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Abstract

Demonic composition is defined on the set of binary relations over the
non-empty set X, RelX , and is a variant of standard or “angelic” compo-
sition. It arises naturally in the setting of the theory of non-deterministic
computer programs, and shares many of the nice features of ordinary
composition (it is associative, and generalises composition of functions).
When equipped with the operations of demonic composition and domain,
RelX is a left restriction semigroup (like PTX , the semigroup of partial
functions on X), whereas usual composition and domain give a unary
semigroup satisfying weaker laws.

By viewing RelX under a restricted version of its usual composition
and domain as a constellation (a kind of “one-sided” category), we show
how this demonic left restriction semigroup structure arises on RelX , plac-
ing it in a more general context. The construction applies to any unary
semigroup with a “domain-like” operation satisfying certain minimal con-
ditions which we identify.

In particular it is shown that using the construction, any Baer ∗-
semigroup S can be given a left restriction semigroup structure which is
even an inverse semigroup if S is ∗-regular. It follows that the semigroup
of n × n matrices over the real or complex numbers is an inverse semi-
group with respect to a modified notion of product that almost always
agrees with the usual matrix product, and in which inverse is pseudoin-
verse (Moore-Penrose inverse).

1 Introduction

Ordinary or “angelic” composition of binary relations is well-known. For s, t ∈
RelX , the set of all binary relations on the non-empty set X,

s; t = {(x, y) ∈ X ×X | ∃z ∈ X : (x, z) ∈ s, (z, y) ∈ t}.

This operation of course generalises composition of (partial) functions and shares
some of its nice features, for example it is associative. So (RelX , ; ) is a semi-
group, having the semigroup of partial functions on X, (PTX , ; ), as a subsemi-
group, with the full transformation semigroup TX a subsemigroup of PTX .
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However, there is a less familiar way to compose binary relations, so-called
“demonic composition”. For s, t ∈ RelX , define

s~ t = {(x, y) ∈ s; t | (x, z) ∈ s⇒ z ∈ dom(t)}.

The terminology comes from computer science thought experiments when one
thinks about “nondeterministic programs”: angelic composition does whatever
can be done, while demonic composition assumes a “demon” will ruin things
if it is possible for this to happen. This can be made more rigorous: roughly,
angelic composition is important when thinking about partial correctness of
“non-deterministic” programs, and demonic for total correctness (termination);
see for example [4] for more details.

As an example, consider s, t ∈ RelX where X = {a, b, c}: let

s = {(a, a), (a, b), (b, c)}, t = {((a, c), (c, a), (c, b)}.

Then we have that s; t = {(a, c), (b, b), (b, a), (c, a)} while s~ t = {(b, b), (b, a)}.
Like angelic composition, demonic composition reduces to standard compo-

sition when applied to partial functions. Similarly, when applied to left total
binary relations (those having domain all of X), angelic and demonic com-
position evidently agree. Less obviously, demonic composition is an associative
operation. For all these reasons, one can argue that demonic composition is just
as worthy a generalisation of functional composition as is angelic composition.

How is the semigroup (RelX ,~) different to (RelX , ; )? To help clarify this,
consider the operation of domain D on RelX . For s ∈ RelX , we define

D(s) = {(x, x) | x ∈ dom(s)},

the restriction of the identity function to dom(s). So D is also well-defined on
PTX (and even on TX , but is rather uninteresting there).

In fact the unary semigroup of partial functions over X equipped with do-
main, (PTX , ; , D), is a left restriction semigroup. This class of unary semigroups
has received considerable attention in recent years, and forms a finitely based
variety. It has a “Cayley theorem”: every left restriction semigroup embeds in
one of the form PTX .

Now (RelX , ; , D) is not a left restriction semigroup, although it does satisfy
some weaker laws. However, by contrast (RelX ,~, D) is a left restriction semi-
group; see [4] for example. It then follows that left restriction semigroups also
have a Cayley theorem in terms of binary relations equipped with demonic com-
position and domain. (By contrast, no similar Cayley theorem is possible for
any finitely axiomatised class of unary semigroups in terms of binary relations
under angelic composition and domain; see [10].)

What is the relationship between the usual and demonic compositions on
RelX? In fact it can be shown that for all s, t ∈ RelX ,

s~ t = A(s;A(t)); s; t where A(s) = {(x, x) ∈ X ×X | x 6∈ dom(s)}.

Here, A(s) is the so-called antidomain of s, a unary operation which has been
considered in both relational and functional settings: see [16] and [13].
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Why does this work – is something more general going on? It is the purpose
of this work to show that the answer is “yes” and to apply the general ap-
proach to a range of examples. One surprising consequence is that full matrix
semigroups over the real or complex numbers have previously unnoticed inverse
semigroup structure when the definition of matrix product is adjusted for some
pairs of matrices, with inverse given by the Moore-Penrose matrix inverse (which
is usual inverse if it exists).

A key concept in this work is that of a constellation (a kind of “one-sided
category”). A left restriction semigroup becomes a constellation when one re-
tains the domain operation D and also defines the partial product s ◦ t := st if
and only if sD(t) = s, moreover it gives a so-called inductive constellation as in
[7]. It was shown in [7] that the categories of left restriction semigroups and in-
ductive constellations (with suitable morphisms) are isomorphic: left restriction
semigroups and inductive constellations are essentially “the same things”.

We could just as well make the above partial product definition in a general
unary semigroup and: (a) ask exactly when doing so yields a constellation; (b)
characterise those constellations that arise in this way, generalising the corre-
spondence between left restriction semigroups and inductive constellations set
out in [7]; and (c) ask exactly when the unary semigroup gives an inductive
constellation, meaning that its multiplication can be adjusted by extending the
constellation product to be a total operation in a different way to the original so
as to give a left restriction semigroup. We address all of (a), (b) and (c) in what
follows, but (c) will dominate. In particular, the answer to (c) provides the sys-
tematic process by which demonic composition of binary relations comes about,
and it also gives rise to unexpected left restriction and even inverse semigroup
structure in other familiar examples of semigroups.

2 Preliminaries

2.1 Some properties of idempotents

Throughout this subsection, S is a semigroup with set of idempotents E(S).
The natural right quasiorder on E(S) is given by e ≤r f if and only if e = ef ,
and the natural left quasiorder on E(S) is given by e ≤l f if and only if e = fe;
both are indeed quasiorders. The natural order ≤ on E(S) is the intersection of
≤l and ≤r, so that e ≤ f if and only if e = ef = fe, and is a partial order on
E(S), with respect to which 1 is the top element.

Let E be a nonempty subset of E(S). All of the following concepts are
defined in [19], although many of them were first defined earlier than that. E is
right pre-reduced if ≤r is a partial order on E (that is, for all e, f ∈ E, e = ef
and f = fe imply e = f), left pre-reduced if ≤l is a partial order, and pre-
reduced if it is both left and right pre-reduced. E is said to be right reduced if
e = ef implies e = fe, left reduced if e = fe implies e = ef , and reduced if it
is both left and right reduced. So E is right reduced if and only if ≤r ⊆ ≤l

(which happens if and only if ≤r is the natural order on E), left reduced if
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and only if the opposite inclusion holds, and reduced if the two quasiorders are
equal. Obviously, if E is (left/right) reduced, then it is (left/right) pre-reduced,
although the converses fail in general.

2.2 Left restriction semigroups and beyond

The class of left restriction semigroups may be defined to be the class of unary
semigroups with unary operation D satisfying the following laws:

• D(x)x = x;

• D(x)D(y) = D(y)D(x);

• D(D(x)y) = D(x)D(y);

• xD(y) = D(xy)x.

This is the axiomatisation appearing in [7], although other (equivalent) formu-
lations have been used. Other laws follow easily such as

• D(xy) = D(xD(y)) (the left congruence condition).

Suppose S is a left restriction semigroup. It follows that D(S) = {D(s) | s ∈
S} is a semilattice under multiplication, and that D(x) is the smallest e ∈ D(S)
such that es = s. An important example of a left restriction semigroup is the
semigroup under composition of partial functions X → X for some non-empty
set X, denoted PTX and equipped with domain operation given by D(s) =
{(x, x) | x ∈ dom(s)}. Every left restriction semigroup embeds in PTX for some
X, as was first shown in [21], also shown in [11] and [15].

An inverse semigroup is a semigroup S in which for every x ∈ S there is a
unique x′ ∈ S satisfying xx′x = x and x′xx′ = x′. It is well-known that every
inverse semigroup S is a left restriction semigroup if one sets D(s) = ss′ for all
s ∈ S. Conversely, it was shown in Corollary 2.13 of [11] that a left restriction
semigroup arises in this way from an inverse semigroup if and only if for all
s ∈ S, there is “true inverse” s′ ∈ S such that D(s) = ss′ and D(s′) = s′s;
then s′ is the inverse of s in the inverse semigroup S. Every inverse semigroup
embeds in the invberse semigroup IX for some X, the subsemigroup of PTX
consisting of the injective partial functions on X and equipped with inversion.

