additionally
containing 30uM RU486. Time-lapse imaging was performed using adaptive feedback microscopy to

track migrating primordia as described in section 2.2.8.

2.2.4 Acute Laser Ablation of the Cxcr7 Expression Domain
Laser ablation of the Cxcr7-expressing domain of the pLLP was performed at the FV1200 for multiple
embryos (aged approx. 30hpf) in a single dish in quick succession, followed by a transfer of the dish

to the ERS or VoX for fast time course imaging of the pLLP's response.

Cxcr7 expression was visualized using the Cxcr7::Lyn:mKate2:sfGFP BAC transgenic line, which
expresses a dual-color (red/green) membrane label under the control of the Cxcr7 upstream

regulatory region. Since this BAC has been shown to recapitulate the expression pattern of Cxcr7 and
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to rescue Cxcr7-/- mutants when used to drive expression of Cxcr7 itself [unpublished data'], we here

consider it a bona fide reporter of native Cxcr7 expression.

To image the response to ablation, fish carrying this reporter were crossed either to the green
membrane label line claudinB::Lyn:EGFP or to Cxcrdb::Cxcr4b:tagRFP (here used simply as a red
membrane marker), yielding embryos with all lateral line membranes labeled in one color and only

membranes of Cxcr7-positive cells labeled in the other color.

Ablation was performed by firing the FV1200 355nm pulsed UV laser (power: 40%, dwell time:
2.0ps/pxl, objective: UAPON40XW340) onto a series of 15 to 25 single spots distributed across Cxcr7-
positive cells at the back of the prim, which we found to be the best approach for thoroughly
destroying the Cxcr7-positive domain without causing dramatic damage to the surrounding tissue. In
each dish, 7/10 mounted embryos were treated by ablation, leaving the other 3 as untreated

controls.

Time courses acquired on the ERS or VOX were converted to 8bit, stitched and cropped as described
in section 2.3.2 and finally projected into kymographs using the Reslice tool in Fiji [Schindelin et al.,

2012].

2.2.5 Uncaging of Azido-Blebbistatin

Uncaging of azido-blebbistatin was performed on the LSM780. We used claudinB::Lyn:EGFP embryos
treated with azido-blebbistatin, para-nitroblebbistatin or DMSO as described in section 2.1.5. For
each mounted embryo, we first acquired a stack of Lyn:EGFP using standard imaging conditions, then

performed uncaging, and finally acquired another stack.

For uncaging, we sought to match the conditions described in the literature [Képird et al., 2015] but
technical limitations prevented us from exactly reproducing them, which is why we conducted a
series of tests with different settings. Using a plan-apochromat 20X 0.8NA M27 air objective and
800nm 2-Photon laser light, we tested different combinations of laser power (1% to 5% in steps of
1%), pixel sizes (0.83um, 0.55um, 0.42um) and pixel dwell times (25us and 50us). We illuminated a
rectangular ROI tightly fit over the entire pLLP and scanned through the tissue using 100 slices per
stack, adjusting the total number of stacks to approximately match the reported total of 8min of

continuous illumination.

Following uncaging, embryos were kept mounted in the agarose dish in E3 buffer with 0.01% tricaine
and were either imaged at the VoX or ERS spinning disk microscopes to observe cell and tissue-scale
phenotypes over time or were left until the next morning (approx. 50hpf) to score the effects of the
drug treatments and uncaging on long-term migration using a widefield epifluorescence microscope.

Since only the primordium close to the coverglass was irradiated during uncaging, the primordium on

1 This work was performed by another member of the lab, Mie Wong, and will be described elsewhere.

41



the other side of each embryo provided a direct internal control for the effect of 2-Photon irradiation

itself.

Despite testing a number of different conditions, we were unable to reproduce the results reported
in [Képird et al., 2015]. We found that 2-photon irradiation either had no effect when intensities
were set too low or dwell times too short, or — unexpectedly — that it led to an arrest of migration
independently of whether the embryos were treated with azido-blebbistatin or not (data not shown).
In no case did we find that the combination of azido-blebbistatin treatment and 2-photon irradiation
had a specific non-additive effect on primordium migration. We therefore ultimately decided to
make use of the unexpected finding that an appropriate amount of 2-photon irradiation caused an

arrest of migration on its own (see sections 2.2.6 and 3.2.2).

2.2.6 2P-Arrest of Follower Migration

Arrest of follower migration by 2-Photon irradiation was performed with embryos transgenic for
Cxcrdb::NLS:tdTomato and either claudinB::Lyn:EGFP or UAS::mNG:UtrCH. Treatment was conducted
at the LSM780, where we first acquired a stack with standard 3D confocal settings, then irradiated
the pLLP with 2-Photon light, and subsequently acquired another standard stack. After treating 3 of 4
embryos in a dish in quick succession, the dish was moved to the ERS or VoX and fast time course

acquisition was started on all 4 embryos, the unperturbed case serving as a matched control.

For 2-Photon irradiation, we used a plan-apochromat 20X 0.8NA M27 air objective, a pixel size of
0.42pm, a pixel dwell time of 50us, and 800nm 2-Photon light at 3% power, which we measured to
equate 33mW before the objective. Notably, decreasing the power to 1% resulted in no phenotype
and increasing it to as little as 5% resulted in visible damage to the primordium. We selected a
rectangular ROl covering either the entire primordium (for complete arrests during initial tests) or
only the followers (from the back of the primordium to the center of the frontal-most rosette) and
we scanned across a z-stack ranging from the apical to the basal side with a total of 100 slices,

resulting in a total of approximately 5min of irradiation per sample.

Subsequent multi-position time course imaging of the leader cells' response was performed at the
ERS or VoX using a 40X 1.2NA water objective, acquiring stacks of 16 slices with a step size of 2.5um

at a speed of 5min or 3min per time point. Data analysis is described in section 2.3.4.

2.2.7 3D Live Imaging at the Zeiss LSM880 AiryScan

As a basis for single-cell segmentation, high-resolution 3D stacks (voxel size: 0.099um in xy, 0.225um
in z) of the membrane marker claudinB::Lyn:EGFP were acquired on the LSM880 using a 40X 1.2NA
water objective and the AiryScan FAST mode [Huff, 2016] with a piezo stage and bi-directional
scanning, which allowed an entire volume to be imaged in approximately 20 seconds (or 40 seconds

for two colors). Subsequently, the built-in 3D AiryScan deconvolution was run with 'auto’ settings.
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Importantly, achieving optimal image quality required adjustment of the stage such that the incident
light beam coming from the objective was exactly normal to the plane of the cover glass. To achieve
this, we used 633nm reflected light and xz line scanning to visualize the cover glass interface and
manually optimized the pitch of the stage, then repeated the process with a yz line scan. This was
done every time a new dish was placed on the stage, although adjustments were not always

necessary.

In addition to the claudinB::Lyn:EGFP green membrane label, secondary markers were imaged using
red or far-red fluorophores. These include Cxcr4b::NLS:tdTomato (nuclei), UAS::tagRFP-T:UtrCH (F-
actin), UAS::B4galT1(1-55Q):tagRFP-T* (trans-Golgi), UAS::CDMPR:tagRFP-T (trans-Golgi network and
late endosomes), UAS::mKate2:GM130 (cis-Golgi), lysotracker deep-red (Thermo Fisher Scientific,
USA) (acidic compartments), UAS::mKate2:Rab5a (early endosomes), and UAS::mKate2:Rablla
(recycling endosomes). Furthermore, claudinB::Lyn:EGFP was imaged in a number of homozygous
mutant backgrounds, namely Cxcr4b-/- (chemokine receptor mutant), Cxcr7-/- (scavenger receptor

mutant), and Cxcl12a-/- (chemokine mutant).

The comparison images in figure 3.7 were acquired (a) on the LSM880 using a classical confocal
scanning mode with the objective and settings matching those used for AiryScan acquisition and (b)
on the VoX using a matching objective and identical z-step size and other settings optimized for high-
quality images (high laser power, 200ms exposure, 77 sensitivity). Both volumes were deconvolved
using Huygens Remote Manager (v3.4.1) (Scientific Volume Imaging B.V., The Netherlands) with the

corresponding standard settings.

2.2.8 Adaptive Feedback Microscopy for On-Line Tracking of the pLLP

Automated feedback microscopy at the LSM880 was implemented using our python development
stack (see section 2.3.1) in conjunction with the Microscopy Pipeline Constructor (MyPiC) macro
[Politi et al., 2018], which provides a means of interacting with the ZEN Black software (Carl Zeiss,

Germany) (Fig. 3.21b).

The pipeline, named prim tracker 880 (pt880), is based on a very high-speed, very low-quality 3D pre-
scan of the primordium, usually acquired using conventional confocal settings (not AiryScan) with
very large pixel size (0.82um), low pixel dwell-time (2.18us), and large z step size (3um) (Fig. 3.21c).
When ZEN/MyPiC automatically saves this stack to a pre-specified directory, the running pt880
process detects the newly generated image file, loads it and masks the primordium (Fig. 3.21d)
through a simple image analysis workflow consisting of automated thresholding and subsequent
object filtering to retain only the largest object. Currently, this workflow is optimized to work with
the bright claudinB::Lyn:EGFP marker and cannot handle more dim or mosaic markers. However, the

modular design of pt880 should allow its reconfiguration to different markers or even different

1 This and the following 5 datasets were acquired by another member of the lab, Mie Wong.
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tissues with relative ease, provided a corresponding image analysis workflow can be developed.
Based on the mask, an appropriate 3D adjustment of the stage position is calculated and fed back to
MyPiC via the Windows registry, which then triggers stage movement and the acquisition of a high-
quality AiryScan FAST mode stack (as described in section 2.2.7) (Fig. 3.21e). Using MyPiC, these
steps can be configured to be repeated across multiple positions (i.e. multiple embryos in a dish) and

then looped over time to generate a time course (Fig. 3.21a).

There are a number of fail-safes integrated into pt880, including the option of limiting the total
possible stage movement in z (to avoid the risk of damaging the objective in case tracking goes
wrong for some reason), the detection of cases where a primordium has likely moved out of the
frame since the last time point (leading to a greater stage movement to catch up), and the detection
of cases where segmentation likely failed for some reason (leading to a default amount of stage

movement).

The pt880 software can be customized for different use-cases relatively easily. For instance, it has
been used with only minor modifications as a software autofocus for lateral line chain cells! and as
an on-line tracker for zebrafish embryonic microglia in the brain? (data not shown). However, pt880
is currently still in alpha (preliminary implementation, not feature complete). It will be extended and
refined in due course and the code will be released as open source software subsequently. Until

then, the code is available on request.

1 This work was done together with another member of the lab, Elisa Gallo.
2 This work was done with a member of the lab of Francesca Peri, Katrin Méller.
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2.3 Computational Work

2.3.1 Software Development Stack

Software development was performed using the Anaconda distribution (Anaconda Inc., USA) of
python 2.7.13 (64-bit) (Python Software Foundation, USA) [Van Rossum, 1995] on the Windows 7
Professional SP1 (64-bit) operating system (Microsoft Corporation, USA).

A number of scientific libraries and modules were employed: numpy 1.11.3 [Travis & Oliphant, 2006]
and pandas 0.19.2 [McKinney, 2010] for numerical computation, scikit-image 0.13.0 [Van der Walt et
al., 2014] and scipy.ndimage 2.0 [Jones et al., 2001] for image processing, scikit-learn 0.19.1
[Pedregosa et al., 2011] for machine learning, matplotlib 1.5.1 [Hunter, 2007] and seaborn 0.7.1
[Waskom et al., 2016] for plotting, networkx 1.11 [Hagberg et al., 2008] for graph-based work, tifffile
0.11.1 [Gohlke, 2016] for loading of TIFF images, and various scipy 1.0.0 [Jones et al., 2001] modules
for different purposes. Parallelization was implemented using dask 0.15.4 [Dask Development Team,
2016].

Prototyping, workflow management and exploratory data analysis were performed in Jupyter
Notebooks (jupyter 1.0.0, notebook 5.3.1) [Kluyver et al., 2016], including interactive visualization
using ipywidgets 7.4.1. Software engineering was conducted using the Spyder IDE (spyder 3.2.4)
[Raybaut et al., 2018] or Notepad++ 6.7.5 [Ho, 2016]. Version control was handled with Git
2.12.2.windows.2 [Torvalds et al., 2018] linked with an EMBL-hosted instance of the GitlLab
repository manager (GitLab, USA).

All software is available on request. The software for single-cell segmentation, cluster-based
embedding, atlas prediction and related analysis will be made freely available as open source
software following publication of the project's findings. The software for automated feedback
microscopy of the pLLP will be made freely available as open source software following some further

extension, testing and refinement.

2.3.2 Image Preprocessing

Some basic image processing was performed using the Fiji distribution [Schindelin et al., 2012] of
Image) 1.52g [Schneider et al., 2012] (henceforth referred to as Fiji). In particular, all images in
formats other than the TIFF format (.tif) were converted to TIFF using Fiji and all images with bit-
depths higher than 8bit were converted to 8bit by rescaling, using a simple automated Fiji macro.
Rescaling was performed either between the minimum and maximum value of the image/stack (if
intensity differences between samples were not relevant) or between a fixed, manually determined
minimum and maximum value applied across all images of a particular experiment (to preserve
relative intensity differences between samples). Multi-position tilings along an embryo were stitched

using the Grid/Collection Stitching plugin [Preibisch et al., 2009]. In some cases, images were cropped
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to reduce the amount of empty space surrounding the object of interest. For the purpose of figure
generation (but never prior to any quantitative data analysis), some images were aligned/reoriented

using Fiji's Straighten tool.

2.3.3 Single-Cell Analysis of chemoARHGEF Phenotypes

Following acquisition (see section 2.2.3), stacks were preprocessed as described in section 2.3.2 and

single cells were segmented as described in section 2.3.5.

Mean intensities of the red (chemoARHGEF) and/or the far-red (NLS:mIRFP) channel were extracted
for each cell and normalized for each condition independently by linear rescaling of the minimum-
maximum range to between 0 and 1. Normalized mean intensity was then used to split the cell
population into highly expressing and non/weakly expressing cells based on a percentile threshold:

cells with an intensity above the 80th percentile were considered highly expressing.

Cell sphericity was measured as the mean deviation of cell surface ISLA landmarks (see section 2.3.6)
from a sphere with a radius equal to the mean distance of surface landmarks from the centroid. This
measure was then inverted and normalized between 0 and 1. Thus, a value of 1 would indicate that a
cell is perfectly spherical. Distance from the midline was calculated as the absolute second principal
component of a PCA of the 3D coordinates of all centroids of a primordium, which corresponds to

the perpendicular distance of a given centroid to the primordium's front-to-back midline.

A resampling analysis was performed to test whether the location of chemoARHGEF-positive cells
alone can explain their sphericity or whether chemoARHGEF affects both location and sphericity. To
this end, the 3D centroid positions of all chemoARHGEF (N=20) and wild-type (N=26) primordia were
overlaid onto the same spatial frame of reference (the TFOR; see section 2.3.6). For every cell with
high chemoARHGEF expression, all wild-type cells in its immediate spatial proximity (closer than
5um; about one cell radius) were found using a KDTree ball point query approach (using the
scipy.cKDTree class) and one of them was selected at random. The sphericities of all thus selected
wild-type cells was then compared to the sphericities of the corresponding chemoARHGEF-positive
cells. To increase the robustness of the result, this sampling was computed 1000 times, with the
random selection among available wild-type neighbors for each chemoARHGEF-positive cell being
different each time. The plot in figure 3.4. shows the result from a single representative sampling run

and reports the average Cohen's d across all runs.

All other statistical analysis was performed as described in section 2.3.10.

2.3.4 Analysis of 2-Photon Arrest Dynamics

Time courses of pLLP migration following 2-photon arrest of the follower cells acquired at the VoX or

ERS microscope were preprocessed as described in section 2.3.2 and subsequently maximum
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intensity z-projected using a Fiji macro. All analysis described in this section was performed based on

such projections.

Binary masks of the moving primordia were obtained from the NLS:tdTomato channel (nuclei) and
from the lyn:EGFP channel (membranes) (if available) using a masking workflow consisting of the
following steps: median-filtering with a 5pxl square structural element to reduce detector noise,
Gaussian filtering with 0=10px| (nuclei) or o=5px| (membranes), automated threshold detection
(described below), binarization with the detected threshold, removal of smaller objects (all below the
median object size), and finally edge smoothing using 10 iterations of binary dilation followed by 10
iterations of binary erosion, both with a disc-shaped structural element (r=5pxl). This workflow was
applied to each time point separately.

# Code Snippet 2.1 (python 2.7)

# thresholds <- list of all thresholds
# n _objects <- list of corresponding object counts

# Run through all thresholds
for i in range(len(thresholds)):

# Check if the peak is before the current value
if max(n_objects[:1i]) > n objects[i]:

# Check if the current value is below a given fraction of the peak
if n objects[i] <= max(n objects[:1]) / peak fraction:

# Accept current threshold
target threshold = thresholds[i]
break

# Alternatively: check if current value is followed by an increase
elif n objects[i+l] > n objects[i]:

# Accept current threshold
target threshold = thresholds[i]
break

# Fallback: If 0 is reached, the previous threshold is accepted
if n objects[i] ==

# Accept previous threshold
target threshold = thresholds[i-1]
break

The automated threshold detection algorithm is based on object counting and inspired by a semi-
automated approach for smFISH spot detection [Raj et al., 2008]. It works by running through all
possible thresholds (255 in an 8bit image), binarizing the image with each threshold and counting the
number of separated foreground objects. The resulting empirical function, nypjeccs = f (threshold),
typically shows an initial increase in the number of objects (as the background is split) followed by a
sharp decrease (as background objects are discarded) and then a long flat tail with only minor
increases (as foreground objects are split) and a slow decrease (as foreground objects are discarded).

The region just after the sharp decrease is ideal for thresholding, as it discards most background
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objects whilst retaining most foreground objects. Here, we Gaussian-smoothed (c=3) the function
above and used the heuristic approach detailed in Code Snippet 2.1 to automatically determine a

suitable threshold within the ideal region.

Note that peak_fraction is a user-defined parameter, which in this case was set to 2.0. We optimized
all workflow parameters by visual inspection of the output and manual adjustment. We also visually
inspected all outputs following the workflow's execution, ensuring that usable results were

generated across time points and samples.

Using the binary masks, we extracted the pLLP's tip position and computed its differential over time
to obtain tip speed. As not all movies had the same spatial and temporal resolution, the positions
and speeds were converted from pixels to micrometers and temporal resolution was increased to

1min across all samples (from originally 5min or 3min) by local linear interpolation.

