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Abstract: Autoregressive models have played an important role in time series. In this paper,
an autoregressive model based on the skew-normal distribution is considered. The estimation
of its parameters is carried out by using the expectation–maximization algorithm, whereas the
diagnostic analytics are conducted by means of the local influence method. Normal curvatures for
the model under four perturbation schemes are established. Simulation studies are conducted to
evaluate the performance of the proposed procedure. In addition, an empirical example involving
weekly financial return data are analyzed using the procedure with the proposed diagnostic analytics,
which has improved the model fit.

Keywords: AR models; EM algorithm; local influence method; maximum likelihood estimation

1. Introduction

For time series data analysis, autoregressive (AR) modeling is an essential technique and has been
applied in many areas including biology, chemistry, earth sciences, economics, education, engineering,
finance, health, medicine, and physics; see, for example, [1,2] for recent accounts of time series
modeling and applications. Issues related to estimation and testing for AR models are extensive and
well-established; see [3,4] for related issues to statistical diagnostics which are of equal importance.
Local influence diagnostics is the study of how relevant minor perturbations impact the fit of the
model and the results of statistical inference. This has become a useful statistical methodology after [5]
introduced the idea of local influence to aid in the identification of potentially influential observations.
Diagnostic analytics is used in a number of regression and time series models. Among others,
Refs. [6–15] investigated the local influence of linear or nonlinear regression models under non-normal
distributional assumptions. In a framework of time series data, Refs. [16–18] considered influence
diagnostics for AR and vector AR models under normal or elliptical distributions.

A standard assumption for time series models is that their errors are mutually independent and
follow normal or symmetric distributions, as studied in [16–18]. However, it is known that certain
financial and other datasets feature errors with skewed distributions. In order to deal with such data,
the skew-normal (SN) distribution and its scale-mixtures have provided an appealing alternative and
can therefore be adopted. Their properties, extensions, and applications are becoming increasingly
popular; see [19–26]. In addition, Refs. [27–29] studied SN linear, linear mixed, and nonlinear
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models. Ref. [8] analyzed diagnostics in the nonlinear model with scale mixtures of SN and AR errors.
For particular financial applications, Ref. [30] looked at asset pricing issues with return data following
SN models. To our knowledge, no study on influence diagnostics in AR time series models under SN
distributions have been reported. Therefore, the objective of the present paper is to formulate an AR
model under the SN distribution (SN AR model) and to derive diagnostic analytics with applications to
financial data. We use the matrix differential calculus pioneered by [31] to establish the mathematical
results used in our data analysis. We implement the maximum likelihood (ML) method with the
expectation–maximization (EM) algorithm to estimate the SN AR model parameters, whereas the
local influence method with four perturbation schemes is used for the diagnostic analytics. The EM
algorithm has now become a popular iterative technique for the ML estimation method with incomplete
data; see [32,33]. The paper proceeds as follows. In Section 2, the SN AR model is introduced and
the ML estimations of the model parameters are derived. Section 3 presents the local influence
method and establishes normal curvatures under four perturbation schemes. In Section 4, a simulation
study and an empirical example involving an AR model are presented, while the effectiveness of the
proposed diagnostics is illustrated and discussed. Our concluding remarks are addressed in Section 5.
The derivations of the normal curvatures are presented in the Appendix A.

2. An SN AR Model and its Parameter Estimation

2.1. The SN AR Model

A random variable Y is said to follow an SN distribution with location parameter µ,
scale parameter σ2 and skewness parameter λ, which is denoted by Y ∼ SN(µ, σ2, λ), if its probability
density function is given by

f (y) =
2
σ

φ

(
y− µ

σ

)
Φ
(

λ

(
y− µ

σ

))
, y ∈ R, µ ∈ R, σ > 0, λ ∈ R, (1)

where φ and Φ are the standard normal probability density and cumulative distribution functions,
respectively. We see that, if λ = 0, then the probability density function of Y defined in (1) reduces
to the normal probability density function. If Y ∼ SN(µ, σ2, λ), then E(Y) = µ + σδ

√
2/π and

Var(Y) = σ2 − (2/π)σ2δ2, where δ = λ/
√

1 + λ2.
Let Yt be generated by a stationary AR(p) process given by

Yt = β1yt−1 + · · ·+ βpyt−p + ut = x>t β + ut, t = 1, . . . , T, (2)

where Yt is a time series, with Y1, . . . , Yp being the p initial values for yt−j, such that xt =

(yt−1, . . . , yt−p)> is the p× 1 vector of SN AR(p) covariates; β j is a regression coefficient, for j = 1, . . . , p,

such that β = (β1, . . . , βp)
> is a p× 1 regression coefficient vector, and ut is the scalar error term which

follows an SN distribution, that is, ut ∼ SN(0, σ2, λ), where σ2 is the scale parameter and λ is the
skewness parameter. Thus, θ = (β, σ2, λ)> is the (p + 2)× 1 vector of SN AR(p) model parameters.
Note that we do not include an intercept in the SN model above. The expected value of ut is not
zero, due to the assumption that the expected value of the underlying normal distribution is zero.
Then, we choose the non-zero expected value of ut as an approximate to replace an intercept for the
SN model.

