

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

An Algorithmic Approach to OpenFlow

Ruleset Transformation

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Richard Sanger

2020

Abstract

In an ideal development cycle for an OpenFlow application, a developer designs
a pipeline to suit their application’s needs and installs rules to that pipeline.
Their application will run on any OpenFlow switch, whether software or hard-
ware based. A network operator deploying this application would assess their
network’s requirements and purchase OpenFlow hardware to meet these re-
quirements; such as bandwidth, port density, and flow table size. In reality,
this level of interoperability does not exist as many OpenFlow switches are
built on a fixed-function pipeline. Fixed-function pipelines limit the matches
and actions available to rules depending on the table, but in doing so make
more efficient use of expensive hardware resources such as TCAM.

This thesis investigates improving OpenFlow device interoperability by de-
veloping a method to rewrite existing rulesets to new complex fixed-function
pipelines. Additionally, this thesis developed the tools to assess and verify the
interoperability and equivalence of OpenFlow rulesets and pipelines.

This thesis developed a library and tools for working with descriptions
of fixed-function pipelines, specifically, the Table Type Pattern description.
This library provides a method to check if an existing ruleset is compatible
with a new pipeline. Additionally, this thesis designed and implemented a
pragmatic approach to compare if the forwarding behaviour of two OpenFlow
1.3 rulesets is equivalent. Equivalence checking provides a tool to verify that
an OpenFlow application rewritten to program a new pipeline maintains the
correct forwarding behaviour.

Finally, this thesis investigates the problem of algorithmically rewriting
an existing OpenFlow ruleset, programmed by an existing application, to fit
a different fixed-function pipeline. Solving this problem allows an OpenFlow
application to be written once and run on any OpenFlow switch. This research
aimed to solve this problem in a comprehensive manner that did not rely on the
target pipeline supporting features such as OpenFlow metadata. This thesis
developed and implemented a general method to convert an OpenFlow 1.3 to
a complex constrained fixed-function.

Acknowledgements

First, I would like to thank my supervisors Richard Nelson, Matthew Luckie,
and Bill Rogers, for guiding me through my PhD. Their guidance was invalu-
able, they always made time to help me with my research, and they helped me
focus my research towards an achievable goal. They encouraged me to publish
my research and supported me through the process. Additionally, I would
like to especially thank my chief supervisor, Richard, for organising university
formalities and funding, which allowed me more time to focus on my research.

I would like to acknowledge and thank Matthew Luckie, Richard Nelson,
and Brad Cowie for their effort and own time spent proof-reading this thesis.
In addition, I am incredibly grateful to Matthew for his time and persever-
ance guiding me through the academic publication process and helping me to
present the best possible research.

I would like to thank the members of the WAND research group for being
a wonderful group to work with. I wish Florin, Chris, and Dimeji all the best
with their PhDs.

To all my friends and family thank you for your support, you have all been
great to spend time with over the years. Thanks for checking on my progress
and reminding me to finish.

This work was funded, in part, by a University of Waikato doctoral schol-
arship.

Contents

Front Matter i
Abstract . ii
Acknowledgements . iii
Contents . iv
List of Figures . viii
List of Tables . x
List of Algorithms . xii
List of Acronyms . xiii
Publications . xv

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contributions . 2

1.2.1 Table Type Pattern Tools 3
1.2.2 Ruleset Equivalence . 3
1.2.3 The Rule-Fitting Problem 4

1.3 Thesis Structure . 5

2 Background 7
2.1 Software Defined Networking . 8
2.2 OpenFlow . 11

2.2.1 OpenFlow Forwarding Pipeline 12
2.3 Diversity in OpenFlow Implementations 12

2.3.1 Software Switch Design 13
2.3.2 Hardware Switch Design 13
2.3.3 Software vs. Hardware Switches 15
2.3.4 OF-DPA: A Fixed-Function Pipeline 15

2.4 Representing OpenFlow Pipelines 21
2.4.1 OpenFlow Feature Messages 22
2.4.2 Table Type Patterns . 23

2.5 Representing an OpenFlow Rule Match 25
2.5.1 An OpenFlow Rule Match 26

v

2.5.2 Header Space . 27
2.5.3 Binary Decision Diagrams 32

2.5.3.1 Variations of Binary Decision Diagrams for Net-
working . 38

2.5.4 Summary . 39

3 Working With Table Type Patterns 40
3.1 Contents of a TTP . 41
3.2 Our TTP Library and Tools . 45

3.2.1 Loading and Validating a Table Type Pattern 46
3.2.2 Viewing Issues with a Table Type Pattern 48
3.2.3 Viewing a Table Type Pattern 50
3.2.4 Fitting a Rule into a Table Type Pattern 53

3.2.4.1 Rule Fitting for Ruleset Transformation 57
3.2.4.2 Optimisation 58

4 Ruleset Equivalence Checking 61
4.1 Problem Overview and Terminology 61
4.2 Ruleset Conversion to a Canonical Form 63

4.2.1 Conversion to a Single-Table Equivalence 64
4.2.2 Identifying Equivalent Actions 67
4.2.3 Equivalent Ruleset Behaviour 69

4.2.3.1 Finding Different Forwarding Behaviour 72
4.3 Evaluation . 74

4.3.1 Completeness . 74
4.3.1.1 The Canonical Action Set Depends on the Packet 74
4.3.1.2 Actions can be Equivalent Depending on the

Switch State 77
4.3.2 Implementation . 77
4.3.3 Performance . 78

4.4 Related Work . 79

5 The Rule-Fitting Problem 81
5.1 Motivation . 82
5.2 Problem Statement . 83

5.2.1 Rule-Fitting Solver Design Scope 83
5.2.1.1 A General Solver 85

5.3 Design Methodology . 86
5.4 Overview of the Rule-Fitting Solver Design 89
5.5 Related Work . 91

5.5.1 Switch Abstraction Layers 92

vi

5.5.2 Rewriting Rulesets Algorithmically 95
5.5.3 Summary . 98

6 Transforming Rules and Preprocessing Rulesets 99
6.1 Dependencies Between Rules and Paths 100
6.2 Ruleset Preprocessing . 106

6.2.1 Conversion to a Single-Table 106
6.2.2 Removing Unreachable Rules 107
6.2.3 Ruleset Compression . 107

6.2.3.1 What is a Similar Rule? 109
6.2.3.2 Compression Algorithm 112
6.2.3.3 Compression by Example 114
6.2.3.4 What if a Single Rule From a Group Cannot

be Selected While Maintaining all Dependencies?118
6.2.3.5 Compressing a Routing Table 120
6.2.3.6 Related Work 121

6.3 Finding Rule Transformations 122
6.3.1 Placing a Rule in a Target Pipeline 122
6.3.2 A Direct Transformation 123
6.3.3 A Merge Transformation 124
6.3.4 A Split Transformation 126
6.3.5 Filtering Split Transformations 126
6.3.6 Adding Additional ‘Wrong’ Actions 128
6.3.7 Placement Priorities . 129
6.3.8 Transformations: Future Work 130

6.3.8.1 Using Metadata To Link Split Transformations 130
6.3.8.2 Transforming Between Masked Matches and Ex-

act Matches . 132
6.3.8.3 Field-Centric Tables 132

7 SAT Solver: Finding a Valid Combination of Transformations135
7.1 The Boolean Satisfiability Problem 136
7.2 Boolean Notation . 138
7.3 Considerations when Developing Partial Expressions 140
7.4 The Initial SAT Expression . 144

7.4.1 Include a Transformation of Every Rule 145
7.4.2 Fully-Merged Variables 147
7.4.3 Ensure all Direct and Merge Placements Rules are in the

Same Table . 149
7.4.4 Placement Variables . 150
7.4.5 Disallow Same-Priority Conflicting Placements 151

vii

7.4.6 Disallow Placements with Conflicting Instructions 152
7.4.7 Require a Table-Miss Rule 153
7.4.8 Hit Placement Variables 155
7.4.9 Built-in Rules . 156

7.5 Solving and Building the Solution Ruleset 157
7.6 Refining the SAT Expression . 157

7.6.1 Ensure the Same Solution is Not Returned Again 158
7.6.2 Isolating Forwarding Conflicts 158

8 Evaluation 161
8.1 Measurement Methodology . 162

8.1.1 Pipelines and Rulesets for Evaluation 163
8.2 Evaluation of Single-Table Preprocessing 167
8.3 Evaluation of Ruleset Compression 170

8.3.1 Compression of Real-World Rulesets 175
8.4 Evaluation of SAT Constraints 175
8.5 Discussion . 180

8.5.1 Real-World Considerations 180
8.5.2 Assumptions and Limitations of our Approach 182

8.6 Summary . 184

9 Conclusion 185
9.1 Summary of Thesis . 185
9.2 Future Work . 188

List of Figures

2.1 A comparison of a traditional and a Software-Defined network . 8

2.2 OpenFlow 1.3 pipeline packet processing through a table 12

2.3 Broadcom’s OF-DPA 2.0 bridging and routing pipeline 16

2.4 The OpenFlow group hierarchy in OF-DPA 19

2.5 Representations of the boolean equation (A ∧B) ∨ ¬C 32

2.6 Binary decision diagram reduction example 33

2.7 Example of the binary decision diagram ‘apply’ operation 35

2.8 Binary decision diagram of union, intersection, and difference . . 36

3.1 The hierarchy of a basic Table Type Pattern 42

3.2 Example of meta-member usage in the OF-DPA TTP 45

3.3 TTP Validator’s HTML visualisation showing issues found . . . 48

3.4 Visualisation of issues found by our TTP validator 49

4.1 Example forward then firewall ruleset 62

4.2 Example firewall then forward ruleset 62

4.3 Canonicalisation of a complex action list 68

4.4 Example canonical MTBDD ruleset representation 70

4.5 Three rulesets demonstrating the dependence between match

and action . 75

4.6 Removing redundant set-field actions from packets which already

have the same value . 76

5.1 Rule-fitting solver integration into an existing OpenFlow scenario 84

5.2 Design overview of the rule-fitting solver, showing key components 88

ix

6.1 Shadow dependencies between rules 101

6.2 Inter-table dependencies between rules 103

6.3 A simplified ruleset which performs per VLAN forwarding . . . 107

6.4 Initial groups constructed during compression of a ruleset 115

6.5 Groups constructed during compression of a ruleset with selections117

6.6 A ruleset that fails to compress 119

6.7 Grouping of rules for the ruleset which fails to compress 119

6.8 A demonstration of fully merging two tables into one 124

6.9 An example where a split transformation needs a ‘wrong’ action

to avoid conflict . 127

6.10 An example using Metadata to link split transformation together131

6.11 An example transforming between a masked match and exact

matches . 132

6.12 An example of transforming a non-VLAN-aware rule into a

VLAN-centric pipeline . 133

7.1 A sample conjunctive normal form DIMACS file 137

7.2 Boolean and set notation. 138

7.3 Overview of the SAT problem expression for rule-fitting 143

7.4 Summary of boolean variables and sets naming 144

8.1 An example of rule-fitting solver metrics 162

8.2 An example of rule-fitting solver timers 164

8.3 The 5-table pipeline used for evaluation 165

8.4 The 2-table pipeline used for evaluation 166

8.5 The 5-table ruleset used for evaluation 167

8.6 Graph comparing solver run-time for compresesed and uncom-

pressed rulesets . 172

List of Tables

2.1 Equivalent, challenging to combine TCAM match representations 26

2.2 Header Space’s bitwise encoding of TCAM-style matches 28

2.3 Header Space expansion when subtracting Ethernet addresses . 31

2.4 Binary decision diagram expansion when subtracting Ethernet

addresses . 37

4.1 Minimisation of equivalent OpenFlow action base-cases 67

4.2 Time to build MTBDD for equivalence checking 78

6.1 Compression applied to routing tables 120

6.2 Example of partial placements generated for a rule 125

8.1 Rule-fitting solver performance comparison of single-table input

when converting to the 5-table pipeline 168

8.2 Rule-fitting solver performance comparison of single-table input

when converting to the 2-table pipeline 169

8.3 Rule-fitting solver timings with ruleset compression enabled . . 173

8.4 Rule-fitting solver timings for an uncompressed ruleset 174

8.5 The results of compressing real-world rulesets 174

8.6 Rule-fitting solver timings comparing SAT constraints when

converting to the 2-table pipeline 177

8.7 Rule-fitting solver metrics comparing SAT constraints when con-

verting to the 2-table pipeline 178

8.8 Rule-fitting solver timings comparing SAT constraints when

converting to the 5-table pipeline 179

xi

8.9 Rule-fitting solver metrics comparing SAT constraints when con-

verting to the 5-table pipeline 179

List of Algorithms

3.1 The satisfies method of a TTPMatch class 54

3.2 The satisfies method of a TTPList class 56

3.3 Creating match list requirements bitmasks 59

4.1 Flatten OpenFlow tables to a single-table equivalence 64

4.2 Merging OpenFlow matches (bitwise) 66

4.3 Convert a rule to a BDD . 70

4.4 Convert a flow table to a BDD (Naive) 72

4.5 Convert a flow table to a BDD (D&C) 73

4.6 BDD difference operation termination check 73

6.1 Calculate a rule’s direct and indirect shadow dependencies . . . 102

6.2 Calculate a ruleset’s direct inter-table dependencies 104

6.3 Calculate a ruleset’s indirect inter-table dependencies 105

List of Acronyms

ACL Access Control List

API Application Programming Interface

ARP Address Resolution Protocol

ASIC Application-Specific Integrated Circuit

BDD Binary Decision Diagram

BGP Border Gateway Protocol

CAM Content-Addressable Memory

CLI Command Line Interface

CNF Conjunctive Normal Form

DAG Directed Acyclic Graph

DPDK Data Plane Development Kit

FAWG Forwarding Abstractions Working Group

FDD Firewall Decision Diagram

HAL Hardware Abstraction Layer

ILP Integer Linear Programming

MPLS Multiprotocol Label Switching

MTBDD Multi-Terminal Binary Decision Diagram

xiv

NDM Negotiable Datapath Model

NOS Network Operating System

ODL OpenDaylight

OF-DPA OpenFlow Data Plane Abstraction

ONF Open Networking Foundation

ONOS Open Network Operating System

OSSDN OpenSourceSDN

OvS Open vSwitch

PBB Provider Backbone Bridging

POF Protocol Oblivious Forwarding

RAM Random Access Memory

ROBDD Reduced Ordered BDD

SAT boolean satisfiability

SDN Software-Defined Networking

SRAM Static Random Access Memory

t-bit ternary bit

TCAM Ternary Content-Addressable Memory

TTP Table Type Pattern

VLAN Virtual LAN

Publications

R. Sanger, M. Luckie, and R. Nelson, “Towards transforming OpenFlow

rulesets to fit fixed-function pipelines,” in Proceedings of the 2020 ACM

Symposium on SDN Research, 2020, p. 123–134. [Online]. Available:

https://doi.org/10.1145/3373360.3380844

——, “Identifying equivalent SDN forwarding behaviour,” in Proceedings of

the 2019 ACM Symposium on SDN Research. ACM, 2019, pp. 127–139.

[Online]. Available: https://doi.org/10.1145/3314148.3314347

R. Sanger, B. Cowie, M. Luckie, and R. Nelson, “Characterising the limits

of the OpenFlow slow-path,” in 2018 IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2018, pp.

1–7. [Online]. Available: https://doi.org/10.1109/NFV-SDN.2018.8725766

https://doi.org/10.1145/3373360.3380844
https://doi.org/10.1145/3314148.3314347
https://doi.org/10.1109/NFV-SDN.2018.8725766

Chapter 1

Introduction

1.1 Problem Statement

Software-Defined Networking (SDN) is touted to remove vendor-lock, allowing

network operators to buy network hardware based on price, performance, and

features rather than having to buy from the same vendor to maintain com-

patibility with existing network devices. The defining feature of SDN that

enables this interoperability is the decoupling of the control-plane and data-

plane. Responsibility of the control-plane is given to the network operator,

while the device vendor retains the responsibility of the data-plane. The in-

terface for controlling the data-plane is standardised in a Software-Defined

network, allowing different vendors to provide interoperable network hardware

which implements this interface. OpenFlow is a popular SDN standard, which

exposes a programmable match-action pipeline to the OpenFlow application.

SDN standards, such as OpenFlow [1], provide the necessary flexibility

for a network operator to program a network’s behaviour. However, in prac-

tice, it is the device vendor’s implementation of a standard that dictates what

the network operator can achieve. Vendors implement standards in different

ways, restricting a network operator to using only the features implemented

by an SDN device. A primary source of deviation from SDN standards is un-

avoidable due to constraints present in underlying hardware packet-processing

2

pipeline designs. As a result, SDN application developers often tailor ap-

plications to a single SDN device, and many applications will not work with

another device. This thesis is an investigation into how the forwarding be-

haviour an existing SDN application installs to a device can be rewritten to

support a different SDN device with a constrained pipeline. We refer to this

as the rule-fitting problem. More specifically, this thesis investigates convert-

ing an existing OpenFlow ruleset to a new ruleset which is compatible with a

constrained fixed-function OpenFlow 1.3 pipeline.

1.2 Contributions

This thesis shows that it is feasible to convert an OpenFlow ruleset to fit dif-

ferent fixed-function pipelines algorithmically. This approach does not rely on

OpenFlow metadata and can fit rulesets to pipelines with complex require-

ments. This thesis includes three fundamental contributions:

• A series of tools and a library for working with Table Type Patterns

(TTPs). A TTP is a machine-readable representation of the features

supported by a pipeline.

• A pragmatic approach to testing ruleset equivalence, which accounts for

multi-table pipelines, overlapping rule matches, and complex actions.

• An algorithmic approach to the rule-fitting problem, which can convert

an existing OpenFlow 1.3 ruleset to a complex constrained pipeline.

In addition, for all of these contributions, we release our implementations

to the SDN and research community [2]. While our implementation targets

OpenFlow, the key principles behind our approach apply more generally to

match-action style pipelines. We provide an overview of each contribution

below in the context of the rule-fitting problem and their standalone merit.

3

1.2.1 Table Type Pattern Tools

One problem in fitting a ruleset to a new pipeline is representing the con-

straints of that new pipeline in machine-readable format. We opted to use

TTPs for this purpose. TTP was standardised [3] by the Open Networking

Foundation (ONF) Forwarding Abstractions Working Group (FAWG) to rep-

resent OpenFlow forwarding pipelines. A TTP is typically stored as JSON and

provides flexibility by allowing the user to add custom extensions. While the

standard existed prior to this research, we found tools to create and interpret

TTPs were not available.

We created a library to load and verify the TTP structure, and find valid

placements of OpenFlow rules. Additionally, we created tools such as a TTP

validator to detect and suggest fixes for issues found. Such issues include

missing or mismatched identifier reference names, incorrect types, and header

field value or mask overflow. These tools will be helpful to both vendors

wanting to create TTPs for their devices and programmers who want to load

information from TTPs.

1.2.2 Ruleset Equivalence

Another significant hurdle we needed to overcome was verifying that a ruleset

transformation maintained its original forwarding behaviour. Finding a suit-

able representation was difficult; this representation needed to resolve overlaps

in priority-ordered OpenFlow matches and multi-table pipelines in an efficient

manner. OpenFlow can match on over 1000 bits of a packet header, i.e. more

than 21000 unique packet header values. Equivalent forwarding of a ruleset

requires checking each unique packet header for equivalent forwarding beha-

viour. We found TCAM match style representations, like OpenFlow uses,

could not represent shadowed rules efficiently. The calculation for shadowed

rules resulted in a massive rule expansion, quickly becoming intractable.

Instead, we found that Multi-Terminal BDDs (MTBDDs) [4] provide a suit-

able representation. This thesis presents algorithms for building a MTBDD

4

that represents a ruleset’s forwarding behaviour and is a canonical represent-

ation. Additionally, MTBDDs naturally support set operations, which we use

to find the difference in forwarding between rulesets. The difference between

two rulesets is a useful measure of where inconsistencies between rulesets exist

and can be used to evaluate how correct a solution to the rule-fitting problem

is. The MTBDD representation is useful for researchers and programmers alike

to check that any rewritten ruleset retains its original forwarding behaviour.

1.2.3 The Rule-Fitting Problem

Finally, we present a general approach to solving the rule-fitting problem for

OpenFlow 1.3 rulesets and pipelines. Solving the rule-fitting problem combines

both our TTP and ruleset equivalence checking contributions. We use the TTP

library to represent and find valid rule placements in the target hardware’s

pipeline. While we use ruleset equivalence to check the final ruleset is valid.

In this approach, we build on two primary rule transformations: merge and

split. A split transformation splits an OpenFlow rule into two or more rules

in the target pipeline, which spreads the rule’s matches and actions across

multiple tables. A merge transformation takes two rules installed in different

tables and combines them into a single equivalent rule.

From these two basic operations, our technique computes possible place-

ments of rules from the input ruleset and creates a partial boolean satisfiability

problem to select viable combinations of placements. This boolean satisfiabil-

ity problem does not include all constraints, as precomputing all constraints is

expensive. Instead, the technique improves upon the previous result by adding

restrictions based on the difference between the candidate ruleset’s forward-

ing behaviour and the original. This approach is capable of fitting rulesets

into complex pipelines, and does not rely on OpenFlow metadata to create

paths. We found this approach is suitable for constrained pipelines; however,

has scaling issues with unconstrained pipelines as these allow many possible

placements.

5

1.3 Thesis Structure

This thesis starts, in Chapter 2, by introducing the background for our con-

tributions. This background includes an overview of SDN and OpenFlow. It

then introduces constrained fixed-function pipelines and describes underlying

network hardware design principles which explain these constraints. The back-

ground continues by introducing methods of representing hardware pipelines,

as required to express the pipeline in the rule-fitting problem. Finally, the

background introduces and compares two methods of representing OpenFlow

matches, a fundamental component required to check a ruleset’s equivalence.

To represent the target pipeline in the rule-fitting problem, we needed

a machine-readable representation of the pipeline’s constraints. Chapter 3

describes how we designed and developed a TTP library to represent and

work with pipeline representations. This chapter details the tools we created

and the algorithms we developed to fit an existing rule into a new TTP.

Another fundamental requirement of the rule-fitting problem is checking

if the resulting ruleset is equivalent. Chapter 4 describes the method we de-

veloped to check the equivalence of two OpenFlow rulesets. This equivalence

checking method converts the ruleset to a canonical MTBDD representation.

The chapter presents the algorithms to construct this MTBDD and provides

an evaluation of the performance.

Thus far, Chapters 3 and 4 have introduced new tools and techniques which

have applicability to other problems in their related area. These techniques

are also the fundamental components required by the rule-fitting problem.

Chapter 5 discusses an overview of the rule-fitting problem. Then provides

the approach we took to designing a solution. Most importantly, Chapter 5

describes the high-level design overview of the rule-fitting solver we developed.

This design splits the problem into two main stages: 1) creating transforma-

tions of each rule or path in the original ruleset, and 2) picking a valid combin-

ation of these transformations with the correct forwarding behaviour. Finally,

Chapter 5 discusses related work to the rule-fitting problem and SDN interop-

6

erability more generally.

Chapter 6 details this first stage of the rule-fitting solver. The chapter

provides methods of preprocessing the original ruleset to simplify the rule-

fitting problem; including a description of ruleset compression, a preprocessing

technique we developed to reduce the size of a ruleset drastically. Then, this

chapter describes the transformations of a rule or path from the input ruleset

that the rule-fitting solver builds in an attempt to place that rule or path in

the target pipeline. Finally, the chapter outlines some transformations which

remain as future work.

Chapter 7 details the second stage of the rule-fitting solver. In this stage,

the rule-fitting solver attempts to find a valid combination of the transform-

ations generated by the previous stage. For non-trivial rulesets, exploring

all possible combinations of these transformations is an intractable problem.

This chapter details how we used a boolean satisfiability solver to generate

combinations of transformations. For each combination, the rule-fitting solver

checks its equivalence against the original ruleset. This chapter describes the

constraints we designed and expressed to the boolean satisfiability solver to

constrain the combinations returned to search only where correct solutions are

most likely.

Chapter 8 evaluates the rule-fitting solver we developed and focuses on

evaluating the usefulness of the techniques introduced in Chapters 6 and 7.

This chapter reports on the effectiveness of two preprocessing optimisations

to the input ruleset: converting the ruleset to a single-table and compressing

the ruleset. The evaluation also studies the effectiveness of the constraints

we designed to filter combinations of transformations the boolean satisfiability

solver returns. Finally, this chapter discusses the difficulties of fitting a real-

world ruleset into a real-world pipeline and the limitations of our approach.

Finally, this thesis concludes in Chapter 9 and considers avenues for future

work.

Chapter 2

Background

First, Section 2.1 presents the fundamentals of Software-Defined Network-

ing (SDN) in comparison to traditional networking. Section 2.2 introduces the

popular SDN standard OpenFlow and the factors guiding OpenFlow vendors’

OpenFlow agent development. Section 2.3 highlights that fundamental hard-

ware design issues that prevent a complete unrestricted implementation of an

OpenFlow agent at the highest bandwidths. Due to considerations by vendors

made when implementing OpenFlow agents, OpenFlow devices on the market

have different capabilities and limitations. Section 2.4 discusses two methods

of representing the capabilities and limitations of an OpenFlow pipeline.

Section 2.5 compares two match representations and provides the advant-

ages and disadvantages of both. Both ruleset equivalence checking and transla-

tion need to compare and manipulate matches, (more generally sets of packets),

and thus selecting an appropriate representation is critical. OpenFlow rules

can partially or fully shadow a lower priority rule with overlapping matches.

Essential operations such as representing the effective match need to be fast

and compact, as to not exhaust memory, for both equivalence checking and

ruleset translation.

Later, Chapter 5, presents a detailed background and related work specific

to the rule-fitting problem.

8

(a) Traditional Network (b) Software-Defined Network

Figure 2.1: A comparison between a traditional and a Software-Defined net-
work. In a traditional network, each network device runs its own instance of
the control-plane. In the SDN model, the control-plane is separated from the
network device, allowing the control-plane to run on a general purpose server
and program the data-plane.

2.1 Software Defined Networking

SDN was coined in 2009 to describe the ideas around Stanford’s OpenFlow [1]

research; the definition has since broadened [5]. The defining feature of SDN is

the separation of the network’s control-plane from the data-plane. Figure 2.1

shows the difference between a traditional network and a Software-Defined net-

work. In a traditional network, each network device runs its own control-plane

which shares network information with all other network devices and then

builds its view of the network. Traditional network devices independently

make forwarding decisions based on their view of the network and independ-

ently program forwarding behaviour into their data-plane. Rather than run-

ning a decentralised control-plane across all network devices, Software-Defined

networks often utilise a logically-centralised controller running on general pur-

pose servers to centrally program the data-plane. In the SDN model, net-

work devices no longer implement control-plane logic. Instead, they expose

an interface that allows the controller to program the data-plane’s forwarding

behaviour.

The control-plane software running on traditional hardware is supplied and

9

controlled by the hardware vendor. In SDN, the vendor still controls the soft-

ware running on the network device, but it is no longer running control-plane

logic, instead only providing an interface to program data-plane forwarding be-

haviour. SDN moves the control-plane logic to general purpose servers running

SDN applications that program forwarding behaviour. Moving the control-

plane off network hardware allows network operators to write programs to

control their network [1].

The separation of the control-plane and data-plane offered by SDN prom-

ises the following advantages:

• Faster development - Traditional network development can be slow; it

can take 5 to 10 years for a protocol to make it from development into

deployments [6]. SDN moves the control-plane logic into software which

a network operator can replace to suit their network’s needs. Using

software to control the network is also very useful for research and de-

velopment, as a new protocol can be quickly prototyped and deployed

on hardware. The standardisation gives developers the opportunity to

write a single test suite for their network, which can test using both

software switches for fast development, and hardware switches before

deployment [7].

• Consistent management interface - In traditional networking, the vendor

supplies the management interface. Typically these are Command Line

Interface (CLI) interfaces that modify protocol settings. The commands

vary between vendors, as does some of the default behaviour. This makes

managing multiple devices from different vendors difficult. With SDN,

the application provides the management interface independent of the

hardware deployed, giving a network operator a centralised interface to

make network changes that does not require manual configuration of

individual network devices.

• Remove vendor lock - Traditional network devices work well with other

10

devices from the same vendor. First, the consistent management inter-

face provided by a single vendor is easier for a network operator. Second,

vendors add extensions to protocols and may choose not to implement an

extension resulting in interoperability issues. Ideally, with SDN, a single

standard across all network devices is followed, which provides interop-

erability. The network operator selects and runs the controller software,

which implements the required protocol support for their network.

• Fine-grained control - SDN allows fine-grained matching on arbitrary

parts of a packet as required. Traditional networking is destination-

based, whereas SDN is flow-based because a switch can match any field [6].

• More optimal network configurations - SDN allows a network operator to

deploy a centralised controller which can make more optimal decisions

based on its full network visibility. Additionally, as the controller is

now running on standard servers, a compute cluster could be used to

calculate optimal paths through the network now that there are no longer

constraints on compute power imposed by each network device.

• Cost - SDN might become cheaper in the future because the network

hardware will be simpler. Entities will no longer be paying their hard-

ware vendor for the software license and stack to support all networking

protocols they require. Instead, the hardware vendor will support a

simpler SDN protocol allowing remote control of their hardware. More

optimal network configuration could also result in better utilisation of

links, reducing the number of devices needed for a deployment [8]. A sim-

plified management interface may also reduce the time spent configuring

a network.

A significant part of SDN is the “southbound” protocol; this is the pro-

tocol a controller uses to program a switch. A number of these protocols exist,

including ForCES [9], OpenFlow [1], P4 [10] and Protocol Oblivious Forward-

ing (POF) [11]. A popular southbound protocol in use in 2019 is OpenFlow.

11

This protocol is used to connect the control-plane (controller) to the data-

plane (forwarding elements). The server running SDN applications is known

as the controller, and the network hardware are called forwarding elements or

switches in the OpenFlow specification.

2.2 OpenFlow

OpenFlow [1] provides a standard protocol for programming SDN switches,

using a match-action packet-processing model. OpenFlow primarily uses TCP

as transport and defines a message structure to interact with the switch. These

messages can add and delete rules, retrieve counters and even configure the

pipeline of a flexible switch. Our research focuses on OpenFlow 1.3 [12], which

1) has good vendor and developer support due to new features added over

prior versions that improve usability, and 2) supports multi-table pipelines.

In OpenFlow, a controller installs rules into a switch’s flow tables to pro-

gram the forwarding behaviour. Rules include three key components: matches,

actions, and priority. OpenFlow matches support most traditional header-

fields from Layer 2 Ethernet to Layer 4 TCP ports and allow arbitrary partial

matching (aka masked matches) on most header-fields. The action applied to

the packets can modify the packet, select the egress port, drop the packet, or

send a packet to a new table for further processing. The priority of a rule

determines which rule takes precedence when multiple rules match the same

packets. For example, an OpenFlow switch may have both a rule matching

IP:192.0.2.1 (a) and another matching IP:192.0.2.1, TCP_SRC:22 (b). If (a)

had a higher priority than (b), (b) would see no traffic as (a) would match it

all. If (a) had a lower priority than (b), then (b) would capture all traffic it

matched and the remaining portion could be captured by (a).

12

Packet In

Flow Table

1. Priority Match
2. Apply actions
3. Update Action Set
4. Update Metadata

Match:
Headers
Ingress port
Metadata

Action Set

Goto Table

Execute
Action
Set

Or Egress

Figure 2.2: OpenFlow 1.3 pipeline packet processing through a table

2.2.1 OpenFlow Forwarding Pipeline

In an OpenFlow pipeline all packets begin processing in the first table. Fig-

ure 2.2 shows the processing applied to a packet through an OpenFlow table;

multiple tables are chained together to form the full pipeline. First, an Open-

Flow switch finds the highest priority rule that matches the packet and then

applies the rule’s actions. A rule can specify actions in two different ways: 1)

apply actions a list which the switch executes immediately, thus allowing rules

in the next table to match these modified fields and 2) write actions a list

which the switch adds to the packet’s action set and stores with the packet

until the end of the pipeline. Then, if requested, the switch will update the

packet’s metadata. Finally, if the rule includes a goto table instruction, the

switch sends the packet to that table. Otherwise, pipeline processing ends,

and the switch applies the action set. When the switch adds to an action set,

it replaces any existing actions of the same type. Optionally, a rule can include

an instruction to clear the action set before updating it.

