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ABBREVIATIONS 
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NBS  Network Based Statistics 
NMDA           N-methyl-D-aspartate 
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rs-fMRI Resting-state functional magnetic resonance imaging 
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SPM8  Statistical Parametric Mapping Version 8 
SPSS  Statistical Package for the Social Sciences 
SVIPT  Sequential visual isometric pinch task 
WM  White matter 
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1 INTRODUCTION 

 A brief introduction to motor learning 

 
Learning a new motor skill is one of the most critical abilities for surviving in nature. 

The ability of humans to acquire new motor skills, such as learning to ride a bike, 

playing ball or instruments, is innate, resulting in quick acquisition of new skills from 

childhood. The human brain is exceptionally suited to support the acquisition of new 

motor skills. Conversely, a growing number of studies support the notion that motor 

learning changes brain function and structures to achieve better performance. Several 

theories of motor learning propose that the complex process of learning a new motor 

skill can be divided into different stages. According to a well-established model given 

by Fitts and Posner (Fitts & Posner, 1967), motor learning can be divided into three 

stages: 1) the cognitive stage where the individual attains an understanding of the task, 

2) the associative stage when subjects find a strategy to perform the task, and 3) the 

autonomous stage when performance reaches plateau after long-term motor learning. 

While this model was developed on purely behavioral data, newer models of motor 

learning incorporate findings from neurobiology, especially neuroimaging. Dayan and 

Cohen propose a division of motor learning into two stages: 1) a “short-term learning 

phase” corresponding to the cognitive and the associative stages of Fitts and Posner, 

in which subjects learn the task and improve their performance at a high speed and 2) 

a “long-term learning phase” corresponding to the autonomous stage where learning 

has been carried out for a longer time (Dayan & Cohen, 2011) but behavioral 

improvements are little (Hikosaka, Nakamura, Sakai, & Nakahara, 2002). It is 

sometimes difficult to distinguish between the cognitive stage and associative stage in 

the human neuroimaging studies on motor learning and since the model by Dayan and 

Cohen is better aligned with the underlying neurobiological changes during learning, 

the projects presented here will refer to the “two-stage learning phase” model. 

The definition of short-term and long-term learning phases is always relative since it 

depends on the exact type and complexity of the motor task, the desired level of 

expertise. For example, learning to drive a car takes several days or weeks but learning 

to play the violin may take years of practice. Therefore, most human imaging studies 

have concentrated on relatively simple tasks that can be learned within a time frame 

ranging from several minutes to several months. In particular, some types of motor 
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learning tasks are frequently used, including finger sequential pinching (Bassett et al., 

2011; Bassett, Yang, Wymbs, & Grafton, 2015), oculomotor sequential learning 

(Albouy et al., 2008), spatial rotation (Sami & Miall, 2013; Sami, Robertson, & Miall, 

2014), juggling (Draganski et al., 2004), balancing (Taubert, Lohmann, Margulies, 

Villringer, & Ragert, 2011) and playing golf (Bezzola, Merillat, Gaser, & Jancke, 2011). 

In general, brain functional changes such as alteration of activation and connectivity 

could be reliably detected after a shorter learning period (several hours to few days) 

whereas brain morphological changes were found after more extended learning 

periods (several weeks to few months). In the following sections, the specific neural 

circuits associated with each type of learning, as well as the underlying neurobiological 

mechanisms on the molecular and cellular levels will be shortly introduced. 

 

1.1.1 Short-term learning phase 

The short-term learning phase heavily relies on attention and behavioral improvements 

are usually significant within a short amount of time (Hikosaka et al., 2002). The pattern 

and amplitude of brain activity and connectivity can change dramatically within this 

phase.  

The association between motor skill acquisition and regional brain activity changes in 

humans was mainly studied using functional magnetic resonance imaging (fMRI) 

during motor learning tasks. These studies commonly reported associations in motor 

associated areas (e.g. primary motor cortex, basal ganglia, cerebellum) (Coynel et al., 

2010; Laforce & Doyon, 2001). Two short-term motor learning fMRI studies additional 

reported an increase of activation in the hippocampus after sequential motor learning 

tasks (Albouy et al., 2008; Schendan, Searl, Melrose, & Stern, 2003). Specifically, 

Albouy and colleagues found a different mechanism of the increased activation of the 

hippocampus compared to the increased activation of the putamen and interpreted the 

hippocampus as an area that contributes to motor memory consolidation during 

sleeping. Both studies introduced the hippocampus - an area that is considered to be 

highly involved in declarative memory and spatial navigation (Maguire et al., 2000) - 

as a key area in motor learning.  

Further evidence for brain network reorganization after motor skill training was 

provided by resting-state studies. During resting-state, subjects are instructed to stay 

still without performing any particular task. Previous studies have demonstrated that 

resting-state fMRI (rs-fMRI) allows assessing relevant intrinsic brain networks, even 
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those related to cognition and motor function (Raichle et al., 2001). In a study by Albert 

and colleagues (Albert, Robertson, & Miall, 2009), subjects performed a visuomotor 

adaptation task for 11 minutes in between two resting-state scans. They found 

significant changes in resting-state frontal-parietal and cerebellar networks and 

provided critical evidence of resting human brain functional alterations in such a short 

time. A similar observation was reported in another resting-state study by Sami and 

colleagues (Sami et al., 2014) who found functional connectivity changes subsequent 

to a motor learning task that were associated with different time intervals: after 30 

minutes, increased functional connectivity could be detected between the cerebellum, 

thalamus and basal ganglia; after six hours of motor learning, enhanced functional 

connectivity was found in the sensorimotor area. Associations of resting-state 

connectivity and short-term motor learning were also reported in other aspects of motor 

learning. For example, in a 30 minutes implicit sequential motor learning task, the 

functional connectivity from dorsal caudate to parahippocampus and hippocampus 

was positively correlated with the training performance whereas the connectivity from 

caudate to the sensorimotor cortex was negatively correlated with the performance 

(Stillman et al., 2013). Those rs-fMRI studies therefore provided abundant 

neuroimaging evidence of neurofunctional plasticity in resting brain networks during 

the short-term motor learning phase.  

 

1.1.2 Long-term learning phase 

In the long-term learning phase, behavioral improvements slow down and the kinetics 

of the performed movements gradually become automatized. During this period of 

learning, attentional demands sharply decrease in standard settings. Despite reduced 

behavioral changes, learning-induced neurofunctional plasticity can still be observed 

throughout the long-term learning phase (Bassett et al., 2015; Draganski et al., 2004; 

Xiong et al., 2009). For task fMRI,  long-term learning was associated with increased 

activations in the sensorimotor cortex (Floyer-Lea & Matthews, 2005), premotor cortex 

/ supplementary motor area (SMA) (Lehericy et al., 2005) and the basal ganglia 

(Floyer-Lea & Matthews, 2005; Lehericy et al., 2005) as well as with decreased 

activation in the cerebellum (Lehericy et al., 2005). From a network perspective, long-

term learning was associated with re-organizations in the premotor-striatum-

cerebellum network (Coynel et al., 2010) and in the motor-visual networks (Bassett et 

al., 2015). Brain structural changes have been reported as well. Using a three-month 
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juggling task, Draganski and colleagues found increased grey matter volume in the 

visual area (Draganski et al., 2004). Similar observations have also been reported in a 

golf-training study where subjects showed increased grey matter volume in the parietal 

area after three months of training (Bezzola et al., 2011).   

While the studies reviewed above cover time intervals from a few minutes to several 

months, some studies aimed at studying the effect of motor expertise acquired 

throughout years, such as mastering the piano. These studies relied on cross-sectional 

comparisons between untrained subjects and specific populations of the profession. 

For example, musicians show significantly increased gray matter volume in the left 

primary motor cortex, right superior parietal cortex as well as left cerebellum than non-

musicians (Gaser & Schlaug, 2003).  

 

 Basic neuro-biological background of motor learning 

 
Animal and cellular studies have unraveled several neurobiological mechanisms that 

underlie motor learning. Key brain areas that contribute to motor learning include the 

visual area, the sensorimotor-basal ganglia-thalamus-sensorimotor loop, cerebellum 

and areas linked to cognition, such as the frontal-parietal network and the 

hippocampus. Each of those brain areas plays specific neuro-biological roles and 

contributes differently to motor learning. In the following sections, the neurobiological 

mechanisms as well as the roles of the above-mentioned brain areas are briefly 

introduced. 

 

1.2.1 Cellular bases of motor learning-induced structural plasticity 

 

Long-term potentiation and long-term depression 

Decades of research have consistently observed the  “long-term potentiation” (LTP)  

and the “long-term depression” (LTD) (Cooke & Bliss, 2006) phenomenon, which are 

suggested to reflect the primary underlying cellular and molecular mechanisms of 

neural plasticity Long-term potentiation refers to the recurrent strengthening of 

synapses following stimulation at high frequency, resulting in an increased and long-

lasting amplitude of the postsynaptic membrane potentials facilitating signal 

transmission. It’s opposite phenomena is “long-term depression”, which reduces the 
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signal transmission after low-frequency stimulation. LTP was first discovered in the 

glutamatergic synaptic process in the dentate gyrus of the rabbit hippocampus (Bliss 

& Lomo, 1973).  Since then, it has been observed across different species such as rats 

(Xu, Anwyl, & Rowan, 1998), cats (Kimura, Caria, Melis, & Asanuma, 1994) and in 

almost all brain areas including the cerebellum (Lev-Ram, Wong, Storm, & Tsien, 

2002), visual area (Lev-Ram et al., 2002), sensorimotor cortex (Iriki, Pavlides, Keller, 

& Asanuma, 1989) and basal ganglia (Ding & Perkel, 2004). These findings suggest 

that LTP is a universal process of neuronal adaption to learning in the brain. LTD on 

the other hand acts as an opposing process of LTP, which allows reducing the strength 

of the synaptic transmission. The antagonistic effect of LTD is critical for the formation 

of new memories since it prevents that synapses reach an efficiency plateau that 

impairs synaptic plasticity. 

The glutamatergic N-methyl-D-aspartate (NMDA) receptor plays a critical role for LTP 

and LTD. NMDA receptors can be activated by binding to glutamate, and thus allow 

positively charged ions to flow into the neuron. The coincident activation of pre- and 

postsynaptic neurons, mediated via NMDA receptors, is the basis of LTP (Lüscher & 

Malenka, 2012). It is well demonstrated in rodent studies that blockage of the NMDA 

receptor could lead to impaired learning. For example, NMDA antagonists prevented 

the formation of fear memories in the amygdala of rats (Lee & Kim, 1998). In humans, 

it is obviously challenging to directly study LTP during learning. However, there is 

indirect evidence for NMDA-mediated LTP in humans as well. For instance, the 

infusion of ketamine, an NMDA antagonist, was shown to impair cognitive functions 

(Ke et al., 2018). However, such an effect on the motor learning domain is still unclear. 

While LTP and LTD provide a compelling cellular explanation for motor learning, recent 

studies have also identified other, complementary cellular or molecular processes that 

might contribute to motor skill acquisition and might underly the changes detected by 

neuroimaging methods. Therefore, the following sections shortly outline these 

mechanisms and introduce their potential contributions to neural substrates of imaging-

associated changes during learning. 

 

Neurogenesis 

Neurogenesis refers to the process of neuron growth from neural stem cells. There is 

evidence that learning can induce neurogenesis in the adult brain. For example, an 

animal study obtained maturation of the dendritic trees of the newborn neuron in the 
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hippocampus (Tronel, Fabre et al. 2010). Despite the fact that neurogenesis could 

produce granule cell growth in the dentate gyrus (Aimone, Wiles et al. 2009), it is in 

comparison to a very small ratio of total hippocampal neurons. Thus, neurogenesis in 

MRI studies is not a primary cellular mechanism (Zatorre, Fields et al. 2012). 

 

Synaptogenesis and neural morphology changes 

Synaptic changes and changes in neural morphology are discussed as key 

mechanisms that underly structural fMRI findings in motor learning studies (Kleim et 

al., 2002; Kolb, Cioe, & Comeau, 2008). These changes may persist after motor 

training to provide a structural basis for long-term memory formation (Kleim et al., 2007; 

Yang, Pan, & Gan, 2009). 

 

Non-neuronal cell growth and vascular changes 

Another possible candidate mechanism for structural plasticity is gliogenesis (W. K. 

Dong & Greenough, 2004) which may contribute to observations in motor learning MRI 

studies. For example, some juggling studies found decreased gray matter volume 

when training was absent, consistent with the observation of the trajectory of glial cell 

changes in animal studies (Zatorre, Fields, & Johansen-Berg, 2012). Another less-well 

studied candidate explanation for learning-induced structural plasticity is vascular 

changes. As an example, a study in monkeys showed an increase in histologically 

quantified vascular volume in the brain during cognitive training (Rhyu et al., 2010). 

However, it is far from clear to what extent vascular changes may participate in the 

process of neural plasticity during motor learning.  

 

1.2.2 Contributions of brain areas 

In this section, a brief introduction to motor learning-related brain areas is given. These 

brain areas include the visual area, the motor-basal ganglia-thalamus-motor loop 

(which is also known as direct/indirect pathway), the cerebellum, frontal-parietal areas 

and the hippocampus. The following sections provide individual descriptions of the role 

of these systems or areas in motor learning. 

 

Visual system 

The visual system is located in the occipital lobe of the brain. It receives signals from 

the thalamus and via the optic nerve from the eyeballs. The more posterior part of the 
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occipital lobe supports basic visual functions. Functions become more complex when 

moving in the anterior direction towards the temporal lobe. An example is face 

recognition in the fusiform cortex (Born & Bradley, 2005). Most motor learning tasks in 

human subjects rely on visual guidance (Albouy et al., 2008; Reis et al., 2009; Sami et 

al., 2014; Xiong et al., 2009). The continuous update of visual sensory input is therefore 

crucial (Glickstein, 2000). For example, in a 3-month longitudinal juggling study, 

Draganski and colleagues (Draganski et al., 2004) found that the gray matter volume 

of the visual cortex increased after training and decreased when the training was 

stopped. This study points to the learning-induced plasticity of the morphology in the 

visual area. 

 

Cortical sensorimotor – Basal Ganglia – Thalamus – sensorimotor loop 

 

The cortical – basal ganglia – thalamus – cortical loop (Alexander, DeLong, & Strick, 

1986) involves several functionally segregated yet anatomically overlapping circuits. In 

these loops, the cortex projects to the basal ganglia, the basal ganglia project to the 

thalamus, and the thalamus projects back to the cortex. The motor circuit primarily 

includes the sensorimotor cortex, putamen and thalamus and supports planned or 

wanted movements while inhibiting wrong or unwanted movements. The exhibitory and 

inhibitory control of movement is also known as the functions of the direct and indirect 

pathways, respectively (Calabresi, Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014) (Figure 

1.1). Briefly, in the motor loop, the basal ganglia receive glutamatergic input from 

cortical motor areas and inhibit the internal Globus pallidum (GPi) through GABAergic 

release. This process reduces the inhibitory effect of the GPi to the thalamus and 

causes the increase of the excitatory effect of the thalamus to the sensorimotor cortex 

through glutamatergic release. In parallel, the more complex indirect pathway 

antagonizes the motor movements by the modulatory effect of the substantia nigra 

(SN) to striatum and participation of the external Globus pallidum (GPe) and the 

subthalamic nucleus (STN). The inhibitory effect of the GPi to the thalamus is 

strengthened through GABAergic release to reduce the excitatory effect of the 

thalamus to the sensorimotor cortex. In summary, the direct pathway is considered to 

excite movements while the indirect pathway inhibits movements. 

The cortical – basal ganglia – thalamus – cortical loop has a direct effect on motor 

functions and is thus highly relevant during motor learning. In a neuroimaging study by 
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Lehericy and colleagues (Lehericy et al., 2005), the authors reported a shift in 

activation from the supplementary motor area (SMA) to the basal ganglia during motor 

learning in healthy subjects. There is also evidence of an interaction between the basal 

ganglia and the medial temporal lobe (specifically the hippocampus) in sequential 

learning (Albouy et al., 2008).  

 

Figure 1.1 

 

The figure shows a brief illustration of the direct (excitatory) and the indirect (inhibitory) pathway. Abbreviations: 

GPi: internal Globus pallidum; GPe: external Globus pallidum; STN: subthalamic nucleus; SN: substantia nigra.  

 

Cerebellum 

The cerebellum is well known for its critical role in sensorimotor integration and 

movement error correction (Penhune & Steele, 2012). Recent studies have shown that 

the cerebellum connects not only to the motor cortex, but also to higher-order cognitive 

areas such as the parietal cortex and prefrontal cortex (Diedrichsen, Balsters, Flavell, 

Cussans, & Ramnani, 2009; Kelly & Strick, 2003). In animal studies, for example, gene-

edited mice with cerebellar function deficits were able to swim towards a given target, 

but could not optimize their trajectories (Burguiere, Arabo, Jarlier, De Zeeuw, & Rondi-

Reig, 2010). Similar observations of impaired movement adjustment were found in 

human patients with cerebellar lesions (Laforce & Doyon, 2001). In healthy subjects, 

neurofunctional correlations were observed between the motor cortex and the 
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cerebellum. For instance, higher activity in the motor cortex was related to decreased 

activity in the cerebellum during motor learning (Penhune & Steele, 2012). In another 

study, transcranial magnetic stimulation (TMS) of the cerebellum had a negative effect 

on motor movement (Miall, Christensen, Cain, & Stanley, 2007) and transcranial direct-

current stimulation (tDCS) stimulation to the lateral cerebellum led to improved 

performance of the performance (subjects can reduce errors faster) during visuomotor 

learning (Galea, Vazquez, Pasricha, de Xivry, & Celnik, 2011). The above-mentioned 

studies have shown the critical role of the cerebellum during motor learning. 

 

Frontal and Parietal regions 

The planning of a movement takes place in higher motor areas such as the premotor 

area and the SMA (Nachev, Kennard, & Husain, 2008). These plans are subsequently 

executed in the primary motor cortex (Dum & Strick, 1996). A well-known finding is that 

the activity in the SMA can be detected before the activity in the primary motor cortex 

during voluntary movements (Weilke et al., 2001). In addition, the premotor area and 

SMA are also part of the direct/indirect pathway. In a primate study, Chen and Wise 

(Chen & Wise, 1995) recorded neuronal activity in the monkeys’ SMA and found an 

increased activity of these neurons when the animals learned a novel task. In a human 

study, increased release of dopamine was found in the SMA during motor learning, 

which corresponded with a reduced dopamine release in GPi. (Garraux, Peigneux, 

Carson, & Hallett, 2007).  

The parietal regions play a unique role in specific aspects of learning, such as spatial 

imagery (Zhang et al., 2012). They are also involved in the planning of the kinetic 

parameters of an upcoming movement (Kuang, Morel, & Gail, 2016). Lesions in these 

areas can lead to spatial neglect (Parton, Malhotra, & Husain, 2004). Frontal-parietal 

regions are therefore also considered as key areas for motor learning. 