2.2. ML Estimation

Finding the ML estimate of the parameter vector θ by direct maximization of the log-likelihood can
potentially be a difficult task, so we implement the EM algorithm for this estimation. Let yc = (yo, ym)>

denote the complete data, with yo being the observed data and ym the missing data. We use the notation
Yc, Yo, Ym for the random vectors associated with yc, yo and ym, respectively. Starting from θ(0) as the
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initial estimate, we can get θ(0), θ(1), . . . by running the two steps of the EM algorithm iteratively as
defined below.

In order to implement the EM algorithm, consider the stochastic representation given by

Y = µ + σδH + σ
√
(1− δ2)H1, (3)

where H = |H0| ∼ HN(0, 1), with HN being used to indicate the half normal distribution. In addition,
both H0 and H1 are independent random variables which follow a standard normal distribution.
Note that, from (3), we have Y|H = h ∼ N(µ + hλσ/

√
1 + λ2, σ2/(1 + λ2)) and H ∼ HN(0, 1).

Hence, by considering yo = (yp+1, . . . , yT)
>, ym = (hp+1, . . . , hT)

> and yc = (yo, ym)> as the observed,
missing and complete data sets, respectively, we have the complete-data log-likelihood function for
θ = (β, σ2, λ)> given by

`c(θ, yc) =
T

∑
t=p+1

(
−1

2
log(σ2) +

1
2

log(1 + λ2)− 1 + λ2

2σ2

(
yt − x>t β− λσ√

1 + λ2
ht

)2
)

. (4)

Therefore, for the E-step of the EM algorithm, given the current estimate θ̂(k) and based on (4), we can
calculate the function Q(θ)|θ=θ̂(k) = E[`c(θ, Yc)|Yo = yo]|θ=θ̂(k) as

Q(θ) = − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + λ2) − (1 + λ2)

2

>
∑

t=p+1

(
yt − x>t β

σ
− λ√

1 + λ2
ĉt

)2

− λ2

2

>
∑

t=p+1
(ĉ2

t − (ĉt)
2), (5)

where ĉt = E(Ht|Yo = yo)|θ=θ̂(k) = τ1 + τ2φ(τ1/τ2)/Φ(τ1/τ2), ĉ2
t = E(H2

t |Yo = yo)|θ=θ̂(k) = τ2
1 + τ2

2 +

τ1τ2φ(τ1/τ2)/Φ(τ1/τ2), and τ1 = (λ̂(k)/σ̂(k))(1 + (λ̂(k))2)1/2(yt − x>t β̂(k)), τ2 = 1/(1 + (λ̂(k))2)1/2.
Note that equations in (4) and (5) are obtained from the probability density function given in

(1) and after calculating the expected value of (4). In addition, ĉ2
t is different from (ĉt)2. For the

M-step, we update θ̂(k) by the Newton–Raphson iteration Q̇(θ̂(k+1)) = Q̇(θ̂(k)) + Q̈(θ̂(k))(θ̂(k+1) −
θ̂(k)) + o(|θ̂(k+1) − θ̂(k)|), where Q̇ denotes the gradient vector and Q̈ denotes the Hessian matrix. As it
is known, a suitable initial value θ̂(0) is important and difficult to find in numerical computation.

Thus, we can get θ̂(0) = (β̂(0), σ̂2
(0)

, λ̂(0)) considering β̂(0) as the ordinary least squares (OLS) estimate

and then σ̂2
(0)

, λ̂(0) can be computed as θ̂ = (β̂, σ̂2, λ̂) until |θ̂(k+1) − θ̂(k)| < 10−5.

2.3. The Hessian Matrix

Next, we compute the Hessian matrix Q̈ (θ) evaluated at the ML estimate θ̂ using

`c(θ, yc) =
T

∑
t=p+1

(
−1

2
log(σ2) +

1
2

log(1 + λ2)− 1 + λ2

2σ2

(
ut −

λσ√
1 + λ2

ht

)2
)

. (6)

Then, based on (6), the Q function is given by

Q(θ)|θ=θ̂ = E[`c(θ, Yc)|Yo = yo]|θ=θ̂

= − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + λ2)

− (1 + λ2)

2

>
∑

t=p+1

(
ut

σ
− λ√

1 + λ2
ĉt

)2

− λ2

2

>
∑

t=p+1
(ĉ2

t − (ĉt)
2).
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For the SN AR(p) model, we have the (p + 2)× (p + 2) Hessian matrix Q̈(θ̂) given by

Q̈(θ̂) =



∂2Q(θ)
∂β∂β>

∂2Q(θ)
∂β∂σ2

∂2Q(θ)
∂β∂λ

∂2Q(θ)
∂σ2∂β

∂2Q(θ)

∂(σ2)
2

∂2Q(θ)
∂σ2∂λ

∂2Q(θ)
∂λ∂β

∂2Q(θ)
∂λ∂σ2

∂2Q(θ)
∂λ2


∣∣∣
θ=θ̂

, (7)

where θ̂ = (β̂, σ̂2, λ̂) is the ML estimate of θ. The expression for ∂2Q (θ)/∂β∂β> and the other
submatrices are presented in Appendix A.1.