2.3 Diversity in OpenFlow Implementations

Unfortunately, OpenFlow implementations suffer all the common issues that

standards have: differences allowed by optional or recommended features, am-

biguity in interpretation, and undefined edge cases. However, to understand

why we have diversity in OpenFlow switches, we first discuss the design con-

siderations of both software and hardware OpenFlow switches.

13

2.3.1 Software Switch Design

Software OpenFlow switch implementations use standard general purpose serv-

ers to forward packets. The OpenFlow agent is a piece of code running on the

CPU like every other application, and OpenFlow rules are stored in system

memory in structures optimised for fast lookups. Because OpenFlow soft-

ware switches use general purpose computing they present an entirely flexible

OpenFlow implementation. Almost all features are available, and the num-

ber of rules and tables is limited only by available system memory which is

inexpensive. Software switches employ many techniques to improve perform-

ance, avoiding the kernel networking stack by installing custom kernel modules

or userspace networking libraries like Data Plane Development Kit (DPDK)

and caches to improve lookup performance. For example, when the software

switch Open vSwitch (OvS) sees a new network flow, it finds matching Open-

Flow rules and determines a flattened representation which OvS installs into a

fast hash lookup table [13]. Despite efforts in optimisation, software switches

do not scale to the port density and high bandwidth that hardware switches

do, and do not provide strong latency guarantees.

2.3.2 Hardware Switch Design

Hardware switches are designed to support high port densities and high band-

width with a fixed low-latency, but lose flexibility in this process. To guarantee

bandwidth and latency, hardware switches are organised in stages. A packet

will take one clock cycle to be processed by each stage. One stage may perform

a match based on the packet header while next may apply modifications to

the packet. The bandwidth guarantee, in packets per second, is determined by

clock speed, and the latency guarantee is determined by the number of stages.

The most difficult part of this process is the match lookup because:

Masked lookups are expensive: To perform a masked lookup in a single

cycle, a switch uses a special type of memory called Ternary Content-

14

Addressable Memory (TCAM). Unfortunately, the amount of TCAM

a manufacturer can place on a chip is physically limited. TCAM uses

many transistors and therefore space on silicon. TCAM also uses a lot

of power as all TCAM entries must be powered in parallel to perform a

lookup.

Exact matches are cheap: A switch can perform exact lookups in cheaper

Content-Addressable Memory (CAM) or Random Access Memory (RAM)

by using a data-structure such as a hash table.

Wide matches are expensive: Lookup tables are configured to match a

number of bits (i.e. header fields), the more bits a table matches the

fewer rules can fit in a lookup table without using more transistors. For

example, an IPv4 address is a quarter the size of an IPv6 address. There-

fore, a specialised TCAM would be able to fit 4 times more IPv4 matches

in the same space a IPv6 match uses.

Lookup stages are limited Adding more lookup stages increases latency

and uses more space on the silicon. This places a limit on the num-

ber of tables an OpenFlow controller can use.

OpenFlow places no limitations on the rules a controller can install; they

can match any header field. To fully accommodate OpenFlow, a switch must

support very wide lookups as the switch must be able to match every OpenFlow

header field, and those lookups need to be installed in TCAM, as those header

fields can be masked. OpenFlow requires wide TCAM matching, which is the

worst case for hardware, and significantly limits the total number of rules.

As a result, some OpenFlow switches only expose a single small table with

full OpenFlow functionality. Others offer more rules by restricting matches in

multiple large, but specialised tables, for example, a narrow exact-match on

VLAN and Ethernet Address to perform Layer 2 forwarding.

The hardware supporting specialised tables may either be programmable

or fixed-function. A fixed-function pipeline is designed to perform specific

15

network functions and provides specialised tables that cannot be reconfigured.

An example of a fixed-function pipeline is merchant silicon, the cheap off-the-

shelf option many switches use. A programmable pipeline instead provides a

pipeline that can be reconfigured. Pipeline reconfiguration is generally done

at startup or upon a controller connecting, as it is usually not possible to

reconfigure without interrupting forwarding. Programmable pipelines are still

limited by a maximum number of lookup stages and the total amount of TCAM

and RAM which is shared between all lookup stages.

2.3.3 Software vs. Hardware Switches

Software switches provide complete flexibility but do not scale to the high

throughput, low-latency, and high port densities that hardware switches can

provide. Software switches have nearly unlimited scalability of forwarding

rules as they are stored in RAM which an operator can easily and cheaply

upgrade. In contrast, hardware switches can provide low latency and high

throughput guarantees coupled with higher port densities. However, lookups

are made in a single clock cycle in TCAM for masked priority ordered lookups

to achieve these guarantees. TCAM is expensive, both in silicon space and

power consumption and is, therefore, a limited resource, placing a limit on

the rule scalability of hardware switches. To more efficiently use TCAM, wide

masked matches should be avoided where possible. All hardware switches have

these limitations whether fixed-function or flexible.

This research focuses on fitting an existing ruleset into a new fixed-function

pipeline, in which the silicon design predetermines table order and restricts the

matches and actions available in each table.

2.3.4 OF-DPA: A Fixed-Function Pipeline

A motivating example of a fixed-function pipeline is Broadcom’s OpenFlow

Data Plane Abstraction (OF-DPA) pipeline [14]. Broadcom built the OF-DPA

abstraction on top of their proprietary SDK which exposes much of their

16

Ingress
Port

Ingress
Flow
Table

VLAN
Flow
Table

Termination
MAC Flow

Table

L3
Type
Flow
Table

Unicast
Routing

Flow
Table

Multicast
Routing

Flow
Table

Bridging
Flow
Table

Policy
ACL
Flow
Table

MAC
Learning

Flow
Table

Figure 2.3: Broadcom’s OpenFlow Data Plane Abstraction (OF-DPA) 2.0
bridging and routing pipeline. OF-DPA 1.0 presents a similar view of these
same tables.

StrataXGS series switching chip’s underlying hardware capabilities and pipeline

layout in a manner compatible with OpenFlow 1.3. The StrataXGS series

switching chips are very popular merchant silicon and are used in switches by

many vendors including Edge-Core, Quanta, Pica8, Dell, and HPE [15].

While the OF-DPA pipeline and code is open-source, unfortunately, build-

ing the code requires proprietary Broadcom SDKs which are only available

to switch vendors under strict confidentiality agreements. Therefore, a switch

vendor needs to supply OF-DPA firmware for their switch. Edge-Core and

Quanta, among others, provide OF-DPA firmware for many of their switches.

The OF-DPA pipeline is also generally representative capabilities of the under-

lying Broadcom StrataXGS chip which a switch vendor can expose themselves

in OpenFlow. For example, Pica8’s PicOS Network Operating System (NOS)

exposes the routing and bridging tables which look just like those in OF-DPA.

There have been two major releases of OF-DPA: 1.0 and 2.0. OF-DPA

2.0 exposes more of the underlying chip’s capabilities compared to OF-DPA

1.0. The OF-DPA 2.0 pipeline has a total of 33 OpenFlow tables. The tables

exposed by the OF-DPA pipeline are specialised to their function, which allows

for larger table sizes by limiting the matches and actions available. Not all

tables in the OF-DPA pipeline relate to an underlying lookup table in silicon,

and some tables exist to best express the underlying pipeline in the OpenFlow

17

abstraction. For example, Broadcom has placed Layer 3 type tables before the

unicast and multicast routing tables with built-in rules directing traffic based

on whether the IP destination is a multicast address. However, no rules can

be installed or modified in these tables.

The OF-DPA pipeline has specialised tables for Layer 2 switching and

Layer 3 routing which allow for tens of thousands of rules. Figure 2.3 shows

the tables in the OF-DPA pipeline used for basic bridging and routing. There

are many other tables in the OF-DPA pipeline that support features such

as MPLS, QoS, and egress processing, which are not shown in Figure 2.3.

The size of the OF-DPA tables vary by the Broadcom chipset used and the

memory configuration selected by the switch vendor. As a typical example

illustrating the difference in table sizes, consider an EdgeCore AS5710-54X-

EC: the Bridging table holds 160K entries, Unicast Routing holds 80K entries,

Multicast Routing holds 72K entries, and Policy ACL holds 2K entries [16].

Many OpenFlow agent implementations only use the Policy ACL table, and are

therefore limited to 2K rules, but, support nearly all match fields and actions.

However, this means that much of the hardware’s capability goes unutilised.

This thesis investigates algorithmically translating existing rulesets to fixed-

function pipelines like OF-DPA to both improve switch interoperability of SDN

applications and use the specialised tables to improve scalability. To better

show the complexity involved in this process, we describe the rules an ap-

plication needs to install to configure the OF-DPA pipeline for bridging and

routing. To configure routing and bridging, an OpenFlow application must

configure five key tables: VLAN, Termination MAC, Unicast Routing, Mul-

ticast Routing, Bridging, and Policy ACL.

The first table in the OF-DPA pipeline is the Ingress Port Table which

allows an application to apply Quality of Service based on a packet’s ingress

port. On a table-miss, the Ingress Port Table sends a packet to the VLAN

Table by default. An application uses the VLAN Table to add or modify

a packet’s VLAN tag. On a table-miss, the VLAN Table sends packets to

18

the Policy ACL Table by default. An SDN application must install a rule

for every VLAN it accepts by matching the ingress-port and VLAN-tag, and

sending it to the Termination MAC Table. The OF-DPA pipeline does not

allow untagged VLAN packets past the VLAN table; an application must tag

all untagged packets with a VLAN in the VLAN Table. Rules in following

tables such as the Bridging and Policy ACL Tables require an exact VLAN

match. Next, the Termination MAC Table accepts rules that direct packets

based on their Ethernet-destination, ingress-port, and VLAN-tag to either a

Routing Table or the Bridging Table. A packet can either be routed or bridged,

but not both; as such the pipeline can process both bridging and routing in

parallel to reduce total pipeline latency.

The routes an application can install into the Unicast Routing Table must

match an IP-destination prefix, and must write actions to decrement the

packet’s TTL and forward it to a Layer 3 interface group. A Layer 3 in-

terface group rewrites Ethernet addresses and forwards the packet to its next-

hop. The Multicast Routing Table only accepts rules that match an exact

IP-destination, VLAN, and optionally IP-source, and must include actions to

decrement the packet’s TTL and forward the packet to a Layer 3 multicast

group. A Layer 3 multicast group will duplicate a packet to a series of Layer

3 interface groups. An SDN application installing Layer 2 bridging rules into

the Bridging Table must match an exact Ethernet-destination and VLAN, and

must write the egress interface to the packet’s action-set using a Layer 2 in-

terface group. The OF-DPA pipeline can also be configured to mirror the

Bridging table into a MAC Learning table that performs an Ethernet-source

match sending unmatched packets, those without a known MAC address, to

the controller to learn new port mappings. Mirroring tables in this way is an

extension to the OpenFlow 1.3 specification.

In the OF-DPA pipeline, both the Routing and Bridging tables write ac-

tions to the packet’s action-set rather than applying the action immediately.

The actions in the packet’s action-set will only be executed at the end of the

19

L3
Multicast

(All)

L3
Interface

(Indirect)

L2
Interface

(Indirect)

Output
port

L3 ECMP

(Select)

L3
Unicast

(Indirect)

L2 Rewrite

(Indirect)

L2
Multicast

(All)

L2 Flood

(All)

Figure 2.4: The OpenFlow group hierarchy in OF-DPA. An arrow from a
group to another indicates that the group’s buckets must contain that group
as an action. All groups eventually include a Layer 2 Interface group which
includes an output port action. Rules in the OF-DPA pipeline are required
to include a group action and cannot output a packet directly except to the
controller.

pipeline, and the actions can be modified or removed by a rule in any following

table. In particular, a rule in the Policy ACL table can clear a packet’s action-

set, which would drop the packet. Additionally, OpenFlow output actions

are not available directly to any rule in the OF-DPA pipeline (except to send

a packet to the controller); instead, OF-DPA uses indirection via OpenFlow

groups for all outputs to ports. Figure 2.4 shows OF-DPA’s group hierarchy

used in basic bridging and routing. A group’s buckets must contain a group

action that the arrow points to. The Layer 2 Interface group is the only group

shown which contains the output port action. Different rules accept differ-

ent group types as actions, which can be the Layer 2 Interface group directly.

Groups such as Layer 3 and Layer 2 multicast have a group type of all, so

will duplicate a packet to all buckets to multicast a packet. Some groups also

include additional actions to rewrite a packet’s fields. For example, the Layer

3 Interface indirect group rewrites a packet’s source and destination Ethernet

address and then outputs the packet to a port indirectly via a Layer 2 Interface

20

group.

The final table in the pipeline is the Policy ACL (Access Control List)

table, which is the most generalised table accepting rules which match almost

any header field, and can apply almost any action or instruction. The ACL

table is well suited for implementing a simple stateless firewall, as it can drop

packets by clearing the actions set by the Routing or Bridging table. The

ACL table can also modify the bridging or routing of any packet or direct the

packet to the controller. The ACL table has almost complete support for all

OpenFlow features and is often the only table used in many OpenFlow agent

implementations because it supports the majority of the OpenFlow standard.

However, the downside of this flexibility is that the number of rules supported is

smaller compared to specialised tables. Compounding to the limited number of

rules, programming a single-table pipeline typically requires more rules than a

multi-table pipeline would require; in the worst case it is the Cartesian product

of all tables. This worst case is common, simple Layer 2 switching in a multi-

table pipeline uses a source learning table and destination forwarding table;

each Ethernet address is installed once in both tables, requiring two rules

for every address. Whereas, Layer 2 switching in an equivalent single-table

pipeline requires a rule for each source and destination combination, therefore

the number of rules required is the number of addresses squared.

The complexity of the OF-DPA pipeline makes it a particularly hard tar-

get to fit rules because matches and actions are constrained. An OpenFlow

application needs to split components of the overall forwarding behaviour it re-

quires throughout multiple tables in the pipeline. Additionally, the placement

of bridging and routing before the ACL table means that a packet dropped by

the pipeline often first requires the “wrong" routing or bridging actions before

the ACL table clears them. Even resolving output actions to the correct groups

is non-trivial. In Chapter 5, we introduce our method of algorithmically fit-

ting rulesets into new pipeline’s like OF-DPA and address these complexities

further.

21

2.4 Representing OpenFlow Pipelines

OpenFlow pipelines built on fixed-function silicon, such as OF-DPA as de-

scribed in Section 2.3.4, have complex limitations on the rules which a con-

troller can install. In order to successfully install transformed rules into a

fixed-function pipeline, our algorithm requires a machine-readable method

of representing the pipeline’s requirements. To most optimally fit rules we

not only need to be able to compute valid placements of rules, but we also

need to consider the size of each flow table, so that placements do not exceed

table size and can scale to large networks. This section discusses two exist-

ing pipeline representations: OpenFlow feature messages [12] and Table Type

Patterns (TTPs) [3].

OpenFlow features request messages allow a controller to query a switch

about the OpenFlow features it supports at run-time [12]. In OpenFlow 1.3

there are three types of messages: table features, meter features, and group

features. A switch responds to an empty meter, group, or table features re-

quest message with a features response describing the supported number and

types of groups, meters, or rules per table. Additionally, a controller can use

the table features request to configure the pipeline on the switch; this is not

possible with group and meter features request messages. OpenFlow features

response messages are strictly structured and do not offer a fine-grained de-

scription. In particular, they cannot represent mutually exclusive features.

Instead, OpenFlow features response messages represent the superset of all

features available even though some combinations may be unavailable.

The Table Type Pattern (TTP) specification was designed to help solve

interoperability issues between switches and applications by being an abstract

OpenFlow pipeline description that both vendors and developers could develop

against [3]. Unlike feature messages, a TTP is a textual representation of

the pipeline which is shared offline and not at run-time via OpenFlow. A

TTP can represent everything that the OpenFlow features message can, but

also supports much more complex requirements including mutually exclusive

22

features. TTPs support more fine-grained requirements including limits on the

value or mask allowed in a rule’s match. The major downside of TTPs is the

lack of widespread adoption and use.

2.4.1 OpenFlow Feature Messages

OpenFlow includes the group features message since version 1.2, and meter and

table features messages since version 1.3 [12]. Both group and meter queries

are read-only requests, whereas a controller can configure a switch’s pipeline

with the table features message. Both group and meter requests are simple

fixed-sized messages, which return bitmaps of the supported feature. A group

features response from a switch contains a description of the supported group

types (indirect, all, failover, select), the number of groups, and actions available

in its buckets. Similarly, a meter features response returns a description of the

meter capabilities and the maximum number of meters, colours, and bands

that a switch supports.

A table features message is more complex and has a variable length to

support different numbers of tables, and different features available to rules

within each table such as matches and actions. A table features message allows

a controller to either query or optionally set the capabilities of a switch’s

tables [12], i.e. the switch’s pipeline. Setting a switch’s table features is

primarily designed for programmable pipelines so that a switch can allocate

its hardware resources efficiently. The controller configures the entire pipeline

at once by requesting the features required of every table. The controller can

configure the following features available to rules in a table: instructions, next

tables, write actions, apply actions, matches, write set-fields, and apply set-

fields. A table features response from a switch returns with the approximate

size of the table, along with the full table configuration.

Table features make a distinction between regular rules and a table-miss

rule. A controller can specify the features available to the table-miss rule

separately to regular rules. A controller can configure if a match is maskable

23

or requires an exact match. By restricting a match to an exact match a switch

can often place the match in a cheaper lookup table. Additionally, a controller

can configure a match such that it is valid to omit, by adding it to the wildcards

list, otherwise, all rules must include the match. Unlike matches, one must

assume a rule can omit actions, set-fields, and instructions. However, there is

no way to represent if an action, set-field, or instruction is required.

The most significant limitation of the OpenFlow features model is that the

model cannot represent mutually exclusive features. Instead, a switch must

return an all-encompassing set of features. For example, a controller or switch

cannot accurately represent a rule which is either output to a group action

or output action but not both using table features. A switch would most

likely return that it supports both, yet return a run-time error if the controller

attempted to install a rule using both. Conversely, a controller would need

to request the pipeline supported both outputting to a group action and an

output action together, even if the controller never installs a rule with both.

2.4.2 Table Type Patterns

The Open Networking Foundation (ONF) Forwarding Abstractions Working

Group (FAWG) created the Table Type Pattern (TTP) specification to help

solve interoperability issues between switches and applications. A TTP [3]

is a structured machine and human-readable description of a logical Open-

Flow pipeline. The pipeline is described logically as the OpenFlow operations

supported by the pipeline rather than being tied to any particular hardware

implementation. A TTP is a connect between the controller and switch; a

switch must implement all features in the TTP, and a controller must ensure

it only uses those supported features.

The TTP specification proposes the following lifecycle for a TTP. Anyone

can create a TTP including an application developer to describe their applica-

tion’s requirements, a switch vendor to describe their switch’s feature support,

and FAWG to create standard TTPs for common use cases. To use a TTP,

24

an application developer must ensure their application only uses the features

described, and a device vendor must ensure that their switch supports all fea-

tures in the TTP. A device vendor with a fixed-function pipeline can describe

their pipeline in a TTP, whereas a vendor with a programmable pipeline can

optimise placement of rules to use hardware resources efficiently based on a

TTP’s requirements.

TTPs describe the OpenFlow features available on a switch, most often

encoded in JSON. TTPs can represent all the features included in OpenFlow

feature messages. Beyond describing just the OpenFlow matches, instructions,

or actions available, a TTP can restrict valid values of the match, instruction,

or action. Additionally, a TTP supports representing mutually exclusive op-

tions through the usage of meta-members. Meta-members enclose lists and

restrict the valid combinations depending on their type. For example, a meta-

type of exactly one allows a TTP to describe mutually exclusive options. TTP

table descriptions can include built-in rules, to represent rule behaviour which

is built into a pipeline. Built-in rules are particularly useful for representing

fixed-function pipelines as they often have non-modifiable table miss beha-

viour.

TTPs are extensible as they are not a fixed format like OpenFlow feature

messages. The TTP author can include additional information by adding a

new member to a TTP object description. For our purposes, this is interesting

as it means we can store the table size or any other optimisation constraint in

the TTP.

Adoption of the TTP standard has been limited; few vendors ship TTP

representations of their pipelines, and there are very few tools for creating and

working with TTPs. Incentivising switch vendors to support a TTP for an

application is also difficult as it requires the vendor to assign business resources

to add pipeline support. However, the OF-DPA pipeline, a key target of our

research, does ship with a TTP representation of its entire pipeline.

Overall, we decided to use a TTP representation of hardware pipelines. In

25

part due to already having Broadcom’s OF-DPA pipeline in this format, and

the additional flexibility TTPs have over OpenFlow feature messages. While

the lack of tools for working with TTPs is problematic, the situation is not

too dissimilar with feature messages, as the common use cases of these mes-

sages does not match with our use case. OpenFlow applications use table

feature messages to configure a flexible pipeline or to check the required fea-

tures are supported rather than constructing rules for the pipeline as we are

in this thesis. As TTPs can describe all the requirements in OpenFlow feature

messages, we expect the conversion to a TTP would be trivial and could be

automated. We discuss the structure of TTPs further in Chapter 3 along with

the tools we developed to work with them.

2.5 Representing an OpenFlow Rule Match

An OpenFlow rule has three key components: a match, actions, and a prior-

ity. A switch evaluates packets received against a rule’s match fields and, if

matched, applies the rule’s actions. If multiple rules match, the rules’s priority

is used to select one. This section explores representing an OpenFlow match.

This section is based on work we have published during the completion of this

thesis [17].

Picking an appropriate representation of an OpenFlow match is essential

because we need to be able to determine reachability between rules, both of

rules at different priorities within the same table, and rules which goto another

table. This reachability information identifies dependencies between rules, and

can simplify a ruleset by removing unreachable rules. An ideal match repres-

entation also allows programmers to determine equivalences between matches,

which is a key component in determining equivalent rule transformations and

rulesets.

Thinking of an OpenFlow match as the set of packets matched is a useful

abstraction, as this allows us to use set operations such as union, intersection,

26

No. Matches 1 2 3 4
Matches 1*** 1*1* 10*1 11*0

1*0* 11** 10**
1**0 1*01

1111

Table 2.1: Equivalent TCAM representations of the match 1*** expanded into
multiple matches that are challenging to combine. In the two match case, we
see one differing bit which can be merged and replaced with *. However, once
three or four matches are involved the relation to 1*** is not apparent. No
two wildcards differ by one bit, and no wildcards are redundant, all three or
four matches must be considered together to find that they can be merged.

and difference in calculations. The difficulty lies in selecting an efficient set

representation as the number of unique packets an OpenFlow rule can match

is in excess of 21000, which is infeasible to work with uncompressed as 21000

items will not fit in memory.

This section introduces the OpenFlow match and the alternative repres-

entations: Header Space and Binary Decision Diagram (BDD) representations

which both support set operations. We evaluate both representations against

two basic operations we require: calculating rule reachability within a table

and rule reachability between tables. Rule reachability within a table determ-

ines which packets, if any, will reach a given rule. We calculate reachability

within a table by subtracting all higher priority rule matches from a given

rule match. Rule reachability between tables determines which packets are

processed by two rules in different tables, and is calculated as the intersection

of the match set between a rule and another rule in the next table1.

2.5.1 An OpenFlow Rule Match

An OpenFlow rule match can match zero or more header fields. OpenFlow

stores match fields as value-mask pairs. Each field can match either a specific

value or can be arbitrarily masked to allow a range of values. Most fields

in OpenFlow support masking, which a programmer can use to exclude an

arbitrary selection of bits from the match field. A packet must satisfy all fields
1Reachability within a table is also a factor, but we cover that separately.

27

included in a match. By default, every packet matches all fields omitted from

a match, as such all packets match an empty match. OpenFlow specifies a list

of header fields that can be matched, these include all commonly used network

protocols from Layer 2 to Layer 4.

This match format conforms to the abilities of the numerous hardware

switches that use TCAM to match packets. In general, we refer to this type

of per-bit matching as TCAM-style. TCAM matches a series of bits which

must all be satisfied. The switch configures each bit to match either a 0, 1 or

* (a do not care). This conformity helped drive the adoption of OpenFlow by

providing a direct mapping to hardware.

There is more than one way to represent the same match in TCAM. A

simple example of this is that any match containing a * bit can be split into

two more specific matches for the 0 and 1 case. TCAM matches can overlap

each other, so OpenFlow includes a priority with each rule to select precedence.

Minimisation of TCAM-style matches has been proven to be an NP-hard prob-

lem [18]. We give an example to illustrate the difficulty of simplifying TCAM

matches in Table 2.1. Table 2.1 shows three representations of the match 1***

as combinations of matches. While the minimisation of two matches is simple

as both wildcards differ by a single bit, it is non-trivial for the three and four

match cases. We cannot merge any two rules into a single rule. Instead, all

matches must be considered together to find the simplification back to a single

rule.

TCAM-style matches support set logic, and we discuss this next with

Header Space. Header Space uses a TCAM representation with a more ef-

ficient bitwise packing compared to OpenFlow’s value-mask pairs.

2.5.2 Header Space

Kazemian et al. [19] introduce Header Space Analysis, a model to represent

packets and network boxes as transfer functions. In this section, we focus

on Header Space Analysis’s representation of packet sets along with the al-

28

Match Header Space encoding
0 01b
1 10b
* 11b
z 00b

Table 2.2: A conversion from a bit match to Header Space. Z is an “annihilator”
value which represents an empty set if found in any bit during a calculation.

gorithms to perform union, intersection, difference and complement set oper-

ations. Kazemian et al. [19] define Header Space as encompassing all possible

packet header values. Header Space only models influential bits of a packet,

e.g. only header fields, not payload. Their representation is protocol inde-

pendent; Header Space flattens fields to a series of bits allowing it to represent

any protocol. In Header Space a packet is represented as a point in the space

0, 1L, where L is the header length, and a rule matches a region of Header

Space.

Header Space objects (or regions) represent a portion of Header Space and

a set of packets. The basic building block to represent Header Space regions

is a wildcard expression, which is a sequence of bits where each bit can be

0, 1 or *. Wildcard expressions are TCAM-style and analogue an OpenFlow

match. Table 2.2 shows the encoding used for wildcards, two bits represent a

bit in the packet header. Header Space uses a special value z mapped to 00b

as an “annihilator" to represent an empty set. If any bit becomes z during a

calculation the entire set is empty. This encoding enables fast calculation of

wildcard intersection using the bitwise AND operation. A wildcard expression

alone cannot represent some regions of Packet Space, so Header Space objects

are made of a union of wildcards.

Below are the basic set operations for wildcards, some operations result in

a set of wildcards which Header Space objects combine as a union. Later we

discuss how to apply these operations to Header Space objects.:

• Intersection: The intersection of two wildcards are the packets contained

in both wildcards. Due to the encoding used intersection is calculated as

29

the standard bitwise & AND operation of two wildcards, A∩B = A&B.

E.g. 1**0 ∩ **1* = 1*10 and 1*** ∩ 0*** = z*** = ∅.

• Union: The union of two wildcards are the packets contained in either

wildcard. In general, a single wildcard cannot express a union of two

wildcards, so both wildcards are combined in a Header Space object to

represent the union.

• Complement: The complement of a wildcard are all other packets in

Header Space that are not in that wildcard. The complement opera-

tion creates a union of new wildcards for each 0 or 1 bit in the original

wildcard with a single bit complemented and all other bits set to *,

¬A = ¬(A0...An) = {∗0... ∗i−1 ¬bi ∗i+1 ...∗n : (b, i) ∈ A ∧ b ∈ {0, 1}}

where b the value of a bit and i is the bit’s offset.

E.g. ¬(1*01) = 0*** ∪ **1* ∪ ***0 and ¬(****) = ∅

• Difference (aka subtraction): The difference between two wildcards are

the packets in the first wildcard but not in the second. The difference

is calculated using the existing intersection and complement operations

A−B = A ∩ ¬B.

E.g. 1**1 - *101

= 1**1 ∩ ¬*101

= 1**1 ∩ (*0** ∪ **1* ∪ ***0)

= 10*1 ∪ 1*11 ∪ 1**z

= 10*1 ∪ 1*11

An intersection operation of wildcards always results in a single wildcard

or an empty wildcard and is very efficient to compute using bitwise AND in

the Header Space representation. We use intersection to compute reachability

of rules between OpenFlow tables, so it is crucial intersection performs well.

Unions are also efficient as they are generally incompressible so are simply

added together in a Header Space object. However, to keep sizes down at least

30

some form of simple elimination of overlapping wildcards is beneficial, which

increases compute time.

In contrast, the complement operation and by extension the difference op-

eration results in a substantial expansion of the number of wildcards. Every

exact bit match (0 or 1) results in a new wildcard, a match containing a MAC

address would expand by 48 times and an exact IPv6 match 128 times. We use

difference to calculate the set of packets reaching a rule in a priority-ordered

table and to detect unreachable rules, so it is essential difference performs well.

To calculate the reachability of a rule in a table, we must subtract all higher

priority rules from it. A rule is unreachable if the resulting set is empty.

Recall that Header Space objects contain a union of wildcards, we say

A = a1 ∪ a2 ∪ ...an where A is the Header Space object and ax is a wildcard.

The intersection of two Header Space objects is the intersection of Cartesian

product pairs A∩B = {(a∩b) : a ∈ A, b ∈ B}, this results in at worst |A| ∗ |B|

wildcards. Some wildcard intersections may result in the empty set which is

superfluous in a Header Space object union. The union of two Header Space

objects is trivial as the objects are concatenated, in the worst case resulting in

|A|+ |B| wildcards. The complement of a Header Space object is calculated as

the intersection of all wildcards complemented ¬A = ¬a1∩¬a2∩...¬an. As the

complement of a single wildcard results in b new wildcards one per exact bit,

the worst case for complementation is b|A|. Recall that the difference between

two sets is A−B = A∩¬B, so if we combine intersection and complementation

space complexity we find the worst case is |A|b|B|.

However, due to this exponential expansion, subtracting just five Ethernet

addresses from a catch-all rule to calculate rule reachability within a table

quickly exhausts system memory. To highlight this problem, consider a table

containing five matches on Ethernet addresses (A,B,C,D,E) and a low pri-

ority default rule (F). To find the set of packets reaching F we calculate

F − (A∪B ∪C ∪D∪E). As Ethernet addresses contain 48 exact match bits,

we calculate the worst case expansion to be |F |b|A∪...E| = 1·485 = 254, 803, 968.

31

Calculation Ethernet Actual No. Theoretical No.
(Cumulative) Address Wildcards Wildcards

F **:**:**:**:**:** 1 1
-A d8:2c:07:cc:53:ed 48 48
-B c2:09:4c:bc:7c:e0 1,932 2,304
-C 6b:aa:94:41:4b:a5 64,649 110,592
-D 42:48:5e:3e:e5:16 1,298,260 5,308,416
-E 82:e2:e6:6f:8c:b8 Mem Error 254,803,968

Table 2.3: A demonstration using Header Space objects to subtract five higher
priority rules (A-E) to compute the reachability of a lower priority catch-all
rule (F). We show that even subtracting just five Ethernet addresses from
a catch-all rule quickly exhausts system memory. While removing duplicate
wildcards greatly reduces the actual size vs. the theoretical, the scaling is still
primarily dominated by the theoretical exponential growth.

We ran this experiment using five random MAC addresses. We show the res-

ulting number of wildcards in Table 2.3. The resulting number of wildcards

differs from the theoretical as we have cancelled out duplicate wildcards and

empty sets that occur during the calculation. Overall, we find the exponential

growth to be the dominating factor and that even attempting to subtract only

five addresses quickly runs the system out of memory. Unfortunately, this

makes Header Space unsuitable for reachability calculations within a table

as these commonly contain thousands of rules. Minimisation of TCAM-style

matches is NP-hard [18], so while there is certainly still room for more compres-

sion of these wildcards, compressing wildcards quickly becomes prohibitively

computationally expensive.