 

Hippocampus 

The hippocampus is well known for its critical role in memory formation and spatial 

navigation (Clark, Broadbent, & Squire, 2005; Jarrard, 1993; Maguire et al., 2000). The 

memory formation function of the hippocampus was detected in the famous patient 

H.M. whose bilateral medial temporal lobes were mostly removed to cure his epilepsy. 

Since then, Mr. H.M. lost his ability to build long-term declarative memory, yet he 

maintained the function in a motor learning task. Researchers concluded from the 
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experiments that the hippocampus is a brain region to consolidate the newly learned 

memory into long-term memory. However, impairment of the hippocampus did not 

necessarily influence the motor procedure memory.  

With modern fMRI technology, researchers found that the activation of the 

hippocampus was affected by a short-term motor learning task (Albouy et al., 2008; 

Schendan et al., 2003). In addition, Fernández-Seara and colleagues found highly 

correlated cerebral flow between the hippocampus and the striatum in a short-term 

motor sequential learning study (Fernandez-Seara, Aznarez-Sanado, Mengual, 

Loayza, & Pastor, 2009). These newly published studies have raised novel interest in 

the hippocampus’s role in short-term motor learning. 

 

 Major brain neurotransmitters involved in motor learning 

 

1.3.1 Glutamate is highly involved in learning 

 
Glutamate, GABA and dopamine are shown to be the primary neurotransmitters for 

LTP and have prominent roles in the direct/indirect movement pathway in motor 

learning studies (Kida et al., 2016; Stagg et al., 2014). 

Glutamate is the major excitatory neurotransmitter that is ubiquitously distributed 

throughout the brain. The primary glutamatergic receptors are i) the ionotropic 

receptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) 

and ii) the N-methyl-D-aspartate receptor (NMDA) as well as iii) the metabotropic 

glutamate receptors which create slow sustained effects on their target neurons. 

Glutamatergic neurotransmission is a significant contributor to synaptic LTP and has 

been repeatedly shown to be crucially associated with learning and memory (Abraham 

& Mason, 1988; Bliss & Collingridge, 2013).  

The role of glutamatergic modulation in learning-induced plasticity has been well 

established in animal models. For example, motor training can shift the glutamatergic 

NMDA receptor subunit composition in basal ganglia (Kent, Deng, & McNeill, 2013) 

and promote the NMDA dependent synaptic plasticity in the primary motor cortex of 

rats (Kida et al., 2016), while impaired motor performance was observed in mGluR4 

gene (metabotropic glutamate receptors 4, a subtype of glutamate receptor that closely 

correlated with learning, memory, anxiety and perception of pain) knock out mice 

(Pekhletski et al., 1996). In humans, direct evidence for the role of glutamate in motor 
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learning and synaptic plasticity is lacking since the study of receptors and 

neurotransmitters at synapse resolution is not possible. Instead, several studies have 

focused on the effects of common functional polymorphisms in genes related to 

synaptic plasticities, such as the well known Val66Met polymorphism in the brain-

derived neurotrophic factor (BDNF) gene (Fritsch et al., 2010; McHughen et al., 2010). 

Its role in motor learning is suggested by evidence that Met carriers showed less 

efficiency during  motor skills acquisition. 

 

1.3.2 Role of GABA and dopamine during learning 

GABA is the most prevalent inhibitory neurotransmitter in the brain, which is mostly 

located in interneurons. The primary GABA receptors are i) GABAA receptor, ii) 

GABAA-ρ receptor and iii) GABAB receptor. The role of GABA in modulating synaptic 

changes has been well described in a variety of animal studies (Donato, Rompani, & 

Caroni, 2013; Trepel & Racine, 2000). For example in rats, GABAA antagonists can 

block the induction of neocortical LTP and slow the development of potentiation. The 

in vivo measurement of GABA in humans is well established using magnetic resonance 

spectroscopy (MRS). These studies have consistently shown that motor training can 

lead to reduced GABA concentration during both short-term (Floyer-Lea, Wylezinska, 

Kincses, & Matthews, 2006; Levy, Ziemann, Chen, & Cohen, 2002) and long-term 

learning (Sampaio-Baptista et al., 2015; Stagg et al., 2014). In addition, GABA 

concentration was correlated with changes in resting-state sensorimotor functional 

connectivity (Stagg et al., 2014), which could also be related to GABAergic gamma 

oscillation (Hall et al., 2011). 

Another crucial neurotransmitter is dopamine which is involved in the modulation of 

synaptic strength (LTP and LTD) in the prefrontal cortex and striatum (Gurden, Tassin, 

& Jay, 1999; Huang, Simpson, Kellendonk, & Kandel, 2004; Molina-Luna et al., 2009; 

Rioult-Pedotti, Pekanovic, Atiemo, Marshall, & Luft, 2015). Modulations of direct and 

indirect pathways are highly dependent on the depolarization of dopamine receptor D1 

and hyperpolarization of dopamine receptor D2. Dopamine is therefore critically 

involved in movement control and motor learning. 

 

 Motor learning and schizophrenia 
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Motor deficits are shared across a broad range of brain disorders, including neural 

degeneration diseases such as Parkinson’s disease or psychiatric diseases such as 

schizophrenia (Walther & Strik, 2012; Wolff & O'Driscoll, 1999). Motor deficits in 

schizophrenia include abnormal involuntary movements (Whitty, Owoeye, & 

Waddington, 2009) which can occur during the entire disease period, especially in 

aging patients (Quinn et al., 2001).  

Schizophrenia is a complex mental disease with high heritability (Meyer-Lindenberg & 

Weinberger, 2006). The genetic contribution to motor abnormalities in schizophrenia 

is still unclear. While most of the studies on schizophrenia focused on cognitive 

aspects, an increasing number of MRI studies has started to investigate the motor 

abnormalities in schizophrenia using structural (Dazzan et al., 2004; Hirjak, Kubera, et 

al., 2019; Hirjak et al., 2012; Janssen et al., 2009; Sarro et al., 2013; Thomann et al., 

2009) and functional neuroimaging (Hirjak, Rashidi, Kubera, et al., 2019; S. Kodama 

et al., 2001; Muller, Roder, Schuierer, & Klein, 2002; Rogowska, Gruber, & Yurgelun-

Todd, 2004; Schroder et al., 1999; Schroder, Wenz, Schad, Baudendistel, & Knopp, 

1995). For example, neurological soft signs and abnormal involuntary movements 

have been found to be associated with the grey matter volume of the primary motor 

cortex (M1), basal ganglia and cerebellum (Hirjak, Rashidi, Fritze, et al., 2019; Hirjak, 

Thomann, et al., 2015; Hirjak, Wolf, et al., 2015; Li et al., 2013). Motor learning tasks 

are therefore a promising approach to investigate differences in learning-induced 

neural plasticity between patients with schizophrenia and healthy individuals in the 

future.  

 

 Imaging method and modeling 

 

1.5.1 Brief introduction of MRI, fMRI and MRS 

Magnetic resonance imaging (MRI) technique is one of the most frequently used tools 

to acquire in-vivo brain images non-invasively. The MRI technique is an application of 

the nuclear magnetic resonance (NMR) phenomenon. Briefly, by applying an additional 

weak oscillating magnetic field that has a specific frequency to the atoms under a 

strong magnetic field, the spin movements of the atoms will be disturbed. The atoms 

will gradually recover to the original spin movements along the strong magnetic field, 

but the recovery duration varies in different brain tissues. This phenomenon could 
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allow us to acquire high dimensional structural brain images. In recent decades, 

functional MRI (fMRI) was introduced into neuroimaging studies to investigate the brain 

activity based on the discovery of blood-oxygenation-level-dependent (BOLD) signal. 

The BOLD signal measures the hemodynamic response – a sluggish signal (a few 

seconds delay) that is triggered by neural activity. Although fMRI (BOLD) is an indirect 

measure of brain neural activity (Logothetis, 2002), it is widely applied in neuroimaging 

studies because it’s capability to provide high spatial resolution whole-brain functional 

images (around 3mm).  

Magnetic resonance spectroscopy (MRS) is a technique that has been widely used to 

obtain the distribution and concentration of brain metabolites such as N-acetyl 

aspartate (NAA), choline (Cho), creatine (Cr), and glutamate (Glu).  These metabolites 

have different chemical structures which determine the nuclear environment and 

thereby react slightly different to the magnetic field (chemical shift). Therefore, signals 

from different metabolites can be detected due to the slightly different resonance 

frequencies of each metabolite. In addition to chemical shift, the signal is also partly 

determined by J-coupling, which is an internal indirect interaction of two nuclear spins 

and can lead to modulation of signal intensity depending on different sequences and 

parameters such as the echo time (TE) (Blüml, 2013). MRS has been extensively 

applied to investigate the concentration of glutamate in borderline disorder (Hoerst et 

al., 2010). In the current project, MRS data were acquired to evaluate the associations 

between the glutamatergic concentration in the primary motor area and the functional 

response as well as connectivity during the motor learning process. 

 

1.5.2 Functional Activation 

Functional MRI studies can roughly be divided into resting-state fMRI and task fMRI. 

During resting-state fMRI, no external task is given to the subjects during the entire 

scan. Subjects may close their eyes or leave their eyes open and fixate a crosshair on 

a screen. Resting-state fMRI is designed to investigate the intrinsic spontaneous 

neural activity. Since no external task is given, the interpretation of the neural 

mechanisms of resting-state studies is less straightforward compared to task fMRI that 

challenges a certain type of neural activity with high experimental control. Here, brain 

activation is studied under specific task conditions (e.g. during finger tapping vs. no 

finger tapping). There are two types of task designs referred to as ‘block design’ and 

‘event-related design’. In block designs, the task conditions are presented in alternating 
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blocks with durations of up to half a minute (e.g. 30s-blocks of finger tapping, followed 

by 30s-blocks of no finger tapping). The blocks are repeated several times to allow for 

a robust estimation of functional activation. The ‘event-related design’ was introduced 

to the field at a later time point and allows for the assessment of brain responses to 

single, short events (e.g alternating between single finger tappings of the left and right 

hand). 

In the current project, the ‘block design’ was applied. In order to estimate functional 

activation to task conditions, the raw data needs to be preprocessed and fitted to a 

statistical model. In the statistical analysis, the task conditions are modeled as  boxcar 

functions that are convolved with the hemodynamic response function (HRF) (Figure 

1.2). The resulting functions are then used as regressors of interests together with 

covariates of non-interests (e.g. head motions) in a general linear model (GLM). This 

GLM model will be estimated for each voxel to test the model fit, i.e. how well the model 

fits the time series of the voxel. The outputs of the GLM model are beta images that 

reflect the distribution of weights (i.e. estimated slope of the GLM model) of certain 

task conditions. 

   

Figure 1.2 

 

The figure shows an example of block design in the motor learning task fMRI study. The horizontal axis indicates 

the number of scans (TR = 1.79 seconds). The vertical axis indicates the magnitude of the task condition (arbitrary 

units). The brain activation is a linear regression ‘fitness’ of the fMRI BOLD signal from the brain to the time 

series shown. 

 



INTRODUCTION 

16 

1.5.3 Functional Connectivity 

While functional activation is used to estimate the instantaneous response of the brain 

to external stimuli, functional connectivity is the method of choice to assess the 

synchronization (correlation) of two given time series (e.g. of two brain areas). 

Functional connectivity is assessed as Pearson correlation coefficient (R) which scales 

between -1 to 1 and which is defined by the covariance of the two time series (X and 

Y): 

𝑅 =  
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋 𝜎𝑌
, 

where 𝑐𝑜𝑣(𝑋, 𝑌)  denotes the covariance of X and Y, and 𝜎𝑋  and 𝜎𝑌  denote the 

variance of X or Y respectively. A negative correlation coefficient R implies that the two 

time series are negatively correlated or anticorrelated, while a positive correlation 

coefficient implies that the two time series are positively correlated. The two time series 

are not correlated with each other if the correlation coefficient R is close to 0. 

 

1.5.4 Graph theory 

In the recent decade, tools from the mathematical field of graph theory have been 

increasingly applied to brain imaging data to investigate brain function from a network 

perspective. These network models of brain function are able to account for the high 

interdependence of brain functions and the precise orchestration of multiple brain 

areas in the execution of behavior and cognition. Nodes and connections are the 

fundamental elements to construct a network. To build functional brain networks from 

brain imaging data, nodes are defined as brain areas and the connections between 

them are estimated by functional connectivity. For example, one of the most frequently 

used atlas to define brain nodes is the AAL brain atlas (Tzourio-Mazoyer et al., 2002). 

Based on this atlas, the average time series from each brain region will be extracted 

to represent the regional brain activity. Next, pair-wise functional connectivity will be 

calculated to represent the connections between each pair of nodes resulting in an 

adjacency matrix Ai,j is constructed, in which each element reflects the connection of 

nodes i and j (Figure 1.3). Based on the adjacency matrix A of the brain network, a 

variety of network properties can be calculated that described the network architecture 

in a biologically meaningful way, such as small worldness, global efficiency, modularity 

and characteristic path length. 
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The basic parameters of a graph network include the number of nodes and 

connections. The latter is often referred to as the network density, which is the relative 

number of connections present divided by the absolute number of possible 

connections. Other more advanced measures include nodal degree, clustering 

coefficient and path length. The nodal degree is simply the number of connections a 

particular node has. The clustering coefficient is the number of existing triangle 

connections (closed triplets) around a single node divided by the number of all possible 

triangles and indicates how well a node is integrated with its neighboring nodes. The 

path length is a measure of how many connections must be passed to visit any other 

nodes in the network. The characteristic path length is an indicator of network 

segregation and is calculated based on the averaged shortest distance between every 

pair of nodes in the network. One of the most famous and well-established graph 

theoretical measures is small worldness. Small-worldness is a ratio of (normalized) 

clustering coefficient and path length and measures how well the global network 

balances local connectedness while keeping the overall distance short. It is often 

interpreted as a reflection of how the network could operate at high speed while the 

cost is relatively low (Braun et al., 2012; Rubinov & Sporns, 2010; Watts & Strogatz, 

1998) (Figure 1.3 & 1.4).  

 

Figure 1.3 

 

The figure shows the flow chart of network analysis. The brain will firstly be parcellated into a certain number of 

brain nodes (e.g., AAL = 116 brain areas). Next, the BOLD signals will be extracted from those brain areas and a 

correlation matrix will be built by computing the pair-wise Pearson correlation coefficient. 

 

Figure 1.4 
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Figure Panel A shows the network changes from highly regular to highly random along with randomness p. In the 

regular network (p = 0), the connections are fully connected in the neighbor nodes whereas in the random network 

the connections are totally random. The small-world network sits in between where the neighbor connections are 

still existing but the long-distance connections are also available. Panel B shows the fraction trade-off between 

normalized clustering coefficient and path length as fundamental elements of small-world network properties. The 

largest proportion sit in between rewriting probability p = 0 and 1 which correspond to the network in the middle 

of Panel A.  

 

 Hypotheses 

 
Motor learning studies have been carried out for decades using both animal models 

and human populations. While these studies have shed light on the genetic, molecular, 

cellular and circuit processes underlying the different stages of motor learning, a 

comprehensive overview of how these processes relate to the whole brain, system-

level activity and connectivity patterns remains elusive as outlined above. Based on 

the existing studies, the current project will focus on the following questions: 

First, to what extent do graph-theoretical parameters like small worldness, that are well 

known to highly correlate with cognitive functions, relate to motor learning ability?  

Second, what are the brain networks that differentiate good motor learners from bad 

learners and are these networks modulated by glutamate?  

Third, is long-term motor learning associated with structural (grey matter morphology) 

and functional (neural activity and connectivity) changes in motor learning-related 

areas, such as the frontal-parietal network and hippocampus? 

Based on these questions, the following specific research hypotheses were derived: 

1) Global brain functional network properties are closely linked to the individual ability 

to acquire novel motor skills during short-term motor learning. 2) The cerebellum and 

the primary motor cortex are more strongly involved in short-term motor learning while 

higher-order sensorimotor areas such as premotor area / SMA and basal ganglia are 
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more strongly involved in long-term motor learning. 3) In line with the involvement of 

glutamate in synaptic plasticity, the neural activity and connectivity of the motor 

learning associated networks are modulated by glutamate. 4) Based on the critical role 

of the hippocampus in other aspects of learning, the morphology, activity or 

connectivity of the hippocampus is altered by short-term and long-term motor learning. 

These hypotheses are tested in a multimodal neuroimaging study involving short-term 

motor learning (training approximately 30 minutes) and long-term motor learning (11 

days of continuous training, daily training is approximately 30 minutes). Motor training 

was performed using the sequential visual isometric pinch task (SVIPT) (Reis et al., 

2009) that challenges the control of pinch force according to visually guided targets 

displayed on the monitor. 
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2 STUDY 1: RESTING-STATE BRAIN NETWORK FEATURES 
ASSOCIATED WITH SHORT-TERM SKILL LEARNING ABILITY IN 
HUMANS AND THE INFLUENCE OF N-METHYL-D-ASPARTATE 
RECEPTOR ANTAGONISM1 

 

 Abstract 

Graph theoretical functional magnetic resonance imaging (fMRI) studies have 

demonstrated that brain networks reorganize significantly during motor skill acquisition, 

yet the associations between motor learning ability, brain network features and the 

underlying biological mechanisms remain unclear. In the current study, we applied a 

visually guided sequential pinch force learning task and graph theoretical analyses to 

investigate the associations between short-term motor learning ability and resting-state 

brain network metrics in 60 healthy subjects. We further probed the test-retest reliability 

(n = 26) and potential effects of the NMDA antagonist ketamine (n = 19) in independent 

healthy volunteers. Our results show that the improvement of motor performance after 

short-term training was positively correlated with small-worldness (p = 0.032) and 

global efficiency (p = 0.025) while negatively correlated with characteristic path length 

(p = 0.014) and transitivity (p = 0.025). In addition, using network-based statistic (NBS), 

we identified a learning ability-associated (p = 0.037) and ketamine susceptible (p = 

0.027) cerebellar-cortical network with fair to good reliability (ICC > 0.7) and higher 

functional connectivity in better learners. Our results provide new evidence for the 

association of intrinsic brain network features with motor learning and suggest a role 

of NMDA-related glutamatergic processes in learning-associated subnetworks. 

 

 Introduction 

The acquisition of new motor skills requires the brain to flexibly reconfigure neural 

circuits to master a desired performance level (Bassett & Mattar, 2017). Recent studies 

have demonstrated that different circuits are involved at distinct stages of learning 

(Dayan & Cohen, 2011; Penhune & Steele, 2012). While the initial learning phase 

engages a widespread network consisting of primary motor area (M1), supplementary 

                                            
1 Published paper: Zang, et al., (2018). "Resting-state brain network features associated with short-term skill learning ability in 

humans and the influence of N-methyl-d-aspartate receptor antagonism." Network Neuroscience 2(4): 464-480. 
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motor area (SMA), basal ganglia (BG), dorsolateral prefrontal cortex (DLPFC), 

premotor cortex and posterior cerebellum, the following longer-term learning phase 

relies on a smaller set of brain regions including M1, SMA, BG and the lateral 

cerebellum (Dayan & Cohen, 2011). In addition, the specific type of motor learning task 

determines the preferential involvement of brain regions with sequential learning 

challenging cortical areas while more complex sensorimotor tasks with novel kinematic 

additionally challenge the BG and cerebellum (Hardwick, Rottschy, Miall, & Eickhoff, 

2013). 