3. Influence Analysis for the SN AR Model

3.1. Local Influence

Let `(θ) denote the log-likelihood function for the model given in (2), which is the postulated
model, where θ is a (p + 2) × 1 vector of unknown parameters with its ML estimate θ̂.
Let ω = (ω1, . . . , ωq)> denote a q × 1 vector of perturbations confined to some open subset of Rq

and let ω0 denote a q× 1 non-perturbation vector, with q as a suitable number of dimensions and
ω0 = (0, . . . , 0), or ω0 = (1, . . . , 1), or a third choice, depending on the context. Then, `(θ) and `(θ|ω)

represent the log-likelihood functions of the postulated and perturbed models, respectively. Note that
`(θ) = `(θ|ω0).

We suppose that `(θ|ω) is twice continuously differentiable in a neighborhood of (θ̂, ω0).
We are interested in the comparison of θ̂ and θ̂ω using the local influence method idea, which is
to investigate the degree of inference affected by those minor changes in the corresponding
perturbations. Ref. [5] used likelihood displacement (LD) to assess the influence of the perturbation
ω defined as LD(ω) = 2(`(θ̂)− `(θ̂ω)). Here, large values of LD(ω) indicate that θ̂ and θ̂ω differ
considerably in relation to the contours of the non-perturbed log-likelihood function `(θ). The idea
is based on studying the local behavior of LD(ω) and the normal curvature Cl (θ) in a unit-length
direction vector l, where ||l|| = 1. According to [5], the normal curvature used to examine the local
influence of the perturbation vector at ω = ω0 is Cl (θ) = 2|l> F̈l| = 2|l>(∆> ῭−1∆)l|, with

F̈ =
∂2`(θ|ω)

∂ω∂ω>
, ∆ =

∂2`(θ|ω)

∂θ∂ω>
, ῭ =

∂2`(θ)

∂θ∂θ>
,

where l is a q× 1 vector of unit length, − ῭ is the (p + 2)× (p + 2) observed information matrix for the
postulated model, ∆ is the (p + 2)× q perturbation matrix for the perturbed model, and − ῭ and ∆ are
evaluated at θ = θ̂ and ω = ω0. The suggestion is to make the local influence diagnostic analytics by
finding the maximum curvature Cmax = max||l||=1 Cl , where Cmax corresponds to the largest absolute
eigenvalue λmax and its associated eigenvector lmax of the matrix F̈ = ∆> ῭−1∆. If the absolute value of
the ith element of lmax is the largest, then the ith observation in the data may be the most influential.
To examine the magnitude of influence, it is useful to have a benchmark value for Cmax and for the
elements of lmax, see [10,18,34].

3.2. Local Influence for the SN AR Model

Next, we conduct a local influence diagnostic analytics for the SN AR(p) model. Due to
the complexity of the SN distribution, we obtain the ML estimates based on the EM algorithm.
As suggested by [29,34], the Q function and a Q function obtained similarly as LD can be used to
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replacethe log-likelihood function and likelihood displacement in the method of [5], in order to assess
the influence of the perturbation. Thus, the normal curvature should be changed to be

Cl (θ) = 2|l> F̈l| = 2|l>(∆>Q̈−1∆)l|, (8)

with

F̈ =
∂2Q(θ|ω)

∂ω∂ω>
, ∆ =

∂2Q(θ|ω)

∂θ∂ω>
, Q̈ =

∂2Q(θ)

∂θ∂θ>
,

where l is a q× 1 vector of unit length, and F̈, Q̈ and ∆ are q× q, (p + 2)× (p + 2) and (p + 2)× q
matrices, respectively. In addition, Q̈ and ∆ need to be evaluated at θ = θ̂ and ω = ω0.

The method examines the total local influence Ct = Clt(θ), where lt is a q × 1 unit-length
vector with one at the tth position and zeros elsewhere. We denote S = −∆>Q̈−1∆. Since Cl (θ)

is not invariant under a uniform change of scale, Ref. [34] proposed the conformal normal curvature
Bl(θ) = Cl(θ)/(2tr(S)). An interesting property of the conformal normal curvature is that, for any
unit-length direction l, we have 0 ≤ Bl (θ) ≤ 1, which allows comparison of curvatures among
different models.

In order to determine if the tth observation is influential, Ref. [34] proposed to classify the
tth observation as possibly influential if M(0)t = Blt is greater than the benchmark 1/q + c∗SM(0),
where SM(0) is the sample standard error of M(0)k, for k = 1, . . . , q, and c∗ is a certain constant.
Depending on the specific application, c∗ may be taken to be a suitably selected positive value.

The forms given in (8) are used to obtain our normal curvature results under the four perturbation
schemes, namely the case-weights, data, variance parameter, and skewness parameter schemes.
The matrices Q̈ and ∆ need to be established for each scheme.

We employ the matrix differential calculus proposed by [31] to establish these algebraic results in
the following sections. We present their derivations in their respective Appendix A.