We also computed tip cell protrusion lengths, which we approximated as the difference between the
tip of the nucleus mask and the tip of the membrane mask — in other words, the distance from the
frontal-most point of the tip cell's nucleus to the frontal-most point of its membrane protrusions.
However, because leader cell protrusions are difficult to segment accurately, we considered the
automated extraction of this measure from the binary masks to be unreliable. We therefore used the
Fiji's Manual Tracking plugin [Cordeliéres et al., 2017] to manually annotate nucleus and membrane

tip positions, which we then parsed into a format ready for analysis using a python script.

For movies containing the actin label UAS::mNeonGreen:UtrCH we created a mask based on the red
nuclei and then reduced this mask to the tip region by including only the frontal-most 40'000 pixels.
On the mNeonGreen:UtrCH images we first performed local background removal by subtracting the
local mean (computed within a 30x30px| square structural element) and setting negative pixels in the
resulting images to zero. This removes the background signal of unbound probes, making the
remaining signal a proxy of F-actin abundance. We then measured the mean of the background-
subtracted intensity over time in the masked tip region. Furthermore, we employed a function from
the OpenCV python bindings (Itseez, USA) to compute the Farneback optical flow [Farnebéack, 2003]
of the actin signal (without background subtraction) across the entire image and subsequently
extracted mean and standard deviations of both optical flow magnitudes and optical flow angles

within the tip region.

All of the above measures showed considerable noise from one time point to the next. Therefore, we
also computed a smoothed version of each measurement using a 1D Gaussian smooth (o=9min) to

emphasize continuous trends.

Data visualization and analysis was performed with the tools and methods described in sections 2.3.1
and 2.3.10. Importantly, all analyses involving time in some form used time post irradiation, which

differs for each embryo in a dish due to the 5min of irradiation time (+1min of handling) required per
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embryo. Thus, imaging of the embryo irradiated last begins at t=0min, imaging for embryo irradiated

second to last begins at t=6min, and imaging for the embryo irradiated first begins at t=12min.

Code written for this project is available on request.

2.3.5 Single-Cell Segmentation Pipeline

Stacks of primordia with membranes labeled by claudinB::Lyn:EGFP were acquired at the LSM880 as

described in section 2.2.7 and preprocessed as described in section 2.3.2.

Samples that also contained the cxcrdb::NLS:tdTomato nuclear label showed some unavoidable
bleed-through into the green membrane channel, increasing the background within cells. Making use
of the simultaneously acquired red channel (which does not feature any bleed-through from
Lyn:EGFP), linear unmixing was applied to remove the contribution of NLS:tdTomato (C, contaminant
image) from the green channel (M, mixed image) and thus retrieve the cleaned Lyn:EGFP image (U,
unmixed image). To do so, we assumed that the signal in M was composed according to eq. 2.1 and

that we could therefore retrieve U by subtracting the contamination term from M (eq. 2.2).
M=U+a-C (eq.2.1)
U=M-a-C (eq. 2.2)

The bleed-through factor a was determined by iteratively searching for a value of a where the

correlation CORR (eq. 2.3) between the cleaned image U and the contaminant image C is minimal.
CORR = pcc(C, [M —a; - C —mean(M — a; - C)|) (eq. 2.3)

Note that the values of U used to compute this correlation were centered around their mean and
subsequently converted to absolute values, which ensures that unreasonably high values of a are
punished because overly unmixed regions start correlating with C again. The correlation value itself
is the Pearson Correlation Coefficient (pcc) of the thus prepared images. This approach robustly
removed NLS:tdTomato bleed-through and produced unmixed images that — unlike the raw images —

could be segmented successfully.

Following acquisition, preprocessing and if necessary linear unmixing, the membrane images were

fed into the segmentation pipeline. The pipeline consists of the following steps:

1. Median 3D smooth with cuboid 3x3x3 voxel structural element to reduce shot noise.
2. Gaussian 3D smooth with 0=3px/ to further reduce noise and smoothen structures.
3. Thresholding to retrieve mask of foreground objects (membranes).
The appropriate threshold was automatically detected using an approach similar to the one

described in section 2.3.4. However, here a base threshold was determined as the most
frequent value in the image histogram. Starting from this base threshold, a limited range of

positive offsets (usually 0 to 10 in steps of 1, for lower-quality images 0 to 40 in steps of 2)
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was scanned iteratively, counting the number of connected components in the inverse of the
mask generated by applying each given threshold. The threshold resulting in the largest
number of such connected components was considered the best threshold and was applied
to generate the final membrane mask.

4. Removal of disconnected components using morphological hole filling.

5. Labeling of connected components on the inverted membrane mask. This ideally yields one
connected component per cell, that is the cytoplasm.

6. Removal of connected components smaller than 1'000 voxels (artifacts) and assignment of
connected components larger than 1'000'000 voxels as background objects.

7. Watershed using labeled connected components as seeds and the smoothed input image
(with an additional 3D Gaussian smooth with 0=3px/ on top of steps 1 and 2) as topography.
The background objects surrounding the prim were also considered seeds.

8. Assignment of zero label to background objects and removal of any objects disconnected
from the primordium by retaining only the single largest foreground object.

The parameters of this pipeline were manually optimized by inspection of outputs during test runs.

All primordia segmented by this approach were manually double-checked and rare cases exhibiting

substantial segmentation errors were excluded from downstream analysis.

2.3.6 ISLA and CBE

Intensity-biased Stochastic Landmark Assignment (ISLA)! (Fig. 2.1a) was performed on cropped-out
volumes of single segmented cells, with voxels outside the segmentation mask set to zero and voxel
intensities normalized such that their sum equals 1 (by dividing each by the sum of all). Landmarks
were assigned by considering the normalized voxel intensities as the probabilities of a multinomial
distribution from which 2000 points were sampled (with replacement). Landmark coordinates were

then transformed from pixels to microns to account for anisotropic imaging.

When generating point clouds to represent pure cell shape (Fig. 2.1a; right-hand side), the intensity
image used for ISLA was not the actual membrane marker image. Instead, a binary image of the inner
hull of the segmentation mask was used. When generating point clouds to represent intensity
distributions (e.g. for the additional markers of cellular architecture detailed in section 2.2.7) (Fig.
2.1a; left-hand side), a simple background subtraction was performed prior to ISLA to prevent
landmarks from being assigned spuriously due to background signal. The background level was
determined as the mean intensity within the masked cell and was subtracted from each voxel's

intensity value, with resulting negative values set to zero.

1 ISLA was partially inspired by a similar method developed in the lab of Prof. Dr. Julie Theriot, who kindly described their approach to us.

To the best of our knowledge, their approach as not been published yet and therefore cannot be cited here.
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Figure 2.1: Overview of point cloud extraction and embedding pipeline.

Data flows from 3D single-cell segmentations in the form of labeled image volumes as well as corresponding
intensity images (if required) to (a) ISLA point-cloud sampling from either a masked intensity distribution or a
segmentation hull, to (b) conversion to either the Tissue Frame of Reference (TFOR) or the Cell Frame of
Reference (CFOR), and finally to (c) latent feature extraction by Cluster-Based Embedding (CBE). The modular
nature of the pipeline allows individual modules (gray boxes) to be replaced by other algorithms if needed.
For instance, extraction of point cloud moments was also attempted as an alternative to CBE.
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To enable extraction of latent features from a matched Tissue Frame of Reference (TFOR) (Fig. 2.1b,
left-hand side), primordia were aligned using a simple PCA-based approach that does not require
image registration. 3000 landmarks were sampled (using ISLA) from a given primordium's overall
segmentation mask and the PCA of this matrix (3000 landmarks in 3 dimensions) was computed.
Given that the pLLP's longest axis is always its front-rear axis and the shortest axis is always the
apico-basal axis, such a PCA transformation snaps primordia that had been acquired at a slight slant
into an aligned frame of reference. To complete the alignment, the primordial point clouds were
then translated such that the frontal-most point becomes the spatial origin (0.0, 0.0, 0.0). The same
transformation can then be applied to landmarks extracted from individual cells, which results in
cellular point clouds that are oriented exactly as if the primordia had been registered prior to their

extraction.

The only issue that required resolution in order for this approach to work as intended is the
directional ambiguity of the principal component (PC) axes, the sign of which can differ between
samples. This was safely resolved by inspecting the contribution of the image axes to each PC in
order to match the highest-contributing image axis to its corresponding PC, flipping the PCs sign if
necessary. This ensures that the sign of PCs always follows the sign of the image axis. Thus, a correct
alignment will be produced so long as the primordia are always acquired at slants less than 90° from

a perfectly aligned position, which our imaging workflow could guarantee.

To create a Cell Frame of Reference (CFOR) that is invariant to size and rotation (Fig. 2.1b, right-hand
side), point cloud sizes were first normalized such that the sum of the magnitudes of all centroid-to-
landmark vectors is 1, which corresponds to a normalization for cell volume. Second, cellular point
clouds were cast into a pairwise distance (PD) representation. In the PD space, each point of the
cloud is no longer characterized by three spatial coordinates but instead by the distances to every
other point of the cloud. This representation is rotationally invariant but also extremely high-
dimensional (an LxL matrix, where L is the number of landmarks). To reduce this dimensionality, only
the 10th, 50th and 90th percentiles of all pairwise distances for each point were chosen to represent
the point (resulting in an Lx3 matrix), which we reasoned would encode both local and global relative
spatial location. However, although we have empirically found this approach to work reasonably well
for the cells of the pLLP, it should be noted that we have not yet formally investigated the potential
loss of information resulting from the re-representation of point clouds in such a reduced pairwise

distance space.

To determine cluster centers for Cluster-Based Embedding (CBE) (Fig. 2.1c), point clouds from
multiple samples were centered on their respective centroids and overlaid. K-means clustering was
performed on this overlay cloud (using scikit-learn's MiniBatchKMeans implementation) with k=20.

The resulting cluster centers were used as common reference points for the next step.
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Several measures were taken to improve the robustness and performance of cluster detection. First,
individual cellular point clouds were downsampled from 2000 points to 500 points prior to being
overlaid (using k-means clustering with k=500 clusters, the centers of which were used as the new
landmarks). Second, not all available cells were used in the overlay. Instead, a number of primordia
(at least 10, at most 25) were selected and only their cells were used in the overlay, whereas the
resulting cluster centers were used as reference points across all available samples. Third, the entire
overlaid point cloud was downsampled using a density-dependent downsampling approach inspired
by [Qiu, 2011], yielding a final overlaid cloud of at most 200'000 points, which allowed reference

cluster centers to be computed reasonably efficiently.

Density-dependent downsampling was performed using a simplified version of the algorithm
described in [Qiu, 2011]. First, the local density (LD) of points is found, which here is defined as the
number of points in the local neighborhood, i.e. within a sphere where the radius is the median
pairwise distance between all points multiplied by a given factor (here 5). Next, a target density (TD)
is determined, which in accordance with [Qiu, 2011] was set to be the third percentile of all local
densities. Now, points are downsampled such that the probability of keeping each point is given by
equation 2.4. If necessary, the resulting downsampled distribution is further reduced by random

sampling in order to reach the maximum of 200'000 points.

1, if LD; <TD
p(keep_cell i) = {2, otherwise (eq. 2.4)

LD;
The reason density-dependent downsampling was chosen is to avoid cases where high-density
agglomerations of landmarks in a particular region accumulate multiple clusters and thus deplete
lower-density regions of local reference points; density-dependent downsampling preserves the

overall shape of the overlaid point cloud whilst reducing local density peaks.

Following the determination of common reference points by k-means clustering, CBE proceeds by
extracting features describing the local landmark distribution around the reference points for each
separate cellular point cloud. A number of such features were implemented, including the number of
landmarks in the local neighborhood of reference points, the number of landmarks assigned to the
reference point by the k-means clustering itself, the local density of landmarks at the reference point
determined by a Gaussian Kernel Density Estimate (KDE), and the mean Euclidean distance of the 25
nearest neighbors of each reference point. The results were similar with each of these approaches
and ultimately the last option (mean Euclidean distance of nearest neighbors) was chosen for all

analyses based on the expressiveness of the resulting shape space and the ease of its computation.

The feature extraction described above yields an n-by-k latent feature space, where n is the number

of cells and k the number of shared reference clusters (here k=20). To align individual features with
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biological relevance and to allow the removal of less relevant features, this space was transformed

by Principal Component Analysis (PCA).

In addition to CBE, an alternative embedding based on the moments of the PFOR or CFOR point
clouds was also generated as a comparably simplistic baseline. We computed the 1st raw moments
(eq. 2.5), the 2nd centralized moments (eqg. 2.6) and the 3rd to 5th normalized moments (eq. 2.7)
(55 features in total) and once again used PCA to re-express these features in a more compact and

expressive fashion.
rMyjijxy = mean(C, - i+ Cy - j + Cx - k) (eq. 2.5)

cMy[ijk) = mean ((Cz - TM1[100])i : (Cy - TM1[010])j : (Cx - TM1[001])k) (eq. 2.6)

CMm(ijk]
- - =
Std(CZ—TMl[loo])l'Std(Cy—TMl[Olo])j'Std(Cx—TMl[O(n])

NMmijr) = (eq. 2.7)
In both equations, C; is the array of all point cloud coordinates along the spatial dimension d, M,, is
the set of raw (rM,,), centralized (cM,,) or normalized (nM,,,) moments of the m-th order, and
[i,/, k] includes all combinations of length 3 drawn from the integer range [0, ..., m] that satisfy i +
j + k = m. All array operations are element-wise and mean(...) and std(...) compute the mean and

standard deviation of a given array.

2.3.7 Prediction and Visualization of Morphological Archetypes
Four morphological archetypes were manually annotated in 26 primordia (see Fig. 3.17a), yielding 93
leader cells, 241 outer rosette cells, 182 inner rosette cells and 108 between-rosette cells (624 cells

in total). Only the most clear examples of the respective archetypes were labeled.

Cell archetype prediction was performed using a Support Vector Classifier (sklearn.svm.SVC) with a
Radial Basis Function (RBF) kernel, using the PFOR embedding of cell shape as input features. We
optimized the SVC hyperparameters using a grid search with 5-fold cross-validation over 5 orders of
magnitude surrounding the scikit-learn default values, settling ultimately on C=1.0 (penalty) and

gamma=0.05 (RBF kernel coefficient). The defaults were used for all other settings.

The confusion matrices in figure 3.17b were produced by randomly splitting the annotated cells into
a training set (436 cells) and a test set (188 cells). Predictions for the entire dataset (16'974 cells)

were generated following training with all 624 manually annotated cells.

The archetype space was constructed by inferring the classification probabilities for each class (using
sklearn.svm.SVC.predict_proba) and performing a PCA on them. The 3D and 2D visualizations in
figure 3.18 were then generated by plotting the first three or the first two principal components,

respectively.
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2.3.8 Multi-Channel Atlas Prediction

To construct multi-channel atlases, two-color stacks of the green membrane marker claudinB::

Lyn:EGFP and the red or far-red secondary markers listed in section 2.2.7 were collected.

For the selective registration approach, ISLA and PFOR-CBE were performed on the segmentation
masks and for each target cell the 10 nearest neighbors were retrieved from each of the secondary
channels' shape spaces using scipy.cKDTree.query. An open source python implementation of the
Iterative Closest Point (ICP) algorithm was used [retrieved from github.com/ClayFlannigan/icp on
13.08.2018 and used under the Apache License version 2.0] to register the segmentation-derived
ISLA point clouds of the selected cells. The 5 cells with the highest loss after segmentation were
discarded and the ISLA point clouds derived from the secondary channel of the remaining 5 cells

were transformed to match the registration.

To reconstruct images from registered point clouds, they were first scaled back from real scale (um)
into the original image scale (voxels) and transposed to align with the bounding box of the target cell.
Next, Gaussian Kernel Density Estimation (KDE) was performed using scipy.stats.gaussian_kde,
creating a reconstructed intensity image. Finally, the target cell's segmentation mask was used to

paste this reconstruction back into the correct voxels in the target cell's primordium.

For the machine learning approach, embedded spaces were extracted for all cells and all channels.
Because expression of the secondary markers was sometimes heterogeneous across the primordium,
only cells with a secondary marker intensity above the 33rd percentile were used as training data.
Latent features extracted from the segmentation mask were used as input features and latent
features extracted from the secondary channels were the target values for which regressors were
being trained. To select the best machine learning model, the following regressors were tested using
5-fold cross-validation: k-nearest neighbors regression (sklearn.neighbors. KNeighborsRegressor), random
forest regression (sklearn.ensemble.RandomForestRegressor), elastic net regression (sklearn.linear_model.
ElasticNet), Lasso regression (sklearn.linear_model.Lasso), a multi-layer perceptron (sklearn.neural_network.
MLPRegressor), and a support vector regressor with an RBF-kernel (sklearn.svm.SVR). Hyperparameters were
optimized on the NLS:tdTomato nuclear marker using a 5-fold cross-validated grid search of 5 orders of
magnitude surrounding the scikit-learn defaults. Performance was evaluated and optimized across different
secondary channels and latent feature embeddings, with the primary aim being high explained variance but

also giving some consideration to computational efficiency (training and prediction time).

The selected final model is the SVR regressor with hyperparameters C=10.0 (penalty), gagmma=0.005 (RBF
kernel coefficient) and epsilon=0.1 (penalty-free epsilon-tube). It was trained for each secondary channel on all

available data for that channel and then applied to predict that channel's embedded space for all other cells.
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2.3.9 Data Visualizations

Micrographs were visualized using Fiji. Scale bars were added with "Analyze>Tools>Scale Bar". All

other plots were created with the python tools described in section 2.3.1.

The "exploded view" of the segmented pLLP (Fig. 3.8b) was generated by first determining the
centroids of each segmented cell and then shifting them apart by scaling their x and y coordinates by
a single user-specified factor. Next, an appropriately up-scaled empty image stack was created and
populated one by one with the segmented cells, which were copied from the original image to the
scaled position of their centroid. In this way, the cells are shifted apart uniformly but are not
themselves scaled or otherwise transformed. The python code for generating this visualization is
called tissueRipper and is available as open source at github.com/WholsJack/tissueRipper (note:

WholsJack is the GitHub alias of the author of this thesis).

The correlation heatmaps (Fig. 3.13a-b) were created using seaborn's clustermap function with the
pairwise Pearson correlation coefficients between all engineered and latent features. The
corresponding bigraphs (Fig. 3.31c-d) were generated using a custom plotting function based on the
networkx module. The edges were colored according to the signed value of the Pearson correlation
coefficient and sized according to the absolute value. Edges with an absolute correlation coefficient
smaller than 0.3 were omitted. The nodes of the engineered features were sorted to reduce edge
crossings and group similar nodes, which was achieved by minimizing the following custom loss

function:

loss = Y/E, YL,

]?_; B f]_E| . |pCC(Ei' Lj)l (eq. 2.8)

where fr and f; are the number of engineered and latent features, respectively. O is the given sort
order of the engineered features, i.e. any permutation of the integer interval [0, fz]. Finally,
|pcc(Ei,Lj)| is the absolute Pearson correlation coefficient of the values of the i-th engineered
feature and the j-th latent feature. In essence, this loss function is the sum of all Euclidean rank
distances between engineered and latent features, weighted by their corresponding absolute
Pearson correlation coefficients. Minimization was performed by random shuffling of the sort order
and retaining only shuffles that reduced the loss until no change was observed for 2000 consecutive

shuffles.

