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Abstract

Far from equilibrium, comparatively little is known about the possibilities nature re-
serves for the structure and states of quantum many-body systems. A potential scenario
is that these systems can approach a non-thermal fixed point and show universal scaling
dynamics. The associated spatio-temporal self-similar evolution of correlations is char-
acterized by universal scaling functions and scaling exponents. In this thesis, we inves-
tigate the universal scaling behavior of multi-component bosonic quantum gases from
a theoretical point of view. In particular, we perform numerical simulations of spin-1
Bose gases in one and two spatial dimensions. To enable universal scaling dynamics, we
prepare far-from-equilibrium initial configurations by making use of instabilities arising
from a parameter quench between different phases of the spin-1 model. The subsequent
universal scaling at the non-thermal fixed point is driven by the annihilation and disso-
lution of (quasi)topological excitations. In addition, we make analytical predictions for
the non-thermal fixed point scaling of U(N)-symmetric models which we corroborate
with numerical simulations of a U(3)-symmetric Bose gas in three spatial dimensions.
We find that the scaling behavior at the fixed point is dominated by the conserved re-
distribution of collective excitations. Furthermore, we introduce prescaling as a generic
feature of the evolution of a quantum many-body system towards a non-thermal fixed
point. During the prescaling evolution, some well-measurable properties of spatial cor-
relations already scale with the universal exponents of the fixed point while others still
show scaling violations. We illustrate the existence of prescaling by means of numerical
simulations of a three-dimensional U (3)-symmetric Bose gas. The research presented
in this thesis contributes to a deeper understanding of universal scaling dynamics far
from equilibrium. In particular, it unravels important key aspects for establishing out-
of-equilibrium universality classes. Furthermore, the introduced concept of prescaling
allows bridging the gap in the time evolution from the initial state to the associated
non-thermal fixed point.



Zusammenfassung

Vergleichsweise wenig ist bekannt dariiber, welche Moglichkeiten die Natur fiir die Stuk-
tur und die Zustande von Quantenvielteilchensystemen fernab vom Gleichgewicht be-
reit halt. Ein mogliches Szenario ist, dass sich diese Systeme einem nicht-thermischen
Fixpunkt ndhern und universelle Skalierungsdynamik zeigen. Die damit verbundene
selbstdhnliche Entwicklung von Korrelationen in Raum und Zeit wird durch univer-
selle Skalenfunktionen und Skalenexponenten charakterisiert. In der vorliegenden Ar-
beit untersuchen wir universelles Skalierungsverhalten in mehrkomponentigen boso-
nischen Quantengasen unter theoretischen Gesichtspunkten. Im Speziellen simulieren
wir Spin-1 Bose Gase in ein und zwei raumlichen Dimensionen. Um universelle Ska-
lierungsdynamik wahrend der Zeitentwicklung zu ermdglichen, praparieren wir An-
fangskonfigurationen fernab vom Gleichgewicht, indem wir uns Instabilitaten zu Nutze
machen, die als Folge einer schnellen Parameterverdnderung zwischen verschiedenen
Phasen des Spin-1 Modelles entstehen. Das sich daraus ergebende universelle Skalie-
ren am nicht-thermischen Fixpunkt ist getrieben von Annihilationen und dem Auflésen
(quasi)topologischer Anregungen. Auflerdem machen wir analytische Vorhersagen fiir
das Skalieren von U(N)-symmetrischen Modellen am nicht-thermischen Fixpunkt, die
wir mit Hilfe numerischer Simulationen eines U (3)-symmetrischen Bose Gases in drei
raumlichen Dimensionen untermauern. Wir stellen fest, dass das Skalierungsverhalten
am Fixpunkt von der erhaltenen Umverteilung kollektiver Anregungen dominiert wird.
Dariiber hinaus fithren wir Préaskalieren als eine generische Eigenschaft der Zeitent-
wicklung eines Quantenvielteilchensystems hin zum nicht-thermischen Fixpunkt ein.
Wihrend der Praskalierungsentwicklung skalieren einige gut messbare Eigenschaften
raumlicher Korrelationen bereits mit den universellen Exponenten des Fixpunktes, wo-
hingegen andere noch Verletzungen des Skalierens aufweisen. Wir illustrieren die Exis-
tenz von Priskalieren anhand numerischer Simulationen eines dreidimensionalen U (3)-
symmetrischen Bose Gases. Die in der vorgelegten Arbeit prasentierte Forschung tragt
zu einem tieferen Verstandnis universeller Skalierungsdynamik fernab vom Gleichge-
wicht bei. Im Speziellen zeigt sie wichtige Schliisselaspekte fiir das Aufstellen von Uni-
versalitatsklassen fernab des Gleichgewichts auf. Auflerdem erméglicht das eingefiihrte
Konzept des Praskalierens es, die Liicke in der Zeitentwicklung vom Anfangszustand bis
hin zum damit verbundenen nicht-thermischen Fixpunkt zu schlielen.
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1. Introduction

Comparatively little is known about the structure and states of quantum many-body
systems far from equilibrium. To reveal potential out-of-equilibrium phenomena, the
dynamics of isolated quantum many-body systems quenched far from equilibrium has
been an object of intensive study during recent years. Examples range from the post-
inflationary early universe [1, 2], via the dynamics of quark-gluon matter created in
heavy-ion collisions [3, 4] to the evolution of ultracold atomic systems following a sud-
den quench of, e.g., an interaction parameter [5, 6]. Yet, despite great efforts, there are
many open questions remaining about possible pathways for the evolution of such sys-
tems. Various scenarios have been discussed for and observed in ultracold atomic quan-
tum gases, including integrable dynamics [7-10], prethermalization [11-15], generalized
Gibbs ensembles [16-20], critical and prethermal dynamics [21-24], many-body local-
ization [25, 26], relaxation after quantum quenches [27, 28], wave turbulence [29-31],
decoherence and revivals [32], universal scaling dynamics associated with a non-thermal
fixed point [33-36], as well as prescaling [37]. The rich spectrum of different possible
phenomena highlights the capabilities of ultracold quantum gases, as well as the gain
obtained with quantum systems as compared to classical statistical ensembles.

Out of the plethora of non-equilibrium phenomena listed above, this thesis is devoted
to the investigation of universal scaling dynamics associated with non-thermal fixed
points in ultracold bosonic quantum gases far from equilibrium. The major goal is to
unravel the underlying key features that characterize the universal scaling behavior near
the fixed point. This knowledge can then be used to address the overarching question of
establishing out-of-equilibrium universality classes.

Universal scaling dynamics associated with a non-thermal fixed point is character-
ized by a self-similar scaling evolution of correlation functions in time and space. This
leads to a dramatic reduction of the complexity of the non-equilibrium time evolution
of the quantum many-body system as the dynamics of correlations can be captured by
universal scaling functions and scaling exponents. Global conservation laws strongly
constrain the non-local transport associated with the self-similar evolution and impose
scaling relations between the exponents. The scaling exponents together with the scaling
function allow determining the universality class associated with the fixed point [34, 38].
However, a full classification is lacking so far such that establishing out-of-equilibrium
universality classes is subject to ongoing research. In the style of equilibrium univer-
sality classes, one expects underlying symmetries of the system to be relevant for the
observable universal dynamics and thus for the associated out-of-equilibrium universal-
ity class.

The universal scaling behavior can emerge from rather different underlying physical
configurations and processes. For example, the dynamics can be either driven by the
conserved redistribution of collective excitations or by the reconfiguration and annihi-
lation of topological excitations populating the system. Universal scaling dynamics at
non-thermal fixed points with reference to topological excitations has been discussed
in Refs. [36, 39-45], whereas scaling behavior not subject to such excitations has been



investigated in Refs. [33-35, 46-51].

The spatio-temporal scaling of correlation functions in isolated systems is associated
with the loss of information about the details of the initial condition and microscopic
system properties. Nonetheless, a common key ingredient for the occurrence of self-
similar dynamics is an extreme out-of-equilibrium initial state. Such a state can, for
example, be generated by means of an instantaneous change of a Hamiltonian parameter
which we refer to as a parameter quench.

The universal properties of the scaling behavior allow us to look for common char-
acteristics in the non-equilibrium dynamics of rather different physical systems with
typical energy scales ranging over nearly twenty orders of magnitude. If two such sys-
tems belong to the same out-of-equilibrium universality class, the concept of universal-
ity may enable us to use one physical system to predict dynamical properties of another
system that is, for example, hard to access in experiments. Such a correspondence has
been theoretically shown to exist between a non-equilibrium plasma of highly occupied
gluon fields and scalar Bose fields modelling the respective dynamics of an ultracold
Bose gas [38]. Starting from an extreme out-of-equilibrium initial condition, the distri-
bution functions of both systems feature universal dynamics characterized by the same
set of scaling exponents. The investigated so-called quark-gluon plasma, produced at a
temperature of T ~ 102 K, is a short living stage after an ultra-relativistic heavy-ion
collision. The dynamical evolution of this stage is very hard to observe experimentally
as the detectors can only measure the final distribution of hadrons after the system has
cooled down. From this distribution, one has to infer the dynamical properties of the
quark-gluon plasma. Hence, the experimental extraction of time-resolved correlation
functions, which then show universal scaling properties, is unfeasible. The experimen-
tal accessibility of universal scaling dynamics changes dramatically when we consider
ultracold atomic quantum gases at temperatures of T ~ 10~ K. The major advantage
of these systems is that they are well-controlled in experiments and can thus be uti-
lized as toy models to study fundamental questions of quantum many-body physics. In
contrast to the quark-gluon plasma, the non-equilibrium time evolution can be directly
monitored experimentally. Furthermore, the high degree of control allows repeating
the experiment many times under comparable conditions which is essential for the ex-
traction of correlation functions that show universal scaling behavior at a non-thermal
fixed point. In addition, using experimental manipulation techniques, it is possible to
vary the interactions between the atoms or to generate a variety of different far-from-
equilibrium initial configurations, which opens a window to reveal key ingredients of
universal scaling dynamics. These unique characteristics are thus the main motivations
for studying universal scaling dynamics by means of investigating the non-equilibrium
dynamics in experiments with ultracold quantum gases as well as in the associated theo-
retical models. To finally provide a full picture, we need a combined experiment-theory
effort making use of experimental platforms as well as numerical simulations and ana-
lytical predictions.

In this thesis, we consider universal scaling dynamics associated with non-thermal
fixed points in ultracold Bose gases from a theoretical point of view. In particular, we
present numerical and analytical studies of multi-component Bose gases quenched far
out of equilibrium. When possible, we compare our findings to experimental observa-
tions. We explore strong cooling quenches as well as magnetic field quenches that lead
to the growth of unstable momentum modes which subsequently drive the system far
from equilibrium within the early stage of the time evolution. As aforementioned, the




CHAPTER 1. INTRODUCTION

emerging spatio-temporal scaling behavior can be governed by rather different under-
lying physical configurations and processes. We find that multi-component Bose gases
offer the possibility to investigate both, non-thermal fixed point scaling dominated by
topological as well as collective excitations. Which type of excitation determines the
observed scaling behavior appears to crucially depend on the dimensionality of the sys-
tem.

Numerical simulations of a spin-1 Bose gas in one spatial dimension reveal bidirec-
tional universal scaling, which is prototypical for the spatio-temporal evolution at a non-
thermal fixed point. The bidirectional self-similar scaling is caused by the redistribution
and reshaping of quasi-topological excitations. While a scaling evolution is not expected
in one-dimensional single-component gases, we show that the multi-component system
features a spin degree of freedom which enables universal scaling dynamics in one spa-
tial dimension. In two spatial dimensions, we find that the system can be simultaneously
attracted to two non-thermal fixed points with distinctly different scaling exponents and
scaling functions. This results from the presence of two types of topological excitations
in the spin degree of freedom which is a peculiar property subject to the multiple com-
ponents. The numerically extracted scaling dynamics, which is characterized by the
simultaneous growth of two macroscopic length scales, has not been observed and de-
scribed before in the context of non-thermal fixed points. This finding raises interesting
questions concerning the classification of universal scaling out of equilibrium.

Numerical and analytical treatments additionally enable us to extract universal scal-
ing dynamics dominated by collective excitations in U(N)-symmetric Bose gases. The
associated relevant low-energy degree of freedom is identified to be characterized by
relative-phase excitations. The U(N)-symmetric model further allows us to extract how
the system approaches the non-thermal fixed point during the time evolution from a
far-from-equilibrium initial configuration. Performing numerical simulations of a U(3)-
symmetric Bose gas in three spatial dimensions, we are able to show the existence of
prescaling, a new out-of-equilibrium phenomenon that we propose as a generic feature
of the time evolution of a quantum many-body system towards a non-thermal fixed
point.

The research presented in this thesis contributes to a deeper understanding of uni-
versal scaling dynamics far from equilibrium and unravels important key aspects for
establishing out-of-equilibrium universality classes. In particular, we find that the di-
mensionality, as well as the nature and interaction of potential excitations of the sys-
tem play a decisive role for the classification of universal scaling dynamics out of equi-
librium. Especially, the reported variety of universal scaling properties of spin-1 Bose
gases suggests that such a classification requires more than underlying symmetries of
the investigated model. Additionally, we introduce and illustrate prescaling as an out-
of-equilibrium phenomenon describing the evolution towards a non-thermal fixed point,
which allows us to bridge the conceptual gap in the time evolution from the initial state
to the associated fixed point.




Organization of this thesis

This thesis is organized in four parts that cover different overarching thematic aspects.

The first part contains information about the theoretical background.

In Chpt. 2, we introduce the basic theoretical concepts. We start with the theory of
non-thermal fixed points followed by a discussion of the theoretical description of non-
equilibrium quantum many-body systems. Then, we comment on the capabilities of
multi-component Bose gases as platforms to study universal scaling dynamics.

In Chpt. 3, we elaborate on the theoretical models of the multi-component Bose gases
investigated in the course of this thesis. In this context, we discuss the basic properties
of U(N)-symmetric and spin-1 Bose gases. Furthermore, we present a hydrodynamic
description of the models which allows us to identify the role of different types of exci-
tations in the universal scaling regime by means of a decomposition of the kinetic energy.

In the second part, we consider universal scaling dynamics at non-thermal fixed points
dominated by topological excitations. We illustrate this type of scaling behavior by nu-
merical simulations of spin-1 Bose gases.

In Chpt. 4, we present scenarios for the generation of far-from-equilibrium initial con-
figurations in spin-1 Bose gases. These scenarios are based on using instabilities that
arise from parameter quenches between different phases of the model. We identify po-
tential instabilities by means of investigating the dynamical stability of pre-quench states
within the post-quench phase. The stability properties are studied by means of Bogoli-
ubov theory which we apply to homogeneous as well as trapped one-dimensional spin-1
systems. To analyze the stability properties of the trapped system, we introduce suitable
numerical tools and elaborate on their generalization to multi-component systems.

In Chpt. 5, we present numerical results showing bidirectional universal scaling in a
one-dimensional spin-1 Bose gas driven by quasi-topological excitations such as spin
textures and kink-like defects.

In Chpt. 6, we report on universal scaling involving the growth of two macroscopic
length scales determined by the mutual annihilation of two types of spin vortices in a
two-dimensional spin-1 Bose gas.

In the third part, we focus on universal scaling dominated by collective excitations.

In Chpt. 7, we illustrate this type of non-thermal fixed point scaling by investigating
the non-equilibrium dynamics of a U(N)-symmetric Bose gas. Taking the large-N limit
of the model and making use of a low-energy effective field theory description, we elab-
orate on analytical predictions of the spatio-temporal scaling of the U(N)-symmetric
Bose gas within a kinetic theory approach. We corroborate our analytical predictions
with numerical simulations of a U(3)-symmetric Bose gas in three spatial dimensions.

In Chpt. 8, we introduce prescaling as a generic feature of the evolution of a quan-
tum many-body system towards a non-thermal fixed point. To illustrate the concept
and the existence of prescaling, we consider a U(3)-symmetric Bose gas in three spa-
tial dimensions. We outline the extraction of prescaling from numerically calculated
position-space correlation functions and elaborate on conservation laws obeyed during
the prescaling evolution of the system.

In the final part, we summarize (Chpt. 9) and give an outlook to future research (Chpt. 10).




Part I.

Theoretical background






2. Theoretical concepts

In this chapter, we present the theoretical concepts that set the framework to study
universal scaling dynamics in quantum many-body systems far from equilibrium. We
aim at giving a conceptual overview which summarizes the key ideas underlying the
non-equilibrium physics investigated in the course of this thesis. We start with intro-
ducing the concept of non-thermal fixed points in Sect. 2.1. Then, we elaborate on the
theoretical description of non-equilibrium quantum many-body systems, where we il-
lustrate analytical and numerical approaches in Sect. 2.2. With this at hand, we discuss
the capabilities of multi-component Bose gases as platforms to study universal scaling
in Sect. 2.3. Furthermore, we point to potential low-energy excitations of these systems
as they play a decisive role for the observed scaling behavior.

2.1. The concept of non-thermal fixed points

The main focus of this thesis is to study universal scaling dynamics at non-thermal fixed
points in quantum many-body systems far from equilibrium. Therefore, we aim at giving
a detailed introduction to the concept of non-thermal fixed points in this section. We
present the key features characterizing such a fixed point including an illustration of
the associated dynamics by reference to an ultracold Bose gas. This section is taken and
adapted from Ref. [52].

The theory of non-thermal fixed points in the real-time evolution of, foremost closed,
non-equilibrium systems, is inspired by the concepts of equilibrium and near-equilibrium
renormalization-group theory [53-55]. The basic concept of such out-of-equilibrium
fixed points is motivated by universal critical scaling of correlation functions in equi-
librium. When using a renormalization-group approach, a physical system is basically
studied through a microscope at different resolutions. Close to a phase transition, one
observes that the correlations look self-similar, i.e., the same no matter which resolution
is used. In this case, shifting the spatial resolution by a multiplicative scale parameter
s causes correlations between points with distance x, denoted by C(x;s), to be rescaled
according to C(x;s) = s¢ f;(x/s). Hence, the correlations are solely characterized by the
universal scaling function f; and a universal exponent {. When a change of the scale
s does not change C by any means, a fixed point of the renormalization-group flow is
reached. In that case, the scaling function takes the form of a pure power law f;(x) ~ x¢.
In a realistic physical system, the scaling function f; is, in general, not a pure power law
but retains information of characteristic scales such as a correlation length &. Thus, the
system may only approximately reach the fixed point.

Taking the time ¢ as the scale parameter, the renormalization-group idea can be ex-
tended to the time evolution of systems (far) away from equilibrium. The correspond-
ing fixed point of the renormalization-group flow is called non-thermal fixed point. In
Fig. 2.1, we show a schematic illustration, where the non-thermal fixed point is indi-
cated as a transient phenomenon in the evolution of a quantum many-body system
towards equilibrium. In the scaling regime near a non-thermal fixed point, the evo-
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Universality

Initial
onditions

Figure 2.1.: Schematics of a non-thermal fixed point [33] based on the ideas of a renor-
malization group flow. Depending on the initial condition, an out-of-
equilibrium system can approach a non-thermal fixed point during the time
evolution. In the vicinity of such a fixed point, the system experiences crit-
ical slowing down (indicated by the tightly packed red arrows). As a conse-
quence, correlation functions C(k, t) show scaling behavior in space and time
according to C(k,t) = t*f;(tPk), with a universal scaling function f;. The
associated self-similar evolution is characterized by non-zero universal scal-
ing exponents « and f. Universal scaling close to a non-thermal fixed point
is understood to occur as a transient phenomenon on the way to equilibrium
(indicated by the trajectory leading away from the fixed point). Figure taken
and adapted from Ref. [35].

lution of the time-dependent version of the correlations discussed above is determined
by C(x,t) = t*f,(t"Px), with two universal exponents a and  which assume, in gen-
eral, non-zero values. Such a time-dependent scaling relation for the correlations is also
termed dynamical scaling hypothesis. The associated correlation length of the system
changes as a power of time, £(t) ~ t#. Commonly, the universal scaling properties are
extracted from the associated momentum-space correlator C(k, t), which also obeys the
dynamical scaling hypothesis and evolves according to C(k,t) = t*f,(tfk) within the
scaling regime.

Note that the time evolution taking power-law characteristics is equivalent to critical
slowing down, which in this case occurs in real time. We remark that, depending on the
sign of f, increasing the time ¢ can correspond to either a reduction or an increase of the
microscope resolution. Furthermore, we stress that the spatio-temporal scaling behavior
at the fixed point leads to a dramatic reduction in the complexity of the non-equilibrium
time evolution as the correlation function only depends on the product of space and time
and not on each of the variables individually.