3.3. Perturbation Matrices

3.3.1. Perturbation of Case-Weights

Assume that a minor perturbation is made on the SN AR(p) model, with yt = x>t β + ut being
replaced by ωtyt = ωtx>t β + ωtut, where ωt is the weight. Let ω = (ωp+1, . . . , ωT)

> denote the
(T − p)× 1 perturbation vector and ω0 = (1, . . . , 1)> denote the (T − p)× 1 non-perturbation vector.
Then, the complete-data log-likelihood function of the perturbed model is given by

`c(θ, ω, yc) =
T

∑
t=p+1

(
− 1

2
log(σ2) +

1
2

log(1 + λ2)− 1 + λ2

2σ2

(
ωtut −

λσ√
1 + λ2

ht

)2)
. (9)

Thus, the perturbed Q function obtained from (9) is expressed as

Q(θ, ω)|θ=θ̂ = E[`c(θ, ω, Yc)|Yo = yo]|θ=θ̂

= − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + λ2)

−1 + λ2

2

>
∑

t=p+1

(
ωtut

σ
− λ√

1 + λ2
ĉt

)2

− λ2

2

>
∑

t=p+1
(ĉ2

t − (ĉt)
2). (10)

For the SN AR(p) model in the perturbation of case-weights, the (p + 2)× (T− p) perturbation
matrix ∆ must be evaluated at θ = θ̂ and ω = ω0 after taking derivatives, obtaining

∆ =
∂2Q(θ, ω)

∂θ∂ω

∣∣∣
θ=θ̂,ω=ω0

=


1+λ̂2

σ̂2 ûtxt
>

1+λ̂2

2σ̂3

(
2û2

t
σ̂ −

λ̂ĉt√
1+λ̂2

ût

)
− 2λ̂

σ̂2 û2
t +

2λ̂+1√
1+λ̂2

ĉt
σ̂ ût

 , (11)
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where

ût = yt − x>t β̂,

ĉt = E(Ht|Y0, θ̂) = τ1 +
φ( τ1

τ2
)

Φ( τ1
τ2
)

τ2,

ĉ2
t = E(Ht

2|Y0, θ̂) = τ2
1 + τ2

2 +
φ( τ1

τ2
)

Φ( τ1
τ2
)

τ1τ2,

τ1 =
λ̂

σ̂
√

1 + λ̂2
ût, τ2 =

1√
1 + λ̂2

.

3.3.2. Perturbation of Data

Assume that a perturbation replaces yt by ωt + yt. Let ω = (ωp+1, . . . , ωT)
> denote the

(T − p) × 1 perturbation vector and ω0 = (0, . . . , 0)> the (T − p) × 1 non-perturbation vector.
The perturbed AR(p) model can be written as yt + ωt = β1 (yt−1 + ωt−1) + · · ·+ βp

(
yt−p + ωt−p

)
+

ut, where ut = yt − x>t β + µ(ωt) and µ(ωt) = ωt − β1ωt−1 − · · · − βpωt−p. Then, the complete-data
log-likelihood function of the perturbed model is given by

`c(θ, ω, yc) =
T

∑
t=p+1

(
− 1

2
log(σ2) +

1
2

log(1 + λ2)− 1 + λ2

2σ2

(
ut + µ(ωt)−

λσ√
1 + λ2

ht

)2)
.

Thus, the perturbed Q function is expressed as

Q(θ, ω)|θ=θ̂ = − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + λ2)

−1 + λ2

2

>
∑

t=p+1

(
ut + µ(ωt)

σ
− λ√

1 + λ2
ĉt

)2

− λ2

2

>
∑

t=p+1
(ĉ2

t − (ĉt)
2). (12)

For the SN AR(p) model in the perturbation of data, we have

∆ =
∂2Q(θ, ω)

∂θ∂ω

∣∣∣
θ=θ̂,ω=ω0

=


1+λ̂2

σ̂2 xt
>

1+λ̂2

2σ̂3

(
2û2

t
σ̂ −

λ̂√
1+λ̂2

ĉt

)
− 2λ̂

σ̂2 û2
t +

2λ̂+1√
1+λ̂2

ĉt
σ̂

 , (13)

where ût = yt − x>t β̂, and ĥt is as in the data perturbation.

3.3.3. Perturbation of Scale

Assume that the variance parameter σ2 in the model is replaced by ωt
−1σ2, meaning that

ut ∼ SN(0, ωt
−1σ2, λ). Let ω = (ωp+1, . . . , ωT)

> denote the (T − p) × 1 perturbation vector and
ω0 = (1, . . . , 1)> denote the (T− p)× 1 non-perturbation vector. Then, the complete-data log-likelihood
function of the perturbed model is given by

`c(θ, ω, yc) =
T

∑
t=p+1

(
− 1

2
log(σ2)+

1
2

log(ωt)+
1
2

log(1+λ2)− ωt(1 + λ2)

2σ2

(
ut −

λσ√
ωt(1 + λ2)

ht

)2)
.
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Thus, the perturbed Q function is expressed as

Q(θ, ω)|θ=θ̂ = − (T − p)
2

log (σ2) +
>
∑

t=p+1

1
2

log(ωt) +
(T − p)

2
log(1 + λ2)

−1 + λ2

2

>
∑

t=p+1

(√
ωtut

σ
− λ√

1 + λ2
ĉt

)2

− λ2

2

>
∑

t=p+1
(ĉ2

t − (ĉt)
2). (14)

For the SN AR(p) model with the perturbation of variance parameter, we have

∆ =
∂2Q(θ, ω)

∂θ∂ω

∣∣∣
θ=θ̂,ω=ω0

=


1+λ̂2

σ̂

(
ût
σ̂ −

λ̂

2
√

1+λ̂2
ĉt

)
xt
>

(1+λ̂2)û2
t

2σ̂4 − λ̂
√

1+λ̂2

4σ̂3 ĉtût

− λ̂
σ̂2 û2

t +
2λ̂2+1√

1+λ̂2

ĉt
2σ̂ ût

 , (15)

where ût = yt − x>t β̂, and ĥt is as in data perturbation.