Due to the high dimensionality of the single-cell analysis data, many of the visualizations used during
data analysis were interactive, allowing the analyst to select the particular features or dimensions to
visualized "live" within Jupyter notebooks. Interactivity was mainly implemented using ipywidgets
and in some cases using matplotlib's interactivity features. As the format of this thesis does not
support interactive visualizations, the most relevant or representative plot specifications were

chosen for the various figures.
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2.3.10 Statistical Analysis

Unless otherwise stated, the following definitions and statistical methods were used.
N refers to the number of embryos/primordia and n to the number of cells.

Statistical significance for comparisons between two conditions was estimated without parametric
assumptions using a two-tailed Mann-Whitney U test (scipy.stats.mannwhitneyu with keyword
argument alternative="two-sided’). For linear regressions, the significance of the slope being non-zero
was estimated using a two-tailed Wald test with t-distribution of the test statistic (in
scipy.stats.linregress). In figures, significance is indicated as ns (p>=0.01), * (p<0.01), ** (p<0.001) or
*** (p<0.0001).

Significance tests with large sample sizes such as those encountered during single-cell analysis tend
to indicate high significance regardless of whether the difference between populations is substantive
or technical [Sullivan & Feinn, 2012], which is why we report effect sizes rather than statistical
significance in such cases. This applies in particular to the quantitative analysis of chemoARHGEF
(section 3.1.4). Effect size was estimated using Cohen's d [Cohen, 1988], which was computed using a
custom python function. Resulting values can be described as no effect (d=0.0), a small effect (d=0.2),

a medium effect (d=0.5) or a large effect (d=0.8) [Cohen, 1988].
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3 Results

3.1 Adapting Optogenetic Tools for the Precise Perturbation of
Chemokine and Actin Signaling in the pLLP

The potential power of optogenetics as a tool for minimal and precise perturbation of biological
systems was introduced in section 1.3.1. Here, we sought to adapt existing optogenetic tools for use

in the pLLP and to employ them to study the interplay of migration and morphogenesis.

3.1.1 Selection and Overview of Optogenetic Tools

We chose to adapt tools that had been shown to work in other systems and that were specifically
designed to manipulate chemokine signaling (and thus migrational polarity) or actin organization and
dynamics (and thus force generation and cellular architecture). We reasoned that control over these
two key players would allow us to perform a broad range of experiments from domain-specific
activation to single-cell perturbation and to observe the consequences both within directly perturbed
cells and within unperturbed cells in the same tissue, which together would reveal even the most

intricate interrelations of chemokine signaling and tissue mechanics in the primordium.

b Rhodopsm PA CXCR4 Blue
~414

Extracellular R
Intracel!ular —CXCR4
Gptlcal Chemotams
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PhyB L’g’” PhyB
CRY2 Dark CRY2

Figure 3.1: Optogenetic tools adapted to control chemokine and actin signaling.

(a) PA-Racl: The LOV-Ja domain blocks the active site of constitutively active Racl in the dark, preventing its
interaction with effectors (left). Light induction releases the block and effectors are activated (right).
Reproduced from [Wu et al., 2009]. (b) Rhodopsin is a naturally occurring light-sensitive GPCR (left). PA-
CXCR4 was created by exchanging rhodopsin's intracellular domains for those of CXCR4 (right). Reproduced
from [Xu et al., 2009]. (c) bOpsin is a retinal blue light-sensitive GPCR that happens to signal through Gai,
which is why it can be repurposed directly to mimic chemokine signaling in non-retinal cells. Reproduced
from [Karunarathne et al., 2013a]. (d) Light-dependent heterodimers such as PhyB-PIF or CRY2-CIB1 can
be used to optically control Target Proteins (TPs) through recruitment. Here, one of the dimerization
partners is tethered to the cell membrane and the other is recruited upon light induction, bringing along a
target protein that is inactive in the cytoplasm but binds and activates interaction partners once localized to
the membrane. Adapted from [Zhang & Cui, 2015].
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The relevant optogenetic tools can be loosely categorized into two types: single-component systems
based on conformational change (Fig. 3.1a-c) and two-component systems based on recruitment

(Fig. 3.1d) [Tischer & Weiner, 2014; Karunarathne et al., 2015; Repina et al., 2017].

In single-component systems, optical stimulation of a light-sensitive domain leads to a specific
conformational change, activating the biochemical function of the protein in question. We adapted
three such proteins to the lateral line: a photoactivatable version of the small GTPase Racl; PA-Racl
[Wu et al., 2009], a light-sensitive chimera of rhodopsin and Cxcrd4b; PA-Cxcrdb [Xu et al., 2014], and a
naturally light-sensitive receptor capable of activating the Cxcr4 pathway; bOpsin [Karunarathne et

al., 2013a].

PA-Racl is a constitutively active form of human Racl fused to the photosensitive LOV2-Ja domain of
Avena sativa phototropinl [Wu et al., 2009]. The LOV2-Ja domain sterically blocks the active site of
Racl in the dark but releases it upon blue light illumination, allowing Racl to bind and activate its
effectors (Fig. 3.1a) [Wu et al., 2009]. PA-Racl has been used to drive lamellipodia formation and
motility in cultures of Hela cells and mouse embryonic fibroblasts [Wu et al., 2009], in Drosophila
border cells [Wang et al., 2010] and in zebrafish neutrophils and neural crest cells [Yoo et al., 2012;

Scarpa et al., 2015].

PA-CXCR4 is a chimeric bovine rhodopsin, a naturally light-sensitive GPCR whose intracellular
domains have been replaced by human CXCR4 to change rhodopsin's Ga; activity into CXCR4's Ga;
activity (Fig. 3.1b) [Xu et al., 2014]. This form of PA-Cxcr4b has been used to polarize T-cells and to
guide their migration [Xu et al., 2014]. To use it in the pLLP we modified the human CXCR4-domains
to match those of zebrafish Cxcr4b, yielding PA-Cxcrab?.

Finally, bOpsin (short for blue opsin) is a human retinal opsin that has been found to be capable of
signaling through Ga; (Fig. 3.1c) and has been repurposed to polarize Hela cells and to induce neurite
extension in rat hippocampal neurons [Karunarathne et al., 2013a] as well as to guide immune cell

migration in vitro [Karunarathne et al., 2013b].

Recruitment-based tools make use of protein pairs that heterodimerize in response to optical
stimulation. As a general strategy, one interaction partner is fused to a targeting domain which
localizes it to a compartment of interest such as the cell membrane. The other partner is coupled to
an effector protein that has no downstream targets in the cytoplasm and is thus inactive in the dark.
Upon optical activation, the cytoplasmic component binds the pre-localized component and the

effector — now recruited to its site of function — activates its downstream targets (Fig. 3.1d).

To bring recruitment-based tools to the lateral line, we adapted the CRY2-CIBN system (Fig. 3.1d)

[Kennedy et al., 2010], which at the time was the most easy to use and most widely adopted

! This construct was designed by a former member of the lab, Erika Dona.
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recruitment-based optogenetic tool [Tischer & Weiner, 2014; Zhang & Cui, 2015]. Indeed, the
Arabidopsis-derived CRY2-CIBN heterodimerization system has been successfully used to optically
trigger transcription [Hughes et al., 2012; Konermann et al., 2013], intracellular signaling [Zhang et

al., 2014], and more recently morphogenesis by apical constriction [Izquierdo et al., 2018].

Here, we focused on inducing translocation to the cell membrane by recruitment of optically
activated CRY2-effector fusion proteins to membrane-anchored CIBN. As effectors, we used two Rho
GTPase GEFs to activate RhoA and Racl, respectively, as was previously done in murine fibroblasts
with the PhyB-PIF heterodimerization system [Levskaya et al., 2009], and we used a Ga-GAP and a
By-sequestering protein to inhibit Cxcr4b signaling, as established previously in murine macrophages

[O'Neill & Gautam, 2014].

3.1.2 PA-Racl, PA-Cxcr4b and bOpsin are Aphenotypic in the pLLP

We generated stable transgenic fish lines expressing PA-Racl, PA-Cxcr4b and bOpsin in the pLLP
under control of a Gal4-UAS transactivation system. All three constructs were expressed and
localized to the cell membranes as expected, although bOpsin expression was comparatively weak

(Fig. 3.2a).

To test light-dependent activity, we kept embryos in the dark prior to imaging and then used
confocal laser light at activating wavelengths to stimulate the entire tissue either briefly or overnight,
or to briefly stimulate a small region of interest such as single cells or subcellular membrane regions.
As readouts, we first followed either short-term membrane dynamics or long-term pLLP migration
using a membrane label. However, we did not observe any measurable effect on either process for
any of the three optogenetic constructs (Fig. 3.2b-c). Next, we visualized actin dynamics using the
F-actin probe UtrCH [Burkel et al., 2007] during stimulation of all three constructs but found no
discernible active response (Fig. 3.2d). Finally, we sought to test whether stimulation of PA-Cxcr4b or
bOpsin would lead to the depletion of the G-protein Gy9 from the cell membrane, a measure that
has been reported as a readout for GPCR activity [Saini et al., 2007], including bOpsin activity
specifically [Karunarathne et al., 2013a]. However, although Gy9 does localize to membranes in the
pLLP, we could not detect any response to PA-Cxcr4b or bOpsin stimulation (data not shown). In fact,
transgenic expression of mNeonGreen:Gy9 itself caused a deceleration and in some cases an arrest of
pLLP migration, possibly due to an inhibitory effect on Cxcr4b signaling or alternatively through an

unknown toxic effect.
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Figure 3.2: Example data from unsuccessful tests of PA-Rac1, PA-Cxcr4b and bOpsin optogenetics.

(a) Expression and localization of PA-Racl (left; scale bar: 10um), PA-Cxcrd4b (middle; scale bar: 7um) and
bOpsin (right; scale bar: 12um) in subsections of the pLLP. (b) Stills from a movie of a pLLP expressing
bOpsin:tagRFP-T [not shown] and the membrane marker Lyn:EGFP, displaying no evident alterations in
leader cell membrane dynamics upon bOpsin stimulation. (c) At 48hpf, primordia expressing PA-Racl have
migrated just as far as wild-type primordia relative to the total length of the embryo's tail (p=0.094), despite
overnight illumination with activating light. (d) Stills from a movie of F-actin visualized by mNG:UtrCH during
activation of PA-Cxcr4b:tagRFP-T [not shown], indicating no evident change of actin dynamics in response to
activating light. Scale bar: 7um. (e) G-protein Gy9 immediately translocates away from the membrane upon
bOpsin stimulation in Hela cells and swiftly recovers thereafter (left) [reproduced from Karunarathne et al.,
2013a] but does not respond even to continuous global activation of bOpsin (middle) or PA-Cxcr4b (right) in
early zebrafish embryos (OA: Optical Activation). Time in left panel denotes time since a brief activation
pulse, time in middle and right panels denotes continuous activation. Scale bars: 10um. Data acquired jointly
with Sruthi Raja.
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To check whether the lack of observable optogenetic activity is specific to the lateral line primordium
or to the stable transgenic lines we generated, we also injected mRNA of all three optogenetic
constructs into zygotes and tested optical stimulation in early embryos undergoing gastrulation
(approx. 8-10hpf). Consistent with our results in the pLLP, all constructs were capable of localizing to
the membrane but we did not detect any distinctive phenotype in either membrane dynamics, actin
dynamics, Gy9 translocation, or long-term survival and development (see representative Gy9 data in

Fig. 3.2e; other data not shown).

3.1.3 The CRY2-CIBN System is Functional but CRY2-Effector Fusions are not
Readily Expressible in Zebrafish

We engineered a set of membrane-bound CIBN constructs and tested whether they were capable of

recruiting cytoplasmic CRY2:tagRFP-T or tagRFP-T:CRY2 upon blue light stimulation. Both mRNA and

DNA injections imaged in early embryos (approx. 10hpf) or in the pLLP showed high expression and

membrane localization of CIBN constructs and lower but readily detectable cytoplasmic and nuclear

expression of CRY2 constructs (Fig. 3.3a), although CRY2-positive clones in the pLLP were exceedingly

rare.

Blue-light stimulation (but also ambient-light exposure, see Materials & Methods, section 2.2.2)
induced the rapid recruitment of the cytoplasmic pool (but not the nuclear pool) of both CRY2
constructs to the cell membrane in cells expressing CIBN, both in early embryos (Fig. 3.3a-b) and in
the pLLP (Fig. 3.3c). Stimulation was also possible with single-cell precision by illuminating only a
small region of interest (Fig. 3.3d), whereas distinct sub-cellular recruitment to only one particular
region of the membrane was not achievable, possibly due to the rapid cytoplasmic diffusion of

activated CRY2 constructs.

Given the success of these test runs, we went on to design four effector-coupled CRY2 constructs, all

based on effectors that had been used successfully in optogenetics studies in literature.

Two were designed to inhibit GPCR signaling and therefore chemokine signaling through Cxcr4b.
UAS::CRY2:tagRFP-T:GRK3ct features the C-terminal domain of bovine G protein—coupled receptor
kinase 3 (GRK3), which selectively sequesters GBy complexes and inhibits their activity [Hollins et al.,
2009; O'Neill & Gautam, 2014]. UAS::CRY2:tagRFP-T:RGS4A is based on Regulator of G protein
signaling 4 (RGS4), a GAP that inhibits Ga; and Gayg signaling and can be prevented from natively
localizing to the membrane by truncating away the first 33 amino acids (hence RGS4A) [O'Neill &
Gautam, 2014].
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Figure 3.3: Optogenetic membrane recruitment with the CRY2-CIBN system.

(a) Expression and localization of bAct::CIBN:mNeonGreen:CaaX (left), bAct::CRY2:tagRFP-T (middle) or both
(right) in co-injected early embryos (approx. 10hpf). Scale bar: 20um. (b) The same cells after a minute of
imaging; the 488nm laser used to image CIBN:mNeonGreen:CaaX has activated CRY2:tagRFP-T and induced
its recruitment to the membrane. (c) pLLP cells positive for injected UAS::CRY2:tagRFP-T in embryos carrying
UAS::Lyn:CIBN and the Gal4 driver as stable transgenic background. CRY2 is cytoplasmic prior to illumination
with 488nm laser light (left) and gets recruited to the membrane afterwards (right). Scale bar: 10um. (d) Early
embryos (approx. 10hpf) injected with bAct::Lyn:CIBN and bAct::CRY2:tagRFP-T. The initially cytoplasmic
CRY2 is illuminated with 488nm laser light within a specific region of interest (left, region 1), which induces
cell-specific membrane translocation (right). Scale bars: 10um.
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The other two constructs were designed to activate Racl and RhoA activity, respectively, and were
based on the RacGEF Tiam, which has previously been used to control Racl using the PhyB-PIF
optogenetic recruitment system [Levskaya et al., 2009], and on the RhoGEF ARHGEF25, which has
been used to activate RhoA in the context of a rapamycin-based chemical recruitment system [Van
Unen et al., 2015]. For both, we identified the closest zebrafish homologues, predicted the
catalytically active GEF domains, and cloned them to generate UAS::CRY2:tagRFP-T:Tiamla-Gd and
UAS::CRY2:tagRFP-T:ARHGEF25b-Gd (where Gd is short for GEF domain).

We generated stable transgenic lines of Lyn:CIBN and the four effector-coupled CRY2 constructs.
However, we were unable to derive transgenic embryos that express any of the CRY2-effector fusion
proteins at a detectable level in the lateral line. More specifically, we found that only an unusually
small number of fish injected with a CRY2 effector construct produced any transgenic progeny
(approx. 2% as opposed to 10-50% with Lyn:CIBN or other constructs), that those select few founder
fish produced unusually few transgenic offspring per clutch (approx. 5-10%), and that those
transgenic offspring showed unusually low expression of the co-injection marker (c/Imc2::EGFP; green
heart marker). Crucially, although some of these rare positive embryos sporadically expressed very
low levels of the CRY2 construct, none showed any detectable expression in the posterior lateral line

primordium (data not shown).

As the same observations were made independently by other members of the lab! using CRY2
constructs with very different types of effectors, we concluded that CRY2 is not expressible in stable

zebrafish transgenic lines.

3.1.4 A Constitutively Active Version of the RhoGEF ARHGEF25b Causes Cell
Rounding and Sorting in the pLLP

Originally intended as positive controls for the CRY2 optogenetic approach, we engineered versions

of the RhoA and Racl effectors that are directly targeted to the membrane (Lyn:tagRFP-T:

ARHGEF25b-Gd and Lyn:tagRFP-T:Tiam1a-Gd) and therefore are expected to act in a constitutively

active manner. We expressed these constructs in the pLLP under the chemically inducible LexPR-

LexOP transactivation system [Emelyanov & Parinov, 2008], which allows tissue-specific and

temporally controlled expression.

Contrary to the CRY2 fusions, we were readily able to generate transgenic zebrafish lines expressing
these constructs in the lateral line primordium upon chemical induction of the LexPR transactivator.
Whilst cells expressing tagRFP-T:Tiamla-Gd seemed completely unaffected, expression of Lyn:
tagRFP-T:ARHGEF25b-Gd caused cells to assume a more rounded shape (Fig. 3.4a). Interestingly, this
increase in cell sphericity was accompanied by a positional phenotype: individual cells expressing

Lyn:tagRFP-T:ARHGEF25b-Gd are predominantly localized to the primordium's center rather than its

! Specifically Mie Wong and Elisa Gallo.

65



periphery (Fig. 3.4a). As we had never before observed such a positional phenotype, we decided to
investigate this effector more closely, terming the construct chemoARHGEF in reference to the

chemical control of its expression.

Making use of the initial mosaicism of LexPR-driven expression, we quantitatively analyzed the
effects of chemoARHGEF at the single-cell level. We acquired and automatically segmented (see
section 3.3.2) high-resolution 3D volumes of primordia co-expressing a uniform membrane label
(used for segmentation) alongside either chemoARHGEF or LexOP::NLS:mIRFP, an inert control
construct expressed under the same promoter (Fig. 3.4b). Consistent with our initial qualitative
observations, we found that high levels of chemoARHGEF expression but not NLS:mIRFP expression
are associated with substantially increased cell sphericity (Fig. 3.4c) and with a location bias toward

the center of the tissue (Fig. 3.4d).