The scaling exponents @ and ff together with the scaling function f; allow determining
the universality class associated with the fixed point [34, 38]. While a full such classifica-
tion is still lacking, underlying symmetries of the system are expected to be relevant for
the observable universal dynamics and thus for the associated universality class. If it is
possible to establish out-of-equilibrium universality classes, the evolution of very differ-
ent physical systems far from equilibrium can be categorized by means of their possible
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kinds of scaling behavior. In the course of this thesis, we will see that the presence and
configuration of excitations plays a crucial role for the realized scaling exponents and
scaling functions suggesting that a quantum many-body system can even be attracted to
different non-thermal fixed points depending on the type of excitation that dominates
the scaling evolution. Such findings have to be taken into account in order to provide a
full classification of universal dynamics out of equilibrium.

Whether a physical system can approach a non-thermal fixed point and show universal
scaling dynamics, and, if so, which particular fixed point is reached, generally depends
on the class of chosen initial conditions. Within each class, sometimes referred to as
the attractive basin of a non-thermal fixed point, the subsequent scaling dynamics is
independent of the details of the initial configuration. A common key ingredient for the
occurrence of self-similar dynamics is an extreme out-of-equilibrium initial state. Such
a state can, for example, be characterized by a strong overpopulation of the particle
number distribution as compared to the equilibrium case.

To illustrate the conceptual idea of non-thermal fixed points and the associated univer-
sal scaling dynamics, we consider the time evolution of a dilute Bose gas in three spatial
dimensions after a strong cooling quench [56]. For a simplified representation of the time
evolution of the particle number distribution see Fig. 2.2 as well as Refs. [34, 57-59]. An
extreme version of such a cooling quench can be achieved by first cooling the system
adiabatically such that its chemical potential is 0 < —u < kgT, where the temperature
T > T, is just above the critical temperature T, separating the normal and the superfluid
phase of the Bose gas. In a next step, one removes all particles with energy higher than
~ |p|. This leads to a particle number distribution that drops abruptly above a momen-
tum scale Q (see Fig. 2.2). If the corresponding energy is on the order of the ground-state
energy of the post-quench fully condensed gas, meaning that (£Q)?/(2M) =~ |u| = gp,
with the coupling parameter ¢ = 4s#i?a/M quantified by the scattering length a and
atom mass M, then the energy of the entire gas after the quench is concentrated at the
scale Q =~ k¢, with characteristic healing-length momentum scale k; = /8map.

Most importantly, such a strong cooling quench leads to an extreme initial condition
for the subsequent dynamics. The post-quench particle number distribution is strongly
over-occupied at momenta k < Q as compared to the final equilibrium distribution.
This initial overpopulation of modes with energies ~ (7Q)?/2M induces inverse particle
transport to lower momenta while energy is transported to higher wavenumbers [34,
57, 58] as indicated by the arrows in Fig. 2.2. The rescaling is thus characterized by a
bidirectional, in general non-local redistribution of particles and energy. In contrast to
the case of a weak cooling quench leading to a scaling evolution in which weak wave
turbulence is typically induced [56, 60], here the inverse transport is characterized by a
different, strongly non-thermal power-law form of the scaling function in the infrared
momentum region.

While the spatio-temporal scaling provides the “smoking gun” for the approach of a
non-thermal fixed point, the steep power-law scaling of the momentum distribution,
n(k) ~ k7%, reflects the character of the underlying transport. The evolution during
the scaling period is universal in the sense that it becomes mainly independent of the
precise initial conditions set by the cooling quench as well as of the particular values of
the physical parameters characterizing the system.

In the vicinity of the non-thermal fixed point, the momentum distribution of the Bose
gas rescales self-similarly, within a certain range of momenta, according to n(k,t) =
(t/teef)® f ([t / tref] Pk), with some reference time t,.;. The distribution shifts to lower mo-
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Figure 2.2.: Self-similar scaling in time and space close to a non-thermal fixed point.
The sketch shows, on a double-logarithmic scale, the time evolution of the
single-particle momentum distribution n(k,t) of a Bose gas for two differ-
ent times t (solid and short-dashed line). Starting from an extreme ini-
tial distribution marked by the red long-dashed line, being the result of a
strong cooling quench, a bidirectional redistribution of particles in momen-
tum space occurs as indicated by the arrows. Particle transport towards
zero momentum as well as energy transport to large momenta are char-
acterized by self-similar scaling evolutions in space and time according to
n(k,t) = (t/teef)® fs ([t /tref]Pk), with universal scaling exponents  and f, in
general, different for both directions. Here, t,.f is some reference time within
the temporal scaling regime. The infrared transport (blue arrow) conserves
the particle number which is concentrated at small momenta. In contrast,
the energy, being concentrated at high momenta, is conserved in the redis-
tribution of short-wavelength fluctuations (green arrow). See main text for
details. Figure taken and adapted from Ref. [52].

menta for f > 0, while transport to larger momenta occurs in the case of § < 0. A
bidirectional scaling evolution is, in general, characterized by two different sets of scal-
ing exponents. One set describes the inverse particle transport towards low momenta
whereas the second set quantifies the transport of energy towards large momenta.

Global conservation laws — applying within an extended regime of momenta - strongly
constrain the redistribution underlying the self-similar dynamics in the vicinity of the
non-thermal fixed point. Hence, they play a crucial role for the possible scaling evolution
as they impose scaling relations between the scaling exponents. For example, particle
number conservation in the infrared regime of long wavelengths requires that o« = df
in d spatial dimensions.

The aforementioned transport in momentum space can emerge from rather different
underlying physical configurations and processes. For example, the dynamics can either
be driven by the conserved redistribution of collective excitations such as in weak wave
turbulence [34, 56] or by the reconfiguration and annihilation of topological excitations
populating the system [45, 57]. If topological excitations are subdominant or absent
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at all, which can, for example, be realized in multi-component systems, the strongly
occupied modes exhibiting scaling near the fixed point [34, 56] typically reflect strong
phase fluctuations not subject to an incompressibility constraint [61]. The associated
scaling exponents are generically different for both types of dynamics, with and without
topological excitations [34, 42, 45].

The existence and significance of strongly non-thermal momentum power laws, re-
quiring a non-perturbative description reminiscent of wave turbulence, was proposed
by Rothkopf, Berges and collaborators in the context of reheating after early-universe
inflation [33, 46], generalized by Scheppach, Berges, and Gasenzer to scenarios of strong
matterwave turbulence [47], and to the case of topological excitations by Nowak, Sexty,
Erne, Gasenzer et al. [39-42, 57], see also Refs. [43-45, 62-65]. Universal scaling at a non-
thermal fixed point in both space and time was studied by Pifieiro Orioli, Boguslavski,
and Berges for relativistic O(N)-symmetric models [34, 66], see also Refs. [50, 67], and
discussed in the context of heavy-ion collisions [4, 38, 49, 68] as well as axionic mod-
els [64]. First experimental observations of universal scaling dynamics close to a non-
thermal fixed point were made by Prifer et al. [35] as well as Erne et al. [36] in ultracold
atomic quantum gases.

For clarification, we remark that the concept of non-thermal fixed points includes scal-
ing dynamics which exhibits coarsening and phase-ordering kinetics [69] following the
creation of defects and nonlinear patterns that occur after a quench across an ordering
phase transition. However, we emphasize that coarsening and phase-ordering kinetics
in most cases are being discussed within an open-system framework, considering the
system to be coupled to a heat bath. Moreover, most theoretical treatments of these
phenomena do not take non-linear dynamics and transport into account. In this frame-
work, the universal scaling exponents are deduced from the underlying dynamics of
(quasi)topological excitations, the dimensionality of the system and the presence/ab-
sence of the conservation of the order-parameter field in the post-quench phase.

We further remark that the scaling behavior at non-thermal fixed points is reminis-
cent of the transport and scaling characterizing wave-turbulent cascades. In these cas-
cades, analogously to fluid turbulence, universal scaling is expected in a certain interval
of momenta, termed the inertial range. Within the inertial range of a wave-turbulent
cascade, transport occurs locally, from momentum shell to momentum shell, leaving
the transported quantity within such a momentum shell constant in time. The trans-
port is commonly uni-directional, either from large to small characteristic scales or vice
versa. This is in contrast to self-similar scaling at non-thermal fixed points where the
transport is bidirectional and non-local. However, note that bidirectional transport can
also be found in turbulence. One example is Kraichnan turbulence in two spatial di-
mensions [70]. In this case, two formal inertial ranges give rise to an inverse energy
cascade and a direct enstrophy cascade. Using the concept of kinetic time [71] further
allows distinguishing between wave-turbulent cascades and universal scaling dynamics
at non-thermal fixed points. While the kinetic time diverges in the scaling limit at a
non-thermal fixed point reflecting the critical slowing down, the kinetic time decreases
within the wave-turbulent cascade [56].

To summarize, a common property of the universal evolutions is scaling behavior with
evolution time as scaling parameter. The associated scaling is reminiscent of equilibrium
criticality at a continuous phase transition [54, 55, 72]. The system rescales in space with
some power of the evolution time, which looks like zooming in or out the field of view
of a microscope in real time. To a certain extent, slowed-down dynamics and scaling in
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MANY-BODY SYSTEMS

the evolution time can be seen as analogues of the universality in equilibrium critical
phenomena in non-equilibrium systems [53, 69, 73-75].

2.2. Theoretical description of non-equilibrium
quantum many-body systems

In the previous section, we have outlined the basic ideas of non-thermal fixed points,
a phenomenon that occurs in the dynamical evolution of a non-equilibrium quantum
many-body system. For studying such fixed points theoretically, we can make use of
analytical as well as numerical tools.

For a general analytical treatment of non-thermal fixed points, we need to be able to
calculate the time evolution of a quantum many-body system out-of equilibrium. Suit-
able techniques are provided by the framework of non-equilibrium quantum field theory
(QFT). Using a path integral formulation, all information about the time-evolving quan-
tum system is contained in the so-called Schwinger-Keldysh non-equilibrium generating
functional [76]. Correlation functions, which show universal scaling at a non-thermal
fixed point, can be obtained by functional differentiation of the generating functional
with respect to corresponding sources. To calculate such observables at some instant in
time, the system is evolved along a Schwinger-Keldysh closed time path which reflects
the nature of non-equilibrium QFT as an initial value problem. This is in contrast to
equilibrium QFT, where only asymptotic input and output states are used. The tech-
nique was first introduced by Julian Schwinger in 1961 [77] and further developed by
Mahanthappa and Bakshi [78-80], who were focussing on bosonic systems. The initial
configuration of the out-of equilibrium system is contained in the initial density matrix
entering the generating functional. In the majority of cases, it is sufficient to choose
the initial density matrix to be Gaussian. Calculating the non-equilibrium generating
functional in its most general formulation is highly non-trivial.

To study the universal scaling behavior at non-thermal fixed points, one generally
focusses on the evolution of two-point correlators. From these, e.g., (quasi)particle oc-
cupation numbers in momentum space can be derived. Taking the Schwinger-Keldysh
description, one derives dynamical equations for unequal-time two-point correlators,
called Kadanoff-Baym equations [81]. These equations describe the non-equilibrium dy-
namics exactly but are as non-trivial to solve as the computation of the non-equilibrium
generating functional entering these equations is. One is thus held to reduce the com-
plexity of the problem and to obtain approximate dynamical equations that are capturing
the physics relevant at a non-thermal fixed point.

It turns out that a kinetic theory approach provides such an approximation, see, e.g.,
Refs. [50, 76, 82]. Using a kinetic-theory description enables us to perform a scaling anal-
ysis from which the scaling exponents associated with the non-thermal fixed point can
be predicted analytically. Within this description, the time evolution of correlation func-
tions is determined by a generalized quantum Boltzmann equation involving a scattering
integral that characterizes the properties of the interacting quantum many-body system
via the so-called scattering T-matrix. As we are generally dealing with highly correlated
systems, occupation numbers grow large at low momentum scales which renders the
scattering properties to be non-perturbative.

These properties can be taken into account by means of a non-perturbative coupling
resummation scheme based on the two-particle irreducible (2PI) effective action, see
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Sect. 2.3.1 for details. Alternatively, one can think of the idea to reformulate the theory
in terms of new degrees of freedom in the first place, such that the resulting description
becomes more easy to treat in non-perturbative regions. Since the non-perturbative
behavior appears at low momentum scales, it is suggestive to use a low-energy effective
field theory (LEEFT) approach [83, 84]. This typically implies a choice of suitable degrees
of freedom describing the physics occurring below a chosen energy scale. We will outline
such an approach for U(N)-symmetric multi-component Bose gases in Sect. 3.1.2.

We remark that the above stated analytical treatments generally do not take into ac-
count the influence of non-linear and topological excitations onto the scaling behavior.
This results from the fact that including such excitations in out-of-equilibrium analytical
frameworks is highly non-trivial. Thus, we expect the analytical predictions to capture
the scaling properties of quantum many-body systems where non-linear and topological
excitations are absent or subdominant, whereas deviations are expected to arise in cases
where these excitations play a dominant role in the non-equilibrium time evolution of
the system.

Numerical simulations allow us to corroborate the analytical predictions but are addi-
tionally able to unravel phenomena beyond analytics. In particular, we can study uni-
versal scaling behavior arising from non-linear or topological excitations by means of
numerical simulations as they can either be generated within the non-equilibrium time
evolution of the system or put in by hand into the initial configuration. As the scal-
ing behavior occurs in a regime of strongly occupied modes, the time evolution can
be computed by means of semi-classical simulation methods. For a justification of the
semi-classical approximation in the framework of path integrals, we refer to Ref. [85].
Using the so-called truncated Wigner approximation [86, 87], we follow the evolution,
starting from a noisy initial configuration, by evaluating many trajectories according to
the classical equations of motion. Correlation functions are then obtained by averaging
the trajectories. The number of trajectories is chosen in a way that the statistical error
arising from run-to-run fluctuations is small. This crucially depends on the dimension-
ality of the system, the number of grid points used for the numerical simulation and
the numerical grid spacing. Extracting the scaling function and the scaling exponents
associated with the non-thermal fixed point, especially in the low momentum regime
of the correlators, requires a huge number of trajectories that are calculated up to very
long evolution times. Hence, we make use of high performance parallel computing tech-
niques to calculate the time evolution of the systems under consideration. In particu-
lar, the equations of motion are solved on high level graphical processing units (GPUs)
which allow us to highly parallelize the required computations using the large number
of provided streaming multiprocessors.

This thesis mainly contains results obtained from numerical simulations supported
by selected analytical calculations. For more technical descriptions of the analytical
treatments stated above at various levels of detail see Refs. [50, 52, 56, 61, 76, 88].

2.3. Ultracold Bose gases

An intensively studied class of quantum many-body systems far-from-equilibrium are
ultracold Bose gases. A major advantage of these systems is their high level of control-
lability. Making use of high precision experimental techniques, it is possible to engineer
various types of interactions between the atoms ranging from short range contact inter-
actions to long range dipolar interactions. In addition, they allow for experiments that
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are well isolated from the environment and feature long coherence times which makes
them suitable to investigate universal scaling dynamics out of equilibrium [35, 36]. Fur-
thermore, a high repetition rate enables studying higher-order correlation functions, the
building blocks of any quantum-field-theory description of many-body systems [89, 90].
To highlight some conceptual aspects, let us assume for now, that we have a non-
relativistic ultracold Bose gas in the superfluid regime below the critical temperature for
Bose condensation. Superfluidity is generally associated with a complex order-parameter
field ¢ and results from breaking a global symmetry at sufficiently low temperatures.
This means that the expectation value (/(x, t)) assumes non-zero values below the crit-
ical temperature. Being in the superfluid regime, the order-parameter field can be ex-
pressed in density-phase representation according to (¢ (x, t)) = /p(x, t) exp{if(x, )},
with p(x,t) = [(¢/(x, t))|? being the space-time dependent density and 0(x, t) being the
phase of the field. Additionally, we keep the system isolated such that the total particle
number N = [ dxp(x,t) is fixed during the time evolution. This is different from rela-
tivistic systems or systems coupled to an environment where the total particle number
can change due to pair-creation processes or exchange with the environment.
Naturally, ultracold Bose gases are dilute systems characterized by the mean inter-
particle distance being much larger than the respective length scale associated with the
interactions. Dilute gases are generally referred to as being weakly interacting. We note
that, as the diluteness of the system is quantified by both the density and the interactions,
the above stated correspondence has to be taken with care in the limit of low densities.

2.3.1. Multi-component Bose gases as a tool to study universal
scaling dynamics

Apart from being many-body quantum systems, ultracold Bose gases can feature inter-
nal degrees of freedom such as different hyperfine states. This renders them to become
multi-component systems where the individual components are labeled by the respec-
tive hyperfine magnetic quantum numbers. Among other processes, atoms can be re-
distributed between the different components leading to much richer non-equilibrium
dynamics as compared to a single-component system.

A major advantage of multi-component Bose gases is the possibility to investigate
universal scaling under various aspects. On the one hand, we can employ experiments
with multi-component ultracold bosonic quantum gases. On the other hand, we can
make use of analytical and numerical tools to study respective theoretical models.

In the course of this thesis, we investigate the dynamics of multi-component Bose
gases from a theoretical point of view. In particular, we focus on two types of multi-
component systems, namely U(N)-symmetric and spin-1 Bose gases. Before we intro-
duce the specific theoretical models of these multi-component systems, we comment on
the capabilities of multi-component Bose gases to study universal scaling dynamics at
non-thermal fixed points. This discussion allows us to conceptually motivate the chosen
model systems.

The strength of a theoretical description lies in the freedom to choose the particular
model system. While experimental systems might feature rather complex types of inter-
actions, it can be useful to reduce the complexity and try to identify some overarching
properties from a much simpler theoretical model. In that light, one could think of the
idea to start with a model that has interactions compatible with the maximum possi-
ble symmetry of the underlying fundamental fields. By adding more complex types of
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interactions, one gradually breaks this overall symmetry.

In the context of non-relativistic N-component Bose gases, such a simple model is
characterized by quartic interactions between the complex bosonic fields and is sub-
ject to a U(N) symmetry. From an analytical point of view, the model is well-suited to
make predictions for the scaling behavior at a non-thermal fixed point by means of a
non-perturbative resummed kinetic theory approach. Making use of a non-perturbative
large-N approximation [76, 91] allows for an analytical description of universal scal-
ing of the U(N)-symmetric model at the non-thermal fixed point [47, 56]. The applied
scheme is based on analytical work employing N-component relativistic scalar models
that are O(N)-symmetric under orthogonal transformations in the space of field com-
ponents, see Refs. [33, 34, 48, 50]. Note that the analytical predictions of the scaling
behavior of O(N)-symmetric models at non-thermal fixed points have been corrobo-
rated by numerical simulations of an O(4)- and O(8)-symmetric relativistic scalar field
theory [33, 64].

At this point, it is worthwhile to explain the suitability of the U(N)-symmetric model
for the analytical treatments. Therefore, it is essential to briefly review the key ideas of
the above stated resummation procedure, see Refs. [56, 76, 92, 93] for details.

The applied resummation scheme is based on the two-particle-irreducible (2PI) effec-
tive action. The 2PI effective action is defined as the double Legendre transform of the
generating functional of connected correlation functions with respect to a local and bilo-
cal source term. Hence, it is a functional of the field expectation value and the full
propagator. This implies that the graphs in the 2PI effective action, which are termed
skeleton diagrams, are built from the dressed propagator instead of the bare one. In
a diagrammatic form, the action contains those types of connected loop diagrams that
cannot be split apart when cutting two propagator lines. We stress that the propaga-
tor is an object defined by the time-ordered two-point correlators of the fundamental
fields of the respective model. In case of complex bosonic fields, it is a 2 X2 Hermi-
tian matrix resembling the four possible combinations of two-point correlators. The 2PI
effective action provides a self-consistent set of dynamical equations for the field expec-
tation value and the propagator. The solutions to these equations preserve conservation
laws associated with global symmetries of the investigated theory. Hence, in case of the
U(N)-symmetric model, the solutions will obey particle-number conservation due to an
underlying global U(1) symmetry.

To study the universal scaling dynamics at a non-thermal fixed point within a kinetic
theory approach, one commonly first derives a kinetic equation from the dynamical
equation of the propagator. In a second step, one analyzes scaling solutions of the kinetic
equation to determine the scaling exponents describing the evolution of equal-time two-
point correlators at the fixed point.

The respective dynamical equations involve the proper self-energy which has to be de-
duced from contributions to the 2PI effective action beyond one-loop. As the 2PI effective
action consists of an infinite number of 2PI diagrams, one has to make approximations
to the action in order to be able to compute the self-energy. Recall that without any
approximations, the 2PI effective action contains the complete information about the
quantum theory. Expanding the 2PI effective action in a small parameter provides a
controlled and systematic approximation. In case of a weak coupling, it might be in-
tuitive to think of an expansion of the effective action in powers of the small coupling
of the model. However, when mode occupations become large within the momentum
regime subject to the scaling evolution, in particular on the order of the inverse coupling,
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the coupling expansion (as well as so-called loop expansions of the 2PI effective action)
break down as higher order contributions will become significantly relevant. In other
words, this means that the scattering properties of the system become non-perturbative.
For an N-component field theory, it turns out that a controlled expansion parameter for
the 2PI effective action within the non-perturbative regime is given by the inverse of the
number of components. Limiting the contributions from higher orders of the expansion
requires N to be sufficiently large. To go beyond a mean-field type approximation, the
expansion is taken to next-to-leading order (NLO) in 1/N.