A number of weakenings of the left restriction semigroup axioms are often
considered. The class of LC-semigroups was defined in [11] to consist of those
unary semigroups S with unary operation D such that D(S) = {D(s) | s ∈ S}
is a subsemigroup which is a semilattice, with D(x) the smallest e ∈ D(S)
under the (meet-)semilattice order such that es = s. These are given an equa-
tional axiomatisation in [11], generalising the above axioms for left restriction
semigroups. The same concept was also considered by Batbedat in [2] where
they were called type SL γ-semigroups. There is an obvious dual concept of
RC-semigroup defined in terms of a range operation R. If S is both an LC-
semigroup and an RC-semigroup with D(S) = R(S), we call it a two-sided
C-semigroup.
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More general still are D-semigroups, introduced in [17]. S is one such if it
is a unary semigroup with unary operation D such that D(S) as above consists
of idempotents of S with the property that for all s ∈ S, D(s) is the smallest
e ∈ D(S) under the natural order e ≤ f if and only if e = ef = fe. Letting
D(s) be this smallest e, these have a finite equational axiomatisation as a class
of unary semigroups, and it follows that D(S) is left reduced. These are defined
and studied in [17].

Even more general still are the generalised D-semigroups considered in [19],
which are unary semigroups with unary operation D which are such that D(S) =
{D(s) | s ∈ S} consists of idempotents of S with the property that for all s ∈ S,
D(s) is the smallest e ∈ D(S) under the left quasiorder e ≤l f if and only if
e = fe such that es = s. These also have a finite equational axiomatisation as
a variety of unary semigroups, and D(S) is left pre-reduced, so ≤l is a partial
order. In [19], generalised D-semigroups were defined in terms of a generalised
Green’s relation that does not concern us here.

A generalised D-semigroup can satisfy the left congruence condition: D(xy) =
D(xD(y)). An example of an LC-semigroup satisfying this law which is not a left
restriction semigroup is (RelX , ; , D), the semigroup of binary relations under
composition and equipped with domain defined as for PTX .

Two-sided C-semigroups satisfying the left and right congruence conditions
were considered in [14], where they were called Ehresmann semigroups. Again,
a significant example is (RelX , ; , D,R). This leads us to the following.

Definition 2.1 An LC-semigroup satisfying the left congruence condition is a
left Ehresmann semigroup.

2.3 Constellations and left restriction semigroups

Given a set P equipped with a partial binary operation ◦, we say e ∈ S is a
right identity if for all a ∈ P , if a ◦ e exists then it equals a.

Constellations are partial algebras equipped with a partial binary operation
and a unary “domain” operation D. Axioms for constellations can be given as
follows. For all x, y, z ∈ P ,

(C1) if x ◦ (y ◦ z) exists then so does (x ◦ y) ◦ z, and then the two are equal;

(C2) if x ◦ y and y ◦ z exist then x ◦ (y ◦ z) exists;

(C3) for each x ∈ P , D(x) is the unique right identity in P such that D(x)◦x =
x.

These are the laws obtained in [8]. The second law can be strengthened to an
“if and only if”, resulting in one of the original defining axioms given in [7]. It
also follows that D(P ) = {D(s) | s ∈ P} is the set of all right identity elements
in P , and that e ◦ e exists (hence equals e) for all e ∈ D(P ).

The following is noted in [7].

Proposition 2.2 If P is a constellation then for s, t ∈ P , s ◦ t exists if and
only if s ◦D(t) does.
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There is a natural quasiorder on D(P ) given by e ≤ f if and only if e ◦ f
exists. This extends to the natural quasiorder on P given by s ≤ t if and only
if D(s) ◦ t exists and equals s, or equivalently, s = e ◦ t for some e ∈ D(P ). As
noted in [8], if one of these quasiorders is a partial order, so is the other, and
then P is said to be normal, a condition evidently equivalent to the assertion
that for all e, f ∈ D(P ), if e ◦ f and f ◦ e exist then e = f . In this case, we call
≤ the natural order on P .

The relevant notion of morphism for constellations is that of a radiant, de-
fined in [7]. If P,Q are constellations, then the function ρ : P → Q is said to be
a radiant if

1. for all s, t ∈ P , if s ◦ t exists, then so does ρ(s) ◦ρ(t), and indeed ρ(s ◦ t) =
ρ(s) ◦ ρ(t), and

2. for all s ∈ P , ρ(D(s)) = D(ρ(s)).

In [7], it was noted that a left restriction semigroup (such as PTX) can be
made into a constellation by defining s◦ t := st but only when sD(t) = s (which
says that the range of s is contained in the domain of t), and by retaining
D. (The natural order in the left restriction semigroup then coincides with the
natural order on the derived constellation.) A constellation arises from a left
restriction semigroup in this way if and only if it is inductive in the sense of [7],
as is shown there.

The inductive property was shown in [8] to be equivalent to the following
conditions on a constellation P .

(O4) If e ∈ D(P ) and a ∈ P , then there is a maximum x ∈ P with respect
to the natural quasiorder ≤ on P , such that x ≤ a and x ◦ e exists, the
co-restriction of a to e, denoted a|e; and

(O5) for x, y ∈ P and e ∈ D(P ), if x ◦ y exists then D((x ◦ y)|e) =
D(x|(D(y|e)).

Every inductive constellation is normal. Note that the co-restriction a|e in (O4)
is fully determined (if it exists) by the natural order ≤ on P .

We next present a new characterisation of the inductive property that is
especially useful in what follows.

Lemma 2.3 The constellation (P, ◦, D) is inductive if and only if it is normal
and for all s ∈ P and e ∈ D(P ), there exists s ·e ∈ D(P ) such that for all t ∈ P ,
(t ◦ s) ◦ e exists if and only if t ◦ (s · e) exists. In that case, the co-restriction s|e
is (s · e) ◦ s for all s ∈ P and e ∈ D(P ).

Proof. Suppose P is inductive. Then D(P ) is normal. Let s · e = D(s|e), so
that s|e = (s · e) ◦ s (since s|e ≤ s) and ((s · e) ◦ s) ◦ e exists. If t ∈ P is such
that (t ◦ s) ◦ e exists, then D(t) = D(t ◦ s) = D((t ◦ s) ◦ e)) = D(t|D(s|e)) =
D(t|(s ·e)) = D((t · (s ·e))◦ t) = t · (s ·e), so t = D(t)◦ t = (t · (s ·e))◦ t = t|(s ·e),
so t◦ (s ·e) must exist. Conversely, if t◦ (s ·e) exists, then because s|e = (s ·e)◦s
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exists, t ◦ (s|e) = t ◦ ((s · e) ◦ s) = (t ◦ (s · e)) ◦ s = t ◦ s exists, but also (s|e) ◦ e
exists, and so t ◦ (s|e) ◦ e) = (t ◦ (s|e)) ◦ e = (t ◦ s) ◦ e exists. So (t ◦ s) ◦ e exists
if and only if t ◦ (s · e) exists.

Conversely, suppose that for all s ∈ P and e ∈ D(P ), there exists s·e ∈ D(P )
such that for all t ∈ P , (t ◦ s) ◦ e exists if and only if t ◦ (s · e) exists. Note
that (s · e) ◦D(s) exists, as is clear on letting t = s · e: (s · e) ◦ (s · e) exists so
((s · e) ◦ s) ◦ e and in particular (s · e) ◦ s exists. For a ∈ P and e ∈ D(P ), we
show that a|e = (a · e) ◦ a is the co-restriction of a to e. By assumption, a|e ≤ a
and (a|e) ◦ e = ((a · e) ◦ a) ◦ e exists because (a · e) ◦ (a · e) obviously exists. If
x ≤ a and x◦e exists, then x = D(x)◦a and (D(x)◦a)◦e exists, so D(x)◦(a ·e)
exists, so x = D(x) ◦ a = (D(x) ◦ (a · e)) ◦ a = D(x) ◦ ((a · e) ◦ a) = D(x) ◦ (a|e),
so x ≤ a|e. This establishes (O4).

For (O5), suppose x, y ∈ P are such that x ◦ y exists. We must show that
D((x ◦ y)|e) = D(x|(D(y|e)). Recalling that a|e = (a · e) ◦ a for all a ∈ P and
e ∈ D(P ), we have that

D((x ◦ y)|e) = D(((x ◦ y) · e) ◦ (x ◦ y)) = D((x ◦ y) · e) = (x ◦ y) · e,

while

D(x|(D(y|e)) = D((x ·D((y · e) ◦ y)) ◦ x) = D(x ·D(y · e)) = x · (y · e).