Kazemian et al. [19] also found the difference operation to be expensive

and that it slowed down performing network verification, such as verifying

host reachability. They improved performance by using lazy evaluation, only

evaluating the difference after applying all transfer functions between switches.

Lazy evaluation allowed Kazemian et al. [19] to find terms which cancel out

before evaluating the difference. However, in our example there is no way to

simplify the MAC addresses further as they cannot be merged together. For

computing reachability within a table, we find, in practice, lazy evaluation is

not helpful as most often no further simplification can be made.

32

A B C (A ∧B) ∨ ¬C
T T T T
T T F T
T F T F
T F F T
F T T F
F T F T
F F T F
F F F T

(a) Truth Table

A

B

0

B

1

C

0

C

1

C

0

C

1

T

0

F

1

T

0

F

1

T

0

F

1

T

0

T

1

(b) Ordered Binary Decision Diagram

Figure 2.5: Representations of the boolean equation (A ∧B) ∨ ¬C

2.5.3 Binary Decision Diagrams

A BDD [20, 21] is a directed acyclic graph used to represent boolean logic.

A BDD’s layout naturally supports set operations efficiently. A BDD has a

single root node, and nodes have a label corresponding to the boolean variable

they represent. Each node has two child branches, named low and high, cor-

responding with the decision made if that variable is false or true. At the end

of the graph are terminal nodes which represent the final decision made, either

true or false. The truth of a boolean expression for a given set of input values

is found by following a path through the BDD from the root node by walking

the edge corresponding to the variable’s value until encountering a terminal

node which holds the overall truth value.

Figure 2.5 shows two different representations of the boolean expression

(A ∧ B) ∨ ¬C. Where ∧ is logical AND, ∨ is logical OR, and ¬ is logical

negation (NOT). Figure 2.5a shows a truth table representation; each row

shows the output of (A∧B)∨¬C for selected input values of the variables A,

B and C. Figure 2.5b shows a BDD representation of (A∧B)∨¬C, as pictured

A is the root node and the square nodes are used to represent the True and

False terminal nodes. We draw the low branch as a dotted edge labelled 0

and the high branch as a solid edge labelled 1. If we follow a path from the

33

A

B

0

B

1

C

0 1 0

C

1

T

0

F

1 01

(a) BDD with duplicate subgraphs re-
moved

TF

C

01

B

1

0

A

0

1

(b) Reduced Ordered BDD

Figure 2.6: Steps applied to reduce the BDD in Figure 2.5b, a representation
of the boolean expression (A ∧B) ∨ ¬C.

BDD root based on the input values to a termination node, we find each path

matches with the truth table. Figure 2.5a is an ordered BDD, which is to say

the ordering of nodes down the graph is consistent, i.e. always A, B then C.

Bryant [22] introduces a more useful type of BDD the Reduced Ordered

BDD (ROBDD) which adds restrictions to create a more condensed graph.

The process of building a reduced BDD obeys two simple rules 1) merge all

duplicate subgraphs into one and, 2) remove a node if both of its children are

the same subgraph. Figure 2.6 shows these two steps applied to the Ordered

BDD in Figure 2.5b. If we first consider merging duplicate subgraphs in the

ordered BDD, we observe that the three leftmost C subgraphs are identical,

all map C’s low branch to a true terminal node and C’s high branch to false.

We also cannot have duplicate terminal nodes as these are in themselves sub-

graphs, as such a reduced BDD contains only one copy of each terminal node.

Figure 2.6a shows the output after merging duplicate subgraphs. Next, we

consider removing nodes with identical subgraphs; these are easy to identify

after merging duplicate subgraphs as both branches of a node point to the

same subgraph. These nodes are redundant as their value does not affect the

terminal node reached. We can see in Figure 2.6a that the leftmost B node

34

and rightmost C node have identical subgraphs. Figure 2.6b shows the final

reduced ordered BDD with these nodes eliminated.

ROBDDs are used in practice as they result in much smaller graphs redu-

cing resource requirements of both memory and compute time. Bryant [22]

proved that a reduced BDD is the minimal representation, requiring the few-

est nodes, for a selected node ordering. Additionally, a reduced BDD is a

canonical representation for a selected node ordering [22]. In practice, BDD

implementations allocate all BDDs subgraphs from a shared pool [23], as this

is more efficient and allows for comparison between BDDs. This implementa-

tion detail is particularly useful when checking BDD equivalence, as equivalent

BDDs are the same graph and therefore share the same root node in memory.

In the remainder of this thesis, we use BDD to mean ROBDD unless otherwise

stated.

BDDs can be used to represent sets by mapping items in the set to true or

otherwise false. TCAM-style matches are logical expressions in which each bit

is a variable, and all bits’ matches must be satisfied (i.e. are anded together).

Mapping from a TCAM-style match to a BDD is a direct 1 bit to 1 node

mapping; wildcarded bits do not affect the decision so do not add a node.

BDDs can easily be combined using set operations. A common base for all

BDD operations is Bryant [22]’s apply procedure. Bryant [22]’s apply proced-

ure takes two BDDs and creates a resulting BDD by applying the operation

of choice (�) to the terminal nodes. If we consider a BDD node (v, l, h) where

v is the variable label, l is the low branch and h is the high branch. Then the

apply operation can be described recursively to two BDDs a and a′ [24]:

a � a′ =



terminal(truth(a) � truth(a′)) if a and a′ are terminals

node(v, l � l′, h � h′) if v = v′

node(v, l � a′, h � a′) if v < v′

node(v, a � l′, a � h′) if v > v′

35

TF

C

01

B

1

0

A

0

1

�

F′ T′

A′

1B′

0

0 1

=

T⋄TF⋄TT⋄F F⋄F

A

B

C⋄B′

B

B⋄T′

C

C⋄F′

C

C⋄T′

T⋄T′

C⋄T′

T⋄F′ F⋄F′ T⋄T′F⋄T′

Figure 2.7: A demonstration of a general � operation applied to two BDDs.
We have marked the edges in the resulting BDD with the subgraphs combined
to create the child node, with the root being the result of A � A′. Notice that
two branches combine C � F ′, these always result in the same subgraph, thus
are deduplicated. Note that depending on the operation all combinations of
the terminal nodes will compute to either true or false further reducing the
graph.

Figure 2.7 applies this recursive process to two BDDs. The apply procedure

walks both BDDs in unison, following the same decision path from both root

nodes until reaching two terminal nodes, recursively to consider all paths. The

apply procedure applies the operation to these terminal nodes to calculate the

new terminal node in the resulting BDD. In the case the walk encounters

mismatched nodes, the lowest ordered node is selected, in this way forming a

shared path which maps to a single terminal value in both BDDs.

If we consider our BDD as a set and we apply some operation (�) A � A′.

Then our � operation is given two boolean inputs corresponding to an item’s

existence in both sets A and A′ and should return true if the item is in the

resulting set otherwise false. The logic for these set operations are as follows:

Union (A ∪ A′) creates a new set with the combined items of both sets. We

apply the logical OR operation, A ∨ A′.

Intersection (A ∩ A′) creates a new set containing items present in both sets.

We apply the logical AND operation, A ∧ A′.

36

TF

C

01

B

1

0

A

1

0

(a) Union A ∪A′

F T

C

1 0

B

0

1

B

1

0

A

0 1

(b) Intersection A ∩A′

T F

C

0 1

B

1

0

A

1

0

(c) Difference A−A′

Figure 2.8: The union, intersection, and difference set operations applied to A
and A′ from Figure 2.7. The resulting BDDs are smaller (contain fewer nodes)
than the general result pictured in Figure 2.7 because the operation replaces
the four terminal nodes with either True or False.

Complement ¬A creates a set of all items not contained in the BDD. Com-

plementation simply requires swapping the true and false terminals or

alternatively applying logical XOR against the true terminal.

Difference/Subtraction(A− A′) creates a new set of the items containing

items present in the first set but not in the second set. We apply the

logical operation A ∧ ¬A′.

Figure 2.8 shows the resulting BDD after applying the three basic set opera-

tions to A � A′ shown in Figure 2.7.

In the worst case, the space complexity of any apply BDD operation is the

product of the nodes in each BDD [22], as in the worst case every node would

need to be combined with every other. However, the worst case complexity is

most often not met, Knuth [24] notes that this complexity in many cases is

closer to the sum of the nodes. An apply operation often attempts the same

combination of nodes in different subgraphs, e.g. the two branches combining

C �F ′ in Figure 2.7; implementations maintain a lookup cache to avoid calcu-

lating the resulting subgraph again. This caching makes the time complexity

of an apply operation the same as the space complexity. The node ordering

37

Calculation Ethernet Actual No. Theoretical No.
(Cumulative) Address Node Node

F **:**:**:**:**:** 1 1
-A d8:2c:07:cc:53:ed 50 50
-B c2:09:4c:bc:7c:e0 93 2,500
-C 6b:aa:94:41:4b:a5 138 125,000
-D 42:48:5e:3e:e5:16 181 6,250,000
-E 82:e2:e6:6f:8c:b8 224 312,500,000

Table 2.4: A demonstration using BDDs to subtract five higher priority rules
(A-E) to compute the reachability of a lower priority catch-all rule (F). Notice
F contains a single node, which is a true terminal, while A-E contain 50 nodes
corresponding to 48 bits and two terminal nodes. While the theoretical worst
case space complexity is exponential, the actual scaling we observe is linear.
The results show that combining exact matches scales linearly, which is a
typical pattern in flow tables.

chosen for a BDD affects its size [22, 24].

We too have found combining flow table rules most often results in linear

expansion, rather than the worst case exponential expansion. Now we consider

the problem of computing reachability between rules in different tables which

uses intersection. Recall that the intersection of two TCAM-style wildcards

results in at most one wildcard and that wildcards have a 1:1 mapping from

exact bit matches into BDD nodes. So the intersection of two TCAM-style

matches results in, at worst, the sum of the nodes with an upper bound of the

total number of matchable bits. This does not always hold true when taking

the intersection of two BDDs in general, only when intersecting TCAM-style

matches.

Now we reconsider the problem of testing rule reachability within an Open-

Flow table, the same as we did for Header Space in Section 2.5.2 which quickly

expanded in size and exhausted memory. Consider a table containing five

matches on Ethernet addresses (A,B,C,D,E) and a low priority default rule

(F). To find the set of packets reaching F we calculate F−(A∪B∪C∪D∪E).

As Ethernet addresses contain 48 exact match bits, and as a BDD contains 50

nodes; the 2 extra are the true and false terminal node. The theoretical worst

case expansion is 50n, where n is the number of MAC addresses subtracted.

38

Table 2.4 shows our experimental results of computing reachability within a

OpenFlow table using BDDs. The theoretical worst case scaling is exponen-

tial; however, we find the actual scaling to be linear. BDD’s scaling is much

better suited to our usage than TCAM-style representations like Header Space

(Table 2.3), which were dominated by the worst case exponential scaling.

2.5.3.1 Variations of Binary Decision Diagrams for Networking

Many variations of Binary Decision Diagrams exist, often specialised for a

specific usage while others, here we highlight some of those which have been

used in network research.

Firewall Decision Diagrams (FDDs) [25] are a variant of BDDs in which

each node represents a header field instead of a single boolean decision, i.e.

a single bit. Nodes can have multiple branches rather than only two as in a

traditional BDD. Each edge is labelled with a set of integers corresponding to

the field’s value, such that all edges leaving one node are non-overlapping sets

and their union encompasses all possible values of a field. In an FDD terminal

nodes map to either a drop or accept decision. FDDs efficiently encode firewall

rules as a series of integer ranges per header field, which maps to the style of

filtering rules firewalls accept. Gouda and Liu [25] designed algorithms using

an FDD to compress firewall sets into fewer rules while maintaining equivalent

behaviour.

Thus far, the BDDs explored map to a binary result, either true or false

(accept or drop). Clarke et al. [26, 4] generalise the BDD to allow any finite

set of terminal nodes forming the Multi-Terminal Binary Decision Diagram

(MTBDD). MTBDD retain the canonical and minimal characteristics of a

standard BDDs. MTBDDs are useful for representing non-binary decisions

such as an action associated with a match. We further discuss using this

canonical MTBDD representation for forwarding ruleset equivalence checking

in Chapter 4.

Smolka et al. [27] and Arashloo et al. [28] used BDD structures to compile

39

high-level languages into physical network topologies. Smolka et al. [27] intro-

duced the Forwarding Decision Diagram, and Arashloo et al. [28] extended the

Forwarding Decision Diagram to encode stateful operations. Both found the

FDD structure is efficient and offers chances for optimisation through remov-

ing equivalences. A Forwarding Decision Diagram differs from an MTBDD as

a decision node considers an entire value of the field rather than a single bit

and cannot represent the arbitrary masking found in OpenFlow.

Yang and Lam [29] use a BDD representation of packet-space to create

atomic predicates to verify forwarding behaviour, including reachability, loop

detection and black hole detection. They found their approach was fast enough

to run in real-time. BDDs and MTBDDs have also been used to represent

firewall ACL rules for verification checking [30, 31] and as a structure for fast

packet classification [30, 32, 33].

2.5.4 Summary

We have found representing OpenFlow match sets as TCAM-style matches,

such as Header Space, to be suitable for calculating simple intersection opera-

tions, however, is unsuitable for calculations requiring the difference to between

match sets due to exponential scaling in practice. Header Space intersection

is very fast as it simplifies to the bitwise AND operation.

BDDs provide an alternative representation, which does not suffer from ex-

ponential scaling in practice, despite exponential scaling being the theoretical

worse case complexity. BDDs also have an additional advantage over TCAM-

style matches, they are canonical. Overall, we have found the performance

and scaling characteristics of BDDs to be sufficient for our usage.

Our research makes use of both Header Space and BDD representations

where appropriate. Merging rules between tables requires intersection, so we

use a Header Space representation. While to check ruleset equivalence we use

an MTBDD as it is a canonical representation, and, in practice, scales almost

linearly with the number of rules.

Chapter 3

Working With Table Type

Patterns

Representing a switch’s pipeline in a machine digestible format is essential to

being able to determine where a controller can install an OpenFlow rule. De-

termining where a rule can be installed is an integral component in our ultimate

goal of fitting an existing ruleset to a new pipeline. The pipeline representation

needs to be able to represent the requirements of a switch accurately, and yet

be as convenient as possible to both create and use.

We chose to use a Table Type Pattern (TTP) [3] as input to our rule fitting

algorithm to describe the target OpenFlow pipeline. TTPs provide a flexible

representation of an OpenFlow pipeline, which is both machine and human-

readable. A TTP can represent detailed requirements such as the values a

rule can match in addition to the header field that can be matched. Com-

plex dependencies between requirements can be represented including mutu-

ally exclusive options and all-or-nothing options. Additionally, Broadcom’s

OpenFlow Data Plane Abstraction (OF-DPA) pipeline included a TTP de-

scription which is a crucial target for our rule fitting algorithm due to the

prevalence of Broadcom switching chips in OpenFlow hardware.

The largest problem we found with using TTPs was the ecosystem is un-

developed. There is a lack of tools for working with TTPs, there are few de-

41

velopers publishing TTPs, and there are errors in published TTPs. We found

that many errors in TTPs are typographical in nature, including issues such as

using the wrong match field name (MAC_DST vs. the correct ETH_DST),

which a developed ecosystem of tools would have been discovered.

In addition to using a TTP to represent a pipeline for rule fitting, we

created two tools for working with TTPs and a library with an extension

to fit rules into a TTP. The tools we created to assist with viewing and

verifying TTPs are useful not only to us but to the entire TTP ecosystem

to improve the quality of TTPs and speed up the process of creating and

using TTPs. We have also created a library to find valid rule placements in a

TTP, which could be used to assist the Software-Defined Networking (SDN)

application development process. An application developer could include a rule

verification check against a TTP in their automated testing. Thus allowing

multiple OpenFlow switches to be tested without the need to have access to

hardware while also providing near instant feedback after every code change.

For researchers, our TTP library is a useful base to build network modelling

and verification tools.

In this chapter, we detail the structure of Table Type Patterns and the

tools we developed to assist with creating and interpreting TTPs.

3.1 Contents of a TTP

A TTP is a text file that describes the capabilities of an OpenFlow pipeline.

A TTP consists of objects which contain members (a key-value mapping) and

other basic types such as lists, strings and numbers. In practice, JSON is used

to encode a TTP, and all examples in the specification use JSON encoding. The

standard also allows the TTP author to use other machine-readable encodings

such as YAML and XML. However, we have only encountered JSON encoded

TTPs. An author writes a TTP for a specific version of OpenFlow, which

determines the matches and actions available. The tools we have created are

42

Table Type Pattern

NDM_metadata
name: TTP name
version: TTPv1
...

table_map{
table name: table number
...

flow_tables



name: table name
flow_mod_types



name: flow name
match_set { field: match field name

match_type: exact, masked, prefix etc.
...

instruction_set


instruction: write or apply_actions
actions { action: set_field, group, output etc.

value: values allowed
...{

instruction: goto_table
table: table name

...
...

built_in_flow_mod_types[
...

...
groups[
...

meters[
...

Figure 3.1: The basic hierarchy of a Table Type Pattern where a curly bracket
({) represents an object and a square bracket ([) represents a list of objects.
Objects are deeply nested in this hierarchy, for example, actions are nested
eight levels deep. These actions can further reference other top-level objects
such as groups, which a program also needs to interpret.

designed to work with a JSON encoding and OpenFlow 1.3.

Figure 3.1 shows the condensed TTP hierarchy of the most important fea-

tures for OpenFlow 1.3; square brackets show lists ([) and curly brackets ({)

show objects. The top level of a Table Type Pattern is an object containing

43

up to eleven possible members; we discuss four of the most important. The

NDM_metadata member supplies information about the TTP; the TTP ver-

sion, OpenFlow version and the TTP’s author. The table_map member maps

human-readable table names to their number in the pipeline. Throughout

the TTP, objects reference these human-readable table names, such as in a

goto_table instruction, whereas an OpenFlow application must use the table

number to install rules. The flow_tables member includes descriptions of all

flow tables and includes descriptions of the rules the table will accept. Ad-

ditionally, tables can include built-in rules which cannot be modified and are

commonly used to represent a fixed-function pipeline’s table-miss behaviour.

Rule descriptions describe the valid priority, match field and instruction com-

binations of a rule. Within a rule’s instructions, a distinction exists between

apply-actions and write-actions. Apply-actions and write-actions contain a

list of TTP actions describing the constraints. This nesting within the TTP

structure is deep in places; actions are at least eight levels deep within lists

and objects, meta-members can make this even deeper.

The groups top-level member contains a list of group descriptions. Each

group description can constrain the type of group and the actions supported

in each bucket. In OpenFlow groups are an indirect way to execute actions,

groups contain zero or more buckets which each contain a set of actions. The

type of group determines which buckets the switch executes. For example,

when a switch executes a group of type all it executes all buckets while for a

group of type select it executes one bucket based on the selected load-balancing

algorithm. A group output action elsewhere in the TTP can include a reference

to a group description by name to restrict the available groups for the action.

Similar top-level member descriptions exist for other OpenFlow features like

meters.

When a controller is evaluating the validity of a rule, it must meet all

requirements described by the TTP. For example, if a flow mod type lists two

exact matches in its match set for Ethernet destination and IPv4 destination, a

44

controller can only install a rule that contains both an exact match on Ethernet

destination and IPv4 destination. The controller cannot exclude one or both

of these matches.

A TTP author can describe optional and more complex requirements by

adding meta-members around lists which describe how many items in the list

are required. Meta-members can be placed anywhere within a TTP. Meta-

members can be of the type all, one or more, zero or more, zero or one,

and exactly one which correspond to the number of items which must be

satisfied1. The default type is all meaning every item in the list must be

satisfied; conversely, zero or one makes every item in the list optional. Meta-

members can be nested to create further combinations. In addition to meta-

members, objects can include an opt_tag, which is a named optional feature

which should either be included or excluded in its entirety. In addition to the

meta-member and opt_tag mechanism available to all objects in the TTP,

some objects have member values which make them optional. For example,

match field descriptions have a type which is one of exact, mask, prefix or

all_or_exact. For all match types, except exact, the field can optionally be

omitted from a rule’s match unless another requirement exists.

While meta-members are flexible, it quickly becomes complex to correctly

parse nested meta-members at different levels of the TTP hierarchy and re-

duces the human readability. Figure 3.2 shows a simplified excerpt of com-

plex meta-member usage within the OF-DPA TTP. Notice that all actions

are within the outermost list which has a default all requirement, meaning all

items within that list must be satisfied. However, the rule’s action-set does

not need to include any actions as both innermost lists are wrapped within

meta-members with zero as an option. An action-set cannot include more

than one GROUP action as these are limited to selecting either zero or one.

In contrast, the zero or more meta-member allows the action-set to include
1The TTP standard makes a distinction between meta-member types as being either

a use meta-member or support meta-member, to differentiate between what a switch must
support vs. what an application can use. However, in practice this differentiation is ignored
by the TTPs we have encountered, we treat all as use meta-members.

45

actions:

all



zero_or_one


{

action: GROUP
group_id: <L2 Interface>{
action: GROUP
group_id: <L2 Rewrite>

...

zero_or_more



{
action: SET_FIELD
field: IP_DSCP{
action: SET_FIELD
field: IP_ECN{
action: SET_FIELD
field: IP_PCP

Figure 3.2: Example of meta-member usage in the OF-DPA TTP taken from
the IPv4 VLAN rule entry in the ACL table.

any number of SET_FIELD actions.

While TTPs are a machine-readable standard, some complex, less common

or non-standard requirements are often delegated to a documentation string.

We have found the TTP descriptions of rules that a pipeline accepts are al-

most entirely machine-readable. Most non-machine readable descriptions are

due to non-standard additions to OpenFlow or any other hardware quirks.

The human-readability of a TTP is cumbersome as they are often large and

the hierarchy results in deeply nested objects which are hard to follow. The

Forwarding Abstractions Working Group (FAWG) did not release any tools

with the TTP standard, this was left to the community, and as a result, very

few tools exist for working with TTPs. As part of our research, we have cre-

ated a set of tools and a library to assist with checking a TTP is valid, and

finding valid placements for a rule within a TTP.

3.2 Our TTP Library and Tools

We developed a Python library for working with TTPs, which loads a TTP as

a normalised representation. Additionally, the library’s loading process also

validates the TTP, detects errors, missing components, and contradictions,

46

allowing the input to be corrected. On top of this base library, we have built

three tools: one for validating a TTP and suggesting corrections, one for view-

ing a TTP, and an extension to our library to fit rules into a TTP.

Our library retains the original TTP hierarchy and layout, built from sub-

classes of a base TTPObject. For example, a TTPTable object stores the TTP

table description and is a subclass of TTPObject. Additionally, lists includ-

ing TTPActions and TTPMatches all inherit from a base TTPList class. A

TTPList stores the meta-member type and can be nested. We have designed

the library so that a developer can add methods to the base TTPObject and

individual subclasses to perform a procedure on the TTP. By adding methods

directly to the TTPObject procedures can recursively walk the TTP hierarchy

while still performing different operations depending on the object type. The

ability to recursively walk a TTP is essential as even a simple task like finding

all the match fields supported by a pipeline requires walking through all rules

in all tables while accounting for nested meta-members (TTPLists) which are

allowed anywhere within the hierarchy. The library includes basic methods to

find all instances of an object type (such as matches), resolve a name to an

instance (e.g. a table name to the TTPTable instance), and printing objects.

3.2.1 Loading and Validating a Table Type Pattern

Loading a Table Type Pattern from JSON uses Python’s built-in JSON lib-

rary. The JSON library loads the TTP into standard Python types including

lists, dictionaries (maps), strings and integers. Once loaded from JSON, the

library converts all the resulting standard Python types into our TTP object

types. This process starts from the bottom of the TTP and walks through the

hierarchy converting all objects and lists encountered into our TTPObject and

TTPList subclasses. As part of the conversion, the library sanity checks the

TTP, including type checking values, normalising values and replacing named

references within the TTP with that object. The library normalises values

such as Ethernet, IPv4 and IPv6 address, to integer values from their original

47

string format.

Key to guiding the development of the TTP library and loading a TTP was

the ability to load existing TTPs. In particular, we ensured the library could

load all the example TTPs released by FAWG and Broadcom’s OF-DPA TTP.

Broadcom’s OF-DPA pipeline describes their entire fixed-function pipeline; it

is large and complex, it is more than 12,000 lines long and has numerous

OpenFlow extensions for custom header fields and actions. As toolsets for

working with TTP are non-existent, mistakes in TTPs are common, and we

wanted to be able to automatically resolve common mistakes or remove issues

so that parsing could continue.

The library logs all errors and issues encountered loading a TTP. Whenever

possible, the library removes invalid values encountered in the TTP and con-

tinues parsing. Due to the size of a TTP and the lack of prior tools for working

with TTPs we have found that errors in TTP are common and being more

accepting and continuing after an issue allows most TTPs to be machine-read.

Additionally, continuing parsing after encountering an error allows all issues

to be found and fixed in one go, rather than having to fix each new issue

encountered incrementally.

When loading a TTP, the library compares the names of matches, instruc-

tions, and actions with those in the OpenFlow specification to ensure they

are valid. The library checks that values associated with a header field in a

match or set field action TTP description are within the range of that field and

will truncate the value and log a warning for any violations. All built-in rules

are checked to ensure that they have exact values specified for the matches,

instructions and actions applied in the rule. After loading all objects from a

TTP, the library checks all references within the TTP are valid and refer to

an object. Again, logging warnings for any missing references during this step.

48

TTP Validator
You can link the result using this permalink.
You can also skip directly to the annotated result below.

205 Issues detected
1. Invalid non-numeric value 2**16-1 in range 0..2**16-1
2. Invalid non-numeric value 2**16 in range 2**16..2**17-1
3. Invalid non-numeric value (2**32-1) in range 1..(2**32-1)
4. Invalid non-numeric value (2**32-1) in range 1..(2**32-1)
5. Invalid non-numeric value (2**32-1) in range 1..(2**32-1)
6. Invalid non-numeric value (2**32-1) in range 1..(2**32-1)
7. Invalid non-numeric value (2**32-1) in range 1..(2**32-1)
8. Invalid non-numeric value (2**32-1) in range 1..(2**32-1)
9. Invalid non-numeric value (2**32-1) in range 1..(2**32-1)

10. Invalid non-numeric value 65535 (0x0000nnnn) in range 1..65535 (0x0000nnnn)

 "var": "<overlay_tunnel_id>",
 "doc": [
 "Different ranges for different tunnel types.",
 "Non-tunnel packets from physical ports always have tunnel_id zero."
],
 "range": "0..2**16-1"
 }

Figure 3.3: The top of the TTP validator’s HTML visualisation which shows
a list of issues found. When a user clicks an issue the page scrolls to the object
highlighted within the original JSON. Hovering over an issue displays a tooltip
with the related object as it appeared in JSON.

3.2.2 Viewing Issues with a Table Type Pattern

As mistakes in TTPs are prevalent, we developed a visualisation for displaying

the errors detected by our library during the loading process. The visualisation

makes it easy to find and correct any issues. We opted to create a webpage

to visualise errors found in a TTP as this was accessible and allowed for inter-

activity such as jumping to an issue and providing additional information on

the issue encountered in a tooltip.

We call this tool a TTP validator, however, most of the validation code is

in the base TTP library which does the validation when is loads a TTP. The

TTP validator tool is primarily responsible for presenting the issues found.

The validator is written in Python and uses the Flask [34] web framework to

construct and serve the results as a webpage. A user can run the validator

as a local standalone server. Additionally, we have published a version online

here: https://wand.nz/ttp-validator/.

Figure 3.3 shows the beginning of the HTML webpage returned for the OF-

DPA TTP pipeline. All issues found are enumerated at the top of the page,

https://wand.nz/ttp-validator/

49

11775 "name": "RewriteEthernetHeader",
11776 "action_set": [
11777 {
11778 "action": "SET_FIELD",
11779 "field": "MAC_SRC",
11780 "value": "<mac>"
11781 },
11782 {
11783 "action": "SET_FIELD",
11784 "field": "MAC_DST",
11785 "value": "<mac>"
11786 },
11787 {
11788 "action": "SET_FIELD",
11789 "field": "VLAN_ID",
11790 "value": "<vid>|0x1000"
11791 },
11792 {
11793 "action": "GROUP"

•Unknown field VLAN_ID used - did you mean: VLAN_VID or VLAN_PCP?

Figure 3.4: Visualisation of issues found by our TTP validator in the OF-
DPA TTP version 1.2.2 (Revision 2). The visualisation highlights the ori-
ginal JSON object that caused an issue during loading. When the user hovers
the mouse over an issue, a tooltip appears with information about the issue
and suggested remediation. All three objects highlighted have used an in-
correct field name, MAC_SRC and MAC_DST should be ETH_SRC and
ETH_DST. VLAN_ID should be VLAN_VID. The shown tooltip suggests
both VLAN_VID and VLAN_PCP as corrections. The lefthand side of the
page tracks the line number.

followed by the original JSON TTP annotated with the issues found. The

webpage is interactive. Hovering over an issue will display the JSON object

in a tooltip, this provides context for the issue selected. Figure 3.3 shows the

tooltip for the first issue which appears as text in a black box. Clicking an

issue scrolls to the related object in the annotated JSON, this provides the full

context of that object with relation to the TTP hierarchy.

Figure 3.4 shows a section of the annotated JSON TTP for the OF-DPA

pipeline. If the validator finds an issue, it highlights the object in the original

JSON input. The user can then easily find and edit the object in the original

JSON using the associated line number. If a user hovers over a highlighted

JSON object a tooltip displays the information about the issue, this includes

details of the issue which will include the name of the member and the issue

with the value found and, where possible, the suggested remediation.

The primary challenge encountered with this visualisation is mapping an

issue back to the original location in the JSON. Typically a JSON library loads

50

a JSON file from a textual form into the appropriate types (list, hash map,

int, string etc.) for the programming language and all further processing takes

place on these types. However, the visualisation requires a mapping from these

types back to their original location in the textual JSON representation. To

accomplish this, we customised the JSON loading process to attach the original

location to all JSON objects. Python loads a JSON object into a hash map.

Our validator adds a callback hook to the JSON object loader which stores the

object’s start and end character offset in the original input as member entries

in the resulting hash map.

When the library loads a TTP, it logs any issues it finds. Additionally, this

logging attaches the start and end character of the corresponding object to the

log message. In addition to logging, all issues encountered are also maintained

in a list against the Table Type Pattern. The message logged depends on

the issue encountered. The TTP library’s loading process type checks and

converts most values within the TTP to their expected type. For example,

if the library expected an integer but found a string, and no conversion is

possible, it logs the issue and removes the value so it can continue. In cases

where OpenFlow header field, action, or instruction identifiers are expected the

library verifies these against both the OpenFlow standard and any additional

identifiers defined by the TTP. If the library cannot find an identifier of that

name, it logs the issue along with suggested corrections as remediation which

it finds from closely matching valid field names. Figure 3.4 shows an example

of this process with VLAN_ID, an invalid header field in OpenFlow, which

correctly suggests VLAN_VID as a replacement. Minor capitalisation and

whitespace issues will generate a warning but are automatically corrected.

3.2.3 Viewing a Table Type Pattern

As Table Type Patterns can be thousands of lines long, in the case of the OF-

DPA TTP over 12,000 lines of JSON, they are often hard to read. In many

cases, an entire rule’s matches or actions will not fit on the screen. So we

51

developed a command line tool to traverse and view the hierarchy of a TTP

in sections compactly. This tool dramatically enhances the human readability

of a TTP.

The viewing tool loads a TTP and presents a list of options to choose from

at the top of the TTP hierarchy. Here is the top level menu:

1) TTP Info
2) Security
3) Variables and Extension Identifiers
4) Tables
5) Groups
q) quit
Which one?