We stress that the NLO contribution is given by the resummation of an infinite number
of diagrams. The crucial property, resulting from the U(N) symmetry of the model,
is that solely one class of diagrams appears at NLO. Performing the resummation of
this class of diagrams simply boils down to evaluating a geometrical sum providing an
analytical expression for the approximated 2PI effective action, see Refs. [56, 93, 94].
This finally allows us to analytically compute the associated self-energy within the given
approximation. To ultimately deduce the scaling behavior of the model within a kinetic
theory description, one takes the large-N limit in the resulting expressions. Performing
this limit is essential to identify the scaling of the dispersion relation characterizing the
scattering terms in the kinetic equation.

In this thesis, we use a different analytical approach by means of deriving a low-energy
effective field theory for the U(N)-symmetric Bose gas anticipating that the scaling be-
havior at the fixed point occurs in the regime of low momenta. The treatment can be
viewed as first rewriting the theory in the relevant low-energy degrees of freedom and
then deducing the scaling properties within a kinetic theory framework. In some sense,
this approach is more intuitive as it reduces the complexity of the problem before an-
alyzing the universal scaling behavior. Note that the low-energy effective field theory
approach in principle does not rely on N being large. Hence, we can also make analytical
predictions for the scaling behavior in the limiting case of N = 1 [61].

As U(N)-symmetric systems are also well-tractable by means of numerical simula-
tions, it is possible to corroborate the analytical predictions with numerical results.
Remarkably, the scaling properties extracted from numerical simulations of a U(1)-
symmetric non-relativistic Bose gas are in good agreement with the analytical predic-
tions derived within the large-N limit of the model [34]. In that light, it is of particular
interest to also compare numerical simulations of the U(N)-symmetric model for cases
with N > 1 to the analytical predictions. To do so, we numerically employ the case of
N = 3, which allows for a comparison with large-N predictions from both, the low-
energy effective field theory description as well as the 2PI resummed kinetic theory
approach. Furthermore, numerical simulations are capable of unraveling phenomena
beyond the scope of the analytical treatment such as the role of topological excitations
which are not included in the schemes discussed above.

While investigating the scaling behavior of the U(N)-symmetric model provides gen-
eral properties of universal scaling dynamics possible within the realm of non-relativistic
Bose gases, we are also interested in studying the scaling properties of models that are
realized in experiments with ultracold bosonic quantum gases.

Spinor Bose gases are one such class of multi-component systems, where the U(N)
symmetry is broken due to spin interaction terms. They are well-controlled in experi-
ments and feature long coherence times which makes them eminently suited for study-
ing non-equilibrium phenomena [95-99]. Note that analytical predictions for the scaling
behavior of spinor Bose gases by means of kinetic theory approaches are lacking so far.
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However, using experimental platforms and numerical simulations allows us to investi-
gate universal scaling dynamics far from equilibrium.

A particularly interesting platform are spin-1 Bose gases, where the three different
components account for the magnetic sublevels of the F = 1 hyperfine manifold of the
atoms forming the gas. Universal scaling dynamics has recently been observed exper-
imentally in a ferromagnetic spin-1 Bose gas in a near-1D geometry [35]. Numerical
studies have shown that universal scaling can occur in the ordering process of one- and
quasi-two-dimensional spin-1 Bose gases after a parameter quench into an ordered phase
[100-109]. We discuss the scaling behavior reported in Refs. [102, 109] in detail in the
course of this thesis and compare the results to the experimental observation in Ref. [35].

2.3.2. Collective and topological excitations of Bose gases

Starting from a far-from-equilibrium initial state, both U (N)-symmetric and spin-1 Bose
gases show universal scaling dynamics associated with a non-thermal fixed point. How-
ever, we will find the underlying physical processes causing the scaling behavior to be
distinctly different in both systems. While the scaling evolution of the spin-1 Bose gas
is determined by the dissolution and annihilation of (quasi)topological excitations, the
scaling evolution of the U(N)-symmetric system is dominated by the redistribution of
(incoherent) collective excitations. Note that, strictly speaking, topological excitations
can be also viewed as coherent collective excitations. However, throughout this thesis
we solely refer to sound-like or quasiparticle excitations as collective excitations.

Due to their significant role in the universal dynamics, we briefly elaborate on general
properties of common collective and topological excitations of ultracold Bose gases at
this point. Note that we deliberately leave the discussion on a conceptual level. We
go into more detail when discussing the scaling dynamics of both U(N)-symmetric and
spin-1 Bose gas in the second and third part of this thesis.

A dilute, interacting non-relativistic Bose gas within the superfluid phase generally
allows for different types of low-energy excitations on top of the condensate.

Collective excitations

One type of excitation that exists in interacting Bose gases are collective excitations or
quasiparticles. They are low-lying excited states on top of the condensed gas. One class
of collective excitations in Bose gases are Bogoliubov quasiparticles which are char-
acterized by a sound-like dispersion relation at low momenta [110]. Depending on the
number of components of the Bose gas, they can, for example, be sound waves (phonons)
and/or spin waves (magnons). Such excitations arise from fluctuations on top of the con-
densed background gas. They can be theoretically described within the framework of
Bogoliubov theory, see Chpt. 4 for details.

For the U(N)-symmetric Bose gas we find two types of collective excitations in the
low-energy regime. Whereas one type has a Bogoliubov-like dispersion and is associated
with the total phase of all components, the other type is a Goldstone mode with free-
particle dispersion associated with relative phases between different components.

Topological excitations

While non-interacting Bose gases are described by linear equations of motion, interac-
tion terms cause the equations to become non-linear. These non-linearities generally
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allow for (quasi)topological solutions. Such coherent solutions have particle-like prop-
erties such that we can speak of them as being solitary excitations of the system [111].
The topology comes from the fact that these objects cannot be continuously deformed
into a pure ground state solution when we impose boundary conditions to the system.
The presence of topological excitations causes the Bose gas to be strongly correlated
even though the interaction between the atoms is commonly weak. Note that there are
also other types of non-linear excitations that do not feature topological properties [112].
Although the underlying model may allow for a variety of topological excitations, only
a few of them are actually dynamically stable. The stability of the objects generally de-
pends on the dimensionality of the system. There are two types of (quasi)topological
excitations that are of interest in this thesis - solitons and vortices.

To get a flavor of these excitations, we start by discussing basic properties arising in
single-component Bose gases. We then elaborate on more complex structures of topo-
logical excitations in multi-component systems.

Solitons are quasi-topological defects which generally travel with a fixed velocity but
are non-dispersive, i.e., stationary in shape and stable in d = 1 dimension. This is possi-
ble due to a special interplay of the dispersion and the non-linearity such that spreading
of the soliton is prevented through the non-linear interaction. Note that in a quantum-
field-theoretical framework, solitons are commonly associated with so-called kink solu-
tions. For repulsive interactions, the defects are termed dark solitons as they are charac-
terized by a localized suppression of the background condensate density [113, 114]. The
depth of the density suppression is quantified by the continuous grayness parameter
which is directly proportional to the solitons velocity. If the density drops to zero, the
soliton is called black and does not move. The quasi-topology of dark solitons results
from a phase jump A0 of the complex bosonic field at its center. A black soliton features
the largest possible phase jump given by Af = 7. In case of attractive interactions, one
finds bright solitons characterized by a localized density peak due to the absence of a
background condensate. Unlike dark solitons, bright solitons show a linearly varying
phase instead of a phase jump and move in form of a localized wave packet along with
its carrier wave. In d > 1 dimensions, solitons become unstable due to so-called snaking
instabilities [115, 116].

Vortices are topologically stable solutions in d > 1 dimensions which form the su-
perfluid analogies of eddy flows in classical fluids. In general, vortices have a defect
core where the density of the condensate drops to zero, p(x) — 0 as |x| — 0. The
phase of the complex field winds around the vortex core with integer multiples of 27.
This integer multiple is called the winding number and defines the charge of the vortex.
A configuration with positive charge is termed vortex, a configuration with negative
charge anti-vortex. In general, only singly-quantized vortices with charge +1 are stable
configurations. A vortex and an anti-vortex can mutually annihilate releasing unstable
solitary waves that propagate through the system. In d = 3 dimensions, point vortices
extend to vortex lines or loops around which the fluid rotates.

Multi-component systems allow for various combinations of the above stated, so to
say, elementary topological excitations in the different components. In one-dimensional
systems one thus observes so-called vector solitons. One particular example is that of
dark-bright solitons [117-120], where one of the components forms a potential well
where the absence of atoms causes its filling by atoms of a different component. If the
atoms of the second component solely populate that region, we talk of a dark-bright
solitonic state. Note that we assume the first component to also feature the phase jump
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associated with a dark soliton. In case of three-component systems, excitations such
as dark-bright-bright (DBB) and dark-dark-bright (DDB) solitons have been discussed
theoretically [121, 122] as well as observed experimentally [123]. Such types of vector
solitons give rise to interesting phenomena as it is possible to redistribute the popu-
lation among the components by means of mutual collisions. For spin-1 systems in
two spatial dimensions, a plethora of spin vortices has been found in numerical studies
[104-109, 124]. Such spin vortices are composed out of vortices in each of the individual
components. The composition is realized in a way that a vortex is also present in the
spin degree of freedom of the system.
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3. Theoretical models

In this chapter, we introduce the theoretical models of the multi-component Bose gases
investigated in the course of this thesis. We start with discussing the basic properties of
U(N)-symmetric Bose gases in Sect. 3.1. Then, we elaborate on the theoretical descrip-
tion of spin-1 Bose gases in Sect. 3.2. For both systems, we further comment on suitable
observables to extract the scaling behavior at non-thermal fixed points. In Sect. 3.3, we
discuss the numerical methods used to simulate the dynamics of the U(N)-symmetric
and spin-1 Bose gas. In Sect. 3.4, we finally make use of a hydrodynamic formulation to
analyze different contributions to the kinetic energy of the systems which allows us to
identify the role of different types of excitations in the universal scaling regime.

3.1. U(N)-symmetric Bose gas

In this section, we discuss the basic properties of U(N)-symmetric Bose gases, where the
parameter N denotes the number of components. For the numerical simulations we will
later restrict ourselves to the case of N = 3. Nonetheless, we elaborate on the general
case here to highlight some generic characteristics of the model. Furthermore, we study
the model within the large-N limit in order to make analytical predictions for the scaling
behavior at the non-thermal fixed point.

We start in Sect. 3.1.1 by introducing the Hamiltonian and the equations of motion that
govern the time evolution of the system. In Sect. 3.1.2, we derive a low-energy effective
field theory for the U(N)-symmetric model which is based on identifying the relevant
degrees of freedom below a certain energy scale. The resulting low-energy description
allows us to directly infer the scattering properties needed to make analytical predictions
for the scaling behavior of the system at the non-thermal fixed point within a kinetic
theory approach. Finally, we comment on the observables used to study universal scaling
dynamics in Sect. 3.1.3.

3.1.1. The model

The spatially uniform U(N)-symmetric Bose gas consists of identical particles distin-
guished only by a single property such as the hyperfine magnetic quantum numbers
of the atoms forming the gas. The system in d spatial dimensions is described by a
U(N)-symmetric Gross-Pitaevskii (GP) model with quartic contact interaction in the to-
tal density,

2
= [ax [vign v+ S vivivm) 3

where M is the particle mass and space-time field arguments are suppressed. Further,
we sum over the Bose fields, a,b = 1,..., N, obeying commutators [/, (x, t), np,j (y,1)] =
840 (x—y). The gases are thus assumed to occupy the same space and be subject to iden-
tical inter- and intra-species contact interactions quantified by ¢g. In d = 3 dimensions
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the coupling reads

4rh’a
IV

with a being the respective s-wave scattering length characterizing the contact interac-

tions in the low-energy regime of the model.

9= (3.2)

In a sense, the U(N)-symmetric model features the most simple interaction term in
analogy to standard ¢* interactions in O(N)-symmetric relativistic scalar field theory
models. This makes the model appealing for analytical treatments and offers the pos-
sibility to extract general properties of universal scaling dynamics expected in non-
relativistic Bose gases as discussed in Sect. 2.3.1.

The time evolution of the U(N)-symmetric model is given by the coupled Gross-
Pitaevskii equations (GPEs)

2
o, = (—Z—Mﬂ + gy wb) Ve (3.3)

Note that all numerical simulations of the model presented in this thesis are performed
for the three-dimensional U (3)-symmetric case obtained by setting N = 3 and d = 3.

3.1.2. Low-energy effective field theory

For the U(N)-symmetric model, we aim to make analytical predictions for the universal
scaling expected at the non-thermal fixed point within a kinetic theory approach. Since
we anticipate the scaling behavior to take place at low momentum scales, we make use
of a low-energy effective field theory approach. This allows us to rewrite the theory
in terms of the relevant low-energy degrees of freedom. Deriving the associated low-
energy effective action of the model enables us to directly infer the form of the scattering
terms that enter the kinetic equations.

We make use of the effective action when discussing analytical predictions for the
universal scaling behavior of the U(N)-symmetric Bose gas in Sect. 7.1. This subsection
is taken and adapted from Refs. [37, 52]. For a detailed derivation of the effective action
see Ref. [61]. Note that we use units of 77 = 1 in the following.

The key observation for deriving a low-energy effective field theory is, that the U(N)-
symmetric Gross-Pitaevskii model offers a natural separation of scales which allows us
to identify relevant low-energy degrees of freedom. This is generally done by comparing
the influence of fluctuations of different degrees of freedom of the model below a certain
energy scale. We then integrate out all degrees of freedom whose contributions are sup-
pressed at low momenta such that we end up with an effective low-energy description
of the system in terms of the relevant degrees of freedom. For the U(N)-symmetric Bose
gas, we find phase excitations to dominate in the low-energy regime.

The derivation of the low-energy effective field theory, in a path-integral language,
makes use of the representation of the fluctuating Bose fields ¢/, in terms of the particle
densities p, and phase angles 6,,

Ya(x.t) = \pa(x.1) exp {ifa(x.1)}. (3.4)
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With this, the Lagrangian of the model in Eq. (3.3) reads

L= Z {paate + 2}\4 [pa(vea) (V\/p_a> ] } - §P > (3'5)

a

with total density p = }, p,s. As a first step, we consider density ﬂuctuations dp, and

phase fluctuations 56, about the uniform ground-state densities pa = (lﬁa( VWa(x))

and phases 96(1 ) = o Hence, we write p, = p((l ) 4 dpg and 0, = 56, and expand

the Lagrangian in Eq.(3.5) up to second order in the fluctuations. The corresponding
linearized equations of motion are given by

00y = ———V?5p, — gZapb, (3.6)
ivp
o0
86pg = — M v26,. (3.7)

Going to Fourier space, the equations of motion read

2

k

010a(k,t) = ————Spa(k,t) =g > Spp(k, 1), (3.8)
T 2
O

0i6pa(k, t) = a(k.1). (3.9)

Taking a further time derivative, we can combine Eq. (3.8) and (3.9) to obtain a Bogoliubov-
type matrix wave equation for the 6,,

020,(k, t) + Ll = 5%+ 2gp\") gy (k, 1) = 0 (3.10)
2M \ 2M b ’ ’ ’
where Einstein’s sum convention is implied. While, for N = 1, we recover the Bo-

goliubov dispersion, for general N, diagonalization of the coefficient matrix yields the
eigenfrequencies of N — 1 Goldstone (G) and one Bogoliubov (B) mode. The respec-
tive dispersion relations, given by the square roots of the eigenvalues of the coefficient
matrix, read

2

wc(k) = Qk—M (3.11)
k2 (k2

wp(k) = o (W + 2gp(0 )) (3.12)

From the corresponding eigenvectors, we find that the Goldstone excitations with a free-
particle-like dispersion correspond to relative phases between different components,
whereas the Bogoliubov quasiparticle mode is related to the total phase.

Note that the Goldstone theorem [125] predicts, due to the spontaneous breaking of
U(N) - U(N - 1), 2N — 1 gapless Goldstone modes. However, only N of these modes
are independent because of the absence of Lorentz invariance and thus particle-hole
symmetry [126, 127]. Hence, to take account of this fact and distinguish the modes,
we only refer to the quadratic modes as Goldstone ones, whereas the linear one will be
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addressed as Bogoliubov mode.

Similarly to Eq. (3.10), one can derive an evolution equation for the density fluctuations
dpa(k, t). From the solutions of the respective equation, we obtain that the time deriva-
tive of the density fluctuations is dominated by the Bogoliubov mode at low momenta
k < k=, such that

0r5pa(k, t) ~ wp(k)dpa(k,t) . (3.13)

Here, k= = [2Mp(%)g]'/? is the healing-length momentum scale associated with the total
o (0) (0)
condensate density p\") = >, p, .

Plugging the relation stated in Eq. (3.13) into Eq.(3.9) and expanding the Bogoliubov
dispersion relation at low momenta yields

Spa(k
pa(k) ~ |_klga(k) < 0,(k) for k < k=. (3.14)
p(0) k=

Hence, density fluctuations are suppressed in the regime of low momenta as compared
to phase fluctuations, which we identify as the relevant low-energy degree of freedom
of the model.

Integrating out the suppressed density fluctuations §p, at quadratic order of the ex-
pansion of the Lagrangian in Eq. (3.5), we arrive at the low-energy effective action S =

3) (4)

SeffG + Se?f,nG + Se?f,nG’ with Gaussian (quadratic) as well as three- and four-wave inter-

action parts

1 1 kz.akzp/ k2
Settcl0] = / ki{ (5“” - = =) 5,04(k, 1)8,05(~k, 1)

go(k) 1+ k2/2k2
(0)1,2
- P Mk Qa(k, t>ga(_ka t)}a (315)

s&) [0 = / L1 ( o _ ka,aks,b/ké) kz K (K - k)
e k' N1/2 gg(k) 1+ K22k [ k=p  2M
X 0:0a(~k, 1)0y (K, )0y (k — K/, 1), (3.16)
11 (672 1 K(kK + k) k”(K’ - k)
/ i 2N go (k) ( K2, 1+Kk2 /Zk%) 2M oM
X 0a(K, 1)0,(~k — K', )0, (K", )0y (k — K", 1) . (3.17)

(4)
Seff,nG

6] =

Here, [, = [d%/(27)% and k=, = [2M pc(lo)g]l/2 is a momentum scale taking the form
of the inverse healing length of a single component.

We find that the Gaussian part has Luttinger-liquid form [128], with momentum-
dependent coupling function gg(k) = Ngk?/(2k2). Note that the interaction terms
in Eq.(3.16) and Eq.(3.17) result from a basic three vertex between two phase-angle
fields and one dp,, arising in the expansion of the quadratic kinetic term in the model
in Eq. (3.3), while the cubic and quartic terms in the density fluctuations arising from
the original non-linear term are being neglected. We emphasize that the above stated
effective action allows us to predict scaling exponents for any finite N > 1.
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For simplicity, we consider the large-N limit where we obtain [61]

Sealt] = [ 5o Oule) (<0 = (0 /2M7%) (e
k

k2, Nk; ks 3
_ E.a Bu(ke1, 1) Oa(Ko, ) B 0a(ks, 1) ( k)
/ K2 2Mga(ks) W(ki,t) 0,(ko, t) 0:0,(ks Z i

kit = !

i—=1
kg N(kl -k2) (k3 . k4) 1
4 =.a 0,(kq, k , ( k,) 3.18

/ K2 8M2 go (ki — ko) (Ret, )+~ - Balles ; (3.18)

{ki}

Here, f k) denotes an integral over all momenta k; with i € {1,2,3} for the three-
wave interaction part and i € {1, 2, 3,4} for the four-wave interaction part, respectively.
The low-energy effective action contains interaction terms with momentum-dependent
couplings showing that the resulting theory is non-local in nature, as expected for such
type of effective descriptions [61]. Note that the index G of the coupling refers to the
relevant Goldstone excitations in the large-N limit.

We stress that the derivation of the low-energy effective field theory naturally cov-
ers the non-perturbative scattering regime due to the momentum-depending coupling
g (k) which remarkably coincides with the universal coupling obtained in the non-
perturbative resummation within the 2PI formalism [56]. Moreover, taking the large-N
limit, the effective action becomes diagonal in component space to leading order in 1/N
and thus breaks up into N independent replicas. This means that the phases 6, of the
different components decouple in the limit of large N.