So we must show that f = (x ◦ y) · e = x · (y · e) = g. To do this we show f ≤ g
and g ≤ f , or that both f ◦ g and g ◦ f exist.

But by assumption, ((x ◦ y) · e) ◦ (x · (y · e)) exists if and only if ((((x ◦ y) ·
e) ◦ x) ◦ (y · e) exists, which exists if and only if (((x ◦ y) · e) ◦ x) ◦ y) ◦ e exists,
which, because x ◦ y exists, itself exists if and only if (((x ◦ y) · e) ◦ (x ◦ y)) ◦ e
exists, which exists if and only if ((x ◦ y) · e) ◦ ((x ◦ y) · e) exists, that is, f ◦ f
exists, which it does. So f ◦ g exists.

Similarly, because (x · (y · e)) ◦ x exists (since (x · h) ◦ x = x|h exists for all
h ∈ D(P )), and x ◦ y exists, we have that (x · (y · e)) ◦ (x ◦ y) exists, and so
g ◦ f = (x · (y · e)) ◦ ((x ◦ y) · e) exists if and only if ((x · (y · e)) ◦ (x ◦ y)) ◦ e exists,
if and only if (((x · (y · e)) ◦x) ◦ y) ◦ e exists, if and only if ((x · (y · e)) ◦x) ◦ (y · e)
exists, if and only if g ◦ g = (x · (y · e)) ◦ (x · (y · e)) exists, which it does. �

When a left restriction semigroup S is viewed as a constellation (S, ◦, D) as
above, then the latter is inductive, and for s, t ∈ S, s◦t = st whenever the former
is defined and s|e = se for all e ∈ D(S). Conversely, it was shown in [7] that
an inductive constellation P can be made into a left restriction semigroup by
retaining D and extending the partial multiplication to an everywhere-defined
one by defining, for all s, t ∈ P , s⊗ t := (s|D(t)) ◦ t. Indeed it was shown there
that the categories of inductive constellations and left restriction semigroups
(with the natural notions of morphisms for both) are isomorphic.
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3 The most general unary semigroups that give
constellations

In this section, our aim is to find the most general unary semigroup that can
give rise to a constellation, in which the constellation product is a restricted
version of the semigroup product, defined by analogy with the left restriction
semigroup case as follows.

Definition 3.1 Let S be a unary semigroup with unary operation D. Define
the partial product ◦ as follows: for all s, t ∈ S,

s ◦ t := st whenever sD(t) = s,

the restricted product on S.

This is exactly how one defines the constellation product in a left restriction
semigroup, but also for the more general types of unary semigroups as in [18].

Some observations. Given a unary semigroup (S, ·, D), if (S, ◦, D) is to be
a constellation, it must be such that the existence of a ◦ b coincides with the
existence of a ◦ D(b) (using Proposition 2.2), and when the latter exists, it
should equal a. This forces a ◦ D(b), hence also a ◦ b, to exist if and only
if aD(b) = a in the unary semigroup. Since D(a) ◦ a exists and equals a,
necessarily D(a)D(a) = D(a), and D(a)a = a. But since also D(a) is the
unique element of the form D(x) for which D(x) ◦ a exists and equals a, it
follows that if D(x)D(a) = D(x) and D(x)a = a, then D(x) = D(a). Then it is
also necessary to satisfy the first two constellation laws, namely

• if a ◦ b and b ◦ c exist, then so does a ◦ (b ◦ c);

• if a(̇b ◦ c) exists then so does (aḃ) ◦ c and the two are equal.

We therefore make a first-pass definition of our most general unary semigroups.

Definition 3.2 We say S is a demigroup if it is a unary semigroup with unary
operation D for which

1. D(x)2 = D(x);

2. D(x)x = x;

3. D(x)D(y) = D(x) and D(x)y = y imply D(x) = D(y);

4. if xD(y) = x and yD(z) = y then xD(yz) = x;

5. if xD(yz) = x and yD(z) = y then xD(y) = x.

We have just argued that these various laws are necessary, but in fact they
are sufficient.
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Proposition 3.3 If S is a demigroup and we define the restricted product ◦ as
indicated above, then (S, ◦, D) is a constellation.

Proof. The final two laws spell out the first two constellation laws. It re-
mains to show that for each x ∈ S, D(x) is the unique right identity e in the
constellation for which e ◦ x exists and equals x.

Suppose x ∈ S. Then D(x) ◦ x exists beause D(x)2 = D(x), and equals
D(x)x = x. Suppose e is another right identity for which e ◦x exists and equals
x. Since e is a right identity, it is such that if a ◦ e exists for some a ∈ S, then
it equals a, so if aD(e) = a then ae = a. Now D(e)D(e) = D(e), so neessarily
D(e)e = D(e), But D(e)e = e, so D(e) = e. Now e ◦ x exists so eD(x) = e, so
D(e)D(x) = D(e), and also e ◦ x = x so D(e)x = ex = x, so by the third law,
e = D(e) = D(x), as required. �

The above laws may be streamlined considerably.

Proposition 3.4 The unary semigroup (S, ·, D) is a demigroup if and only if
it satisfies the following equational laws.

1. D(x)2 = D(x);

2. D(x)x = x;

3. D(xy) = D(xD(y)) (left congruence condition).

In this case, D(D(x)) = D(x) for all x ∈ S.

Proof. Assume S is a demigroup. The first two laws above are immediate.
For the third, first note that for all a, b ∈ S, D(aD(b))D(aD(b)) = D(aD(b))
and aD(b)D(b) = aD(b), so letting x = D(aD(b)) and y = aD(b), we have that
xD(y) = x and yD(z) = y, so we may infer from the fourth demigroup law that
xD(yz) = x, that is, D(aD(b)) = D(aD(b))D(aD(b)b) = D(aD(b))D(ab). So
D(xD(y))D(xy) = D(xD(y)) is a law. But then for all x, y, z, D(xD(y))xy =
D(xD(y))xD(y)y = xD(y)y = xy. So from the third law for demigroups, we
have D(xD(y)) = D(xy).

Conversely, suppose the above laws hold on S. Then for x ∈ S, D(x) =
D(D(x)x) = D(D(x)D(x)) = D(D(x)), as claimed. The first two laws for demi-
groups are immediate. For the third, suppose D(x)D(y) = D(x) and D(x)y = y.
Then D(x) = D(D(x)) = D(D(x)D(y)) = D(D(x)y) = D(y).

Next suppose xD(y) = x and yD(z) = y. Then xD(yz) = xD(yD(z)) =
xD(y) = x. So the fourth law holds.

For the fifth law, if xD(yz) = x and yD(z) = y then xD(y) = xD(yD(z)) =
xD(yz) = x. �

So a demigroup is simply a semigroup equipped with a projection D into its
set of idempotents such that D(x)x = x and D(xy) = D(xD(y)) for all x, y.
Consistent with previous usage, the last of these laws is often referred to as the
left congruence condition, since for unary semigroups with unary operation D,
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the condition is equivalent to the fact that the relation ρ given by xρy if and
only if D(x) = D(y) is a left congruence.

Definition 3.5 If (S, ·, D) is a demigroup, then (S, ◦, D), where ◦ is the re-
stricted product, is the derived constellation.

Example 3.6 Not all demigroups are generalised D-semigroups.

Not every generalised D-semigroup is a demigroup since the former need not
satisfy the left congruence condition D(xy) = D(xD(y)), and the converse fails
also. Let S be a right zero semigroup and define D(x) = x for all x ∈ S. This
evidently satisfies the laws (as does any band in which one defines D(s) = s for
all s), but D(S) = S is not left pre-reduced. However, it is still the case that
for x ∈ S, D(x) is one of the smallest g ∈ D(S) (with respect to ≤l) for which
gx = x, since e ≤l f for all e, f ∈ S = D(S). For an example where this fails,
consider the semigroup S = {e, f, a} with Cayley table below.

· e f a
e e a a
f e f a
a e a a

.

Define D(a) = f , D(e) = e,D(f) = f . The result is easily seen to be a
demigroup. Then D(S) = {e, f} has e ≤l f , and ea = fa = a yet D(a) = f , so
(S, ·, D) cannot be a generalised D-semigroup.

An important possible property of a constellation is normality, defined ear-
lier. Every inductive consatellation is normal, and more generally, by a result in
[8] normal constellations are precisely those which can be faithfully embedded
in the derived constellation of PTX . The following is easily seen.

Proposition 3.7 If S is a demigroup then its derived constellation is normal
if and only if D(S) is right pre-reduced.