When the user selects an option, the tool presents either another list of

options for that level of the hierarchy or a compact representation of the TTP

object. The security item in the top level of the TTP hierarchy is a docu-

mentation string containing security guidance, while the other items relate to

OpenFlow directly and were covered in Section 3.1. The tool is particularly

useful for exploring the rules available in each table and printing these in a

condensed format. Here is the IPv4 Multicast MAC rule description from

OF-DPA in the Termination MAC table which allows multicast traffic to be

directed to a routing table rather than L2 switching:

IPv4 Multicast MAC
Doc: Enables IPv4 multicast routing.
Priority: 2
Matches: all(ETH_TYPE !=0x800 ,ETH_DST =0

↪→ x1005e000000 /0 xffffff800000)
Instructions:

GOTO_TABLE: Multicast Routing
APPLY_ACTIONS: zero_or_one(OUTPUT=CONTROLLER)

In the original JSON formatting, this description takes up 38 lines, much

more than the 7 above. The TTP viewer prints condensed version of the rule

match descriptions on a single line in the following format:

FIELD_NAME [!][@][*]=[value][/ mask]

52

The symbol suffixes have the following meanings: ‘ !’ denotes an exact

match, ‘@’ denotes a prefix match, and ‘*’ denotes that including the match

field is optional. The value and mask are optional in a TTP match descrip-

tion and mean that the rule’s match must too have this exact value or mask.

Here we can see the switch requires the rule to have specific values for its

matches, ETH_TYPE must match 0x800 (i.e. match only IPv4 packets) and

ETH_DST must match 01:00:5E:00:00:00 with a mask of ff:ff:ff:80:00:00 cor-

responding to RFC 1112 multicast addresses. A rule must send this multicast

IPv4 traffic to the Multicast Routing table and optionally to the controller.

Both the packets matched by this rule and the action taken cannot be modified.

However, the SDN application can still choose not to install the rule.

Next, we show the IPv4 VLAN rule description from the ACL table in

OF-DPA which allows for flexible filtering of packets:

IPv4 VLAN
Doc: IPv4 - switched/bridged packet including

↪→ encapsulated MPLS
Priority: 2
Matches: all(IN_PORT!*,ETH_TYPE!*,ETH_SRC*,

↪→ ETH_DST*,VLAN_VID ,VLAN_PCP!*,$VLAN_DEI!*,
↪→ $VRF!*,IPv4_SRC*,IPv4_DST*,IP_PROTO!*,
↪→ IP_DSCP!*,IP_ECN!*,TCP_SRC!*,UDP_SRC!*,
↪→ SCTP_SRC!*, ICMPV4_TYPE !*, ICMPV4_CODE !*,
↪→ TCP_DST!*,UDP_DST!*,SCTP_DST!*,ARP_SPA *)

Instructions:
zero_or_one(METER)
zero_or_one(GOTO_TABLE: Color Based Actions)
zero_or_one(CLEAR_ACTIONS)
zero_or_one(APPLY_ACTIONS: zero_or_more(

↪→ $COLOR_ACTIONS_INDEX=<
↪→ color_actions_index >,$COLOR=<color >,
↪→ $TRAFFIC_CLASS=<traffic -class >,OUTPUT=
↪→ CONTROLLER))

zero_or_one(WRITE_ACTIONS: all(zero_or_one(
↪→ GROUP=<L2 Interface >,GROUP=<L2
↪→ Unfiltered_Interface >,GROUP=<L2 Rewrite
↪→ >,GROUP=<L2 Multicast >,GROUP=<L3 Unicast
↪→ >,GROUP=<L3 Multicast >,GROUP=<L3 ECMP >),
↪→ zero_or_more(IP_DSCP=<ip_dscp >,IP_ECN=<
↪→ ip_ecn >,VLAN_PCP=<pcp >)))

53

It is one of the most extensive rules as it supports almost every type of

match field, instruction, and action. In the original TTP JSON, it takes up

234 lines, much more than can comfortably fit on a screen at a time. Match

fields, instructions or actions prefixed with a dollar sign ($) are non-standard

OpenFlow extensions that OF-DPA has defined. In the IPv4 VLAN rule de-

scription all match fields, except VLAN_VID, are optional, and all instructions

are optional.

This tool presents most machine-readable elements of TTP descriptions

compactly. It has been beneficial for quickly determining if a table will accept

a rule. This tool has been invaluable in debugging our ruleset transformation

algorithm and debugging mistakes in TTPs.

3.2.4 Fitting a Rule into a Table Type Pattern

For an SDN developer, it is essential to be able to check where they can

install a rule into a switch’s pipeline. It is also a requirement of transforming

rulesets to new pipelines as we will discuss in Chapter 5. We created the

TTPSatisfies library to fulfil this purpose. Loading the TTPSatisfies library

adds methods for checking if an OpenFlow rule satisfies the requirements of

a TTP description to the objects created by the base TTP library. To add

methods to existing objects, we created an @extend_class decorator which

functions like an Extension Method in C# [35]. By separating these libraries,

the rule-fitting logic and additional objects representations such as rules are

kept separate from the TTP object representation and validation logic. With

this pattern, it is simple to add functionality and mix and match such libraries.

Checking if a rule satisfies the requirements of a TTP description re-

quires recursing the TTP hierarchy in all its complexity, most notability meta-

members. The TTPSatisifies library adds a method named satisfies to all

TTPObjects, which checks if the corresponding component of an OpenFlow

rule satisfies the requirements of the TTPObject description. An OpenFlow

rule corresponds to a TTPFlow description, an OpenFlow match to a TTP-

54

Algorithm 3.1 The satisfies method of a TTPMatch class
Input: this The TTPMatch description to satisfy - this.field: is the header-

field.
Input: unplaced The unplaced matches; a map, header-field to value+mask.
Input: placed The placed matches; a map, header-field to value+mask.
Input: final A boolean, if true returns only fully placed matches.
Output: placements A list of (unplaced, placed) pairs.
1: function TTPMatch.satisfies(this, unplaced, placed, final)
2: placements ← list()
3: if is_optional(this) then . Can be excluded from the rule
4: placements.append(pair(unplaced, placed))
5: end if
6: if this.field in unplaced then
7: match_value ← unplaced[this.field]
8: if match_value satisfies this’s requirements then
9: unplaced ← copy(unplaced)
10: unplaced.remove(this.field)
11: placed ← copy(placed)
12: placed[this.field] ← match_value
13: placements.append(pair(unplaced, placed))
14: end if
15: end if
16: if final then
17: for item in placements do
18: unplaced, placed ← item
19: if !is_empty(unplaced) then
20: placements.remove(item)
21: end if
22: end for
23: end if
24: return placements
25: end function

Match description and so on. The satisfies method of a TTPFlow calculates

its result recursively, by calling satisfies on the rule’s matches and instruc-

tions.

Satisfies takes three arguments: 1) the portion of the input rule remaining

to place (initially the entire input rule), 2) the portion of the rule placed so far

(initially empty), and 3) a final flag set true only on the first call. Satisfies

returns a list of placements, which contain both the placed portion of the

input rule and its corresponding unplaced portion. The satisfies method

of each TTPObject moves the portion satisfied from the input rule to the

placed rule, if a required condition is not satisfied then the return is an empty

55

list. However, this does not necessarily mean that placement has failed, as

a TTPMatch may return zero valid placements but itself can be within an

optional branch of a meta-member which is valid to exclude. The final flag is

set true for the first call to satisfies and filters the resulting placements to

include only fully placed rules, i.e. when the unplaced portion of the rule is

empty. If any component of the original rule remains unplaced, be it a match,

instruction or action then the rule as a whole cannot be installed.

To better illustrate this process Algorithm 3.1 shows the pseudo code for

how a TTPMatch processes a set of matches to return all conditions which

satisfy it. A TTPMatch ends the recursion down the TTP hierarchy as it

is the deepest object in the hierarchy. A TTPMatch describes the pipeline’s

restrictions on a header field such as its maskability and constraints on the

values of the match’s value and mask. TTPMatch.satisfies returns between

zero and two placements depending on whether its conditions are satisfied.

Each placement contains an unplaced and placed portion of the match set.

Lines 3-5 create the first placement if the match field is optional in which case

it is satisfied without inclusion. Lines 6-15 create the second placement if this

match field exists in the unplaced rule and it meets all the constraints of the

TTPMatch. This placement is created by moving the match from unplaced to

placed. Lines 16-23 are run if the final flag is true, and filter the placement

returned as to only return fully placed rules.

Within our TTP library the TTPList base class stores a list of TTP objects

including matches, instructions and actions. A TTPList also stores the meta-

type requirement which describes the valid combinations of the items con-

tained. We use a common satisfies implementation for objects subclassing

a TTPList which handles the complexities of the meta-member restrictions.

Algorithm 3.2 shows the pseudo code for the TTPList satisfies method. Al-

gorithm 3.2 highlights both how calls to satisfies are chained together and

how to compute meta-member constraints.

Lines 3-15 handle the default ‘all’ case for a TTPList, where all items in

56

Algorithm 3.2 The satisfies method of a TTPList class
Input: this The TTPList object to satisfy - this.meta_type: is the

meta_type constraint.
Input: unplaced The unplaced portions of the OpenFlow object
Input: placed The placed portions of the OpenFlow object
Input: final A boolean, if true returns only fully placed rules.
Output: placements A list of (unplaced, placed) pairs.
1: function TTPList.satisfies(this, unplaced, placed, final)
2: placements ← list()
3: if this.meta_type = "all" then
4: placements.append(pair(unplaced, placed))
5: for item ∈ this do
6: accumulated ← list()
7: for up, p ∈ placements do
8: accumulated ← concatenate(accumulated,

item.satisfies(up, p, False))
9: end for
10: if Empty(accumulated) then
11: return accumulated . A condition cannot be satisfied
12: end if
13: placements ← accumulated
14: end for
15: else if this.meta_type = "zero_or_one" or "exactly_one" then
16: initial ← list()
17: initial.append(pair(unplaced, placed))
18: if this.meta_type = "zero_or_one" then
19: placements ← Copy(initial)
20: else
21: placements ← list()
22: end if
23: for item ∈ this do
24: placements ← concatenate(placements,

item.satisfies(unplaced, placed, False))
25: end for
26: else if this.meta_type ="zero_or_more"or "one_or_more " then
27: ...
28: end if
29: if final then
30: Remove all pairs with unplaced portions from placements
31: end if
32: return placements
33: end function

57

the list must be satisfied. Lines 5-14 accumulate all valid placements that

satisfy an item, and then check if those placements also satisfy the next item,

until all items in the list have been considered. Line 4 seeds the process

with the original input placed and unplaced pair, and then lines 7-9 find all

new placements which satisfy the current item. The accumulated placements

satisfy all items up to and including the current item. The extra loop for

lines 7-9 is required as multiple valid placements are possible; recall that a

TTPMatch can return two placements. Additionally, because TTPLists can

be nested themselves, an item in the list may be another TTPList, which

can return multiple placements. Lines 10-12 check if any item has returned

an empty list as this fails the ‘all’ condition of the TTPList and therefore

TTPList.satisfies must return an empty list too. If the conditions of all

items are satisfied, then line 32 returns the valid placements.

Lines 15-26 check if the TTPList is satisfied when it has either the zero-or-

one and exactly-one meta-type. Zero-or-one shares the exactly-one logic but

additionally is more permissive allowing the zero case where a rule satisfies no

items in the list. Lines 18-20 add this zero case to the returned placements,

which is the input placement unmodified. Lines 23-25 create all valid place-

ments for the exactly-one case. Lines 23-25 take the initial placement and

find the placements that satisfy each item one-by-one and collects all resulting

valid placements.

We have omitted the code for the zero-or-more and one-or-more meta-

types, but these follow a similar process to determine the valid placements.

Lastly, lines 29-31 will filter the result if this is the final satisfies method so

that only fully placed items are returned. We have omitted the code, as it has

already been shown in Algorithm 3.1 lines 16-23.

3.2.4.1 Rule Fitting for Ruleset Transformation

TTP rule fitting functionality is a fundamental component of our ruleset trans-

formation algorithm discussed later in Chapter 5. To find more placements

58

which have or are likely to have equivalent behaviour we allow some deviation

in the placement of the input rule’s actions.

If a TTP action list description includes group actions, satisfies recurses

into that group and continues attempting to place the actions from the original

rule. Recursing into groups allows a rule with an output action to be installed

in a table which only supports output via indirect groups. Satisfies can also

fit to groups of the ‘all’ type, and will check nested groups.

Although apply-actions and write-actions have different behaviour; in many

cases, including when the rule is in the last table, the behaviour is equivalent.

Because write-actions and apply-actions can be equivalent, satisfies treats

all actions equally and attempts placement into both write-actions and apply-

actions. Ignoring the difference between write and apply-actions increases

the chance of finding a successful placement, particularly in a pipeline such

as OF-DPA which requires write-actions rather than apply-actions in most

tables.

Similarly, the clear-actions instruction does nothing if the packet’s action

set is already empty. Satisfies returns both versions of rules with and without

clear-action instructions as allowed by the TTP description.

Due to splitting actions between groups and apply and write-action instruc-

tions the action ordering may change, which may result in a non-equivalent

action set. As such a caller should verify the return rules have equivalent

behaviour.

3.2.4.2 Optimisation

We added an optimisation to satisfies to end processing early if a rule cannot

possibly be placed to avoid traversing unnecessary parts of the hierarchy.

To fully place a rule all of its matches, instructions and actions must be

fully placed. If any component fails to be fully placed, then the entire rule

cannot be placed. As such satisfies first checks if the rule’s matches can be

fully placed, if not processing ends early. We chose matches because they are

59

Algorithm 3.3 Creating match list requirements bitmasks
Input: self: the TTPMatchList
Output: (required, optional): bitmasks of the header-fields that a rule re-

quires or can optionally include to satisfy this. Each bit in required or
optional corresponds to a header-field.

1: function TTPMatchList.generate_masks(self)
2: opt_masks ← list()
3: req_masks ← list()
4: for match ∈ self do
5: opt_masks.append(match.get_opt_mask())
6: req_masks.append(match.req_opt_mask())
7: end for
8: if self.meta_type ="all" then
9: required ← reduce(|, req_masks, 0)
10: optional ← reduce(|, opt_masks, 0)
11: else if self.meta_type in ("one_or_more" or "exactly_one") then
12: required ← reduce(&, req_masks, 0)
13: optional ← reduce(|, req_masks, 0) | reduce(|, opt_masks, 0)
14: else if self.meta_type in ("zero_or_more", "zero_or_one") then
15: required ← 0
16: optional ← reduce(|, req_masks, 0) | reduce(|, opt_masks, 0)
17: end if
18: return (required, optional)
19: end function
20: function Reduce(op, items, default)
21: if empty(items) then return default
22: end if
23: return items0 op items1 op ... itemsn
24: end function

simple and therefore, faster to check than instructions and actions.

Additionally, we optimised the process of satisfying matches to detect and

avoid branches of the TTP description which cannot possibly be satisfied.

TTPMatchList descriptions store two bitmaps one of the header-fields required

in a rule and another of the header-fields optional in a rule.

Algorithm 3.3 shows how satisfies calculates required and optional match

bitmasks for a TTPMatchList. The calculation must factor in meta-member

constraints to ensure both:

1. The required bitmask has bits set for header-fields that must be present

in a rule’s match to satisfy the rule, i.e. if (match_bitmask & required)

6= required then the rule cannot possibly be fully satisfied.

60

2. The optional bitmask has bits set for header-fields that are possible to

match, i.e. if (match_bitmask & (required|optional)) 6= match_bitmask

then the rule cannot possibly be fully satisfied.

Both the optional and required checks allow satisfies to break early, but if

both tests pass then a full check is required as these bitmasks do not represent

the full complexity of requirements. Lines 20-24, reduce combines a list of

bitmasks together using the selected bitwise operation (op).

Lines 4-7 loop and collect the required masks and optional masks from each

match. A match will either return a bit set in the required or optional bit-

mask, however, recall that a TTPMatchList can contain another TTPMatch-

List which itself returns the bitmasks from generate_masks. Meta-type

all is only satisfied when all items in the list are satisfied, so the match list’s

required and optional masks are the bitwise OR (|) combination of each item’s

mask (Lines 8-11). To satisfy meta-type one-or-more and exactly-one one item

must be satisfied and because each rule can choose a different item to satisfy

and leave out the others all required items become optional. Hence the match

list’s optional bitmask is the bitwise OR combination of every item’s required

and optional bitmasks (Line 13). However, if every item requires a specific

match field then it must always be picked, hence bitwise AND (&) is used to

combine the required bitmasks (Line 12). The meta-types zero-or-more and

zero-or-one allow zero items to be satisfied. Therefore all items are optional,

so the required bitmask for the list is zero (Line 15). As any number of items

in the list can be satisfied the match list’s optional bitmask is the bitwise OR

combination of required and optional bitmasks.

Chapter 4

Ruleset Equivalence Checking

In this chapter, we present our method to compare the forwarding equivalence

of two OpenFlow rulesets; however, our technique applies to all match-action

pipelines. Checking ruleset equivalence has a direct application for our work

in validating the success of a ruleset transformation, and we use it as part of

our solver discussed further in Chapter 5. It also has a broader application

for the research community as equivalence checking can be used to verify that

an optimisation, code rewrite or alternative application maintains equivalent

behaviour. This chapter is based on work we have published during the com-

pletion of this thesis [17]. We have released our implementation to the research

community [36].

4.1 Problem Overview and Terminology

We present our forwarding equivalence checking in the context of OpenFlow

1.3 [12], a popular Software-Defined Networking (SDN) standard. OpenFlow

1.3 exposes a programmable multi-table match-action pipeline as we described

in Section 2.2. The set of rules installed in these tables define the forwarding

behaviour of an OpenFlow switch.

We use the term packet-space to refer to any set of packets, in particular,

the values set in matchable header fields. An empty packet-space contains no

packets, and a full packet-space contains all possible values of packet headers.

62

Table 1
Priority Match Write Action Apply Action

A 10 **01 Output:1 GotoTable:2
B 9 *010 Output:2 GotoTable:2
C 0 ****

Table 2
Priority Match Write Action Apply Action

D 100 1*** Clear
E 0 ****

Figure 4.1: A multi-table pipeline which makes forwarding decisions in Table
1 and performs firewall filtering in Table 2.

Table 1
Priority Match Write Action Apply Action

A 100 1***
B 0 **** GotoTable:2

Table 2
Priority Match Write Action Apply Action

C 10 *010 Output:2
D 10 *001 Output:1
E 10 *101 Output:1
F 0 ****

Figure 4.2: A multi-table pipeline which performs firewall filtering in Table 1
and makes forwarding decisions in Table 2.

An OpenFlow rule matches a packet-space to an action. An OpenFlow table

defines actions for the full packet-space because any unmatched packets will

have the default action applied. These actions determine the forwarding of a

packet. We define forwarding behaviour for a packet to be the ports (if any)

it egresses and all modifications made to the packet, which can vary per port.

A ruleset is equivalent if the forwarding behaviour is equivalent for the full

packet-space, i.e. every possible value of packet header. We do not consider

non-forwarding behaviour such as packet and byte counters which are attached

to rules but do not affect forwarding.

Figure 4.1 and 4.2 both represent a simplified two table pipeline which

forwards based on the lower three bits of the match and firewalls based on the

highest bit. Both pipelines have equivalent forwarding behaviour. In Fig. 4.1

rules A and B apply forwarding by adding the corresponding output action

63

to the packet’s action set. In the second table, rule D applies firewalling by

clearing the action set for packets with a 1 high bit match thus removing any

output actions and dropping the packet. The remaining packets will match

E which terminates processing and applies the forwarding behaviour stored in

the action set. Fig. 4.2 performs firewalling in the first table, rule A drops

all packets with a 1 high bit match and B sends the remaining packets to the

second table where rules C, D and E apply forwarding.

We emphasise that even though both rulesets have equivalent forwarding

behaviour the matches used between these rulesets are different, in Fig. 4.1 rule

A forwards to port 1, whereas this is split into rules D and E in Fig. 4.2. The

rulesets also use different actions, Fig. 4.1 uses write actions to set and then

later clear forwarding, while Fig. 4.2 applies forwarding using apply actions.

Thus, our aim is to find a canonical way to represent both mapping priority-

ordered matches to actions and finding a canonical form for actions to represent

forwarding behaviour.

4.2 Ruleset Conversion to a Canonical Form

We convert a ruleset into a Multi-Terminal Binary Decision Diagram (MTBDD)

based form which is canonical for the same ruleset forwarding behaviour. This

conversion process has 3 key steps:

1. Flattening multi-table pipelines to an equivalent single-table represent-

ation using cross product merging of rules (§4.2.1).

2. Converting the actions applied by the flattened rules to a canonical rep-

resentation of forwarding behaviour (§4.2.2).

3. Building a canonical representation of packet-space mapped to the ca-

nonical forwarding behaviour using an MTBDD (§4.2.3).

This final MTBDD representation is trivially comparable to check equi-

valence of two rulesets’ forwarding behaviour. Additionally, we show how it

64

Algorithm 4.1 Flatten OpenFlow tables to a single-table equivalence
Input: Tables Lists of original rules per table
Output: Ts The resulting single table equivalence
1: function flatten_tables(first, TableIndex)
2: ST ← Empty Table/List
3: for all second ∈ Tables[TableIndex] do
4: merged ← Merge(first, second) . Merge as per description in

§4.2.1
5: if merged != NULL then
6: if merged.GotoTable then
7: ST .add(flatten_tables(merged, merged.GotoTable))
8: else
9: ST .add(merged)
10: end if
11: end if
12: end for
13: return ST
14: end function
15: EmptyRule ← An Empty Rule
16: Ts ← FlattenTables(EmptyRule, 0)
17: return Ts

is possible to perform other operations on this representation such as finding

the packet-space with a differing forwarding behaviour (§4.2.3.1). Section 2.5

discusses the characteristics of the MTBDD and Header Space match repres-

entations which we use in this conversion process.

4.2.1 Conversion to a Single-Table Equivalence

The first step in equivalence checking is to convert a multi-table pipeline to an

equivalent single-table, thus simplifying the problem. Algorithm 4.1 describes

the recursive approach we take to flatten a multi-table pipeline to a single-

table equivalence. FlattenTables recursively computes the cross product

of all rules; all rules in a table are merged with all rules in the next table

they goto recursively until only one table remains. The recursive process is

started in the first table and with an empty rule which acts as an identity

element in the Merge operation. Cross product conversion has been used

in prior work [37, 38], however, they do not detail how to merge rules where

fields which have been previously set by apply actions and how to merge write

65

actions.

Below we outline how to merge the individual components of a rule with

another, (i.e. the Merge operation). We say the first rule is merged with

the second rule in the next table. The result is a single rule with equivalent

forwarding behaviour for only the packet-space which is matched by both rules:

Matches: The merged rule must only match the packet-space matched

by both rules, therefore, the intersection of the matches. If the intersection

is empty, then packets cannot possibly hit both rules, so we do not create a

merged rule. We must consider a special case if the first rule modifies (using

apply actions or write metadata) a field that the second rule matches. Al-

gorithm 4.2 shows the bitwise operation to calculate a merged match for one

ternary bit (t-bit) (0, 1 or both *). Where Ml and Mr are one t-bit of the left

and second matches and Wl is the t-bit written by the first apply actions (*

if not modified). Lines 2-6 simulate the value of the t-bit reaching the second

rule, 7-9 check that the intersection1 is not empty (packets can hit both rules).

Lines 10-14 determine the packet-space that will be accepted by both rules.

If the t-bit was set by the first rule any t-bit matching the first rule will be

accepted, otherwise, the intersection of the left and second rules’ match is

accepted.

Write actions: Write actions are merged as if they were action sets fol-

lowing the order of OpenFlow pipeline processing; first applying clear action

instructions and then overwriting existing values with any applied later in the

pipeline.

Apply Actions: Apply actions are simply concatenated in pipeline pro-

cessing order, see [12, pg. 16].

Priority: When flattening tables relative priorities must be maintained,

in pipeline processing priority, e.g. in Fig. 4.1 the priority order of merged

rules from highest to lowest is: A+D, A+E, B+D, B+E, C+D, and C+E.

The relative priority order of the first rule takes precedence over the second
1Intersection (∩) as defined in Header Space [39]

66

Algorithm 4.2 Merging OpenFlow matches (bitwise)
Input: Wf A t-bit written by the first rule
Input: Mf A t-bit of the matches of the first rule
Input: Ms A t-bit of the matches of the second rule
Output: Mn The new merged match as a t-bit
1: function merge_bitwise(Wf , Mf , Ms)
2: if Wf = ∗ then
3: ps ← Mf

4: else
5: ps ← Wf

6: end if
7: if ps ∩Ms = ∅ then
8: return NULL . No overlapping packet-space
9: end if
10: if Wf = ∗ then
11: Mn ← Mf ∩Ms

12: else
13: Mn ← Mf

14: end if
15: return Mn

16: end function

rule. We achieve this by scaling all priorities based on the table that they are

installed into to allow enough space between two adjacent priorities to fit all

priorities of subsequent tables, using this formula:

new_priority = priority × (MaxPriority|tables|−1−tableindex) (4.1)

These scaled priorities are merged using addition. Because all compon-

ents of the merge operation are associative, the operation as a whole is also.

This means the order in which tables are combined is irrelevant to the result.

However, we recommend working from the first table, to avoid unnecessarily

computing unreachable paths, as shown in Algorithm 4.1.

An OpenFlow rule cannot match an inner tag field (such as VLAN QinQ

and MPLS) in a single-table, as only the outermost tag can be matched [38].

However, matching inner tags is possible in a multi-table pipeline by first

popping the outer tag and matching the inner tag, which is now the outer,

in the next table. In order to represent matching an inner tag in our single-

67

Original Minimal Notes Resolved By
group([output:1]) output:1 groups add indirec-

tion when output-
ting packets

Step (2)

output:1, set vlan-
vid:1

output:1 changes made to a
dropped packet are
irrelevant

Step (2)

set vlan-vid:1, set
vlan-vid:2, output:1

set vlan-vid:2,
output:1

an overwritten set-
field is redundant

Step (3)

set vlan-vid:1, pop
vlan, output:1

pop vlan, out-
put:1

fields set on popped
headers are redund-
ant

Step (3)

push vlan, pop vlan,
output:1

output:1 push+pop pairs are
redundant

Step (3)

Table 4.1: Base-cases of equivalent operations in OpenFlow 1.3 we identified,
showing an example of the original action set, compared to a minimal repres-
entation and the step in our process which resolves them.

table equivalence, we create new match fields to express matching the nth

tag, allowing all multi-table pipelines to be expressed in a single table. Our

paper [17, alg. 3.3 and 3.4] provides further detail as how we calculate the

merge operation when rules use these tag fields.

4.2.2 Identifying Equivalent Actions

Identifying equivalent actions is difficult because OpenFlow has many ways to

represent the same behaviour. Base cases of equivalent action sequences are

listed in Table 4.1, which we resolve by converting to a minimal form.

We represent actions per output port minimised and ordered to create a ca-

nonical form. We are careful to perform this canonicalisation in a dependency-

aware manner to ensure actions are not removed or reordered in a way which

changes forwarding behaviour. We define a dependency between two actions if

performing them in reverse order will result in different forwarding behaviour.

For example, every set-field is dependent on itself, setting VLAN-ID is addi-

tionally dependent on push and pop VLAN operations, and all actions share

a dependency with output actions. Our process of converting actions to this

canonical format is detailed below and is shown by example in Figure 4.3.

68

Apply Actions VID:1, Out:1, group([push VLAN, MAC:A,
VID:2, Out:2])

Write Actions Out:3, VID:3

(1) Combined VID:1, Out:1, group([push VLAN, MAC:A,
Action List VID:2, Out:2]),VID:3, Out:3

Output Actions
(2) Flatten 1 VID:1
Groups 2 VID:1, push VLAN, MAC:A, VID:2

3 VID:1, VID:3

(3) Remove 1 VID:1
Redundant 2 VID:1, push VLAN, MAC:A, VID:2
Operations 3 VID:3

(4) 1 VID:1
Topographical 2 MAC:A, VID:1, push VLAN, VID:2
Sort 3 VID:3

VID=set VLAN ID, Out=output port, group is indirect

Figure 4.3: Canonicalisation of a complex action list.

1. We combine a rule’s write actions and apply actions into a single apply

actions list. The write actions are appended to the end of apply actions

in the processing order detailed by OpenFlow [12, pg. 27]. An example

output of this step is shown in Figure 4.3 Step 1.

2. We flatten all groups and output actions by creating a mapping of the

output port to actions (Figure 4.3 Step 2). The process walks from

the start of the combined action list collecting the actions applied to

the packet. When an output action is found, instead of collecting it we

map the output port to the actions collected thus far. When a group is

encountered we make a copy of the actions collected so far for each group

bucket, then we walk each bucket; removing the group while preserving

its behaviour.

3. We walk through the list finding and removing redundant actions. These

include duplicate set-fields, and sequences such as push VLAN, set VLAN,

pop VLAN. Figure 4.3 Step 3 removes the redundant VID:1 action on

output 3. These cannot be removed if another dependency of a differ-

ent type is found in-between, as seen with output 2; the push VLAN

69

action between the VID stops VID:1 being removed as VID:1 refers to a

different VLAN header to VID:2.

4. We perform a topographical sort on the list to normalise ordering while

maintaining dependency ordering. Figure 4.3 Step 4 shows how MAC:A

is sorted alphabetically before VID:1. But, a dependency exists between

VID:1 and Push VLAN which prohibits reordering.

The process normalises OpenFlow groups to flat representations of output

actions, minimises the result by removing redundant actions, and finally sorts

the result while maintaining dependencies. The result of this process is a min-

imal canonical representation of forwarding behaviour through an OpenFlow

pipeline.

4.2.3 Equivalent Ruleset Behaviour

Now we have a canonical way to represent forwarding behaviour, we need to be

able to check that the complete packet-space mapping to forwarding behaviour

is the same. We need to find a canonical representation of partial packet-

space to action mapping, for the complete packet-space. The difficulty lies in

finding an efficient method of representing sections of packet-space. Naively

representing packet-space per packet requires 2k packets, where k is the number

of matchable bits in the packet header, which is infeasibly large. OpenFlow

match-style TCAM representations such as Header Space [39], which provides

bitwise logic to perform set operations on packet-spaces, are not a canonical

representation. In Section 2.5, we found the alternative method of checking

equivalence, using set difference, results in a huge expansion quickly exhausting

memory for TCAM representations.

Instead, we use a MTBDD [4, 26] to represent a full packet-space to for-

warding behaviour mapping. While Binary Decision Diagrams (BDDs) tra-

ditionally return either True or False at their terminal nodes, a MTBDDs

is a generalisation which allows any finite set of terminal nodes, allowing our

70

{}

{1: [('OUTPUT', 1)]}

4
0

1

{2: [('OUTPUT', 2)]}

4

1

0

3
0
1

3 1
0

2
0

1

1

1

0

Figure 4.4: The canonical MTBDD representation of the equivalent rulesets
shown in Figures 4.1 and 4.2.

Algorithm 4.3 Convert a rule to a BDD
Func: GetNode(num, zero, one) Creates/retrieves an existing BDD node
Input: terminals The terminal cache, indexed by [action]
Input: bits Matches as t-bits . 0, 1 or *(do not care)
Input: action A canonical form of the rule’s actions
Output: BDDRoot The resulting BDD representation
BDDRoot ← terminals[action]
numBits ← |bits|
for i← numBits− 1 to 0 do . MSB to LSB ordering

if bits[i] = 0 then
BDDRoot ← GetNode(i, BDDRoot,∅)

else if bits[i] = 1 then
BDDRoot ← GetNode(i,∅, BDDRoot)

end if . bits[i] = ∗ does not add a node
end for

canonical representation of forwarding behaviour to be used as terminal nodes.

Figure 4.4 shows a complete canonical MTBDD representation of the rule-

set in Figure 4.1. Each node is numbered corresponding to a bit in the packet

header with 1 being the most significant bit used for firewalling. The branches

from each node represent the forwarding decision made if that bit is 0 or 1 for

any given packet, the terminal (leaf) node holds the forwarding decision. A

special terminal node ∅ is used to represent empty packet-space, allowing a

BDD to represent a partial packet-space. BDD equivalence is trivial to check.