Since a more central cell location is itself associated with increased cell sphericity in wild-type
primordia (Fig. 3.4e), we considered the possibility that the location bias of chemoARHGEF might be
sufficient to explain its effect on cell sphericity. However, by performing a resampling analysis of the
single-cell segmentation data that compares centrally located chemoARHGEF cells to centrally
located wild-type cells (see Materials & methods, section 2.3.3), we were able to exclude this
possibility (Fig. 3.4f); the increased sphericity observed in chemoARHGEF-positive cells goes beyond

what would be expected from wild-type cells located centrally in the pLLP.

We hypothesized that the observed central location bias of chemoARHGEF-positive cells might result
from surface tension-based cell sorting [Brodland, 2002], although alternative explanations are also
possible. For instance, chemoARHGEF could be specifically repressed or rapidly degraded in
peripheral cells. We first attempted to clarify which mechanism is at play by performing time lapse
microscopy, finding that the first cells showing a detectable tagRFP-T signal were generally already
located in the center. However, there is a considerable delay between chemical induction and the
point in time when the tagRFP-T signal becomes visible, likely due to the fluorophore's long

maturation time [Shaner et al., 2008], so sorting may simply occur before expression is visible.

To unambiguously resolve this issue, we made use of the fact that the mosaic expression patterns of
chemoARHGEF and the inert control construct NLS:mIRFP are largely overlapping in embryos carrying
both constructs simultaneously (Fig. 3.4g). We found that in such crosses chemoARHGEF imparts
both the central location bias (Fig. 3.4h) and the increase in cell roundness (data not shown) onto the
cells positive for NLS:mIRFP. Thus, we conclude that the location bias of chemoARHGEF is not due to
specific repression or degradation in peripheral cells but must be due to a cell sorting process that

sorts chemoARHGEF-positive cells to the center of the tissue.
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Figure 3.4: Lyn:tagRFP-T:ARHGEF25b-Gd causes cell rounding and sorting toward the pLLP's center.

(a) Stills from a movie of chemoARHGEF induction. Scale bar: 15um. (b) Example images of chemoARHGEF
and an inert construct, NLS:mIRFP, expressed under the same promoter. Scale bar: 10um. (c) Comparison of
cell sphericity in primordia expressing NLS:mIRFP (cyan, N=26) or chemoARHGEF (red, N=20), grouped by
cells with no/low expression and high expression. (d) Comparison of cell location relative to the pLLP's front-
to-back midline, showing the central location bias of cells expressing chemoARHGEF. (e) Wild-type embryos
exhibit a weak correlation of cell sphericity and proximity to the center (s=slope, p=p-value for non-zero
slope test). (f) Comparison of cells expressing chemoARHGEF (high ARHGEF) to wild-type cells sampled to
match their spatial distribution (Sampled ARHGEF), showing that wild-type cells located just as centrally as
chemoARHGEF-positive cells are still far less spherical. Resampling cells based on high NLS:mIRFP expression
(cyan) has no effect. (g) Crossing chemoARHGEF and NLS:mIRFP lines yields mosaic co-expression in the same
cells. Scale bar: 10um. (h) The location bias of chemoARHGEF (red, N=23) is imposed on the NLS:mIRFP
pattern (yellow, N=25) if the two are co-expressed. In all plots: n=number of cells, d=effect size (Cohen's d).
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Taken together, our preliminary results indicate that chemoARHGEF is a useful tool for manipulating
cell surface tension and that pLLP cells are readily able to undergo tension-based sorting. Further
work aimed at elucidating the role of differential surface tension during rosette formation in wild-

type primordia is currently ongoing.
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3.2 Studying Tissue-Scale Feedback of Morphogenetic Remodeling
on Collective Cell Migration in the pLLP

In order to generate the desired final organ arrangement, migrating collectives such as the pLLP need
to coordinate their motility and directionality with follower cell morphogenesis and differentiation,
as detailed in sections 1.4.3 and 1.4.4. However, little is known about how this coordination is

achieved, both in the pLLP and beyond.

Given that the polarity of migrating cells can be controlled not only by external chemokine gradients
(chemotaxis) but also by internal mechanical stress (plithotaxis) [Trepat & Fredberg, 2011] (see
section 1.4.3) and given that the processes of rosette assembly and proneuromast deceleration
during deposition are bound to have an effect on tissue mechanics, we hypothesized that follower

cell morphogenesis feeds back on leader cell motility and directionality via plithotaxis (Fig. 3.5a-b).

Such a mechanism could not only serve as a means of coordination but might also explain previous
observations of the remarkable robustness of migrational polarity in lateral line cells. For instance,
cells of the pLLP can establish directional polarity even in the absence of the chemokine receptor
Cxcrdb, so long as there are some Cxcr4b-positive cells at the leading edge [Haas & Gilmour, 2006]
(see section 1.5.2). Plithotaxis based on the pulling forces generated by those few leader cells could
be the mechanism by which the rest of the tissue is polarized. Similarly, laser ablation of the
rearmost proneuromast, which harbors most of the primordium's supply of the scavenger receptor
Cxcr7 and thus should be essential in maintaining the chemokine gradient, does not lead to an arrest
of the remaining primordium — unless all nascent rosettes are removed, in which case the leader cells
cease directional migration [unpublished data']. This outcome can easily be explained if the
mechanical stress generated by the juxtaposition of motile leaders and rosette-assembling followers

generates a mechanical cue that maintains leader cell polarity through plithotaxis (Fig. 3.5c-d).

Here, we sought to reproduce and further refine these laser ablation experiments and to directly test
our hypothesis by specifically manipulating follower cell compliance and observing the response of

leader cells both qualitatively and by quantitative computational image analysis.

3.2.1 pLLP Migration is Robust to the Acute Ablation of the Cxcr7 Domain

To confirm that pLLP migration can indeed proceed even if the scavenger receptor Cxcr7 is acutely
removed (Fig. 3.5c-d), we used a previously established transcriptional reporter line based on Cxcr7
BAC transgenesis (see Materials & Methods, section 2.2.4) to identify which cells in the primordium
are expressing Cxcr7. We crossed this reporter to a uniform membrane marker and used pulsed UV

laser ablation to precisely destroy the cells in the rear of the primordium, up to and including the

! These experiments were performed by two former members of the lab, Petra Haas and Sebastian Streichan.
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frontal-most cells expressing the transcriptional reporter, which did not include the frontal-most

rosette or the leader-follower transition zone (Fig. 3.5e).

Time course imaging of pLLP migration following laser ablation showed heterogeneous outcomes
(Fig. 3.5f): in some cases the primordium continued migrating as if unperturbed whereas in others it
temporarily slowed down to different degrees before picking up speed again. In rare cases, pLLP

migration was abolished completely, likely due to damage to the surrounding tissue.

d

ablated

ablated

ablated

ablated

Figure 3.5: pLLP migration is robust to precise and acute ablation of the Cxcr7 domain.

(a) Mustration of how leader cell migration (black arrow) is guided by a chemokine gradient generated
through scavenging of extracellular Cxcl12a (blue) by follower cells expressing the decoy receptor Cxcr7
(green) [Dona et al.,, 2013]. (b) Complementary model where directionality is (also) maintained through
plithotaxis: rosette assembly in follower cells (red) provides a counter-force (red arrows) to leader cell
motion, which aligns the axis of maximum mechanical stress to the front-back axis of the tissue and thus
guides leader cell directionality. (c) Ablation of Cxcr7-expressing cells should lead to the abolishment of the
chemokine gradient and — if the gradient was the only cue for leader cell migration — to an arrest of the
primordium. (d) However, if plithotaxis is also capable of maintaining leader cell polarity, pLLP migration
should be robust to this perturbation, so long as the remaining followers can provide sufficient counter-force.
(e) 2D slice of the back of a primordium with all pLLP cells labeled in red and cells expressing Cxcr7 specifically
labeled in green, before (top) and after (bottom) pulsed UV laser ablation. Although UV ablation destroys the
targeted cells (and sometimes their direct neighbors), damage to the surrounding tissue is usually minimal, as
seen here. Scale bar: 15um. (f) Representative kymographs showing wild-type migration (top) and the range
of possible consequences of Cxcr7-domain ablation, from virtually no effect to temporary deceleration to
complete arrest (top to bottom, ordered by severity). Scale bar: 40um. The sketched outline of the pLLP used
in (a-d) was adapted from [Dona et al., 2013].
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Importantly, the observation that some primordia are capable of unimpeded migration despite
ablation of the Cxcr7-expressing domain confirms that the pLLP is to some extent robust to acute

perturbation the self-generated chemokine gradient.

3.2.2 Effects of Selective Follower Arrest on Leader Cell Behavior

If tissue-scale stress generated by follower cell deceleration feeds back on leader cell directional
polarity, experimentally enhancing follower cell deceleration should lead to a noticeable response in

leader cells (Fig. 3.6a-b).

We first attempted to perform this experiment using a caged version of blebbistatin, azido-
blebbistatin [Képiro et al., 2015], but initial tests with the drug proved unsuccessful (see Materials &
Methods, section 2.2.5). However, during these tests we serendipitously discovered that medium-
intensity 2-Photon irradiation at 800nm induces an arrest of cell motility in the pLLP within tens of
minutes without causing visible tissue damage. This phenomenon reliably occurs on completely wild-
type primordia, independently of any drug treatment. Although irradiation eventually leads to cell
death, the cells and the entire tissue remain intact until approximately 10 hours post irradiation (data
not shown), which is long after migration has halted completely. We termed this approach 2P-Arrest
and used it to selectively arrest follower cells (Fig. 3.6¢c) and to examine the behavior of the

unirradiated leader cells in response to this increased mechanical drag by fast time course images.

Initial qualitative observations indicated that tip cells produced elongated protrusions in response to
2P-Arrest of followers (Fig. 3.6d), which prompted us to conduct a quantitative analysis of tip cell
behavior as well as actin dynamics in the leading region. We used automatically generated masks of
primordia as well as some manual annotation to quantify tip speed and protrusion length based on
the membrane marker Lyn:EGFP as well as F-actin abundance and polarized motion (optical flow)
based on the F-actin probe mNeonGreen:UtrCH. However, although we could confirm the increased
protrusion length of tip cells (Fig. 3.6e), we found no other indication of an active response of leaders

to 2P-Arrest of followers (Fig. 3.6f-i).

Since increased protrusion length could be an entirely passive mechanical effect and appears to be
the only detectable response of leaders to increased follower drag, we conclude that acute
experimental perturbation of tissue mechanics does not lend strong support to a plithotaxis-based

model of primordium migration.
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Figure 3.6: Leader cell response to 2P-Arrest of follower cells.

(a-b) llustration of follower 2P-Arrest experiment. If follower cells (red) normally generate a counter-force to
migration (red arrows) and thereby regulate leader cell polarity and motility (black arrow) through plithotaxis
(a), then arresting follower cells by 2P-Arrest should increase this counter-force and consequently increase
leader cells' migrational activity (b). (c) Maximum z-projection of pLLP before (top) and after (bottom)
2-photon irradiation. The white ROI in the top image indicates the area to be irradiated, which is directly
reflected in the bleaching of the NLS:tdTomato channel. Importantly, whilst the nuclei are bleached in the
bottom panel, the membrane labeling shows no indication of compromised tissue integrity. Scale bar: 15um.
(d) Maximum z-projection of a tip cell's unusually long protrusion following 2P-Arrest of the followers. hpi is
hours post irradiation. Scale bar: 10um. (e) Quantification of protrusion lengths in WT and after 2P-Arrest of
follower cells. Because protrusion length is highly variable between time points, several time points are
plotted for each sample, yielding a total of tp points. Measurements apart more than 10min were considered
independent during statistical analysis (p[wt-0.5hpi]=9.99e-03, p[wt-4hpi]=3.37e-06).

Figure legend continued on the following page.
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Figure 3.6 (legend continued from previous page)

(f-i) Different leader cell features measured over time. Individual time points have been smoothed to reduce
noise, emphasizing overall behavior. Faint lines show individual samples, strong lines show running mean.
None of these measures shows a consistent trend that might indicate an active leader cell response to
follower arrest. (f) Tip cell speed measured using the Lyn:EGFP membrane marker. (g) Background-subtracted
mNeonGreen:UtrCH intensity (a proxy of F-actin abundance) relative to the initial time point. The rapid loss of
signal at time>150min in some samples is due to masking issues resulting from bleaching of the
NLS:tdTomato channel. (h) The standard deviation of the F-actin optical flow angle. A decrease in this
measure would indicate increased coaxial polarization in leader cells. (i) Mean of F-actin optical flow
magnitude. An increase in this measure would indicate faster motion of actin structures such as lamellipodia.
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3.3 Development of a Computational Framework for Image-Based
Quantitative Single-Cell Analysis of Cellular Architecture in
Living Tissues

Data-driven biology represents an important new avenue for the perturbation-free investigation of
complex biological systems, as elaborated in section 1.3.3. However, whilst the omics technologies
have enabled the large-scale collection and analysis of big data snapshots of the abundance and
interactions of system components, equivalent approaches for capturing components' spatial
distributions and temporal dynamics as well as their relation to biological function are still

underdeveloped, especially at the multi-cellular level.

In principle, microscopy is readily capable of providing the context-rich 3D+time data required for
this purpose, but more work is needed to advance the extraction, representation, visualization and
analysis of the rich information encoded within images. Here, we set out to establish a framework for
the computational analysis of cell shape, architecture and dynamics in living tissues, seeking
ultimately to discover predictive relationships between various cell and tissue-scale properties that

could inform new mechanistic studies.

To this end, we performed high-resolution live imaging of the pLLP, implemented a pipeline for
single-cell segmentation based on a membrane marker, developed a method for casting the result
into a computational representation amenable to data-scientific techniques such as machine
learning, and finally applied such techniques for atlas mapping and quantitative analysis of the

diversity of cellular architectures across the lateral line primordium.

3.3.1 Fast High-Quality 3D Imaging of the pLLP Using AiryScan Microscopy

In vivo live imaging is a balancing act between image quality, acquisition speed and phototoxicity. For
automated single-cell segmentation to be possible in 3D, high signal-to-noise ratios and good axial
resolution are required. This can be achieved with classical confocal microscopy and deconvolution
(Fig. 3.7a) but long acquisition times lead to an axial distortion of the primordium due to its
migratory motion and also massively reduce sample throughput or temporal resolution during time
courses. Classical spinning disk confocal microscopy, by contrast, is sufficiently fast but does not

produce images of high enough quality for single-cell segmentation (Fig. 3.7b).

We therefore tested and optimized the recently released Zeiss LSM880 AiryScan confocal microscope
for high-resolution 3D imaging of the lateral line primordium using the AiryScan FAST mode [Huff,
2016]. We found that the line-scanning approach employed by the FAST mode coupled with AiryScan
deconvolution enabled the acquisition of high-quality volumes (Fig. 3.7c) at an acceptable rate,

although not quite as quickly as with a spinning disk.
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All images shown and analyzed in the following sections have been acquired in this fashion,
consistently using the membrane marker claudinB::Lyn:EGFP to enable single-cell segmentation and

—when required — using two-color acquisition to simultaneously image an additional label of interest.

claudinB::Lyn:EGFP

claudinB::Lyn:EGFP

claudinB::Lyn:EGFP

Figure 3.7: Comparison of scanning confocal, spinning disk confocal and AiryScan imaging of the pLLP.

(a-c) Maximum z-projections (left, scale bars: 15um) and yz-reslices (right, scale bars: 5um) of deconvolved
3D volumes of the same primordium acquired using different modes of confocal imaging with settings
individually optimized for high image quality first and acquisition speed second. (a) Acquired on the LSM880
in conventional scanning confocal mode. Acquisition speed: 944ms/slice. (b) Acquired on the VoX spinning
disk microscope. Acquisition speed: 200ms/slice. (c) Acquired on the LSM880 in AiryScan FAST mode.
Acquisition speed: 322ms/slice.
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3.3.2 Automated 3D Single-Cell Segmentation of the pLLP

We combined and adapted commonplace image analysis algorithms to implement an automated 3D
single-cell segmentation pipeline based solely on the claudinB::Lyn:EGFP membrane marker in order
to keep other channels free for imaging of other labels of interest. Briefly, we preprocessed images
by smoothing, masked foreground signal (membranes) using automated threshold detection,
inverted the mask and labeled connected components to obtain segmentation seeds from low-signal
areas (i.e. cell bodies), filtered away very large and very small seeds (background), and performed

watershed on the smoothed membrane image to expand seeds into full cell segmentations.

We found that this approach generally yields high-quality segmentations (Fig. 3.8). Importantly,
erroneous cell fusion or over-segmentation are exceedingly rare, likely due to the high quality of the
input images. Occasionally, a few cells are being missed and wrongly assigned to the background,
which we expect not to affect our downstream analysis. To ensure consistent segmentation quality,
we manually double-checked each segmented stack and excluded rare cases exhibiting substantial

segmentation issues.

Figure 3.8: Automated 3D single-cell segmentation of the pLLP.

(a) A single xy-slice with segmented cells indicated by a semi-transparent color overlay. Scale bar: 10um.
(b) "Exploded view" of a segmented pLLP. Individual segmented cells have been shifted apart, revealing their
individual shapes within the collective. Scale bar: 15um.
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The main drawback of our current solution is that fine cell protrusions, such as lamellipodia or thin
apical extensions toward rosette microlumina, are often missed by the algorithm. This is
unavoidable, however, as most of these fine structures are not even distinguishable by the human
eye when the entire tissue is labeled — they only become apparent with mosaic labeling, which would
not provide the throughput required for data-driven analysis. Thus, we decided to focus on overall

cell shape and architecture, ignoring fine protrusive structures for the time being.

3.3.3 Intensity-Biased Stochastic Landmark Assignment (ISLA) and Cluster-
Based Embedding (CBE) for Latent Feature Extraction from Arbitrary
Fluorescence Distributions

Following segmentation, we measured a host of specifically selected or designed features
(henceforth referred to as engineered features) for each cell individually, including size features such
as volume or height, shape features such as aspect ratios, and fluorescence features such as the

mean fluorescence of different imaging channels (see appendix A2 for a complete list).

However, whilst such specifically engineered features are often sufficient to address hypothesis-
driven questions, they are problematic for exploratory approaches as they may miss important
architectural properties and may be biased by the scientist's perception of what features might be

relevant [Pincus & Theriot, 2007].

Here, we therefore additionally sought to develop an unbiased approach to embed fluorescence
distributions into a feature space of latent features, a challenge that has been addressed to some
extent for 2D images [Pincus & Theriot, 2007] but is not trivial to generalize to the third dimension.
Importantly, all currently available solutions require cells to be spatially registered to account for
rotational variance (but registration is an ill-posed problem in cases where very different cells are to
be analyzed) and many are based on segmentation masks or outlines (which is not ideal for
embedding fluorescence distributions where information is encoded in intensity variation, e.g. the

actin cytoskeleton).