The three- and four-wave interaction parts of the effective action in Eq. (3.18) define the
interactions between the phase excitations and will be used later to describe the scaling
behavior of the time-evolving correlation functions at the non-thermal fixed point within
a kinetic theory approach.

3.1.3. Observables

To make analytical predictions for the scaling exponents within a kinetic theory ap-
proach, we analyze the scaling behavior of the two-point correlator of the phase-excita-
tion quasiparticles given by

falk, t) = (0,(k, 1)0,(—k, 1)) . (3.19)

To numerically study the universal scaling dynamics of the U(3)-symmetric model, we
make use of two different correlation functions motivated by the capabilities of exper-
imental settings, where one does not have direct access to the phase correlator of the
fundamental Bose fields stated in Eq. (3.19).

A general choice for such models are the occupation number distributions of the com-
ponents in momentum space given by

na(k,t) = (Ya(k, t)1*), (3.20)

with (...) denoting the average over different runs of the numerical simulation which
will become clear from the discussion in Sect. 3.3. However, as Goldstone excitations
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associated with the relative-phase degree of freedom become dominant in the large-N
limit, we expect the scaling behavior to be predominantly seen in observables that con-
tain information about relative phases. Such information is absent in the occupation
number distribution. Therefore, we additionally study the momentum-space correlator

Car(k.t) = (W) (k. 1)[%) (3.21)

measuring the spatial fluctuations of the relative phases 6, —6;, between different compo-
nents a and b. We stress that such a correlator is accessible in experiments as it measures
coherences between different Bose fields.

To extract prescaling from the numerical data, we study two types of position-space
correlators, namely the first- and second-order spatial coherence function. The first-
order coherence function

M (1) = Wl (x +1,8) Yu(x, 1)) (3.22)

is obtained as the Fourier transform of the occupation number n,(k, t). As the first-order
coherence function is insensitive to the relative phases, which are expected to become
more and more relevant in the system as we increase the number of components N, we
additionally study the second-order coherence function

95? (t) = Wl (x+ 1.0 Yp(x+1,8) ¥ (%, 1) Ya(x, 1)) - (3.23)

Note that this observable is a four-point correlation function in the fundamental Bose
fields ¢/, and results from a Fourier transform of Cyy(k, t).

Due to the isotropy of the numerical system, we compute angle-averaged correlation
functions in d = 3 dimensions such that the correlators solely depend on the radial
momentum k = |k| or distance r = |r|, respectively.

3.2. Spin-1 Bose gas

In this section, we focus on spin-1 Bose gases and discuss the basic properties of this type
of multi-component system. We start by introducing the Hamiltonian and the equations
of motion that govern the time evolution of the system in Sect. 3.2.1. As compared to
the U(N)-symmetric case, the spin-1 model contains interactions that break the U(N)-
symmetry. Due to these interactions, the spin-1 system features different phases that
are characterized by means of the respective energetically favored spin configuration.
The presence of such phases offers the possibility to generate far-from-equilibrium con-
figurations by means of instabilities arising from parameter quenches between different
phases. To set the stage for a thorough discussion of potential parameter quenches and
to highlight the rich spin physics of the spin-1 model, we review the mean-field phase
diagram of the spin-1 Bose gas in Sect. 3.2.2. This further allows us to motivate and
identify in Sect. 3.2.3 all those observables, which we will use to study universal scaling
dynamics in spin-1 Bose gases.
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3.2.1. The model

A d-dimensional spin-1 Bose gas with atomic mass M is described by the Hamiltonian
[99]
H_/d[T(EQQ 5 € 9 €l
= [dx |9y |-=—=V*"+V(x)+qf]| Y+ —p“+ =I|FI"| , (3.24)
2M 2 2
where 1 = (Y1, Yo, t//_l)T is a three-component bosonic spinor field whose components
account for the magnetic sublevels mp = 0, £1 of the F = 1 hyperfine manifold. Note
that we suppress space-time arguments of the fields to shorten the notation. The pa-
rameter g is the quadratic Zeeman energy shift which is proportional to an external
magnetic field along the z-direction. It leads to an effective detuning of the mp = +1
components with respect to the mr = 0 component. We are working in a frame where
a homogeneous linear Zeeman shift has been absorbed into the definition of the fields.
Spin-independent contact interactions are described by the term cop?, where p =
iy = 3, l//;llﬁm is the total density. Spin-dependent interactions are characterized
by the term c;|F|?, where F = 1)'f 1) is the spin density and f = (f;, f,, ;) is a vector
that contains the spin-1 matrices in the fundamental representation

(010 S0 -1 0 10 0
fi=—[101], fF="|1 0 -1]. fi=[o0 ol (3.25)
V2l 1 0 V2o 1 o 00 -1

The spin-dependent term accounts, among others, for the redistribution of atoms be-
tween the three hyperfine levels via spin-changing collisions [99]. In d = 3 dimensions,
the coupling constants ¢y and c; are given by

47h? (ap + 2a2) 4712 (az — ag)
= , = 3.26
3M “ 3M (3.26)

€0

with the s-wave scattering lengths ag and as of the symmetric spin channels with total
spin 0 and 2.

The spin interaction term and the quadratic Zeeman energy shift break the U(N) sym-
metry of the Hamiltonian. Both contributions can be viewed as competing energy scales
whose quantitative relation favors different spin configurations. This causes the spin-1
Bose gas to feature distinct phases within the two-dimensional plane spanned by the pa-
rameters c; and q. The presence of different phases allows for much richer dynamics as
compared to U(N)-symmetric Bose gases and further offers the possibility to generate
far-from-equilibrium configurations by means of parameter quenches between different
phases. In case of c; = q = 0, Eq. (3.24) reduces to the U(N)-symmetric model stated in
Eq.(3.1) with N = 3.

In experimental systems, the atoms are confined by means of an external trapping
potential V(x) which is typically harmonic. This causes the density of the condensed
gas to become position-dependent as compared to the homogeneous case, V(x) = 0,
where the background density is constant.

The time evolution of the spin-1 system is given by the coupled Gross-Pitaevskii equa-
tions (GPEs)

h2
ihdpp = (—WVQ + V(%) + qf2 + cop + c1F - £] 9. (3.27)
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Figure 3.1.: Mean-field phase diagram of the spin-1 Bose gas in absence of a trapping
potential (V' = 0) for vanishing z-component of the magnetization (we are
implicitly accounting here for the fact that the ground state in the easy-axis
phase is degenerate). For ¢; > 0, we obtain two different phases. For g > 0,
the system is in the polar phase whereas for ¢ < 0, the system is in the
antiferromagnetic phase. The phase transition occurs at ¢ = 0. For ¢; < 0,
three phases exist. In case of ¢ > 2p|c1|, the system is in the polar phase,
for 0 < g < 2p|cy], it is in the easy-plane phase and for ¢ < 0, it is in the
easy-axis phase. A quantum phase transition (QPT) occurs at ¢ = 2p|cy|.
The phase transition between the easy-plane and easy-axis phase is at ¢ = 0.
Note that g9 = 2plc1| and p is the homogeneous total density. For details
on the ground states see main text. Figure caption taken and adapted from
Ref. [129].

= 2/0/01 /

3.2.2. Mean-field phase diagram

To enable universal scaling dynamics, it is essential to prepare the system in an extreme
out-of-equilibrium initial configuration. As aforementioned, such a configuration can be
generated in spin-1 Bose gases by means of instabilities arising from parameter quenches
between the different phases of the model. To set the stage for a thorough discussion
of this procedure, we briefly review the mean-field phase diagram of the homogeneous
spin-1 Bose gas, see Ref. [130] for details.

For a mean-field description, we replace the bosonic field operators in Eq.(3.24) by
complex functions resembling the respective field expectation values. The phase dia-
gram is obtained by minimizing the mean-field energy functional of the spin-1 system
in absence of a trapping potential within the (c;, q)-plane. For each phase, we also elab-
orate on the associated mean-field ground state and potential properties of the order-
parameter fields. A schematic plot of the phase diagram is shown in Fig. 3.1. This sub-
section is taken and adapted from Ref. [129].
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(i) polar phase — For c; > 0, the spin interaction is antiferromagnetic. If ¢ > 0 addi-
tionally, the system is in the polar phase. The ground state is unmagnetized and is given
by the state vector

0
yp = ep (1) (3.28)
0
Here, p is the homogeneous total density of the system and ¢ is a global phase distin-
guishing different realizations of the spontaneous symmetry breaking.
(ii) antiferromagnetic phase - If ¢ < 0,but c; > 0, the system is in the antiferromagnetic
phase. The ground state is again unmagnetized and its state vector reads

eif1
NES \/ﬁ( 0 ) (3.29)

ei¢—1

Here, ¢, are arbitrary phases of the mg = +1 components. The first-order phase tran-
sition separating the antiferromagnetic and polar phase is at ¢ = 0.

(iii) easy-axis phase — For ¢; < 0, the spin interaction is ferromagnetic. If ¢ < 0
additionally, the system is in the easy-axis ferromagnetic phase. The two degenerate
ground states emerge by an explicit symmetry breaking in the mg = +1 components.
This leads to a state which is either fully magnetized in +z or —z direction, i.e., f, =
(p1 — p-1) /p = =1. The corresponding state vectors are given by

1 0
Yr = ei¢\/,5(0) or Yp= ei¢\//_)(0). (3.30)
0 1

At q = 0, a first-order phase transition occurs in the system.
(iv) easy-plane phase — For ¢y < 0 and 0 < g < qo, with qo = 2p|cy], the system is in
the easy-plane ferromagnetic phase in which the mean-field ground state reads

o6 (€71~ a/q0
Yrp = \/57 2(1+49/q0) |5 (3.31)
1 -q/q0
where ¢ denotes the angle with respect to the spin-x-axis. The complex order-parameter
field in the easy-plane phase is the transversal spin

F. = Fy +iFy, = V2 (y5y1 + v7 1v0) - (3.32)

The ground state gives rise to the mean spin vector lying in the transversal spin plane,
with magnetization | f.| = |F.|/p = [1 — (q/q0)%]"/%. At q = qo, the system exhibits a
quantum phase transition (QPT) that breaks the full spin symmetry of the ground state.
For g > qo, the system is again in the polar phase with the unmagnetized ground state
given by Eq. (3.28).

3.2.3. Observables

While we discuss the generation of far-from-equilibrium states via quenches for all types
of spin interactions, we subsequently solely consider universal scaling dynamics in fer-
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romagnetic (c; < 0) spin-1 Bose gases. We investigate the scaling behavior of the system
after a parameter quench into the easy-plane ferromagnetic phase. We take the transver-
sal spin F |, as defined in Eq. (3.32), as our main observable to study the spatio-temporal
scaling evolution of the spin-1 model.

In order to get a qualitative impression of the non-equilibrium dynamics, we show
single realizations of the transversal spin. Potential non-linear and (quasi)topological
excitations are most easily identified when going into the amplitude-phase representa-
tion of the complex order-parameter field. Therefore, we write F, = |F, le%FL and depict
both amplitude and phase separately. However, in order to distinguish different types of
spin vortices in the two-dimensional setting, we additionally make use of single realiza-
tions of the fundamental fields ,, = |¢mF|ei9mF of the different mp-components. While
different types of spin vortices look the same in the transversal spin degree of freedom,
they are composed of a different structure of topological excitations in the three mp-
components, see Chpt. 6 for details.

For a quantitative analysis of the universal scaling dynamics, we consider averaged
correlations of the transversal spin. Since our system is translationally invariant, we
evaluate these correlations in momentum space by means of the structure factor

S(k.t) = (|F.(k,1)%), (3.33)

with (...) denoting the average over different runs of the numerical simulation which
will become clear from the discussion in Sect. 3.3. Note that due to the isotropy of the nu-
merical system, we compute angle-averaged correlation functions in d > 1 dimensions
such that the correlators solely depend on the radial momentum k = |k|.

Within the scaling regime, the structure factor obeys the scaling form

S(k, 1) = (t/trer)” f5 ([t/tret] ' Kc) (3.34)

where f; is a universal scaling function depending on a single variable only. The cor-
responding scaling exponents @ and f define the evolution of the single characteristic
length L(t) ~ tP. The time scale t,.f denotes some reference time within the temporal
scaling regime.

If the scaling behavior is caused by the mutual annihilation of topological excitations,
a common phenomenon in two-dimensional systems, universality of the process is gen-
erally encoded in the decay laws of these excitations. In that case, the decaying number
of topological excitations is inversely proportional to the power-law growth of the char-
acteristic length L(t) which can be associated with the effective mean distance between
such excitations. Thus, we can deduce the universal scaling exponent by extracting
the power-law decay of the mean number of topological excitations as a function of the
evolution time, see Chpt. 6 for details.

3.3. Numerical methods

As we are interested in the non-equilibrium dynamics of the U (3)-symmetric and spin-1
Bose gas within a regime of strongly occupied modes, we compute the time evolution
by means of semi-classical simulation methods.

In presence of strong mode occupations, it has been shown that the dynamical evolu-
tion is well described by classical fields [85-87, 131]. Replacing the bosonic field opera-
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tors in the GPEs in Eq. (3.1) and (3.27) by classical complex fields results in the respective
classical equations of motion. Solving these equations for a fixed initial configuration
leads to a mean-field description of the time evolution.

Making use of the semi-classical truncated Wigner approximation allows us to com-
pute the time evolution beyond mean-field level as we include quantum statistical fluctu-
ations in the initial field configurations, which are then evolved according to the classical
equations of motion. Observables, such as correlation functions, are obtained by aver-
aging over many trajectories of the numerical simulation. For details on the truncated
Wigner approximation see Refs. [86, 87].

At this point, it is worthwhile to mention that the GPEs particularly provide an ade-
quate description of the dynamics of dilute gases [110]. Recall that the Bose gas is called
dilute when its inter-particle distance, set by the mean density in the numerical sim-
ulation, is much larger than the respective s-wave scattering length characterizing the
contact interactions. This condition has to be ensured by an appropriate choice of the
numerical density and the interaction parameter.

We numerically solve the equations of motion for both, the U(3)-symmetric and spin-
1 Bose gas, by means of a spectral split-step algorithm. The method is based on treating
the term involving the second-order derivative separately from the other terms in the
equations of motion within each discrete numerical time step. While the derivative term
becomes diagonal and thus simple to evaluate in momentum space, the other terms are
treated in real space. Hence, the split-step algorithm involves a number of Fourier trans-
formations. We can speed up the computations significantly by performing parallelized
discrete fast Fourier transforms on graphical processing units (GPUs). While the non-
linearity in the U(N)-symmetric model is straightforwardly evaluated when solving the
coupled GPEs in Eq.(3.1), one needs a more refined treatment for the spin-interaction
part in Eq. (3.27) when dealing with the spin-1 model. For details and different imple-
mented versions of the split-step algorithm for the spin-1 model see Refs. [132-134].

We remark that in order to solve the equations of motion numerically, we have to
discretize space on a lattice with a given number of grid points in each of the dimensions.
This means that quantities like time, length or densities are measured in units of the
numerical grid spacing. Afterwards we can assign a physical length to the grid spacing
which then defines the physical system that corresponds to our numerical simulation. In
many cases, one simply goes the opposite way, i.e., we take a given physical system and
adjust the grid spacing in a way that we are able to resolve all characteristic scales of the
system in our numerics. Keeping that in mind, it is obvious that we do not have to start
our computation with the dimensionful coupled GPEs, as stated in Eq.(3.1) and (3.27),
but we can consistently rescale the GPEs to rewrite the equations in the task-related
most convenient form.

Throughout this thesis, we use different rescaled versions of the spin-1 GPEs stated in
Eq. (3.27). For example, it can be useful to rescale the equations in a way that only the
ratio between the density and spin coupling remains in the equations of motion. This
is particularly relevant in cases where we want to directly study the influence of the
coupling ratio onto the properties of the system. No matter which type of rescaling is
chosen, one can always transform all quantities back to physical units which allows for a
direct comparison of all numerical results. In order to avoid potential confusion, we will
clearly state how time, length and densities are measured in the respective numerically
studied spin-1 systems in Chpts. 4-6.
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3.4. Hydrodynamic formulation

Apart from using a description by means of Gross-Pitaevskii theory, the physics of ultra-
cold Bose gases can be equivalently captured in a hydrodynamical formulation, where
the equations are expressed in terms of macroscopic observable physical quantities such
as densities and mass currents. Making use of such a formulation allows decomposing
the kinetic energy density of the system into different hydrodynamic contributions.

In particular, we are able to separate contributions to the flow field arising from com-
pressible and incompressible excitations populating the system. While the compressible
part is determined by sound-like collective excitations, the incompressible part contains
information about the topological excitations. Note that the incompressible contribution
to the flow field is only present in d > 1 spatial dimensions. The decomposition of the
kinetic energy density provides information about the dominating type of excitation at
a non-thermal fixed point and furthermore gives insights into the power-law behavior
of the universal scaling function characterizing the fixed point distribution.

In this section, we present a brief definition of the hydrodynamic decomposition of
the spin-1 Bose gas in d > 1 spatial dimensions. The derivation of the decomposition
is analogous for the U(3)-symmetric model. For details of the decomposition see also
Refs. [61, 135]. This section is taken and adapted from Ref. [109].

For simplicity of the expressions, we use units of 7 = 1. In a hydrodynamic formula-
tion [135], the spin-1 system is described by the total density p, the spin vector f, and
the nematic tensor n,,,

p= Z TARTA (3.35)
f,u - % Z l//j” (f”) mm’ lpm’ ’ (3'36)
My = % Z Y () Y (3.37)

p = x,y,z, with f, being the spin-1 matrices in the fundamental representation, and
the nematic or quadrupole tensor representation n,, = (f.f, + f,f,)/2. The superfluid
velocity field v is then given by

—i

VT oMy

v (Wm) = (V) vm] - (338)

m

For expressing the hydrodynamic energy, it is useful to define the generalized velocities
corresponding to the quantum-pressure (q), the spin (s), the nematic (n), the incompress-
ible (i) and compressible (c) parts,

wl@ = M7IVp, wiie) — \pvlie)
wi) = (2M) VRV, wit) = M) 2V (339)

Here, v(*9) are obtained by a Helmholtz decomposition of the velocity field v = v(!) +
v{9), with the incompressible part having a vanishing divergence, V - v{!) = 0, and the
compressible part a vanishing curl, V X vld = 0.
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Using the hydrodynamic variables, we can express the energy as

€0 C1
hﬂm+/ﬂfy%5ﬁﬁ+ww. (3.40)

In the U(3)-symmetric model, the last two terms are absent as ¢; = g = 0 in this case.
However, as we are interested in the decomposition of the kinetic part of the energy,
Eyin, the following treatment is equivalent for the spin-1 and U(3)-symmetric Bose gas.
For both types of systems the kinetic part reads

Bun =5y7 [ ax (748 + § (75)" + 5 ()]
+ %/dxpvz. (3.41)

Hence, in Fourier space, the kinetic-energy spectrum is given by the correlation func-
tions of the generalized velocities

erin(k) = D (k) 4 £ (k) + D (k) + £ (k) + M (k), (3.42)

averaged over the orientation of the momentum vector,

Amng/mmwmmm (6 =gi.c) (3.43)
M S S

e (k) = 5 / duw’) (k) - wi (K)), (3.44)
M n n

() =5 [ donwis 19 - wit oy, (3.45)

where Einstein’s sum convention is implied. The respective total energies are obtained
as E©) = [ax [ dk k%1 ¢() (k). The spectrum of the kinetic energy can then be used to
calculate corresponding occupation numbers using the relation

n® (k) = 2M k29 (k) , (3.46)

where § = g, i, ¢, s, n. The total occupation number, which is the sum of the occupation
numbers of the different components, is then approximately given by

mror(k) ~ > n® (k) = 2M k~2eiin (k) (3.47)
1

We remark that the total occupation number n, and 2M k‘2ekin(k) deviate from each
other in the regime of infrared momenta below the inverse healing length scale due
to additional contributions from four-point correlations of the fundamental fields con-
tributing to the kinetic energy density, see the discussion in the Appendix of Ref. [40].
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by topological excitations
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In the first part of this thesis, we set the basis for discussing universal scaling dynamics
at non-thermal fixed points in multi-component Bose gases far from equilibrium. In the
remainder, we present two classes of fixed points where the scaling behavior is caused
by different excitations of the investigated systems. In this part, we consider universal
scaling dynamics which is dominated by topological excitations whereas we focus on
non-thermal fixed point scaling dominated by collective excitations in the final part of
the thesis.