4 Digression: when is a constellation the de-
rived constellation of a demigroup?

Before moving on to determining exactly when the derived constellation of a
demigroup is inductive, we pause to characterise those constellations that are
derived constellations of demigroups. This would then provide the most general
possible result along the lines of the results given in [7] (for left restriction
semigroups) and then [18] (for D-semigroups). Since this is not our main focus,
proofs (which follow the earlier cases fairly closely) are either briefly presented
or omitted entirely, with a reference given to the earlier cases.

In the previously considered less general cases, such a characterisation has
been achieved via the notion of co-restriction on a constellation as in [18], and
the same applies here.
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Definition 4.1 A generalised co-restriction constellation is a constellation P
equipped with an operation of co-restriction | : P × D(P ) → P , satisfying the
following laws: for all s, t ∈ S and e, f ∈ D(P ):

(GR1) s ◦ e exists if and only if s|e = s;

(GR2) if e|f = f then (s|e)|f = s|f ;

(GR3) (s|D(t|e)) ◦ (t|e) = ((s|D(t)) ◦ t)|e.

Compared to (R1)–(R5) in the definition of a co-restriction constellation
in [17], where the derived constellations of D-semigroups were characterised,
(GR1), and (GR2) are exactly (R1) and (R3) respectively, (GR3) fulfils a role
similar to that of (R4) which is no longer assumed and also implies (R5), and
no version of (R2) holds or is needed.

The proof of the following is routine.

Proposition 4.2 If S is a demigroup then P(S) is a generalised co-restriction
constellation, with co-restriction defined by s|e = se for all s ∈ S and e ∈ D(S).

The proof of the following is formally exactly the same as the proof of Lemma
4.4 in [18].

Lemma 4.3 If P is a generalised co-restriction constellation, then for all e ∈
D(P ) and s ∈ P , e|e = e and (s|e) ◦ e exists.

Likewise, the pattern of the following proof follows that of Proposition 4.5
in [18], but we include it here because there are some small differences.

Proposition 4.4 Every generalised co-restriction constellation P determines a
demigroup T(P ) with multiplication given by x ⊗ y := (x|D(y)) ◦ y and with
domain operation D the same as in P , and the derived constellation of T(P ) is
P .

Proof. Note first that ⊗ is everywhere-defined. We show it is associative.
For all a, b, c ∈ S,

a⊗ (b⊗ c) = a⊗ ((b|D(c)) ◦ c)
= [a|(D(b|D(c)) ◦ c)] ◦ [(b|D(c)) ◦ c]
= [(a|D(b|D(c)) ◦ (b|D(c))] ◦ c by (C1)

whereas (a⊗ b)⊗ c = ((a|D(b)) ◦ b)⊗ c = (((a|D(b) ◦ b)|D(c)) ◦ c. So it suffices
to show that

(a|D(b|D(c))) ◦ (b|D(c)) = (a|D(b) ◦ b)|D(c).

But this is immediate from (GR3).

11



Clearly D(a) ⊗ a = (D(a)|D(a)) ◦ a = D(a) ◦ a = a, D2(a) = D(a) for all
a ∈ S, and

D(a⊗ b) = D((a|D(b)) ◦ b) = D(a|D(b)) = D((a|D(b)) ◦D(b)) = D(a⊗D(b))

for all a, b ∈ S.
Finally, for a, b ∈ T(P ), their restricted product exists if and only if a =

a ⊗D(b) = (a|D(D(b))) ◦D(b) = a|D(b), but then this implies a ◦D(b) exists
by (GR1), and so a ◦ b exists, and in this case, both agree with a ⊗ b. So the
derived constellation of T(P ) is nothing but P . �

Remaining facts now follow as in [18], and before that, [7]. In particular,
the following makes use of (GR1)–(GR3) and the above proposition.

Proposition 4.5 If S is a demigroup and P a generalised co-restriction con-
stellation, then T(P(S)) = S and P(T(P )) = P .

To obtain a category isomorphism, we define the relevant notion of morphism
for generalised co-restriction constellations. These are nothing but radiants
ρ : P → Q additionally satisfying ρ(s|e) = ρ(s)|ρ(e) for all s ∈ P and e ∈ D(P ).
That this yields a category is because the composite of co-radiants is a co-
radiant; the elementary reasoning for this is as in [18] for the case considered
there. The proof of the following is very similar to that of Theorem 4.8 in [18],
and prior to that, Theorem 4.7 in [7].

Theorem 4.6 The category of demigroups is isomorphic to the category of gen-
eralised co-restriction constellations and co-radiants.

5 Demonization

We now turn to the main purpose of the current work.
In the previous section we found a type of constellation that corresponded

1 : 1 with demigroups, where the constellation product is just the restricted
product on the demigroup. However, we could also ask: given a demigroup S,
when is the derived constellation inductive? For then, there is a derived left
restriction semigroup structure definable on S as well.

If S is a demigroup, recalling that the restricted product s ◦ t exists in
the constellation (S, ◦, D) if and only if sD(t) = s, we immediately obtain the
following consequence of Lemma 2.3 and Proposition 3.7.

Theorem 5.1 Suppose S is a demigroup. Then the derived constellation (S, ◦, D)
is inductive if and only if D(S) is right pre-reduced and for all t ∈ S and
e ∈ D(S), there exists t·e ∈ D(S) such that for all s ∈ S, ste = st and sD(t) = s
if and only if s(t · e) = s, and then the co-restriction s|e = (s · e) ◦ s = (s · e)s
for all s ∈ S and e ∈ D(S).

This leads us to the following.
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Definition 5.2 A demigroup S is inductive if and only if the derived constel-
lation is.

So from Theorem 5.1, the demigroup S is inductive if and only if D(S) is
right pre-reduced and there is an “action” · : S ×D(S)→ D(S) of S on D(S),
such that for all s, t ∈ S and e ∈ D(S), ste = st and sD(t) = s if and only if
s(t · e) = s.

Definition 5.3 Given an inductive demigroup S, extending the restricted prod-
uct to a left restriction semigroup product gives an operation denoted by ~, and
we denote by SD the left restriction semigroup (S,~, D) itself, the demonization
of S.

Evidently, if S is an inductive demigroup, then S and SD have the same
derived constellation.

Applying Theorem 5.1 immediately gives the following.

Corollary 5.4 If (S,×, D) is an inductive demigroup, then in the demonization
SD,

s~ t = (s ·D(t))st for all s, t ∈ S.

Before turning to examples, we list some elementary properties of multipli-
cation in the demonization of an inductive demigroup.

Proposition 5.5 Let S be an inductive demigroup.

1. For all s, t ∈ S, D(s~ t) = s ·D(t).

2. For all s, t ∈ S, s ~ t = st if and only if s · D(t) = D(st). In that case,
sD(t) = D(st)s.

3. For all s, t ∈ S, if D(s) ≤r D(t) then D(s)~ t = D(s)t.

4. If D(S) is right reduced and for all s, t ∈ S, D(st)D(s) = D(st) (for
example, if S is left Ehresmann), then for all s, t ∈ S, sD(t) = D(st)s if
and only if s~ t = st.

Proof. For 1, we have

D(s~ t) = D((s ·D(t))st)

= D((s ·D(t))sD(t))

= D((s ·D(t))s)

= D((s ·D(t))D(s))

= D(s ·D(t))

= s ·D(t),

as claimed.
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For 2, if st = s ~ t, then st = (s · D(t))st, so D(st) = D(s ~ t) = s · D(t)
by the third part. Conversely, if (s ·D(t)) = D(st), then s~ t = (s ·D(t))st =
D(st)st = st. Under these equivalent conditions,

sD(t) = D(sD(t))sD(t))

= D(st)sD(t)

= (s ·D(t))sD(t)

= (s ·D(t))s

= D(st)s.

For 3, if D(s) ≤r D(t) then D(s) · D(t) = D(s) and so D(s) ~ t = (D(s) ·
D(t))D(s)t = D(s)D(s)t = D(s)t.

Finally for 4, note that if the given conditions are assumed, and sD(t) =
D(st)s, then because D(st)sD(t) = D(sD(t))sD(t) = sD(t) = D(st)s, so be-
cause D(st)D(s) = D(st), we have that D(st) ≤r s·D(t) and so D(st)(s·D(t)) =
D(st), so D(st) = (s ·D(t))D(st), so

s~ t = (s ·D(t))st

= (s ·D(t))D(st)st

= D(st)st

= st.

�

We now compile some further facts about inductive demigroups.

Proposition 5.6 Let S be an inductive demigroup.