We took classical geometric morphometrics [Adams et al., 2004; Adams et al., 2013] as a starting
point to solve the challenge of latent feature extraction in a robust, versatile and general fashion. In
geometric morphometrics, distributions are usually represented as landmarks that form 3D point
clouds. Feature space embedding is then commonly performed by spatial alignment of point clouds
followed by re-representation of landmark coordinates as feature vectors, often by means of
dimensionality reduction techniques such as Principal Component Analysis (PCA) [Adams et al.,

2004].

In order to apply this approach to cells, we needed to solve two problems. First, point clouds must be
extracted from fluorescence intensity images in such a way that they represent the fluorescence

intensity distribution. Second, as points are not matched across cells in the way they would be e.g.
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across facial features (the 'nose landmark' of face 1 would be matched with the 'nose landmark' of
face 2), a different way of re-representing point clouds is needed, ideally one that allows rotational

invariance to be achieved without registration.

We solved the first problem using a technique we termed Intensity-biased Stochastic Landmark
Assignment (ISLA). To generate a sparse point cloud representation of a 3D volume, ISLA treats voxel
intensities as a multinomial probability distribution (normalized such that the volume's total intensity
equals 1) from which a defined number of points are selected by random sampling. In the resulting
point cloud, the local density of points represents local fluorescence intensity (Fig. 3.9a). Increasing
the total number of landmarks sampled in this way increases the accuracy of the point cloud
representation (asymptotically toward 100%) at the cost of point cloud sparsity and thus

computational efficiency; this trade-off can be tuned according to the user's requirements.
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Figure 3.9: lllustrations of key aspects of ISLA and CBE.

(a) Hlustration of Intensity-biased Stochastic Landmark Assignment (ISLA). Pixels intensities within a
segmentation mask (left, yellow area) are considered probabilities for multinomial sampling of landmarks
(right, yellow dots), which yields a 3D point cloud (right) that encodes much of the information about the
original fluorescence intensity distribution. Scale bar in images: 1um. Note that for illustration purposes the
2D points (middle) are more densely sampled than the 3D cloud (right). (b-c) lllustration of Cluster-Based
Embedding (CBE). (b) Point clouds from different cells (different shades of blue) are overlaid in order to
determine common reference points (red) by clustering. Axis scales are in um. (c) Next, the mean Euclidean
distance from each reference point to a set of its nearest neighbors in each cell's point cloud is computed,
yielding a feature space such as the one exemplified here. In this boxplot, each observation is a cell, the x-axis
are the common reference cluster centers and the y-axis is the mean Euclidean distance metric.
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To solve the second problem, we reminded ourselves that classical point cloud re-representation
usually either explicitly or implicitly represents landmarks not by their absolute coordinates but by
coordinates relative to a common reference. When landmarks are matched, this common reference
is simply the mean position of each landmark across samples. Here, landmarks are unmatched but
we reasoned that even arbitrary points in space could in principle serve as common reference points,

given that they are sensibly distributed.

Following this rationale, we developed Cluster-Based Embedding (CBE). To perform CBE, we first
overlay all point clouds from all samples (centered on each point cloud's centroid) and subsequently
use k-means clustering [MacQueen, 1967] to determine local landmark enrichments (i.e. clusters)
and to provide each with a reference point (i.e. the cluster centers) (Fig. 3.9b). The number of
clusters, which is user-defined, determines the trade-off between the fidelity and the computational
efficiency of the embedding. Next, we re-represent each individual cell's point cloud relative to the
common reference points by computing the mean Euclidean distance between each reference point
and its nearest neighbors (Fig. 3.9c) (for additional details see Materials & Methods, section 2.3.6).
Finally, we z-score the resulting features and transform them using PCA, which has been found
repeatedly to yield biologically meaningful features [Pincus & Theriot, 2007]. The result is a latent
feature space with as many features as there were common reference points, although higher-order

Principal Components (PCs) may be discarded as noise.

Whilst CBE addresses the challenge of embedding arbitrary point cloud distributions, it does not
natively handle rotational variance. We therefore made use of the point cloud shape representation
generated by ISLA to also resolve this issue. For each cell's point cloud, we computed the set of the
lengths of all Pairwise Distances (PDs) between that cloud's points. Although this information alone
may not always enable a full reconstruction of the original point cloud, it is expected to encode most
of the relevant information and — importantly — it is rotationally invariant. To cope with the high
dimensionality of this representation, we downsampled the set of lengths by including only a certain
subset for each point (see Materials & Methods, section 2.3.6). Because CBE can embed arbitrary
point cloud distributions of arbitrary dimensionality, the pairwise distance representation can be
embedded just as well as the originally coordinate representation, yielding a rotationally invariant

latent feature space.

We ultimately combined the above to compute two embedded spaces, termed the Tissue Frame of
Reference (TFOR) and the Cell Frame of Reference (CFOR) space. To compute the TFOR space,
primordia were first registered in their entirety and CBE was performed without a PD transform.
Thus, the TFOR space is expected to encode not only shape and size but also meaningful rotational
information (i.e. the rotation of cells relative to the entire primordium). By contrast, the CFOR space

was computed on point clouds that were first size-normalized and then PD-transformed, resulting in
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a feature space that encodes exclusively information on the shape of the embedded fluorescence

distribution.

Further details, including a complete overview of data flow through the ISLA-CBE pipeline (Fig. 2.1),

can be found in Materials & Methods, section 2.3.6.
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Figure 3.10: ISLA and CBE produce compact and expressive latent feature spaces.

(a) Ratios of total variance explained by individual PCs in an embedding constructed from pLLP cell shapes.
Both in TFOR and CFOR, most of the population variance is explained by only a few principal components.
(b) Visualizations of the first two principal components of CFOR (left) and TFOR (right) latent feature spaces
created by embedding cell shape. Each dot is a cell and the different colors denote the primordia from which
each cell derives, showing that the distribution of cell shapes within each primordium is similar. Different cell
shapes (middle) are very clearly separated in CFOR (arrows). This is less obvious in TFOR, where cell
orientation and size also play a major role. All axes are unitless.
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3.3.4 ISLA and CBE Generate Meaningful Latent Feature Spaces

When applied to our dataset of pLLP cells, we found that the ISLA-CBE approach produces compact
and expressive latent feature spaces. For example, an embedding of cell shape based on the
claudinB::Lyn:EGFP membrane marker showed that most of the shape heterogeneity across the
primordium can be explained by just a small number of principal components (Fig. 3.10a).
Furthermore, the principal components clearly separate cells based on biologically relevant shape
differences. In the CFOR cell shape embedding, for instance, very round cells (dividing cells or cells at
the center of rosettes) fall onto one tip of the distribution and very curved cells (cells in the periphery

of rosettes) fall onto the other (Fig. 3.10b).

We employed machine learning to quantitatively assess how much information is shared between
our latent feature spaces and the explicitly engineered features. To do so, we trained Support Vector
Regressors (SVRs) using CBE-embedded cell shape features to predict different engineered
descriptors of cell shape. Consistent with expectations, we found that the TFOR shape space encodes
much of the information contained in simple shape descriptors (Fig. 3.11a) whereas the CFOR shape
space only encodes information that is unrelated to the absolute size or orientation of cells (Fig.
3.11b). We also compared CBE to an alternative embedding method based on the extraction of
moments from the ISLA point cloud (for details see Materials & Methods, section 2.3.6). However,
although this approach performed similarly well in CFOR (Fig. 3.11d), it could not compete with CBE
in TFOR (Fig. 3.11c), prompting us to proceed with CBE as our primary strategy for latent feature

extraction.

Finally, we sought to test whether latent features faithfully detect single-cell phenotypes in response
to perturbation. We initially attempted to do so by treating embryos with EDTA, inducing cell
rounding in the lateral line. However, due to cell-internal accumulation of lyn:EGFP following EDTA
treatment, segmentation of these samples was not possible (data not shown). We therefore turned
to the mosaic expression of LexOP::Lyn:tagRFP-T:ARHGEF25b (chemoARHGEF), which causes cells to
round up (see section 3.14). As expected, such cell rounding is clearly detectable in a CBE-embedding
of cell shape, where cells expressing higher levels of chemoARHGEF also show higher values of PC 1

in CFOR (Fig. 3.12).

Taken together, these results demonstrate that our morphometric pipeline based on ISLA and CBE is

capable of embedding 3D fluorescence intensity distributions into meaningful latent feature spaces.
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Figure 3.11: Recovering engineered shape descriptors from the latent feature space.

Mean Square Errors (MSE) for SVR regressions predicting z-scored engineered features from different latent
feature representations of cell shape. Lower MSEs indicate that the SVR was able to predict the feature in
question to a greater extent. Note that the first column, ctrl.random.normal, is randomly sampled from a
normal distribution and thus represents a negative control where a meaningful regression is impossible. The
ISLA+CBE TFOR (a) produces an embedding that encodes much of the information included in engineered
features, whereas the corresponding CFOR (b) does not encode information that is related to cell size (e.g.
img.cell.volume) or where orientation is relevant (e.g. the cell's length along the front-rear axis, pcl.cell.
seg.extents_x) but is even better at encoding pure shape features (e.g. pcl.cell.seg.sphericity). The alternative
embedding strategy based on point cloud moments behaves similarly for CFOR (d) but does not perform
nearly as well as CBE for TFOR (c). A complete list of explanations of the different engineered features can be
found in appendix A2. Y-axes are unitless due to z-scoring.
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Figure 3.12: Latent features can detect phenotypes at the single-cell level.

Mosaic expression of chemoARHGEF leads to cell rounding, which is captured by a CFOR embedding of cell
shape. Cells with a high intensity of Lyn:tagRFP-T:ARHGEF25b are enriched among higher values of CFOR PC 1
(right), unlike cells with a high intensity of the inert control construct NLS:mIRFP (left). Intensity was
normalized as described in section 2.3.3. All axes are unitless.

3.3.5 Preliminary Analysis of the pLLP Cellular Shape Space

Cell shape is a key architectural and functional property of pLLP cells. It influences and is influenced
by both migration and rosette formation and it is controlled both internally by the cytoskeleton and
externally by the forces and constraints experienced by each cell in the tissue context. Even cursory
visual inspection reveals that cell shapes differ non-trivially between leader cells, cells at the center
of rosettes and cells in the periphery of rosettes. We therefore employed our novel method for
latent feature extraction to embed the shapes of 16'974 cells from 190 wild-type primordia based on
the cell membrane marker claudinB::Lyn:EGFP, which allows us to perform a comprehensive analysis

of the pLLP's cellular shape space, the preliminary results of which are described here.

First, we sought to identify the primary factors of shape heterogeneity in the pLLP. As mentioned in
section 3.3.4, we found that just a few PCs are sufficient to explain shape heterogeneity, with >95%
of variance in the shape space being captured by 11 PCs in TFOR or 9 PCs in CFOR. We focused our
analysis on the first 6 PCs, which each explain more than 5% of variation on their own (Fig. 3.10a). To
determine the nature of these principal components, we correlated them with our engineered

features (Fig. 3.13ab) and visualized resulting associations as bigraphs (Fig. 3.13cd).
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Figure 3.13: Identification of latent feature meaning by correlation with engineered features.
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(a-b) Clustermaps showing Pearson correlation coefficients between shape space components and various
engineered features for both TFOR (a) and CFOR (b) .
features with shape space components based on the strength of correlation. Edge widths reflect the strength

(c-d) Bigraphs showing the association of engineered

and edge colors the sign (red: negative, blue: positive) of the Pearson correlation coefficient between two
samples (edges with r<abs(0.3) are omitted). TFOR PCs (c) are associated with the centroid position along the
dorso-ventral axis (pcl.tissue.centroids_y) (PC 1), with various measures of cell size and height (PC 2), with
measures of protrusion length such as the distance from the centroid to the most distant landmark
(pcl.cell.seg.distp_dist) (PC 3),
seg.extents_x) (PC4), and with measures of sphericity (PC5). Among the CFOR PCs (d), only PC 1 has a very
clear association. namelv to measures of sphericitv. See appendix A2 for an index of engineered features.

with the length of a cell along the pLLP's front-rear axis (pcl.cell.
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Figure 3.14: Key examples of relationships between latent and engineered features.

(a-c) TFOR PC 2 is associated with cell size, including cell volume (r?=0.29) (not shown). The main contribution
to size variation across the primordium appears to stem from cell height along the apico-basal axis (r?=0.38)
(a) rather than from cell width (r?=0.07) (b) or from cell length along the front-rear axis (r’=0.06) (c). (d) When
size and orientation information are removed, the most important remaining aspect of shape variation is cell
sphericity, which is very closely associated with CFOR PC 1 (r?=0.74). Cell height, width and length are given in
pum, sphericity and principal components are unitless.

In doing so, we found that TFOR PC 1 is clearly associated with lateral orientation of primordium
cells, reflecting the mirror symmetry of the pLLP along its midline. TFOR PC 2 is associated with cell
size and volume, which interestingly appears to be mainly a function of cell height along the apico-
basal axis (Fig. 3.14a-c). TFOR PC 5 is associated with cell roundness and TFOR PC 4 could be
associated with front-rear polarity of the cell, given its relationship with the cell's aspect ratio in the
plane of the tissue. In CFOR, associations with size and orientation are missing, as expected. Instead,
CFOR reveals a striking relationship of PC 1 and cell sphericity (Fig. 3.14d), indicating that sphericity is
a central feature of cellular architecture in the pLLP. Interestingly, this would not be obvious based
on the TFOR space alone, which shows that the inclusion of size and orientation during latent feature
extraction may obscure important aspects of the shape space and highlights the success of the

pairwise distance approach at removing these confounders. The remaining latent features could not
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be clearly identified by this correlative approach. They may encode shape information that is not

included in the engineered features and would have been missed without latent feature extraction.

Next, we mapped the shape space components back onto the spatial location of cells in the
primordium (Fig. 3.15). Consistent with the observations above, TFOR PC 1 is patterned along the y-
axis of the primordium (Fig. 3.15a), implying that it encodes cell orientation. Interestingly, TFOR PC 2
(cell height) shows a center-to-periphery pattern, indicating that central follower cells specifically
have an extended apico-basal axis (Fig. 3.15b,d), although this does not take into account that the
apico-basal axis in peripheral follower cells is curved. TFOR PC 3 appears to be increased in followers
(Fig. 3.15c), indicating that it may encode biologically relevant information, the nature of which
however remains unknown because it is not clear as of now what aspect of cell shape leads to high
values in this feature. The distribution of CFOR features is less clear. CFOR PC 1 (sphericity) appears
to be enriched along the center of the primordium but also in leader cells and at the very back
(presumably chain cells), which in the first instance runs counter to expectations and demands
additional validation (Fig. 3.15e,h). CFOR PC 2 does not seem to have a clear spatial pattern and may
be uniquely enriched in certain rare cells (Fig. 3.15f), whereas CFOR PC 3 shows some indications of a
center-to-periphery pattern (Fig. 3.15g). Further investigation will be required to determine the exact

nature and the biological significance of these distributions.

We also asked whether pLLP cells naturally cluster into distinct groups of similar architectural "cell
types" based on cell shape. However, we found no evidence for distinct clusters when visualizing the
distribution of cells across principal components (for an example, see Fig. 3.10b) or when generating
two-dimensional representations by t-Stochastic Neighbor Embedding (tSNE) [Van der Maaten &
Hinton, 2008] (not shown). Instead, the cells of the pLLP appear to occupy a continuous domain of
the shape space. Therefore, we decided not to proceed with any unsupervised clustering analysis for

the time being and instead performed supervised archetype classification (see section 3.3.7).
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Figure 3.15: Distribution of shape features across the cells of the pLLP.

Top views composed of centroid xy-positions (each dot) of 16'974 single cells from 190 wild-type primordia,
with colors indicating higher or lower values of the respective latent or engineered features, extracted from
cell shapes based on claudinB::Lyn:EGFP. The small maximum z-projected image at the top right clarifies the
viewing perspective. (a-c) Distribution of the three most expressive principal components in TFOR, exhibiting
a lateral, an inside-outside and a front-back pattern, respectively. (d) Cell height, which closely corresponds
to TFOR PC 2 and thus exhibits a similar inside-outside pattern (note that PC 2 is inverted; the sign of
principal components is arbitrary). (e-g) The three most expressive PCs in CFOR. PC 1 is enriched in leaders
and along the center of the primordium. PCs 2 and 3 do not show a clear spatial distribution. (h) Cell
sphericity shows a similar pattern to CFOR PC 1, confirming that cell roundness follows this unexpected
pattern, the source of which remains to be determined.
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3.3.6 Preliminary Analysis of the Effects of Chemokine Signaling Mutants on
the pLLP Shape Space

Having established a first overview of the cellular shape space of wild-type primordia, we next
investigated mutant conditions, aiming to relate cell shape to molecular functions and potentially to
tissue-scale pLLP behavior. To do so, we acquired stacks of claudinB::Lyn:EGFP primordia in three
different mutant backgrounds, Cxcr4b-/- (guidance receptor mutant), Cxcl12a-/- (chemokine mutant)
and Cxcr7-/- (scavenger receptor mutant). All of these mutants share the same macroscopic
phenotype, namely that the primordium doesn't migrate or migrates very little. However, in the case
of Cxcr4b-/- and Cxcl12a-/-, this is due to an absence of chemokine signaling in the primordium,
whereas in the case of Cxcr7-/- it is due to uniformly high instead of graded chemokine signaling

across the primordium.

Unfortunately, acquisition of high-quality stacks proved more challenging with mutant embryos
because the primordia remain within the less accessible head region of the embryo. Consequently,
segmentation of these samples was far more error-prone and in many cases a substantial number of
cells were missed, which may introduce bias into the analysis. The following results are therefore to

be regarded as preliminary.
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Figure 3.16: Comparison of wild-type and mutant shape spaces.

(a) An example of the lack of striking differences between wild-type and mutants; the first two principal
components of the CFOR shape space do not show a clear loss or gain of subpopulations. (b) Results of a
comparison of shape spaces on a per-primordium basis. Individual points in this plot are single primordia, not
single cells. This comparison was accomplished by embedding each primordium's distribution of cells in the
shape space using CBE followed by another PCA. Primordia whose cells are similarly distributed in the shape
space therefore cluster together in this tissue-scale embedding. Whilst Cxcr4b-/- and Cxcl12a-/- primordia
inhabit relatively distinct domains and are distinguishable from wild-type primordia along PC 1, Cxcr7-/-
primordia show no clear pattern.
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Surprisingly, we found no striking differences between these mutants and the wild-type among the
most relevant principal components of the pLLP shape space (Fig. 3.16a), indicating that none of the
different cellular architectures present in wild-type primordia is completely lost and no new and

unique shapes are gained in the mutants.