3.3.4. Perturbation of Skewness

Considering the particular skewed feature of the distribution, we may investigate the effect
on the model fit by making a minor change of the skewness parameter λ. In our perturbed model,
we propose to replace λ by

√
ωiλ. Let ω = (ωp+1, . . . , ωT)

> denote the (T − p) × 1 perturbation
vector and ω0 = (1, . . . , 1)> denote the (T − p)× 1 non-perturbation vector. Then, the complete-data
log-likelihood function of the perturbed model is given by

`c(θ, ω, yc) =
T

∑
t=p+1

(
− 1

2
log(σ2) +

1
2

log(1 + ωtλ
2)− 1 + ωtλ

2

2σ2

(
ut −

√
ωtλσ√

1 + ωtλ
2

ht

)2)
.

Thus, the perturbed Q function is expressed as

Q(θ, ω)|θ=θ̂ = − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + ωtλ

2)

−
>
∑

t=p+1

1 + ωtλ
2

2

(
ut

σ
−

√
ωtλ√

1 + ωtλ2
ĉt

)2

−
>
∑

t=p+1

ωtλ
2

2
(ĉ2

t − (ĉt)
2).

For the SN AR(p) model with the perturbation of the skewness parameter, we have

∆ =
∂2Q(θ, ω)

∂θ∂ω

∣∣∣
θ=θ̂,ω=ω0

=



(
ût
σ̂2 λ̂2 − λ̂(2λ̂2+1)

2
√

1+λ̂2

ĉt
σ̂

)
xt
>

λ̂2û2
t

2σ̂4 − λ̂
2σ̂3

1+2λ̂2

2
√

1+λ̂2
ĉtût

λ̂

(λ̂2+1)
2 − λ̂

σ̂2 û2
t − λ̂ĉ2

t +
(6λ̂2+1)(λ̂2+1)−λ̂2(2λ̂2+1)

2(λ̂2+1)
3/2

ĉt
σ̂ ût

 , (16)

where ût = yt − x>t β̂ and ĥt, ĉ2
t are as in the data perturbation.

4. Numerical Results

4.1. Simulation Study I: Effectiveness of the Diagnostics

For our simulation, we consider an AR(1) model as specified in Section 2 given by

yt = βyt−1 + ut, ut ∼ SN(0, σ2, λ),
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where we choose β = 0.12, σ2 = 0.003 and λ = 0.1. We generate T = 400 observations.
Now, we compare the performance of the ML estimates in the presence of five perturbed or shifted
observations among three different scenarios with λ = 0.1, 0.2, 0.3.

We perturb the value yt by yt
∗ = yt + βyt−1d, where t = 200, 201, 202, 203, 204 and d = 5, 10, . . . , 50

in order to guarantee the presence of outliers. We calculate the ML estimate of β under the perturbed
and non-perturbed data, by fitting both data sets under the AR(1) model with λ = 0.1, 0.2, 0.3,
respectively. Then, we compute the relative changes of the estimates as |(Est(i) − Est)/Est|, where Est(i)
is the estimate of β under the perturbed data and Est is the estimate of β under the non-perturbed
data. The above computation in MATLAB (version 9.3, MathWorks, US) runs five iterations to
converge in less than 60 s on a PC. Our experience indicates that the computation runs up to 10
iterations to converge in less than 120 s for even T = 1000. Figure 1 shows the effectiveness of the
influence diagnostics.

Figure 1. Relative change of estimate of β against d.

4.2. Simulation Study II: Comparing SN and Normal Distributions

We perform a numerical simulation to examine the effectiveness of our method under SN
distributions. The results under the SN and normal distributions are compared as follows:

Step 1. We use the simulated data (λ = 0.1) with yt perturbed by yt
∗ = yt + βyt−1d, where d = 5 and

t = 200, 201, 202, 203, 204. We fit an AR(1) model under normality to the data, and obtain the fitted
AR(1) model given by Yt = 0.1549yt−1 + ut, where ut ∼ N(0, 0.0151).

Step 2. We conduct a local influence diagnostic analytics under the normal distribution using the
diagnostic results given by [18].

Step 3. We compare the local influence results for the normal distribution in Step 2. In Figure 2,
twenty-four influence observations are detected under the SN distribution. These results are
summarized in Table 1.

As presented, twenty-four influential observations are detected by the local influence diagnostic
analytics under the SN distribution, which is more than the twenty influential values detected by the
local influence analytics under the normal distribution. These results are informative and as expected.
We see that the influential values (that is, cases #62, #153, #201 and #301) are less than zero.

As we understand, when λ for the SN distribution is larger than zero, it is easier to find possible
influential values less than zero due to the difference in patterns between the SN distribution and the
normal distribution. This indicates that the diagnostic results under the SN distribution established in
Section 3 work well.
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Figure 2. Diagnostics for the perturbations of case-weights, data, variance and skewness.