Equivalent BDDs have identical root nodes because a reduced BDD maintains

only one instance of every subgraph.

71

Converting an OpenFlow Rule to a Partial BDD: OpenFlow matches

are first represented as a series of t-bits (0, 1 or *); all matchable fields are con-

catenated together in a consistent order and fields not included in the match

are filled with *. The 40 matchable fields in OpenFlow 1.3.5 are represented

in 1261 t-bits. Algorithm 4.3 shows the conversion to a BDD; the result is a

BDD representing a partial packet-space defined for packets matching the rule

with the remaining packet-space empty (∅). We build the BDD in reverse

from the terminal node up to the root for efficiency. Only 0 and 1 t-bits add

nodes to the BDD, * does not require a node. The node ordering chosen within

the BDD will change the BDD size, however, finding the best node ordering

is NP-complete [40]. We have found using a node ordering so that the most

significant bit of a field is stored in the lowest numbered node (i.e. top of the

graph) more efficiently stores prefix matches2.

Converting a Priority Ordered Table to a BDD: Representing indi-

vidual rules as partial BDDs is not sufficient, as this ignores the priority order

in OpenFlow tables. Algorithm 4.4 details the process of converting a prior-

ity ordered list of partial BDDs to a full BDD for the complete packet-space.

The intuition is that lower priority rules can only match the packet-space not

already represented in higher priority rules. As such, lower priority rules can

only fill empty (∅) space in the BDD. Lines 1-4 add each rule to an empty

BDD from high to low priority; PriorityAdd takes the highest priority as

its first argument. The PriorityAdd function recursively walks all nodes in

both graphs in unison until leaves are found (lines 12-21), this is the common

basis of all BDD operations, called the apply operation. Lines 6-11 define

the PriorityAdd operation that ends the recursion. If at anytime the left

(higher priority) BDD becomes empty the right BDD (lower priority) will be

returned, otherwise reaching a terminal node on the left or an empty right side

will return the left.

For better performance we have found building the BDD using the Divide-
2We have not explored heuristics to optimise field ordering

72

Algorithm 4.4 Convert a flow table to a BDD (Naive)
Input: nodes The node cache, indexed by [num, zero, one]
Input: rules A priority ordered list of rules represented as BDDs Al-

gorithm 4.3
Output: BDD A full representation of the forwarding behaviour
1: BDD ← ∅
2: for all f ∈ rules do
3: BDD ← PriorityAdd(BDD, f)
4: end for
5: function PriorityAdd(l, r)
6: if l = ∅ then
7: return r
8: end if
9: if IsTerminal(l) or r = ∅ then
10: return l
11: end if
12: if l.num = r.num then
13: return nodes[l.num, PriorityAdd(l.zero, r.zero),
14: PriorityAdd(l.one, r.one)]
15: else if l.num < r.num then
16: return nodes[l.num, PriorityAdd(l.zero, r),
17: PriorityAdd(l.one, r)]
18: else if l.num > r.num then
19: return nodes[r.num, PriorityAdd(l, r.zero),
20: PriorityAdd(l, r.one)]
21: end if
22: end function

and-Conquer (D&C) approach, shown in Algorithm 4.5, is much faster than the

naive approach. Algorithm 4.5 works in a similar fashion to merge sort, even

and odd numbered rules in the list are combined pairwise (lines 3-5) resulting

in a list half the size repeatedly until one final BDD remains as checked by line

1. Lines 6-8 check if the list of BDDs is uneven and will add the remaining

BDD, which has no pair, to the new list. Compared to the naive approach, the

same number of PriorityAdds are performed however most are working with

smaller BDDs, while the naive approach adds a small BDD to an ever-growing

BDD.

4.2.3.1 Finding Different Forwarding Behaviour

In order to identify the packet-space with different forwarding behaviour between

two rulesets, we define the BDD difference operation. We can easily map this

73

Algorithm 4.5 Convert a flow table to a BDD (D&C)
1: while |rules| > 1 do
2: newRules ← Empty List
3: for all r1 ∈ even(rules); r2 ∈ odd(rules) do
4: newRules.append(PriorityAdd(r1,r2))
5: end for
6: if mod(|rules|, 2) = 1 then
7: newRules.append(rules[−1])
8: end if
9: rules ← newRules
10: end while
11: BDD ← rules[0]

packet-space representing the difference back to the OpenFlow rules involved

for further analysis. The difference operation is logically similar to a set dif-

ference, BDDs naturally support such operations. The difference operation of

two BDDs, l − r, will return a tuple (l, r) for packet-space where the actions

of l and r differ, otherwise ∅. Algorithm 4.6 shows the termination check

which is applied recursively using the BDD apply operation; therefore it re-

places Algorithm 4.4 lines 6-11. The difference operation returns a partial

packet-space which represents packet-headers observing different forwarding

behaviour between l and r.

Algorithm 4.6 BDD difference operation termination check
Input: l The left BDD node
Input: r The right BDD node
1: if l = r then
2: return ∅
3: end if
4: if l = ∅ or r = ∅ then
5: return (l, r)
6: end if
7: if IsTerminal(l) and IsTerminal(r) then
8: return (l, r)
9: end if

74

4.3 Evaluation

4.3.1 Completeness

We have shown how to convert actions to a canonical form, and how to map

packet-space to these actions to create a canonical representation of a ruleset’s

forwarding behaviour. Our solution will not return false positives, but, in rare

cases can return false negatives, i.e. equivalent rulesets may incorrectly be

deemed nonequivalent. There are two causes for such false negatives 1) a set-

field is redundant if the packet already contains that value, and 2) equivalences

in actions we have not considered, such as those depending on the switches

state. Both cases are subtle edge-cases, and pragmatically unlikely.

4.3.1.1 The Canonical Action Set Depends on the Packet

In our method described in Section 4.2 false negatives arise in rare cases be-

cause our method of converting actions to a canonical form assumes independ-

ence to the packet header. In most cases this is a correct assumption; however,

a subtle edge case exists where an action sets the value of a field back to its

original value in the packet header as this is equivalent to not modifying the

field. As we use a minimal representation to form our canonical action rep-

resentation, we should exclude a set-field action when the packet already has

that field set to the same value because it is redundant.

Figure 4.5 shows three equivalent rulesets which highlight the flaw with

this assumption. The equivalence of these rulesets is simple to reason about,

as we only need to consider two input packet values, 1.1.1.0 and 1.1.1.1, which

are both output as 1.1.1.1. If we compare actions, Figures 4.5b and 4.5c take

no action on 1.1.1.1, whereas Figure 4.5a rewrites it to 1.1.1.1 and as such

would incorrectly be found nonequivalent.

We next detail both an eager and lazy solution to this problem. We have

implemented a prototype of both solutions and found they correctly resolve

equivalences.

75

Match IP Dst. Write IP Dst.
A1 1.1.1.0/31 1.1.1.1

(a) Always set the field to 1.1.1.1

Match IP Dst. Write IP Dst.
B1 1.1.1.1/32
B2 1.1.1.0/31 1.1.1.1

(b) First ignore packets which are 1.1.1.1

Match IP Dst. Write IP Dst.
C1 1.1.1.0/32 1.1.1.1
C2 1.1.1.0/31

(c) First set-fields which are not 1.1.1.1

Figure 4.5: Three equivalent rulesets which demonstrate that canonical actions
can be dependent on the match, because setting a field is redundant if the field
already has the same value. Rules are ordered from highest priority to lowest,
and the rules will output the rewritten packets.

Eager: This approach ensures the resulting MTBDD is canonical. As we

use a minimal representation to form our canonical action representation, we

should exclude a set-field action when the packet already has that field set

to the same value because it is redundant. In this solution, we replace rules

that contain set-field actions with a sequence of rules without the set-field for

packets already set to that value before building the MTBDD. The logic is to

create a copy of every rule containing set-field actions with 1) a specific match

on the written value set, and 2) the set-field instruction removed. This new

rule is placed at a higher priority and provides a minimal representation for the

actions. This process must be applied to all combinations of set-fields, making

it scale with the number of unique set-fields. Figure 4.6 shows how to convert

the rule in Figure 4.6a into the four priority-ordered rules in Figure 4.6b with

a canonical action set for all combinations of set-field values.

A set-field action in OpenFlow 1.3 sets the entirety of that field to the value

supplied, so our eager solution scales exponentially with the number of set-field

actions, 2|setfields|. Anecdotally we have found this exponential scaling remains

manageable as a typical ruleset applies fewer than four set-field actions to any

one set of packets. However, OpenFlow 1.5 allows a programmer to set partial

fields (i.e. individual bits), if we apply the same solution, then combinations

need to be made per bit, which becomes infeasibly large.

76

Match Set-Fields
— EthDst:A, EthSrc:B

(a) Original rule

Match Set-Fields
EthSrc:A, EthSrc:B —

EthSrc:B EthDst:A
EthDst:A EthSrc:B

— EthDst:A, EthSrc:B

(b) A priority-ordered ruleset, using minimal ac-
tion sets for cases where the packet already con-
tains the value set by a set-field action.

Figure 4.6: The conversion from a single rule containing multiple set-field
actions into all possible combinations where those set-fields can be eliminated
as the packet header already contains the value, filtered by adding it as a
match. This minimises the action set for those cases allowing detection of
equivalent rulesets where are actions are dependant on the matched value as
shown in Figure 4.5.

Lazy: in this approach, the MTBDD is built as usual, and the comparison

is modified to include additional checks lazily. The comparison first checks if

the two MTBDDs are already equivalent and can break early. Otherwise, the

equivalence check performs additional checks on the differing portions. This

additional checking can break early at the first non-equivalent portion it finds

as this means the forwarding behaviour as a whole is not equivalent. Therefore,

the next portion only needs to be evaluated when redundant set-fields cause

the difference.

To perform this additional check, we leverage the structure of the MTBDD

by applying the difference operation (§4.2.3.1) which upon finding a differ-

ence encodes a terminal that includes both actions. A single path through this

MTBDD from root to terminal encodes a portion of the mismatched packet-

space to the two different actions. Any action which omits a redundant set-field

will always become a separate path in the MTBDD. The path is different be-

cause a ruleset must include a set-field in the actions for all other values of the

field apart from the redundant value. Therefore the actions are different and

will be stored in different terminal nodes. The additional check converts each

path to the match it represents, and then each matched field is added as a

set-field to the beginning of both rulesets’ apply actions and then the actions

77

are canonicalised as per Section 4.2.2 and compared again. Rerunning canon-

icalisation removes any duplicate set-fields we introduced. This comparison

would be equally valid if it removed rather than added set-fields.

Compared to the eager approach the lazy approach will add near zero

overhead unless rulesets differ due to redundant set-fields. This lazy approach

can be applied per bit (rather than field) to deal with cases like OpenFlow

1.5 which supports bitwise set-fields, without additional overhead. Further, it

avoids the expansion issue of the eager approach. However, unlike the eager

approach, the lazy approach does not result in a canonical MTBDD, so other

MTBDD operations may need to consider this case.

4.3.1.2 Actions can be Equivalent Depending on the Switch State

Equivalent actions can arise with the processing of special OpenFlow ports,

such as a FLOOD output which is equivalent to an output action for every

port on the switch. Alternatively, an OpenFlow meter or queue which a rate-

limit exceeding the port bandwidth has no effect. The correctness of resolving

such situations are very situational as it depends on switch state such as the

number of connected ports on a switch. The validity of considering such cases

equivalent is unclear and ultimately depends on the use case.

None of these issues are fundamentally unsolvable, but rather are not trans-

formations we expect to encounter. We highlight these issues as depending on

the use case they may be important.

4.3.2 Implementation

We have implemented a prototype of our ruleset equivalence checking described

in §4.2.3 in Python. Internally we represent OpenFlow rules as mappings of

match field to value, and lists of actions applied using the built-in dict and list

types. We also convert matches to a ternary representation, Header Space [39],

to allow quick intersection operations when building a single-table. While most

of the code is implemented in Python, some hot spots have been converted

78

Original To Single-Table To MTBDD
Ruleset No. Rules No. Tables No. Rules Time Naive Alg. Time D&C Alg. Time No. Nodes

Faucet Router 582 8 11,447 9.71s 1.97s 1.13s 130,287
Faucet Access 1937 8 7,216 6.77s 0.82s 0.64s 74,148

RouteViews FIB 740,332 1 740,332 0.6s 23.82s 22.66s 279,985
FIB Reversed 740,332 1 740,332 0.6s 15.09hr 425s 10,009,281

Table 4.2: Details of the rulesets evaluated, and the MTBDD build time for
each. The time taken to convert the ruleset to a canonical MTBDD format
is divided into the time to convert to a single-table, and time to build the
MTBDD using both the Naive and Divide-and-Conquer approach.

to C. The MTBDD is implemented entirely in C with Python bindings for

better performance. We used the CUDD BDD library [41] as a base for our

MTBDD and added our custom rule conversion, PriorityAdd, and difference

operation logic.

4.3.3 Performance

In order to evaluate our solution, we present its performance with three differ-

ent real-world rulesets. We do not evaluate the time to check equivalence of any

two rulesets as by using reduced and ordered MTBDDs equivalent rulesets will

have the same memory address for their root nodes [41, 26]. Instead, we meas-

ure the time to build the MTBDD representation. We perform our tests with

an i7-4790 @3.6Ghz and 8GB of RAM, our implementation is single-threaded.

We evaluate the rulesets shown in Table 4.2. These consist of two captures,

Faucet Router and Faucet Access, from two OpenFlow switches in a real-

world enterprise deployment [42] which were programmed by the Faucet [7]

controller. The Faucet controller was configured to perform VLAN switching,

IPv4/6 routing, and stateless firewalling. Faucet Router has more complexity

than Faucet Access as it was connected to the upstream and carries routes.

Faucet Access does not carry routes, but had a larger ruleset due to having

more ports, each with a stateless firewall policy applied. RouteViews FIB is

based on a RouteViews [43] RIB3, which we converted to a FIB. FIB reversed

is the same as RouteViews FIB but with the bit order reversed so that the least
3RouteViews RIB available: http://archive.routeviews.org/oix-route-views/

2018.02/oix-full-snapshot-2018-02-13-0000.bz2

http://archive.routeviews.org/oix-route-views/2018.02/oix-full-snapshot-2018-02-13-0000.bz2
http://archive.routeviews.org/oix-route-views/2018.02/oix-full-snapshot-2018-02-13-0000.bz2

79

significant bit is the lowest numbered node in the BDD. This demonstrates

performance in the case where a poor node ordering is chosen, as is evidenced

by the increase in the final size of BDD from 280 thousand to 10 million unique

nodes.

Table 4.2 shows the time in seconds it takes to convert each OpenFlow rule-

set into an MTBDD for equivalence checking and the final size of the MTBDD

by counting the unique nodes. We report the conversion to an MTBDD in

two parts, first converting a multi-table pipeline to an equivalent single-table

(§4.2.1) and second the time to build this table into a canonical MTBDD

(§4.2.2, §4.2.3). We compare results for both the Naive Algorithm 4.4 and the

Divide-and-Conquer (D&C) Algorithm 4.5.

For the Faucet multi-table pipelines the conversion to a single-table is the

most expensive operation, this is not surprising as this operation is imple-

mented primarily in Python. While the conversion to a BDD is primarily

performed in C. The D&C approach outperforms the Naive approach in all

cases. We believe this better performance is because while both the Naive and

D&C approaches perform the same number of PriorityAdd operations, the

size of the BDDs added are on average smaller for D&C. The performance of

our implementation is good with all rulesets except for the intentionally poorly

ordered FIB reversed. Comparing FIB reversed to RouteViews FIB, the differ-

ence in build time between the Naive approach of 15 hours vs. D&C 7 minutes

is very significant and shows that this technique will finish in a reasonable time

even if a poor BDD node ordering is selected. This is important as it reduces

the need to pick the most optimal node ordering, which is an NP-complete

problem [40].

4.4 Related Work

Yang et al. [44] presented two ideas on how to compare OpenFlow ruleset equi-

valence as theoretical algorithms. The first, match-field oriented approach,

80

considers a rule at a time from the first ruleset and successively eliminates

matching rules from the second ruleset. If all rules were eliminated, then the

rulesets are equivalent. However, it does not account for overlaps in rules,

which when encountered will only remove the highest priority match, the re-

maining shadowed rule is not eliminated causing rulesets to incorrectly be

deemed nonequivalent. Their second approach, action oriented approach, cre-

ates a canonical mapping of action to matches. Yang et al. did not consider

equivalence in actions and did not consider how to represent matches as their

work is theoretical. From our experience, a BDD representation would be

suitable. Our implementation using an MTBDD provides a practical canon-

ical match to action mapping, and further shows how equivalences can exist

in actions and resolves these.

Chapter 5

The Rule-Fitting Problem

This chapter introduces the background and our solution to the key problem

this research addresses: the rule-fitting problem. This chapter provides a

high-level overview of Chapters 6 and 7, which provide in-depth detail of our

solution.

The goal of the rule-fitting problem is to rewrite an existing OpenFlow

ruleset to fit a constrained fixed-function OpenFlow hardware pipeline. In

doing this, we improve the interoperability between OpenFlow switches for a

network operator and ease the transition to new OpenFlow switches, or from

software to hardware OpenFlow switches.

This chapter motivates the rule-fitting problem, defines the scope of our

research, and defines the approach we took to a solution. Then, the chapter

gives a high-level overview of the rule-fitting solver which we have implemen-

ted. Finally, this chapter lists related research and alternative approaches to

OpenFlow device interoperability.

Our rule-fitting solver builds on the research presented thus far, including,

the Table Type Pattern tools presented in Chapter 3 and the equivalence

checking in Chapter 4. Our rule-fitting solver uses Table Type Patterns to

describe the capabilities of a fixed-function pipeline, and equivalence checking

to verify each candidate solution.

Our rule-fitting solver has two main stages: 1) finding possible transform-

82

ations for rules in the input ruleset to fit the target pipeline, and 2) find-

ing a valid combination of these rules which maintains equivalent forwarding.

Chapter 6 details the first part; how the rule-fitting solver finds possible trans-

formations for rules and the preprocessing the solver performs on the input

ruleset. Chapter 7 details the second part; how the rule-fitting solver finds a

valid combination of these transformations. Finally, Chapter 8 evaluates the

rule-fitting solver.

5.1 Motivation

The features supported by the underlying network hardware often limit the in-

teroperability of Software-Defined Networking (SDN) and in particular Open-

Flow with different network hardware. Rather than SDN applications being

write-once and deploy-anywhere, the reality is that different switch pipelines

impose different limitations on the rules an application can install. These

pipeline limitations arise from both hardware and software limitations of the

switch. This lack of interoperability makes it hard to transition from a proto-

type written for an unconstrained software OpenFlow switch to a production

deployment with constrained hardware switches, or transitioning between dif-

ferent hardware switches.

A motivating hardware pipeline for this research is the OpenFlow Data

Plane Abstraction (OF-DPA) OpenFlow 1.3 pipeline released by Broadcom [45],

which has strict limitations on the types of matches and actions available to

rules in different tables. OF-DPA provides the OpenFlow interface to program

the underlying Broadcom fixed-function switching Application-Specific Integ-

rated Circuit (ASIC). The tables that OF-DPA exposes are specialised in the

fixed-function ASIC to efficiently perform fundamental networking functions

such as routing, switching, and tunnelling. This fixed-function design is cost

and power-effective as it uses specialised data-structures and hardware design

for each network function. The obvious downside is the loss of flexibility, mean-

83

ing that an OpenFlow application cannot install an arbitrary rule anywhere

in this pipeline. Instead, the developer must tailor the application’s ruleset

for the pipeline. Section 2.3.4 describes the OF-DPA pipeline in more detail.

In the future, we expect similar fixed-function pipelines to continue to have a

place in networking as they are cost and power-efficient.

One solution to this interoperability problem has been to manually write

device drivers to convert rules or a higher level abstraction created by applica-

tions to new devices [46, 47]. This process is manual and therefore error-prone,

and requires tools, skills, and knowledge of pipeline [46] that is often confiden-

tial to the device vendor. An alternative approach is that of converting rulesets

algorithmically to target new pipelines [38, 37].

Our research explores a new algorithmic approach. While this algorithmic

approach is stand-alone, it is also complementary to the device driver approach,

because a developer of a device driver can use such automated fitting to suggest

and verify an initial placement and then convert this into a device driver with

manual optimisation.

5.2 Problem Statement

The interoperability of SDN and in particular OpenFlow is often limited by the

features supported by the underlying hardware. Therefore, OpenFlow applic-

ations are developed to target particular devices, limiting their deployability

in new networks with different OpenFlow hardware.

Our goal is to improve OpenFlow device interoperability by de-

veloping a general algorithmic approach to the rule-fitting problem

for constrained fixed-function pipelines.

5.2.1 Rule-Fitting Solver Design Scope

Figure 5.1 shows where our rule-fitting solver integrates into an existing Open-

Flow scenario. The rule-fitting solver provides a method for an existing Open-

84

Existing OpenFlow
Application

Forwarding Behaviour
OpenFlow 1.3 Ruleset

Target Pipeline
Table Type Pattern

Rule-Fitting Solver

Output Ruleset
OpenFlow 1.3 Ruleset

Incompatible Target
OpenFlow Switch

Figure 5.1: Shows how our rule-fitting solver integrates into an existing Open-
Flow scenario to improve device interoperability by enabling an existing Open-
Flow application to program an incompatible switch. The OpenFlow ruleset
programmed by the existing application is input to the rule-fitting solver. This
input ruleset provides the rule-fitting solver with a description of forwarding
behaviour. The rule-fitting solver additionally takes a pipeline description of
the incompatible switch in the format of a Table Table Pattern which, ideally,
the device vendor provides. The output of the rule-fitting solver is an equival-
ent ruleset compatible with the previously incompatible switch.

Flow application to install a ruleset on an incompatible OpenFlow switch.

To describe the desired forwarding behaviour, the rule-fitting solver accepts

an OpenFlow 1.3 ruleset, called the input ruleset. Using the ruleset directly as

a forwarding description is practical as it saves interpreting a second forwarding

description given that the output already must be an OpenFlow 1.3 ruleset.

Additionally, a network operator can trivially collect the ruleset from switches

on a running network without requiring the applications source code.

To describe the target pipeline, the rule-fitting solver accepts a Table Type

Pattern (TTP) description. TTPs were a natural choice for describing hard-

ware as they can express the complexity of fixed-function OpenFlow pipelines.

Unfortunately, other than the OF-DPA TTP, very few vendors have released

machine-readable pipeline descriptions.

The output from the rule-fitting solver is an OpenFlow 1.3 ruleset. This

ruleset must be both compatible with the target pipeline and have forwarding

which is equivalent to the input ruleset. The rule-fitting solver uses the re-

search presented in the previous chapters to verify both constraints. Chapter 3

85

detailed how the rule-fitting solver ensures rules are compatible with the target

pipeline. Chapter 4 detailed how the rule-fitting solver checks ruleset equival-

ence.

We chose to explore an algorithmic approach because it is more access-

ible than a device driver approach as it does not require cooperation from a

device vendor or access to the source code of the SDN application. In addition,

FlowAdapter has demonstrated that this approach could integrate seamlessly

with an existing architecture as a middle layer between the OpenFlow applic-

ation and switch [38].

We chose to specifically target fixed-function pipelines, as their strict con-

straints pose a unique challenge. Additionally, this problem has a practical ap-

plication, as many OpenFlow vendors ship products which use fixed-function

merchant silicon, including Edge-Core, Quanta, Allied Telesis, Pica8, Dell, and

HPE [15].

We chose to develop the rule-fitting algorithm to be as general as possible,

for the broadest applicability. General means the rule-fitting solver cannot rely

on pipeline support for any particular OpenFlow feature, including metadata.

Section 5.2.1.1 details the full list of assumptions the rule-fitting solver avoids.

5.2.1.1 A General Solver

What we mean by a general rule-fitting solver, is that the solver should make

as few assumptions as possible, thus resulting in a technique applicable in

most situations. Next, are the key assumptions we wanted to avoid, with the

reasoning behind each.

Do not assume that OpenFlow 1.3 metadata is available in the target

pipeline.

Metadata is convenient for a rule-fitting solver as it allows the solver to

ignore overlaps between rules with different priorities. The solver can set

and match metadata to ensure a packet only matches the intended rules,

as seen in FlowAdapter and FlowConvertor [38, 37]. However, metadata is

86

not always available in a fixed-function pipeline. For example, metadata is

not available in the OF-DPA pipeline [45], which was the main motivating

fixed-function pipeline for this research.

Do not assume an application will use a header-field in a traditional

manner.

It is common for researchers to develop new network functions by re-

purposing existing fields due to it being immediately deployable. As a

concrete example, it is a mistake to assume that an application will use

the Ethernet header for traditional Layer 2 forwarding. Umbrella uses the

Ethernet address to encode ports along a source-routed path [48]. Portland

creates positional Ethernet addresses which is much more akin to Layer 3

routing [49]. That is not to say that our solver does not need to handle

traditional networking protocols efficiently. Traditional protocols such as

Layer 2 forwarding and Layer 3 routing remain fundamental to networks

today and in the future. So the solver must be able to find a solution to

traditional networking functions, regardless of the header-fields used.

Do not hard-code the match fields and actions available to rules.

To be as general as possible, our solver should avoid hard-coding to a

limited set of matches and actions. Avoiding hard-coding fields is useful

as OpenFlow allows non-standard experimenter extensions with which a

switch vendor can define custom header-fields and actions. The OF-DPA

pipeline uses vendor extensions to support some additional fields including

non-standard metadata shared between tables some tables [45].

5.3 Design Methodology

We took an incremental approach to design and implement the rule-fitting

solver, starting by implementing small independent pieces and combining these

to find more complex solutions. We refined the rule-fitting solver through trial

and error of new ideas, typically based on observing failures to find a solution.

87

The solver development started as code to find a valid placement of a single

unmodified rule into a target pipeline.

From here, we incrementally worked towards the goal of transforming an

entire ruleset where the ruleset requires significant changes. We grew the

algorithm in two main areas: 1) finding more sophisticated ways to transform

a rule or combinations of rules, and 2) fitting those transformed rules together

into a valid OpenFlow ruleset.

We used the OF-DPA pipeline to guide the types of transformations of rules

the solver needs to support. The OF-DPA pipeline was ideal as it provided

a sophisticated example of fixed-function pipeline restrictions. Therefore, we

focused our time on the concrete transformations required to transform rulesets

to real-world pipelines. For each type of transformation required, we created

a minimal example input ruleset and table type pattern as part of the solver’s

test-suite. These examples allowed us to detect regressions early and are small

enough to debug easily, unlike the complexity of a complete ruleset and the

entire OF-DPA pipeline. Often our development was test-driven from these

examples.

An early observation we made about the rule-fitting problem is that it has

an intractable problem space because of the many alternative representations

in OpenFlow. Consider a solver splitting a single rule between n tables in

an unconstrained pipeline; the solver can split the rule between 2n unique

combinations of tables. Moreover, 2n is before accounting for the number of

unique ways the solver can split a rule’s matches and actions between these

tables. Additionally, if one solution is available, then practically infinite solu-

tions are available. To illustrate, within a table only the highest-priority rule

is matched so the solver could add any number of lower-priority rules with

the same match without affecting forwarding as they are unreachable. The

assumption of a fixed-function target pipeline helps reduce the problem size,

as pipeline constraints significantly reduce the number of valid combinations.

However, the problem still remains large, so we developed techniques to limit

88

Ruleset TTP Pipeline

§6.2 Ruleset Preprocessing

§6.3 Find Transformations

§7.4 Generate Initial SAT Problem

§7.5 Run SAT Solver

Solved? Unsolvable
N

§7.5 Build Candidate Ruleset
Y

Equivalent?

Solution
Y

§7.6 Refine SAT Problem
N

Stage 1

Stage 2

Figure 5.2: The design of the rule-fitting solver, showing the key steps involved
in fitting an OpenFlow ruleset to a new pipeline. The first stage deals with
preprocessing the ruleset (to simplify the problem) and transforming the rules
from the input ruleset to valid placements in the TTP on a rule by rule basis.
This first stage outputs a list of transformations for each rule. The task of
the second stage is to pick a combination of these transformations that gen-
erate a valid solution. The second stage expresses this problem as a Boolean
Satisfiability (SAT) problem. Due to the size of the problem, we found it was
not possible to constrain the SAT problem to return only valid solutions. So
instead, the second stage iteratively runs the SAT solver and refines the SAT
problem, based on each invalid solution, until it finds a valid solution or no
solution is possible.

the problem space to where reasonable solutions occur.

With such a large problem space, exploring it is often polynomial or expo-

nential in runtime and memory usage. We used profiling to find the problem-

atic cases, and developed heuristics to remove cases where valid solutions are

unlikely. Heuristics are particularly important when building a valid ruleset to

remove combinations of transformed rules which are incompatible with each

other.

89

5.4 Overview of the Rule-Fitting Solver Design

Figure 5.2 shows an overview of the design of the rule-fitting solver. We divide

the solver into two separate stages, where each stage is its own problem and

poses unique challenges. The first stage generates transformations of the input

rules placed in the target pipeline. The second stage finds a combination of

these transformations that have equivalent forwarding to the original ruleset.

Chapter 6 and Chapter 7 detail the first and second stage, respectively.

The rule-fitting solver requires two inputs: 1) a description of forwarding

behaviour as an OpenFlow 1.3 ruleset [12], and 2) a description of the target

pipeline as a Table Type Pattern [3].

Ruleset preprocessing is responsible for making the ruleset easier for the

rest of the solver to process. Preprocessing includes removing unreachable

rules and reducing the complexity of the ruleset. Removing unreachable rules

ensures that every rule in the input ruleset has a purpose. The most notable

preprocessing process is ruleset compression, a technique we developed to re-

duce the size of a ruleset dramatically. Section 6.2 details the preprocessing

methods the rule-fitting uses.

From this preprocessed ruleset, the rule-fitting solver generates all possible

transformations of a rule that express the same isolated forwarding behaviour

in the target pipeline. A transformation maps one or more rules from the

same path in the original ruleset to one or more rules in the target pipeline.

We more commonly refer to a rule in the target pipeline as a placement. The

rule-fitting solver uses the Table Type Pattern library described in Chapter 3

to generate these placements for the target pipeline.

A principle which guides the rule-fitting problem is that every rule in the

input ruleset has a purpose. Therefore, for a solution to be valid, it must

represent every rule from the input ruleset in some form. Thus the first stage

of the solver generates transformations in the knowledge that the second stage

will pick one for each rule in the original ruleset.

For simplicity, now consider a transformation that maps one rule to one

90

placement. Because the next stage picks one transformation to represent each

input rule, to be representative, the placement of that transformation must

have the same forwarding as the original rule when considered in isolation.

To check if a transformation has the same isolated forwarding, the rule-fitting

solver assumes that all packets reach a placement and checks that placement

applies the same forwarding as the input rule for the packet-space the input

rule matches. This check carefully excludes packet-space not matched by the

input rule.

The first solver stage generates a variety of different transformations, in-

cluding splitting an input rule in placements spread across multiple tables and

merging multiple input rules into one single placement. Section 6.3 details the

transformations the solver generates and how the solver generates them.

From these transformations, the second stage must find a combination of

these transformations which have the correct overall forwarding behaviour.

This second stage uses the ruleset equivalence work presented in Chapter 4 to

check if the candidate ruleset created from these transformations is equivalent

to the input ruleset. Finding a valid combination of transformations is non-

trivial as their placements often conflict with each other. Placements can

conflict by shadowing each other, including conflicting actions at the same

priority and directing packets to the wrong table such that other placements

are not reached.

The basic constraint to guide searching combinations of these transform-

ations is to pick exactly one transformation for each input rule. We quickly

realised that naively checking all possible combinations of transformations was

infeasible for any non-trivial ruleset. In our initial attempts to solve this prob-

lem, it was clear that some combinations of placements always led to invalid

solutions and did warrant further consideration. So instead, we looked for a

solution that would allow us to search combinations of transformations with

constraints to filter out invalid combinations. We found that we could express

this problem as a Boolean Satisfiability (SAT) problem, and thus could use one

91

of many off-the-shelf SAT solvers to generate combinations of these transform-

ations. Later, Chapter 7 gives a comprehensive introduction to the Boolean

Satisfiability (SAT) problem.