Detecting more fine-grained differences such as changes in the relative frequency of different cell
populations in the shape space is more challenging, which is why we decided to first test in an
unbiased way whether the shape space allows wild-types and mutants to be distinguished at all.
Considering the cells of each primordium as a point cloud in shape space, we used CBE to create a
tissue-scale embedding that represents each primordium's entire cell population. Interestingly, this
representation allows Cxcr4b-/- and Cxcli2a-/- mutants (but not Cxcr7-/- mutants) to be
distinguished from wild-type primordia (Fig. 3.16b), showing that these mutants do in fact alter

tissue architecture.

What exactly those alterations are and how they relate to the loss of chemokine signaling or the
inability of the primordium to move directionally remains to be determined, although doing so will

require higher-quality data or more robust segmentation.

3.3.7 Adding Biological Context to the pLLP's Cellular Shape Space through
Morphological Archetype Classification and Visualization

Since interpreting high-dimensional data is a challenging task, any representation that provides

additional biological context stands to be very useful. In order to annotate our dataset with such

contextual information, we manually classified a small subset of cells into simple and biologically

meaningful categories based on their location and architectural context within the pLLP. Using

supervised machine learning, we then extended these labels to the entire dataset and used them to

represent the single-cell dataset in a more interpretable fashion.

More specifically, we manually classified cells from 26 primordia into four groups: leader cells, inner
rosette cells, outer rosette cells, and between-rosette cells (Fig. 3.17a). We only labeled archetypical
cells, i.e. cells that clearly and unambiguously belong to a particular group. Next, we used this manual
gold standard annotation to train a Support Vector Classifier (SVC) to classify cells across our entire
dataset into these four categories based on the TFOR shape space features. We found that our
classifier was reliably able to distinguish leader cells, inner rosette cells and outer rosette cells but
frequently mistook between-rosette cells for outer rosette cells, which indicates that they are
morphologically very similar to normal outer rosette cells despite their more internal location (Fig.
3.17b). Overall, this classification reproduced the spatial distribution of the selected cell archetypes

across the primordium (Fig. 3.17c).
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Figure 3.17: Archetype analysis of the pLLP cellular shape space.

(a) A single xy-slice from a 3D volume showing cells manually annotated as belonging to one of the four
indicated archetypes. Scale bar: 10um. (b) Confusion matrices showing the correspondence of ground truth
and prediction produced by the archetype classifier on training data (left) and on previously unseen test data
(right). Overall accuracy is very high in both cases but between-rosette cells are very commonly confused for
outer rosette cells, especially in test data. (c) Mapping of archetype classification labels onto cell centroid
positions in a registered primordium space (as in figure 3.15), showing that overall the SVC predictor recovers
the spatial distribution of morphological archetypes very well, despite not being given any explicit positional
information through its input features.
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Having classified all cells into these particular groups makes it possible to analyze other data in an
archetype-specific and thus more context-aware manner, for example by comparing the distribution
of various other measures between archetypes. However, we wanted to go one step further and also
resolve intermediate states between archetypes. To do so, we performed PCA on the classification
probabilities inferred by the SVC archetype classifier, creating an embedding of archetype-likeness
(the archetype space), where different archetypes fall onto the different corners of a high-
dimensional polygon and intermediate states fall onto the edges or planes between them. In this
case, the archetype space can be fully represented in three dimensions (Fig. 3.18a), but given the
similarity of outer rosette cells and between-rosette cells a two-dimensional representation is also

sufficient to represent the cell distribution in an interpretable way (Fig. 3.18b, top-left panel).

The distribution of pLLP cells within the archetype space can be interpreted with respect to the
pLLP's architectural organization. For instance, the very low density of intermediate states between
leader and inner rosette cells indicates that there is no direct transition pathway between the two.
Cells must first adopt an outer rosette cell-like (or between-rosette cell-like) morphology in order to
eventually transition into inner rosette cells. On the other hand, the triangle created by outer, inner
and between-rosette cells features many intermediate cells, reflecting the continuous variation of

cell shape from the center of a rosette to its outside.
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Figure 3.18: Archetype-based visualization of single-cell data.

(a) 3D visualization of the pLLP's archetype space based on cell shapes. Each dot represents a cell (n=16'974).
The closer a cell to one of the corners the more clearly its shape resembles that of the corresponding
morphological archetype. (b) 2D visualization of the same archetype space with different color overlays
showing the predicted archetype label (top left), shape space TFOR PC 3 (top right), cell height along the
apico-basal axis (bottom left) and cell sphericity (bottom right). All axes are unitless.

91



Importantly, the archetype space can serve as a canvas to map other types of information into a
more interpretable representation, as shown in figure 3.18b. Both latent and engineered features
can be mapped, showing for instance the increase in cell height along the apico-basal axis across
follower cells (Fig. 3.18b, bottom-left panel) and high levels of sphericity both in inner rosette cells
but also in particular among the sporadic cells that fall between inner rosette cells and leader cells
(Fig. 3.18b, bottom-right panel), which could potentially be cells rounding up due to mitosis. It also
shows an enrichment for the as of yet unidentified TFOR PC 3 latent feature in between-rosette cells
(Fig. 3.18b, top-right panel), indicating that this principal component may in fact be useful in

identifying such cells or a particular subset among them.

Overall, these data show that archetype classification and archetype space visualization constitute a
simple and intuitive tool for adding biological context to high-dimensional datasets, making them a
suitable starting point for a more in-depth investigation of the pLLP's tissue architecture and its

cellular shape space.

3.3.8 Machine Learning Enables an Atlas Overlay of Multiple Experiments
Based on Cell Shape as a Common Reference

The concept of data integration across multiple experiments by constructing an "atlas" based on a

common reference measurement was introduced in section 1.3.3. Here, we relied on cell shape as a

reference both because any segmentation-based single-cell analysis inherently provides the required

shape information (encoded in the segmentation mask) and because we already established that

pLLP cells exhibit diverse but non-random shapes closely related to their state and function.

Two approaches are conceivable for the construction of an atlas based on cell shape. One would be
to register segmented cells in 3D space, thus overlaying whatever other channels were acquired
alongside the membrane marker. However, because cell shapes in the primordium are not
stereotypical, registration across all cells would yield a nonsensical result. This issue can be resolved
by selectively registering only cells that have a very similar shape — in other words, cells within close
proximity of each other in the shape space. The other option presents itself because the ISLA-CBE
pipeline is capable of extracting latent feature spaces from arbitrary fluorescence distributions. Once
latent features have been extracted both from cell shape and from a channel to be mapped, machine
learning can be used to learn the relationship between the two and thus to predict the latent feature

values of the latter based on those of the former.

Here, we imaged a range of markers as secondary channels (red or far-red) alongside the green
membrane marker claudinB::Lyn:EGFP and used both selective registration and machine learning on

embedded spaces to generate atlas mappings.

More specifically, we extracted latent shape features from the segmentation hulls of all available

cells and performed a nearest-neighbor search in shape space to determine the 10 morphologically

92



most similar cells for each secondary channel. We then used the Iterative Closest Point (ICP)
algorithm [Chen & Medioni, 1992] to register the ISLA-generated point clouds of these cells, keeping
only the 5 best matches based on ICP loss values. Finally, we reconstructed image volumes from the
resulting point cloud overlays by Gaussian Kernel Density Estimation (KDE) [Scott, 1992] and mapped
the individual cellular predictions back into the corresponding primordia. In this way, we were able to
generate predictions of the fluorescence distribution of any of the secondary channels for any of the
primordia in our dataset, including those where only the membrane marker alone had been imaged

at the microscope (Fig. 3.19).

To create an atlas of embedded spaces, we extracted latent features both from the segmentation
hull and from the fluorescence distribution of the secondary channel. Next, we evaluated different
machine learning models for their capability to predict the latent features of the secondary channel
based on cell shape. We found that Support Vector Regressors (SVRs) performed reasonably well
(Fig. 3.20a,b) and were computationally efficient across different conditions. We also tested the
alternative moment-based point cloud embedding approach (see Materials & Methods, section
2.3.6), finding that it was also capable of predicting secondary markers but not to the same degree as

CBE features (Fig. 3.20a).

Lyn:EGFP + - Lyn:EGFP +

Lyn:EGFP [measured] +

Figure 3.19: Atlas visualization by selective registration and image reconstruction.

(a) Maximum z-projection of a primordium where the Golgi marker mKate2:GM130 was imaged in addition
to the membranes. Scale bar: 10um. Data acquired by Mie Wong. (b) Maximum z-projection of a primordium
where the nuclear marker NLS:tdTomato was imaged in addition to the membrane. Scale bar: 10um. (c)
Maximum z-projection of a primordium where only the green membrane marker was imaged. Selective point
cloud registration of morphologically similar cells followed by image reconstruction using Gaussian KDE was
used to predict an approximate fluorescence distribution of the Golgi and nuclear markers. Scale bar: 10um.
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Figure 3.20: Atlas mapping of different markers based on cell shape as a reference.

(a) Example output from the performance evaluation of different machine learning models, showing how
well each model can predict nuclear marker latent features based on cell shape latent features, both
embedded using CBE (top) or moments (bottom). The different models evaluated are: random sampling from
training values as a negative control (random), k-nearest neighbors (kNN), random forest regression (forest),
elastic net regression (eNet), Lasso regression (Lasso), a multi-layer perceptron (MLP), and a support vector
regressor with an RBF-kernel (SVR). Cyan bars indicate the mean explained variance, dots indicate the results
of individual cross-validation runs. (b) Example comparison of ground truth and prediction for a test set of
nuclear marker latent features, predicted from cell shape using an SVR regressor. Axes are unitless. (c)
Various examples of latent features predicted from different channels and mapped onto the archetype
space, showing that a range of potentially biologically relevant patterns can be uncovered through atlas
analysis. Predictions were performed based on images of NLS:tdTomato (Nucleus), tagRFP-T:UtrCH (F-actin)
and mKate2:Rab5 (Rab5). Axes are unitless. Rab5 raw data acquired by Mie Wong.
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Training an SVC to predict each of the secondary channels based on cell shape allowed us to generate
a complete atlas, meaning that the latent features representing all secondary channels are known for
all cells in the entire dataset. This atlas can now be mined for relationships between different marker
distributions, between shape and marker distributions, and between biological context and marker
distributions. As an example, figure 3.20c shows latent features from different markers mapped onto

the archetype space.

3.3.9 Toward Single-Cell Dynamics with Automated Feedback Microscopy

Dynamics are key to cell and tissue self-organization and could be integrated in a myriad ways with
single-cell analysis and atlas mapping. However, whilst microscopes like the LSM880 AiryScan can
acquire high-quality stacks of migrating tissues with reasonable throughput, they are not fast enough
to image multiple locations along an embryo at the high rate required to unambiguously match cells
across multiple time points. Thus, the standard approach of stitching multiple locations in order to
follow the pLLP's migration along the embryo's tail is not a viable option for obtaining single-cell

dynamics.

We developed a solution for this problem using adaptive feedback microscopy, which we termed
prim tracker 880 (pt880). By enabling the microscope to continuously and autonomously track the
pLLP and adjust its stage position to follow the migrating tissue (Fig. 3.21) (for details see Materials &
Methods, section 2.2.8), pt880 makes it possible to acquire full overnight time courses of primordium
migration at a temporal resolution approaching that of imaging just a single static position. Since this
high rate of acquisition is beyond what is required even for single-cell tracking and may in fact induce
some phototoxicity, imaging in practice is done at a slightly lower rate and the surplus in the time

budget is used to track multiple primordia simultaneously, increasing throughput.

At present, the pt880 adaptive feedback microscopy pipeline is fully functional and a number of time
course datasets have been generated (not shown). The next step will be to implement single-cell

tracking and to integrate the results into the pLLP's cellular shape space.
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Figure 3.21: Tracking of the pLLP with adaptive feedback microscopy.

(a) Nlustration of the basic workflow during acquisition. First, a very fast but low-resolution prescan image is
acquired, which is then automatically masked in order to determine how much the primordium has migrated.
This migration is then compensated by stage movement and a high-resolution AiryScan stack acquisition is
triggered. This process can be repeated across multiple samples in the same dish and over time to generate a
time course. (b) Software architecture used to implement pt880. The Zeiss ZEN Black software controls the
microscope and is in turn controlled by the MyPiC pipeline constructor macro [Politi et al., 2018]. Saved
prescan images are detected by an externally running python script, which performs the image analysis and
writes the new coordinates to the Windows registry. The registry is monitored by the pipeline constructor,
which forwards the new coordinates to ZEN and triggers the acquisition of a high-resolution stack. (c) An
example of a prescan (maximum z-projected). (d) The same prescan with the overlaid pLLP mask in red. (e)
The corresponding maximum z-projected high-quality AiryScan stack, acquired after adjustment of the stage.
Note that the primordium is shifted backward compared to the prescan. All scale bars are 15um.

96



4 Discussion

4.1 Optogenetics Remain Challenging to Adapt to in vivo Models

Highly precise and minimally disruptive perturbation tools such as optogenetics promise deep
insights into complex biological systems by allowing them to be studied within the region of linear
biology. Here, we sought to adapt a range of existing optogenetic tools to gain precise control over
chemokine signaling and cytoskeletal organization in the zebrafish posterior lateral line primordium,
with the aim of studying the interplay of migration and morphogenesis. However, despite our best

efforts, we were so far unsuccessful in deriving a working optogenetic tool.

The conformation-based single-component systems we tested — PA-Racl, PA-Cxcr4b and bOpsin —
could be expressed in the zebrafish pLLP and localized to cell membranes as expected, but did not
yield phenotypes in response to either short-term or long-term optical activation. There are a

number of possible reasons for this outcome.

PA-Cxcrdb and bOpsin might be hampered by a shortage or absence of their obligatory cofactor,
retinal [Xu et al., 2014; Karunarathne et al., 2013a]. Furthermore, our modifications to the published
version of PA-CXCR4 [Xu et al., 2014] to convert it to the zebrafish homolog PA-Cxcrdb could
potentially have rendered the protein inactive or alternatively may not have been sufficient to allow
interaction with zebrafish G-proteins. Similarly, the human bOpsin used here may be unable to

activate zebrafish Ga; due to species-specific differences.

The most perplexing case is PA-Racl, which has already been used successfully in zebrafish
neutrophils [Yoo et al., 2012] and neural crest cells [Scarpa et al., 2015]. It is possible but unlikely that
its obligatory cofactor, flavin mononucleotide (FMN) [Christie et al., 1999; Herrou & Crosson, 2011],
would be far less abundant in the lateral line. Another explanation could be that PA-Racl is in fact
functional but unable to overcome the natural buffering of the Racl regulatory network at play in the
pLLP, for example due to a compensatory response of RhoA [Rottner et al., 1999; Williams et al.,
2007; Chauhan et al., 2011]. This interpretation would also explain why the constitutively membrane-
localized RacGEF Lyn:tagRFP-T:Tiam1a-Gd does not cause a phenotype when expressed in lateral line

cells, unlike its RhoGEF counterpart Lyn:tagRFP-T:ARHGEF25b-Gd.

We also tested the recruitment-based heterodimeric CRY2-CIBN system and found that it is
functional in principle: light-dependent recruitment of transiently expressed CRY2 to the cell
membrane can be observed in embryos where membrane-anchored CIBN is present. However, in
practice it proved impossible to generate CRY2-effector fusion proteins that were expressed at

detectable levels in the pLLP. In fact, even generating stable transgenic fish lines of CRY2-effector
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constructs was challenging, with low rates of transmission and unusually weak expression of the

independent transfection marker.

It is possible that CRY2 exhibits some degree of toxicity in zebrafish, perhaps mediated by scavenging
of the cellular pool of its obligatory cofactor flavin adenine dinucleotide (FAD) [Liu et al., 2008],
which is also a cofactor for several metabolic enzymes [Mansoorabadi et al.,, 2007]. As a
consequence, cells expressing CRY2 constructs might die or might be outcompeted by others during
development. Such toxicity could explain how the initially high transfection rate seen in early
embryos following DNA injections (see figure 3.3a) is drastically reduced by the time the lateral line
can be imaged. However, it is not clear how toxicity could explain the low number of transgenic
founder fish and the low rates of transmission in cases where CRY2 was placed under UAS control
and thus should not be expressed in absence of the Gal4 driver. Indeed, the ability to generate
transgenic lines with toxic constructs was among the original motivations for the development of the
Gal4-UAS transactivation system [Brand & Perrimon, 1993]. Thus, some of the problems we

encountered appear to be independent of the CRY2 protein itself.

The potential toxicity of CRY2 in zebrafish appears not to have been addressed in the literature, apart
from being mentioned briefly in a study presenting an optogenetic tool for the control of gene
expression based on the bacterial LOV protein EL222 [Motta-Mena et al., 2014]. There, the authors
claim that a similar system based on CRY2, which had been published two years prior [Liu et al.,
2012], exhibits substantial toxicity in zebrafish, unlike their EL222-based system. However, to our
reading the earlier study makes no direct mention of toxicity [Liu et al., 2012] and the latter study
only presents results on the toxicity of their own construct compared to a GFP control [Motta-Mena
et al., 2014]. Either way, it is perhaps telling that neither study presents stable transgenic lines of
their tools and that the literature otherwise appears to be devoid of applications of the CRY2-CIBN

system in zebrafish to date.

Taken together, our results illustrate that the adaptation of optogenetic tools to an in vivo system of
choice is still a non-trivial and failure-prone endeavor, even if said tools have been used successfully
in other systems. A potential culprit for many of these issues could be the availability of cofactors,

although other known and unknown variables may also play a role.

Fortunately, the field of optogenetics continues to progress toward becoming more readily
applicable to in vivo studies [Johnson & Toettcher, 2018]. For instance, the PhyB-PIF hetero-
dimerization system has recently been applied successfully to control nuclear localization [Beyer et
al., 2015] and precise subcellular membrane localization [Buckley et al., 2016] in zebrafish embryos,
although cofactors are once again a crucial limitation, given that the small molecule cofactor PCB has
to be exogenously delivered for PhyB to function. Newly discovered or engineered optogenetic
constructs such as the near-infrared tool BphP1-QPAS1 [Redchuck et al., 2017] or the LOV2-derived
iLID-SSPB system [Guntas et al., 2015; Johnson et al.,, 2017] could help alleviate this dependency.
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Even CRY2 itself can be a highly effective tool in some in vivo models, as evidenced by its successful

application in Drosophila [Guglielmi et al., 2015; lzquierdo et al., 2018; Krueger et al., 2018].

Despite the roadblocks encountered here, it is likely only a matter of time before optogenetics

mature into a "plug and play" part of the developmental biologist's molecular toolbox.