1. For all t ∈ S and e ∈ D(S), t · e is the largest f ∈ D(S) under ≤r such
that fte = ft and f ≤r D(t).

2. For all e, f ∈ D(S), e · f is their meet e ∧ f under ≤r.

3. If s ∈ S with e, f ∈ D(S), and if se = sf = s, then s(e · f) = s.

Proof. For 1, let s = f in Theorem 5.1.
For 2, note that (e · f) ≤r D(e) = e, so e · f ≤r e, and moreover (e · f)f =

(e · f)ef = (e ·D(f))eD(f) = (e ·D(f))e = e · f . So e · f is a lower bound of
e, f . If g ≤r e, f , then ge = gef so by the first part, g ≤r e · f , so e · f is the
greatest such lower bound.

For 3, suppose se = sf = s. Then sef = se so s(e · f) = s. �

The first part of this last result shows that a semigroup can be inductive in
at most one way, because t · e is determined by the ordering ≤r on D(S).

One can give an equational characterisation of inductive demigroups.

Theorem 5.7 Let S be a demigroup. Then it is inductive if and only if for all
s ∈ S and e ∈ E, there is s · e ∈ S satisfying, for all s, t ∈ S and e, f ∈ D(S):
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1. D(s · e) = s · e,

2. se · e = D(se),

3. e · f = f · e,

4. (t · e)t = (t · e)te and

5. (sD(t)) · (t · e) = (st) · e.

Proof. Suppose S is an inductive demigroup. The only one of the above
laws which is not immediate either from the definition or from relevant parts
of Proposition 5.6 is the last. But for this, it follows from 1 in Proposition 5.6
that the following are equivalent for s, t ∈ S and e, f ∈ D(S):

f ≤r (sD(t)) · (t · e);
f ≤r D(sD(t)) and fsD(t)(t · e) = fsD(t);

f ≤r D(st) and fsD(t)te = fsD(t)t;

f ≤r D(st) and fste = fst;

f ≤r (st) · e.

Hence (sD(t)) · (t · e) = (st) · e. So we turn to the converse: suppose the
demigroup S satisfies the above laws 1 to 5.

First, if e, f ∈ D(S) are such that e · f = e, then ef = eef = (e · f)ef =
(e · f)e = ee = e, using Law 4, and conversely if ef = e then e = D(e) =
D(ef) = (ef) · f = e · f using Law 2. Hence if e, f ∈ D(S) are such that
ef = e, fe = f then e = e · f = f · e = f using what was just shown and Law 3,
so D(S) is right pre-reduced.

Next, suppose x ∈ S and e ∈ D(S). Using Laws 3 and 5,

(x · e) ·D(x) = D(x) · (x · e) = (D(x)D(x)) · (x · e) = (D(x)x) · e = x · e,

so (x · e)D(x) = x · e from what was shown in the previous paragraph.
Now suppose x ∈ S and e ∈ D(S). If t ∈ S is such that txe = tx and

tD(x) = t then

t·(x·e) = (tD(x))·(x·e) = (tx)·e = (txe)·e = D(txe) = D(tx) = D(tD(x)) = D(t)

using Laws 2, 4 and 5, so

t(x · e) = D(t)t(x · e) = (t · (x · e))t(x · e) = (t · (x · e))t = D(t)t = t

upon using Law 4. Conversely, if t(x · e) = t then tD(x) = t(x · e)D(x) =
t(x · e) = t, and moreover txe = t(x · e)xe = t(x · e)x = tx using Law 4. So by
Theorem 5.1, S is inductive. �

The laws given above can be turned into equational laws on the whole of
S by simply defining s · t := s · D(t) for all s, t ∈ S. In this way, the class of
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inductive demigroups can be viewed as a variety of algebras with two binary
operations and one unary operation.

Note that Example 3.6 is not inductive since there is no g ∈ D(S) such that
gae = ga.

Example 5.8 A small inductive demigroup.

Consider the monoid S = {1, e, f, g, s}, given by the following multiplication
table.

× e 1 f g s
e e e e e e
1 e 1 f g s
f e f f e e
g s g s g s
s s s s s s

.

It is routine to check that T = {e, f, g, s} is a subalgebra which is a semi-
group, and so S is T with adjoined identity element. It is also routine to check
that S is an inductive demigroup in which D(S) = {1, e, f, g}, which forms a
lattice with respect to ≤r in which e ≤r f, g ≤r 1, with D(s) = g, and the
action of S on D(S) is as follows:

· e 1 f g
e e e e e
1 e 1 f g
f e f f e
g e g e g
s g g g g

.

SD can be formed, and has the following multiplication table.

~ e 1 f g s
e e e e e e
1 e 1 f g s
f e f f e e
g e g e g s
s s s s s s

.

The only change from the multiplication table for S is that g ~ e = g ~ f = e.

6 Two families of inductive demigroups

6.1 Special case: domain semirings

Definition 6.1 A domain semiring (S,+,×, D) is an algebra in which

• (S,×, D) is a left Ehresmann semigroup with zero 0 and identity 1 both in
D(S),

16



• (S,+,×) is an idempotent semiring with bottom element 0 (so s + s = s
and s+ 0 = s for all s ∈ S), and

• (D(S),+,×) is a Boolean algebra (and it follows 0 is the bottom element
and 1 the top).

This is equivalent to the definition of Boolean domain semirings given in [5], for
example.

It is well-known that (RelX ,∪,×, D) is a domain semiring. Denote by e′ or
A(e) the complement of e ∈ D(S); if S = RelX , this is the identity map on
the complement of the domain of the restriction of the identity map e. Extend
to give antidomain A on all of S by defining A(s) = A(D(s)), which on RelX
is the identity map on the complement of the domain of s ∈ RelX . Note that
demonic composition can be defined to be s~ t = A(sA(t))st for all s, t ∈ RelX ,
as noted in [4], for example (see Definitions 5 and 8 there). In general we have
the following.

Proposition 6.2 Every domain semiring S is an inductive demigroup with

s · e := A(sA(e))D(s) for all s ∈ S, e ∈ D(S).

Hence SD = (S,~, D) is a left restriction semigroup in which s~t = A(sA(t))st
for all s, t ∈ S.

Proof. Certainly S is a demigroup. For s, t ∈ S and e ∈ D(S), if ste = st and
sD(t) = s then D(sD(te′)) = D(ste′) = D(stee′) = D(0) = 0, so sD(te′) = 0,
and so

s = s1 = s(D(te′)+A(te′)) = sD(te′)+sA(te′) = 0+sA(te′) = sD(t)A(te′) = s(t·e).

Also,

(s·e)s = A(se′)D(s)s1 = A(se′)s(e+e′) = A(se′)s+A(se′)se′ = A(se′)D(s)se+0 = (s·e)se.

So S is inductive.
It now follows that SD = (S,~, D) a left restriction semigroup, in which for

all s, t ∈ S, s~ t = (s ·D(t))st = A(sA(t))D(s)st = A(sA(t))st as claimed. �

In the case of the domain semiring (RelX , ·, D), this yields the familiar de-
monic structure on RelX , and we have an alternative proof that (RelX ,~, D)
is a left restriction semigroup. In particular, this furnishes an alternative proof
of the associativity of demonic composition, a non-trivial fact; for example, see
the much-cited technical report [1] due to Backhouse. This example motivates
our general use of the term “demonization” for SD.

6.2 Special case: Baer ∗-semigroups

Another way to generalise RelX equipped with angelic composition and domain
is via Baer ∗-semigroups.
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Recall that an involuted semigroup is a semigroup S with a unary operation
of involution ∗, satisfying x∗∗ = x and (xy)∗ = y∗x∗. The set of projections
E∗(S) ⊆ E(S) in S is the set E∗(S) = {e ∈ E(S) | e∗ = e}.

A Baer ∗-semigroup is an involuted semigroup with zero (S, ·,∗ ) in which
the left annihilator (0 : s) = {x ∈ S | xs = 0} of every s ∈ S has a (necessarily
unique) generator as a left ideal that is a projection; call this A(s). So A(s)2 =
A(s)∗ = A(s), and ts = 0 if and only if t = tA(s); that is, (0 : s) = SA(s).
The involution ensures that there is an equivalent dual definition in terms of
right annihilators and right ideals. It is also well-known that S is a monoid
in which 0∗ = 0 and 1∗ = 1, and that the set of elements of A(S) = {A(s) |
s ∈ S} ⊆ E∗(S) is an orthomodular lattice with respect to the natural order
given by e ≤ f if and only if e = ef = fe, with top element 1, bottom 0, and
e∧ f = eA(eA(f)) for all e, f ∈ A(S); see [6] where the dual right-sided version
is developed. Because e,A(eA(f)) ∈ E∗(S), it follows that e ∧ f = A(eA(f))e.

(RelX , ; ,∪, D) is a domain semiring. However, it is also a Baer ∗-semigroup
in which the involution is the operation of relational converse, and A(s) is pre-
cisely as in the previous subsection, as is easily seen and in any case well-known.
We consider other examples shortly.