To illustrate universal scaling dominated by topological excitations, we investigate
the non-equilibrium dynamics of spin-1 Bose gases. In Chpt. 4, we elaborate on the gen-
eration of out-of-equilibrium configurations in spin-1 systems by means of parameter
quenches. Such configurations are a key feature to enable spatio-temporal scaling of
correlations in the subsequent dynamical evolution of the system. We then present nu-
merical results showing bidirectional universal scaling in a one-dimensional spin-1 Bose
gas driven by quasi-topological excitations such as spin textures and kink-like defects in
Chpt. 5. We finally discuss universal scaling involving the growth of two macroscopic
length scales determined by the mutual annihilation of two types of spin vortices in a
two-dimensional spin-1 Bose gas in Chpt. 6.

In order to embed our numerical studies into the broader research context, we briefly
review previous work on universal scaling dynamics dominated by topological excita-
tions. We focus on scaling phenomena reported in single-component and spin-1 Bose
gases which set the appropriate framework for the numerical studies in the remainder
of this part.

Universal ordering processes characterized by the underlying dynamics of (quasi)topo-
logical excitations were commonly discussed in dissipative systems, where they are re-
ferred to as coarsening or phase ordering dynamics [69, 136—-142]. Coarsening is a spe-
cific type of universal scaling evolution, generically associated with the phase-ordering
kinetics of a system coupled to a temperature bath, and exhibiting an ordering phase
transition [69]. Typically, the coarsening evolution following a quench into the ordered
phase only involves a single characteristic length which fixes the scale of the correlations
and evolves as a power law in time. Such a growing length scale can be associated with,
e.g., the coarsening of magnetic domains in the ordered phase. The associated scaling
exponents are determined by the underlying dynamics of the topological excitations and
potential conservation laws [69]. As already mentioned in Sect. 2.1, the concept of non-
thermal fixed points generalizes such universal scaling dynamics to isolated systems far
from equilibrium.

There are numerous experimental and numerical works that study universal scaling
dynamics at non-thermal fixed points where the scaling behavior is governed by the
dynamics of topological excitations. First investigations were made by numerical simu-
lations of single-component Bose gases in two and three spatial dimensions [39, 40, 42].
In these cases, the non-thermal fixed point was identified by a steep infrared momentum-
space power-law distribution of the particle number distribution. Performing a hydrody-
namic decomposition of the flow field further revealed the dominant role of topological
excitations in such systems. By changing the out-of-equilibrium initial configuration
of the system, it was possible to either make the system approach a non-thermal fixed
point during its subsequent time evolution or directly equilibrate [40]. Recent numeri-
cal studies of a single-component Bose gas in two spatial dimensions uncovered that a
quantum many-body system can be attracted to multiple non-thermal fixed points with
different scaling exponents [45]. It was shown that the initial arrangement and quan-
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tization of vortices can lead to two distinct types of universal scaling behavior. If the
configuration was chosen in a way that the vortices tend to cluster during the time evo-
lution, slowed scaling with exponent f§ ~ 1/5 was extracted from the numerical data as
compared to the case of free vortices characterized by f ~ 1/2. The observed strongly
slowed scaling can be interpreted as being due to mutual defect annihilation following
three-vortex collisions and has recently been found consistent with experimental data
[143-145]. The first experimental observation of universal scaling dynamics dominated
by (quasi)topological excitations has been made in a one-dimensional single-component
Bose gas [36]. In this case, the scaling evolution with exponent f ~ 1/10 is governed by
the redistribution of solitonic excitations that emerge from shock cooling of the atomic
gas.

Within recent years, spin-1 Bose gases have become of particular research interest for
universal scaling dynamics as they can be well-controlled in experiments. The rich phase
diagram of the system further allows for a plethora of scaling phenomena. Motivated by
experiments in two spatial dimensions, where domain coarsening of spin textures, with-
out reference to universal scaling, has been observed in the long-time dynamics after a
parameter quench [146], several numerical studies of two-dimensional spin-1 Bose gases
have been carried out. Quenching the spin-1 system into the easy-plane ferromagnetic
phase starting from a polar condensate, universal scaling dynamics was found to be char-
acterized by the annihilation of spin vortices with unmagnetized core [104, 105]. In case
of antiferromagnetic spin interactions, nematic ordering caused by half-quantum vor-
tices could be extracted [107]. In all these works, only a single vortex type determined the
universal scaling evolution of the system. The scaling reported in Chpt. 6 is very differ-
ent in nature although it also results from the annihilation of spin vortices. However,
due to the presence of two types of spin vortices with distinctly different decay laws, the
system features the growth of two macroscopic length scales leading to a violation of
single-length scaling. Such a multiple-faceted scaling behavior has later also been found
in a one-dimensional spin-1 Bose gas with antiferromagnetic interactions [103]. Apart
from this, unconventional universal scaling occurred in a one-dimensional spin-1 Bose-
Hubbard model in the superfluid regime which is closely related to the spin-1 Bose gas
[100]. In this case, the scaling results from merging of one-dimensional spin domains.
In addition, studying the non-equilibrium time evolution of the spin-1 Bose-Hubbard
model in one spatial dimension with antiferromagnetic spin interactions revealed uni-
versal scaling dynamics with scaling exponent f~1/3 [101]. In this case, the scaling of
a single macroscopic scale is characterized by the pair annihilation of magnetic solitons
by forming Flemish strings. In Chpt. 5, we report bidirectional universal scaling dynam-
ics in a one-dimensional spin-1 Bose gas. In contrast to the cases mentioned above, the
scaling is characterized by a growing macroscopic scale and a simultaneously decreasing
microscopic scale. Such an evolution, prototypical for scaling dynamics at a non-thermal
fixed point, is usually not observed in numerical simulations as the build-up of a thermal
tail generally spoils the scaling behavior in the ultraviolet regime of momenta.
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4. Generating far-from-equilibrium
states via quenches

In order to approach a non-thermal fixed point during the time evolution, we have to
prepare the system in an extreme out-of-equilibrium configuration. Such a configuration
can be generated by means of a fast change of a Hamiltonian parameter of the system,
which we refer to as a quench. We already discussed the example of a strong cooling
quench, where one removes all atoms above a certain momentum scale to create the
far-from-equilibrium initial state of the Bose gas (see Sect. 2.1).

In this chapter, we discuss potential scenarios that can be employed to generate far-
from-equilibrium initial configurations in spin-1 Bose gases. Due to the rich phase di-
agram, spin-1 Bose gases offer the possibility to drive the system out of equilibrium by
performing a sudden parameter quench across a phase transition. Such a protocol leads
to instabilities that generate far-from-equilibrium configurations in a controlled fashion
during the early-time dynamics of the system. Note that the short-time dynamics fol-
lowing quenches between different phases of the spin-1 model has also been investigated
in experiments [97, 98].

Whether the system features an instability depends on the state of the system prior
to the quench. Such pre-quench states are commonly chosen to be the ground states
of a particular spin-1 phase as they are easily prepared in experimental settings. We
infer the presence of an instability after a parameter quench between different phases
from investigating the dynamical stability of the respective pre-quench state in the post-
quench phase.

The stability properties can be studied by means of Bogoliubov theory which has been
carried out in detail for homogeneous spin-1 systems in Ref. [130]. As we later make use
of instabilities to generate far-from-equilibrium states in one- and two-dimensional ho-
mogeneous spin-1 Bose gases, which set the stage for the subsequent universal scaling
dynamics, we briefly review the results obtained from Bogoliubov theory in the homo-
geneous spin-1 system in Sect. 4.1.

However, far less is known about what happens in the presence, e.g., of an external
trap, as it is commonly the case in experiments [110, 147]. Hence, a major part of this
chapter is devoted to the investigation of the influence of a trapping potential onto the
stability properties of the spin-1 Bose gas. In order to keep the numerical computations
feasible, we consider spin-1 Bose gases in one spatial dimension. We start by refining
the definition of the spin-1 model and by introducing a set of numerical units that is
most suitable for the stability discussion in Sect. 4.2. In order to investigate the stability
properties of the ground states in presence of a trapping potential, we first need to map
out the corresponding mean-field phase diagram, which is presented in Sect. 4.3. To
do so, we make use of a, so-called, continuous-time Nesterov method. We present an
extension of the method, which has been previously applied to one-component systems,
to our multi-component system in Sect. 4.3.2. Subsequently, we solve numerically the
Bogoliubov de-Gennes equations in order to analyze the stability of the ground states of
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the trapped spin-1 system in Sect. 4.4. Finally, we summarize the results and comment
on potential future research in Sect. 4.5.

The content of this chapter is taken and adapted from Ref. [129]. I stress that most of
the parts are taken verbatim from the publication. However, I rearranged the structure
of the presentation. I further added and/or modified formulations to embed the work
into the broader context of this thesis.

4.1. Bogoliubov excitations in a homogeneous spin-1
system

In the following, we give a brief summary of the Bogoliubov theory for the spin-1 ground
states in absence of a trapping potential. The results are summarized in Table 4.1. A
detailed analysis of the homogeneous theory can be found in Ref. [130].

To obtain the Bogoliubov excitation spectra, one first expands the Hamiltonian up to
second order in small fluctuations about a particular mean-field state of the system which
we take to be one of the spin-1 ground states as introduced in Sect. 3.2.2. This proce-
dure then leads to the so-called Bogoliubov de-Gennes equations. Solving the eigenvalue
problem one obtains the Bogoliubov excitation spectra which then enable us to deter-
mine the dynamical stability of the ground states in different phases. We outline this
procedure for the trapped spin-1 system in detail in Sect. 4.4.

Whenever the mode energies of the determined Bogoliubov spectra become imaginary,
a dynamical instability occurs as relevant momentum modes will grow exponentially in
time. In that case, the growth rates of the unstable modes can be calculated from the
excitation spectra (i.e., from the imaginary parts of the corresponding eigenfrequencies).
We will use the Bogoliubov predictions made for the homogeneous system for a later
comparison to numerical results obtained for the trapped system.

The following discussion refers to the mean-field phase diagram of the spin-1 system
introduced in Sect. 3.2.2. For the numerical treatment in this chapter, we will use a
unit system where we normalize the interactions of the model by the spin-independent
coupling c¢g such that we replace the spin-dependent coupling c¢; by the coupling ratio
& = c1/co. For details on the unit system see Sect. 4.2. To avoid confusion between
densities of the homogeneous and the trapped system, we denote the homogeneous total
density by py, throughout this chapter.

4.1.1. Excitations about the polar state

Diagonalizing the Bogoliubov Hamiltonian for a small perturbation about the polar state
i ~ (0,1,0)T in a homogeneous spin-1 system, one obtains one phonon mode and two
modes corresponding to excitations in the transverse spin direction.

The spectrum of the phonon mode is given by

Epn (k) = ek (ex + 2pnco), (4.1)

with mode energy €, = k?/2 and py, being the homogeneous total density. This mode is
stable irrespective of the parameters g and 9.
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State

Energy spectrum

Stability properties in ...phase

AF P EA EP
p Egh(k) = \er(ex + 2pnco) S S S S
Es(k) = V(ex + q) (ex + g+ 2pn9) : U S v : U
ys(k) =9 (Va (g +2p19))| ys(k) = pnld| ys(k) = |9 (Vg (g + 2pn9))|
_for0<-q < pnd _for—ppé < q < -2ppé
¥s(k) = pnl8| for pné < —q Ys(k) = pnl6| for0 < q < -ppé
AF EI‘:hF(k) = er(ex + 2pnco) S S S S
Em(k) = \er(ex + 2p10) S $(8>0),U(S<0) Y U
Ym(k) = pnld| Ym(k) = puld| Ym(k) = puld|
Eg(k) = y/(ex - 0)° + 208 (e - @) s ) u 5(g < 248),U (g > 2p1) v
ve(k) = |3 (Vg (g=2pn0))| ve(k) = pyld] ve(k) = pyld|
forqg < ppdand § >0 for ppd < g <0
ve(k) = pulS| ve(k) =9 (Va (@=2p19))|
forqg > ppd and § > 0 for 2ppd < g < ppd
EP Eo = ek (e +q) _ U S _ U S
vo(k) =1ql/2 vo(k) =1ql/2
EA S S S =-1),U(5 < -1) S(6=-1),U(5 < -1)

E}f}‘f = Ver [ex +2(1+5) pr]

YEA(R) = VBI(1+ 8)] pn

YEA(R) = VBI(1+ 8)] pi

Table 4.1.: Stability properties of the spin-1 ground states derived within homogeneous Bogoliubov theory. The abbreviations P, AF, EP, EA stand
for polar, antiferromagnetic, easy-plane, and easy-axis. Stable regimes of the listed excitation spectra are marked with S, unstable
regimes with U. In case of an instability, the maximal growth rate y(k), with k being the respective most unstable momentum mode,
is stated. The instabilities used in Chpt. 5 and Chpt. 6 to generate far-from-equilibrium configurations which subsequently lead to
universal scaling dynamics are highlighted in blue. Table taken and adapted from Ref. [129].
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4.1. BOGOLIUBOV EXCITATIONS IN A HOMOGENEOUS SPIN-1 SYSTEM

The spectrum of the transverse spin excitations reads

Es(k) = \/(6k +q) (& + g+ 2pnd). (4.2)

This mode is dynamically unstable whenever the parameters q and § are chosen in a way
that the expression under the square root becomes negative.

(i) antiferromagnetic phase — In case of ¢ < 0 and § > 0, i.e,, in the antiferromagnetic
phase, three different instability regimes exist. For 0 < —q < p,d, momentum modes up
to an ultraviolet (UV) cutoff kyy = \/—_Qq are unstable. The most unstable mode is k = 0
with growth rate

po (B) =19 (5001 = 9 Yl 20001 . 43)

where the symbol J denotes the imaginary part of a complex number. For ppd < —q,
the most unstable mode is k = 4/—2(q + pnd) with growth rate

Ys (75) =pnldl. (4.4)

In case of 2p,d < —q, an additional infrared (IR) cutoff of the instability region occurs at
ki = v/—(q + 2pn9).

The same scenario as discussed above is present for § < 0.

(ii) easy-plane phase — For 0 < q < —2py4, i.e, in the easy-plane phase, the first two
of the above stated instability regimes can be found. In case of —ppd < g < —2pp6,
the most unstable mode is k = 0 with growth rate given by Eq. (4.3). For parameters
0 < g < —ppS, the most unstable mode occurs at k = \/=2(q + pnd). The corresponding
growth rate is stated in Eq. (4.4).

We make use of this instability in Chpt. 5 to generate a far-from equilibrium initial
configuration in a one-dimensional homogeneous spin-1 Bose gas. The broad range of
unstable momentum modes at q¢ =~ py, 6 is well-suited to initialize bidirectional universal
scaling dynamics of the non-equilibrium system.

(iii) easy-axis phase — Moving to g < 0, i.e., entering the easy-axis phase, the additional
IR cutoff of the instability region occurs as mentioned above. The most unstable mode

is k = \/=2(q + pnd) with growth rate given by Eq. (4.4).

4.1.2. Excitations about the antiferromagnetic state

Diagonalizing the Bogoliubov Hamiltonian for a small perturbation about the antiferro-
magnetic state ¥ ~ (1,0,1)7 in a homogeneous spin-1 system, one obtains one stable
uncoupled phonon mode given by

EZ (k) = yJex(ex + 2pnco)- (4.5)

In addition, an uncoupled magnon mode with spectrum

Em(k) = y/ex(ex + 2pnd) (4.6)

exists. The magnon mode exhibits unstable momentum modes up to a UV cutoff of
kuv = +/—4pnd in case of § < 0. Irrespective of the parameter g, the most unstable
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momentum mode is k = v/=2pnd with corresponding growth rate

Ym (/5) = pnldl. (4.7)

Hence, one finds unstable modes showing the same maximal growth rate within the
polar, easy-plane and easy-axis phase associated with ferromagnetic spin interactions.
Furthermore, a quadratic mode described by

Eg(k) = /(e — @) + 206 ek — ) (43)

is present in the system.

(i) polar phase — For § > 0 and q > 0, i.e., in the polar phase for antiferromagnetic
spin interactions, we find two different instability regimes. In case of g < ppJ, the most
unstable mode occurs at k = 0. Its growth rate reads

ve (k) = ‘5 ( q(q- 2Ph5))‘- (4.9)

The second regime emerges for ¢ > pnd where the most unstable mode becomes k =

v2(q — pnd). The growth rate is given by
ve (k) = pnlol. (4.10)

For § < 0and g > —2pyd, i.e., in the polar phase for ferromagnetic spin interactions, the
quadratic mode is stable.

(ii) easy-plane and easy-axis phase — For § < 0 and pyd < g < —2pyd, i.e., in the easy-
plane phase and parts of the easy-axis phase, the most unstable mode is k = /2(q — pn9)
with growth rate according to Eq. (4.10). A second instability regime occurs within the
easy-axis phase for 2ppd < g < pnd. Here, k = 0 is the most unstable mode with growth
rate given by Eq. (4.9). For values q < 2py,J, the quadratic mode is dynamically stable.

We make use of this type of instability in the easy-plane phase in Chpt. 6 to generate
a far-from-equilibrium initial configuration in a two-dimensional homogeneous spin-1
Bose gas. The subsequent universal scaling dynamics is much richer than simply using
the respective instability arising from the expansion about the polar state due to the
presence of multiple spin vortices.

4.1.3. Excitations about the easy-plane state

Diagonalizing the Bogoliubov Hamiltonian for a small perturbation about the easy-plane

T
state iy ~ (\/1 - q/q0:V2(1 + q/q0), V1 - q/qo) in a homogeneous spin-1 system,
where gg = —2pyJ, one obtains one gapless mode given by

Eo = +/ek (e + q). (4.11)

This mode is dynamically unstable for g < 0 irrespective of the spin interaction §. The
most unstable mode is k = y/—q with growth rate

yo (k) = lal (4.12)
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We remark that, in addition to the above stated gapless mode, there are two further
Bogoliubov modes that will not be discussed in this thesis.

4.1.4. Excitations about the easy-axis state

Diagonalizing the Bogoliubov Hamiltonian for a small perturbation about the easy-axis
state ¥ ~ (1,0,0)T or ¢y ~ (0,0, 1)7 respectively in a homogeneous spin-1 system, one
obtains two single-particle like modes which are stable. The system exhibits an addi-
tional phonon mode with spectrum

Ep = \/ek lex +2 (1 +6) pu. (4.13)
This mode is dynamically unstable for § < —1.
The most unstable mode is k = 4/—2(1 + &) pp, with growth rate given by
v (k) = V3](1+ 8) pn. (4.14)

As we are studying experimentally realistic parametric regimes in the following, the
spin coupling |5| is on the order of ~ 1072 so we expect to find no dynamically unstable
modes for the easy-axis state irrespective of the parameter q and the sign of §.

4.2. The one-dimensional trapped spin-1 Bose gas

Having summarized the key results obtained from Bogoliubov theory of the spin-1 Bose
gas in absence of a trapping potential, we use the remainder of this chapter to investigate
the stability properties in presence of a trapping potential as it is commonly the case in
experimental systems.

In Sect. 3.2, we introduced the d-dimensional spin-1 Bose gas with arbitrary trapping
potential V(x). Here, we consider a one-dimensional (1D) spin-1 Bose gas in a highly
anisotropic harmonic trap with longitudinal (w) and transverse (w, ) trapping frequen-
cies chosen such that w| < ;. In that case, the wave functions can be separated into a
longitudinal and transverse part. The transverse wave function is the ground state of the
respective harmonic oscillator and can be integrated out to obtain the following system
of coupled 1D mean-field equations for the longitudinal part of the wave function

hdYsr = Hopar + qphur +c!' (1//+1| Hol?=1¢=11) Yu1 + € vz, @)

ndo = Hoo + ¢ (191l +1y-11%) o + 2™ yo1ygyn. (4.16)

Here, 1.1 and 1y are the classical complex bosonic spinor fields and the asterisk denotes
the complex conjugate of the corresponding field. The spin-independent part of the
Hamiltonian is given by

Ho = —[7*/(2M)]97 + (1/2) Meyx® + cop , (4.17)

where p = |¢1|2+|yo|?+|1_1|? is the total density. The parameter G denotes the quadratic
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Zeeman energy shift and the effective 1D coupling constants read

C(lD)_ Co Cng)_ C1

, (4.18)

- 2° - 2
2ma’ 2ma’

with a;, = +/li/(Mw,) being the transverse harmonic oscillator length of the system.
The coupling constants ¢y and c; are given by ¢g = 4742 (ag + 2az) /(3M) and ¢; =
471h? (ag — ag) /(3M), with the s-wave scattering lengths ag and as, see Eq. (3.26).