4.2 chemoARHGEF Reveals a Potential Role for Cortical Tension in
Rosette Patterning and Morphogenesis

We engineered a constitutively active form of the RhoGEF ARHGEF25b under chemical control of
expression, termed chemoARHGEF. When mosaically expressed in the pLLP, chemoARHGEF induces
cell rounding, consistent with an increase in cortical tension induced through a RhoA-ROCK-MLC-
Myoll cascade [Lecuit & Lenne, 2007; Schwartz, 2004]. Interestingly, chemoARHGEF-positive cells are
also sorted to the center of the tissue, indicating that surface tension-based cell sorting plays a role

in rosette organization.

Cell sorting due to differential interfacial tension is a physical process that is thought to serve as a
fundamental patterning motif in developing tissues [Brodland, 2002; Lecuit & Lenne, 2007; Fagotto,
2014] and has been invoked to explain a range of processes, including patterning of the Drosophila
retina [Kafer et al., 2007], germ-layer organization in zebrafish gastrulation [Krieg et al., 2008], and
inside-outside patterning of mouse blastocysts [Maitre et al., 2016]. It is closely related to sorting
based on differential adhesion [Steinberg, 2007]; indeed, the two can be thought of as two sides of
the same coin, with cortical tension acting to reduce cell-cell contact interfaces (to minimize the cell
surface area by making cells more spherical) and adhesion acting to increase them (to maximize the
area of adhesion) [Brodland, 2002; Tepass et al., 2002], although the actual physical process at the

subcellular scale may not entirely conform to this simplification [Maftre et al., 2012].

Tension-based cell-cell interactions have also been linked to more than just cell sorting. In mouse
blastocysts, asymmetric cell division results in an imbalanced distribution of contractile factors,
which not only leads to sorting of the more contractile daughter cell to the inside of the embryo but
simultaneously affects cell fate, possibly through the Yap mechanosensing pathway [Maitre et al.,
2016]. In the Drosophila wing disk, interface contractility between two different tissue domains is
classically associated with boundary formation [Landsberg et al., 2009] but has also been shown to
intrinsically arise at the interface of any two groups of cells committed to different fates, driving
either extrusion and apoptotic elimination of individual cells or cyst formation of small cell groups

[Bielmeier et al., 2016].

In the lateral line primordium, rosette formation is thought to be driven by FGF-induced apical

constriction [Lecaudey et al., 2008] and the inside-outside patterning of future hair cells at the center
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versus the surrounding support and mantle cells is thought to be mediated by a Notch-based lateral
inhibition mechanism downstream of FGF signaling [ltoh & Chitnis, 2001; Sarrazin et al., 2006;
Matsuda & Chitnis, 2010]. Our finding that pLLP cells in the periphery of forming rosettes readily sort
to the center in response to increased cortical contractility raises the intriguing possibility that
differential tension may also play a role in rosette formation and/or patterning. Based on the above-
mentioned wide range of processes known to involve differential tension mechanisms, several such

roles (and combinations thereof) are conceivable.

Firstly, differential tension could be involved in the initial establishment of an inside-outside pattern
by way of tension-based sorting of a heterogeneous population of cells in the leader-follower
transition zone. Notch-based lateral inhibition [Matsuda & Chitnis, 2010] would then act only to
refine this initial pattern. Similar to what was found in mouse blastomeres [Maitre et al., 2016],
asymmetric cell division may contribute to the generation of transition zone heterogeneity, since cell

divisions of the highly polarized leader cells may yield daughter cells with unequal surface tension.

Secondly, differential tension may act in tandem with apical constriction to implement robust rosette
morphogenesis. Highly contractile cells at the center of the rosette may effectively pull the softer
peripheral cells inward through a combination of tensile and adhesive forces [Maitre et al., 2012],
thus contributing to the progression of apical constriction. Such a mechanism could potentially even
generate rosette-like structures without the need for apical constriction, making it a putative

morphogenetic mechanism that could be at play independently in other systems.

Thirdly, differential tension may be important for the maintenance of physically stable rosette
configurations in a dynamic environment. A graded increase in surface tension from the periphery to
the center results in a rosette configuration that is mechanically stable whilst still allowing the more
fluid-like peripheral cells to absorb environmental forces exerted for example by the tissue's
migration. In simple terms, the peripheral cells could act as a "lubricant" that allows the compact

rosette core to slide through the embryo.

Finally, differential tension could interact with established patterning systems to modify or enhance
them. For instance, the increased surface tension of central rosette cells renders them spherical and
thus minimizes their contact area with neighbors. Correspondingly, the average total contact area of
a cell with its neighbors would be expected to progressively increase for cells located more toward
the periphery of the tissue. This may impact on cell contact signaling, where integration over the
total interaction surface is relevant [Shaya et al., 2017]. Furthermore, the physical forces rosette cells
exert on each other might directly modify signaling; Notch signaling activation in particular is thought

to have a mechanical component [Kopan & Ilagan, 2009; Wang & Ha, 2013].

At present, all of these potential functions are hypothetical. Before they can be addressed, further

work remains to be done in order to fully establish that chemoARHGEF indeed activates RhoA and

100



that this indeed induces increased cell surface tension. Complementarily, force measurement
experiments (e.g. laser cutting [Smutny et al., 2014]) are required to confirm that cell surface tension
is patterned in wild-type rosettes. If this is indeed the case the source of this pattern must be
determined, for instance by testing whether RhoA signaling itself is patterned (e.g. using a RhoA

activity probe [Stephenson & Miller, 2017]).

Following confirmation of these core assumptions, the functional importance of differential cell
surface tension in rosette formation can be investigated. To this end, one important avenue will be
to link surface tension to relevant downstream outcomes, such as hair cell fate. Another direction to
pursue will be to disentangle the functions of apical constriction and differential tension in rosette
morphogenesis, which could be achieved by abolishing apical constriction (e.g. through inhibition of
FGF signaling [Lecaudey et al., 2008]) whilst maintaining differential tension (e.g. through
chemoARHGEF expression).

In summary, cell surface tension heterogeneity can mediate diverse processes ranging from cell
sorting to morphogenesis to fate specification. It may thus also play an important role in the
integration of these processes when they take place simultaneously, such as during rosette
formation in the pLLP. Here, we established chemoARHGEF as a powerful tool for manipulating
cortical tension and we presented preliminary results indicating that tension heterogeneity could
indeed be involved in rosette formation. As we continue to elucidate the exact nature of this
involvement, we expect to learn more about the integrative functions that interface tension

phenomena may play in developing tissues.

4.3 No Conclusive Evidence for Tissue-Scale Feedback of Rosette
Morphogenesis on Leader Cell Migration

When cells build organs by simultaneously moving, changing shape and making fate decisions, they
have to tightly and robustly coordinate these processes or risk cascade failure and thus rapid
divergence from the intended developmental trajectory. Here, we hypothesized that collective
migration and rosette assembly in the zebrafish pLLP might be coordinated mechanically, with the
deceleration of assembling organs providing an anchoring counterforce to leader cell migration and
thereby establishing anisotropic tension across the primordium that could contribute to cell guidance

through plithotaxis (see figure 3.5a-b).

A similar mechanism is thought to be at play during in vitro monolayer migration [Vitorino & Meyer,
2008; Tambe et al.,, 2011; Trepat & Fredberg, 2011; Zaritsky et al., 2015] and tension-based
interactions in general have been implicated in the organization of migrating collectives in a number
of systems, including Drosophila border cell migration [Somogyi & Rgrth, 2004] and tracheogenesis

[Han et al., 2004]. However, what has remained largely unaddressed is the link of such mechanisms
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with morphogenesis and differentiation — and thus their potentially important role as coordinators of

multiple different developmental processes.

To explore this idea, we first reproduced unpublished prior evidence! and confirmed that pLLP
migration is partially robust to acute loss of graded chemokine signaling. Specifically, ablation of the
follower cell domain expressing Cxcr7, the scavenger receptor required to set up the local self-
generated chemokine gradient that is thought to guide pLLP migration [Dona et al., 2013], does not

in all cases lead to an arrest of the primordium.

The hypothesized tension-based feedback mechanism could explain this robustness of migratory cell
polarity, as the plithotactic component of guidance can persist so long as some rosette-assembling
followers are left intact. A second possible explanation would be cell-autonomous persistence of
migratory polarity, maintained by a self-stabilizing configuration of polarity components and the
cytoskeleton [Pegtel et al., 2007; Krause & Gautreau, 2014]. However, in previous experiments
where all follower cells had been ablated, leaders immediately ceased to migrate [unpublished
datal], which indicates that they do not possess such autonomous persistence. There is also a third
explanation for this outcome, namely that our ablation is in fact incomplete and a small pool of Cxcr7
remains in follower cells that do not show detectable levels of our Cxcr7 transcriptional reporter. This
pool could be sufficient to uphold a shallow gradient and thus maintain leader cell polarity — which is

why we next sought to test our hypothesis with experiments that alter tissue-tension directly.

To do so, we made use of 2P-Arrest, a phenomenon we serendipitously discovered and subsequently
optimized for this purpose. A few minutes of irradiation with 2-photon laser light at levels above
what is ordinarily used for 2-photon imaging but below what would cause ablation reliably induces
an arrest of migration in pLLP cells. Interactions of laser light with biological tissues are complicated
[Niemz, 2013], so determining the exact mechanism underlying this treatment is non-trivial. The
effect is reminiscent of laser cauterization, where the same kind of irradiation is used to "glue"
Drosophila cells to the adjacent vitelline membrane [Collinet et al.,, 2015; Rauzi et al.,, 2015].
However, since 2P-Arrest does not immediately stop cells but rather causes a gradual deceleration of
migration, a different effect must be at play. Consistent with our observation that irradiated cells
eventually enter apoptosis (but not until several hours after the treatment), we suspect that laser-
induced DNA damage triggers pLLP cells to terminate their migratory prograem. Further experiments
such as testing for p53 and caspase-3 activation [Lee et al., 2007] or performing 2P-Arrest in embryos
mutant for p53 [Berghmans et al., 2005] will be required to support this hypothesis. Regardless of its
specific mechanism of action, 2P-Arrest can serve as a light-based precision perturbation tool to

arrest migratory cells or cell groups in vivo and may be useful beyond the lateral line primordium.

! These experiments were performed by two former members of the lab, Petra Haas and Sebastian Streichan.
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By specifically arresting pLLP follower cells and observing the behavior of leader cells in response, we
were able to directly test the hypothesis that follower cell deceleration impacts leader cell behavior.
We quantitatively assessed membrane and actin dynamics of leader cells during follower 2P-Arrest
but found no clear evidence of an active response. The only effect we could detect is an elongation of
leader cells' lamellipodial projections. However, this outcome does not necessarily indicate an active
response, since lamellipodium extension is driven by branched actin assembly at the leading edge as
a sort of "front-wheel drive" [Ridley, 2011]; leader cell stretching and lamellipodium elongation
would thus also be consistent with a passive physical effect resulting from the increased rearward

anchoring force.

In conclusion, we found no clear evidence supporting a model of feedback coordination between
rosette assembly and primordium migration. Although further experiments are possible (for
example, we have not looked into leader cell myosin dynamics during follower arrest) and although
the robustness of pLLP migration to Cxcr7-domain ablation remains to be explained, our current

results do not support the proposal that plithotactic coupling helps guide the lateral line primordium.

4.4 Image-Based Quantitative Analysis of Cellular Architecture in a
Developing Tissue

For data-driven approaches to succeed in accelerating the progress of biology, comprehensive
guantitative descriptions of biological systems are an essential starting point. However, capturing not
only the constituent biochemical components of multi-cellular tissues but also their intricate multi-

scale architecture and their complex dynamics represents a major challenge.

We developed a computational framework for image-based quantitative characterization of cellular
architecture in living tissues. Making use of AiryScan microscopy [Huff, 2016], we acquired high-
quality 3D confocal volumes of membrane-labeled lateral line primordia, which we then
automatically segmented into individual cells. Next, we employed a novel computational approach to
embed cell segmentations or arbitrary subcellular fluorescence intensity distributions into compact

and expressive latent feature spaces ready to be explored by data-scientific methods.

Re-representing image data in a more useful form is a non-trivial problem. Ideally, potential solutions
would meet most or all of the following criteria: they capture all relevant variance in the input image,
they allow rejection of non-relevant noise, they allow rotational variance and size variance to be
factored out, they work for arbitrary shapes or intensity distributions, they can be reversed (a
matching image can be reconstructed from any point in the latent feature space), they consist of
mathematically tractable steps, and they are computationally efficient. To date, no existing approach

readily meets these criteria, especially not for 3D volumetric data.
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PCA has been established as a powerful tool for performing reversible and tractable data re-
representation into features that are expressive and ordered by their contribution to the variance in
the population, allowing noise to be rejected [Adams et al., 2004; Pincus & Theriot, 2007; Weight et
al., 2008; Barnhart et al., 2011]. Although PCA can be applied directly to segmentation outlines or
images, it does not natively account for rotational and size variance and it is unclear how well it could

handle arbitrary fluorescence intensity distributions [Pincus & Theriot, 2007].

Here, we implemented a novel approach inspired by geometric morphometrics [Adams et al., 2004;
Adams et al., 2013] that combines the advantages of using a point cloud representation with the
aforementioned strengths of PCA. We use a tunable sampling algorithm (ISLA) to convert images to
sparse but information-preserving point clouds and subsequently re-represent these clouds relative
to common reference points (CBE). The resulting feature space is then transformed by PCA, which

yields expressive latent features ordered by their contribution to the population's variance.

Our pipeline can take arbitrary intensity distributions as well as cell segmentations as inputs and can
explicitly remove rotational variance through an intermediate pairwise distance re-representation
step performed on the point cloud. It does not, however, natively provide reversibility from the
latent feature space back to a point cloud or image representation. Further validation will be
required to determine the extent of the advantages and drawbacks of our proposed method more
clearly, in particular with respect to the implications of using a pairwise distance re-representation to

achieve rotational invariance.

We applied our morphometric approach to characterize cell shape across a large dataset of 190
segmented primordia. If rotational symmetry and size differences were not removed (TFOR), they
together explained over 70% of variance in the dataset, followed by shape parameters such as
protrusion length and sphericity. Whilst the importance of the rotational component is easily
explained by the mirror symmetry of the pLLP, it is interesting to note that cell size seems to mainly
vary along the apico-basal axis (the height of the cell); this may be a consequence of the more flat
and protrusive (mesenchyme-like) state of the leaders being contrasted with the more packed and
apically polarized (epithelial-like) state of the followers [Pastor-Pareja, 2004; Lecaudey et al., 2008;
Fischer et al., 2009; Friedl & Gilmour, 2009].

After correcting for size and orientation (CFOR), cell sphericity clearly dominates the population's
variation within the shape space. As sphericity is closely linked with cell surface tension and adhesion
[Matzke, 1946; Tepass et al., 2002; Lecuit & Lenne, 2007], this finding reinforces the need for a closer
investigation of effective surface tension as a potential key parameter for tissue self-organization in
the pLLP, as discussed in section 4.2 based on the chemoARHGEF phenotype. One concern to be
addressed in this context is that leader cells or transition zone cells are ascribed relatively high values
of sphericity in the shape space analysis, which is unexpected given the sorting bias of

chemoARHGEF-positive cells to the center of the tissue. This observation could potentially be an
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artifact caused by the impossibility of capturing leaders' thin protrusions projected forward directly
underneath their neighbors, which may cause leader cell sphericity to be overestimated. The use of
more specific measures of sphericity, such as circularity along different axes, will likely help resolve

this issue.

In summary, we have developed a framework for imaging, single-cell segmentation, latent feature
space embedding, and quantitative analysis of developing tissues in vivo and have applied it in a
proof-of-concept study to chart the cellular shape space of the pLLP. We anticipate that image-based
large-scale characterization of multi-cellular systems will provide a useful basis for data integration
and data-driven biological inference (see section 4.5) and we expect that further analysis of the pLLP
shape space — in particular with regard to cortical tension and in tandem with perturbation
experiments using chemoARHGEF — will yield new insights into the principles underlying the tissue

architecture of migrating cell collectives.

4.5 The Cellular Shape Space as a Reference for Data Integration and
Context-Sensitive Analysis

Deriving meaningful mechanistic and human-interpretable conclusions and predictions from big data
is extremely challenging [Holzinger et al., 2014]. Moving from data that is big to data that is rich (i.e.
multi-modal data that integrates different types of information) as well as exploitable (i.e. data that
can be queried and visualized in a variety of useful ways) is a crucial step in overcoming this

challenge.

Data integration has been an active field of research for some time but has recently intensified in the
life sciences as a consequence of the advent of multi-omics technologies [Gomez-Cabrero et al.,
2014; Bersanelli et al., 2016]. In these cases, integration is usually based on matched nodes in a
network, for instance matched patient samples that were analyzed with different omics approaches
[Argelaguet et al., 2018] or matched genes for whom interactions have been quantified in different

organisms [Szklarczyk et al., 2017].

By contrast, image data integration is usually performed by spatial registration of multiple
specimens, which is a special case of data integration based on a common reference measurement,
an approach we refer to as atlas mapping. Although registration has enabled a number of impressive
successes [Vergara et al., 2017; Cai et al., 2018], its requirement for stereotypically shaped
specimens presents a considerable limitation. Thus, other approaches to atlas mapping are now

being explored, including the use of generative deep learning models [Johnson et al., 2017].

Here, we present a machine learning-based method for atlas mapping of single-cell data that is based

on an embedded cellular shape space as a reference measurement. We move away from attempting
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to perform atlas mapping at the level of actual image data and instead restrict ourselves to mapping
between feature spaces, which is ultimately more important for downstream data analysis
techniques. This decision enabled us to use straightforward classical machine learning techniques (in
particular Support Vector Regression) to generate a proof-of-concept atlas of several different
fluorescent marker, including markers for F-actin, cell nuclei, and different endomembrane
compartments — all based on as few as 15 to 20 primordia per marker, which allows our approach to
be applied to developing tissues in vivo, despite the limitations in throughput associated with such

model systems.

Interestingly, this approach is not limited to integrating fluorescence intensity distributions. In future,
different types of information could be included into the atlas by learning their relationship with the

cellular shape space.

A very simple example would be to perform single-molecule fluorescence in-situ hybridization
(smFISH), which allows the exact and spatially resolved quantification of gene expression levels [Raj
et al., 2008]. Since a membrane marker can be imaged simultaneously, smFISH spots can easily be
assigned to segmented cells and a regressor can be trained to predict spot counts from shape space
information. In a second step, this approach could be extended to entire transcriptomes by means of
single-cell RNA-seq [Wu et al., 2013], the results of which can be mapped back into the primordium
based on a selected set of references genes whose distribution has been fully characterized by
smFISH. A similar approach has already been employed elsewhere [Satija et al., 2015; Achim et al.,

2015], albeit again based on image registration rather than latent feature regression.