Table 1. Local influence results for normal and SN models

ID Index under the Normal Model Index under the SN Model Observed Value

1 33 33 −0.334
2 34 34 0.030
3 - 62 −0.271
4 77 77 −0.260
5 111 111 −0.297
6 112 112 −0.225
7 140 140 0.319
8 141 141 0.089
9 - 153 −0.175

10 - 201 −0.269
11 202 202 −0.326
12 203 203 −0.090
13 205 205 0.328
14 206 206 −0.124
15 214 214 −0.406
16 215 215 −0.159
17 293 293 0.296
18 294 294 −0.012
19 - 301 −0.278
20 306 306 0.043
21 345 345 −0.293
22 346 346 −0.092
23 362 362 −0.307
24 363 363 −0.048

4.3. Real-World Data Analysis

We conduct an empirical example of financial data based on our results presented in Sections 2 and
3. We choose Chevron shares (hereinafter referred to as CVX weekly financial return data), which were
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collected from 12 January 2007 to 1 August 2014 to construct the AR models. Figure 3 shows the log
transformation of this data set (a total of 395 observations).

Figure 3. CVX weekly log-returns.

We first determine the order of the AR model, using the following steps:

Step 1. We assume the data are subject to an AR(p) model, for p = 1, 2, . . ., given by

Yt = β1yt−1 + ut
...
Yt = β1yt−1 + β2yt−2 + . . . + βpyt−p + ut
...

(17)

Step 2. For the ith equation given in (17), we let β̂
(i)
j be the OLS estimate of β j, where the

superscript (i) denotes the estimates for the AR(i) model. Then, the residual is defined as û(i)
t =

yt − β̂
(i)
1 yt−1 − β̂

(i)
2 yt−2 − · · · − β̂

(i)
i yt−i. The estimated variance for the AR(i) model is expressed as

σ̂2
i = (1/T − 2i− 1)∑>t=i+1(û

(i)
t )2.

Step 3. We use the ith and (i − 1)th equations given in (17) to test H0 : βi = 0 versus H1 : βi 6= 0,
that is, we test the AR(i) model versus the AR(i− 1) model. The test statistic is defined as

M(i) = −(T − i− 2.5) log

(
σ̂2

i
σ̂2

i−1

)
. (18)

For our model, M(i) follows an asymptotically chi-square distribution with one degree of freedom,
that is, M(i) ∼ χ2(1).

We calculate M(i) by (18), for i = 1, . . . , 7, and present the result in Table 2. As the 99th percentile
of the chi-square distribution with one degree of freedom is 6.635 (χ2

0.99(1) = 6.635 from Table 2),
we select the order of the AR(p) model to be p = 3.

Table 2. Test statistic M(i), for i = 1, . . . , 7 using CVX data.

Order 1 2 3 4 5 6 7

M(i) −0.3826 −1.001 16.9551 2.9495 −1.6675 −1.9619 8.9958
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From the EM algorithm detailed in Section 2, we can find the estimate of parameter θ̂ given by

(β̂1, β̂2, β̂3, σ̂2, λ̂) = (0.0153,−0.0333,−0.2198, 0.0013, 0.0661).

Since the absolute values of β1, β2 and β3 all are less than 1, we can accept that the CVX time
series is stationary for the AR(3) model. Thus, we obtain a predictive model in the fitted SN AR(3)
structure given by

ŷt = 0.0153yt−1 − 0.0333yt−2 − 0.2198yt−3,

with µ̂ = 0, σ̂2 = 0.0013, and λ̂ = 0.0661.
By applying the method in Section 3, we can conduct influence analysis for the SN AR(3) model.

After calculating the observed Hessian matrix and the ∆ matrices for the four perturbation schemes of
case-weights, data, variance parameter, and skewness parameter, we obtain the diagnostics matrices
S1, S2, S3, and S4, respectively. In this case, we select the benchmark as 1/392 + 3SM(0), with the
values of 0.1144, 0.0178, 0.0347, and 0.0791 established in the simulation study for the four perturbation
schemes, respectively.

In Figure 4, the straight line represents the benchmark value which determines whether an
observation is potentially influential. The observation is justified to be potentially influential when its
diagnostic value exceeds the benchmark.

Figure 4. Diagnostics for the perturbations of case-weights, data, variance, and skewness in the SN
AR(3) model [step 1].

Firstly, we only find case #92 to be potentially influential. The other potential influential
observations may be masked by case #92. Similar to a step-wise diagnostic procedure proposed
by [6], a second step of identification of influential observations is conducted. In the second rstep,
we replace the value of case #92 by the average of cases #91 and #93 to get a new time series.

We re-fit an AR model in the same manner as done previously in the first step. For the new time
series, the parameters in the SN AR model are again estimated by applying the EM-algorithm with the
order also selected to be three. Thus, we present the new SN AR(3) model as

ŷt = 0.0092yt−1 − 0.0374yt−2 − 0.1328yt−3,
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with µ̂ = 0, σ̂2 = 0.0011, λ̂ = 0.1015. Since the absolute values of β̂1, β̂2, and β̂3 are all less than one,
we can accept the CVX time series to be stationary for the AR(3) model. For the new AR(3) model,
we conduct influence analysis. We select the benchmark as 1/392 + 3SM(0) again, with the four
values of 0.0377, 0.0100, 0.0162, and 0.0203 for the corresponding perturbation schemes, respectively.
Thus, twenty-two influence observations are detected in Figure 5, summarized in Table 3. It tallies the
observations which are identified to be potentially influential for CVX, and an "*" in Table 3 indicates
that the observation has been identified via the assigned perturbation scheme. It is worth noting
that the points shown in Table 3 correspond to a number of material historical events. Many of these
points relate to events around the 2008 global financial crisis. For example, on September 7 2008,
the US Treasury Department announced to take over Fannie Mae and Freddie Mac. On 3 October
2008, the Bush administration signed a total of up to 700 billion dollars in a financial rescue plan.
This shows the effectiveness of our procedure in identifying potentially influential observations to
improve modeling outcomes.