Measuring time, length and density in units of 7/ (c(()lD) pp), [R%/(M c(()lD) pp)]l/ % and p,,
respectively with p, being the peak density of the system, we can write Egs. (4.15) and
(4.16) in dimensionless form as

i0s1 = HoYer + q¥e1 + 8 (9a P +Hol*=1¥z11?) Y1 + S Y592y, (4.19)

o = Hoo + 8 (111 +1911?) Yo + 28 yoayin., (4.20)

where Hy = —(1/2) 82 + (1/2) 2?x? + p with p = p/p, and q = c]/(c(()m)pp). The
normalized trap strength is

0= 3 (ﬂ) (4.21)
2 (ap + 2a2) pp \ w1
and we define
c(lD) 0 —a
5= 220 (4.22)

C(lD) - ag + 2as ’
0

Typical values of § ~ —5-1073 and § ~ 3-1072 can be found in 8"Rb and **Na respectively,
see, e.g., Refs. [148, 149].

We make use of this particular unit system as it allows us to characterize a broad range
of trapped spinor systems. Varying the coupling ratio § gives access to different species
of atoms. Normalizing the trap strength to the transversal trapping frequency enables us
to directly tune the effective dimensionality of the system. This is useful to determine a
regime of trapping geometries that show the same physical properties as a homogeneous
one-dimensional setup.

4.3. Ground states and phase diagram of the trapped
spin-1 Bose gas

In Sect. 3.2.2, we introduced the ground states and the corresponding mean-field phase
diagram of the homogeneous spin-1 Bose gas. Note again that in the unit system used
here, the parameter c; has to be replaced by the coupling ratio §. As we aim at analyzing
the stability properties of the ground states in presence of a trapping potential, we first
have to map out the phase diagram in presence of the trap. Therefore, we make use of a
continuous-time Nesterov (CTN) scheme. We present an extension of the scheme, previ-
ously applied to one-component systems, to our multi-component system in Sect. 4.3.2.
Finally, we show numerical results obtained with this method for the one-dimensional
trapped spin-1 Bose gas in Sect. 4.3.3.
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4.3.1. Time-independent equations of motion

In the course of this section, we want to determine the ground states of the system
in presence of a trapping potential, i.e., we aim to identify the stationary states of the
trapped system with the lowest eigenenergy. By choosing the general ansatz i, (x, t) =
Ym(x)e #mt with m = 0, £1 and p,, being the chemical potential of each spinor compo-
nent, Egs. (4.19) and (4.20) turn into

ps1tsr = Hopsr + qier + 8 (191 P10~y %) Y
+ 8 Yy e Bromnr), (4.23)

povo = Hovo + 8 (11l +1911?) Yo + 28 Yoaygyne i)t (4.24)

A stationary state resulting from Eqs. (4.23) and (4.24) has to fulfill the phase matching
condition 2pi9 — p1 — p—1 = 0. As a population imbalance between the mp = +1 com-
ponents is not favored, independent of the choice of the couplings in the equations of
motion, we assume that y; = p— for all stationary states considered in this thesis. This
implies that yg = p1 = p—1 = p. The time-independent equations of motion thus read:

Fer (1, Y0, Y-1, Y1, Y5, ¥21) = = ppe1 + HoYer + q
+ 8 (g1 P+ o P~ lys1 ) Y
+ 8y vy
=0, (4.25)

Fo (Y1, Yo, Y-1, Y1, Vg, ¥71) = — uo + Hoo
+6 (I P+1y-11?) vo

+ 28 Y1y th
—0. (4.26)

Here, we introduced functions % .1 as abbreviations for the time-independent equations
of motion which will be of practical use in Sect. 4.4.2.

Various first- and second-order methods can be applied to find solutions to the above
stated equations of motion. A commonly used method for such a problem is an exact
Newton scheme. It is a second-order method involving the explicit calculation of the
Jacobian. A major advantage of the Newton scheme is that it is not restricted to finding
ground states (i.e., the global energy minimum) of a physical system. On the other hand,
a disadvantage of this scheme is that an adequate initial guess for the wave functions,
proximal to the true solution, is needed to ensure convergence.

For the trapped spin-1 system, however, a priori, we do not know where the quantum
phase transition (QPT) between the easy-plane and polar phase is located. Moreover, our
initial guesses in the trapped case may not be sufficiently accurate. Thus, the Newton
method might fail to converge to the true ground state. In that light, we first focus
on a method which is able to map out the spin-1 phase diagram independently of the
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specifics of the initial guess. Nonetheless, we will make use of the Newton method
lateron in order to find a specific state of interest also within a phase where it is not the
ground state anymore. This is required to perform the stability analysis for a given state
throughout the whole (8, g)-plane of the spin-1 phase diagram. The Newton scheme for
the spin-1 system will be discussed in detail in Sect. 4.4.1.

4.3.2. Continuous-time Nesterov scheme

For simplicity, let us assume that we are interested in the variational problem of minimiz-
ing the function G(x). Following the classical discrete-time Nesterov (mirror descent)
algorithm [150], it has been shown in the work presented in Ref. [151] that one can for-
mulate a continuous-time analogue. This involves a second-order ordinary differential
equation (ODE), which in some sense generalizes standard gradient descent schemes.
The ODE is given by

3 d
X +-x+ —G =0, 4.27
X+ tx + T (x) (4.27)

where the dots denote derivatives with respect to the continuous time variable . We re-
fer to this scheme as the continuous-time Nesterov (CTN) method. In general, Eq. (4.27)
can be viewed as describing the damped motion of a particle in a potential G(x). In con-
trast to standard gradient descent schemes, we are dealing with a second-order differ-
ential equation resulting in the “acceleration vector” pointing into the direction of the
steepest descent. The strength of the damping ~ t~! explicitly depends on the evolu-
tion time, i.e., the damping is large at small times when the particle is, comparatively,
further away from the fixed point solution and decreases as the fixed point solution is
approached, which is ensured by choosing an appropriate time step as well as a proper
preconditioner when solving Eq. (4.27) numerically. The preconditioner is an operator
(or upon discretization, a matrix) that helps solving the linear system at hand by reducing
its condition number.

The CTN method can be optimized by introducing a gradient restarting scheme, see
Refs. [151, 152]. Following that scheme in two or three spatial dimensions, the time ¢ is
reset to 1 when the angle between the negative gradient —VG(x) of the function G that
we are trying to extremize and x is larger than 90 degrees and a pre-specified amount of
time f,.s has elapsed. In one spatial dimension this geometrical condition boils down to
the inner product of —dG(x)/dx and x being smaller than 0. Gradient restarting ensures
that the CTN is sufficiently damped in all stages of the evolution. This can be intuitively
understood when thinking again of the motion of a particle in a potential. The inner
product of —dG/dx and x being smaller than 0 means that our particle is moving in the
direction of the fixed point solution. To avoid possible oscillations of the solution in the
vicinity of the fixed point in case of weak damping, we then reset the time which results
in a large damping of the motion. Note that gradient restarting is only useful when the
specific geometrical condition stated above is fulfilled. We refer to the optimized scheme
as accelerated continuous-time Nesterov (ACTN) method.

In Ref. [152], it has recently been shown that the CTN method and its accelerated ver-
sion can also be applied to functionals and can be used for finding stationary states of
partial differential equations (PDEs). In particular, the CTN method was utilized for ana-
lyzing stationary states in a one-component Bose gas in one and two spatial dimensions.
Here, we extend the CTN method to a multi-component system, illustrating its ability to
capture ground states in a wide range of parametric regimes and rather independently
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of the specifics of the initial guess. Following the steps of [152], which are based on the
replacements x — /(x) and dG/dx — F (¢(x)), i.e., replacing derivatives with respect
to the spatial coordinate x by functional derivatives with respect to the field ¥/(x), we
obtain a PDE for the evolution (towards equilibrium) of the field ¢ in space and time.
Generalizing the replacements for all hyperfine components, the CTN scheme for the
spin-1 system assumes the form:

0=t + %lﬁil — [=Hoys1 — qs1
-6 (|¢i1|2+|‘//0|2_|‘//¢1|2) ¢¢1 - 5‘//(? ;1 +ﬂ¢il] s (4-28)

0=1yp+ %v,ﬂo - [—Holﬁo -6 (ll//1|2+|¢—1|2) Yo
=26 Y1y + o) - (4.29)

Note that the overdot denotes a partial derivative with respect to time as we are per-
forming a distributed minimization by solving the partial differential equations of the
above system. We use a second-order center difference scheme for approximating the
second derivative and a first-order backward difference scheme for approximating the
first derivative with respect to time. This leads to the following evolution equations

vt =(2- %) Yl + (Do) [~Hoyl, - q¥
=5 (1 P 2=ty ) i -5 (9)” (v2)

+py ] - (1 - %) o (4.30)

i =(2-2) g + (AP [<Hoyg - 5 (WP P) g
~20ym, () 9+ ] - (1-2) v (431)

where t = nAt with time step At and n being the number of iterations made. Naturally,
we mean by the superscript that /" = ¢;(nAt) = y;(t).

Making use of gradient restarting, the ACTN scheme for the spin-1 system is given by

vt = (2 2) v+ (0P [~Hogl - vty
= (W PPl ) v -5 (9)” (vm)”

R (e (432)

1 (2__)% (AD)? [-Hoyg — 8 (I71P+1y", 1) g

—28 9™ (v) v+ g - (1 - §) n-l (4.33)
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Here, n starts at 1 and is increased by 1 in each iteration step. 7 is then reset to 1 when the
(discretized in time) multicomponent generalization of the gradient restarting condition
for functionals

0 < (=Hoyy - qy = & (Y717 +lyg 1=y 1?) v
=5 ()" ()" + ot o -t
+ (=Hoygl = 8 (1712+1y" 1) v
=209y (v8) VA + il v~ 95)
+ (=Hoy™, — gy, = & (1" PHyg P=1yr1?) vy
—5(%02Wﬁ*+uﬁﬁ’fﬁ—¢ﬂ> (4.34)

is satisfied and n > nes holds. Here, {(a,b) = }}; a;b; denotes the complex inner product.

To successfully apply the ACTN method, a preconditioner has to be included. We
choose the preconditioner to be P = ¢ — d?/dx?, with the variable x being the argument
of the fields ¢,,(x) and the constant ¢ being a real number. Due to the damping term
in the ACTN scheme, we additionally need to normalize the wave functions to the total
particle number N after each iteration step. The chemical potential y is treated as a
Lagrange multiplier and can be calculated from either Egs. (4.25) or (4.26). The full ACTN
scheme with p being calculated from Eq. (4.26) can be written as

(=Hoyg - 8 (1P, ) v - 289, (9e) i, P
fin = . (435)

(. Plyg)

Pt = (2 2) vay + (A0 [~Houlh - quy
=5 (1 Py 2= 1) v -6 (v2)” ()

sy ] - (1 %) I (4.36)

*

i = (2 - %) Yo+ (A2 P [=Hoyg - 8 (71219 1%) v

~259 (98) i+ ] - (1-2) v (437)

—_—
¢(r)l,il \/N
rn+1  7n+l rn+1  7n+l rn+1  7n+1 1/2°
[V i R VAR T R VAt ey ]
The convergence of the method depends on the choice of the constant ¢ in the precondi-
tioner P, the time step At as well as the minimum number of iterations that have to be

performed before applying the gradient restarting n,.;. Note that the ACTN scheme
can also be carried out in Fourier space which allows for a straightforward compu-

n+l1 _
0,#1

(4.38)
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(a)  antiferromagnetic %1010 (b) polar x1071°

|Fy|

[Fo]

Figure 4.1.: Absolute value squared of the ground state wave functions, |¢/,(x)|?, with
m = 0,%1 and the corresponding spin configurations, |F,(x)|, with v =
z, L as a function of the spatial position x obtained by means of the ACTN
method for a trapped spin-1 Bose gas. The four panels correspond to values
of (8,9) of (a) (5-1073,-0.1), (b) (5-1073,0.1), (c) (=5 - 1073, -0.1) and (d)
(=5-1073,0.1). The wave function of the mg = 0 component is depicted by
a dash-dotted orange line. The mg = +1 components are shown with blue
dots and red dashes respectively. The total density .,/ (x)|? is illustrated
by the grey solid line. The amplitude of the transversal spin |F, | is given by
the solid black line and the amplitude of the F,-magnetization by the green
dashes. The analysis is performed for parameters Q = 1072 and N = 20000
to mimic experimental settings. The associated phases of the spin-1 system
are shown in the titles of the subplots. Note the scale of the amplitude of the
spin in panels (a) and (b), which illustrates the numerical error arising from
the error tolerance used for the ACTN scheme. Figure taken and adapted
from Ref. [129].

tation of the action of the inverse of the preconditioner on Fourier modes P~le!* —

[1/(c+ k?)]e™.

4.3.3. Numerical results

In this subsection, we apply the ACTN method to map out the phase diagram for our
trapped spin-1 Bose gas. Motivated by considerations of experimentally accessible re-
gimes, see, e.g., Refs. [148, 149], we choose || = 5- 1073, Q = 1072 and N = 20000. The
numerics is performed on a one-dimensional grid with N, = 512 grid points and the
error tolerance of the ACTN is set to 10710, The choice of parameters can correspond
to a 1D condensate with peak density p, ~ 93 - 10°m~! confined in a trap with w, =
100 ) = 27 - 200 Hz.

To provide a specific example, we now discuss the numerically obtained ground states
for a quadratic Zeeman energy of |q| = 0.1 (using the dimensionless units introduced
in Sect. 4.2). Our initial guess of the wave function is a Gaussian, centered around the
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middle of the trap, with width & = 500/V2 in each of the my components. To converge
to the ground state in the easy-axis phase, we need to explicitly break the symmetry
between the mp = +1 components. As the equations of motion are symmetric in the
mp = +1 components we have to impose a slight imbalance between them in the initial
wave function. We find that an imbalance of 0.2% is sufficient to let the system converge
to either one or the other degenerate easy-axis ground state. Note that this does not
affect the generality of the method to find ground states of the system without the need
of an accurate initial guess.

The absolute value squared of the ground state wave functions and the correspond-
ing spin configurations are depicted in Fig. 4.1. We start by discussing the results for
antiferromagnetic spin interactions, which in our study corresponds to § = 5 - 1073,

(i) polar phase — Convergence to the ground state at ¢ = 0.1 within our preset tolerance
is reached after ~ 700 iterations. The corresponding absolute value squared of the wave
functions only being non-zero for the mg = 0 component as well as the vanishing spin
(see Fig. 4.1(b)) clearly shows that the system is in the polar phase. The chemical potential
of the ground state is y = 22.4. This value corresponds to ;1 = p,co obtained within the
Thomas-Fermi approximation.

(ii) antiferromagnetic phase — In case of ¢ = —0.1, the ACTN method needs =~ 600
iterations to converge to the ground state. The data in Fig. 4.1(a), showing an equal non-
zero absolute value squared of the wave functions of the mg = +1 components and a
vanishing spin, confirms that the system is in the antiferromagnetic phase. The chemical
potential here is p = 22.3.

For both settings (i) and (ii) we find that taking the parameters At = 0.5, ¢ = 7 and
nres = D0 leads to an efficient convergence of the numerical scheme.

In the following, we present the results obtained for ferromagnetic spin interactions,
which in our case is represented by § = =5 - 1073,

(iii) easy-axis phase — At ¢ = —0.1, we find two degenerate ground states after ~
10000 iterations. The system is in the easy-axis phase which is validated by the non-
zero F,-magnetization (see Fig. 4.1(c)). The chemical potential is p = 22.23. Efficient
convergence of the ACTN is reached for parameters At = 0.5, ¢ = 15 and n,s = 100.

(iv) easy-plane phase — At g = 0.1, it takes ~ 2000 iterations to converge to the ground
state. The transversal spin depicted in Fig. 4.1(d) clearly shows that the system is in the
easy-plane phase. The chemical potential is found to be p = 22.38. Taking the ACTN
parameters to be At = 0.5, ¢ = 7 and n.s = 200 leads to an efficient convergence of the
scheme in this case.

The zero-temperature phase transition between the easy-plane and the polar phase oc-
curs at ¢ = qo. In a homogeneous system described on the level of mean-field equations
the transition is determined by qg = 2py|3|, where py, is the homogeneous total density
of the system. In a trapped system it is a priori not clear which density, if any, might
enter this type of critical-point relation.

Using the ACTN method, we are able to numerically determine the position of the
phase transition within our mean-field approximation. To do so, we continuously in-
crease the quadratic Zeeman energy starting at ¢ = 0 and let the ACTN converge to
the corresponding ground state. We then calculate the amplitude of the transverse spin
|F, (x)| for the ground-state configuration. Crossing the phase transition, the transverse
spin should drop to zero as the system enters the unmagnetized polar phase. We define
the phase transition to occur when |F, (x)]e < 1072, where | - |o denotes the L* norm.
We find qp = 0.2236 to mark the phase transition in the trapped system. This value is
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in good agreement with qg = 2pp|d| = 0.224 corresponding to the peak density. The
position of the phase transition is thus determined by the peak density of the trapped
system. Note that the ACTN method needs ~ 4-10° iterations to converge to the ground
state in the vicinity of the phase transition. Hence, we observe that the number of iter-
ations needed to converge to the ground state increases significantly close to the phase
transition. Nevertheless, the method is still able to converge to the relevant ground state.

Choosing a value of ¢ > qq, i.e., being again in the polar phase, the same parame-
ters At, ¢ and n,.s as for the polar phase with antiferromagnetic spin interactions can
be used to achieve an efficient convergence of the ACTN scheme, i.e., the convergence
of the numerical scheme is independent of the sign of § as this term vanishes for an
unmagnetized state.

4.4. Stability analysis of the trapped spin-1 Bose gas

In this section, we perform the stability analysis for the spin-1 ground states throughout
the (8, g)-plane of the spin-1 phase diagram. The stability properties are extracted by
numerically solving the Bogoliubov de-Gennes (BdG) equations in presence of a trapping
potential. The BAG equations are obtained by considering small perturbations about a
possible stationary state of the system to linear order.

We compare numerical results for the trapped setup with Bogoliubov theory in a ho-
mogeneous spin-1 system discussed in Sect. 4.1. Solving the BdG equations describing
the linear excitations about a particular stationary state, requires to first determine the
wave functions of this state. To find the desired stationary state for any parameter set
(6, q), we employ a highly accurate Newton scheme, which we introduce in Sect. 4.4.1.
We then derive the BdG equations for the one-dimensional trapped spin-1 Bose gas in
Sect. 4.4.2. Finally, we discuss the numerically obtained stability properties of the spin-1
ground states in Sect. 4.4.3.

4.4.1. Determining the wave functions of stationary states within
the (§, g)-plane using an exact Newton method

Performing the stability analysis of the different states discussed above within the (8, q)-
plane of the spin-1 phase diagram, i.e., especially in regions where they are not the
ground state anymore, requires to first numerically determine their wave functions for
any given set of parameters (8, q). To achieve this goal, we employ an exact Newton
method which is also capable of converging to excited states of the system. However, as
highlighted above, this requires an initial guess for the wave function which is close to
the desired state. The Newton scheme for the spin-1 system can be cast into the form of
a six-dimensional matrix equation:

JAY = F, (4.39)

where ¥ = (1, %o, F-1, 71", ' 77_*1)T is a vector that contains the time-independent
equations of motion (see Eqgs. (4.25) and (4.26)) as well as their complex conjugated ver-
sions and Ay gives the correction to the wave function of the previous iteration of the
Newton scheme with ¢ = (1, Yo, ¥-1. Y7, ¥, ¥*,)" being a vector of all spinor fields.
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The Jacobian J is given by the matrix

oF:
= —, 4.40
Iy =55 (4.40)
where i,j € {0,...,5} and the partial derivative is evaluated at the current wave function

1. Note that we end up with a 6N; X 6N, matrix when taking N, grid points to discretize
the wave functions.

As we wish to converge to a state with fixed particle number, we introduce a Lagrange
multiplier A for the chemical potential p. This adds the following constraint to our New-
ton scheme

7iz [ (1l + ol + ) =N = (4.41)

Consequently, we get an additional row and column in the Jacobian such that we are
dealing with 6N, + 1 equations in the Newton scheme. The modified scheme can be
written as

JAY = F, (4.42)

with § = (Y1, Yo, V-1, Y7, U5 75 A)T. Note that all x//,S,*) are vectors containing the wave
function at grid points 1, ..., Ny. In each iteration step, we calculate ¥ and evaluate the
Jacobian J of the system. The second derivative occurring in the equations of motion is
obtained by means of a second-order center difference scheme. By solving the eigenvalue
equation (4.42), we obtain the correction to the wave function Al}. The Newton scheme
terminates if the correction is smaller than a preset tolerance.

4.4.2. Bogoliubov de-Gennes equations

The stability properties of a specific stationary state are deduced from numerically solv-
ing the corresponding Bogoliubov de-Gennes (BdG) equations. In this subsection, we
present the derivation of the BAG equations for the trapped spin-1 system and elaborate
on how to subsequently solve them.

As a first step, we have to linearize the equations of motion about the stationary state
of interest. Thus we take the ansatz

Ym(x,t) = [Pm(x) + €0m(x, t)] e, (4.43)

with m = 0, %1 labeling the three hyperfine components and ®,,(x) being the wave
function of each component at the stationary state; y is the corresponding chemical
potential; € is a (formal) small parameter with ¢ < 1 and 8, is the perturbation about
the stationary state.