The difficulty in this second stage does not lie in generating and checking

these solutions, but instead in finding constraints to filter the search-space to

a tractable size. Ideally, we would fully constrain the SAT problem so that

it only returned equivalent solutions. However, our attempts to fully con-

strain the SAT problem essentially amounted to naively checking all possible

combinations. So instead, we use a partially constrained SAT problem where

solutions were likely to have the correct forwarding.

Based on heuristics, the rule-fitting solver generates the initial constraints

for the SAT problem for known conflicting combinations of transformations

and to rule out problem space where solutions are improbable. Section 7.4

details the constraints the rule-fitting solver adds to the initial SAT problem.

The rule-fitting solver uses MiniSat 2 [50], an off-the-shelf SAT solver, to solve

the SAT problem and return combinations of transformations. From these

transformations, the rule-fitting solver generates the ruleset and checks its

equivalence against the input ruleset (Section 7.5). If the ruleset is equivalent,

then the SAT solver has found a valid solution to the rule-fitting problem;

otherwise, another iteration is required. After each iteration, the rule-fitting

solver then adds additional constraints to the SAT problem based on analysis

as to why the solution failed. Section 7.6 describes these constraints the rule-

fitting solver adds to refine the problem after each iteration.

5.5 Related Work

This section introduces related research in building and running SDN applica-

tions on multiple switches with different hardware pipelines. We focus on how

to solve this problem for fixed-function pipelines, rather than flexible pipelines.

Technologies including POF [11] and P4 [10] allow a network operator to pro-

92

gram these flexible pipelines to support their SDN applications.

There are two main approaches taken by prior work towards solving the

rule-fitting problem and OpenFlow device interoperability on fixed-function

pipelines: 1) adding an abstraction layer and programming hardware-specific

device drivers, and 2) algorithmically rewriting the ruleset.

5.5.1 Switch Abstraction Layers

Yu et al. [46] proposed NOSIX, a lightweight portability layer between the

OpenFlow application and OpenFlow switch. In the NOSIX model, a pipeline

of virtual flow tables act as an intermediary between the OpenFlow application

and switch hardware. The OpenFlow application developer designs virtual

flow tables suited to their application and writes their application to install

flows directly into these virtual tables. The OpenFlow device vendor takes

these virtual flow tables and, with their knowledge of their switching hardware,

creates an efficient driver to map the virtual pipeline to their physical pipeline.

In NOSIX, either a switch or the controller could run the device driver.

The application developer predefines NOSIX’s virtual tables. The virtual

tables cannot be changed at runtime and do not need to match the hard-

ware pipeline. The application developer will annotate the virtual tables with

additional information as requirements or promises. Requirement annotations

indicate the features a virtual table uses, such as the match, action and consist-

ency requirements. A promise annotation provides information to aid device

driver development. For example, a promise annotation can indicate a rule

will not exceed an amount of traffic, and as such a switch could process these

packets in software.

Yu et al. [46] demonstrated the advantages of annotations providing ad-

ditional information about the application with an elephant and mouse flow

scenario. In which the controller has knowledge of which flows are elephants

and mice. An elephant flow is a long-lived, large transfer such as a file trans-

fer, whereas a mouse is a short transfer such as loading a web-page. Typically

93

mice flows are more frequent than elephants and are short-lived with a high

churn rate. A naive approach that does not distinguish between mouse and

elephant flows will install rules for both types of flows into the hardware. Once

the hardware table fills up, a switch must process both elephants and mice in

software, and the elephant flows saturate the software path resulting in poor

forwarding performance. However, by using the NOSIX model, Yu et al. in-

stalled elephant and mouse flows in different virtual tables, and annotated

mouse flows as having a low bandwidth promise. This annotation enabled the

NOSIX switch to choose to install only the elephant flows in hardware and

process the low bandwidth mice in software. This flow arrangement prevented

the hardware table filling up with mice, and ensured space to install elephant

flows in hardware, so they did not saturate the software path.

The NOSIX model creates a very high barrier to entry, as it requires a

OpenFlow switch vendor to write the driver. The switch vendor has no finan-

cial incentive or otherwise to create such a driver for all except their largest

customers.

During our research, there was an ongoing project named Atrium [51] from

OpenSourceSDN (OSSDN) an open-source SDN community supported by the

Open Networking Foundation (ONF). Atrium created a complete turn-key

solution to demonstrate SDN concepts in practice, in particular, emphasising

SDN interoperability between both different network switches and different

control software. Atrium created two solutions, a BGP router and a leaf-

spine fabric, built as applications for both the Open Network Operating Sys-

tem (ONOS) and OpenDaylight (ODL) network controller platforms. As part

of the Atrium effort, both ONOS and ODL implemented a high-level abstrac-

tion called flow objectives which specify forwarding through a network switch

without requiring knowledge of its pipeline. There are three types of flow ob-

jectives [47]: 1) a filter objective allows traffic to be accepted or dropped, 2)

a forwarding objective describes the type of traffic to forward, and 3) a next

objective allows a set of actions to be applied to the forwarded traffic. Beneath

94

flow objectives sit a series of device drivers, much like in the NOSIX model,

which convert the flow objectives into rules for the hardware’s pipeline. The

controller developer or device vendor must write a device driver for each switch

model they wish to support.

The Atrium project was deemed successful and has now completed [52].

The ONF have incorporated the ideas and code from Atrium into CORD

(Central Office Re-architected as a Datacenter) [53], which continues to lever-

age the flow objectives built into ONOS.

Parniewicz et al. [54] built a Hardware Abstraction Layer (HAL) to ad-

dress the problem of device interoperability between OpenFlow networks and

non-OpenFlow devices. The HAL allows an OpenFlow application to control

non-OpenFlow network devices. The HAL has a modular design, allowing a

HAL developer to change or add individual modules without having to modify

others. The HAL consists of two layers: 1) the Cross-Hardware Platform Layer

which maintains northbound connections with the control applications, and

speaks with, 2) the Hardware Specific Layer which implements device-specific

logic to translate to and from hardware.

The Cross-Hardware Platform Layer maintains endpoints for different pro-

tocol versions of OpenFlow and enables network management with NETCONF

and an interface for virtualisation. This layer also maintains an abstract Open-

Flow pipeline which processes packets that are not supported by the hardware

and packet in and out messages. The Hardware Specific Layer contains lo-

gic to convert and install flow rules into hardware as well as handling device

discovery and orchestration. This layer is the device driver, and a program-

mer needs to write this conversion layer. Parniewicz et al. implemented HAL

for devices such as NetFPGA, EZchip NP-3 NPUs, traditional CPUs, Data

Over Cable Service Interface Specification devices, and, with extensions to

OpenFlow, Reconfigurable Optical Add/Drop Multiplexers.

95

5.5.2 Rewriting Rulesets Algorithmically

Pan et al. [38] took a different approach to this same problem. Pan et al. [38]

developed an algorithm, FlowAdapter, to take an existing OpenFlow ruleset

and fit it to a switch pipeline in which tables can match a limited subset of

header-fields, which is a constraint of fixed-pipeline commodity hardware.

First, FlowAdapter converts a multi-table ruleset to a single table with the

use of a specialised tree the authors named an N-tree. Then FlowAdapter

converts the resulting single table to the target OpenFlow switch’s N-stage

pipeline; named the OTN (One-stage to N-stage) conversion. The OTN con-

version assigns each match field of a rule into a flow table supporting that

match field, and then links these rules together using goto and metadata in-

structions; thus forming an equivalent path through the target pipeline which

contains all original match fields.

Pan et al. [38] measured the performance of FlowAdapter to take 110 mi-

croseconds to fit a set of 1000 rules. This performance showed this approach

suitable to run in real-time. The authors identified areas for further research,

including the optimisation of the N-tree. Their implementation would com-

pletely rebuild the entire tree for each rule update, rather than computing

an incremental difference. Support for the offloading of rules that a pipeline

cannot match to a software path, and optimisation so that a switch could run

this conversion.

During our research, Pan et al. [37] presented a continuation of FlowAd-

apter named FlowConvertor. Compared to FlowAdapter, FlowConvertor con-

siders pipelines with constraints on actions, in addition to match constraints.

FlowConvertor makes use of incremental algorithms to maintain and update

the input pipeline representation by intercepting OpenFlow flow add, update

and delete messages in real-time. FlowConvertor maintains the cross-product

of all flow tables in an efficient filtered Directed Acyclic Graph (DAG) structure

in which nodes represent rules and edges represent paths through the pipeline.

FlowConvertor maps each path through the DAG to the target pipeline by

96

filling the target pipeline with matches from left to right. If the original path

still contains matches the mapping has failed. Next, FlowConvertor fills in

values for any remaining empty match fields that the target pipeline requires

with the last value set or matched in that field. FlowConvertor generally places

actions in the final rule. Critical action-match pairs, which require a specific

ordering (e.g. set field, match field), are an exception; FlowConverter places

the critical action on the rule before the associated match. Before installing

these rules to the switch, FlowAdapter searches for existing equivalent rules

(which it uses instead) and backtracks through the path to link rules together

using either metadata or redundant operation, such as a push tag, set tag,

match tag, and pop tag sequence.

In their evaluation, Pan et al. found FlowAdapter performed well. Pan

et al. evaluated three synthetic rulesets which they constructed to fit three

different processing models through the OF-DPA pipeline. They evaluated

FlowAdapter fitting these rulesets into three different target pipelines, one

commodity hardware switch and two synthetic software switch pipelines. The

total latency added to rule installation was typically between 1 and 2ms, with

computation taking up a small portion of that, in the order of 10µs, with the

remaining time being communication overhead. FlowAdapter is sensitive to

the original ruleset as it tries to fit flows from the origin pipeline to the target

with as little rewriting as possible. It also relies heavily on metadata to map

together flows in the final pipeline, which is not available on all switches.

Sun et al. [55] conducted similar work in the context of a multi-tenant

virtualised network environment. In a multi-tenant virtualised network envir-

onment, any tenant can configure their network in isolation from others while

sharing the same physical hardware. Their research targeted modern network

hardware which supported multiple unconstrained tables, which included the

ability to arbitrarily forward packets to earlier tables and the same table. Their

hardware target is contradictory to our target of supporting constrained fixed-

function hardware, but their technique introduced some interesting techniques.

97

Sun et al. [55] presented a technique to convert a large virtual flow table

pipeline into a hardware pipeline. Each tenant’s virtual flow table pipeline is

unconstrained, independent and can exceed the number of hardware tables.

Their technique maps these virtual software tables to hardware tables. The

mapping assigns each virtual flow table a segment ID and installs these seg-

ments into hardware tables. The mapping stores the segment ID in metadata

and adds this match to each rule, thus allowing a hardware table to contain

multiple segments. To traverse between virtual flow tables, the rules installed

in hardware write the next segment ID to metadata and forward the packet

to the associated hardware table. If a virtual table, i.e. segment, is too large

to fit in one hardware table, it is split into more segments and spread across

multiple hardware flow tables by sending the unmatched packets of the first

segment to the second segment. All rules in the first segment must be of a

higher priority than the second, and both segments retain the same ID. By

allowing arbitrary traversal between tables, combined with splitting segments,

this technique can map any number of virtual table pipelines into hardware

tables until it has filled all hardware tables.

Sun et al. highlighted a performance issue stemming from the fact that a

single table in the hardware pipeline could include rules related to any vir-

tualised table, in the worst case a rule from every virtual table. As such a

hardware table could be attempting to simultaneously match a packet from

each virtual table, which could exhaust the bandwidth of the hardware table.

The authors suggested that once the full pipeline matches a network flow, the

switch could install a single more specific rule for that network flow in the first

table; thus all further packets for the flow would only hit the first table.

Jose et al. [56] investigated compiling a logical pipeline to a reconfigurable

hardware pipeline. While they do not tackle the problem we are attempting

to solve, there are similarities; recall that we are translating rulesets to new

pipelines. A logical pipeline is defined using a language such as P4 [10] or

POF [11] and describes a match-action pipeline. It is the compiler’s job to

98

take these logical tables and map them to a reconfigurable pipeline. While a

reconfigurable hardware pipeline supports arbitrary matching, it has limita-

tions including the total number of tables, the number of rules per table and

the width of matching available in a single table.

Jose et al. [56] calculated dependencies within the logical pipeline and built

a table dependency graph, which they used to identify tables which a switch

can execute in parallel. They compared an ILP and greedy algorithm’s ability

to find an optimal solution given the constraints imposed by table dependen-

cies and the limitations of the hardware pipeline. The optimisations considered

were to: minimise the number of pipeline stages, the latency of the pipeline,

and the power consumption. Jose et al. found that Integer Linear Program-

ming (ILP) gave more optimal solutions but had a longer runtime compared

to the greedy algorithms. ILP typically had a runtime in the hundreds of

seconds, whereas greedy algorithms took fractions of a second, but, ILP can

outperform the optimality of a greedy approach by up to 25%.

5.5.3 Summary

We have outlined research including NOSIX, Atrium, FlowAdapter and Flow-

Convertor, which show a variety of different approaches to the problem of

running an SDN application on a different pipeline. NOSIX used a pipeline of

Virtual Flow Tables defined by the application and required the device vendor

to implement a device driver translation layer. Whereas, Atrium abstracted

away from OpenFlow by using Flow Objectives. Both NOSIX and Atrium use

a device driver to convert the input to OpenFlow rules that fit the switch’s

pipeline. This approach requires a programmer to write a device driver for

every new type of device. FlowAdapter and FlowConvertor showed it is pos-

sible to develop an algorithm to take OpenFlow input ruleset and convert it

to fit an arbitrary fixed-function hardware pipeline.

Chapter 6

Transforming Rules and

Preprocessing Rulesets

This chapter details the first stage of the rule-fitting solver, transforming Open-

Flow rules. Transforming rules includes 1) preprocessing the input ruleset to

reduce the size of the problem, and 2) transforming rules in isolation into equi-

valent placements (rules) in the target pipeline. The placements found in this

stage of the solver are input to the second stage, which finds a valid combina-

tion of these placements that do not conflict with each other. Chapter 7 details

the second stage of the solver.

Before discussing ruleset preprocessing and rule transformations, first, Sec-

tion 6.1 introduces the idea of dependencies between rules in a ruleset and

provides algorithms to calculate these dependencies. A dependency exists

between two rules if removing one rule would potentially change the set of

packets that reach the other rule, and likely the overall forwarding of the

ruleset. These dependencies provide an intuitive method of reasoning about

forwarding, which we visualise in figures. Dependencies also play a vital role

in our ruleset compression technique, presented in Section 6.2.3.

100

6.1 Dependencies Between Rules and Paths

A path is a sequence of rules through an OpenFlow pipeline, each connected by

a goto table instruction. The path a packet takes through a pipeline determines

its forwarding. For a given packet, the rules in its path are the highest-priority

matching rule in each table it visits, starting from the first table and following

goto instructions. Within a ruleset some paths will be unreachable by any

packet, we call this an invalid path. A path is valid if at least one packet can

follow the the path in its entirety. Unless stated otherwise, we generally refer

to valid paths simply as paths.

A rule is dependent on another rule if removing the other rule would po-

tentially change the packets reaching this rule. Removing or adding rules to a

ruleset will change these dependencies and therefore, in most cases, the valid

paths through the ruleset and its overall forwarding. There are two types of

dependencies:

Shadow dependencies: Occur between rules with different priorities in

the same table with overlapping matches. The higher priority rule shadows the

lower priority rule, stopping the overlapping portion of packets from reaching

the lower priority rule.

Inter-table dependencies: Occur between rules in different tables where

one sends to the other, using the goto instruction. Inter-table dependencies

form paths through the ruleset which result in the actions of both rules being

applied to packets on this path.

Further, we split these dependencies into direct and indirect variations

of each. Direct dependencies are more succinct and natural to visualise and

are sufficient for most calculations, such as calculating valid transformations

(§6.3). Section 6.2.3 uses indirect dependencies when compressing a ruleset,

to ensure calculations do not inadvertently introduce or remove dependencies

between rules.

We base calculating these dependencies on the foundations laid by Katta

et al. in CacheFlow [57]. CacheFlow computes direct shadow dependencies to

101

{ TCP_DST 8080 }

{ IPV4_DST 192.168.0.0/24 }

{ IPV4_DST 192.168.0.0/23 }

{ IPV4_DST 192.168.0.0/22 }

{ ∗ }

Figure 6.1: An example showing the shadow dependencies between a set of
rules in the same table. Rules are listed from highest to lowest priority top to
bottom, { ∗ } is a table-miss rule and matches all packets. An arrow points
from a rule to the rule it depends on to filter (shadow) the packets that reach
it. The solid black arrows show direct shadow dependencies. The dashed red
lines show indirect shadow dependencies. The instructions and actions of a
rule has no influence on shadow dependencies.

create a directed acyclic dependency graph to find dependency chains that can

be moved in their entirety to a faster cache switch while maintaining the correct

forwarding. We extend Katta et al.’s work with inter-table dependencies and

indirect dependencies.

Consider dependencies between shadowed rules. A lower-priority rule is

dependent on a higher-priority rule when that rule stops packets from reaching

the lower-priority rule. Therefore, when the intersection of both rules’ matches

is not empty. Figure 6.1 gives an example of shadow dependencies between

rules in the same table. Direct dependencies are shown as black solid lines and

indirect dependencies as red dashed lines.

To illustrate the difference between direct and indirect dependencies con-

sider the /22, /23 and /24 rules. The /22 does not hold a direct dependency

with the /24 because all packets matched by the /24 are also matched by the

/23 and therefore removing the /24 will not change the packets which reach

the /22. However, the /22 does hold an indirect dependency with the /24, as

if the /23 was removed then the /24 would stop packets reaching the /22.

102

Algorithm 6.1 Calculate a rule’s direct and indirect shadow dependencies
Input: rule The rule to compute the shadow dependencies of
Input: higher_priority A list of higher priority rules from the same table in

priority ascending order.
1: function direct_shadow(rule, higher_priority)
2: remaining_match ← rule.match
3: direct ← a set
4: for all r ∈ higher_priority do
5: if r.match ∩ remaining_match 6= ∅ then
6: direct.add(r)
7: remaining_match ← remaining_match− r.match
8: end if
9: end for
10: return direct
11: end function
12: function indirect_shadow(rule, higher_priority)
13: indirect ← a set
14: for all r ∈ higher_priority do
15: if r.match ∩ rule.match 6= ∅ then
16: indirect.add(r)
17: end if
18: end for
19: return indirect
20: end function

All rules are directly dependant on TCP_DST 8080 because it stops a por-

tion of packets from reaching them all. Consider the /22, the /23 directly stops

packets with IPV4_DST 192.168.0.0/23 from reaching the /22. TCP_DST

8080 directly stops the remaining packets (not already stopped by the /23)

with the header values IPV4_DST 192.168.2.0/23 and TCP_DST 8080 from

reaching the /23.

Algorithm 6.1 shows the calculation of for direct and indirect shadow de-

pendencies for a given rule. The direct shadow dependencies for a rule are

calculated by taking the packet set representing the rule’s match and subtract-

ing the intersection of each higher priority rule’s match in ascending priority

order. A dependency exists for any rule with a non-empty intersection so it is

added to the set of dependencies direct.

Whereas, indirect dependencies are calculated as all higher priority rules

with a non-empty match intersection, without subtracting this intersection

between rules. By this definition indirect dependencies include all direct de-

103

Table 0 Table 1 Table 2

{
IN_PORT 1
TCP_DST 8080

}
{ TCP_DST 8080 } { IN_PORT 1 }

{ ∗ } { IN_PORT 1 } { ∗ }

{ ∗ }

Figure 6.2: An example showing the inter-table dependencies between a set
of rules. Each rule is shown by its match, and all rules send packets to the
next table. Except for the table-miss ({ ∗ }) rules which drop packets. An
arrow points from a rule to the rule it depends on to receive packets. The
solid black arrows show direct inter-table dependencies. The dashed red lines
show indirect inter-table dependencies. Note that the second rule in table 1 is
unreachable as it has no direct dependencies to earlier tables.

pendencies which is required by calculations. However, in figures, for clarity,

we have only drawn the additional indirect dependencies.

Consider dependencies between rules in different tables. A rule in a later

table is dependent on a rule in an earlier table if it directs packets to that

later rule. The earlier rule uses a goto table instruction to direct packets,

and the later rule must match the packets sent to it. Therefore, the packets

sent to the later rule (after any modifications applied) must have a non-empty

intersection with the later rule’s match. Figure 6.2 gives an example of inter-

table dependencies between rules in different table. Direct dependencies are

shown as black solid lines and indirect dependencies as red dashed lines.

Algorithm 6.2 shows how to calculate direct dependencies. Line 6 considers

each rule and if the rule includes a goto table instruction, then rules in that

next table will be dependent on it, otherwise no rules are dependent on it.

Line 5 calculates the egress_packets of the rule, this is the packet-space of

the rule’s match combined with the rule’s apply actions using Algorithm 4.2

from our equivalence checking work. Lines 9-14, find the highest priority rules

in the next table which will match these egress packets, subtracting the inter-

section each time in the same manner as direct_shadow in Algorithm 6.1.

104

Algorithm 6.2 Calculate a ruleset’s direct inter-table dependencies
Input: ruleset[table] The ruleset, indexable by table e.g. table[0] returns rules

in the first table.
Output: dependencies A set of direct dependencies, each dependency is a

pair of rules
1: dependencies ← An empty set
2: packets ← A packet-space containing all packets
3: for all rule ∈ ruleset do
4: next_table ← rule.instructions.goto_table
5: egress_packets ← rule.calculate_egress(packets)
6: if next_table is NULL then
7: continue
8: end if
9: for all nrule ∈ ruleset[next_table] do . in decreasing priority order
10: if nrule.match ∩ egress_packets 6= ∅ then
11: dependencies.add((nrule, rule))
12: egress_packets ← egress_packets− nrule.match
13: end if
14: end for
15: end for

This calculation does not consider the ingress to the rule, a rule might be

unreachable yet still hold a dependency with a rule in the next table.

For example, in Figure 6.2, consider the in-port rule in Table 1. The rule

holds no direct inter-table dependencies with earlier tables, so no rules send it

traffic and it is unreachable. However, if packets did reach the rule, it would

send packets to the in-port rule in Table 2 so that rule is a dependent. And

because the higher in-port rule in Table 2 matches the entire egress of the same

rule in Table 1, these packets cannot reach the Table 2 table-miss rule so there

is no dependency. The table-miss rule holds a direct shadow dependency (not

shown) with the in port rule in Table 2, therefore encapsulating the information

that if the in-port rule in Table 2 were removed then the table-miss would

receive its traffic.

Algorithm 6.3 shows how to calculate indirect inter-table dependencies.

Indirect dependencies include shadowed rules that would receive packets if the

shadowing rules were removed and rules that send packets to a rule indirectly

via one or more other rules and therefore tables.

The main algorithm intertable_indirect_rec is recursive and walks

105

Algorithm 6.3 Calculate a ruleset’s indirect inter-table dependencies
Input: ruleset[table] The ruleset, indexable by table e.g. table[0] returns rules

in the first table.
Output: dependencies A set of indirect dependencies, each dependency is a

pair of rules
1: dependencies ← An empty set
2: packets ← A packet-space containing all packets
3: path ← An empty list
4: for all table ∈ ruleset do
5: intertable_indirect_rec(table, packets, path)
6: end for
7: function intertable_indirect_rec(table, packets, path)
8: for all rule ∈ ruleset[table] do
9: next_table ← rule.instruction.goto_table
10: egress_pkts ← rule.calculate_egress(packets)
11: if egress_pkts = ∅ then
12: continue
13: end if
14: for all path_rule ∈ path do
15: dependencies.add((rule, path_rule))
16: end for
17: if next_table then
18: new_path ← path+ [rule]
19: intertable_indirect_rec(next_table, egress_pkts,

new_path)
20: end if
21: end for
22: end function

all valid paths through the ruleset from a given table, and adds dependencies

between the rules in these paths. Lines 4-6, start this recursive algorithm

from each table, with all packets as input to that table and an empty path.

Starting from each table ensures that unreachable rules are considered, so

that calculations do not introduce or remove incorrect dependencies with these

rules.

intertable_indirect_rec checks if each rule in the table matches

the packets following the path so far. Line 10, calculates the egress from

a rule given packets as input, calculate_egress considers the intersection

of the rule’s match and the ingress packets and then applies any modifica-

tions from the rule’s apply actions to return the packets which egress the rule.

Calculate_egress will return ∅ if the rule matches none of the input packets,

106

indicating this rule is not a valid extension to the path. For any rule on the

path, lines 14-16 adds a dependency with all preceding rules. Then lines 17-19

extend the path by recursively calling intertable_indirect_rec with the

next table the current rule gotos.

Note that inter-table dependencies are closely related to the single-table

conversion described in Section 4.2.1, the valid paths that create these de-

pendencies are the same paths which get merged into a single rule in the

single-table conversion.

6.2 Ruleset Preprocessing

Prior to finding transformations for rules, the solver can optionally preprocess

the ruleset to simplify the problem. This section details techniques that we

explored, including converting the ruleset to a single table and compressing

the ruleset to remove the redundancy. We evaluate the performance of these

preprocessing techniques in relation to the overall solver later in Chapter 8.

6.2.1 Conversion to a Single-Table

If the solver first converts the ruleset to a single-table; i.e. by merging all rules

as Section 4.2.1 describes, then merge transformations are unneeded. This sim-

plifies the problem for the solver as it need only calculate split transformations.

As equivalence checking already requires conversion to a single-table, there is

no additional performance hit other for this conversion.

Converting to a single-table can result in transformations that the solver

otherwise would not explore as it does not try a combination of split and merge

transformations. For a given network function, we expect a developer to split

rules between tables in their application efficiently in a similar manner to the

designer of a fixed-function pipeline. The solver loses the information about

sensible places to split rules in the conversion to a single-table. Additionally,

another downside is that a single-table ruleset has more rules than the ori-

107

Table ID Pri. Match Apply Act. Goto

0

RA 10
{

VLAN 1
IN_PORT 1

}
[] 1

RB 10
{

VLAN 1
IN_PORT 2

}
[] 1

RC 10
{

VLAN 2
IN_PORT 3

}
[] 1

RD 10
{

VLAN 3
IN_PORT 4

}
[] 1

RE 0 {} []

1

RF 10
{

VLAN 1
ETH_DST AA : ...

}
[OUTPUT 1]

RG 10
{

VLAN 1
ETH_DST AB : ...

}
[OUTPUT 2]

RH 10
{

VLAN 2
ETH_DST AC : ...

}
[OUTPUT 3]

RI 0 {} [OUTPUT Cntr]

Figure 6.3: A simplified ruleset which performs per VLAN forwarding. For
brevity we exclude the Ethernet source table. VLAN 1 has three learnt hosts,
VLAN 2 one host, and VLAN 3 has not learnt any hosts.

ginal multi-table ruleset. However, in practice, we find ruleset compression

significantly reduces number of rules and alleviates this issue.

6.2.2 Removing Unreachable Rules

Our rule-fitting solver makes the assumption that every rule in the input ruleset

needs to be represented somewhere in the solution ruleset. However, this is

an incorrect assumption if a rule is unreachable, as unreachable rules do not

influence forwarding. The conversion to a single-table can result in unreachable

rules with actions with bogus action combinations which the solver cannot

place.

To avoid this situation the solver removes unreachable rules from the input

ruleset. The solver finds and removes all fully shadowed rules, through analysis

of a ruleset’s shadow dependencies.

6.2.3 Ruleset Compression

Consider the ruleset shown in Figure 6.3. There are clear groupings of rules

which all serve the same purpose. The rules RA through to RD filter ports

based on the VLAN tag and RF through to RH apply forwarding per VLAN.

108

Intuitively, one would expect that if the rule-fitting solver found a valid trans-

formation for RA, it would also be a valid transformation for RB, RC , and

RD. Throughout this section, we refer to rules which serve the same purpose

as similar rules. Section 6.2.3.1 refines the definition of similar rules in the

context of our rule-fitting solver.

From this intuition, it appears the solver is doing more work than it needs

to when solving the rule-fitting problem for the entire ruleset. To minimise the

problem size and speed up rule fitting, we investigated compressing copies of

similar rules from a ruleset. We base this compression on the observation that

any non-trivial SDN application will have code paths which are called multiple

times to generate similar rules with the same purpose. A controller executes

such code paths in response to events such as a learning a host, a port coming

up, or learning a route.

All rules that a given code path generates will be similar. In the majority

of cases, a code path will generate a rule which is installed in the same table

at the same priority with the same matches and actions; however, the rule will

vary on the specific value matched and the value of an action. For example, a

code path responsible for learning a host will install a rule which varies only

by the specific host matched and the port of the output action. These similar

rules conform closely to the typical restrictions of hardware pipelines. Almost

all hardware pipeline limitations place restrictions only on the matches and

actions available, rather than the specific values of the matches or actions. So

it is reasonable to expect that a rule-fitting solver can transform similar rules

— those with similar matches, actions, table and priority — in the same way.

Beyond reducing the ruleset size and improving performance, compressing

the ruleset also results in a natural solution more akin to a handcrafted solu-

tion. The solution is more natural because similar rules from the same code

path are likely to become one rule in the compressed ruleset and therefore when

applied back to the original ruleset, placed in the same location. Without this

compression, there is nothing to stop the solver from installing similar rules

109

in arbitrary locations, which is confusing and unreadable. This more natural

solution is much easier for a network operator to understand and for a software

developer to implement in code for a new or updated SDN application.

6.2.3.1 What is a Similar Rule?

Our compression algorithm groups similar rules together and then, carefully

selects one representative rule from each group to create a compressed ruleset.

This compressed ruleset is input to the rule-fitting solver and must be rep-

resentative of the complete ruleset in terms of forwarding complexity and the

types of rules required in the pipeline. Additionally, the solver must be able

to map a compressed ruleset back to the complete ruleset.

We developed heuristics to group similar rules, such that the compressed

ruleset maintains the representative information the rule-fitting solver requires.

The requirements of a group of similar rules are as follows:

1. The transformation a solver finds to place any rule in a group

must be able to be applied to all other rules in the group: If

any rule within a group cannot have the same transformation applied,

then any solution found is unusable. For example, consider a rule which

the solver splits between table 1 and table 2. If another rule in the

same group matched an additional header field, the solver does not know

where to place this match field and therefore, fails to generate a solution.

Arbitrarily selecting a table does not work, as the original transformation

did not consider how this additional field effects overall forwarding or

whether this field is allowed by the pipeline.

2. Once transformed, a group of rules must conform to the re-

quirements of the target pipeline: If a transformed rule does not

meet the pipeline’s requirements, the solution is invalid. It is infeasible to

use the actual pipeline requirements, as these vary depending on where

the solver places a rule. For example, it might be possible to place two

110

different rules in the same table, and yet only one of these rules meets

the requirements for placement in another table.

3. Once transformed, rules within the same group must represent

the same forwarding in relation to other rules: The rule-fitting

solver will apply the transformation it selects for one rule in the com-

pressed ruleset to all rules from the same group in the original ruleset.

The resulting ruleset must have the same forwarding as the original rule-

set.

Dependencies between rules like a rule shadowed by a higher priority rule

and a rule directing traffic to another rule (using goto) are fundamental

to determining the forwarding behaviour of a ruleset. The compressed

ruleset must include all dependencies between rules; otherwise, it would

represent fundamentally different forwarding behaviour. Because com-

pression selects one rule from each group, these groups need to have

similar dependencies to ensure the compressed ruleset retains the same

dependencies.

4. Fewest groups possible: As each group becomes one rule in the com-

pressed ruleset, minimising the number of groups minimises the final

ruleset’s size.

To find sensible groups, the heuristics utilise existing information in the

ruleset. It is typical for a controller to generate rules to perform a given

network function from the same code path and install these similar rules at the

same priority and in the same table. For any target pipeline which supports

this network function, the solver should install all similar rules in the same

location.

To group rules by the requirements listed above, under the assumption that

the original ruleset has rules placed in reasonable locations, the compression

algorithm groups rules which have all of the following:

111

1. The same table and priority: Rules at the same priority in the same

table likely came from the same code path and handled the same network

function.