Figure 5. Diagnostics for the perturbations of case-weights, data, variance, and skewness in the SN
AR(3) model [step 2].
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Table 3. Summary of the curvature-based diagnostic analytics.

ID Time CVXs Return Case-Weights Data Variance Skewness

54 2008-01-18 −8.286% *
79 2008-07-11 −6.687% *
87 2008-09-05 −7.329% *
91 2008-10-03 −9.109% *
92 2008-10-10 −31.674% * * * *
95 2008-10-31 15.4665% * *
96 2008-11-07 −1.54% *
97 2008-11-14 −1.067% *
98 2008-11-21 −3.06% *
99 2008-11-28 11.4104% *

101 2008-12-12 5.9723% *
102 2008-12-19 −10.888% * * * *
103 2008-12-26 −0.708% *
104 2009-01-02 8.4069% *
105 2009-01-09 −4.956% * *
110 2009-02-13 −7.152% *
113 2009-03-06 −4.102% *
181 2010-06-25 −7.505% *
246 2011-09-23 −10.154% * *
254 2011-11-18 −8.955% *
256 2011-12-02 9.6993% *
257 2011-12-09 2.4863% *

5. Conclusions

In this paper, we have researched the influence diagnostics in the AR(p) model under skew-normal
distributions. We have obtained the normal curvatures for the model under four perturbation schemes,
including the newly proposed perturbation of skewness. We have conducted a Monte Carlo simulation
study to obtain approximate benchmark values for determining those possible influential points,
and use them to analyze the weekly log-returns of Chevron. The findings outlined in this paper
suggest that our local influence approach in the AR(p) model effectively identifies potentially influential
observations to improve the fit of the model.

Note that we have made a new application of the matrix differential calculus developed by [31]
in mathematical optimization and data analysis. In particular, this paper focuses on the detection of
local (rather than global) influential observations. The extension of the current study to identify global
influential observations will be considered in the future.
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Appendix A

Based on the matrix differential calculus presented by [31], we establish the derivatives involved
in our calculations.
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Appendix A.1. The Hessian Matrix

For the function Q(θ)|θ=θ̂ = E[`c(θ, Yc)|Yo = yo]|θ=θ̂, we have

Q(θ) = − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + λ2)− 1 + λ2

2

>
∑

t=p+1

((ut
σ

)2
+

λ2

1 + λ2 ĉ2
t −

ut
σ

2λ√
1 + λ2

ĉt

)

= − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + λ2)− 1 + λ2

2

>
∑

t=p+1

(
ut
σ
− λ√

1 + λ2
ĉt

)2

− λ2

2

>
∑

t=p+1
(ĉ2

t − (ĉt)
2),

where

ĉt = E(Ht|Y0, θ̂) = τ1 +
φ( τ1

τ2
)

Φ( τ1
τ2
)

τ2, ĉ2
t = E(Ht

2|Y0, θ̂) = τ2
1 + τ2

2 +
φ( τ1

τ2
)

Φ( τ1
τ2
)

τ1τ2,

τ1 =
λ̂

σ̂
√

1 + λ̂2
ût, τ2 =

1√
1 + λ̂2

.

The first-order derivatives related to Q̈(θ̂) in (7) are given by

∂Q(θ)

∂β
=

>
∑

t=p+1

1 + λ2

σ

(
ut

σ
− λ√

1 + λ2
ĉt

)
x>t ,

∂Q(θ)

∂σ2 = − (T − p)
2σ2 +

>
∑

t=p+1

1 + λ2

2σ3

(
ut

σ
− λ√

1 + λ2
ĉt

)
ut,

∂Q(θ)

∂λ
=

>
∑

t=p+1

(
λ

1 + λ2 −
(ut

σ

)2
λ− λĉ2

t +
2λ2 + 1√

1 + λ2

ut

σ
ĉt

)
.

The second-order derivatives related to Q̈(θ̂) in (7) are given by

∂2Q(θ)

∂β∂β>
= −

>
∑

t=p+1

1 + λ2

σ2 xt
>xt,

∂2Q(θ)

∂β∂σ2 =
>
∑

t=p+1

1 + λ2

2σ3

(
λ√

1 + λ2
ĉt −

2ut

σ

)
xt
>,

∂2Q(θ)

∂β∂λ
=

>
∑

t=p+1

(
2λ

σ2 ut −
2λ2 + 1

σ
√

1 + λ2
ĉt

)
xt
>,

∂2Q(θ)

∂(σ2)
2 =

(T − p)
2σ4 −

>
∑

t=p+1

1 + λ2

4σ5

(
4ut

σ
− 3λ√

1 + λ2
ĉt

)
ut,

∂2Q(θ)

∂σ2∂λ
=

>
∑

t=p+1

(
λ

σ4 ut
2 − 2λ2 + 1√

1 + λ2

ut

2σ3 ĉt

)
,

∂2Q(θ)

∂λ2 =
(T − p)

(
1− λ2)

(1 + λ2)
2 +

>
∑

t=p+1

−ut
2

σ2 − ĉ2
t +

2λ3 + 3λ√
(1 + λ2)