The interactions between brain regions during motor learning can be studied in the 

framework of brain networks. By combining network analysis and functional magnetic 

resonance imaging (fMRI), recent studies have shown that brain network features 

including flexibility (Bassett et al., 2011), connectivity strength, local path length and 

nodal efficiency (Heitger et al., 2012; Sami & Miall, 2013) change in response to motor 

learning and can predict its rate (Bassett et al., 2011). Notably, changes in the brain 

network architecture cannot only be assessed during the process of motor learning 

using task-based fMRI, but also during rest. While there is some evidence that intrinsic 

network connectivity measures derived from prior resting-state fMRI (rs-fMRI) predict 

motor learning abilities  (Mawase, Bar-Haim, & Shmuelof, 2017; Wu, Srinivasan, Kaur, 

& Cramer, 2014), recent studies also suggest that motor learning effects can be 

detected using rs-fMRI after task practice (Albert et al., 2009; Sami & Miall, 2013; Sami 

et al., 2014).  However, while plasticity-related effects of motor learning likely shape 

the intrinsic configuration of brain circuits the biological mechanisms in humans remain 

largely unknown.  

Plausible molecular mechanisms contributing to motor learning-related network 

changes include glutamate-dependent processes (Dayan & Cohen, 2011). Supportive 

evidence is provided by animal studies showing that motor training can shift the 

glutamatergic N-methyl-D-aspartate (NMDA) receptor subunit composition in BG (Kent 

et al., 2013) and promote the NMDA dependent synaptic plasticity in the primary motor 

cortex of rats (Kida et al., 2016), while impaired motor performance was observed in 

mGluR4 gene knock out mice (Pekhletski et al., 1996). In humans, evidence for the 

involvement of glutamate-dependent processes during motor learning is less direct. 

Here, many studies have focused on the effects of a common functional polymorphism 

(Val66Met) in the brain-derived neurotrophic factor (BDNF) gene (Fritsch et al., 2010; 

McHughen et al., 2010), a downstream modulator of the molecular cascade supporting 
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synaptic plasticity linked to motor learning impairments and altered motor cortical 

activations in the plasticity-impaired Met allele carriers (Fritsch et al., 2010; McHughen 

et al., 2010; Thomason, Yoo, Glover, & Gotlib, 2009). For the evidence in humans, a 

study by Tahar et al. further showed that the NMDA receptor antagonist amantadine 

significantly impairs motor learning in healthy subjects (Hadj Tahar, Blanchet, & Doyon, 

2004). 

In the current work we aimed to answer two main questions in healthy humans, first 

whether the brain’s resting-state network configuration relates to individual differences 

in short-term motor learning, and second whether these metrics can be influenced by 

NMDA receptor antagonism. We first investigated whether resting-state network 

features relate to individual differences in short-term motor learning ability by 

combining an established sequential visual isometric pinch force learning task (Reis et 

al., 2009) with rs-fMRI and graph theoretical analyses. We hypothesized that both 

global network diagnostics and functional connectivity amongst a circumscribed set of 

brain visuomotor brain areas would relate to individual motor learning ability (J. Doyon 

& Benali, 2005; Hikosaka et al., 2002). Secondly, we tested whether ketamine 

influences the functional connectivity of motor learning-related subnetworks. Here, we 

hypothesized that NMDA receptor blockade would decrease the connectivity of motor 

learning-related subnetworks. 

 

 Materials and Methods 

 

2.3.1 Participants and motor learning task description 

Sixty healthy right-handed volunteers (mean age 26.6 ± 7.5 years, 33 males) 

underwent visuomotor training followed by a resting-state fMRI scan (mean training 

duration: 26.9 ± 5.7 minutes, mean time interval between motor training and fMRI scan: 

45.8 ± 7.5 minutes). Exclusion criteria included MRI contraindications, a history of 

psychiatric and neurological illness, prior head trauma, and current alcohol or drug 

abuse. None of the subjects had a first-degree relative with a psychiatric disorder or 

received psychopharmacological treatment. All participants provided written informed 

consent for a protocol approved by the Ethics Committee of the University of 

Heidelberg.  
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Visuomotor learning task 

Behavioral training consisted of a single session with a modified version of an 

established (Reis et al., 2009) sequential visual isometric pinch force task. Subjects 

were seated 80 cm in front of a 28-inch monitor depicting a home position and five 

target gates (G1-G5, Figure 2.1) while holding a force transducer between their right 

thumb and index finger. The application of pinch force moved a screen cursor from the 

home position in a right hand direction towards the target gates while relaxation 

resulted in a leftward cursor movement back towards the home position. The distance 

of the cursor to the home position increased logarithmically with increasing pinch force 

in order to make the task more difficult. Subjects were instructed to modulate their 

pinch force so that the cursor navigated as quickly and accurately as possible along 

the following sequence: home-G2-home-G5-home-G3-home-G1-home-G4. After getting 

familiar with the setting, subjects performed 4 training blocks consisting of 35 trials 

(completed sequences) each. Movement times per trial were measured from 

movement onset in the home position to stopping at the last gate (G4). Error rates were 

calculated as ratio of gates per block with over- or undershooting cursor movements 

(missed gates). 

 

FIGURE 2.1 

 

Figure 2.1. Set-up of the sequential visual isometric pinch task (SVIPT, see Methods for details). Subjects were 

asked to move the cursor into the highlighted targets (i.e. G2) as fast and as accurate as possible. The sequence of 

targets was 2-5-3-1-4. The manikin illustration is copyright protected (©Petr Ciz – Fotolia.com). 
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Definition of skill learning 

Following prior work with this task (Reis et al., 2009) we calculated individual skill 

measures for each block using the formula 

 

𝑠𝑘𝑖𝑙𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = ln(
1 − 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒(ln(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)5.424)
) 

where duration is the average movement time across the trials of the block, error rate 

is the rate of over- and undershoots across the trials of the block (Reis et al., 2009). 

Over all training blocks, individual differences in skill learning ability were calculated 

based on the difference in the skill measure between the last and first training block 

(skill learning = skill measureblock4 – skill measureblock1). 

 

2.3.2 Data acquisition and analyses 

MRI data acquisition 

Neuroimaging was performed on a 3T MRI scanner (Siemens Trio, Erlangen, 

Germany) equipped with a 32 channel multi-array head-coil. Details on MRI sequences 

are given in supplemental materials. 

 

fMRI data processing 

Image processing was performed using standard routines implemented in the 

Statistical Parametric Mapping software (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and the Data Processing Assistant for 

Resting-State fMRI toolbox (DPARSF, (C. Yan & Zang, 2010)). All images were 

realigned to the first image of the time series, corrected for slice timing, spatially 

normalized to the Montreal Neurological Institute (MNI) EPI template, and spatially 

smoothed with an 8 mm full-width at half-maximum (FWHM) Gaussian kernel. For each 

participant, we then extracted the mean time series from 264 brain regions derived 

from the Automated Anatomical Labeling (AAL 116) brain atlas (Tzourio-Mazoyer et al., 

2002) by random parcellation  (Zalesky, Fornito, Harding, et al., 2010). From the node 

time series, we regressed out the time series of white matter and cerebrospinal fluid 

masks (derived from SPM tissue probability maps thresholded at 90% for CSF and 

99% for WM) (Cao et al., 2014) and the six head motion parameters from the 
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realignment step. The resulting residual time series were temporally filtered using a 

0.01 - 0.1 Hz band-pass filter. 

 

Quantification of head displacements 

The functional connectivity estimates and network diagnostics derived from resting-

state fMRI may be impacted by motion artifacts (Power, Barnes, Snyder, Schlaggar, & 

Petersen, 2012; Satterthwaite et al., 2013; C. G. Yan et al., 2013). To account for this, 

we used in-house software to estimate averaged frame-wise displacement (FD) 

(Power et al., 2012) and included average FD as covariates of non-interest in our 

analyses. 

 

Construction of connectivity matrices 

For the construction of brain networks, we computed pairwise Pearson correlation 

coefficients between the processed time series of each node, which resulted in a 264 

× 264 two-dimensional matrix for each subject. We then thresholded the matrices in 

1% intervals over a range of 40 densities from 1% to 40% to generate binary graphs 

(e.g., in the 1% thresholded matrix only the top 1% of the highest positive correlations 

are represented by assigning a value of 1 to the internode connections). 

 

Calculation and analysis of graph diagnostics 

On the global brain network level, graph features were computed using the Brain 

Connectivity Toolbox (BCT) (Rubinov & Sporns, 2010). Specifically, for each density, 

we calculated 7 reliable (Cao et al., 2014) global brain network markers that reflect the 

integration and segregation of whole brain network and were shown to be in 

association with cognitive functions (Alavash et al., 2015): Transitivity, characteristic 

path length, global efficiency, smallworldness, modularity Q (Newman, 2006), 

assortativity, and mean connectivity coefficient. The detailed descriptions of the 7 

markers are given in the supplemental materials.  

For association with the degree of skill learning, the network properties were averaged 

across densities and introduced as dependent variable into separate linear regression 

models with skill learning as independent variables of interest and age, sex, and 

averaged FD as covariates of non-interests. Hochberg’s stepwise p value adjustment 

method (Hochberg, 1988) was used to correct raw p values for multiple hypothesis 

testing.  
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Network-based statistic (NBS) 

We analyzed the connectivity matrices with NBS to identify clusters of node 

connections associated with skill learning ability. Compared to the mass-univariate 

testing of independent links, NBS offers higher statistical power by identifying 

connected components from a set of uncorrected thresholded links that are 

significantly associated with a variable of interest (Zalesky, Fornito, & Bullmore, 2010) 

and then uses a randomization approach to evaluate the null hypothesis on the level 

of connected subclusters (rather than individually for each connection). Following prior 

procedures (Wang et al., 2013), we defined initial linear regression models for each of 

the (N (N-1))/2 = 34716 (N = 264) possible links in the connectivity matrices. The 

regression models included skill learning as independent variable of interest and age, 

sex, and the averaged FD as covariates of non-interest. From the resulting p matrix, 

we defined a set of suprathreshold connections by isolating all links with t > 3.48 and 

p < 5 × 10-4  and used M = 5000 permutations (Wang, Zuo, & He, 2010) to estimate 

the null distribution during permutation testing of the identified cluster association. 

 

Supplemental analyses 

To further probe the quality of the skill learning-related NBS result, we further a) 

quantified the test-retest reliability of the mean connectivity of the identified cerebellar-

cortical cluster, b) considered the potential role of structural confounds by testing the 

relationship between skill learning and grey matter volume of the nodes contributing to 

the cluster, and c) explored the effects of low dose ketamine as NMDA receptor 

antagonist on skill learning ability and the connectivity of the identified NBS cluster. 

Additionally, we aimed to probe d) the robustness of our results using a more 

conservative head motion correction approach and e) the specificity of the association 

between motor learning ability and global network features by controlling for the mean 

functional connectivity as covariate of non-interest. Finally, we examined the identified 

cerebellar-cortical network association to skill learning with respect to potential effects 

of the choice of the initial cluster-forming significance threshold and parcellation 

scheme for NBS, respectively, by exploring the outcome of f) two additional cluster-

forming significance thresholds (p < 0.001, p < 0.0001) and g) an alternative whole-

brain functional atlas (Rosenberg et al., 2016) containing a comparable number of 

nodes (268 parcellations) as our AAL-based atlas.  
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Test-retest reliability 

As previous studies have demonstrated that the reliability of functional connectivity 

estimates is spatially heterogeneous (Mueller et al., 2015), we aimed to establish the 

robustness of the connectivity estimates in the identified subnetwork before further 

exploring it in the context of a pharmacological challenge study. To quantify the test-

retest reliability of the connectivity phenotype, we reanalyzed the resting-state 

reliability data reported in (Cao et al., 2014). Following the nomenclature of Fleiss 

(Fleiss, 1986), we considered an ICC value below 0.4 as poor, 0.4-0.75 as fair to good, 

and > 0.75 as excellent. Detailed information about fMRI data is given in supplemental 

materials. 

 

Structural correlates 

We analyzed the high resolution structural data with the voxel-based morphometry 

toolbox (VBM8, http://dbm.neuro.uni-jena.de/vbm8/) using default parameters. 

Detailed descriptions of preprocessing the structural data are provided in supplemental 

materials. We then extracted the GM volume of the nodes contributing to the identified 

NBS cluster and entered the sum GM volume as dependent variable in a regression 

model that included skill learning as independent variable of interest and age and sex 

as covariates of non-interest (significance level: p < 0.05). 

 

NMDA receptor challenge 

To quantify the effects of the NMDA receptor antagonist ketamine on the identified 

cerebellar-cortical subnetwork, we analyzed the ketamine challenge data reported in 

(Francois et al., 2016; Grimm et al., 2015). In this study, resting-state fMRI data were 

acquired in 24 healthy individuals (12 female, mean age 25 years, mean body weight 

70 kg) undergoing three consecutive fMRI sessions over the course of three weeks. 

The pharmacological protocol followed a double blind, placebo-controlled, order 

randomized, three-period cross-over design with single intravenous doses of either 

saline (placebo condition), ketamine (0.5 mg/kg body weight), or scopolamine (4 µg/kg 

body weight). Drug infusions started 73.8 ± 13.8 minutes prior to the resting state scan 

and were 40.02 ± 6.02 minutes in duration. The visuomotor learning task started 15.6 

± 3.5 minutes after infusion onset and was completed around the end of the infusion 

(at 40.4 ± 8.61 minutes). To ensure this, we used the same experimental setup for the 

http://dbm.neuro.uni-jena.de/vbm8/
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training as in the main study except for a slightly shorter training duration (25 trials for 

each block, 4 blocks in total). Since we did not test a hypothesis assuming effects of 

mAch-blockade (scopolamine condition) on the identified subnetwork phenotype, we 

only analyzed the rs-fMRI data from the ketamine and placebo conditions in the current 

study. For this, we created a covariate of non-interest coding for the order of ketamine 

and placebo conditions (ketamine first, placebo first) that was included in the applied 

repeated-measure ANOVA. For pharmacokinetic analysis, blood samples for 

quantification of norketamine plasma levels were drawn immediately before and after 

the MRI scan (see (Francois et al., 2016; Grimm et al., 2015) for details). The time 

interval between ketamine and placebo infusion was 9.6 ± SD 3.5 days. One subject 

was excluded due to side effects under ketamine (Francois et al., 2016); four more 

subjects were excluded because they had already participated in either the current (3 

subjects) or in other visuomotor learning studies (1 subject). In total, 19 subjects were 

included in further data analyses. The processing of the behavioral data, rs-fMRI data, 

node definitions, and construction of connectivity matrices followed the protocol 

described above. To test for drug effects, we extracted the mean connectivity from the 

links of the cerebellar-cortical subnetwork identified in the NBS analysis (see results 

section) and used a repeated measures ANOVA with drug as within-subjects factor 

and age, sex (as factor), body mass index (BMI), the order (as factor) of drug and the 

differences of averaged frame-wise displacement (placebo vs. ketamine condition) as 

covariates of non-interest. To directly relate the connectivity indices of the identified 

subnetwork to the administration of the drug in the ketamine condition, we quantified 

intravenous norketamine levels by chromatographic analysis from the blood samples 

taken immediately prior to the MRI scan. For details on the blood sample processing, 

please refer to (Francois et al., 2016). We used a linear regression model in which the 

norketamine values were introduced as dependent variable, the mean connectivity 

estimates from the network links as independent variable of interest and age, sex, body 

mass index (BMI) and averaged frame-wise displacement as nuisance covariates 

(significance level: p < 0.05). Detailed descriptions about drug administration are 

provided in supplemental materials. 

 

Controlling for mean individual functional connectivity differences 

As global differences in connectivity strength might directly influence network 

properties (van den Heuvel et al., 2017), we aimed to replicate our results using the 
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individual mean functional connectivity average over all connections as an additional 

covariate of non-interest in our analyses. 

 

Scrubbing to correct for head motion 

Since sharp in-scanner motion can introduce systematic, artificial connectivity  (Power 

et al., 2012), we aimed to replicate our findings using a “scrubbing”  approach as 

described in detail in (Power et al., 2012). In short, all frames of the time series with a 

frame-wise displacement > 0.5 mm were removed. Two subjects were excluded from 

this analysis because their number of spikes exceeded 10% of the total time points, 

leaving a total of 58 subjects. 

 

 Results 

 

2.4.1 Main results 

 

Skill learning ability 

Training improved SVIPT performance as indicated by significant decrease in the trial 

durations and error rates and a significant increase in the skill measure (Figure 2.2A) 

across blocks (F(3,57) values > 4.27, all p values < 0.009). The analysis of the skill 

learning measure confirmed a significant increase in skill performance (skill measure 

block 4-1) at the end of the training (one-sample t-test, t(59) = 11.43, p = 1.2×10-16). 

 

Relationship to graph-based diagnostics 

At the global brain network level, we observed significant associations between the 

individual skill learning ability and four of the seven graph diagnostics. While positive 

correlations were found for smallworldness (t(55)= 2.73, r = 0.35, praw = 0.008, pcorr = 

0.032, Figure 2.2B) and global efficiency (t(55)= 2.90, r = 0.36, praw = 0.005, pcorr = 0.025, 

Figure 2.2C), we detected negative associations for characteristic path length (t(55) = -

3.33, r = -0.41, praw = 0.002, pcorr = 0.014, Figure 2.2D) and transitivity (t(55) = -2.92, r = 

-0.37, praw = 0.005, pcorr = 0.025, Figure 2.2E). We observed no significant associations 

between skill learning ability and assortativity and modularity Q of the network (all pcorr 

values > 0.225, Table S2.2). In addition, there was no significant correlation between 

skill learning ability and whole brain mean connectivity (r =  
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-0.11, praw = 0.41, Table S2.2). All calculated graphs displayed small-world network 

properties (σ = γ/λ > 1, range 1.02 – 2.69).  

 

FIGURE 2.2 

 

Figure 2.2. Panel A: Skill increase in the sequential visual isometric pinch task (SVIPT) across the training blocks 

(dots depict the mean values of the skill measure across blocks). Error bars indicate standard errors. Panels B-E: 

regression plots show significant associations of short-term motor learning ability (block4 – block1) and resting-

state fMRI-derived graph diagnostics (adjusted for covariates and constant, see results section for details) after 

controlling for age, sex and FD.  

 

Relationship to subnetwork functional connectivity 

Although we did not detect a significant association between short-term skill learning 

ability and the mean correlation estimates of the whole-brain functional connectome (r 

= -0.11, praw = 0.41, Table S2.2), significantly associated brain subnetworks likely exist. 