We begin with some basic facts which have probably appeared elsewhere but
which we include here for completeness.

Lemma 6.3 If S is a Baer ∗-semigroup, then for all x ∈ S, A2(x)x = x and
A3(x) = A(x).

Proof. First, note that because A(x)x = 0 for any x ∈ S, x∗A(x) = 0 as
well (upon taking involutions of both sides), and so x∗ ∈ (0 : A(x)), and so
x∗A(A(x)) = x∗. Again taking involutions we obtain x = A(A(x))x. Con-
tinuing, A3(x) = A(A((A(x)))A(x) = A(x) and so A(x) ≤ A3(x). But then
A3(x)x = A3(x)A(A(x))x = 0x = 0, so A3(x) ∈ (0 : x), and so A3(x)A(x) =
A3(x), so A3(x) ≤ A(x). Hence A(x) = A3(x). �

Theorem 6.4 If S is a Baer ∗-semigroup, then S is an inductive demigroup
which is a D-semigroup, in which D(S) = A(S), with D(s) = A(A(s)) for
all s ∈ S and with s · e = A(sA(e)) ∧ D(s) for all s ∈ S and e ∈ A(S).
Hence SD = (S,~, D) is a left restriction semigroup in which, for all s, t ∈ S,
s~ t = (s ·D(t))st = (A(sA(t)) ∧D(s))st.

Proof. For all x, y ∈ S, A(x)xy = 0, so A(x)A(xy) = A(x), and so on taking
involutions, A(xy)A(x) = A(x). Now let D(x) = A(A(x)) for each x ∈ S;
then D(D(x)) = D(x) since A(A(A(x))) = A(x) as in Lemma 6.3. Then for
each x ∈ S, D(x) = A(A(x))x = x for all x ∈ S. Moreover if ex = x for any
e ∈ A(S), then A(x)A(e) = A(ex)A(e) = A(e), so D(x)A(e) = A(A(x))A(e) =
A(A(x))A(x)A(e) = 0, and so D(x)e = D(x)A(A(e)) = D(x). So S is a D-
semigroup as in [17], hence certainly a demigroup.

For the left congruence condition, let x, y ∈ S. Then A(xy)xy = 0, so
A(xy)x ∈ (0 : y), and so A(xy)xA(y) = A(xy)x, and so A(xy)xD(y) =
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A(xy)xA(y)A(A(y)) = A(xy)x(A(A(y))A(y))∗ = A(xy)x0∗ = 0, so (xD(y))∗A(xy) =
0, and so (xD(y))∗ ∈ (0 : A(xy)), so (xD(y))∗A(A(xy)) = (xD(y))∗, so
D(xy)xD(y) = xD(y) and so D(xD(y)) ≤ D(xy). But as in any gener-
alised D-semigroup, D(xD(y))xy = D(xD(y))(xD(y)y = xD(y)y = xy, so
D(xy) ≤ D(xD(y)). So D(xy) = D(xD(y)).

For all x, y ∈ S, because A(A(y))y = y from the previous lemma, we obtain
A(xA(A(y))xy = A(xA(A(y)))xA(A(y))y = 0, so A(xA(A(y))x ∈ (0 : y) and
so A(xA(A(y))xA(y) = A(xA(A(y))x. So (x · e)x = (x · e)xe for all x ∈ S and
e ∈ A(S).

Next, suppose xye = xy for some x, y ∈ S and e ∈ E and that xD(y) = x.
First note that (eA(e))∗ = A(e)e = 0, so eA(e) = 0∗ = 0. Then xyA(e) =
xyeA(e) = 0, so x ∈ (0 : yA(e)) and so x(y · e) = x(A(yA(e)) ∧ D(y)) = x.
Hence S is inductive.

Because A(x) = A3(x) for all x ∈ S, it follows that (e ·0) ·0 = A(A(e))∧ e =
e ∧ e = e for all e ∈ A(S). �

It was noted in Theorem 16 of [9] that one can obtain orthomodular lattices
from generalisations of Baer ∗-semigroups that have no involution but retain a
suitable notion of generalised complement. Theorem 6.4 will likely generalise to
such settings also.

7 Further operations

We have seen that inductive demigroups carry structure making them behave
like semigroups of partial functions equipped with domain. It is remarkable
that other aspects of the structure of PTX and important subsemigroups such
as IX , the injective partial functions on X, are frequently also present in the
demonization of a particular demigroup.

7.1 Inverse

The left restriction semigroup IX has true inverses and so is in fact an inverse
semigroup equipped with inversion. So it is natural to ask when the demoniza-
tion of an inductive demigroup is an inverse semigroup.

The following terminology corresponds to that used for generalised D-semigroups
as in [19].

Definition 7.1 If S is a demigroup with s ∈ S, call s′ ∈ S such that D(s) = ss′

and D(s′s) = s′ a D-inverse of s. If a demigroup S is such that every s ∈ S has
a D-inverse, we call it D-regular, and if every s ∈ S has a unique D-inverse s′,
we call it D-inverse.

Since for e ∈ D(S), ee = D(e), e is a D-inverse for itself. In a D-inverse
demigroup, e′ = e for all e ∈ S, and evidently D(S) = {ss′ | s ∈ S}.

However, not every D-regular demigroup is D-inverse. For example, consider
the band S = {e, f, 1}, the left zero semigroup on {e, f} with adjoined identity
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1, and define D(x) = x for all x ∈ S. Then S is a demigroup, and both e, f
have both themselves and each other as D-inverses. Note that D(S) is not right
pre-reduced, which turns out to be the key property.

The following is a generalisation of (part of) Proposition 4.3 in [19].

Proposition 7.2 Suppose S is a D-regular demigroup. Then S is D-inverse if
and only if D(S) is right pre-reduced.

Proof. Suppose S is a D-inverse demigroup. If e, f ∈ D(S) are such that
ef = e and fe = f then D(e) = e = ef and D(f) = f = fe, so e = e′ = f . So
D(S) is right pre-reduced.

Conversely, suppose D(S) is right pre-reduced. If s ∈ S has D-inverses t
and u then st = D(s) = su and ts = D(t), us = D(u). So D(u)D(t) = usts =
uD(s)s = us = D(u) and similarly D(t)D(u) = D(t). Hence D(t) = D(u) and
so t = D(t)t = tst = tsu = D(t)u = D(u)u = u. �

Theorem 7.3 The inductive demigroup S has demonization which is an inverse
semigroup if and only if S is D-regular (equivalently, D-inverse).

Proof. Suppose that ss′ = D(s) and s′s = D(s′). Then s ·D(s′) is the largest
e ∈ D(S) under ≤r for which e ≤r D(s) and es = esD(s′) = ess′s = eD(s)s =
es, so e = D(s). Hence s ~ s′ = (s · D(s′))ss′ = D(s)ss′ = ss′ = D(s). By
symmetry, s′ ~ s = D(s′).

Conversely, suppose s ~ s′ = D(s) and s′ ~ s = D(s′). Then D(s) =
(s·D(s′))ss′, so (s·D(s′))D(s) = D(s), yet s·D(s′) ≤r D(s), so (s·D(s′))D(s) =
s ·D(s′), and so D(s) = s ·D(s′); hence D(s) = D(s)ss′ = ss′. By symmetry,
D(s′) = s′s.

Hence, S is D-regular if and only if SD is. So by Theorem 5.1 and Proposition
7.2, each is D-inverse if and only if the other is. But by Corollary 2.13 in [11], a
left restriction semigroup S is D-inverse if and only if it is an inverse semigroup
in which the D-inverse s′ of s is its semigroup inverse and D(s) = ss′. �

The E-inverse semigroups considered in [19] are semigroups S with E ⊆
E(S) and for all s ∈ S there is a unique s′ ∈ S for which ss′s = s, s′ss′ = s′ and
ss′, s′s ∈ E. These are generalised D-semigroups in whichD(s) = ss′ and indeed
D(S) = E must be pre-reduced. In particular, when viewed as unary semigroups
underD, they satisfy the first two demigroup laws. Bot note that for all x, y ∈ S,
an E-inverse semigroup, D(xD(y))xy = D(xD(y))xD(y)y = xD(y)y = xy, so
D(xy) ≤l D(xD(y)), but also D(xy)xD(y) = D(xy)xyy′ = xyy′ = xD(y), so
D(xD(y)) ≤l D(xy), and so D(xy) = D(xD(y)). Hence E-inverse semigroups
are nothing but D-inverse demigroups in which D(S) is left pre-reduced, hence
pre-reduced.