2. The same match mask: Typically, a hardware pipeline will limit the

match fields available and their maskability but not their values within

a table. As such, requiring the same match mask (i.e. the same bits

matched in the packet header) within a group almost always ensures all

rules within that group can be placed in the same location.

3. The same action types: Following the same reasoning as the match

mask above, a hardware pipeline typically limits the actions available

within a table, but not their values. So rules in the same group must

have the same action types. For example, a rule with the action output:1

is grouped with a rule with the action output:2, because both actions are

of the output type. However, neither can be grouped with a rule that

both sets the Ethernet source and outputs the packet.

4. The same dependencies: Each rule within the same group needs to

have the same inter-group dependencies. If a rule in G1 has a dependency

with one or more rules in G2, then every other rule in G1 must also have

a dependency on at least one rule (which can be different) in G2. In this

way, selecting one rule from each group can represent all of the original

dependencies.

In this section, we will continue to use the word ‘similar’ in the context of

a rule or rule dependencies as listed above. Otherwise, in general usage, to

mean that in most cases we expect to be able to generalise successfully fitting

one instance to all other similar instances with the correct behaviour. This

compression technique remains a heuristic and counter-examples exist where

generalising back to the original ruleset fails.

112

6.2.3.2 Compression Algorithm

This section outlines the compression algorithm, which is shown by example

in Section 6.2.3.3.

The algorithm first uses heuristics to create a coarse set of groups, which

are refined by considering dependencies between rules. Last, from each group,

a representative rule is selected to create a compressed ruleset that is suitable

input for the solver.

The algorithm follows:

1. Create the initial coarse groups of rules from those with the same priority,

table, match mask, and action types.

2. Precompute the shadow and indirect inter-table dependencies between

all rules, using the technique described in Section 6.1.

3. Pick a group

(a) For each rule in that group, calculate its inter-group dependencies.

An inter-group dependency exists between a rule and another group

if the rule holds a dependency with one or more of that group’s rules.

(b) If the inter-group dependencies for all rules within that group are

identical, select the next group and repeat Step 3a until all groups

have been considered. If all groups have been considered without

modifications, move onto Step 4. Otherwise, if the dependencies

differ, split the existing group into new groups of rules containing

the same inter-group dependencies and restart the process at Step 3.

4. Walk the groups from the lowest priority group in the last table to the

highest priority group in the first table. All rules within a group have

the same priority and table as per Step 1.

(a) Select a rule from the first group; this should have only one rule,

the default table-miss.

113

(b) Then for all subsequent groups, pick a rule from the group such that

all of its inter-group dependencies with groups already considered

are met by the rules selected so far. For example, if a rule matching

VLAN 1 is chosen from one group, then all other groups in the

same dependency chain with a VLAN match will have their VLAN

1 variant selected to maintain the dependency between these groups

unless the VLAN is rewritten between rules.

The resulting compressed ruleset is suitable for input into the solver as it

maintains dependencies between rules and therefore represents all paths that

packets can take through the original ruleset. Any solution to the compressed

ruleset can also be trivially generalised back to the original ruleset.

We can be confident that this process of splitting groups, Step 3, will

complete as each loop either splits a group into smaller groups or completes

once the inter-group dependencies within a group are the same. Once all

groups contain only one rule they cannot be split further, and the process

completes; in this case, compression was not possible.

In Step 4, the order that the compression algorithm considers groups in is

important, because the choice of rule from one group will force the choice of a

rule in a dependent group. Consider groups with the inter-group dependencies

GA ← GB ← GC where all rules within each group include an exact VLAN

tag match. For these dependencies to exist, GB must be either in a later table

than GA or in the same table, but at a lower priority. In the same way, GC

must come after GB. Consider processing these groups in the order GC , GA,

GB and selecting a rule matching VLAN 1 from GC and VLAN 2 from GA.

Then it is impossible to select a rule from GB that both matches VLAN 1 and

VLAN 2. However, when processing in the correct order (GC , GB, then finally

GA), the choice from GC forces a rule with the same VLAN to be picked from

GB and subsequently GA.

114

Table ID Pri. Match Apply Act. Goto

0

RJ 10
{

VLAN 1
IN_PORT 1

}
[] 1

RK 10
{

VLAN 1
IN_PORT 2

}
[] 1

RL 10
{

VLAN 2
IN_PORT 3

}
[] 1

RM 10
{

VLAN 3
IN_PORT 4

}
[] 1

RN 0 {} []

1

RO 10
{

VLAN 1
ETH_DST AA : ...

}
[OUTPUT 1]

RP 10
{

VLAN 1
ETH_DST AB : ...

}
[OUTPUT 2]

RQ 10
{

VLAN 2
ETH_DST AC : ...

}
[OUTPUT 3]

RR 0 {} [OUTPUT Cntr]

Figure 6.3 (Repeated): A simplified ruleset which performs per VLAN for-
warding. For brevity we exclude the Ethernet source table. VLAN 1 has three
learnt hosts, VLAN 2 one host, and VLAN 3 has not learnt any hosts.

6.2.3.3 Compression by Example

This section better illustrates the compression process by showing how to

compress the ruleset listed in Figure 6.3. The first step of compression is to

create an initial coarse set of groups before considering indirect dependencies.

This grouping aims to ensure that the solver can place all rules together in

the target pipeline. The first step is to group rules together with identical

table, priority, match mask, and action types. For the ruleset in Figure 6.3

this results in the following four groups:

• G1 = {RA, RB, RC , RD} — Per port VLAN filtering

• G2 = {RE} — Table 0 default

• G3 = {RF , RG, RH} — Learnt VLAN hosts

• G4 = {RI} — Table 1 default

The next step is to calculate the indirect dependencies between rules. Fig-

ure 6.4 shows this initial coarse grouping of rules and additionally, the depend-

encies between rules. The compression process does not distinguish between

115

G1

G2

G3

G4

RA

RE

RF RG

RI

RB RC

RH

RD

Figure 6.4: A dependency graph of the ruleset in Figure 6.3 after the coarse
initial grouping of rules by table, priority, action, and match mask. Solid
black edges represent shadow dependencies, while dashed red edges represent
inter-table dependencies.

shadow and inter-table dependencies, but this separation is a helpful aid to

visualise the process.

In the next step, these groups are split up to ensure that the inter-group

dependencies are the same for all rules within the same group. First, let us

consider the dependencies of rules within G1. If considered naively, per-rule

the dependencies are as follows:

• RAdeps
= RBdeps

= {RE, RF , RG, RI}

• RCdeps
= {RE, RH , RI}

• RDdeps
= {RE, RI}

RA and RB both have the same dependencies, yet RC and RD both have

different dependencies and would thus be put in separate groups. Separating

RC from RA and RB is overzealous because the only difference in dependencies

comes from dependencies held with a different combination of rules within G3.

116

As all groups contain similar rules (same match mask, action types, table, and

priority), all dependencies between a rule in G1 and G3 are similar enough

that fitting one dependency pair should generalise to all other rules. In the

case of RD, it does not hold any dependency with any rule in G3, so does not

share similar dependencies.

So instead of considering dependencies between rules, we consider the inter-

group dependencies of a rule. For each rule within G1, we find the other groups

it holds a dependency with, that is to say, where a rule has a dependency with

one or more rules in a group.

• RAdeps
= RBdeps

= RCdeps
= {G2, G3, G4}

• RDdeps
= {G2, G4}

As RD does not hold a dependency with G3 it is moved into a separate

group to RA, RB, and RC . Notice that to be considered similar the number of

dependencies between a rule and a group is irrelevant; RA and RB both hold

dependencies with two rules in G3 and RC with only one rule in G3.

After splittingG1 we end up with the following five groupsG1 = {RA, RB, RC},

G2 = {RD}, G3 = {RE}, G4 = {RG, RF , RH}, and G5 = {RI} as shown in

Figure 6.5.

Because splitting a group will change the inter-groups dependencies of rules

within other groups, we must restart the process and recheck the dependencies

of all groups. On rechecking all groups, we find that all rules in each group

have the same inter-group dependencies so we can stop. This is easy to verify

as we have just ensured the inter-group dependencies are the same for G1 and

G2, this must also be true of G3 and G5 as they contain only a single rule, and

each rule in G4 holds a dependency with both G1 and G5.

Now we move on to picking one rule from each group such that all depend-

encies are maintained to create the final compressed ruleset. Figure 6.5 shows,

in blue, the rules selected for the final compressed ruleset.

We start from the lowest priority group in the last table. This is G5 =

117

G1G2

G3

G4

G5

RA

RE

RF RG

RI

RB RC

RH

RD

Figure 6.5: Dependency graph of the ruleset shown in Figure 6.3, showing
final groups. The blue rules are those selected for the compressed ruleset.
Compared to Figure 6.4, RD has been placed into its own group because it did
not share a dependency with G4 as rules in G2 do.

{RI}, and we only have one choice so must pick RI . Next we consider selecting

a rule from G4 = {RF , RG, RH}, which must maintain the dependency with

the rule RI selected from G5. As all rules hold a dependency with RI we

can chose any, let’s pick RF . From G3 = {RE} we must pick RE and from

G2 = {RD} we must pick RD. Finally, we consider G1 = {RA, RB, RC},

and now to maintain the group dependency we must pick either RA or RB to

maintain the dependency with RF from G4, whereas, RC does not. If we had

picked RH from G4 we would have been forced to chose RC from G1.

As a result, we have removed four rules from the original ruleset: RB, RC , RG,

and RH . The compressed ruleset contains five rules instead of the original nine,

simplifying the problem. Other than the performance benefit, fitting a com-

pressed ruleset has an advantage over the original ruleset as the solver will

place similar rules in the same manner resulting in a more natural and human

readable solution. Additionally, this compressed solution is easier to code into

118

an SDN application, as similar rules will all follow the same code path.

As the compressed ruleset is treated as a model to generalise fitting the

original ruleset, it could also be incrementally updated when rules are added

and removed without the need to rerun the solver. For example, consider what

happens when a controller learns a new host in the example ruleset (fig. 6.3).

If a new host was learnt on port 1, the controller would add a rule to table

1 at priority 0xF with the match
{

VLAN 1
ETH_DST AD :

}
and the action

[OUTPUT 1] . This new rule is similar to the other rules in G4 in the

final groupings (fig. 6.5) and also holds the same inter-group dependencies

so can be added to G4 and fitted in the same manner as all other G4 rules.

Incrementally updating a ruleset in this manner remains future work and is

not explored in this research.

By the same logic, the number of hosts learnt by the network is irrelevant

to the problem size after compression. The example ruleset with 1000 hosts

learnt, would still only require solving the problem for five rules.

6.2.3.4 What if a Single Rule From a Group Cannot be Selected

While Maintaining all Dependencies?

It is possible to construct a ruleset in which a single rule from each group

cannot be picked while maintaining all inter-group dependencies. We have

seen this arise in real rulesets. Figure 6.6 shows an example ruleset where this

occurs. In this example, table 0 applies routing, table 1 applies a whitelist

ingress policy, and table 2 applies a whitelist egress policy. The ruleset is

simplified to show only the match portion of rules to illustrate this issue.

Assume that all rules direct packets to the next table, are at the same priority,

and their actions do not modify any header fields.

Consider the example ruleset after creating the final groups, i.e. after Step 3

in Section 6.2.3.2. Those final four groups are:

1. G1 = {RA, RB} — Control routing

2. G2 = {RC , RD} — Filter ingress traffic reaching a host

119

Table 0 Table 1 Table 2
RA { IPV4_DST 192.168.2.0/24 } RC

{
IPV4_DST 192.168.2.1
TCP_DST 22

}
RG

{
IPV4_SRC 192.168.2.0/24
TCP_DST 443

}
RB { IPV4_DST 192.168.3.0/24 } RD

{
IPV4_DST 192.168.3.1
TCP_DST 443

}
RH

{
IPV4_SRC 192.168.3.0/24
TCP_DST 22

}
RE

{
IPV4_DST 192.168.2.2
IPV4_SRC 192.168.2.0/24

}
RF

{
IPV4_DST 192.168.3.2
IPV4_SRC 192.168.3.0/24

}
Figure 6.6: A ruleset where it is not possible to pick only one rule from each
group and maintain all the original dependencies during compression.

G1

G2 G3

G4

RA

RC RE

RB

RD RF

RHRG

Figure 6.7: The final grouping of similar rules and the dependencies of the rule-
set in Figure 6.6 as calculated by the compression process. It is impossible to
select one rule from each group while maintaining all inter-group dependencies.

3. G3 = {RE, RF} — Filter ingress traffic reaching the subnet

4. G4 = {RG, RH} — Filter egress traffic from the subnets

Figure 6.7 shows the dependencies between each rule in the final groups.

Now if we consider picking a minimal ruleset, we start from the last table

with the lowest priority and work back through the groups from G4 to G1. If we

pick RG from G4 then we must pick RE from G3 to maintain the dependency

between G3 and G4. Similarly, we must pick RD from G2 to maintain the

dependency between G2 and G4. Now consider selecting a rule from G1, it is

impossible to pick a single rule which directs traffic to both RD and RE.

The best way to deal with this situation still requires further research. Cur-

rently, we fall back to using the original ruleset. However, a better approach

could be to include both rules RA and RB in the minimal ruleset and ask the

120

Original Number of Routes Compressed
100 41
1,000 144
5,000 539
10,000 929
50,000 3,417
740,332 48,389

Table 6.1: The resulting ruleset size after compressing routing tables of dif-
ferent sizes. The full routing table contains 740,322 rules, and we generated
smaller tables by taking the first rules from this full table.

solver to place these in the same place.

6.2.3.5 Compressing a Routing Table

The typical way for a controller to install routes in OpenFlow is to place

each prefix length at a different priority to maintain the longest-prefix-match

behaviour. All /24’s are placed at a higher priority than /23’s and so on.

As compression uses priority to classify similar rules, compression places each

prefix into its own initial coarse group. Then these groups are split further to

ensure the same inter-group dependencies. This further splitting can result in

many groups which maybe unnecessary as we would expect all routes to be

installed in the same table.

This inter-group dependency splitting happens, for example, when some

/24 prefix rules shadow a /22 directly, while other /24 prefix rules shadow

a /23 which then shadows the /22. Consider the initial /22 group, some of

its rules will have dependencies with only the /24 rules and others only the

/23, so it will be split into two groups. This split then also propagates to

all other prefix groups with an indirect dependency, both those of higher and

lower priority (shorter and longer prefix length).

Table 6.1 shows the effectiveness of compression on partial routing tables

and the full routing table.

While the compression massively reduces the number of rules, by 93% of

the full table, in absolute terms 48,410 rules is still too many for our solver.

121

Due to the complex nature of dependencies between rules in a routing table,

we do not think that these numbers generalise to other routing tables of the

same size. In particular, we generated the smaller rulesets by taking the first n

rules from the full routing table, which is unlikely to match the characteristics

of a real-world routing table of the same size.

Reducing the size of routing and similar rule patterns remains a challenge

for future research. Ideally, the entirety of such matches can be compressed

down to just a few representative rules. Two problems need to be solved 1)

how to best detect prefix matching or similar masked matching in the general

case, and 2) how many and which rules are required to create a representative

compressed ruleset.

6.2.3.6 Related Work

Beckett et al. use a technique similar to the compression that we presented

in this section to compress the control plane behaviour of large networks [58].

Beckett et al. had observed that many analysis and verification tools do not

scale well with large networks. However, there is also much symmetry in

networks; for example, a network spine might have similar clusters of leaf and

edge routers attached. So they developed a tool named Bonsai to compress

away this symmetry, thus reducing the input size given to existing analysis

tools without affecting the results.

More concretely Bonsai models how routing information is shared between

routers for a particular destination in a network and compresses routers shar-

ing similar routing information into a single router which analysis tools can

process faster. Beckett et al. have proved many properties are preserved in

this representation, including reachability, path length, black holes, and rout-

ing loops, while necessarily losing the number of paths between nodes due to

the compression. Beckett et al. found that Bonsai can compress the number of

routers in real networks by over a factor of 5 and speed up analysis by orders

of magnitude.

122

In comparison to our compression technique, Bonsai creates similar groups

based on the topology and the configuration of routers, whereas we create

similar groups based on dependencies between rules. Bonsai creates its initial

set of coarse groups by putting the destination router in its own group and all

other routers in a separate group, whereas, we create coarse groups heuristic-

ally based on rules we expect to be able to place the same within a hardware

pipeline. Other than the inputs to the process, we use the same abstraction

refinement method to create groups as Bonsai’s forall-exists abstraction.

6.3 Finding Rule Transformations

Given an input ruleset and a TTP, the solver first finds the available rule trans-

formations in the new OpenFlow pipeline. This section covers the transform-

ations which we have implemented in the solver. Other useful transformations

are listed in Section 6.3.8 which future work could consider.

A transformation is a mapping from an original rule, or rules along the

same path, to a placement, or placements. Placement is the name that we

give to a rule placed into the output ruleset. A transformation’s placements

must have equivalent forwarding to the original rules when considered in isol-

ation. The next stage of the solver is responsible for picking a combination of

transformations where placements are reachable and do not conflict.

6.3.1 Placing a Rule in a Target Pipeline

Vital to understanding the basis of all the transformations is understanding

how our Table Type Pattern (TTP) library determines where a rule can be

placed using the satisfies method, as originally introduced in Section 3.2.4.

Satisfies is called on the Table Type Pattern with a rule to fit into the

pipeline; it returns a list of pairs. Each pair contains two rules, 1) the place-

ment for a rule in the target pipeline, and 2) a rule containing the unplaced

matches and actions. In this way, satisfies can return both fully and partially

123

placed rules. Where a fully placed rule has an empty flow rule as its unplaced

pair, therefore all matches and actions from the original rule are in the placed

rule. A partially placed rule has one or more matches or actions unplaced. If a

match is unplaced, the rule will match more packet-space than the original. If

an action is unplaced, then the rule almost certainly has different forwarding

behaviour, and this missing action will need to be applied elsewhere in the

pipeline.

Satisfies does not only try to fit all fields directly as is, but it also tries

variations that may prove to be equivalent. The variations of placements that

satisfies attempts are:

• Rules both with and without the clear-actions instruction. Clear-actions

are used to ‘undo’ actions set earlier in the pipeline. Whether or not

clear-actions is required depends on the order of actions with the target

pipeline.

• Rules both with and without a goto-table instruction. Thus creating and

exploring all possible paths through the target pipeline.

• Rules with actions both placed in the apply-actions and write-actions

instructions regardless of the original instruction containing the action.

Allowing both increases compatibility because both are equivalent in

most circumstances.

• Rules with actions moved both in and out of groups. Moving actions

between groups will be equivalent in most circumstances and is particu-

larly important for OF-DPA, as OF-DPA only allows output actions in

groups.

6.3.2 A Direct Transformation

A direct transformation takes one rule from the input ruleset and places it as

a single rule with the same forwarding in the target pipeline. The placed rule

124

Table 0
Pri VID Actions
10 1 PopVlan, Goto:1
a©10 2 PopVlan, Goto:1

Table 1
Pri DstIP Actions
5 1.0.0.0/8 Out:1
5 2.0.0.0/8 Out:2
b©1 0.0.0.0/0 Out:10

Merge
y xSplit

Single Table
Priority VID DstIP Actions

10 · 216 + 5 1 1.0.0.0/8 PopVlan, Out:1
10 · 216 + 5 2 1.0.0.0/8 PopVlan, Out:1
10 · 216 + 5 1 2.0.0.0/8 PopVlan, Out:2
10 · 216 + 5 2 2.0.0.0/8 PopVlan, Out:2
10 · 216 + 1 1 0.0.0.0/0 PopVlan, Out:10

c©10 · 2 16 + 1 2 0.0.0.0/0 PopVlan, Out:10

Figure 6.8: A demonstration of fully merging two tables into one. Taking an
individual flow example a© and b© are merged to form c©, the reverse direction
is the split operation.

does not necessarily have to be identical to the original, because it can have any

combination of the variations applied by satisfies. Direct transformations are

the full placements found by satisfies; there can be more than one due to

the variations satisfies attempts.

In this stage, the solver generates direct transformations for all tables in

the target pipeline. Direct placements are useful to find placements for filter-

ing rules, such as dropping all of a traffic class, so they can be placed in an

ACL table without worrying about how traffic is directed to that table. It

is the responsibility of the next stage of the solver to pick a combination of

transformations that direct traffic to reach this placement.

6.3.3 A Merge Transformation

The solver uses the merge operation from Section 4.2.1 to combine two rules

from different tables in the original ruleset into a single rule placed in the target

pipeline. The solver attempts to merge all rules in separate tables which are

connected by a goto-table instruction. For two selected rules, merge combines

matches by taking the intersection, if empty, no packet can hit both rules,

125

Placed Unplaced Input
VID Actions VID DstIP Actions
2 PopVlan, Goto:1 — 0.0.0.0/0 Out:10
2 Goto:1 — 0.0.0.0/0 PopVlan, Out:10
2 PopVlan — 0.0.0.0/0 Out:10
2 — — 0.0.0.0/0 PopVlan, Out:10
— PopVlan, Goto:1 2 0.0.0.0/0 Out:10
— Goto:1 2 0.0.0.0/0 PopVlan, Out:10
— PopVlan 2 0.0.0.0/0 Out:10
— — 2 0.0.0.0/0 PopVlan, Out:10

Table 6.2: Partial placements of rule c© into Fig. 6.8 Table 0. Rule c© matches
VID:2, DstIP:0.0.0.0/0 and applies the actions PopVlan, Out:10. Table 0
can match VID, PopVlan, and Goto:1. Partial placements include those with
Goto:1 instructions added.

so merge generates no rule. Merge combines flow instructions following

the processing OpenFlow standard. Merge concatenates apply-actions, and

combines write-action by taking into account clear-actions instructions and the

set behaviour. Once the solver merges two rules, it treats them like a direct

placement and calculates placements of the merged rule using satisfies.

A merged placement will typically match a smaller packet-space than the

original rules due to matching only the intersection of the original rules. One

must replace a rule with the full Cartesian product (merge) of rules in the next

table or alternatively the previous tables, to retain the original forwarding.1

A rule is fully merged if it meets this requirement. Fully merged rules are

essential in the next stage to find a valid final ruleset.

Figure 6.8 demonstrates why the full Cartesian product is required to pre-

serve the original forwarding. If you consider the result of merging the two

rules highlighted a© with b© to form c©; the resulting rule, c©, misses the

VLAN:1 traffic from Table 0 which would have hit the b© rule. In order for

the merged ruleset to process all packets that hit rule b©, all rules in Table 0

merged with b© must be present in the merged ruleset.
1Multiple tables can goto another, but one rule can only goto one table

126

6.3.4 A Split Transformation

A split transformation takes a single rule and splits it across multiple tables,

the opposite of a merge. Figure 6.8 shows how rule c© can be split into rules

a© and b©. The individual rules in a split placement will often match more

packets than the original rule and apply only a portion of the original actions.

Consider the split transformation shown in Figure 6.8, c© is split into a© and

b© both of which apply actions to a broader set of packets than the original

rule. b© applies the an output action from c© to all IP packets, however,

c© only matched to packets which were both IP packets and had a VLAN

ID of 2. It is the responsibility of solver’s next stage to pick a combination

of transformations that avoids the more broad rules in such split placements

from conflicting with other placements.

The solver finds split transformations by taking a rule and using satisfies

to find all partial placements in the target pipeline. Table 6.2 shows an ex-

ample of partial placements of c© into Table 0. The solver then finds all valid

paths through these partial placements by following the placement’s goto in-

structions. Then the solver filters these resulting paths to include only those

resulting in the same forwarding as the original rule for the corresponding

packet-space.

6.3.5 Filtering Split Transformations

The number of paths that the solver checks when generating a split transform-

ations is the product of the partial placements it finds for each table. This

number quickly becomes very large in a multi-table pipeline, as do the number

of valid split transformations.

Consider the partial placements shown in Table 6.2. Because the VID

match is optional in the target pipeline, each placement has a variation with

and without the VID match. The variations without the VID match are more

general and match all packets and are therefore more likely to conflict with

other placements.

127

Input ruleset
IPv4 Dst TCP Dst Actions

a© 192.168.1.0/24 22 Drop
b© 192.168.1.0/24 — Out:1

Target Pipeline Requirements

Routing Decision (Table 0): Must match an IPv4 subnet. Actions can
add an output to the action-set, then must goto Table 1.

Access Control List (Table 1): May include any arbitrary match.
Actions can clear the action-set.

Split Transformations per rule
Table 0 Table 1

IPv4 Dst Apply-Actions EthDst TCP Dst Actions
a© 192.168.1.0/24 Goto:1 192.168.1.0/24 22 Clear-Actions
b© 192.168.1.0/24 Out:1, Goto:1 192.168.1.0/24 — —

Figure 6.9: An example where a©’s split transformation needs an additional
‘wrong’ action to avoid conflicting with b©’s placement in Table 0. Consider the
two descending-priority ordered rules in the input ruleset, given the pipeline
constraints this figure shows one possible split transformation for each. If the
solver was to install both transformations, a©’s placement in Table 0 takes
priority over b©’s placement. Therefore the default forwarding decision in b©
is lost, and forwarding is incorrect. However, if a©’s placement in Table 0 was
replaced with b©’s placement then the forwarding is correct.

Instead of considering all possible partial placements, the solver only con-

siders the partial placement with the most specific match for each unique set

of actions. With the example shown in Table 6.2 this means that only the first

four partial placements, which include the VLAN match, are considered.

More precisely the solver filters partial placements before generating split

placement paths. The solver filters out any placements which have the same

action as another placement and where the match is a superset of the other

placement’s match. Consider the case the original rule matches three fields. If

there are no partial placement matching all three fields and only placements

matching two fields, then all these two field combinations would remain, as

none are supersets of each other.

128

6.3.6 Adding Additional ‘Wrong’ Actions

Some fixed-function pipelines use the packet’s action-set to store the default

forwarding decision for a broad set of packets but allow a rule in a later table to

override the forwarding. This works because the pipeline executes the action-

set at the end of the pipeline, and rules can overwrite or clear the action-set. As

a result, transformed rules may need to be given a ‘wrong’ action so packets can

traverse a table and correct it with a rule in a later table. OF-DPA follows

this design: almost all tables, including L2 forwarding and L3 routing, are

before the policy ACL table where a controller installs firewall policy to drop

unwanted packets.

Figure 6.9 shows a simplified version of the OF-DPA’s pipeline which

demonstrates the need for rules to have the ‘wrong’ action added. Recall

that the next stage of the rule-fitting solver selects one transformation for

each rule. If the solver selects both split placements shown in Figure 6.9, the

forwarding is incorrect forwarding because the placements in Table 0 conflict.

a©’s placement in Table 0 takes priority over b©’s and results in the incorrect

forwarding for packets originally processed by b©. However, b©’s placement in

Table 0 is compatible a©’s originally forwarding, as it clears the output action,

thus correctly dropping packets in Table 1.

In order to avoid such conflicts, the rule-fitting solver generates new split

transformations by replacing that transformation’s placements with place-

ments from other input rules’ transformations. For each split transformation,

the solver tries to replace each placement with another placement in the same

table with the same match but different actions. The solver considers all place-

ments from other rule’s possible transformations as candidates with which to

replace. If a transformation with a replacement maintains its original forward-

ing behaviour, it is an acceptable replacement, and the solver adds this as a

new transformation.

When generating these new transformations, the solver retains the priority

of the other rule’s placement. So this process also generates placements with

129

different priorities. Switching the relative priority between two placements,

changes which shadows the other and ultimately whether the overall forwarding

is correct. While it is up the next stage of the solver to pick the correct priority

order, this stage must generate all options.

Our solver only considers deviations of one placement changed from the

original split transformation. Doing otherwise would increase the space the

solver searches for possible solutions, but unfortunately, results in a substan-

tial expansion in compute time. Future research is required to find more effi-

cient ways of generating and representing these equivalent variations to split

transformations.

6.3.7 Placement Priorities

The solver gives all transformations’ placements priorities based on the original

rules’ pipeline priority. Therefore the highest priority placements are derived

from transformations of rules in the first table with the highest priority.

The solver scales the input ruleset using the same equation as used in

conversion to a single table described in Section 4.2.1.

new_priority = priority × (MaxPriority|tables|−1−tableindex) (6.1)

Equation (6.1) shows how to calculate the scaled priority of a rule. The new

priority is the product of the original priority and the maximum priority of an

OpenFlow rule, 216, raised to the power of that rule’s table’s distance from the

end of the pipeline. This scaling leaves enough space between priority adjacent

rules in the first table to fit all possible priorities of the second table, and so

on. A merge placement derives its priority from the sum of the original rule’s

scaled priority. Whereas, direct and split placements inherit their priority

directly from the scaled priority of the original flow. Scaling priorities like this

attempts to put rules at the correct priority relative to each other; where a

more specific merged placement takes precedence over a directly placed or split

130

rule. Additionally, by using this priority assignment fully merging a ruleset

down to a single table will result in the correct priority order.

Our technique to include ‘wrong’ actions in split transformations (§6.3.6)

also introduces priority variation into split placements. For example, as part

of a split transformation, it is common to generate a pass-through placement,

which matches all packets and passes them through a table without applying

any actions. This pass-through placement retains the priority of the original

rule, so for a high-priority rule, it is very likely to shadow other placements

in the same table incorrectly. This priority variation technique allows a low-

priority pass-through placement to be selected instead, such as an equivalent

pass-through placement of priority 0 generated for a table-miss rule in the

original ruleset.

These new priorities are no longer within the range of valid OpenFlow

priorities. So, once a solution is found, the solver scales these priorities back

to valid OpenFlow priorities.

6.3.8 Transformations: Future Work

This section outlines other practical transformations we considered, but which

were not implemented in the rule-fitting solver. These were not implemented

due to their complexity compared to the number of cases in practice that they

solved. This is not intended to be a comprehensive list.

6.3.8.1 Using Metadata To Link Split Transformations

Individual split transformation placements cannot always include the entire

original match, and thus rules must match more packets than the original did.

Split transformations for two different input rules with different actions can

result in two placements in the same table with the same, yet more general,

match but different actions. If two rules in a table have the same match,

packets only hit the highest priority rule as it shadows the other rule. Thus,

forwarding for one of the split transformations will be incorrect.

131

Input Rules
IPv4 Dst TCP Dst Actions

192.168.1.0/24 22 Drop
198.51.100.0/24 22 Out:1

Split Transformation
Table 0

IPv4 Dst Actions
192.168.1.0/24 Goto:1
198.51.100.0/24 Goto:1

→
↗

Table 1
TCP Dst Actions

22 Drop
22 Out:1

Linking Split Transformation With Metadata
Table 0

IPv4 Dst Actions
192.168.1.0/24 Set MD:10, Goto:1
198.51.100.0/24 Set MD:20, Goto:1

→
→

Table 1
MD TCP Dst Actions
10 22 Drop
20 22 Out:1

Figure 6.10: An example using Metadata (MD) to link the placements in a
split transformation together. In the scenario shown, two rules from a single
table are placed using a split transformation into the target pipeline. In the
target pipeline, only Table 0 can match the IPv4 Dst and Table 1 the TCP
Dst. The two split transformations conflict when combined because Table 1
can only apply one action to packets with TCP Dst 22, not two. Table 1 needs
to apply two different actions depending on the rule matched in Table 0. To
solve this, Table 0 can set metadata to share the rule hit with Table 1. Table
1 then matches this metadata in addition to the TCP Dst to apply distinct
forwarding depending on the rule hit in Table 0.

The OpenFlow 1.3 metadata header field is a specialised field that only ex-

ists within the OpenFlow pipeline for sharing information between tables [12].

Figure 6.10 shows an example of using metadata to link the placements of split

transformations into a path. Without metadata to link the paths, the split

transformations create conflicting placements in Table 1 where one placement

has a drop action and the other an output action.

The FlowAdapter and FlowConvertor rule-fitting solvers extensively use

metadata to ensure packets take the required path [38, 37]. Our rule-fitting

solver avoids reliance on metadata because fixed-function pipelines often do

not support metadata. If supported by the pipeline, metadata can be used, al-

ternatively, any other reversible packet operation can encode this information.