Consistent with this notion, NBS identified a cluster of links with a significant positive 

association between skill learning ability and the functional connectivity estimates of 

the cluster links (uncorrected initial p < 5 × 10-4, FWE corrected p = 0.037, Figure 2.3). 

The cluster consisted of 69 nodes and 91 links mainly interconnecting the cerebellum, 

frontal, and parietal lobes. Specifically, most of the links of this cluster connected area 

7b and area 8 of the left cerebellum to the cortex, in particular to nodes mapping in 

proximity to M1, primary sensory cortex, SMA, dorsal premotor cortex, intraparietal 

sulcus, and the motion sensitive visual processing area V5. A detailed description of 

all nodes and links of the identified subnetwork is provided in Table S1.  
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FIGURE 2.3 

 

Figure 2.3. Illustration of the NBS-derived cerebellar – cortical functional network associated with short-term skill 

learning. Spheres represent center-of-gravity coordinates of the NBS-derived regions. Images are visualized using 

BrainNet Viewer (Xia, Wang, & He, 2013). Detailed information can be found in Table S2.1. 

 

2.4.2 Supplemental results 

Test-retest reliability 

The test-retest reliability analysis of the connectivity estimates of the NBS subnetwork 

yielded an ICC2,1 of 0.72 and an ICC3,1 of 0.73, respectively. This indicates an almost 

excellent robustness of the connectivity estimates of the cluster identified to relate to 

skill learning ability.  

 

Structural analysis 

The structural analysis did not provide any evidence for an association between the 

mean grey matter volume of the 69 subnetwork nodes and skill learning ability (t(56)  = 

-0.33 , p = 0.74). Also, we detected no significant correlations between mean gray 

matter volume of the 69 subnetwork nodes and the mean functional connectivity 

estimates of the 91 links of the NBS subnetwork (t(56) = -0.10 , p = 0.92) or any of the 

four whole-brain graph features identified to relate to skill learning ability (all |t(56)| < 
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1.28, p > 0.21). This makes the influence of structural confounds on skill learning ability 

and its association with the identified NBS subnetwork unlikely.  

 

Effects of NMDA receptor challenge 

We detected no significant behavioral differences for skill increase (block 4 - block 1, 

F(1,17) = 0.33, p = 0.86), task duration (F(1,17) = 1.82, p = 0.20) or error rate (F(1,17) = 

0.48, p = 0.50) between the placebo and ketamine conditions (drug order was included 

as covariate of non-interest).In comparison to placebo, application of ketamine did not 

result in significant differences in global network measures (all F(1,12) < 0.83, p > 0.38) 

or whole brain mean connectivity (F(1,12) = 2.04, p = 0.18), but significantly decreased 

the mean functional connectivity of the learning associated cerebellar-cortical network 

(F(1,12) = 6.38, p = 0.027). In addition, the mean connectivity of the cerebellar-cortical 

network was significantly negatively correlated with individual Norketamine 

concentrations (46.1 ± 21.6 ng/ml, t(13) = -2.40, r = -0.55, p = 0.032, Figure 2.4) in the 

ketamine condition (age, sex, FD and BMI were controlled as covariates of non-

interest). Average frame-wise displacement (p = 0.424) and the time interval between 

drug infusion and resting state scan (p = 0.219) were not significantly different between 

the ketamine and placebo conditions. A trend towards a main effect of drug order was 

found (p = 0.06). The results indicate that the functional connectivity of the NBS-

derived cerebellar-cortical network is impacted by ketamine and negatively associated 

to the concentration of the major active metabolite (i.e., Norketamine). 

 

FIGURE 2.4 

 

Figure 2.4. Partial correlation plot of negative correlation between blood Norketamine concentration and the mean 

connectivity of the NBS derived cerebellar – cortical network in the ketamine condition (p = 0.032; adjusted for 

covariates and constant), controlled for age, sex, BMI and FD. 
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Controlling for individual mean functional connectivity differences 

We replicated the findings that skill increase is significantly positively associated with 

smallworldness (p = 0.008) and global efficiency (p = 0.005) and negatively associated 

with characteristic path length (p = 0.002) and transitivity (p = 0.006) using the mean 

functional connectivity as an additional covariate of non-interests. Likewise, we 

replicated our NBS results using the mean correlation as an additional covariate of 

non-interest. Specifically, we found both statistically-equivalent (same uncorrected 

initial threshold, different number of links in network; FWE corrected p < 0.001, 220 

links, ICC > 0.75) and density-equivalent (similar number of links in network, but more 

strict initial threshold p < 0.0001; FWE corrected p < 0.001, 87 links, ICC > 0.72) 

cerebellar – cortical subnetworks that were significantly associated with short-term 

motor learning ability and were modulated by ketamine (F(1,11) = 6.97, p = 0.023 for the 

subnetwork with 220 links; F(1,11) = 4.93, p = 0.048 for the subnetwork with 87 links). 

Age, sex, order, BMI, mean FD and mean connectivity were controlled for as covariates 

of non-interests. Moreover, a marginal significant negative correlation was found 

between the mean connection of the statistically-equivalent subnetwork and the 

Norketamine concentration (r = -0.51, p = 0.060) while the mean connection of the 

density-equivalent subnetwork was significantly correlated with the Norketamine 

concentration (r = -0.56, p = 0.037). 

 

Scrubbing 

Using a more stringent motion correction approach, we could replicate our previous 

findings that motor learning is positively correlated with smallworldness (r = 0.39, p = 

0.003), global efficiency (r = 0.41, p = 0.002) and negatively correlated with transitivity 

(r = -0.39, p = 0.003) (Table S2). However, motor learning was no longer correlated 

with characteristic path length (r = -0.24, p = 0.074, Table S2.2). 

In addition, we could replicate our finding of a cerebellar-cortical subnetwork that was 

correlated with learning rate. In detail, 81 connections linking bilateral cerebellum to 

visual, sensorimotor, parietal and frontal areas were positively correlated with skill 

increase (uncorrected initial p < 5 × 10-4, FWE corrected p = 0.036) while controlling 

age and sex as covariates of non-interest (FD was no longer controlled as covariate of 

non-interest since we used FD for scrubbing). This subnetwork also had a fair to good 

reliability (ICC > 0.73). We then extracted the mean connectivity of the 81 connections 
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and found a significant main effect of drug (F(1,13) = 5.10, p = 0.042) controlling for age, 

sex, order and BMI as covariates of non-interest. The mean connectivity of the 81 

connections was also significantly negatively correlated with Norketamine 

concentrations (r = -0.55, p = 0.03) when age, sex and BMI were controlled as 

covariates of non-interest. 

 

Influence of initial threshold definition 

To further explore the robustness of our NBS finding, we repeated our skill learning 

association analysis using two different initial thresholds for cluster definition, i.e. p < 

0.001 (less strict) and p < 0.0001 (more strict). Notably, a less strict initial p value 

should result in a larger but more unspecific network, while a stricter initial p value 

should provide a more specific, but smaller network. As expected, using an initial 

threshold of p < 0.0001, we found a similar, but smaller network of 38 links including 

the left cerebellum and cortical areas that was significantly correlated with skill learning 

(FWE pcorr = 0.012). Moreover, the p < 0.001 initial threshold resulted in a larger, 

cerebellar-cortical network consisting of 134 links that were significantly correlated with 

skill learning (FWE pcorr = 0.048). We conclude from these observations that the 

reported association of the cerebellar-cortical network with skill learning is observed 

across a range of initial t threshold definitions for NBS.  

 

Influence of parcellation choice 

To further probe our AAL-based findings for potential effects of parcellation choice, we 

repeated our analysis with a recently published functional parcellation atlas including 

268 nodes (Rosenberg et al., 2016). Notably, the choice of this particular functional 

atlas was motivated by the fact that it contains a comparable number of node 

definitions and covers the cerebellum in adequate detail, which is an important 

prerequisite given that we employed a motor-learning paradigm challenging subcortical 

and cerebellar structures. All other data processing and analysis procedures were kept 

identical to our initial AAL-based analysis. Similar to our AAL-based analysis, we 

detected a significant positive correlation of skill increase with small-worldness (r = 

0.28, p = 0.031) and global efficiency (r = 0.36, p = 0.005) and a significant negative 

correlation of skill increase with transitivity (r = -0.38, p = 0.002). In addition, the NBS 

analysis with the Rosenberg atlas resulted in a very similar, but interestingly less 

reliable (ICC2,1  = 0.63, ICC3,1  = 0.64) cerebellar – cortical network with 69 links that 
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showed a significant positive association with skill learning (FWE corrected p = 0.044, 

Figure S2.1). Moreover, comparable to our AAL-based findings, the mean connectivity 

of this network was significantly negatively correlated with Norketamine concentrations 

(r = -0.62, p = 0.014). We conclude from these observations that a) our AAL-based 

NBS findings do not relate to the choice of this particular parcellation scheme, and b) 

that the choice of a functional parcellation atlas does not necessarily improve the 

reliability of the examined connectivity estimates. 

 

 Discussion 

In the current resting-state fMRI study, we found several global brain network features 

to be significantly associated with individual motor learning ability. Further, we 

identified a cerebellar-cortical functional subnetwork that was a) significantly 

associated with short-term learning ability using a well-established motor learning task 

(Reis et al., 2009) and b) significantly modulated by NMDA receptor antagonism. We 

discuss our findings in more detail in the following paragraphs. 

Firstly, we demonstrate that short-term motor learning ability is associated with several 

global network features that characterize a network’s capability to process information 

efficiently (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). Specifically, global 

efficiency and small-worldness were positively correlated with motor learning ability, 

while transitivity and characteristic path length were negatively correlated. Although 

these learning-associated global network features are highly correlated with each 

other, they converge on the idea that higher network integration may favor better short-

term motor learning ability. This notion is in line with previous studies demonstrating 

that higher network integration is beneficial for a range of brain functions, including 

intelligence (van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) and working memory 

(Alavash, Doebler, Holling, Thiel, & Giessing, 2015). Importantly, while previous 

studies have suggested that motor learning changes resting-state connectivity patterns 

in terms of local network measures (Sami et al., 2014; Zhang et al., 2012), global 

resting-state network characteristics of the brain have been shown to be relatively 

stable (Braun et al., 2012; Cao et al., 2014) and untouched by the effects of motor 

learning (Heitger et al., 2012; Sami & Miall, 2013). Taken together, this may indicate 

that those global features of brain networks rather reflect the brain’s general capability 

to master a task independent of training-induced alterations.  
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Secondly, we identified a highly plausible cerebellum centered network with links 

between cerebellar, visuospatial, sensorimotor, frontal and temporal regions that were 

positively associated with an individual’s learning ability. We further provided evidence 

suggesting that the associated subnetwork is relatively reliable and robust against a 

variety of potential influencing factors including local grey matter volume, age, sex, 

head motion, individual mean functional connectivity differences, and the choice of the 

initial cluster-forming significance threshold and parcellation scheme, respectively.  

Notably, the identified subnetwork is highly plausible since it connects several key 

areas involved in the early phase of visuomotor learning, including M1, SMA, premotor 

cortex, V5, parietal cortex and cerebellum (Bassett et al., 2011; J. Doyon et al., 2002; 

Hikosaka et al., 2002; Zhang et al., 2012). Among these regions,  M1, SMA, premotor 

and visual cortex in particular have been related to the computational integration of 

spatial motor demands (Hikosaka et al., 2002)  and the handling of on-line visual 

feedback (Z. Y. Dong et al., 2012) during the acquisition of complex motor skills. Both 

functions are crucially important in the early learning phase of our complex motor 

learning paradigm which requires constant visually-guided feedback control and real-

time adjustments of executed motor programs. In addition, several parietal regions 

participated in the cerebellum-centered network, an observation that is in line with the 

suggested role of these regions in motor imagery learning (Zhang et al., 2012), a key 

element for planning the upcoming movements’ kinetic parameters (Kuang et al., 

2016). Moreover, the involvement of bilateral DLPFC is consistent with previous motor 

learning studies (Bassett et al., 2015; Heitger et al., 2012) and may plausibly relate to 

the high level of visual attention demands (Barbey et al., 2013 (Barbey, Koenigs, & 

Grafman, 2013)) and complex sequential memory input in motor learning tasks (Toni 

& Passingham, 1999), especially during the early learning phase (Bassett et al., 2015). 

Further, the central role of the cerebellum in our identified sub-circuit is in good 

agreement with prior PET and fMRI studies. These studies demonstrated a crucial role 

of the cerebellum as an error detector and parameter modifier of motor reference plans 

in early learning phases (J. Doyon et al., 2002; Penhune & Steele, 2012). This has 

been evidenced, for example, by severe impairments in certain aspects of motor 

learning (e.g. reaction time) due to lack of behavioral adjustment in face of errors in 

patients with cerebellar lesions (Laforce & Doyon, 2001; M. A. Smith & Shadmehr, 

2005). While the observed association between connectivity of the cerebellum-

centered subnetwork and motor learning ability could be interpreted as a stronger 
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intrinsic capability of the network architecture in superior learners, it could also be 

argued that the association is a consequence of learning-induced motor memory 

consolidation (Albert et al., 2009; Sami et al., 2014) since the resting-state scan was 

acquired post training. 

Thirdly, consistent with prior system-level ketamine studies in humans (Kraguljac et 

al., 2016; Niesters et al., 2012), we found that the cerebellum centered network was 

significantly modulated by NMDA receptor antagonism and its connectivity was 

negatively correlated with blood-level Norketamine concentrations. Interestingly, the 

motor learning performance before the scan itself was not affected (Francois et al., 

2016; van Loon et al., 2016) by low-dose ketamine infusion. Similar observations were 

made in object-recognition and reward-anticipation fMRI studies, where authors 

showed significantly altered BOLD responses but no main effect of drug under low 

dose (e.g., ≤ 0.5 mg/kg) ketamine administration during task performance This might 

indicate that the administered drug dose was sufficient to alter neural functional 

interactions in the identified cerebellum-centered subnetwork, but below the dose level 

at which overt interruptions of motor learning behavior become evident. In addition, the 

absence of a behavioral differences between the drug conditions suggests that the 

observed connectivity differences are unlikely the consequence of drug-induced 

changes in motor performance. The detected changes in cerebellar-cortical network 

connectivity suggest a role for NMDA receptor-dependent glutamatergic 

neurotransmission that may relate to consolidation processes. This interpretation is 

consistent with previous reports of a strong dependence of memory consolidation 

processes (Volianskis et al., 2015), BDNF genotype (Gosselin et al., 2016) and 

plasticity-related protein synthesis in the motor cortex (Luft, Buitrago, Ringer, 

Dichgans, & Schulz, 2004). Notably, the fact that we found no modulation of global 

network measures by ketamine further supports our earlier interpretation of these 

whole-brain efficiency markers as trait-like reflections of the brain’s capability to 

perform a range of different tasks.  

Our study has several limitations worth mentioning. Most importantly, while our finding 

of learning-related subnetwork connectivity indices is in line with the hypothesis that 

motor training leads to temporary changes in the functional brain network architecture, 

the directionality of such an effect cannot be claimed with our cross-sectional data. 

Even though we acquired resting-state data after off-line motor learning, the 

interpretation of a predisposed suitability of intrinsic brain networks for the challenged 
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motor performance is equally plausible (Mary et al., 2016). Secondly, while the 

connectivity within the motor learning associated subnetwork was significantly 

decreased under NMDA receptor blockade, the interpretation of impaired motor 

memory consolidation would ultimately require an affected motor performance in a 

preceding motor task. However, as we did not reassess the motor performance after 

scanning we must defer such a proof to future studies. Thirdly, previous resting state 

studies (Albert, Robertson, & Miall, 2009;(Barnes, Bullmore, & Suckling, 2009)) 

provided evidence for an impact of motor and cognitive tasks on the functional 

configuration of resting state networks in subsequent MRI scans. This implicates that 

in the case of drug-dependent differences in task engagement prior to the scan, variant 

carry-over effects (instead of or in addition to an NMDA receptor-related neural 

plasticity mechanism) may have influenced our drug challenge results. Notably, we did 

not detect significant main effects of drug condition on behavioral markers of training 

performance, which argues against such an interpretation. We nonetheless cannot 

fully exclude that other drug-induced differences in task engagement may have existed 

and have been carried over to the following resting state scan. Fourthly, although 

ketamine modulated our specific cerebellum centered subnetwork, ketamine as a non-

competitive NMDA receptor antagonist may also plausibly influence other brain 

subnetworks. 

In conclusion, we demonstrate that global brain network characteristics and specific 

subnetwork connectivity patterns during resting-state are associated with motor 

learning before scanning. We further show that the identified learning-related 

subnetwork connectivity estimates are unrelated to the grey matter volume of the 

nodes, reliable, and susceptible to glutamate challenge. We posit that the observed 

differential modulation of the examined whole-brain graph theoretical vs. cerebellar-

cortical network features by ketamine may reflect distinct qualities of learning-related 

brain function, for example, individual predisposition for learning new motor skills 

(global brain network measures) vs. glutamate-dependent processes related to active 

motor memory consolidation (cerebellar-cortical network connectivity). Taken together, 

this investigation may offer valuable information on the neural processes related to 

short-term motor learning in humans and provide a starting point for future studies in a 

still under-researched area of human neuroscience. 
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 Supplemental Information 

 

2.6.1 S-Method 

MRI data acquisition parameters 

Resting-state fMRI was performed using an echo-planar imaging (EPI) sequence with 

the following parameters: TR = 1790 ms, TE = 28 ms, 34 axial slices per volume, voxel 

size = 3 x 3 x 3 mm, 1 mm slice gap, 192 x 192 mm field of view, and 76° flip angle, 

descending acquisition. For the resting-state experiment, we instructed participants to 

close their eyes, relax, and not engage in any particular mental activity during the scan 

(task duration: 5 minutes, 167 whole-brain scans). After each scan, we confirmed with 

the subjects that they had not fallen asleep in the scanner. In addition, we acquired 

high-resolution T1-weighted 3-dimensional images with a magnetization-prepared 

rapid gradient echo sequence (3D-MPRAGE) and the following parameters: TR = 2530 

ms, TE = 3.8 ms, TI = 1100 ms, 176 slices, 256 x 256 mm field of view, 7° flip angle, 

and 1 mm3 spatial resolution. 

 

Global graph diagnostics 

Characteristic path length is the average shortest path length between each pair of 

nodes in the network, with shorter path lengths indicating faster information flow. 

Global efficiency is the average of the inverse shortest path length and relates to the 

capacity of the network for information transfer at the global level. Smallworldness is 

the ratio of the normalized clustering coefficient (segregation) and normalized path 

length (integration) (Bullmore & Sporns, 2009). In the current study, 100 randomized 

networks were generated to calculate smallworldness. Modularity Q is the degree to 

which the network can be partitioned into non-overlapping modules, with higher values 

indicating a more developed network community structure with more densely 

connected local nodes. Assortativity reflects how often nodes of a similar degree are 

connected with each other. And transitivity reflects the global clustering coefficient of 

nodes (Rubinov & Sporns, 2010). The underlying methods and interpretation of these 

metrics are discussed in more detail elsewhere (Bassett & Bullmore, 2006; Bullmore 

& Sporns, 2009; Rubinov & Sporns, 2010). 