Important examples of E-inverse semigroups are ∗-regular Baer ∗-semigroups.
A ∗-regular semigroup is an involuted semigroup S such that for all s ∈ S,
there is a (necessarily unique) s′ ∈ S such that ss′s = s, s′ = s′ss′ and both
ss′, s′s ∈ E∗(S) = {e ∈ E(S) | e∗ = e}, the set of projections of S. Here s′ is
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called the Moore-Penrose inverse of s. In this case, note that E∗(S) is reduced,
hence pre-reduced, and so S is E∗(S)-inverse.

A Rickart ∗-ring S is an involuted associative ring with identity such that its
multiplicative semigroup is a Baer ∗-semigroup. It is well-known that for such
cases, A(S) = E∗(S). A ∗-regular ring is an involuted associative ring with
identity whose multiplicative semigroup is ∗-regular; these are automatically
Rickart ∗-rings as well. (This is well-known but the proof is easy. For all
x ∈ R, the following are equivalent for y ∈ R: y ∈ (0 : x); yx = 0; yxx′ = 0;
y(1 − xx′) = y; y ∈ Re where e = 1 − xx′ ∈ E∗(S).) So by Theorem 6.4, S
is an inductive demigroup with D(s) = A(A(s)) for all s ∈ S. But it is also
D-regular and hence D-inverse since ss′ = D(s) and s′s = D(s′); see 2.7 in [3]
for example. It follows that SD is an inverse semigroup in which inversion is
Moore-Penrose inverse.

An example of a ∗-regular ring is Mn(R) where R is the field of real or com-
plex numbers. So, its multiplicative semigroup is a ∗-regular Baer ∗-semigroup.
The Moore-Penrose inverse M ′ of a matrix M is such that if M is non-singular
then M ′ = M−1, and MM ′ = M ′M = 1. The Moore-Penrose inverse is impor-
tant in statistics and beyond.

Now multiplicatively, Mn(R) is not an inverse semigroup. However, being a
Baer ∗-semigroup, it is an inductive demigroup with D(M) = A(A(M)) as we
have seen, with the action given by

M ·D(N) = A(MA(N)) ∧D(M) = (1−D(M(1−D(N)))) ∧D(M),

where D(M) = MM ′ (M ′ the Moore-Penrose inverse of M) and D(N) = NN ′,
and then M ~N = (M ·D(N))MN . Hence (Mn(R),~, D) is a left restriction
semigroup. Indeed because D(M) = MM ′ and D(M ′) = M ′M , D-regularity
holds and so it is one arising from an inverse semigroup, in which inverse is
Moore-Penrose inverse. So (Mn(R),~, ′) is an inverse semigroup!

Almost always, M~N = MN (since for this to hold, by Proposition 5.5 part
4, it is sufficient that N be nonsingular so that D(N) = 1, or more generally that
MD(N) = M). However, it is not easy to write down an explicit formula for
M ~N , even when n = 2. (The “formula” splits into cases, like the “formula”
for Moore-Penrose inverse.) There is considerable interest in the structure of
such inverse semigroups.

7.2 Intersection

Note that PTX is closed under the operation of intersection ∩ given by

f ∩ g = {(x, y) | y = f(x) = g(x)},

that is, intersection of the sets of ordered pairs defining the two functions.
This is a semilattice operation on PTX , and satisfies a small number of further
equational laws that can be used to axiomatize subsemigroups of PTX closed
under intersection together with domain; see [21] and [12]. In the latter, the
axioms were given as follows: (S, ·, D,∩) is an algebra in which
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• (S, ·, D) is a left restriction semigroup;

• (S,∩) is a semilattice in which ∩ is meet with respect to the natural order
on (S, ·, D); and

• s(t ∩ u) = (su) ∩ (tu) for all s, t, u ∈ S.

Algebras of partial functions under composition and intersection are often
called ∩-semigroups in the literature. Hence we make the following definition.

Definition 7.4 An algebra (S, ·,∩, D) satisfying the above laws is a left restric-
tion ∩-semigroup.

A further natural natural question therefore is: when is the demonization of
a demigroup a left restriction ∩-semigroup?

Definition 7.5 A demigroup S has all lower equalizers (ALE) if, for all s, t ∈
S, there exists s ∗ t ∈ D(S) such that for all u ∈ S, (us = ut and uD(s) =
uD(t) = u) if and only if u(s ∗ t) = u.

Because of the right pre-reduced property of D(S), the element s ∗ t in the
above definition is unique if it exists. So a demigroup can have ALE in at most
one way.

Theorem 7.6 Let S be an inductive demigroup. Then SD is a left restriction
∩-semigroup if and only if the demigroup S has ALE, and then s ∗ t = D(s ∩ t)
and s ∩ t = (s ∗ t)~ s.

Proof. First suppose that SD is a left restriction ∩-semigroup. For all s, t ∈ S,
let s ∗ t = D(s ∩ t) ∈ D(S). We note in passing that (S,~, ∗) is then nothing
but a twisted agreeable semigroup in the sense of [12], and the following two
laws hold: s~ (t ∗ u) = (s~ t) ∗ (s~ u) and D(s) = s ∗ s.

Choose s, t ∈ S. Then s ∗ t = D(s ∩ t) ≤ D(s) ~ D(t) = D(s) · D(t) =
D(s) ∧ D(t) in the inductive demigroup S, so s ∗ t ≤r D(s), D(t). So by 3 in
Proposition 5.5,

(s ∗ t)s = (s ∗ t)~ s = D(s ∩ t)~ s = s ∩ t = D(s ∩ t)~ t = (s ∗ t)~ t = (s ∗ t)t.

Next, suppose u(s ∗ t) = u, for some u ∈ S. Then from what was just shown,
we obtain that us = u(s ∗ t)s = u(s ∗ t)t = ut, and uD(s) = u(s ∗ t)D(s) =
u(s ∗ t) = u, and similarly uD(t) = u.

Conversely, suppose us = ut and uD(s) = uD(t) = u. Then obviously,
u ·D(s) = D(u), and so

u~ s = (u ·D(s))us = D(u)us = us = ut = · · · = u~ t,

so using the above two laws for ∗,

u~ (s ∗ t) = ((u~ s) ∗ (u~ t))~ u = ((u~ s) ∗ (u~ s))~ u = D(u~ s)~ u
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= u~D(s) = (u ·D(s))uD(s) = D(u)u = u,

and so u = u~ (s ∗ t) = (u · (s ∗ t))u(s ∗ t), so u(s ∗ t) = u. Hence the demigroup
(S, ·, D) has ALE with associated operation ∗.

Next suppose (S, ·, D) has ALE with associated operation ∗. It follows that
s∗t is the largest e ∈ D(S) under ≤r such that es = et and e ≤r D(s), D(t). We
show that setting s∩t = (s∗t)~s makes the left restriction semigroup (S,~, D)
into one with ∩. First, suppose u ≤ s, t under the standard order on (S,~, D).
So u = D(u)~s = D(u)~t, so D(u) ≤ D(s), D(t) certainly, and so D(u)·D(s) =
D(u) · D(t) = D(u), and so D(u) ~ s = (D(u) · D(s))D(u)s = D(u)s, and
similarly D(u)~ t = D(u)t, so D(u)s = D(u)t and D(s) ≤r D(s), D(t) in (S, ·),
so D(u) ≤r (s ∗ t). Hence

D(u)~ (s ∩ t) = D(u)~ (s ∗ t)~ s = D(u)~ s = u,

so u ≤ s∩t under the standard order on (S,~, D). But also s∩t = (s∗t)~s ≤ s
and similarly s ∩ t ≤ t, so s ∩ t is the greatest lower bound of s, t in (S,≤).