Note that a “6” is used here as a symbol to differentiate between the wave function of
the stationary state and its fluctuations and should not be confused with the coupling
parameter in the Hamiltonian of the model.

Plugging this ansatz into Egs. (4.19) and (4.20) we obtain

i€0:0Ym = T (@1 + edy, o + €dvy, Py + €Y1,
] + €Yy, Py + €y, P, + €6y . (4.44)

Here, the 7, are the functions introduced in Egs. (4.25) and (4.26).
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Figure 4.2.: Real (R) and imaginary (J) parts of the mode frequencies w resulting from
the BAG analysis of the polar state 7 ~ (0,1,0)" within the (a) antiferro-
magnetic (8,q) = (5 - 1073,-0.1), (b) polar (5 - 1073,0.1), (c) easy-axis
(=5 -1073,-0.1) and (d) easy-plane (=5 - 1073,0.1) phase. In panels (a),
(c) and (d) we see a continuum band of mode frequencies along the real and
the imaginary axis indicating that the frequencies are either purely real or
purely imaginary. The red crosses mark the predicted mode frequency with
the largest imaginary part within the given parameter regime derived from
homogeneous Bogoliubov theory by replacing the homogeneous density by
the peak density of the trapped system. The prediction is in good agreement
with the largest imaginary part of the numerically obtained mode frequen-
cies. In panel (b) we only show the neutral and the dipolar mode of the
system. Their appearance as the lowest eigenmodes confirms that our BdG
method is working properly. Figure taken and adapted from Ref. [129].

Linearization of the equations of motion (4.44) boils down to a Taylor expansion of %,
to first order in €. The expansion for ¥, reads

Forl..) :Tm(®)+e{(%)@5¢1+(%)@5%

8%) (8%) . (8%) .
+ oY1 + ” oYy + | == | Y
(5(1)—1 |D a<I>1 |D ! 6<I>0 |® ’

aTm % 2
+ (GT:) ., 51//_1} +0 (). (4.45)

Here, & = (&1, g, D1, P71, g, @’il) is a vector containing the wave functions at the
stationary state. Note that %, () = 0 for all components as ® is a stationary state of
the system. The partial derivatives of ¥, are taken with respect to the stationary fields
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Figure 4.3.: Squared mode frequencies w? as a function of the mode number n for the

trapped system (colored dots) as compared to the homogeneous setting
(black diamonds). The depicted data points for the trapped case are ob-
tained by means of the BAG analysis of the polar state using the parameters
-0.35<q/ppd <0,6 =5- 1073 and Q = 1072. Data points for the homoge-
neous case result from Eq. (4.2) using momenta k, = 7n/Ly, associated with
the n-th eigenmode in a one-dimensional box of length L, = 2 Ryg, where
Rrr is the Thomas-Fermi radius of the corresponding trapped system. The
presence of the trap leads to a reduction of the growth rates for all unstable
modes except the most unstable one. However, it appears to have no effect
on the crossing point to the stable regime. The mode frequencies are given in
units of n,d. The grey dashed line marks the transition between the unstable
(w? < 0) and the stable (w? > 0) regime of modes. Figure taken and adapted
from Ref. [129].

and are then evaluated at ®. To order € we thus obtain

0Fm 0Fm 0Fm
v B o I S
| | 7

+(a¢’") 5¢i“+(8¢’") 51//3‘+(877m) Sy (4.46)
|P |P |P

0] 0% o%*,
To solve the BAG equations, we make use of the ansatz
SYm(x,1) = (m(x)e™" + v}, (x)e™) , (4.47)

with mode functions u,,, v,, and mode frequency w. Inserting the ansatz into Eq. (4.46)
and matching the phase factors to obtain a time-independent description, we end up
with a system of six coupled equations. We can write the BAdG equations as an eigenvalue
problem of the form

JM = —oM. (4.48)

Here, M = (u1, ug, u-1, v1, v, v_l)T is a vector that contains all eigenmodes of the sys-
tem. Note again that the vector has 6N, entries after the discretization on a grid with
N, grid points. The matrix J turns out to be the Jacobian introduced in Eq. (4.40) whose
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lower half of entries is multiplied by a factor of —1. We can formally write it as
Jy=11-20(-3)] (U)g - (4.49)

where i,j€ {0,...,5} and the Heaviside theta function O is defined as ©(z) = 1 for
z > 0.

The mode frequencies w correspond to the eigenvalues of | and the mode functions
Um, Uy are given by the eigenvectors. We numerically solve the eigenvalue problem in
Eq. (4.48) using the standard _geev LAPACK routines in python. Eigenmodes corre-
sponding to mode frequencies with a non-zero imaginary part are dynamically unstable
as they grow in time. Their growth rate is given by the magnitude of the imaginary part.

4.4.3. Numerical results

In the following, we discuss the stability properties of the spin-1 ground states in pres-
ence of a trapping potential. We investigate those properties for the polar, antiferromag-
netic, easy-plane and easy-axis state, respectively. The numerical settings are taken to
be the same as in Sect. 4.3.3, i.e., we take parameters |§| = 5 - 1073 for the spin coupling
and Q = 1072 for the normalized trap strength. We finally study the dependence of
the stability properties on the strength of the spin coupling é and the normalized trap
strength (2 for the example case of the polar state.

Excitations about the polar state

We investigate the dynamical stability of the polar state ¢ ~ (0,1, O)T throughout the
different phases of our trapped spin-1 system. To get an overview of the stability prop-
erties of the polar state, we discuss results of the BAG analysis obtained for the case
example of |g] = 0.1. The initial guess for the wave functions used in the Newton
scheme is taken to be a Gaussian, centered around the middle of the trap, with width
o = 500/V2 in the mp = 0 component and 0 in the mp = +1 components. The New-
ton method converges to the polar state in any of the phases within 10 iterations when
setting the error tolerance to 1071%. Due to a finite accuracy of the eigenvalue solver, we
only consider eigenmodes with imaginary part larger than 10~ as modes with non-zero
imaginary part.

(i) polar phase — To check whether our numerical BdG analysis is working properly,
we first study the stability of the polar state inside the polar phase, i.e., at the parameter
pair (8,q) = (5-1073,0.1). As the polar state is the ground state in this phase it has to
be stable. This corresponds to all mode frequencies w being real. Performing the BdG
analysis, we find the imaginary parts of all obtained eigenmodes to be zero within our
tolerance. This confirms the expected stability of the polar state within the polar phase.
Fig. 4.2(b) shows the imaginary (J(w)) and real (R(w)) part of the two energetically
lowest eigenmodes. The mode with eigenvalue w = 0 is the neutral mode. In addition,
we observe that the first mode on the real axis is located at |w| = 0.01. This mode is
called the dipolar mode with mode frequency given by the normalized trap strength (2
(c.f. Eq. (4.21)). Both characteristics are expected for the ground state within the polar
phase and thus corroborate the accuracy of our numerical BdG analysis.

(ii) antiferromagnetic phase — The real and imaginary parts of all mode frequencies for
the polar state in the antiferromagnetic phase, i.e., at parameters (8, q) = (5-1073,-0.1),
are depicted in Fig. 4.2(a). We find that the polar state is dynamically unstable in this
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Figure 4.4.: Maximal growth rate ym,, = max|J(w)| of the eigenmodes obtained by
means of the BAG analysis of the polar state as a function of q and the
sign of 6. The investigated parameter regime is indicated by the blue and
orange solid lines in the schematic representation of the spin-1 phase dia-
gram (c.f. Fig. 3.1). The analysis is performed for parameters Q = 1072 and
|| = 5-1073. The growth rate as well as the quadratic Zeeman energy are
given in units of p,|§]. For § > 0, the growth rate follows the homogeneous
prediction (dashed line) for the whole parameter range. The same feature is
found in case of § < 0 where the data agrees with the dotted lines. The inset
shows the residuals |Ymaxh — Ymax|/Ymax.h» With Ymaxn being the growth rate
calculated from the homogeneous prediction. The deviation of the numer-
ically extracted growth rates from the homogeneous prediction is less than
0.2% for all parameters considered. The color coding is as in the main frame.
Figure taken and adapted from Ref. [129].

parameter regime as a continuum band of modes exhibits |J ()| > 107*. The most un-
stable mode has a growth rate of ynax = 0.1112 which equals 0.995p,|6|. Note that we
use pp|6| = 0.1118 extracted by means of the ACTN method in Sect. 4.3.3 for compari-
son. We find that this growth rate coincides with the growth rate for the homogeneous
system resulting from Eq. (4.3) when replacing the homogeneous density py, by the peak
density p, of the trapped system. This indicates that the peak density plays a crucial role
in characterizing the stability properties of the trapped spin-1 system. We will investi-
gate this key observation in more detail below.

The above stated property might suggest that the trap has no influence at all on the sta-
bility properties of the ground states. Nevertheless, we observe that the trap introduces
new features in the system. To give an illustrative example, we perform the BdG analysis
of the polar state within the antiferromagnetic phase for parameters —0.35 < q/ppé < 0.
For each value of g, we extract the squared mode frequencies »? of the lowest n eigen-
modes of the trapped system. To compare the numerically obtained results with the
homogeneous setting, we calculate the squared mode frequencies by means of Eq. (4.2)
using momenta k, = 7n/Ly, with n > 1, associated with the n-th eigenmode in a one-
dimensional box of length L, = 2 Rrp, where Ryr is the Thomas-Fermi radius of the
corresponding trapped system. Fig. 4.3 shows the squared frequencies for both settings
in units of p,d as a function of the mode number n. Except for the most unstable momen-
tum mode, we observe strong deviations when the trap is present. Most strikingly the
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Figure 4.5.: Real (R) and imaginary (J) parts of the mode frequencies w resulting from
the BdG analysis of the antiferromagnetic state ¢ ~ (1,0, I)T within the (a)
antiferromagnetic (8, q) = (5- 1073, -0.1), (b) polar (5 - 1073,0.1), (c) easy-
axis (—5-1073,-0.1) and (d) easy-plane (=5 - 1073,0.1) phase. In panels (b),
(c) and (d) we see a continuum band of mode frequencies along the real and
the imaginary axis indicating that the frequencies are either purely real or
purely imaginary. The red crosses mark the predicted mode frequency with
the largest imaginary part within the given parameter regime derived from
homogeneous Bogoliubov theory by replacing the homogeneous density by
the peak density of the trapped system. The prediction is in good agreement
with the largest imaginary part of the numerically obtained mode frequen-
cies. Figure taken and adapted from Ref. [129].

growth rates of unstable modes are smaller than in the homogeneous case. However, the
crossing point to the stable regime is not altered by the trap. We remark that our find-
ings are in agreement with recent results obtained for the squared mode frequencies in
a one-dimensional trapped spin-1 system using parameters q/(ppd) € {—0.05,0,0.05}
[153].

As the goal here is to mainly investigate the overall structure of the stability of the spin-
1 ground states we will, in the following, focus on discussing the maximal growth rates
allowing us to distinguish between stable and unstable regimes as well as to determine
the dominant contribution to the growth of mode occupations in case of an instability.

(iii) easy-plane phase — Fig. 4.2(d) shows the results of the BAdG analysis for the polar
state in the easy-plane phase, i.e., at parameters (8,q) = (=5 -1073,0.1). We observe
once again a band of unstable modes fulfilling the criterion |J(w)| > 107, In this case,
the most unstable mode has a growth rate of ymax = 0.1118 = p,,|5]|. The trapped system
exhibits exactly the growth rate expected in a homogeneous system given by Eq. (4.4)
when replacing the homogeneous density with the peak density of the trapped system.

(iv) easy-axis phase — The real and imaginary parts of the mode frequencies for the
polar state in the easy-axis phase, i.e., at parameters (8,q) = (=5 - 1073, -0.1), are pre-
sented in Fig. 4.2(c). Once again, in agreement with theory, we find the polar state to be
dynamically unstable due to a band of modes with |J(w)| > 107, As in the case above,
the most unstable mode has a growth rate of yuax = ppl6|. Furthermore, in the easy-axis
phase, as well, the growth rate corresponds to the homogeneous case (see Eq. (4.4)) with
the peak density replacing the homogeneous density.
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Figure 4.6.: Maximal growth rate ym,, = max |J(w)| of the eigenmodes obtained by
means of the BAG analysis of the antiferromagnetic state as a function of ¢
and the sign of §. The investigated parameter regime is indicated by the blue
and orange solid lines in the schematic representation of the spin-1 phase
diagram (c.f. Fig. 3.1). The analysis is performed for parameters ) = 1072
and [5| = 5 - 1073, The growth rate as well as the quadratic Zeeman energy
are given in units of py|5|. For § > 0, the growth rate follows the homo-
geneous prediction (dashed line) for the whole parameter range. In case of
6 < 0, we observe a constant growth rate of 1 irrespective of g. The growth
rate coincides with the homogeneous setting (dotted line). The antiferro-
magnetic state is always dynamically unstable for 6 < 0. The inset shows
the residuals |ymaxh — Ymax!/Ymax.h» With ymayxn being the growth rate calcu-
lated from the homogeneous prediction. The deviation of the numerically
extracted growth rates from the homogeneous prediction is less than 0.2%
for all parameters considered. The color coding is as in the main frame. Fig-
ure taken and adapted from Ref. [129].

Hence, we find that the stability properties of the most unstable mode, characterized
by the maximal growth rate ypax, coincide with the homogeneous prediction in the above
shown example. To show that this property is indeed valid over variations of parameters,
we carry out the BAG analysis of the polar state at various quadratic Zeeman energies.
We perform the relevant continuations for fixed spin coupling §, but for both types of
spin interactions.

The maximal growth rate yyax = max |J(w)| as a function of q and different signs of §
is shown in Fig. 4.4. To allow for a direct comparison to the homogeneous predictions,
the growth rates and the quadratic Zeeman energies are given in units of np|5|. For
6 > 0, the growth rate follows the homogeneous prediction for the whole parameter
range. The same feature is found in case of § < 0. The observed behavior for § > 0
coincides with the one for § < 0 when shifting the quadratic Zeeman energy by two
units. This is in exact agreement with the shift of the phase transition from g/ (p,|6]) = 0
to q/(ppld|) = 2 which shows that the exact same properties are found irrespective of
the sign of .
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Figure 4.7.: Real (R) and imaginary (J) parts of the mode frequencies w
resulting from the BdG analysis of the easy-plane state ¢y  ~

(\/1 —q/q0.V2(1 + q/q0), V1 - q/qo) " within  the (a) easy-axis
(6,q) = (=5 -1073,-0.1) and (b) easy-plane (=5 - 1073,0.1) phase.
In panel (a) we see a continuum band of mode frequencies along the real and
the imaginary axis indicating that the frequencies are either purely real or
purely imaginary. The red crosses mark the predicted mode frequency with
the largest imaginary part within the given parameter regime derived from
homogeneous Bogoliubov theory. The numerically obtained largest imagi-
nary part of the mode energies is in good agreement with the homogeneous
prediction given by |gq|/2 = 0.05. Figure taken and adapted from Ref. [129].

Excitations about the antiferromagnetic state

We continue by investigating the dynamical stability of the antiferromagnetic state ¢ ~
(1,0, 1)T throughout the phases of our trapped spin-1 system. The initial state for the
wave functions used in the Newton scheme is taken to be a Gaussian, centered around
the middle of the trap, with width o = 500/V?2 in the mp = +1 components and 0 in the
mr = 0 component. The Newton method converges to the antiferromagnetic state in all
phases within 9 iterations. The error tolerance is set to 107 as before.

(i) antiferromagnetic phase — Fig. 4.5(a) shows the real and imaginary parts of the mode
frequencies obtained by means of the BAdG analysis in the antiferromagnetic phase. We
find no dynamically unstable modes. As before, this is the consistency check of the
method as the antiferromagnetic state is the ground state in this phase and thus has to
be stable.

(ii) polar phase — Within the polar phase (see real and imaginary parts of the mode
frequencies depicted in Fig. 4.5(b)) the antiferromagnetic state is dynamically unstable
as we observe a band of eigenfrequencies with |J(w)| > 107*. The growth rate of the
most unstable mode is ymax = 0.995p;|6], once again coinciding with the growth rate
for the homogeneous system obtained through Eq. (4.9) by replacing the homogeneous
density py, with the peak density p,, of the trapped system.

(iii) easy-axis phase — Fig. 4.5(c) shows the real and imaginary parts of the mode fre-
quencies resulting from the BdG analysis of the antiferromagnetic state in the easy-axis
phase, where again a band of unstable eigenmodes arises. The most unstable one ex-
hibits a growth rate of ynax = ppldl. In this parameter regime, the growth rate equals
the homogeneous prediction given in Eq. (4.7) when exchanging the homogeneous den-
sity with the trapped problem peak density.

(iv) easy-plane phase — Last, we present the real and imaginary parts of the mode
frequencies for the antiferromagnetic state in the easy-plane phase in Fig. 4.5(d). The
instability here is found to possess a maximal growth rate of ymax = ppld|, in line with
Eq. (4.7).
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Figure 4.8.: Maximal growth rate ym,, = max|J(w)| of the eigenmodes obtained by
means of the BdG analysis of the easy-plane state as a function of q and
é < 0. The investigated parameter regime is indicated by the orange solid
line in the schematic representation of the spin-1 phase diagram (c.f. Fig. 3.1).
The analysis is performed for parameters Q = 1072 and |§| = 5 - 1073. The
growth rate as well as the quadratic Zeeman energy are given in units of
ppld|. The growth rate follows the homogeneous prediction (dashed line)
given by ymax = |q|/2 over the whole parameter range. The inset shows
the residuals |ymaxh — Ymax!/Ymaxh» With ymayxn being the growth rate calcu-
lated from the homogeneous prediction. The deviation of the numerically
extracted growth rates from the homogeneous prediction is less than 0.1%
for all parameters considered. The color coding is as in the main frame. Fig-
ure taken and adapted from Ref. [129].

Furthermore, we investigate the stability properties of the antiferromagnetic state for
various quadratic Zeeman energies and different signs of §. The maximal growth rate
Ymax = max |J(w)]| as a function of g and both signs of § is shown in Fig. 4.6. To allow for
a direct comparison to the homogeneous predictions, the growth rates and the quadratic
Zeeman energies are given in units of p,[5|. For 6 > 0, the growth rate follows the
homogeneous prediction for the whole parameter range. In case of § < 0, we observe
a constant growth rate of 1 throughout the whole parameter range. This coincides with
the homogeneous setting where the maximal growth rate is always 1 in the units used
here for § < 0 (c.f. Egs. (4.7) and (4.10)).

Furthermore, our BdG analysis shows that the antiferromagnetic state is always dy-
namically unstable for § < 0.

Excitations about the easy-plane state

We proceed by investigating the dynamical stability of the easy-plane state given by

o~ (\/1 - q/q0.v2(1 + q/q0), V1 - q/qo)T within the easy-plane and the easy-axis
phase of our trapped spin-1 system. The BdG analysis for § > 0 is not shown here as

we were not able to converge to the easy-plane state in the antiferromagnetic and polar
phase by means of a standard Newton method. The initial state for the wave functions
used in the Newton scheme within the easy-axis phase is taken to be a Gaussian, centered
around the middle of the trap, with width ¢ = 500/V2 where the amplitude in the
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Figure 4.9.: Real (R) and imaginary (J) parts of the mode frequencies w resulting from
the BAG analysis of the easy-axis state ¢y ~ (1,0, O)T within the (a) antifer-
romagnetic (8,q) = (5-1073,-0.1), (b) polar (5 - 1073,0.1), (c) easy-axis
(=5 -1073,-0.1) and (d) easy-plane (=5 - 1073,0.1) phase. The easy-axis
state is stable in all phases. This result agrees with the prediction for the ho-
mogeneous system in case of |§] = 5 - 1073. Figure taken and adapted from
Ref. [129].

mp = 0 component is a factor of 1/V2 smaller than in the mg = +1 components. Within
the easy-plane phase the initial Gaussian also has a width of o = 500/V2, however, the
amplitudes in the mp = +1 components are a factor of two smaller than in the mg = 0
component. The Newton method converges to the easy-plane state in both phases within
18 iterations. The error tolerance is again set to 10710. It is relevant to mention here that
this easy-plane state is the only one which we are not able to converge to throughout
the parametric variations that we considered (due to the absence of convergence in the
6 > 0 regime).

(i) easy-plane phase — The real and imaginary parts of the mode frequencies of the easy-
plane state in the easy-plane phase are depicted in Fig. 4.7(b). The state is dynamically
stable in this parameter regime as expected from its ground state nature in this regime.