 

Test-retest reliability data 



STUDY 1: RESTING-STATE BRAIN NETWORK FEATURES ASSOCIATED WITH SHORT-TERM 
SKILL LEARNING ABILITY IN HUMANS AND THE INFLUENCE OF N-METHYL-D-ASPARTATE 
RECEPTOR ANTAGONISM 

40 

In this study, 26 healthy volunteers (mean age: 24.4 ± 2.8 years, 15 females) 

underwent a 5 minute resting-state scan twice within two consecutive weeks (mean 

interval: 14.6 ± 2.1 days). All 26 volunteers were naive to the current motor learning 

task. The processing of data, definition of nodes, and construction of connectivity 

matrices were consistent with the current work.  We extracted the mean connectivity 

estimates from the links identified in the current NBS analysis (see results section) and 

calculated intra-class correlation coefficients (ICCs) as indices of robustness.  

 

Structural correlates 

Briefly, the processing of images included tissue classification, normalization to MNI 

space with a diffeomorphic image registration algorithm, correction for image intensity 

non-uniformity, a thorough cleaning up of gray matter partitions, application of a hidden 

Markov random field model, transformation of GM density values into volume 

equivalents, and smoothing with an 8mm FWHM Gaussian kernel.  

 

2.6.2 S-Results 

Table S2.1         

Node Coordinates T value P value  Node Coordinates T value P value 

 

CEREBELLUM.7B.L (-43, -54, -48) 

Frontal.Sup.R[2] 32, -11, 67 4.35 2.92×10-5  SMA.R[4] 5, -19, 58 3.83 1.64×10-4 

Frontal.Sup.L[2] -27, -8, 60 4.55 1.52×10-5  SMA.L[4] -5, -21, 52 3.58 3.59×10-4 

 -16, 1, 71 4.20 4.88×10-5  PreCentral.R[3] 59, 3, 26 4.55 1.52×10-5 

 -20, -5, 53 4.04 8.28×10-5   21, -15, 71 4.11 6.74×10-5 

Frontal.Mid.R[2] 49, -2, 53 4.49 1.83×10-5   40, -7, 47 3.88 1.43×10-4 

 30, -2, 56 3.81 1.74×10-4  PreCentral.L[3] -24, -20, 74 4.59 1.33×10-5 

Frontal.Inf.Tri.R[7] 50, 16, 25 3.71 2.41×10-4   -43, -1, 56 4.38 2.70×10-5 

Cuneus.R 2, -85, 31 3.53 4.23×10-4   -35, -24, 67 4.03 8.57×10-5 

Rolandic.Oper.L[5] -59, 2, 11 4.18 5.33×10-5  PostCentral.R[3] 49, -31, 56 5.13 1.98×10-6 

Parietal.Sup.R[6] -16, -59, 71 4.76 7.18×10-6   38, -28, 46 4.08 7.41×10-5 

 13, -72, 54 4.19 5.09×10-5   29, -40, 70 4.05 8.1×10-5 

 24, -63, 52 4.17 5.49×10-5   45, -20, 60 4.04 8.28×10-5 

 15, -47, 66 4.09 7.20×10-5   63, -8, 25 3.66 2.81×10-4 

Parietal.Sup.L[6] -30, -52, 62 4.64 1.10×10-5  PostCentral.L[3] -45, -23, 47 4.29 3.59×10-5 

 -17, -73, 51 3.51 4.58×10-4   -56, -2, 38 4.20 4.96×10-5 

Parietal.Inf.L -49, -36, 48 4.28 3.72×10-5   -34, -32, 55 4.01 9.22×10-5 

Paracentral.Lobule.L -9, -30, 66 3.67 2.75×10-4  Occipital.Sup.R[

1] 

25, -80, 41 4.62 1.16×10-5 

Precuneus.L -13, -54, 67 4.75 7.36×10-6  Occipital.Mid.R 34, -81, 31 4.55 1.49×10-5 

 -11, -63, 63 4.36 2.92×10-5  Occipital.Mid.L -29, -83, 25 4.08 7.32×10-5 

Calcarine.R 13, -71, 19 4.00 9.41×10-5   -44, -74, 5 3.88 1.37×10-4 

 23, -66, 9 3.77 1.98×10-4  Temporal.Mid.R 46, -71, 13 4.18 5.28×10-5 

 12, -81, 14 3.49 4.81×10-4   51, -62, 1 3.93 1.19×10-4 

Calcarine.L -4, -91, -7 3.95 1.11×10-4  Lingual.L -8, -80, -10 4.75 7.50×10-6 
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 -7, -95, 9 3.61 3.29×10-4  SupraMarginal.

R 

58, -23, 41 4.13  6.23×10-5 

 

CEREBELLUM.8.L (-26, -64, -48) 

Frontal.Sup.R[2] 32, -11, 67 3.84 1.59×10-4  PreCentral.R[3] 59, 3, 26 4.34 3.05×10-5 

Frontal.Sup.L[2] -27, -8, 60 3.94 1.16×10-4   40, -7, 47 3.56 3.81×10-4 

 -20, -5, 53 3.86 1.50×10-4  PreCentral.L[3] -43, -1, 56 4.16 5.69×10-5 

 -16, 1, 71 3.50 4.65×10-4  PostCentral.L[3] -56, -2, 38 3.81 1.77×10-4 

Frontal.Mid.R[2] 49, -2, 53 4.40 2.50×10-5   -34, -32, 55 3.62 3.17×10-4 

Calcarine.R 23, -66, 9 3.67 2.71×10-4  Lingual.L -8, -80, -10 4.11 6.74×10-5 

 13, -71, 19 3.53 4.25×10-4   -24, -71, 0 3.54 4.10×10-4 

Temporal.Sup.R 50, -33, 10 4.09 7.07×10-5  SMA.R[4] 5, -19, 58 3.55 3.98×10-4 

Temporal.Mid.R 46, -71, 13 3.59 3.48×10-4  SMA.L[4] -1, -2, 57 3.52 4.33×10-4 

Temporal.Pole.Mid.R 26, 6, -38 3.50 4.72×10-4  Rolandic.Oper.L[5

] 

-59, 2, 11 3.78 1.94×10-4 

 

CEREBELLUM.8.R (38, -42, -48)                                                                                        

Lingual.L -8, -80, -10 3.63 3.07×10-4      

 

CEREBELLUM.Crus1.R (38, -74, -31)                                                           CEREBELLUM.Crus1.L (-39, -76, -33) 

Temporal.Mid.L -64, -14, -11 3.95 1.13×10-4  Temporal.Mid.L -64, -14, -11 4.08 7.39×10-5 

 -53, -33, -10 3.52 4.38×10-4  Lingual.L -8, -80, -10 3.84 1.58×10-4 

 

CEREBELLUM.Crus1.R (37, -49, -37) 

 Calcarine.L -4, -91, -7 3.52 4.31×10-4 

  

CEREBELLUM.Crus1.L (-50, -55, -38) Lingual.L -8, -80, -10 3.76 2.06×10-4  

Calcarine.R 23, -66, 9 3.53 4.29×10-4  Lingual.L -8, -80, -10 3.53 4.28×10-4 

 

CEREBELLUM.Crus2.R (42,-65,-48) 

Frontal.Inf.Tri.L[7] -53, 26, 20 4.18 5.34×10--5  Temporal.Inf.L -52, -13, -28 4.93 3.95×10--6 

PreCentral.L[3] -43, -1, 56 3.76 2.06×10-4   -38, 5, -36 3.90 1.31×10-4 

Parietal.Sup.L[6] -30, -52, 62 3.92 1.25×10-4  Fusiform.L -27, 1, -39 3.58 3.6×10-4 

Occipital.Sup.R[1] 25, -80, 41 3.50 4.66×10-4   

CEREBELLUM.Crus2.L (-24, -75, -72) Temporal.Mid.L -53, -33, -10 4.65 1.05×10--5  

 -56, 1, -27 4.06 7.92×10--5  Frontal.Sup.L[2] -20, -5, 53 3.53 4.24×10-4 

 -64, -41, -13 4.04 8.49×10--5  Frontal.Mid.R[2] 49, -2, 53 3.84 1.58×10-4 

 64, -14, -11 4.03 8.91×10--5  Frontal.Inf.Tri.R[

7] 

50, 16, 25 4.46 2.03×10--5 

 

Table S2.1. Bolded letters indicate the links with the strongest (P < 1 × 10-4) individual associations with skill 

learning ability. Map coordinates refer to the center of gravity of the nodes and the standard space defined by the 

Montreal Neurological Institute, MNI. The corresponding label of the AAL atlas was assigned to each node for 

orientation. Numbers in square brackets indicate nodes mapping in proximity to: [1] visual motion-sensitive areas 

V5, [2] dorsal premotor cortex, [3] primary sensory-motor cortex, [4] supplementary motor area, [5] ventral 

premotor cortex, [6] intraparietal sulcus, [7] dorsolateral prefrontal cortex. 

 

Table S2.2 

                                                Original results                   Mean connectivity corrected                          Scrubbing  

Network features                 T values                   P_raw                     T values                    P_raw                     T values                    P_raw 

Smallworldness            2.73             0.008              2.74           0.008            3.13          0.003 

Global efficiency            2.90             0.005              2.92           0.005            3.28          0.002 

Path length           -3.33             0.002             -3.20           0.002           -1.82          0.074 

Modularity Q            1.55             0.126              1.29           0.203            2.32          0.024 
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Assortativity           -1.82             0.075              1.89           0.064           -2.21          0.031 

Transitivity 

Mean connection 

          -2.92 

          -0.84 

            0.005 

            0.406 

            -2.84 

                / 

          0.006 

             / 

          -3.13 

          -0.73 

         0.003 

         0.443 

 

Table S2.2. List of T values and P values on the association between motor learning ability and graph properties 

for original results, mean correlation corrected results and scrubbing results. 

 

Figure S2.1 

 

Figure S2.1. Panel A: Learning related cerebellum – cortical network identified based on AAL parcellation. In 

summary, 91 links were significantly correlated with skill learning (FWE  p = 0.037) Panel B: Replication of 

cerebellum – cortical network using functional parcellation. In summary, 69 links were significantly correlated 

with skill learning (FWE p = 0.044). Displayed nodes represent the coordinates of the center of gravity of the sub-

regions. 
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3 STUDY 2 2 : MULTI-IMAGING MODALITY IDENTIFIES DYNAMIC 
GLUTAMATERGIC DEPENDENT NEURAL PLASTICITY IN HUMAN 
BRAIN DURING LONG-TERM MOTOR LEARNING 

 

 Abstract 

The process of motor learning is accompanied by neural plasticity in a variety of brain 

areas. However, most of the motor learning studies applied univariate imaging modality 

to a limited amount of imaging time points (e.g. pre v.s. post-training), making it difficult 

to reveal the dynamic process of neural alterations during motor learning and the 

underlying biological mechanisms in the human brain. Therefore, we used multi-

imaging modality including functional and structural magnetic resonance imaging 

(MRI) as well as magnetic resonance spectroscopy (MRS) to acquire brain multi-

imaging data on five-time points along 11 days of sequential motor adaptation training. 

We obtained a training-induced behavioral improvement, increased activation in 

frontal-parietal areas as well as increased gray matter volume in the left supplementary 

motor area (SMA) and the right hippocampus. In addition, we found decreased 

functional connectivity of a learning rate associated sensorimotor centered subnetwork 

that covered not only our findings in the functional activity and structural morphological 

analyses, but also basal ganglia, thalamus, anterior cingulate cortex and temporal 

regions. The functional connectivity reduction of the sensorimotor centered network 

was significantly correlated with the glutamate level in the hand knob, suggesting a 

glutamatergic dependent neural plasticity during motor learning. We believe these 

results could help demonstrate the importance of multi-imaging modality in revealing 

neural plasticity in future studies.  

 

 Introduction 

The process of motor learning could be roughly divided into two phases: a short-term 

learning phase during which novel motor skill is learned within hours or few days and 

a long-term learning phase where the performance reaches an asymptotic level after 

months even years of practice (Dayan & Cohen, 2011; Hikosaka et al., 2002; Penhune 

& Steele, 2012; Ungerleider, Doyon, & Karni, 2002). When the behavioral improvement 

                                            
2 Presubmission: Zang et al., Multi-Imaging Modality identifies dynamic glutamatergic dependent neural plasticity in human brain 

during long-term motor learning 
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achieves a certain level during the learning, a variety category of neural plasticity 

subserving motor learning was also established in the central nervous system. 

From the functional activity perspective, the sensorimotor – cerebellar network is 

involved more during very early learning phase (e.g., within few hours) where detection 

of motor mistakes, updating of sensory-motor information and fast adjustment of motor 

parameters will take place (Penhune & Steele, 2012; Ramnani, 2006; Sami et al., 

2014). When learning enters relatively long-term learning phase (e.g. several days to 

few weeks), functional alterations were obtained in different forms such as increased 

activation in the primary motor cortex (Floyer-Lea & Matthews, 2005), shifted activation 

from supplementary motor area (SMA) to basal ganglia (Lehericy et al., 2005) and 

training-induced autonomy in the visuomotor network (Bassett et al., 2015). Compared 

with the functional re-organizations, structural changes in the human brain were always 

observed after a much longer period of training duration. For example, a 3-month 

juggling training could significantly induce an increase of gray matter volume in the 

visual area (Draganski et al., 2004). Similarly, Bezzola and colleagues showed 

increased gray matter volume in the primary motor area and parietal regions after 

subjects received months of golf training (Bezzola et al., 2011). In addition to the 

frequently reported visual-sensorimotor areas, cerebellum as well as basal ganglia 

which directly participate in the majority types of motor learning (i.e. direct / indirect 

pathway), other areas such as the dorsal lateral prefrontal cortex (DLPFC) (Bassett et 

al., 2015; Zang et al., 2018) as well as the hippocampus (Albouy et al., 2008; Schendan 

et al., 2003) were also found in association with motor learning. Specifically, the 

hippocampus is one of the most interesting brain regions for its critical role in other 

aspects of learning, such as spatial navigation (Maguire et al., 2000) and episodic 

memory consolidation (Eichenbaum, 2001; Fernandez et al., 1999). In a study by 

Albouy and colleagues (Albouy et al., 2008) where they found the activation of the 

hippocampus in association with basal ganglia was increased over-night (24 hours) in 

a visual-sequential task and the authors proposed their observations as a motor 

memory consolidation effect. However, to what extent the hippocampus may involve 

in the longer term of motor learning remains unclear. 

A plausible candidate molecular mechanism that contributes to the re-organization of 

the brain during motor learning is glutamatergic dependent plasticity (Hasan et al., 

2013). Several observations are noteworthy in animal studies that motor training can 

change the glutamatergic N-methyl-D-aspartate (NMDA) receptor subunit composition 
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in BG (Kent et al., 2013) and promote the NMDA dependent synaptic plasticity in the 

primary motor cortex of rats (Kida et al., 2016). Our recent study illustrated an NMDA 

receptor antagonism influenced short-term (30 minutes) learning related cerebellar – 

cortical functional network in healthy humans (Zang et al., 2018). It is also worth 

investigating how glutamate may influence human brain functional as well as structural 

re-organizations in the longer motor learning process in a more straightforward way. 

Notably, while most of the motor learning studies used univariate-imaging modality and 

limited imaging measurements (e.g. two time points) to assess the learning-induced 

neural plasticity, a study applied multi-imaging modality approach to reveal the 

dynamic process of learning-induced plasticity in left Brodmann area 44 (Shannon et 

al., 2016). This study is noteworthy due to the additional implementation of PET 

measurement that revealed a neuro-biological mechanism (i.e. aerobic glycolysis) to 

the observed functional changes. Thus, we considered that the combination of more 

imaging measurements with multi-imaging modality could comprehensively reveal the 

neural plasticity during motor learning. In the current study, we used a well-established 

visual guided sequential pinch force (Reis et al., 2009) paradigm to train healthy right-

handed participants for 11 consecutive days. The pinch force paradigm challenged not 

only the ability of motor adaptation that participants learned to adapt their pinch force 

according to the requests, but also how well participants can remember the given 

pinching sequence during the task (Reis et al., 2009). Five multi-imaging modality MRI 

scans including functional and structural MRI as well as magnetic resonance 

spectroscopy (MRS) (Hoerst et al., 2010) were carried out during the training to study 

the potential function as well as the structural change of brain throughout 11 days of 

training. To further investigate the effect of the absence of training, the follow-up MRI 

scans were carried out 3 months later after the 5th scans. We hypothesized that 11 

days of motor sequential training would induce brain functional as well as 

morphological changes in the brain. We in addition aimed to provide further neuro-

biological evidence to our targeted observations of neural plasticity and hypothesized 

that the glutamatergic concentration level may be associated with brain alterations. 

 

 Materials and Method 
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3.3.1 Motor learning task description  

SVIPT 

Subjects from the training group received a daily single training session outside the 

scanner from day 1 until day 11. The duration of a single training session was 

approximately 25 minutes. During the SVIPT training, subjects were holding a force 

transducer between their right thumb and index finger to modulate their pinch force 

according to the highlighted ‘Gate target’ (Figure 3.1). After achieving the highlighted 

‘Gate target’, subjects released their pinch force to allow the cursor return to it’s ‘home 

position’. The distance of the cursor to the ‘home position’ increased logarithmically 

with increasing pinch force in order to make the task more difficult. Subjects were 

instructed to modulate their pinch force so that the cursor navigated as quickly and 

accurately as possible along the following sequence: home-G2-home-G5-home-G3-

home-G1-home-G4. On each day, subjects performed five training blocks consisting 

of 35 trials (completed sequences). Movement times per trial were measured from 

movement onset in the home position to stopping at the last gate (G4).  

 

SVIPT in fMRI 

Both groups performed the SVIPT during fMRI scans on day 0, day 1, day 4, day 8 and 

day 11. During the SVIPT, 80 trials were equally and randomly assigned into four 

conditions, namely, the training condition, the novel condition, the movement-control 

condition and baseline condition. Each trial’s duration was determined by the pace of 

the participant and may distribute from around 4 seconds up to more than 10 seconds. 

In the training condition, the order of the ‘Gates’ was identical to the sequence of the 

daily training sessions (2-5-3-1-4). In the novel condition, the order of the ‘Gates’ was 

randomly generated. In the movement-control condition, subjects were asked to pinch 

the cursor into ‘Gates-3’ for 5 times. In the baseline condition, subjects were instructed 

to only look at the screen without pinching. We considered that the alteration of novel 

v.s. training contrast could represent the neural plasticity of the motor novelty and 

automatization process and hence selected it as ‘the contrast of interest’. 