Another very interesting possibility is to map cortical tension across the primordium. This could be
achieved either by combining membrane imaging and segmentation with Brillouin microscopy
[Scarcelli & Yun, 2007] or by performing laser-cutting experiments across many samples [Smutny et
al., 2015]. In both cases, an acquired pilot dataset would be used to train a machine learning model
to learn the relationship of interface tension with the combined shape space of the two interfacing
cells. The trained model could then be used to predict tension for all interfaces and for any
primordium for which cellular shape space information is available. This idea represents a data-
driven alternative to established physics-based approaches for inferring cell surface tension from cell

shape alone [Chiou et al., 2012; Brodland et al., 2014].

Perhaps the most important dimension to integrate into the dataset is time. Based on a set of fully
tracked time courses, the cellular shape space — along with any other properties mapped onto it —
could be extended to include the temporal trajectories of cell states throughout pLLP development.
Here, we presented the prim tracker 880, an adaptive feedback microscopy tool that allows the
acquisition of high-quality AiryScan time lapses with high temporal resolution. It should be relatively
straightforward to perform automated single-cell tracking on such data, thus adding an arrow of time

to the pLLP's shape space.
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On its own, simply making big data even bigger by integrating additional datasets may not be
sufficient to help derive biologically meaningful conclusions. We propose three ways in which a cell

atlas such as the one described here could also be made more exploitable.

Firstly, supervised machine learning can be used to introduce human-interpretable biological context
to the dataset and re-represent the data accordingly. We showed an example of this in the form of
morphological archetypes. By manually categorizing pLLP cells into groups that make sense from a
human researcher's perspective, the entire dataset could be transformed to reflect its relationship
with these user-defined classes, making it immediately more interpretable. A similar approach could
for instance be used to investigate the behavior of dividing cells within the pLLP, which would be
especially interesting if time course data is included in the atlas, as it may for instance reveal
information about possible asymmetric cell divisions in the primordium's transition zone (see section

4.2).

Secondly, context-sensitive analysis can help unpack complicated relationships between different
aspects of the dataset. When a specific question is asked, such as whether two features of the atlas
correlate, a classical correlation analysis will often be confounded by a multitude of independent
sources of variation. In such cases, information within the rest of the dataset can provide the context
required to distill the relationship of interest. For instance, one might ask whether two proteins of
interest co-localize in the cells of the pLLP. However, a simple co-localization analysis across all cells
might fail to reveal that the two proteins in fact co-localize exclusively within outer rosette cells. By
looking for correlations within specific contexts of the atlas, for instance within each morphological
archetype, such context-specific relationships become visible. It may even be possible to automate
such queries, returning both the detected relationships between two features of interest and the

relevant context.

Finally, there is little doubt that a first-principle mathematical model of the lateral line (based e.g. on
a GGH framework [Swat et al., 2012]) would be invaluable for exploring and understanding the
interplay of physics and cell signaling that underlies its self-organization. However, modeling and
simulation of complex multi-cellular systems is technically and conceptually challenging, especially
when limited information is available to guide choices as to how various sub-cellular processes
should be simplified [Brodland, 2015]. A comprehensive cell atlas provides ample quantitative
information and would thus be a useful aide during model generation, parameter estimation, and
model evaluation. In essence, the cellular atlas represents a data-driven model of the tissue, which
can be approached from first principles in order to arrive at a mechanistic and interpretable

mathematical model. In the (far?) future, this process may eventually be automated in its entirety.

Overall, our computational efforts to quantitatively characterize the pLLP's cellular architecture have
led to a number of proof-of-concept tools for the integration and analysis of rich biological datasets.

As the cell atlas of the lateral line primordium continues to grow, these tools as well as our other
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proposals will be put to the test. Hopefully, they will enable the data-driven discovery of new insights

into tissue self-organization.

4.6 Concluding Remarks

Recently, discussions have unfolded about whether molecular and developmental biology are close
to being "complete", leaving nothing but scraps for basic researchers and implying the necessity to
increasingly refocus our efforts toward engineering and design [Woese, 2004; Cohen, 2017; Grewal,

2018].

Historically, speculations along these lines have come up repeatedly in various fields, including
physics [Michelson, 1903; Hawking, 1993] and molecular biology itself [Stent, 1969]. They usually fell
by the wayside rather quickly as new and exciting discoveries continued to propel those fields

forward.

With respect to the current iteration of this debate, we feel that our modern understanding of
biology is in fact far from complete. Even if we are approaching a point where most of the
fundamental units of life — including genes and biochemical mechanisms — are known and relatively
well understood, the secrets of life lie not in those components alone but in their dynamic interplay

across several scales. Life is not just substance; it is information.

Here, we sought to tackle some of the challenges that arise from trying to understand multi-
cellular systems from an integrated rather than a reductionist perspective. Complexity and its
methodological consequence is one such challenge. The fact that big data alone does not readily lead
to mechanistic models, let alone to human understanding, is another. The work presented in this
thesis identifies a number of possible paths toward overcoming these challenges, both in terms of
biological concepts and in terms of methodological approaches. However, it also reflects how long

the road still is and how small our steps along the road tend to be.

There are several additional challenges we have so far left unaddressed, including the need for
improved theoretical frameworks to quantitatively yet intuitively model and predict higher-order
biological systems, or the need for more integration between mechanistic and evolutionary biology
to bring more generality to the former and more applicability to the latter. Even when it comes to
engineering and design, we anticipate that emergent biological phenomena will be both a potential
hindrance (for attempts to program biological systems as one would program a computer) and an

incredible opportunity (when the self-organizing principles of biology can be harnessed successfully).

In conclusion, we ask those worried about the imminent completeness of our field to turn their eyes

toward higher-order living systems. We would be surprised to find that they continue to worry.
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Appendix

A1l Sequences

PA-Cxcrdb

5'_ATGAACGGGACCGAGGGCCCAAACTTCTACGTGCCTTTCTCCAACAAGACGGGCGTGGTGCGCAGCCCCTT
CGAGGCCCCGCAGTACTACCTGGCGGAGCCATGGCAGTTCTCCATGCTGGCCGCCTACATGTTCCTGCTGATCA
TGCTTGGCTTCCCCATCAACTTCCTCACGCTGTACGTCATGGGCTTCCAGAAGAAGTCAAAGAACATGCTCAAC
TACATCCTGCTCAACCTGGCCGTGGCCGACCTCTTCATGGTCTTCGGGGGCTTCACCACCACCCTCTACACCTCT
CTGCACGGGTACTTCGTCTTTGGGCCCACGGGCTGCAACCTGGAGGGCTTCTTTGCCACCTTGGGCGGTGAAA
TTGCACTGTGGTCCTTGGTGGTCCTGGCCATCGAGCGGTACGTGGTGGTGGTACGTGCCACAAACAGCCAAAA
CTTAAGGAAATTGCTTGCCATCATGGGCGTCGCCTTCACCTGGGTCATGGCTCTGGCCTGTGCCGCGLCCCCCCC
TCGTCGGCTGGTCCAGGTACATCCCGGAGGGCATGCAGTGCTCGTGCGGGATTGACTACTACACGCCCCACGA
GGAGACCAACAATGAGTCGTTCGTCATCTACATGTTCGTGGTCCACTTCATCATCCCCCTGATTGTCATATTCTT
CTGCTACGGGATCATCATCTCAAAACTGTCCAAGAACTCCAAGGGTCAGACTCTAAAGAGGAAGGCACTGCGC
ATGGTGATCATCATGGTCATCGCTTTCCTAATCTGCTGGCTGCCCTACGCTGGGGTGGCGTTCTACATCTTCACC
CATCAGGGCTCTGACTTTGGCCCCATCTTCATGACCATCCCGGCTTTCTTTGCCAAGACTTCTGCCGTCTACAAC
CCCGTCATCTACATCATGATGAACAAGCAGTTCCGGAAATCTGCCCGTAACGCTCTGAGCATCAGCAGTAGATC
CAGTCACAAGATGCTGA_3'

zfRGS4A

5' _ATGCAAGAGCAAAAGACTCTGAAGGAAAAAGAGAAGGAGAAAGACAAGGAGAAGGTGAAGGACACTGT
GGTCAACAGAATCACTCCTGCCGAAACTGAGAAATGGAAAACATCATTTACCAACCTGATCAAAAACGACGAC
GGTCGCAAGGCTTTCGCATCCTTCCTACAGTCCGAATACAGTCAAGAGAACATTGAATTCTGGGTAGCCTGTGA
GGATTTCAAGCAGACGCCAGCAGACAAGATGAACCTGAAAGCCAGAAATATATTTGAGCGATACATTGAGGC
CGATTCCCCCCGTGAGGTCAATCTGGATTCAGTCACCAGGGAGCAGACCAGAAAGAACCTGGAAATGTGTGAT
GTTTCATGTTTTGACGAAGCTCAGAGTAAAATCTTCACTCTTATGGAAAAAGACTCGTATCGGCGATTCCTGAG
ATCCAGATTGTTCCTGGAACTGTCTCAACCTGCGATGGACAACAAACCCTGTGGTTTAGAGAAGAAAGTAAAG
CGACAGATTTCTGACTACAGTCAGTGTTTGCCTAGTTATGCCTAA_3'

Tiamla-Gd

5'_GGCTCACAAGAGTACAGAGCAGGTGACCGCCTTCTGCCGCAACCTTCATGATATGAATTCCAACGAGGGTC
CCGTCTCCTGTTCCTCATCTTCCTCCACTTCTTCCTCATCTTCATCCTGCATGCCCAGCCCAATCTCTCCACTGCCT
GGTCTCTTCACCCCTCGCCAGCTCTCTGACGCAGATAAACTCCGCAAGGTCATCAGTGAGCTGGTGGACACTGA
GAGGACCTACGTTAAGGACCTGAACATTTTAATAGAGCGCTACCTGAACCCACTGCAGAAGGAGAGCTTCCTC
ACCCAGGATGAGCTGGACGTGCTGTTTGGAAACTTGGCGGAGATGGTGGAATTCCAAGTGGAGTTTCTGAAA
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ACTCTAGAAGATGGAACCAGATTAGTTCCAGATTTAGACAAACTGGAGAGAGTCGATCAGTTTAAGAAAGTTC
TGTTTTCTCTTGGTGGATCTTTCCTCTACTATGCGGACCGTTTTAAGATCTACAGTGCATTTTGTGCCAGTCACAC
AAAAGTCCCCAAGGTCCTTACCAAAGCTAAAACAGACCCAGAGTTTAAGGCATTTCTGGCTGAGAGGAACCCC
AGACAGCAGCATTCCTCCACACTGGAGTCCTACCTGATCAAACCCATTCAGAGAGTCCTAAAATACCCACTGCT
TCTGAGGGAGCTTTACTCGCTCACCGACCCCGACAGCGAGGAGCACTACCACCTGGATGTGGCGATGAAAGCC
ATGAACAAAGTGGCCAGTCACATAAACGAGATGCAGAAGATTCACGAGGAATACGGAGCCGTGTTTGACCAA
CTCATCAGTGAACAGAGCTCAGAAAAGAAAGAGGTTGCTGATCTGTCAATGGGCGACCTCTTGTTGTATGACA
CAGTGGTCTGGATTAACCCACCGTCCTCTTTGATGAAGGGGAAGAGAGACCCAGAGCTGGCTGCCTTTGTTTT
CAGAACAGCGGTTGTTTTTGTGTGTAAGGACTGCTCCAAGCAAAAGAAAAAAATCGGTGGACCTCACAGAGTG
TCAACCCTTGATGAGAGAGACCCATTTCGTT_3'

ARHGEF25b-Gd

5'_GTGCTGACAGAGCTGGTAGAAACGGAGAAGCTGTATGTGGAAGATCTGGGGCTTGTTGTTGAGGGTTATA
TGCTTACAATGAGAAGTTTTGGAGTGCCCGAGTATTTGGAAGGAAAGGACAAAATAGTCTTTGGGAACATTCA
TCAGATCTACGACTGGCATAAAGACTATTTTCTTGGAGAGTTGGAGAAATGTGTGTCTGAACCCGACCTGCTA
GCACAGCTGTTTATTAAACATGAGAGACGGCTCAACATGTATGTTGTCTACTGTCAGAACATGCCAAAGTCAG
AGCACATCGTCTCAGAGTACATCGAAACTTATTTTGAGGATCTGAGGCAACAGCTGGGTCACAGACTGCAGTT
AAATGACCTGCTCATCAAACCCGTTCAGAGAATCATGAAATATCAGCTGCTGCTGAAGGACTTCCTGAAGTACT
ACACTAAAGCGGGCAGACAAACAGAAGATCTTGAGAGGGCCGTTGAGGTCATGTGTTTTGTTCCAAAGCGAT
GCAATGAC_3'

A2 Engineered Features

Sample Level

Features characterizing the entire primordium (sample). These are the same for every cell of a given

primordium.

e covars.img.sample.cellnum
e Number of cells in a given primordium

e covars.img.sample.volume
e Segmented volume of entire primordium

e covars.pcl.sample.extents
e Maximum extents of entire tissue along Z, Y and X axis
e Corresponds to maximum height, width and length of the primordium

e covars.pcl.sample.aspects

e Aspect ratios of covars.pcl.sample.extents,
specifically Z/Y, Z/X and Y/X
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Tissue Level

Features relating each cell to the tissue context.

e covars.img.tissue.centroids
e ZYX position of cell centroids in the image frame of reference

e covars.img.tissue.bboxes
e ZYXslice objects to slice the cells' bounding box from the image

e covars.img.tissue.neighbor_ids
e Labels of the cells' direct-contact neighbors

e covars.img.tissue.neighbor_num
e Total number of the cells' direct-contact neighbors

e covars.img.tissue.neighbor_contact_areas
e Contact area (in number of voxels) shared with cell's direct contact neighbors
e Ordered the same way as covars.img.tissue.neighbor ids
e The 'outer' surface area of the cell is used for this measurement

e covars.img.tissue.outside_contact_area
e Contact area (in number of voxels) shared with the outside of the primordium

e The 'outer' surface area of the cell is used for this measurement

e covars.pcl.tissue.centroids
e ZYX position of cell centroids in TFOR

Cell Level (Segmentation-Based)

Cellular features based on the segmentation mask.

e covars.img.cell.volume
e Total volume of cells (in number of voxels)

e covars.img.cell.surface_area
e Total surface area of cells (in number of voxels)

e The 'inner' surface area of the cell is used for this measurement

Cell Level (Intensity-Based)

Cellular features based on the intensity distribution of a given channel.

e covars.img.cell.{channel_name}.sum_total
e Sum intensity within the entire cell

e covars.img.cell.{channel_name}.mean_total
e Mean intensity within the entire cell

e covars.img.cell.{channel_name}.sum_membrane
e Sum intensity in the membrane (shell) region of the cell
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The thickness of the shell region is user-determined (here 3pxl)

covars.img.cell.{channel_name}.mean_membrane

Mean intensity in the membrane (shell) region of the cell
The thickness of the shell region is user-determined (here 3pxl)

covars.img.cell.{channel_name}.sum_inside

Sum intensity of the inside (core) region of the cells
Thisis equal to sum_total - sum membrane
The core region is determined by the thickness of the shell region (here 3pxl)

covars.img.cell.{channel_name}.mean_inside

Mean intensity of the inside (core) region of the cells
The core region is determined by the thickness of the shell region (here 3pxl)

covars.img.cell.{channel_name}.sum_apical

Sum intensity on the "apical half" region of the cells
The apical half is determined as the section above the midslice of the bounding box

covars.img.cell.{channel_name}.mean_apical

Mean intensity on the "apical half" region of the cells

The apical half is determined as the section above the midslice of the bounding box

covars.img.cell.{channel_name}.sum_basal

Sum intensity on the "basal half" region of the cells
The basal half is determined as the section below the midslice of the bounding box

covars.img.cell.{channel_name}.mean_basal

Mean intensity on the "basal half" region of the cells
The basal half is determined as the section below the midslice of the bounding box

covars.pcl.cell.{channel_name}.extents

Maximum extents of the cell tissue along Z, Y and X axis (in TFOR)
Corresponds to maximum height, width and length of the cell

covars.pcl.cell.{channel_name}.aspects

Aspect ratios of covars.pcl.cell. {channel name}.extents,
specifically Z/Y, Z/X and Y/X

covars.pcl.cell.{channel_name}.extents_pca

Maximum extents of the cell along the first, second and third principal component axis

covars.pcl.cell.{channel_name}.aspects_pca

Aspect ratios of covars.pcl.cell. {channel name}.extents pca,
specifically PC 1/2, 1/3 and 2/3

covars.pcl.cell.{channel_name}.sphericity

Measures how much spherical the points of the points are distributed

It is the mean deviation from mean sphere around the centroid, normalized and inverted
Possible values are 0 < sphericity <= 1

A sphericity of 1 means perfectly spherical, smaller sphericity means less spherical
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e Note: This currently relates to the surface of the sphere.
A filled sphere may have a low sphericity!

covars.pcl.cell.{channel_name}.symmetry

o Deprecated in favor of eccentricity!

e Anindication of how balanced/symmetrical the distribution is around the centroid

e Itis the distance of center of mass from geometrical center, normalized and inverted

e Possible valuesare 0 < sphericity <= 1

e A symmetry of 1 means perfectly symmetrical, smaller symmetry means less symmetrical

covars.pcl.cell.{channel_name}.distp_coords
e Coordinates ZYX of the "distal-most point", the point furthest from the centroid
e Inlocal cloud frame of reference (usually corresponds to TFOR in terms of rotation & scaling)

covars.pcl.cell.{channel_name}.distp_dist
e Distance from the centroid to the "distal-most point", the point furthest from the centroid

covars.pcl.cell.{channel_name}.distp_angles

e Angles from the centroid to the "distal-most point", the point furthest from the centroid
e The angles are given as the angles of a 2D vector relative to a (0,1) reference vector

e Three angles are given for three planes: ZY, ZX and YX

covars.pcl.cell.{channel_name}.nn_dists_mean
e Mean of nearest-neighbor distances among points in cells' point clouds

covars.pcl.cell.{channel_name}.nn_dists_std
e Standard deviation of nearest-neighbor distances among points in cells' point clouds

covars.pcl.cell.{channel_name}.all_dists_mean
e Mean of all pairwise distances among points in cells' point clouds

covars.pcl.cell.{channel_name}.all_dists_std
e Standard deviation of all pairwise distances among points in cells' point clouds

covars.pcl.cell.{channel_name}.cen_dists_mean
e Mean of all distances from the centroid (magnitudes) among points in the cells' point clouds

covars.pcl.cell.{channel_name}.cen_dists_std
e Standard deviation of all distances from the centroid (magnitudes) among points in the cells'
point clouds

covars.pcl.cell.{channel_name}.eccentricity

e Eccentricities of the ellipsoid of the cells' point clouds
e Sorted according to the extent of the principal semi-axes, from largest to smallest
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