(ii) easy-axis phase — Fig. 4.7(a) shows the real and imaginary parts of the mode fre-
quencies resulting from the BAG analysis of the easy-plane state in the easy-axis phase.
In this case, a band of dynamically unstable modes with |J(w)| > 107* arises. The
growth rate of the most unstable mode is given by ymax = 0.05 = |g|/2. This coincides
with the prediction for the homogeneous system stated in Eq. (4.12).

To confirm that the maximal growth rate indeed follows a linear function in |q|, we
perform the BAG analysis for various negative quadratic Zeeman energies. We present
the results obtained for —p,[6| < g < —0.1p,|5]|. The initial guess for the Newton method
has to be adjusted to reflect the final population of the three components. The maximal
growth rate ym,x = max |J(w)| agrees exactly with |q|/2 (see dashed line in Fig. 4.8).
The growth rates and the quadratic Zeeman energies are again given in units of p;|4].

Excitations about the easy-axis state

We finally study the stability properties of the easy-axis state ¢y ~ (1,0, O)T throughout
the different phases of our trapped spin-1 system. The initial state of the wave function of
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Figure 4.10.: Maximal growth rate ymax = max |J(w)| of the eigenmodes obtained by
means of the BAG analysis of the polar state as a function of g and the
sign of §. The investigated parameter regime is indicated by the blue and
orange solid lines in the schematic representation of the spin-1 phase dia-
gram (c.f. Fig. 3.1). The analysis is performed for parameters 2 = 1072 and
|6] = 2-1072, i.e., the strength of the spin coupling is increased by a factor
of 4 as compared to Fig. 4.4. The growth rate as well as the quadratic Zee-
man energy are given in units of p,|5|. For § > 0, the growth rate follows
the homogeneous prediction (dashed line) for the whole parameter range.
The same characteristics appear in case of § < 0 where the data is matched
by the dotted lines showing the homogeneous case. The inset shows the
residuals |Ymaxh — Ymax|/Ymax.hs With Ymax h being the growth rate calculated
from the homogeneous prediction. The deviation of the numerically ex-
tracted growth rates from the homogeneous prediction is less than 0.3% for
all parameters considered. The color coding is as in the main frame. Figure
taken and adapted from Ref. [129].

the mp = 1 component used in the Newton scheme is taken to be a Gaussian, centered
around the middle of the trap, with width o = 500/ V2. In addition, we start with a
vanishing wave function in the mp = 0, —1 components. The Newton method converges
to the easy-axis state in all phases within 9 iterations. The error tolerance is again set to
10710,

Fig. 4.9 shows the real and the imaginary parts of the mode frequencies obtained by
means of the BdG analysis of the easy-axis state in the different phases. We find that the
easy-axis state is stable in all phases. This agrees with the prediction for the homoge-
neous system in the case of || =5 - 1073.

Role of spin coupling strength ¢

Aswe observe the stability properties of the ground states in the trapped system to match
the homogeneous setting, we wish to investigate the dependence of those properties on
the strength of the spin coupling §. This is of particular interest as different magnitudes
of the spin coupling are realized in experiments. Therefore, we increase the spin coupling
by a factor of 4 such that |§| = 2 - 1072 which is close to the experimental coupling
for sodium. To resolve all unstable momentum modes on our numerical grid properly,
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Figure 4.11.: Maximal growth rate ymax = max |J(w)| of the eigenmodes obtained by
means of the BAG analysis of the polar state as a function of g and the
sign of §. The investigated parameter regime is indicated by the blue and
orange solid lines in the schematic representation of the spin-1 phase dia-
gram (c.f. Fig. 3.1). The analysis is performed for parameters 2 = 10! and
5] = 51073, i.e., the normalized trap strength is increased by a factor of
10 as compared to Fig. 4.4. The growth rate as well as the quadratic Zeeman
energy are given in units of p,|5]. For § > 0, the growth rate follows the ho-
mogeneous prediction (dashed line) for g > —1. For g < —1 the growth rate
tends to attain smaller values than in the homogeneous case (dashed line)
showing a maximal deviation of about 1%. The same phenomenon appears
in case of 6 < 0 where the data is matched by the dotted lines for g > 1.
The growth rate again shows a maximal deviation of about 1% from the ho-
mogeneous case (dotted line) for ¢ < 1. The deviations are more clearly
visible in the inset which shows the residuals |ymaxh — Ymax!/Vmax.h, With
Ymaxh being the growth rate calculated from the homogeneous prediction.
The color coding is as in the main frame. Increasing the normalized trap
strength by an order of magnitude only causes minor changes of the stabil-
ity properties. However, such changes are expected because we are about
to leave the one-dimensional regime as the transversal trapping frequency
becomes comparable to the longitudinal trapping frequency. Figure taken
and adapted from Ref. [129].

we have to increase the number of grid points to N, = 1024. All other parameters
remain unchanged. As a prototypical example, we investigate the maximal growth rates
obtained by means of the BdG analysis of the polar state as a function of the quadratic
Zeeman energy q and different signs of .

Fig. 4.10 shows the maximal growth rate ym., = max |J(w)| for |§| = 2 - 1072, The
growth rate as well as the quadratic Zeeman energy are given in units of py|5|. The
growth rate follows the homogeneous prediction for the whole parameter range, both
for the positive and for the negative value of § (see dashed and dotted line respectively).

Our analysis indicates that the stability properties of the ground states do not change
when increasing the spin coupling strength. Thus, we expect to observe the same dynam-
ical instabilities in systems with different spin couplings when choosing the quadratic
Zeeman energy q in the corresponding units of p,|4].
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Figure 4.12.: Maximal growth rate ymax = max |J(w)| of the eigenmodes obtained by
means of the BAG analysis of the polar state as a function of g and the
sign of §. The investigated parameter regime is indicated by the blue and
orange solid lines in the schematic representation of the spin-1 phase di-
agram (c.f. Fig. 3.1). The analysis is performed for parameters = 1073
and [6] = 5 - 1073, ie., the normalized trap strength is decreased by
a factor of 10 as compared to Fig. 4.4. The growth rate as well as the
quadratic Zeeman energy are given in units of p|5|. For § > 0, the growth
rate follows the homogeneous prediction (dashed line) for the whole pa-
rameter range. The same phenomenon appears in case of § < 0 where
the data is matched by the dotted line. Decreasing the normalized trap
strength by an order of magnitude does not change the stability proper-
ties (c.f. Fig. 4.4). The observed behavior is expected as we are further ap-
proaching the homogeneous setting when lowering (2. The inset shows the
residuals |Ymaxh — Ymax|/Ymax.hs With Ymax h being the growth rate calculated
from the homogeneous prediction. The deviation of the numerically ex-
tracted growth rates from the homogeneous prediction is less than 0.3% for
all parameters considered. Color coding as in the main frame. Figure taken
and adapted from Ref. [129].

Role of normalized trap strength (2

In the following, we want to study the role of the normalized trap strength €2 on the
stability properties. All results discussed in this part are obtained for a spin coupling of
|6] = 5-1073. The homogeneous setting is recovered as (2 — 0. On the other hand, when
(2 is increased, we progressively depart from the 1D regime as the condition w; >
is not fulfilled anymore. When the transverse and longitudinal trapping frequencies be-
come comparable in magnitude, we expect deviations of the stability properties from the
previously shown ones as we have to include additional transversal degrees of freedom.
Therefore, we choose the parameter (2 to be sufficiently far away from unity, so as to
remain within a quasi-1D realm. To resolve the relevant momentum modes, we again
use N, = 1024.

We start by increasing €2 by a factor of 10 such that 2 = 107!, Fig. 4.11 shows the
maximal growth rate ym,, = max |3 (w)| of the eigenmodes as a function of g and the
sign of §. The growth rate as well as the quadratic Zeeman energy are given in units of
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ppld|. For 6 > 0, the growth rate follows the homogeneous prediction (dashed line) for
q > —1. For q < —1 the growth rate is slightly smaller than in the homogeneous case
(dashed line) with a maximal deviation of about 1%. The same feature appears in case of
é < 0. Here, the growth rate agrees with the homogeneous prediction (dotted line) for
q > 1. The rate also shows a maximal deviation of about 1% from the homogeneous case
(dotted line) for g < 1.

We continue with analyzing the stability properties of the polar state when decreasing
the normalized trap strength by a factor of 10 such that 2 = 1073, The maximal growth
rate ymax = max |J(w)| of the eigenmodes obtained by means of the BdG analysis as a
function of q and the sign of § is depicted in Fig. 4.12. The growth rate as well as the
quadratic Zeeman energy are given in units of p|5|. For 6 > 0, the growth rate follows
the homogeneous prediction (dashed line) for the whole parameter range. The same
characteristics appear in case of § < 0 (see dotted line).

We conclude that increasing the normalized trap strength by an order of magnitude
leads to small deviations from the homogeneous predictions when ¢ < —1 for § > 0 and
q < 1for § < 0. Beyond this trapping strength, one progressively departs from the one-
dimensional regime as the transversal trapping frequency becomes comparable to the
longitudinal one. We find no deviations of the stability properties from the previously
discussed setting where {2 = 1072 when decreasing the normalized trap strength by an
order of magnitude. This is expected as we are approaching the homogeneous setting
even further by lowering the normalized trap strength.

Our analysis shows that the principal stability properties of the ground states agree
with the homogeneous setting over several orders of magnitude of the normalized trap
strength ). Thus, we expect the characteristics of dynamical instabilities to agree in var-
ious one-dimensional trapping geometries. The trapping potential is found to not alter
the overall stability properties calculated for homogeneous settings. It solely introduces
the peak density of the trapped system which appears in the equations for the maxi-
mal growth rates instead of the homogeneous density. Deviations will naturally appear
progressively as the trapping strength increases towards values closer to 2 — 1.

4.5. Summary and outlook

In this chapter, we elaborated on potential scenarios that can be employed to gener-
ate far-from-equilibrium states via quenches in spin-1 Bose gases. The key feature is to
make use of instabilities that arise when performing parameter quenches between differ-
ent phases. The exponential growth of the respective dynamically unstable momentum
modes then drives the system away from equilibrium during the early-time evolution.
Whether the system features an instability and is driven out of equilibrium depends on
the state prior to the quench and can be inferred from investigating its dynamical sta-
bility within the post-quench phase.

We first discussed the stability properties of ground states in homogeneous spin-1
Bose gases and elaborated on the instabilities that we will use in Chpt. 5 and Chpt. 6
to generate the out-of-equilibrium configurations that subsequently lead to universal
scaling dynamics in one- and two-dimensional spin-1 systems.

In the main part of this chapter, we studied the stability properties of the ground states
of a trapped one-dimensional spin-1 Bose gas. We started by mapping out the ground
state phase diagram of the trapped system. Therefore, we made use of the accelerated
continuous-time Nesterov (ACTN) method which we extended to our multi-component
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system. We revealed that the ACTN method is a robust and powerful tool for finding the
ground states of a physical system as it does not require a highly accurate initial guess
for the wave function of the different components. This makes the method extremely
useful to explore systems with unknown phase diagrams in the future.

We numerically performed a stability analysis of the spin-1 ground states by solv-
ing the BAG equations for the trapped system. We found that the principal stability
conclusions for the ground states coincide with the predictions made in absence of a
trapping potential, although as shown in Fig. 4.3, the spectrum is not identical and the
growth rates of modes other than the most unstable one are indeed altered. The max-
imal growth rates obtained in the trapped system match the homogeneous predictions
when replacing the homogeneous density with the peak density of the trapped system
in the corresponding equations. The near-independence of the stability conclusions is
valid within the regime of quasi-1D values of the normalized trap strength (represent-
ing the ratio of longitudinal to transverse trapping frequencies). It should be noted that
we explored each of the possible states (polar, antiferromagnetic, easy-plane and easy-
axis) in almost each of the possible regimes, identifying the states in the regimes where
they are no longer the ground state via Newton iterations. In the latter cases, potential
instabilities of the states were elucidated.

Naturally, the stability analysis of the trapped spin-1 Bose gas paves the way for nu-
merous additional investigations of interest for the near future. For instance, an obvious
question that was raised through our studies is whether the easy-plane state can be
found to exist in the half-plane with § > 0. Moreover, for the 1D setting, we tackled the
ground states of the system and their stability over the (J, q)-plane. However, there are
numerous intriguing excited states, including ones involving solitary waves that are ex-
perimentally accessible [123]. It would be particularly relevant to extend our techniques
to the latter context. Finally, while we focused on the quasi-1D setting here, adapting
such techniques to 2D and 3D spinorial states would be of interest in its own right.
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5. Bidirectional universal scaling
dynamics in a one-dimensional
spin-1 Bose gas

In this chapter, we numerically study the universal scaling dynamics of an isolated one-
dimensional ferromagnetic spin-1 Bose gas. Preparing the system in an initial state
far from equilibrium by means of a sudden quench into the easy-plane ferromagnetic
phase, bidirectional universal scaling is found to enable and characterize the dynam-
ics close to a non-thermal fixed point. The observed universal scaling is governed by
quasi-topological excitations in the spin degree of freedom of the system. A macroscopic
length scale which scales in time according to Ly (t) ~ t#, with § ~ 1/4, quantifies the
coarsening of the size of spin textures. At the same time, kink-like defects populating
these textures undergo a refining process measured by a shrinking microscopic length
scale Ly ~ t# with p/ ~ —0.17. The combination of these scaling evolutions enables
particle and energy conservation in the isolated system and constitutes the bidirectional
transport in momentum space. The value of the scaling exponent 3 suggests the dynam-
ics to belong to the universality class of diffusive coarsening of the one-dimensional XY-
model. However, the universal momentum distribution function exhibiting non-linear
transport marks the distinction between diffusive coarsening and the self-similar evolu-
tion at a non-thermal fixed point in the isolated system. This underlines the importance
of the universal scaling function in classifying non-thermal fixed points.

This chapter is organized as follows: In Sect. 5.1, we elaborate on the numerical param-
eters as well as the applied quench protocol. With this at hand, we examine the bidirec-
tional universal scaling dynamics of the system in Sect. 5.2. Then, we discuss the spatio-
temporal scaling regime and the insensitivity of the scaling exponents with respect to
the reference time in Sect. 5.3. Furthermore, we investigate the features of the bidirec-
tional scaling in position-space correlation functions in Sect. 5.4. As universal scaling
dynamics at a non-thermal fixed is a transient phenomenon in the non-equilibrium time
evolution of the system, we study the departure from the scaling regime in Sect. 5.5. In
Sect. 5.6 and Sect. 5.7, we then comment on the extracted scaling exponents and compare
our findings to experimental observations. Finally, we summarize our results and give
an outlook to future work in Sect. 5.8.

The content of this chapter is taken and adapted from Ref. [102]. I stress that the
majority of the parts are taken verbatim from the publication. However, I reordered the
overall structure of the presentation. I further added and/or modified formulations to
embed the work into the broader context of this thesis.

5.1. Numerical methods and parameter quench

We consider a homogeneous one-dimensional spin-1 Bose gas described by the Hamilto-
nian in Eq. (3.24) with d = 1. We work in the regime of ferromagnetic spin interactions
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(c1 < 0) and positive quadratic Zeeman energy q.

Apart from the trapping potential and a larger total density, we here perform numer-
ical simulations in the parameter regime realized in the experiment in Ref. [35] on 3’Rb
in the F = 1 hyperfine manifold. In particular, we set the ratio of the density and spin
coupling to c/lc1| = 100. We compare our findings to the experimental observations
reported in Ref. [35] in Sect. 5.6.

Assuming a constant homogeneous mean density pg = (p), we can express the Hamil-
tonian in Eq.(3.24) in terms of the dimensionless length X = x/&, with spin heal-
ing length & = h/4/2Mpglc1], and time ¢ = /75, with spin-changing collision time
75 = t5/(2r) = h/(polc1]). The quadratic Zeeman energy is quantified by the dimen-
sionless field strength § = gz, /%, the field operators become /, = ¥/ \/po, the density
p = p/po. the spin vector F = F/pg, and the dimensionless couplings read ¢y = c/|c1]
and ¢; = ¢1/|c1| = sgn(cy). Throughout this chapter, all quantities are expressed in the
above units and the tilde will be suppressed.

We consider far-from-equilibrium dynamics after a quench exerted on a homogeneous
condensate in the polar phase, i.e., an initial state with (o(x)) = 1, by means of a sud-
den change of the quadratic Zeeman energy shift to the parameter range 0 < gf < 2. As
introduced in Sect. 3.3, we compute the time evolution of observables using truncated
Wigner simulations, starting each run with a field configuration for ¢; > 2, with addi-
tional quantum noise added to the Bogoliubov modes [86, 87] of the polar condensate.
The initial state is thus given by

0 ak,leikx
P(x)=|1|+ Z ar ouge’™* — a,’;’ovke_’kx ) (5.1)
0 k ak,—leikx

We again omit the tilde on the rescaled quantities k = k&, i, = akm/(&/po). The
mode functions ay ,, are complex Gaussian random variables with

<a;c’mak’,m’> = §§mm/5k,k’, (5~2)

which corresponds to adding an average occupation of half a particle in each mode k.
The Bogoliubov mode functions are given by

1
U = €k T+ 0 + =, Vg = u2 - 1, (53)
2 k
2+/€x <6k + QCO)

with mode energy e, = k2.

For the numerical simulations, we choose the initial condensate density to be pg =
4.5-10% €71, The simulations are performed on a one-dimensional grid with N = 4096
grid points and periodic boundary conditions. The corresponding physical length is
L = 554 &. We remark that a sufficient convergence of the observables is reached after
averaging over 2 10? trajectories.

The quench into the easy-plane ferromagnetic phase induces transversal spin modes
in the system to become unstable (see the respective highlighted instabilities in Table 4.1
and the corresponding discussion in Sect. 4.1.1), leading to the formation of a spin-wave
pattern during the early-time evolution after the quench. Non-linear interactions sub-
sequently give rise to the formation of a flat, relatively smooth background spin length
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Figure 5.1.: Space-time evolution of the transversal spin F;, = |F, | exp {ifF, }. Quench-
ing the system across the quantum phase transition, here to g = 0.9, intro-
duces exponentially growing unstable modes which, after a few characteris-
tic time scales ¢, lead to the formation of a flat background transversal spin,
with textures on top. The spin textures, with size given by the distance over
which a 27 phase winding occurs in the phase angle 0r , are populated by
kink-like defects. The defects are characterized by a dip in the amplitude and
a corresponding phase jump as depicted in panels (a) and (b). The solid black
lines in panel (a) indicate a sound cone associated with the sound velocity of
the spin degree of freedom ¢; = +/polc1| = 1. The size of the spin textures
grows in time which is associated with the dilution of kink-like defects lead-
ing to long-range order developing in the phase field (see panel (b)). Each
panel only shows an excerpt of the total grid of length £ = 554 &;. Figure
taken and adapted from Ref. [102].

(Fig. 5.1(a)) with patches in the transversal spin orientation (Fig. 5.1(b)). Within each
patch, the phase angle of the complex order-parameter field F, = |F, | exp{i0F, } is ap-
proximately constant in space. At the same time, kink-like defects, represented by a
dip in the amplitude and a corresponding phase jump, are traveling across the system at
roughly the speed ¢; = +/polc1| = 1 associated with the sound velocity of the spin degree
of freedom (see solid lines in Fig. 5.1(a)). Spin patches in combination with phase jumps
form spin textures whose size is given by the distance over which a 27 phase winding
occurs. The so-formed spin structure sets the stage for the subsequent universal ordering
process in which the distribution of defects dilutes. According to the evolution charts in
Fig. 5.1, the average size of the textures appears to grow in time.

5.2. Bidirectional universal scaling

While we got some qualitative impression of the non-equilibrium time evolution from
the single realizations of the transversal spin, we aim at a quantitative investigation of
the universal scaling dynamics of the spin-1 system in this section. In particular, we lay
out the important steps to extract the key features of the scaling behavior such as the
spatio-temporal scaling regime, the scaling exponents, the scaling function and potential
(emergent) conserved quantities that constrain the exponents.
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Figure 5.2.: Bidirectional self-similar evolution of the structure factor S(k,t). (a)

Overview of the time evolution. The initial polar condensate at t = 0 shows
ground-state fluctuations around zero spin (blue triangles). Att = 0.67t;
(orange crosses), the population of the momentum modes is well approxi-
mated by the Bogoliubov prediction stated in Eq. (5.4) (dash-dotted line). For
times 25 t; < t < 200 t,, the system is in the spatio-temporal scaling regime
and evolves in a self-similar manner (dots). Three qualitatively different mo-
mentum regimes emerge: A plateau below a characteristic momentum scale
ka(t) (which is more clearly seen in panel (b); the dashed line exemplarily
marks the scale extracted by means of fitting the scaling function in Eq. (5.9)
to the infrared regime of the data at time t = 25 t;), a k¢ power-law fall-off at
momenta up to a scale k(t) and a steeper power-law decay at large momen