 

MRI data acquisition 

We acquired functional MRI data, high-resolution MP-RAGE structural MRI data as 

well as MRS. The details of data acquisition are provided in the supplement information 

(SI). 
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3.3.2 Data analysis 

Estimation of learning rate 

We used a single exponential function to estimate the learning rate of the behavioral 

training data in the training group (M. Kodama et al., 2018). In detail, the average 

movement time (MT) in training sessions were modeled using the function 𝑦 = A𝑒𝜏𝑡, 

where t is the time scale coding day 1 until day 11 (t = 1, 2, 3,…., 11). Output parameter 

𝜏 represents the exponential drop-off learning rate: more negative 𝜏 value indicates 

faster learning process. We used the matlab function ‘fit.m’ to fit the exponential 

function with option ‘Robust’. One subject was exclude as outlier (> 2 standard 

deviations). 

 

Structural data preprocessing and group-level analysis 

Automated image processing was performed using standard procedures implemented 

in the voxel-based morphometry toolbox (cat12) in SPM12 

(http://www.fil.ion.ucl.ac.uk/spm). Data preprocessing included tissue classification, 

correction for image intensity non-uniformity, data denoising, multiplication with the 

Jacobian determinants of the deformation field to transform gray matter density values 

into volume equivalents, correction for individual total gray matter volume, 

normalization to MNI space, and smoothing with an 8 mm full-width-at-half-maximum 

isotropic Gaussian kernel (Ashburner & Friston, 2000).  

For second-level analysis, a group by time interaction effect was tested using the 

flexible factorial design with a contrast definition that tested for a linear interaction effect 

in gray matter volume across time. In detail, two regressors were generated for each 

group separately and were coded for a [-2 -1 0 1 2] weight for each subject’s 

preprocessed structural images on day 0, day 1, day 4, day 8 and day 11. Next, a 

contrast [1 -1] (training group > control group) was built to represent the positive group 

by time linear interaction of the five MRI scans (training group v.s. control group by day 

0 to day 11). In addition, a pair t-test model was built to estimate the structural change 

between the last day (day11) and the follow-up measurement. Significance was 

defined at a threshold of pFWE < 0.05 within predefined regions of interest (ROI, 

bilateral hippocampus and SMA) derived from the Harvard-Oxford atlas distributed in 

FSL (S. M. Smith et al., 2004). 
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fMRI data preprocessing and group-level analysis 

Functional image processing was performed using standard routines implemented in 

the Statistical Parametric Mapping software (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). All images were realigned to the first 

image of the time series, corrected for slice timing, spatially normalized to the Montreal 

Neurological Institute (MNI) EPI template, and spatially smoothed with an 8 mm full-

width at half-maximum (FWHM) Gaussian kernel.  

Both the ‘training condition’ and the ‘novel condition’ consisted of 20 mini blocks. Six 

head motion parameters from the realignment step were included as nuisance 

covariates into the model. During model estimation, the data were high-pass filtered 

with a cutoff of 128 s and an autoregressive model of the first order was applied. The 

first level contrast images were constructed using the difference between the beta 

images of the two conditions from a block design general linear model in SPM. Then, 

the contrast images were selected for the same flexible factorial model described in 

the structural image analysis section to test for the linear interaction effect between the 

two groups. A pair t-test model was build to estimate the structural change between 

the last day (day11) and the follow-up measurement as well. Significance was defined 

at a threshold of pFWE < 0.05 within a predefined functional activation mask (Figure 

S3.3) identified from an independent sample (SI) for the same contrast (novel > 

trained). The group-level interaction model was built to detect the linear group by time 

interaction effect of the contrast of interest. The paired t-test was also applied to 

estimate the functional activation change between the last day (day11) and the follow-

up measurement. 

 

Correlation matrix construction and network analysis 

For each participant, we extracted the mean time series from a 270 functional sphere 

ROIs (5 mm) which was based on the Power functional atlas (Power et al., 2011) (Cao 

et al., 2014). From the node time series, we regressed out the time series of white 

matter and cerebrospinal fluid masks (derived from SPM tissue probability maps 

thresholded at 90% for CSF and 99% for WM) ((Cao et al., 2014)) and the six head 

motion parameters from the realignment step. The resulting residual time series were 

temporally filtered using a 0.008 Hz high-pass filter. Finally, a 270×270 correlation 
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matrix was constructed with each element represents the Pearson correlation 

coefficient.  

We analyzed the connectivity matrices with NBS (Zalesky, Fornito, & Bullmore, 2010) 

to identify clusters connections that showed significant group by time linear interaction 

effect. Following prior procedures (Wang et al., 2013)), we defined initial linear 

regression models for each of the (N (N-1))/2 = 36315 (N = 270) possible links in the 

connectivity matrices. The group-level model was built with individual contrast weights 

[-2 -1 0 1 2] representing the five-time points for the training group and [2 1 0 -1 -2] 

representing the five-time points for the control group in one regressor. Next, a group-

level t contrast 1 and -1 was used to estimate the linear interaction effect because 

previous studies have shown altered functional connectivity during motor learning 

(Sami et al., 2014; Sampaio-Baptista et al., 2014). From the resulting p matrix, we 

defined a set of suprathreshold connections by isolating all links with t > 3.8 and p < 1 

× 10-4 and used M = 5000 permutations (Wang et al., 2013) to estimate the null 

distribution during permutation testing of the identified cluster association. 

 

Diffusion Tensor Imaging (DTI) 

DTI data preprocessing was performed with standard routines implemented in the 

software package FSL(S. M. Smith et al., 2004) including the following steps: 

correction of the diffusion images for head motion and eddy currents by affine 

registration to a reference (b0) image, extraction of non-brain tissues and linear 

diffusion tensor fitting. After the estimation of the diffusion tensor, we performed 

deterministic whole-brain fiber tracking as implemented in DSI Studio using a modified 

FACT algorithm (S. M. Smith et al., 2004). For the construction of structural 

connectivity matrices, we initiated 1,000,000 streamlines for each participant. 

Streamlines with a length of less than 10 mm were removed. The average fractional 

anisotropy (FA) of successful streamlines between each pair of nodes defined by the 

AAL atlas was then used as an estimate of structural connectivity, resulting in a 116 x 

116 connectivity matrix for each subject. 

 

 

MRS data preprocessing and analysis 

We then analyzed the MRS data using LCModel (Provencher, 1993) and GAMMA-

simulated basis-sets (Soher, Young, Bernstein, Aygula, & Maudsley, 2007), and 
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referenced the glutamate metabolite values to the water signal at TE = 30 mms. For 

later covariation, we quantified the gray matter content of individual MRS voxels 

relative to white matter and cerebrospinal fluid after segmentation of the T1-weighted 

structural images and correction for the chemical shift displacement of voxel locations. 

To test for association between pre-scan SVIPT learning and cortical glutamate, we 

defined a multiple regression model in SPSS25 with hand knob glutamate 

concentration as dependent variable.  

 

Correlation analyses 

We performed linear correlation analyses to investigate the association between 

learning rate (𝜏) and imaging phenotypes using Pearson correlation coefficient as well 

as the glutamate concentration level. Correlations with p < 0.05 were considered as 

significant results. 

 

 Results 

 

3.4.1 Subjects and study protocol 

Twenty healthy right-handed subject (29.7 ± 8.5 years, 8 males) were assigned into 

the training group and went through 11 consecutive days of SVIPT training and 19 age 

and sex matched (27.8 7 ± 8.4 years, 9 males, p values > 0.48) healthy right-handed 

subjects were assigned into the control group. All participants provided written 

informed consent for a protocol approved by the Ethics Committee of the University of 

Heidelberg. Exclusion criteria included MRI contraindications, a history of psychiatric 

and neurological illness, prior head trauma, and current alcohol or drug abuse. None 

of the subjects had a first-degree relative with a psychiatric disorder or received 

psychopharmacological treatment. 

Subjects from the training group received daily trainings from day 1 to day 11 outside 

of the scanner for approximately 30 minutes. We then acquired functional as well as 

high-resolution anatomical images of the participants’ brain using a 3 Tesla MRI 

scanner (Siemens Trio, Erlangen, Germany) on day 0 (baseline), day 1, day 4, day 8 

and day 11 for both the training and control group. In detail, we firstly acquired a 5-

minute resting state scan, followed by a self-paced sequential visual isometric pinch 

force task (SVIPT) task. Next, a 6-minute structural T1 image, followed by a MRS scan 
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was taken to measure the glutamate level in the hand knob. In addition, the same 

imaging protocol was applied in the 3 months follow-up session (day 90+). The 

illustration of the study design is provided in Figure 3.1A. The details of MRI acquisition 

parameters are provided in the supplemental information (SI). All subjects completed 

the entire session except for one subject from the training group dropped out for the 

follow-up measurement due to injury. 

 

Figure 3.1 

 

Figure shows the longitudinal study protocol of motor learning task. Panel A shows the motor learning task that 

has been utilized. Panel B shows the longitudinal design of the study. Subjects received baseline (day0) 

measurement. The daily training was carried out from day 1 to day 11. Brain imaging data were acquired on day1, 

day4, day8, day11. After training was stopped for three months, the a follow-up measurement was carried out for 

subjects who received daily training. 
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3.4.2 Behavioral data 

We obtained a significant reduction in movement time (MT) across 11 training days for 

the training sessions outside the scanner (repeated measures ANOVA: F(10,190) = 

40.87, p < 0.001, Figure 3.2A).  

For the in-scanner performance, we found significant reduction of MT for both novel 

condition (F(4,76) = 12.91, p < 0.001) and training condition (F(4,76) = 4.52, p < 0.003) in 

the training group. There was also a significant reduction MT for the training condition 

(F(4,72) = 2.97, p < 0.025) in the control group, but no significant effect was found for the 

novel condition (F(4,72) = 1.39, p > 0.247). Interestingly, we didn’t find any significant 

changes on MT for neither the novel condition (t(18) = 0.81, P > 0.93) nor the training 

condition (t(18) = -0.71, P > 0.48) between day11 and the follow-up measurement.  

In addition, we obtained a significant group by time interaction effect of movement time 

for novel (F(4,148) = 10.86, p < 0.001, Figure 3.2B) and training (F(4,148) = 14.81, p < 

0.001, Figure 3.2C) conditions during fMRI measurement between the two groups. 

There was no main effect of condition (novel v.s. train) in neither group (F(1,19) = 2.20, 

p = 0.16 for training group; F(1,18) = 0.43, p = 0.52 for control group). However, there 

was a significant time by condition interaction effect in the training group (F(4,16) = 3.71, 

p = 0.025) but not in the control group (F(4,15) = 2.15, p = 0.13). 

 

Figure 3.2 
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The figure shows the behavioral data from the current motor learning study. Panel A shows the significant 

reduction of duration during 11 days of training (p < 0.001) in the training group. Panel B shows the behavioral 

group-by-time interaction effect (p < 0.001) of the ‘novel condition’ fMRI scan. Panel C shows the behavioral 

group-by-time interaction effect (p < 0.001) of the ‘train condition’ fMRI scan. 

 

3.4.3 Brain imaging results 

Structural data 

Being consistent with our hypothesis (following previous accounts of volume increase 

in hippocampus and SMA), we found a significant linear group by time interaction effect 

of the gray matter in the right hippocampus (t(154) = 4.51, PSVC = 0.003, peak coordinate 

= [24 -22 -16], corrected within bilateral hippocampus and SMA mask from the HO 

atlas Figure 3.3a). The post-hoc analysis of the peak voxels further revealed that the 

gray matter volume of the right hippocampus significantly increased in the training 

group (F(4,76) = 4.52, p < 0.003), but not in the control group (F(4,72) = 1.9, p > 0.12).  

In addition, we found a significant interaction effect of gray matter in the left 

supplementary motor area (t(154) = 3.92, PSVC = 0.037, peak coordinate = [-9 -10 66], 

Figure 3.3b). The post-hoc analysis further revealed that the gray matter volume of the 

left supplementary motor area significantly increased in the training group (F(4,76) = 

5.58, p < 0.001), but not in the control group (F(4,72) = 1.83, p > 0.13). Our structural 

findings were robust against different choice of preprocessing pipeline (supplemental 

information SI, Figure S3.1). 

Compared with day11, both the hippocampus and SMA showed a decrease of gray 

matter volume on the follow-up measurement (Figure S3.2). 

Figure 3.3 
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The figure shows the group-by-time interaction of grey matter change during 11 days of training. Panel A&B: 

Panel A shows the uncorrected p < 0.005 threshold of grey matter volume change in the right hippocampus. Panel 

B shows the post-hoc percentage of grey matter volume change of the peak voxel (MNI [24 -22 -16]). Panel C&D: 

Panel C shows the uncorrected p < 0.005 threshold of grey matter volume change in the left SMA. Panel D shows 

the post-hoc percentage of grey matter volume change of the peak voxel (MNI [-9 -10 66]). 

 

Activation data 

We found significant positive group by time interaction effect in the left premotor cortex 

(t(154) = 4.38, PSVC = 0.006, peak coordinate = [-21 -4 57], Figure 3.4) and parietal cortex 

(t(154) = 4.11, PSVC = 0.047, peak coordinate = [-6 -70 60], Figure 3.4) [corrected using 

an a-priori functional activation map (Puncorr < 0.05) from an independent sample with 

the same contrast (SI, Figure S3.3)]. The post-hoc analyses revealed a significant 

increase of activation in the left premotor area (F(4,76) =8.41, p < 0.001) and left parietal 

area (F(4,76) = 7.02, p < 0.001) in the training group but no significant changes in the 

control group (F(4,72) = 1.07, p > 0.38 for premotor area and F(4,72) = 1.64, p > 0.17 for 

parietal area). 

As expected, we obtained a decrease of activation when the training was stopped for 

3 months (Figure S3.4). 
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Figure 3.4 

 

The figure shows the group-by-time interaction effect on the activation (novel > practice) changes over 11 days of 

training. Panel A: illustration of p < 0.005 uncorrected threshold of the premotor and parietal areas that showed 

activation change. Panel B: Post-hoc plots of peak voxel of left premotor area’s activation change (MNI [-21 -4 

57]). Panel C: Post-hoc plots of peak voxel of left parietal area’s activation change (MNI [-6 -70 60]). 

 

Network based statistics 

Using Network Based Statistic (Zalesky, Fornito, & Bullmore, 2010) we identified 

significant group by time interaction effect of the functional connectivity of a sub-

network (t > 3.8, initial p < 1 × 10-4, FWE corrected p = 0.014, Figure 3.5a). The NBS 

identified sub-network consisting of 23 connections mainly connecting sensorimotor 

areas to the bilateral basal ganglia, right hippocampus, left anterior cingulate cortex 

and bilateral temporal areas (Table S3.1), but also spanning to supplementary motor 

area, parietal area, thalamus and frontal area. Post-hoc analyses revealed a significant 

decrease of the functional connectivity of the network in the training group (F(4,76) = 8.9, 

p < 0.001, Figure 3.5b) but a significant increase in the control group (F(4,72) = 8.1, p < 

0.001, Figure 5b). Follow-up measurements showed a marginal significant increase of 

the identified sensorimotor-centered network when comparing with the last training day 

(day11) (t(18) =1.84, p = 0.083). 
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We then extracted the functional connectivity of the NBS identified sub-network from 

resting state data and found no significant interaction effect (F(4,148) = 1.68, p > 0.15), 

demonstrating that the identified interaction effect is task-specific. 

In addition, a significant correlation was obtained between the decreased functional 

connectivity of the identified sensorimotor-centered network (day 0 v.s. day 11) and 

the learning rate (r = 0.75, p < 0.001, Figure 3.6), suggesting that faster learners 

showed a higher decrease of connectivity. 

The network was robust against different choice of initial threshold and parcellation (SI, 

Figure S3.5 & S3.6). 

 

Figure 3.5  

 

The figure shows the group-by-time interaction effect of a sensorimotor centered network which extands to the 

putamen, ACC, hippocampus as well as temporal regions. Panel A shows the spatial disctribution of the network 

(pFWE = 0.014). Panel B shows the alteration of the mean connectivity of the identified network in training group 

and control group during 11 days of training. 
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Figure 3.6 

 

The figure shows the significant positive correlation between the learning rate (𝜏) and network connectivity change 

in the training group. 

 

MRS 

We did not obtain significant time effect on the glutamate in the training group (F(4,72) = 

1.67, p > 0.17) nor in the control group (F(4,60) = 0.8, p > 0.53). Neither did we find 

significant group by time interaction effect on the glutamate concentration level in the 

hand knob (F(4,132) = 1.19, p > 0.32).  

We found significant correlation between the average glutamate concertation level and 

the overall functional connectivity change of the sensorimotor-centered network (r = -

0.48, p < 0.034, Figure 3.7) in the training group but not in the control group (r = 0.13, 

p > 0.61), meaning that more amount of change of the sensorimotor-centered network 

was associated with higher glutamate level. The correlation is stable over other 

methodological choice of glutamate level (SI). 
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Figure 3.7 

 

The figure shows the negative correlation (p < 0.034) of the average glutamate concentration acquired from the 

left handknob (average of five MRI measurements) and the alteration of the connectivity of the identified 

sensorimotor centered network.   

 

 Discussion 

In the current longitudinal motor learning study, we detected neuroplasticity subserving 

an 11-day pinch force task. We applied the multi-imaging modality approach with five 

measurement time points, which allowed us to explore the dynamic process of 

neuroplasticity during motor learning. As a result, we found significant increased gray 

matter volume in the right hippocampus and the left SMA in the training group. 

Functionally, a significant interaction effect was identified in the left frontal-parietal 

network that showed increased activation in the training group. We further found a 

significant alteration of the functional connectivity of a sensorimotor centered 

subnetwork that was associated with the learning rate as well as the glutamate 

concentration level in the left primary motor cortex. We discuss our findings in more 

detail in the following paragraphs. 

Firstly, we demonstrated a motor learning-induced interaction effect on the gray matter 

volume in the right hippocampus and the left SMA. The post-hoc analyses revealed a 

significant increased gray matter volume in the training group but no significant change 

in the control group, providing evidence that the hippocampus and SMA were involved 
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in the process of motor sequential learning. The possible underlying cellular 

mechanisms of the structural alteration might come from the following aspects: 1, 

gliogenesis (W. K. Dong & Greenough, 2004; Zatorre et al., 2012); 2, vascular changes 

such as alteration of blood flow (Pereira et al., 2007; Zatorre et al., 2012). Notably, the 

post-hoc analyses revealed decreased gray matter volume in the hippocampus as well 

as the SMA on the follow-up measurement when the training was absent for about 

three months which made the hypothesis of ‘neuron growth’ unlikely (Zatorre et al., 

2012). SMA is a key target region that has been widely reported in a variety of motor 

studies for its function of planning temporal complex voluntary movements (Gerloff, 

Corwell, Chen, Hallett, & Cohen, 1997; Weilke et al., 2001). In previous longitudinal 

motor learning studies, Lehéricy and colleagues (Lehericy et al., 2005) obtained an 

increase activation in pre-SMA and a decreased activation in basal ganglia during a 4-

week sequential finger tapping training and proposed the observations as a motor 

representation shifting. In addition, Sampaio-Baptista and colleagues found that the 

baseline gray matter volume in SMA could predict long-term motor retention in a 6-

week juggling training that challenged the whole body (Sampaio-Baptista et al., 2014). 