To complete the proof that (S,~, D,∩) is a left restriction ∩-semigroup, it
remains to show that s ~ (t ∩ u) = (s ~ t) ∩ (s ~ u) for all s, t, u ∈ S. Now
because t∗u ≤r D(t), (t∗u)~ t = (t∗u)t using 3 in Proposition 5.5, and noting
also that

D((s·D(t))st) = D((s·D(t))sD(t)) = D((s·D(t))s) = D((s·D(t))D(s)) = s·D(t),

we have that

LHS = (s · (D(t ∩ u)))s(t ∩ u)

= (s · (t ∗ u))s((t ∗ u)~ t)

= (s · (t ∗ u))s(t ∗ u)t

= (s · (t ∗ u))st,

while

RHS = (s~ t) ∩ (s~ u)

= ((s ·D(t))st) ∩ (s ·D(u))su)

= ((s ·D(t))st) ∗ (s ·D(u))su)~ (s ·D(t))st

= ((s ·D(t))st) ∗ (s ·D(u))su) · (D(s ·D(t))st))(s ·D(t))st

= ((s ·D(t))st) ∗ (s ·D(u))su) · (s ·D(t)))(s ·D(t))st

= ((s ·D(t))st) ∗ (s ·D(u))su) · (s ·D(t)))st

= ((s ·D(t))st) ∗ (s ·D(u))su) ·D((s ·D(t))st))st

= ((s ·D(t))st) ∗ (s ·D(u))su)st,

so it suffices to show that s · (t ∗ u) = ((s ·D(t))st) ∗ ((s ·D(t))su).
Suppose g ∈ D(S) is such that g ≤r s·(t∗u). So g ≤r D(s) and gs(t∗u) = gs,

so gsD(t) = gs since t∗u ≤r D(t), and gsD(u) = gs, so g ≤r s·D(t) and s·D(u).
Hence

g(s ·D(t))st = gst = gsu = g(s ·D(u))su,
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and
gD(s ·D(t))st) = gD((s ·D(t))sD(t)) = gD((s ·D(t))s)

= gD((s ·D(t))D(s)) = gD(s ·D(t)) = g(s ·D(t)) = g

and likewise gD((s ·D(u))su) = g, so g ≤r ((s ·D(t))st) ∗ ((s ·D(u))su).
Conversely, suppose g ≤r ((s · D(t))st ∗ (s · D(u))su), so g(s · D(t))st =

g(s · D(u))su and g ≤r D((s · D(t))st) = s · D(t) as before, and similarly
g ≤r s ·D(u). So gst = gsu, and yet also g ≤r D(s), so to obtain gs(t ∗u) = gs,
we now only need show that gsD(t) = gsD(u) = gs. But this follows since
g ≤r s ·D(t) and g ≤r s ·D(u). �

Examples come from Rickart ∗-rings.

Proposition 7.7 Let S be the multiplicative Baer ∗-semigroup of a Rickart ∗-
ring R. Then S is an inductive demigroup with ALE, with s ∗ t = A(s − t) ∧
D(s) ∧D(t), hence is such that SD is a left restriction ∩-semigroup.

Proof. S is an inductive demigroup by Theorem 6.4. Let s ∗ t be defined as
above for all s, t ∈ S. Then (s ∗ t)(s− t) = 0, so (s ∗ t)s = (s ∗ t)t.

Now suppose u, s, t ∈ S. If u(s ∗ t) = s then us = u(s ∗ t)s = u(s ∗ t)t = ut,
and uD(s) = u(s ∗ t)D(s) = u(s ∗ t) = u and similarly uD(t) = u. Conversely,
if us = ut and uD(s) = uD(t) = u then u(s − t) = 0 so uA(s − t) = u, and so
from part 3 of Proposition 5.6, u(s ∗ t) = u. It follows from Theorem 7.6 that S
has ALE. �

We can hope to combine the ideas of these last two subsections, and ask:
when is the demonization of an inductive demigroup equipped with both inver-
sion and intersection? In fact there are no further properties beyond what these
two operations require seperately.

Definition 7.8 A left restriction semigroup that is both inverse and a ∩-semigroup
is an inverse ∩-semigroup.

These axiomatise semigroups of injective partial functions equipped with
inversion and intersection (and hence domain, which can be viewed as a derived
operation), as shown in Section 7 of [12].

Corollary 7.9 Let S be an inductive demigroup. Then SD is an inverse ∩-
semigroup if and only if the demigroup S is D-regulsr and has ALE.

Examples come from ∗-regular rings.

Proposition 7.10 Let S be the multiplicative Baer ∗-semigroup of a ∗-regular
ring R. Then S is a D-regular inductive demigroup with ALE, and so SD is an
inverse ∩-semigroup.
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Proof. We have seen that SD is a left restriction ∩-semigroup. But because
S is D-inverse, it is an inverse ∩-semigroup. �

An example is the multiplicative Baer ∗-semigroup Mn(R) where R is the
ring of real or complex numbers, discussed earlier: its demonization is in fact
an inverse ∩-semigroup.

8 Special Case: inductive demibands

A special case arises by assuming D(S) = S.

Definition 8.1 A demigroup S is a demiband if D(S) = S. A demiband is
inductive if it is inductive as a demigroup.

Of course a demiband is a band, indeed because D(s) = s for all s ∈ S, it
is nothing more than this, for any band S is a demiband on which we define
D(s) = s for all s ∈ S, as is easily checked. In the inductive case, the right pre-
reduced property of D(S) becomes the right regularity law for bands: xyx = yx
for all x, y, which in turn is equivalent to the right reduced property (ef = e⇒
fe = e).

In the demiband case, the equational laws given in Theorem 5.7 simplify
somewhat as follows. (Note that D does not appear in these laws since D(s) = s
is a law.)

Proposition 8.2 The algebra (S,×, ·) is an inductive demiband if and only if
it satisfies the following laws.

1. (S,×) is a band and (S, ·) is a commutative semigroup;

2. (s · t)s = (s · t)

3. (st) · t = st

Equivalently it is an algebra in which (S,×) is a right regular band and · is meet
with respect to the partial order ≤r on (S,×).

Proof. First suppose (S,×, ·) is an inductive demiband. The first law is
immediate, as is the second since s · t ≤r s. For the final one, stt = st for all
s, t ∈ S, so the largest u ∈ S below st under ≤r such that ustt = ust is st itself,
giving the third law courtesy of Law 1 in Proposition 5.6.

Conversely, assume the above laws hold. Define D(s) = s for all s ∈ S. The
demigroup laws are immediate. For x, y ∈ S, if xy = x then x·y = (xy)·y = xy =
x, and conversely if x ·y = x then xy = (x ·y)y = (y ·x)y = (y ·x) = x ·y = x. So
xy = x if and only if x ·y = x. So if xy = x and yx = y then x = x ·y = y ·x = y.
So S is right pre-reduced.

Now for all s, t ∈ S, (s · t)st = (s · t)t = (t · s)t = t · s = s · t = (s · t)s and
(s · t)s = s · t. So if u ∈ S is such that u(s · t) = u then us = u and ust = us.
On the other hand, if us = u and ust = us then ut = u, and so u · s = u and
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u · t = u. Hence u · (s · t) = (u · s) · t = u · t = u, so u(s · t) = u. Hence (S,×, ·)
is an inductive demiband.

If (S,×, ·) is an inductive demiband, then as noted above, (S,×) is a right
regular band, and by Law 2 in Propositon 5.6, · is meet with respect to ≤r.
Conversely, if (S,×) is a right regular band and · is meet with respect to the
partial order ≤r on (S,×), then the first two laws given above are immediate,
and because (st)t = st so that st ≤r t for all s, t ∈ S, we obtain the third. This
establishes the final claim. �

If S is an inductive demiband, then in SD, s~ t = (s · t)st = (s · t), as is the
case for elements of D(SD) in general. The following is also clear.

Proposition 8.3 Every inductive demiband has ALE, with s ∗ t = s · t; hence
in SD, s~ t = s ∩ t = s · t.

Aside from the rather trivial cases of any semilattice in which one defines the
second multiplication to equal the first, examples of inductive demibands are
common. Consider PTX , the set of partial functions on the non-empty set X.
An operation of interest other than composition is left restrictive multiplication,
defined as follows: for all s, t ∈ PTX , (s � t) = D(s)t (where composition is
either angelic or demonic, it does not matter). This operation is motivated from
computer science (see [20] for example), and is well-known to be associative, and
(PTX ,�) is a right regular band. Indeed it is a right normal band, satisfying
the stronger law (s� t)� u = (t� s)� u. Conversely, it was shown in [22] that
every right normal band embeds in one such.

Now ≤r in (PTX ,�) is given by s ≤r t if and only if s � t = s, which is
saying that s ⊆ t when s, t are viewed as sets of ordered pairs. Meet under ≤r in
(PTX ,�) therefore exists and is nothing but intersection of (the sets of ordered
pairs determined by) two partial functions, and indeed each of the inductive
demiband laws in Proposition 8.2 is easily checked if we set s · t = s ∩ t.

Hence (PTX ,�,∩) is an inductive demiband. It is not a particularly typical
one though, since aside from the right normal band law, it also satisfies the law
(s� t)∩u = s� (t∩u) which does not generally hold. For example, consider the
band S = {0, e, f, 1} consisting of the left zero semigroup {e, f} with adjoined
zero 0 and identity 1, a right normal band. Moreover S is easily seen to be an
inductive demiband, in which (S, ·) is the semilattice in which 0 ≤r e, f ≤r 1,
and then (e1) · f = e · f = 0 while e(1 · f) = ef = e.

Finally, note that one can define � on RelX and obtain a right regular band,
and meet with respect to≤r does exist, thus giving an inductive demiband struc-
ture. However, ≤r is not in general just relational inclusion, and correspondingly
meet is not simply relational intersection.
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