3

ut

σ
ĉt

.
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Appendix A.2. Perturbation Matrix for Case-Weights

For the function Q(θ, ω)|θ=θ̂ = E[`c(θ, ω, Yc)|Yo = yo]|θ=θ̂given in (10), we have

Q(θ, ω) = − (T − p)
2

log (σ2) +
(T − p)

2
log(1 + λ2)

− 1 + λ2

2

>
∑

t=p+1

((ωtut

σ

)2
+

λ2

1 + λ2 ĉ2
t −

ωtut

σ

2λ√
1 + λ2

ĉt

)
= − (T − p)

2
log (σ2) +

(T − p)
2

log(1 + λ2)

− 1 + λ2

2

>
∑

t=p+1

(
ωtut

σ
− λ√

1 + λ2
ĉt

)2

− λ2

2

>
∑

t=p+1
(ĉ2

t − (ĉt)
2).

The first-order derivatives related to ∆ in (11) are given by

∂Q(θ, ω)

∂β
=
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t=p+1

1 + λ2

σ
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ωtut

σ
− λ√
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>,
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∂Q(θ, ω)

∂λ
=

>
∑

t=p+1

(
λ

1 + λ2 −
(ωtut

σ
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λ− λĉ2
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ωtut

σ
ĉt

)
,

The second-order derivatives related to ∆ in (11) are given by

∂2Q(θ, ω)

∂β∂ωt
=

1 + λ2

σ2 utxt
>,

∂2Q(θ, ω)

∂σ2∂ωt
=

1 + λ2

2σ3

(
2ut

2
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= −2λ

σ
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2λ2 + 1√

1 + λ2

ut

σ
ĉt.

Noting that ω0 = (1, . . . , 1)>, we obtain (11).

Appendix A.3. Perturbation Matrix for Data

For the function Q(θ, ω)|θ=θ̂ = E[`c(θ, ω, Yc)|Yo = yo]|θ=θ̂ given in (12), we have

Q(θ, ω) = − (T − p)
2

log(σ2) +
(T − p)

2
log(1 + λ2)
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>
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∑
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σ
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2
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2).
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The first-order derivatives related to ∆ in (13) are given by

∂Q(θ, ω)

∂β
=

>
∑

t=p+1
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σ
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ut + µ (ωt)

σ
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The second-order derivatives related to ∆ in (13) are given by

∂2Q(θ, ω)

∂β∂ωt
=

1 + λ2

σ2

(
xt
> +
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)>)
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)

Noting that ω0 = (0, . . . , 0)>, we obtain (13).

Appendix A.4. Perturbation Matrix for Scale

For the function Q(θ, ω)|θ=θ̂ = E[`c(θ, ω, Yc)|Yo = yo]|θ=θ̂ given in (14), we have

Q(θ, ω) = − (T − p)
2

log(σ2) +
(T − p)

2
log(ωt) +
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2
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The first-order derivatives related to ∆ in (15) are given by
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The second-order derivatives related to ∆ in (15) are given by

∂2Q(θ, ω)

∂β∂ωt
=

((
1 + λ2)

σ2 ut −
λ
√
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σ

1
2
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>
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ut

2
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σ

Noting that ω0 = (1, . . . , 1)>, we obtain (15).

Appendix A.5. Perturbation Matrix for Skewness

For the function Q(θ, ω)|θ=θ̂ = E[`c(θ, ω, Yc)|Yo = yo]|θ=θ̂ given in (16), we have

Q(θ, ω) = − (T − p)
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(T − p)

2
log(1 + ωtλ

2)

− 1 + ωtλ
2

2

>
∑

t=p+1

(
ut

2

σ2 +
ωtλ

2

1 + ωtλ2 ĉ2
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The first-order derivatives related to ∆ in (16) are given by
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2

σ

(
ut

σ
− λ

√
ωt√

1 + ωtλ2
ĉt

)
xt
>

∂Q(θ, ω)

∂σ2 =
>
∑

t=p+1

(
− 1

2σ2 +
1 + ωtλ

2

2σ3

(
ut

σ
− λ

√
ωt√

1 + ωtλ2
ĉt

)
ut

)
∂Q(θ, ω)

∂λ
=

>
∑

t=p+1

(
ωtλ

1 + ωtλ2 −
ut

2

σ2 ωtλ−ωtλĉ2
t +

√
ωt
(
2ωtλ

2 + 1
)√

1 + ωtλ2

ut

σ
ĉt

)
.

The second-order derivatives related to ∆ in (16) are given by

∂2Q(θ, ω)

∂β∂ωt
=

(
λ2

σ2 ut −
λ
(
1 + 2λ2ωt

)
2
√

ωt (1 + λ2ωt)

ĉt

σ

)
xt
>

∂2Q(θ, ω)

∂σ2∂ωt
=

(
λ2ut

2σ4 −
λ

4σ3
1 + 2λ2ωt√

ωt (1 + λ2ωt)
ĉt

)
ut

∂2Q(θ, ω)

∂λ∂ωt
=

λ

(1 + λ2ωt)
2 −

ut
2λ

σ2 − λĉ2
t

+

(
6λ2ωt + 1

) (
λ2ωt + 1

)
− λ2ωt

(
2λ2ωt + 1

)
2
√

ωt(1 + λ2ωt)
3/2

ut

σ
ĉt

Noting that ω0 = (1, . . . , 1)>, we obtain (16).
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