In the current study, we found increased gray matter volume in the left SMA after 11 

days of sequential motor adaptation training which provided additional structural 

evidence of SMA relevance in motor learning. Interestingly, the gray matter volume of 

the right hippocampus was also increased during the training and the result was very 

robust against the different choice of structural pre-processing (Thomas et al., 2009). 

The hippocampus was considered as a key region that contributes critically in spatial 

navigation (Maguire et al., 2000) as well as in the process of building declarative 

memory (Eichenbaum, 2001; Fernandez et al., 1999). However, modern functional 

neuroimaging studies have shown that the activity of the hippocampus was 

significantly altered during motor sequential learning (Albouy et al., 2008; Schendan et 

al., 2003) and speculated that it was involved in the process of sleep-dependent motor 

consolidation process (Albouy et al., 2008). The possible explanations for our 

observation of increased gray matter volume in the hippocampus may either relate to 

the effect of motor memory consolidation or visually navigating the motor sequences. 

Nevertheless, the role of hippocampus during motor learning needs to be further 

investigated in future studies. 

Secondly, in line with the observations from several motor sequential learning studies 

(Grafton, Hazeltine, & Ivry, 2002; Honda et al., 1998), we identified a significant 
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increase of activation in the frontal-parietal regions in the training group but not in the 

control group. The increase of activation observed in the frontal-parietal regions may 

indicate the recruitment of additional cortical resources along the process of sequential 

motor learning (Dayan & Cohen, 2011; Poldrack, 2000) such as cerebral blood flow 

(Xiong et al., 2009). The role of the premotor area in the motor aspects was considered 

as a processor of higher-order movement (Chouinard & Paus, 2006). Specifically in 

the current study, we obtained increased activation anterior to the hand knob area, a 

premotor sub-parcellation that was thought to be involved in linking arbitrary sensory 

with movements (Brasted & Wise, 2004) or modulated by eye movements (Bruce, 

Goldberg, Bushnell, & Stanton, 1985). In addition, we observed increased activation in 

the parietal regions, an area that participated in motor imagery learning (Zhang et al., 

2012) and played a critical role as a key element for planning the upcoming 

movements’ kinetic parameters (Kuang et al., 2016). Together, we speculate that the 

altered functional activity of the identified frontal-parietal regions may indicate 

increased recruitment of more cortical units supporting the optimization of a set of 

complex spatial sequential motor parameters and visual-motor information integration 

during the learning process. 

Thirdly, again consistent with prior motor learning studies (J. Doyon & Benali, 2005; 

Zang et al., 2018), we found significant interaction effect of the functional connectivity 

of a sensorimotor centered subnetwork between the two groups. The functional 

connectivity of the sensorimotor-centered subnetwork decreased over time in the 

training group but increased in the control group. The interaction effect of the functional 

connectivity of the subnetwork was absent in the post-hoc analysis using resting-state 

data, demonstrating that the obtained effect was task-specific. The amount of the 

functional connectivity decrease of the subnetwork was significantly correlated with the 

learning rate, suggesting that faster learners had stronger functional connectivity 

plasticity. The subnetwork consisted of not only the connections linking the 

sensorimotor area to the regions identified in both the structural morphological (i.e. 

hippocampus and SMA) and functional activity (i.e. frontal-parietal regions) analyses, 

but also to the thalamus, basal ganglia, anterior cingulate cortex (ACC) as well as 

temporal regions. A plausible explanation for the overall decreased functional 

connectivity was the effect of training-induced autonomy (Bassett et al., 2015). In the 

current study, the pinch force task challenged mainly two aspects of motor learning 

namely sequential learning and motor adaptation (Reis et al., 2009). Therefore, during 
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early learning participants were required to adapt their pinch force to different 

sequences and such behavior required the cooperation of multi-brain areas. During 

training, participants could gradually master the task and consequently the abundant 

connection resources were no further needed (Bassett et al., 2015). Specifically, the 

decrease of the functional connectivity between the hippocampus and sensorimotor 

cortex further strengthened our morphological observations that the hippocampus acts 

like a motor memory processor and could help consolidate newly learned sensorimotor 

memory (Albouy et al., 2008). In addition, the involvement of ACC in the thalamus-

ACC-sensorimotor loop may relate to error-monitoring (Lutcke & Frahm, 2008; Seifert, 

von Cramon, Imperati, Tittgemeyer, & Ullsperger, 2011) which requires a high level of 

cognitive attention demands. Therefore, decreased functional connectivity among the 

thalamus-ACC-sensorimotor network may suggest a progressive decrease of attention 

demand during the task due to training. However, subjects from the control group 

maintained higher attention demands due to lack of training, which probably drove the 

arousing of functional connectivity during the task. 

Notably, we also detected a significant negative correlation between the amount of 

functional connectivity decrease of the sensorimotor network and the average 

glutamate concentration of the hand knob. Participants with higher motor glutamatergic 

concentration levels were showing a bigger reduction of the sensorimotor centered 

subnetwork connectivity. This observation provided a plausible biological mechanism 

of a glutamatergic modulated sensorimotor neural plasticity during motor training. Our 

speculation was in line with the observation from our previous system-level 

neuropharmacological studies (Zang et al., 2018) where we showed that ketamine as 

an NMDA antagonism blocked the functional connectivity of a cerebellar-cortical 

network after short-term motor learning. Supportive evidence was also provided by 

animal studies showing that training could promote presynaptic glutamate release 

(Kida & Mitsushima, 2018; Kida et al., 2016) while motor performance was significantly 

impaired in mGluR4 gene knock out mice (Pekhletski et al., 1996). Taking together, 

we interpret our findings as a glutamatergic modulation of motor memory consolidation 

process (Volianskis et al., 2015). 

In conclusion, we demonstrated that an 11-day of motor sequential learning could lead 

to neural plasticity that identified from multi-neuroimaging modalities. The functional 

activity of the frontal-parietal cortex was increased during the learning process while 

the morphological change was obtained in the right hippocampus and the left SMA. 
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Furthermore, we found decreased functional connectivity of glutamate modulated 

sensorimotor centered subnetwork that covered areas identified in our functional 

activation and structural morphology analyses. We posit that the observed changes 

from multi-imaging modalities may reflect more dynamic neuroplasticity during the 

motor learning process. Such a study design may help better understand motor 

learning-induced neuroplasticity in the future. 
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 Supplements 

 

3.6.1 Data acquisition parameters 

Structural MRI 

We acquired high-resolution T1-weighted 3-dimensional images with a magnetization-

prepared rapid gradient echo sequence (3D-MPRAGE) and the following parameters: 

TR = 2530 ms, TE = 3.8 ms, TI = 1100 ms, 176 slices, 256 x 256 mm field of view, 7° 

flip angle, and 1 mm3 spatial resolution. 

 

Functional MRI 

Functional MRI including SVIPT and resting-state fMRI were acquired using an echo-

planar imaging (EPI) sequence with the following parameters: TR = 1790 ms, TE = 28 

ms, 34 axial slices per volume, voxel size = 3 x 3 x 3 mm, 1 mm slice gap, 192 x 192 

mm field of view, and 76° flip angle, descending acquisition. For the SVIPT fMRI, 

participants were asked to perform the task as quickly and as accurately as possible, 

resulting in a self-paced task duration. For the resting-state experiment, we instructed 

participants to open their eyes and fixate on a cross. The resting-state duration was 5 

minutes including 167 whole-brain scans. 

 

Glutamate MRS 

Neuroimaging was performed 6 minutes after completion of the SVIPT training 

(Structural scan in between) on a 3T MRI scanner (Siemens Trio, Erlangen, Germany) 

equipped with a 32 channel multi-array head-coil. In vivo proton MRS data were 

acquired in a 18 mm3 voxel centered on the contralateral (i.e., left hemisphere) “hand 

knob”, an omega-shaped anatomical landmark within the precentral gyrus (Figure 

S3.9) that allows for a reliable identification of the primary motor representation of the 

trained hand (Yousry et al., 1997). For voxel positioning and tissue segmentation, we 

acquired T1-weighted 3-dimensional images with a magnetization-prepared rapid 

gradient echo sequence (spatial resolution: 1 mm3). Spectra acquisition and analysis 

followed previously published procedures (Hoerst et al., 2010). Briefly, this included 

point-resolved spectroscopy at TE = 80 ms (for optimal separation of glutamate from 

glutamine) with a transmitter frequency set to the chemical shift value of the gamma 

methylenecyclopropene protons of the glutamate signal (−2.3 ppm relative to the water 
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resonance), the acquisition of six fully relaxed and unsuppressed water spectra (TEs 

30, 80, 200, 500, 800, and 1100 ms), and eddy current correction. 

 

Figure S3.1 

 

The figure shows the MRS data acquisition of one of our subjects in the ‘hand knob’ area. 

 
 

3.6.2 S-Results 

Influence of different choice of co-register image 

The choice of co-register image during the preprocessing of longitudinal structural data 

may have an influence on the result (Thomas et al., 2009). Thus, we used the averaged 

raw structural image for co-registration in addition to the baseline image. Other pre-

processing parameters as well as group-level modelling were kept identical to our main 

analysis. Result showed that the interaction effect could be replicated in the right 

hippocampus (PSVC = 0.034, [27 -24 -14], Figure S3.2). However, the effect was not 

significant anymore in the left SMA (PSVC = 0.143). Thus, the observations 

demonstrated that the effect of learning induced structural change in the right 

hippocampus was very robust against different choice of co-register image during pre-

processing. 

 

Figure S3.2 
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Figure shows the replication of the hippocampus gray matter volume increase using the average raw structural 

images as co-register template. 

 

Follow-up pair t-test for structural images 

We found significant decrease of gray matter volume in the right hippocampus and left 

SMA after the training was stopped for 3 months using the pair t-test model in SPM 

(Figure S3.3). 

 

Figure S3.3 

 

 

Figure shows a decreased gray matter volume after the training was stopped for 3 months in the training group. 

Panel A shows the p < 0.05 uncorrected threshold brain map of the hippocampus. Panel B shows the p < 0.05 

uncorrected threshold brain map of the SMA. 
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Functional task specific mask identification 

To create a functional activation specific mask for novel > trained contrast, we used 40 

healthy right handed subjects (20 males, 28.13 ± 8.37 years old) from an independent 

sample. The experiment design was similar to the design of our longitudinal study day 

1 until day 11. In detail, subjects received training session before they performed the 

task during SVIPT fMRI session. The data preprocessing and first-level modeling was 

also identical to the longitudinal study. The functional activation specific mask was 

identified using a P < 0.05 uncorrected threshold in order to maintain as much as task 

relevant brain areas as possible (Figure S3.4). 

 

Figure S3.4 

 
 
Figure shows the binary functional activation mask defined by a P < 0.05 uncorrected threshold using novel > 

trained contrast on an independent sample (n = 40). 

 

Region Cluster T MNI 

R.Precentral 2743 6.06 45    8  30 

R.Fontal.Mid  4.4 27   11  54 

R.Pallidum  4.28 21   -1   3 

R.Occipital.Mid 2649 5.24 33  -70  30 

R.Occipital.Sup  5.04 30  -76  42 

R.Temporal.Inf  4.9 57  -55 -15 

L.Parietal.Inf 2506 4.15 -33  -46  45 

L.Parietal.Sup  4.05 -36  -58  63 

L.Cerebellum  3.91 -24 -67 -30 

L.Frontal.Sup 236 4.06 -21    2  51 

L.Frontal.Mid  3.34 -30    5  63 

L.Precentral 67 3.3 -42    2  30 

L.Frontal.Oper  2.11 -33    5  24 

R.Cerebellum 68 3.08 21  -73 -48 

L.Frontal.Tri 52 3.08 -48   38  27 
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R.Frontal.Medial 55 3.06 6   26  45 

R.Frontal.Orb 60 2.55 18   32 -18 

R.Frontal.Orb  2.48 24   47 -15 

R.Frontal.Orb  2.46 39   53 -12 

R.Cerebellum 12 2.01 33  -40 -27 

R.Cerebellum 11 1.95 33  -58 -30 

 

Figure shows the binary functional activation mask defined by a P < 0.05 uncorrected 

threshold using novel > trained contrast on an independent sample (n = 40). 

 

Follow-up pair t-test for activation 

We repeated the pair t-test for our activation data and found significant reduction of 

activation using the pair t-test model in SPM for the novel > trained condition after the 

training was stopped for 3 months (Figure S3.5). 

 

Figure S3.5 

 

Figure shows significant decrease of activation on the follow-up measurement compared with the last training day 

(day11). 
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Table S3.1 

Node Coordinates T value P value  Node Coordinates T value P value 

L.Paracentral (-7, -33, -72)  R.Precentral (29, -17, 71) 

L.Putamen -34, 3, 4 4.03 4.36×10-5  L.Inf.Temporal -68, -23, -16 4.03 4.36×10-5 

L.Rolandic.Oper -55, -9, 12 4.96 9.08×10-7  R.Mid.Temporal 65, -31, -9 4.03 4.38×10-5 

L.Sup.Temporal -55, -40, 14 4.56 5.09×10-6  L.Mid.Temporal -58, -26, -15 3.91 6.90×10-5 

R.Hippocampus 23, -13, -15 3.86 8.31×10-5   

L.ACC -3, 42, 16 3.84 8.89×10-5  L.Rolandic.Oper (-55, -9, 12) 

  R.PostCentral 13, -33, 75 4.01 4.68×10-5 

R.PostCentral (51, -6, 32)  R.SMA 10, -17, 74 3.95 5.98×10-5 

R.Putamen 36, 10, 1 3.92 6.72×10-5  L.Sup.Frontal -16, -5, 71 4.50 6.76×10-6 

R.Insula 36, 22, 3 4.04 4.25×10-5  L.Putamen -22, 7, -5 4.37 1.13×10-5 

L.Pallidum -15, 4, 8 3.99 5.13×10-5      

R.Pallidum 15, 5, 7 4.02 4.52×10-5  L.Precentral (-38, -27, 69) 

R.Putamen 23, 10, 1 4.02 4.49×10-5  L.Inf.Temporal -68, -23, -16 4.50 6.76×10-6 

R.Hippocampus 23, -13, -15 4.23 2.01×10-5      

     R.Thalamus (6, -24, 0) 

L.Mid.Temporal (-58, -26, -15)  L.ACC -3, 42, 16 3.89 7.64×10-5 

L.Sup.Parietal -16, -46, 73 4.01 4.70×10-5      

L.Sup.Frontal -16, -5, 71 4.04 4.28×10-5  L.Putamen (-22, 7, -5) 

     R.Rolandic.Oper 56, -5, 13 3.81 9.92×10-5 

NBS network table. The node names are presented according to the location in the AAL brain atlas (Tzourio-

Mazoyer et al., 2002).  

 

NBS: Influence of initial threshold 

To further explore the robustness of our NBS derived sensorimotor-centered network, 

we repeated our analyses using two less strict initial thresholds: P < 0.00025 and P < 

0.0005. Notably, a less strict initial threshold should result in a larger but less specific 

network. As expected, using P < 0.00025 initial threshold, a similar but larger (PFWE = 

0.018, 67 links) network was identified with more links connecting sensorimotor – 

visual areas and sensorimotor – frontal areas (Figure S3.6A). Moreover, using P < 

0.0005 initial threshold, the identified network was a lot larger (PFWE = 0.018, 147 links) 

and unspecific (Figure S3.6B). Those observations suggested that the sensorimotor 

centered network was robust against different choices of initial thresholds. 

 

Figure S3.6 



Study 2: MULTI-IMAGING MODALITY IDENTIFIES DYNAMIC GLUTAMATERGIC DEPENDENT 
NEURAL PLASTICITY IN HUMAN BRAIN DURING LONG-TERM MOTOR LEARNING 

69 

 

Panel A: figure shows the sensorimotor network using a initial thresholds: P < 0.00025. Panel B: figure shows the 

sensorimotor network using a initial thresholds: P < 0.0005. 

 

 

NBS: Influence of parcellation choice 

In order to demonstrate that the identified sensorimotor centered network is robust 

against other parcellation, we replicated our network findings using the AAL atlas that 

contains 116 nodes (Tzourio-Mazoyer et al., 2002). The network construction 

procedures and NBS model estimations were kept identical to our main analysis. The 

choice of AAL atlas was to demonstrate that our network findings based on a functional 

atlas could also be replicated using an anatomical atlas. As expected, we found a 

density-equivalent (20 connections) sensorimotor centered network that was similar to 

our main finding (uncorrected initial p < 2.5 × 10-4, FWE corrected p = 0.015 Figure 

S3.7A). In addition, the overall functional connectivity change of this AAL-based 

sensorimotor was also positively correlated with the learning rate (r = 0.68, p < 0.001, 

Figure S3.7B, one subject was excluded with > 2 standard deviation) and negatively 

correlated with the average glutamate concentration level (r = -0.45, p < 0.048, Figure 

S3.7C). 

 

Figure S3.7 
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Figure shows the replication of the sensorimotor-centered network using AAL atlas. The connectivity change of 

this network was also significantly correlated with the learning rate (p < 0.001) and the average glutamate level (p 

< 0.05). 

 

MRS: influence of other methodological choices 

We calculated the averaged glutamate / creatine ratio (two subjects were excluded due 

to extreme low creatine concentration level (> 2 standard deviation). We replicated our 

finding that the change of functional connectivity is correlated with the average 

glutamate / creatine ratio (r = -0.52, p < 0.026).  

To further account for tissue proportion confounds, the averaged glutamate 

concentrations were corrected for the GM volume within the voxel 

(GM/[GM+WM+CSF]) and the averaged creatine concentrations were corrected for 

total brain tissue volume ([GM+WM]/[GM+WM+CSF]) (Sampaio-Baptista et al., 2015; 

Stagg et al., 2014). The functional connectivity change of the network was correlated 

with the corrected averaged glutamate concentration (r = -0.49, p < 0.027) and 

glutamate / creatine ratio (r = -0.50, p < 0.036). 

 

DTI: negative findings 

We used the FA tracking from NBS-AAL replication post-hoc connections (20 links) 

and found no significant main effect of group (F1,33 = 2.56, P = 0.12) and time (F4,132 
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= 1.12, P = 0.35). The group-by-time interaction is either significant (F4,132 = 1.15, P 

= 0.34, Figure S3.8). 

 

Figure S3.8 

 
Figure shows post-hoc plots of deterministic fiber trajectory of the sensorimotor centered network defined with 

AAL atlas (20 links) from day0 to day11 of the train group and control group. Effect of group (F1,33 = 2.56, P = 

0.12), time (F4,132 = 1.12, P = 0.35) and group-by-time interaction (F4,132 = 1.15, P = 0.34) are all non 

significant. Bars represent standard errors. 

 

In addition, we tested the mean diffusivity (MD)(Sagi et al., 2012) from the right 

hippocampus cluster (extracted using small volume corrected T value as threshold, T 

> 3.65, cluster size = 38 voxels) and found significant main effect of group (F1,33 = 

5.98, P = 0.02). However, the main effect of time (F4,132 = 0.22, P = 0.64) and group-

by-time interaction (F4,132 = 1.44, P = 0.24) are not significant (Figure S3.9). 

 

Figure S3.9 
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Figure shows posthoc plots of the MD extracted from the right hippocampus cluster that shows significant group-

by-time interaction (T threshold > 3.65, cluster size = 38 voxels) of gray matter change along training.  There is a 

significant main effect of group (F1,33 = 5.98, P = 0.02). However, the main effect of time (F4,132 = 0.22, P = 

0.64) and group-by-time interaction (F4,132 = 1.44, P = 0.24) are not significant. Bars represent standard errors. 
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4 GENERAL DISCUSSION 

 Result summary 

 
The primary goal of this thesis was to investigate neural plasticity during short-term 

and long-term motor learning using multiple neuroimaging modalities. Three primary 

hypotheses were tested: 1) To investigate the association between short-term motor 

learning and brain connectivity, including network properties, 2) to identify 

morphological and functional changes as a result of longer-term motor learning and 3) 

to investigate the modulation of imaging phenotypes by glutamate. The main 

hypotheses have been tested in two studies which are briefly summarized below:   

The first study focused on short-term motor learning and used resting-state fMRI with 

a 30 minutes SVIPT training session prior to the scan to investigate the association 

between brain network properties and short-term motor learning. Training led to a 

significant improvement of motor performance which was positively correlated with 

brain network properties relating to efficiency, particularly small-worldness and global 

efficiency, and negatively correlated with brain network properties relating to network 

segregation, i.e. characteristic path length and transitivity. When investigating the 

topography of learning-induced changes of functional connectivity, a cerebellum 

centered sub-network involving visual, parietal, sensorimotor and temporal areas was 

detected to be positively correlated with short-term motor learning. Finally, a single 

dose of Ketamine, an NMDA antagonist, had significant effects on the identified 

cerebellum-centered network. Functional connectivity within this network was 

negatively correlated with the Ketamine metabolites (Norketamine) concentration 

level. 

The second study aimed to investigate system-level neural plasticity during long-term 

motor learning. This study enrolled a 11-day SVIPT longitudinal training protocol in 20 

healthy right-handed subjects (training group). An additional sample of 19  subjects, 

that were matched for age, sex and baseline performance, did not perform any training 

and served as the control group. Subjects were repeatedly scanned throughout the 

duration of the study (at five time points during the 11-day period). Subjects of the 

training group were additionally scanned at a follow-up measurement three months 

later. The resulting longitudinal data were used to assess dynamic neural plasticity 

during the whole training session. As expected, we found significant learning-induced 
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behavioral improvements along 11 days of training in the training groups. Regarding 

brain function, the activation of the frontal-parietal network increased throughout the 

training sessions in the training group but remained stationary in the control group, 

resulting in a significant group-by-time interaction effect. Regarding brain structure, the 

grey matter volume of the right hippocampus and the left SMA increased significantly 

in the training group, but not in the control group. A significant group-by-time interaction 

effect was further identified in the functional connectivity of a sensorimotor-centered 

network. The network covers the primary sensorimotor area, premotor cortex, parietal 

cortex, putamen, visual areas, temporal regions and the hippocampus. A post-hoc 

analysis revealed decreased functional connectivity of this sensorimotor network in the 

training group, but increased connectivity in the control group. The amount of reduction 

of the connectivity in the training group was significantly correlated with the behavioral 

improvement (learning rate) and the glutamatergic concentration level in the left 

primary cortex (hand knob). Compared to the last training day, the activation of the 

frontal-parietal network and the gray matter volume of the hippocampus and SMA were 

reduced at the follow-up. A trend-wise significant increase of functional connectivity of 

the sensorimotor-centered network was also observed at the follow-up. 

The main results could be replicated using different methodological choices and were 

robust against the selection of another brain atlas. Taken together, the two studies 

show that the cerebellum is a critical region involved in short-term motor learning while 

the putamen and hippocampus are involved in motor learning spanning longer time 

frames. Cortical regions such as the primary sensorimotor, premotor, parietal and 

visual area are associated with both short-term and long-term learning. The overall 

findings of the two studies are well in line with the majority of existing motor learning 

studies (Albouy et al., 2008; Bassett et al., 2015; J. Doyon & Benali, 2005; Sami et al., 

2014; Ungerleider et al., 2002). 

 

 Behavioral improvements 

 
Both short-term and long-term training led to a significant improvement in motor 

performance in the SVIPT. Subjects were able to familiarize themselves with the 

SVIPT within a short amount of time and showed fast and gradual improvement until 

reaching a plateau after two weeks of learning. It is also worth noting that during the 

long-term motor learning phase, subjects who received daily training also showed 
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better performance during novel sequences than subjects who did not, indicating that 

their adaptation ability to novel sequence also improved faster. These behavioral 

results suggest that the SVIPT can be successfully applied to investigate motor 

learning processes across time frames that range from minutes to weeks. 

 

 Short-term learning phase 

 
The results suggest that the ability to learn a new motor skill relies – to some extent – 

on the intrinsic properties of the individual’s brain network architecture. A more efficient 

brain network might therefore enhance the ability to acquire a new motor skill. The 

investigation of the association between “network efficiency” markers and behavioral 

improvements during short-term motor learning study is therefore of high relevance. 

The results of study 1 showed a strong correlation between the ability of novel skill 

acquisition and brain network features including small-worldness, global efficiency and 

characteristic path length. Those brain network features are considered to reflect how 

efficient information can travel through the brain network, and have previously been 

shown to be correlated with other cognitive aspects such as working memory (Langer, 

von Bastian, Wirz, Oberauer, & Jancke, 2013) and overall cognition (Douw et al., 

2011). The findings obtained in the short-term motor learning study add further 

evidence to the role of network efficiency for behavioral performance by showing that 

a more efficient functional brain network architecture also supports the acquisition of 

novel motor skills. This supports the idea that motor learning requires close and 

efficient interaction between distant brain regions. In addition, the functional 

connectivity of a cerebellum-centered network was also correlated with short-term 

motor learning ability, which is in line with previous studies (J. Doyon et al., 2002; 

Hikosaka et al., 2002; Tamas Kincses et al., 2008) In a model proposed by Doyon and 

Unterleider (J. a. U. Doyon, Leslie G., 2002), the cerebellum is considered to 

participate in the cerebellum-thalamus-striatum-cortical network during fast motor 

learning. Supportive evidence comes from clinical studies where patients with 

cerebellum lesions were shown to have difficulties in learning from their previous errors 

during motor learning (Sanes, Dimitrov, & Hallett, 1990). Those observations point to 

the fact that the cerebellum is one of the most critical regions for motor learning, 

especially during the early stage. The parietal area is also critical for motor learning 

due to its unique role in spatial orientation (Zhang et al., 2012). The current findings of 
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the cerebellar-cortical network included several connections between the cerebellum 

and the parietal cortex, suggesting that the connections between those brain regions 

may contribute to the ability of fast motor learning by coordinating upcoming kinetic 

parameters in the parietal lobe with parameters of error detection in the cerebellum 

(Laforce & Doyon, 2001; M. A. Smith & Shadmehr, 2005). As a result, subjects with 

better coordination of multivariate motor parameters between cerebellum and parietal 

lobe showed better learning. 

Another key region involved in fast motor learning is the primary motor cortex, which 

was also detected in our first study. Animal studies have consistently shown that the 

primary motor cortex is associated with fast skill learning (Costa, Cohen, & Nicolelis, 

2004) as a result of LTP and LTD (Rioult-Pedotti, Friedman, & Donoghue, 2000; Rioult-

Pedotti, Friedman, Hess, & Donoghue, 1998). In human imaging studies, the BOLD 

activation in the primary motor cortex was shown to be decreased after training (Dayan 

& Cohen, 2011). It is also worth noting that brain stimulation interventions like tDCS 

(Reis et al., 2009) or TMS (Pascual-Leone, Grafman, & Hallett, 1994) applied over the 

primary motor cortex can modulate the off-line motor memory consolidation process. 

Overall, the first study demonstrated an involvement of the cerebellum-visual-parietal-

sensorimotor loop in fast motor learning.  

 

 Long-term learning phase 

 
No alterations of cerebellum activity or morphology were found in the longitudinal 

study. Instead, the majority of functional and structural re-organizations took place in 

the cortical - basal ganglia loop, the frontal-parietal network and the hippocampus. 

Functional responses of premotor and parietal areas were constantly stronger to novel 

compared to trained sequences, while the overall activation decreased throughout the 

11 training days. This suggests that the change in activation was mainly driven by 

differences in automatization. Overall, both studies suggest that the premotor and the 

parietal area as well as the primary sensorimotor cortex are involved in both short-term 

and long-term motor learning.  

 

 A neurobiological model to interpret the transition from short-term to long-
term motor learning 
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The applied motor learning task is a visual sequential guided pinch force task that 

challenges both the “spatial sequence” and “motor adaptation” aspects. During 

training, subjects need to detect and remember the sequence during the current task 

block, and additionally update their pinch force according to the position of the cursor 

displayed on the monitor. These two aspects can be described in terms of the “spatial” 

and “motor” features as outlined in the motor learning model by Hikosaka and 

colleagues (Hikosaka et al., 2002). Hikosaka et al considered that the “spatial” 

component of motor learning relies more on the frontal-parietal network together with 

associative cerebellum and basal ganglia while the “motor” component of motor 

learning relies on the sensorimotor cortex and the motor part of the cerebellum and 

basal ganglia. The observations from the short-term motor learning study indicate that 

subjects who have an overall better ability to acquire a novel motor skill are equipped 

with a more efficient brain functional network, driven mainly by connections from the 

cognitive cerebellum (cerebellum 7b, 8 and crus I) to visual-parietal-motor areas. 

During short-term motor learning, subjects may need to pay “maximum attention” in 

order to achieve better performance. Longer-term motor learning instead occurs on a 

more implicit level and requires less attention. Converging results from functional and 

structural imaging modalities have shown that the morphology, activity and connectivity 

of the pre-motor area, SMA, sensorimotor area and putamen were changed during 11 

days of training. These longitudinal results are in line with the “motor” component of 

Hikosaka’s model.  

An interesting finding is the increased gray matter volume of the hippocampus, as well 

as the reduction of the hippocampal functional connectivity with the sensorimotor 

cortex during the longitudinal motor learning study. The hippocampus is well known for 

its critical role in “episodic memory” and “spatial navigation” (Maguire et al., 2000). 

Recent neuroimaging studies in humans identified hippocampal functional changes in 

a 24-hour oculomotor sequential learning task (Albouy et al., 2008) as well in a 4-day 

sequential finger tapping reaction time task (Schendan et al., 2003). A longer-term 

motor learning study conducted by Kodama and colleagues demonstrated a 1-week 

lasting grey matter increase in the bilateral hippocampus and parahippocampus after 

a 5-day arm reaching training (M. Kodama et al., 2018). The hippocampal finding in 

study 2 is therefore very well in line with the above-mentioned studies.  

Albouy and colleagues used a visuo-spatial sequential eye-tracking task and found 

increased hippocampus activation overnight but not within wakening hours (5 hours). 
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In contrast, the activation of ventral putamen increased consistently after 5 hours and 

24 hours. These findings were suggested to reflect memory consolidation processes 

in the hippocampus. The task designs in the study by Albouy et al, Sheden et al and 

the current project are very similar in their “sequential” nature. The involvement of the 

hippocampus in all three studies could therefore point to the role of the hippocampus 

as a “memory consolidation mediator” between the spatial and the motor aspects of 

Hikosaka’s model. Subjects may rely on their hippocampus to recall the spatial 

sequential movements during the task. However, the role of the hippocampus during 

motor sequential learning needs further specification due to the lack of direct evidence 

from animal studies and conflicting observations in amnesia patients with lesions in the 

hippocampus. The famous case study of patient H.M., who lost the majority of his 

medial temporal lobe due to a surgery to cure his severe epilepsy, showed that his 

ability of acquiring novel motor skill (drawing by looking at the reflection of a mirror) 

was not significantly reduced, though he could not recall that he had actually 

participated in the motor learning tasks. Similarly, clinical motor learning studies in 

amnesia patients with lesions in the medial temporal lobe did not show reduced 

behavioral motor learning performance (Gabrieli, Corkin, Mickel, & Growdon, 1993). 

Further experiments are needed to clarify the exact role of the hippocampus in motor 

learning as well as the conflicting observations between healthy subjects and amnesia 

patients.  

The follow-up measurement after three months revealed reduced activation of the 

premotor-parietal areas as well as reduced gray matter volume in the SMA and the 

hippocampus compared to the last training day. Overall, functional and structural 

changes recovered to the baseline level when training was stopped for three months. 

A similar trajectory of gray matter volume change was also reported in a previous 

longitudinal motor learning study that challenged more complicated tasks like juggling 

(Draganski et al., 2004). For human imaging studies, it is very difficult to explain the 

underlying mechanism of gray matter volume change. However, this “increase-

decrease” pattern of gray matter volume is quite similar to the pattern of gliogenesis 

that has been observed in animal studies (Zatorre et al., 2012). The decrease of 

activation in the premotor-parietal area may also indicate the process of “forgetting”. A 

plausible explanation is the lack of continuous training which might trigger a higher 

need for neural resources as soon as the task is re-performed.  

 



GENERAL DISCUSSION 

79 

 Glutamatergic modulation during short-term and long-term motor learning 

 
Pharmacological interventions and MRS data were used to further investigate potential 

neurobiological mechanisms of our findings in both the short-term and long-term motor 

learning studies. Taken together, the functional connectivity of both the cerebellar-

centered network identified during the short-term motor learning and the sensorimotor-

centered network identified during the long-term motor learning was modulated by 

glutamate. Specifically, using ketamine (an NMDA receptor antagonist), a decreased 

functional connectivity of the cerebellar-cortical network after NMDA blockade in the 

short-term motor learning study was found. In the longitudinal study, the glutamate 

concentration level did not significantly change in the hand knob area during motor 

learning. Instead, we observed a significant correlation between glutamate level in the 

hand knob area and the overall change of the functional connectivity in a network 

centered on the sensorimotor cortex. This result suggests that glutamate as measured 

by MRS in the hand knob area provides a trait-like marker of the potential 

cellular/molecular machinery regulating synaptic plasticity and subserving motor skill 

acquisition. These results are in line with several animal studies on the pivotal role of 

glutamate in motor learning which demonstrated that training can promote presynaptic 

glutamate release (Kida & Mitsushima, 2018; Kida et al., 2016) and that mGluR4 gene 

knock out mice have impaired motor performance (Pekhletski et al., 1996). In addition, 

the blockade of glutamate receptor or deletion of glutamatergic gene (Hasan et al., 

2013) was shown to lead to impaired LTP and LTD in the motor cortex, prefrontal 

cortex (Moghaddam, Adams, Verma, & Daly, 1997), the hippocampus (Bannerman et 

al., 2012) and the striatum (Dang et al., 2006). 

Interestingly, in the present study, we did not observe impaired motor learning/ 

performance under a low dose of ketamine infusion despite changes in brain function. 

This is probably due to the fact that the dosage of ketamine was too little to cause 

behavioral impairments. In addition, the longitudinal study provided direct evidence of 

glutamate concentration level-dependent functional connectivity plasticity of the 

sensorimotor centered network. These results suggest that glutamate participates in 

the modulation of synaptic plasticity processes during long-term motor learning that 

shape large-scale brain network reorganization and thereby helps optimize motor 

parameters and sensory experiences (Hasan et al., 2013). Although it is challenging 

to provide direct evidence of glutamatergic dependent LTP in humans, results from the 



GENERAL DISCUSSION 

80 

current project support this well-known model derived from animal and cellular studies 

(Bliss & Collingridge, 2013; Bliss & Lomo, 1973; Cooke & Bliss, 2006).    

 

 Limitations and Future directions 

 

4.7.1 Limitations of the current project 

The major limitation of our short-term motor learning study is that no “baseline” imaging 

data were acquired before the training that it is hard to rule out the effect of learning-

induced changes that might drive the behavior-network correlation. In addition, the time 

interval between the ketamine and placebo data was too short to fully rule out any drug 

carryover effects which might have resulted in drug-by-learning interaction effects.  

In the longitudinal study, the glutamate concentration data were acquired using a single 

significant voxel placed on the hand knob area from each individual brain space. This 

procedure could potentially cause a slightly shifted position of the hand knob area 

during spatial normalization and therefore could result in a difference of the coordinate 

located in the sensorimotor centered network. In fact, the network connections that 

were significantly correlated with glutamate concentration levels were not only 

distributed within the primary motor cortex but also to a variety of other motor brain 

regions, which might be caused by interindividual variations in spatial normalization. 

 

4.7.2 Future directions 

Our results build on existing evidence that brain activity, connectivity and structure in 

multiple regions are associated with various types of motor learning. It is necessary to 

carry out studies to accurately distinguish the contributions of different regions to 

different types of motor learning tasks.  

Following the successful implementation of the SVIPT protocol, this task could be 

rolled out in clinical populations with motor deficits. In the psychiatric domain, a target 

population is patients with schizophrenia and their first-degree relatives. The 

longitudinal study of sequential motor learning will inform the biological basis of motor 

symptoms of schizophrenia, the genetic and epigenetic contributions, and whether 

motor symptoms are rather disease-intrinsic or environmental related.  
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Last but not least, the role of the hippocampus in motor learning needs further 

clarification due to conflicting findings between amnesia patient studies and several 

recent healthy control studies, including this thesis.  
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5 SUMMARY 

Motor learning is a fundamental ability and one of the most robust models to study 

neural plasticity. The majority of human motor learning imaging studies focused on 

either short-term or long-term learning using one single imaging modality. These 

studies were thus not able to systematically investigate the dynamic process of motor 

learning from a multimodal perspective. 

The current project combined both short-term and long-term motor learning to 

comprehensively characterize neural plasticity at multiple phenotypic levels of the 

brain: functional activation, functional connectivity, grey matter volume, and glutamate 

concentration. To this end, this project involved a cross-sectional and a longitudinal 

study with multimodal brain imaging techniques (task fMRI, resting-state fMRI, gray 

matter structural fMRI, pharmacological fMRI, and MRS).  

Short-term motor learning was significantly correlated with brain network features 

related to network efficiency. It was also associated with a highly reliable cerebellum-

centered network which was significantly modulated by the NMDA antagonist 

ketamine. Long-term motor learning was associated with increased activation in 

premotor / SMA and parietal regions and with increased gray matter volume of the 

SMA and the hippocampus. In addition, long-term motor learning was accompanied by 

a decrease in the functional connectivity of a network centered on the sensorimotor 

cortex which was related to handknob glutamate concentration levels and which 

involved regions that were highlighted by our activation and structural analyses. Taken 

together, this thesis contributes important evidence to the neurofunctional and 

neurostructural underpinnings of motor learning and points to the critical roles of the 

cerebellum, the hippocampus and the relevance of glutamate for motor learning in 

humans. 
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