For example, the solver can achieve this same behaviour by installing rules to

push and set a Virtual LAN (VLAN), Provider Backbone Bridging (PBB), or

132

Aggregated
IPv4 Dst Actions

192.168.1.40/30 Out:1
�

Deaggregated
IPv4 Dst Actions

192.168.1.40 Out:1
192.168.1.41 Out:1
192.168.1.42 Out:1
192.168.1.43 Out:1

Figure 6.11: An example transforming between rules with a masked match into
multiple rules with an exact match. Deaggregation facilitates placing a rule
with a wildcard match into a pipeline which only supports an exact match.

Multiprotocol Label Switching (MPLS) header, then subsequently match and

finally pop that header.

6.3.8.2 Transforming Between Masked Matches and Exact Matches

A rule with a masked match cannot be placed directly into a pipeline which

only supports an exact match. Figure 6.11 shows that a masked match can

be split into an equivalent set of exact matches. Deaggregating facilitates the

rule-fitting solver placing a rule with a masked match into a target pipeline

that only supports an exact match.

Deaggregating a masked match into exact matches can result in many rules

and is impractical for rules with many bits masked. However, in the case of only

a few masked bits, it could be the difference between the solver successfully

fitting the ruleset and the solver failing. Splitting a wildcard match would

require a threshold to ensure it remains useful. For example, allowing only up

to 4 wildcard bits would result in at most 16 rules, yet allowing 32 wildcard

bits can result in over 4 billion rules.

Conversely, aggregating exact matches together into a masked match re-

duces the rules required of the target pipeline supports masked matches.

6.3.8.3 Field-Centric Tables

Some pipelines have field-centric tables, in such tables a particular optional

field must present on all packets, and rules within the table must match an

exact value of the field. Field-centric tables logically separate, for each unique

133

Input rule
Port EthDst Actions
6 02:...:01 Out:1

Target Pipeline Requirements

Untagged VLAN Assignment (Table 0): Must match an exact ingress
port and packets without a VLAN tag. Actions must push and set the
VLAN, then goto Table 1.

Switching (Table 1): Must match an exact VLAN and Ethernet
Destination. Actions can include popping the VLAN and selecting output.

Field-centric Split Transformation
Table 0

Port Vlan Actions
6 No VLAN PushVlan:1, Goto:1

Table 1
Vlan EthDst Actions
1 02:...:01 PopVlan, Out:1

Figure 6.12: An example of transforming a non-VLAN-aware rule into a simpli-
fied VLAN-centric pipeline, loosely based on OF-DPA. VLAN-centric pipelines
force VLAN isolation and require all packets to have a VLAN assigned before
forwarding decisions are made. In this example, Table 0 forces assigning a
VLAN to all packets without a VLAN, otherwise they will be dropped. Thus
all packets entering Table 1 include a VLAN tag, and Table 1 requires an
exact VLAN is matched. Note, the input rule will also forward packets with
VLAN tags, where as the transformed rule ignores this case so is not strictly
equivalent.

value of that field, one table into multiple virtual isolated tables.

For example, fixed-functions pipelines like OF-DPA are VLAN-centric and

enforce all packets include a VLAN tag in most tables. Requiring a VLAN tag

is a common design of fixed-function pipelines because VLAN isolation is a

fundamental part of Layer 2 VLAN switching and is built into the hardware’s

design. This also occurs with other tags like MPLS, and other situations

like virtual routing tables, where a virtual routing ID must be assigned to all

packets.

Figure 6.12 gives a simplified version of the OF-DPA showing how it en-

forces all packets to have a VLAN and shows how a non-VLAN-aware rule

can be transformed. Table 0 demonstrates how a table early in the OF-DPA

pipeline enforces that only VLAN tagged packets go to the next table. Table 0

drops all untagged packets unless the controller adds a rule matching untagged

134

packets and assigns them a VLAN. Table 1 demonstrates how switching in OF-

DPA is separated into logically isolated virtual tables, one for each VLAN, by

requiring all rules match an exact VLAN.

Figure 6.12 shows how to transform a non-VLAN-aware rule into this

pipeline. The rule is split between the tables with modification in Table 0

to push a default VLAN tag and modification in Table 1 to pop the VLAN tag

before outputting the packet. This is not strictly equivalent to the original, as

the the original rule will forward VLAN tagged packets, however, in the trans-

formation Table 0 will drop packets with VLANs. It is possible in OF-DPA

to install another rule in Table 0 to correctly handle packets with VLANs, the

example ignores this case for simplicity.

Detecting field-centric tables in the general case is non-trivial as simply

looking for tables which require an exact match field is insufficient. For ex-

ample, consider that the rules in Table 1 require an exact match on Ethernet

destination. Additionally, the original ruleset may be written with assumptions

on the types of packets on the network, such as no packets have a VLAN tag but

does not explicitly include that in its match. A transformation without these

assumptions is difficult, and may be impossible, to maintain strict forwarding

equivalence. Future work is required to detect and create transformations for

field-centric tables in the general case.

Chapter 7

SAT Solver: Finding a Valid

Combination of Transformations

The first stage of our rule-fitting solver outputs a list of possible transforma-

tions. Each transformation maps from rules in the input ruleset to placements

in the target pipeline. In isolation, each transformation applies the correct

forwarding. However, when transformations are combined, their placements

can conflict with each other. For example, a placement can shadow packets

from reaching another rule, or a placement is installed in an unreachable table.

This chapter discusses the final stage of the rule-fitting solver which aims

to find a valid combination of these transformations. In our initial attempts

to solve this problem, it was clear that some combinations of transformations

would always lead to invalid solutions and did not warrant further considera-

tion. Thus our algorithm needed to skip over these conflicting transformations

quickly. It became apparent that writing our own algorithm to do this was

difficult. So we searched for alternatives and found that we could express the

problem as a boolean satisfiability (SAT) problem. Which meant we could use

an existing SAT solver to generate combinations of transformations for the

rule-fitting solver to consider.

In this design, the rule-fitting solver creates an initial set of constraints as

a boolean expression to remove solutions that are very unlikely to result in

136

the correct forwarding. The rule-fitting solver gives this boolean expression

to the SAT solver and then checks the equivalence of the candidate solution

the SAT solver returned. If a candidate solution is invalid, the solver finds the

particular conflicting placements and adds these as a constraint to the SAT

expression, then reruns the SAT solver.

The remainder of this chapter is laid out in the following order. The chapter

starts by introducing fundamentals for later understanding the SAT problem

the rule-fitting solver creates. Section 7.1 introduces the basics of the boolean

satisfiability problem and SAT solvers. Section 7.2 introduces the notation

this chapter uses to represent boolean expressions. Section 7.3 describes con-

siderations and pitfalls to avoid when constructing boolean expressions.

Building on these fundamentals, Section 7.4 provides an in-depth descrip-

tion of the initial SAT expression the rule-fitting solver supplies to the SAT

solver. Section 7.5 describes how the rule-fitting solver converts the output

from the SAT solver into a candidate solution which checks for equivalence

with the original ruleset. If this candidate solution is invalid, then Section 7.6

describes how the rule-fitting solver finds conflicting transformations and in-

corporates them in the SAT expression to prevent unnecessarily considering

invalid solutions.

7.1 The Boolean Satisfiability Problem

Consider a boolean expression formed from boolean variables and boolean

operations, for example, (A ∧ B) ∨ C. Changing the values of the boolean

variables A, B, or C will change the overall truth of the expression. A boolean

expression is said to be satisfied if it evaluates to true.

The boolean satisfiability problem asks if it is possible to satisfy a given

boolean expression; therefore, to determine if an assignment of variables exists

where the expression evaluates to true. Literature commonly refers to the

boolean satisfiability problem simply as the SAT problem.

137

c A comment
p cnf 4 3
1 -3 0
2 3 0
-4 0

Figure 7.1: A sample conjunctive normal form DIMACS file representing the
equation (x1∨¬x3)∧(x2∨x3)∧(¬x4). Lines beginning with ‘c’ are comments.
One line begins with ‘p’ and describes the problem: p <format> <number
variables> <number of clauses>. Following the problem are clauses, which
are combined using conjunction (logical AND). Each clause is a disjunction
(logical OR) of the variables or negated variables (when preceded by -) listed.
Variable numbering starts at 1. Each clause is terminated by the 0 rather than
the newline character.

The SAT problem was the first NP-complete problem found as per the

Cook-Levin theorem [59, 60]. Being NP-complete means that all other NP

problems can be converted to the SAT problem in polynomial time. Finding

a polynomial-time solution to SAT would answer the P versus NP problem.

Solving the SAT problem remains a challenge with the brute-force approach,

checking all combinations of every variable, the only known general solution.

Checking these combinations thus scales exponentially 2n, where n is the num-

ber of variables.

Due to the ubiquity of problems that the SAT problem can express it is

a well-researched field. SAT solvers are heavily researched, with an annual

competition [61] presenting a challenge to the research community to better

the state of the art [62]. Today, SAT solvers use many different techniques and

heuristics to reduce the problem size and to find a solution quickly, without

needing to explore the entire problem space.

The Conjunctive Normal Form (CNF) DIMACS [63] format is the de-facto

input and output format of most SAT solvers. The DIMACS format was cre-

ated for the DIMACS SAT solver competition and has remained the standard

format used in competitions. Figure 7.1 shows an example of the DIMACS

file format. Almost all SAT solvers and libraries support the DIMACS format.

138

Boolean Operators
Name Symbol
Negation ¬
And (Conjunction) ∧
Or (Disjunction) ∨
Exclusive or (Xor) ⊕
Implies →
Equivalence ↔

Boolean Set Flattening
Name Symbol Description
Big And

∧
{...}

∧
{a, b, c} is equivalent to a ∧ b ∧ c

Big Or
∨
{...}

∨
{a, b, c} is equivalent to a ∨ b ∨ c

At Most One amo({...}) Satisfied if only 0 or 1 expressions are true
One Hot onehot({...}) Satisfied if only one expression is true

Set Operations
Name Symbol Description
Union ∪
Intersection ∩
Element In ∈
Subset ⊆
For All ∀ We use ∀ to iterate a set e.g. ∀x ∈ {...}.

Logically equivalent to
∧
.

Figure 7.2: Boolean and set notation.

For problems that can be expressed as SAT, the DIMACS format makes it easy

to test different SAT solvers with minimal code changes. Thus we designed

the rule-fitting solver to construct the SAT problem in the DIMACS format

to decouple itself from any particular SAT solver.

7.2 Boolean Notation

(x1 ∨ x2 ∨ x3 ∨ ...) ∧ ... ∧ (¬x1 ∨ x2 ∨ x3 ∨ ...) (7.1)

Equation (7.1) shows the composition of a boolean expression in CNF. By

definition, CNF is a combination of clauses using logical AND. Where each

clause is a combination of literals, e.g. x1, or negated literals, e.g. ¬x1, using

logical OR.

139

Our rule-fitting solver expresses the boolean expression to the SAT solver

in CNF form using the DIMACS format. However, building a boolean expres-

sion directly in CNF form is unwieldy and difficult to understand. Instead,

this chapter defines the rule-fitting problem using a complete set of boolean

operations, as listed in Figure 7.2. It is then easy for the solver to convert

arbitrary expressions into CNF form.

The final SAT expression is built by combining together all smaller partial

expressions using logical AND. Each partial expression is a piece of logic which

constrains the problem. Breaking the problem up like this makes it more

understandable, and makes it trivial to enable or disable constraints to test

their effectiveness. Additionally, if the solver builds each partial expression in

CNF form, the combining these to form the complete expression amounts to

the concatenation of these expressions, which is inexpensive.

In this chapter, we have opted to use a verbose description in our equations,

for example, using ‘transformations’ rather than ‘T ’ as the set of transform-

ations. Additionally, we use both ‘for all’ (∀) and ‘big and’ (
∧
) to make our

expressions more readable, despite both having the same meaning; to combine

all items together with logical AND. We make a distinction by using
∧

to

combine a set as part of a partial expression for one constraint. While we use

∀ to iterate sets of items where, for each item, we generate a partial expression

for the constraint.

Additionally,
∧

only applies to a set of boolean expressions which includes

single boolean variables. Whereas, we use ∀ to iterate sets which are not of

boolean expressions, and do not have a corresponding boolean variable in the

boolean expression. For example, a rule from the input ruleset does not have

a corresponding boolean variable in the SAT expression, so will only ever be

iterated with ∀.

For example, consider adding a constraint for a set of rules: for each rule

select all merge transformations or one split transformation. We can express

140

this constraint mapped verbatim as:

∀r ∈ rules :∧[
merge-transformations(r)

]
∨ onehot(split-transformations(r)) (7.2)

Equation (7.2) uses ∀ to iterate over all rules, and then for each rule, gen-

erates a partial expression which limits the transformations. The left half of

the partial expression uses
∧

so it is only satisfied when all merge transforma-

tions are selected. Where merge-transformations(r) returns the set of variables

representing all merge transformations of r. The right half of the partial ex-

pression uses one-hot (onehot) to ensure that it is only satisfied when one

split transformation is selected. Notice that the partial expression does not

directly contain a rule (r) as a variable.

Ultimately, because the final expression is the logical AND of all these

partial expressions created for each rule, ∀ maintains its logical equivalence to∧
.

7.3 Considerations when Developing Partial Ex-

pressions

A partial expression must only be satisfied when it meets the underlying con-

straint. It is straightforward to create an expression that is satisfied when a

constraint is met, but also unintentionally when it is not. Logical OR and

XOR are easy to confuse due to both mapping back to ‘or’ in the English

language. Logical fallacies are easy to make with operations such as implic-

ation. Additionally, a written constraint can imply additional assumptions,

often apparent to the reader, but which are not explicitly stated.

To demonstrate this, let us reconsider Equation (7.2) from the previous

section. The equation is obviously satisfied when all merge transformations

or one split transformation are selected. However, it is also satisfied when

141

all merge transformations and one split transformation are selected. We can

easily rectify this by replacing the OR (∨) with an XOR (⊕):

∀r ∈ rules :∧[
merge-transformations(r)

]
⊕ onehot(split-transformations(r)) (7.3)

Now consider the equation is satisfied by the left half, all merge transform-

ations are selected. The left half being true implies the right half is false, and

therefore, there is not precisely one split transformation selected. Herein lies

a second problem, two or more split transformations can be selected, which is

certainly not the intention of the original statement as written. Similarly, the

expression is satisfied by precisely one split transformation and any number of

merge transformations, other than all.

Assume that any number of merge transformations is acceptable. To fix the

problem with split transformations, we can add additional partial expressions

to disallow more than one split transformation at once:

∀r ∈ rules :

amo(split-transformations(r)) (7.4)

Equation (7.4) uses at-most-one (amo) and not one-hot (onehot); other-

wise, it prohibits Equation (7.3) selecting all merge transformations.

Now that we have addressed hidden assumptions in the original written

constraint, we will address practical considerations. amo is an expensive op-

eration, and onehot uses it as its base with an additional clause disallow

all expressions being false. A naive amo implementation creates a clause for

every possible pair of boolean expressions in the set to disallow both being true

(¬a ∨ ¬b). Therefore, expressions should use amo and onehot sparingly.

Therefore, we can avoid this second call to amo entirely by moving the

142

onehot call in the original equation:

∀r ∈ rules :

onehot
([∧

merge-transformations(r)
]
∪ split-transformations(r)

)
(7.5)

In Equation (7.5), one of the items given to onehot is an expression rather

than a simple variable. Expressions in amo are expensive because amo has to

duplicate the expression many times over, which is much more expensive than

a single variable. So in such cases, we can avoid this duplication by linking an

expression to a variable. We use logical equivalence ↔, which functions like

variable assignment:

∀r ∈ rules : (
x↔

[∧
merge-transformations(r)

])
∧

onehot
(
{x} ∪ split-transformations(r)

)
(7.6)

Note that full equivalence is required to link the variable x correctly. On the

surface, implication (→) seems sufficient to make this linkage, but it is not.

Consider x →
[∧

...
]
, x can be false when

[∧
...
]
is true, thus incorrectly

allowing two expression to be true. Conversely,
[∧

...
]
→ x allows

[∧
...
]
to

be False and x True, thus all expressions to be false.

In summary, written constraints do not always state all assumptions. How-

ever, to convert a written constraint into a partial expression, we must make

these implicit assumptions explicit. Additionally, for practical reasons, we

must use some operations sparingly to avoid significantly increasing the size

of the expression.

143

R
ul
e

M
er
ge

T
ra
ns
fo
rm

at
io
n

Fu
lly

M
er
ge
d

D
ir
ec
t

T
ra
ns
fo
rm

at
io
n

Sp
lit

T
ra
ns
fo
rm

at
io
n

§7
.4
.1

P
ic
k
on

e
fu
lly

pl
ac
ed

tr
an

s-
fo
rm

at
io
n
pe

r
ru
le

T
ra
ns
fo
rm

at
io
ns

of
ea
ch

ru
le

ar
e
re
pr
es
en
te
d

di
re
ct
ly

as
va
ri
ab

le
s

§7
.4
.2

T
ab

le

§7
.4
.3

Fo
r
th
e
sa
m
e

ru
le
,o

nl
y
in
st
al
l

m
er
ge
d
an

d
di
r-

ec
t
pl
ac
em

en
ts

in
to

th
e
sa
m
e
ta
bl
e

Thetableof
eachtransformation’s

placement

P
la
ce
m
en
t

P
la
ce
m
en
t

T
ab

le
R
ea
ch
ed

§7
.4
.7

R
eq
ui
re

a
ta
bl
e-
m
is
s
ru
le

in
re
ac
he
d
ta
bl
es

§7
.4
.4

E
ve
ry

tr
an

sf
or
m
at
io
n

im
pl
ie
s
at

le
as
t
on

e
pl
ac
em

en
t.

A
m
an
y
to

m
an
y
m
ap

pi
ng

G
ot
o
im

pl
ie
s

ta
bl
e
re
ac
he

d

§7
.4
.5

&
§7
.4
.6

D
o

no
t
al
lo
w

co
nfl

ic
t-

in
g
pl
ac
em

en
ts

H
it
P
la
ce
m
en
t

H
it
P
la
ce
m
en
t

§7
.4
.8

T
he

pl
ac
em

en
t

hi
t
is

th
e
hi
gh

es
t
pr
io
r-

it
y
pl
ac
em

en
t
w
it
h
th
e

sa
m
e
m
at
ch

w
it
hi
n
a

ta
bl
e T

he
ru
le
s
hi
t
de

te
rm

in
e

th
e
re
su
lt
in
g
ru
le
se
t.

§7
.6

A
ft
er

ea
ch

it
er
at
io
n,

th
e
ru
le
-

fit
ti
ng

so
lv
er

re
fin

es
th
e

ex
pr
es
si
on

to
pr
ev
en
t

th
e
sa
m
e
re
su
lt

ag
ai
n

F
ig
ur
e
7.
3:

A
n
ov
er
vi
ew

of
th
e
SA

T
ex
pr
es
si
on

th
e
ru
le
-fi
tt
in
g
so
lv
er

co
ns
tr
uc

ts
.
E
lli
pt
ic
al

no
de
s
re
pr
es
en
t
bo

ol
ea
n
va
ri
ab

le
s
w
it
hi
n
in

th
e

bo
ol
ea
n
ex
pr
es
si
on

.
E
dg

es
sh
ow

a
re
la
ti
on

sh
ip

be
tw

ee
n
va
ri
ab

le
s
an

d
th
ei
r
la
be

l
de
sc
ri
be

s
ho

w
th
e
va
ri
ab

le
s
ar
e
de
ri
ve
d.

T
he

ru
le
-fi
tt
in
g

so
lv
er

ad
ds

a
tr
an

sf
or
m
at
io
n
va
ri
ab

le
fo
r
ev
er
y
tr
an

sf
or
m
at
io
n
fr
om

it
s
fir
st

st
ag

e.
E
ac
h
co
m
bi
na

ti
on

of
‘h
it
pl
ac
em

en
t’
va
ri
ab

le
s
re
pr
es
en
ts

a
un

iq
ue

ru
le
se
t.

T
he

gr
ou

ps
of

va
ri
ab

le
s
de
sc
ri
be

th
e
co
ns
tr
ai
nt
s
th
e
ru
le
-fi
tt
in
g
so
lv
er

ad
ds

to
th
e
ex
pr
es
si
on

be
tw

ee
n
th
os
e
va
ri
ab

le
s.

144

Name Name of Variable Name of Set
Direct Transformation d direct
Merge Transformation m merge
Split Transformation s split
Transformation t transformations
Table ft tables
Table Reached tr tables-reached
Fully Merged fm fully-merged
Placement p placements
Hit Placement h hit-placements

Figure 7.4: Summary of the naming of boolean variables and their correspond-
ing sets this chapter uses in equations. All transformations from the first stage
of rule-fitting solver have corresponding variables in the SAT expression. The
transformations set includes all direct, merge, and split transformations com-
bined, and equations in this chapter use t to denote a transformation variable
of any type. Equations can filter transformation sets by rule, e.g. direct(r)
returns the set of direct transformations the first stage of the solver generated
for the rule r.

7.4 The Initial SAT Expression

The rule-fitting solver builds a boolean expression to constrain the combin-

ations of transformations the SAT solver returns. This expression encodes

constraints we designed for the OpenFlow rule-fitting problem.

This section defines the partial expressions that the rule-fitting solver com-

bines to create the initial SAT expression. Figure 7.3 shows an overview of

the variables and constraints encoded into this expression. We designed these

constraints to prevent the SAT solver returning candidate solutions which are

extremely likely to be invalid, consequently reducing the search space. A

transformation variable represents the mapping from rules in the input ruleset

to placements from Section 6.3. The number of input rules and placements

depends on the type of transformation. Multiple transformations can result

in the same placement; a placement is a rule in the solution ruleset. A hit

placement variable tracks whether a placement reachable by packets in the

final ruleset (i.e. is ‘hit’). Fully shadowed placements will not be hit. These

hit placements define the forwarding behaviour of a ruleset, and represent a

unique candidate solution.

145

The initial SAT expression encompasses everything shown in Figure 7.3

with one exception, the hit placement constraint which the rule-fitting solver

adds after every SAT solver iteration. After every iteration, the rule-fitting

solver adds a constraint on hit placements to prevent rechecking the same

solution. Additionally, the solver adds a more precise constraint to disallow the

placements that caused a conflict in forwarding behaviour. Later, Section 7.6.1

defines both of these refinements to the boolean expression.

Figure 7.4 provides a reference to the variable and set names this chapter

uses in its equations. When referring to a particular type of variable, we have

used the variable name listed in Figure 7.4. We use subscript to disambiguate

two variables of the same type, e.g. d1 and d2 to identify two different direct

transformations. Sets contain all variables of that type.

The remainder of this section gives the equations for each partial expres-

sion in the initial SAT expression and explains the reasoning for each partial

expression concerning the OpenFlow rule-fitting problem. The order of this

section follows Figure 7.3 from left to right.

7.4.1 Include a Transformation of Every Rule

Every rule in an OpenFlow ruleset has a purpose which means a valid solution

to the rule-fitting problem needs to represent every rule from the original

ruleset. Therefore, the rule-fitting solver needs to select a transformation of

every rule to create an equivalent ruleset. Exceptions do exist to this general

case, such as unreachable rules which the solution does not need to represent.

Ruleset processing (§6.2) has the responsibility of removing such cases, so we

do not need to consider it here.

It is generally wrong to pick more than one transformation for a rule as it

results in incorrect forwarding due to duplicate actions. For example, consider

a rule placed twice in two consecutive tables, the ruleset will apply the original

actions twice to a matching packet. Additionally, restricting the SAT solver

to a single transformation per rule also greatly reduces the search space and

146

improves performance.

Next, we look at precisely why picking more than one transformation for

each type of transformation is undesirable.

Direct transformations: If the solver selects two direct transformations

for a rule, there are two rules placed, and these must be in either the same

table or different tables.

In the same table case, both placements have the same priority and match

but different actions or instructions. Installing both rules results in undefined

behaviour as per OpenFlow [12], so must be avoided.

In the case of separate tables, if a packet can only reach one rule, the

other rule is redundant. Otherwise, if a packet reaches both rules, then the

ruleset applies the same actions twice, which is either wrong or redundant.

The exception to this is a pipeline which splits into two, such that a different

set of packets reach both rules and both are required. Due to the complexity

of detecting when this case is required, we do not support it.

Split transformations: By definition, a split transformation installs mul-

tiple placements across multiple tables. The solver generates a split transform-

ation for all valid combinations of placements as a path. As all paths start

from the first table, two different split transformations must install two differ-

ent placements in the same table. Two split placements within the same table

will result in undefined behaviour.

Merged transformations: Merged transformations have a more com-

plicated relationship with one another as they take two rules as input, not

just one rule as direct and split transformations do. To fully represent the

original forwarding behaviour, the solver must install all merges with rules

in either the next table or previous tables. We call this rule fully merged.

Otherwise, to maintain the same forwarding, a partially merged rule requires

a direct placement in the same table to process packets not captured by the

merged placements. The same arguments for not installing multiple direct rule

transformations apply to not installing multiple fully merged transformations.

147

Therefore, the solver adds a constraint to pick exactly one direct, split, or

fully merged transformation for each rule.

∀r ∈ ruleset :

onehot
(
direct(r) ∪ split(r) ∪ fully-merged(r)

)
(7.7)

Equation (7.7) shows how to generate partial expressions to ensure the

output ruleset represents every rule in the input ruleset. For every rule, r, the

equation uses onehot to ensure precisely one transformation from the com-

bined set of direct, split, and fully-merged transformations is selected. Direct

and split transformations map directly to corresponding boolean variables in

the SAT expression. Next, Section 7.4.2 defines the partial expression that

generates the fully-merged variables this equation uses.

7.4.2 Fully-Merged Variables

As a merge transformation takes the intersection of two rules’ match, it usually

does not represent the forwarding behaviour of either rule. To fully represent

the forwarding behaviour of a rule, the solver must install that rule merged

with all rules either in the preceding tables or the following table. Other-

wise, if a rule is not fully merged, the solver should include another type of

transformation to match packets not matched by the merged rules.

The solver adds a new boolean variable to track if a rule is fully merged.

There can be multiple merge transformations between any two given rules. The

rule-fitting solver considers a rule fully merged so long as one merge transform-

ation is selected from all relevant rule pairs. We must allow partially merged

rules. If we did not, any rule merged with a fully merged rule would need to

also be fully merged itself, and therefore the entire ruleset would need to be

fully merged.

The rule-fitting solver builds an expression to check if a rule is fully merged

with preceding rules and following rules and then combines these to create

148

variables representing fully merged rules.

fully-merged-preceding(r) =
∧{∨

{m ∈ merge[rp, r]}
where rp ∈ preceding(r)

} if |preceding(r)| > 0

False if |preceding(r)| == 0

(7.8)

Equation (7.8) defines the function fully-merged-preceding for a given

rule, r, which returns a boolean expression that is satisfied when r is fully

merged with preceding rules. Reading from the innermost clause out, rp iter-

ates all preceding rules, therefore all rules which goto r’s table and where that

rule’s egress packet-space overlaps r’s match. For each preceding rule, rp, OR

(
∨
) ensures at least one merge transformation between rp and r is selected.

Thus the outermost AND (
∧
) is only satisfied when at least one transforma-

tion is selected for all preceding rules. In the case that no rules precede a rule,

fully-merged-preceding evaluates to false.

fully-merged-following(r) =
∧{∨

{m ∈ merge[r, rf]}
where rf ∈ following(r)

} if |following(r)| > 0

False if |following(r)| == 0

(7.9)

In the same fashion, Equation (7.9) defines the function fully-merged-

following for a given rule, r, which returns a boolean expression that is

satisfied when r is fully merged with the following rules. Where following

returns the set of rules in the table that r goes to and r’s egress packet-space

overlaps the other rule’s match.

Both fully-merged-following and fully-merged-preceding can

be satisfied when multiple merge transformations for the same pair of rules

are selected. By the same reasoning for selecting only one transformation per

rule, installing two transformations for the same pair of rules is unwanted. To

149

this end, partial expressions fix this later: we 1) ensure all merges for a rule

are in the same table (§7.4.3), and 2) disallow conflicting placements within

the same table (§7.4.5).

∀r ∈ ruleset :

fmr ↔
(
fully-merged-preceding(r)∨fully-merged-following(r)

)
(7.10)

For all input rules, Equation (7.10) creates a new boolean variable, fmr,

in the expression to represent a fully merged rule, r. fmr is true if, and only

if, the corresponding rule is fully merged with all preceding rules, all following

rules, or both.

These equations necessarily allow partially merged rules; otherwise, any

fully-merged rule requires all other rules to be fully-merged also.

7.4.3 Ensure all Direct and Merge Placements Rules are

in the Same Table

If a rule is only partially merged, a direct placement of the original rule must

be placed under it in the same table to catch the unmatched portions of traffic

to maintain forwarding. The solver requires all merge and direct placements

for a rule to be in the same table. Therefore, the direct placement will capture

all traffic missed by the merged placements. The same table requirement also

applies if no direct placement is made, thus ensuring all merge placements are

in the same table. This check does not consider split placements.

∀r ∈ ruleset :

∀t ∈ direct(r) ∪merge(r) :

t→ ftrtable (7.11)

Equation (7.11) links direct or merge transformations to their correspond-

150

ing ft variable. The solver creates a unique ft variable for each combination

of rule, r, and the table of the rule’s placement, table. ft is linked using im-

plies; otherwise, selecting one transformation would force selecting all other

placements in the table for a rule.

∀r ∈ ruleset :

amo({ftr0 ...ftrn}) (7.12)

For each rule, r, Equation (7.12) creates a partial expression that constrains a

rule’s direct and merge transformations to the same table, by allowing at most

one true ftrx variable.

Note that in this case, it is unnecessary to put the counter clause in for

Equation (7.11) to ensure ftrx is only true if at least one corresponding trans-

formation is selected. Because amo will naturally force ft variables to be false

in order to be satisfied.

7.4.4 Placement Variables

Thus far, the partial expression selects one transformation for all rules in the

input ruleset, to ensure that the output ruleset includes all forwarding beha-

viour. However, many of these transformations will place the same or similar

rules in the output ruleset. This section defines new ‘placement’ variables in

the SAT expression, which represent the rules a transformation places into the

solution ruleset. The following sections add partial expressions using these

placement variables to prohibit invalid or redundant placement combinations.

It is common for transformations to create the same or similar placements,

even those created from different rules. To understand why this happens,

consider a multi-table ruleset, every table will have a table-miss rule. Each

table-miss rule often only differs by its table, so for each, the solver will create

the same transformations into all possible tables in the target pipeline. Addi-

tionally, a table-miss rule often acts as an identity to the merge operation. For

151

different rules, split transformations often create the same rule to pass through

a table without applying any actions.

To constrain placements, the solver introduces a new variable to represent

each concrete placement. The rule-fitting solver maps each transformation to

its corresponding concrete placements.

∀t ∈ transformations :

∀p ∈ placements of t :

t→ p (7.13)

Equation (7.13) links, using implication, each transformation t, to its cor-

responding placements, p. A placement p represents a unique rule in the final

ruleset with the same match, priority, table, and instructions.

Equation (7.13) is not sufficient by itself, as a placement can be true without

any corresponding transformations selected. So to stop the SAT solver from

selecting a placement without corresponding transformations, the rule-fitting

solver adds a clause for each placement, p, implying that at least one corres-

ponding transformation is selected.

∀p ∈ placements :

p→
∨
{t ∈ transformations where p ∈ placements of t} (7.14)

Equation (7.14) adds a partial expression for each placement variable, p,

to ensure it is true only when at least one corresponding transformations, t,

are true.

7.4.5 Disallow Same-Priority Conflicting Placements

In OpenFlow, rules at the same priority with overlapping matches but with

different instructions and actions have undefined forwarding behaviour. The

reason for which is simple: it is unclear which should take priority in this

152

situation. So the rule-fitting solver adds constraints to the SAT problem so

that it is unsatisfiable when conflicting placements are present.

∀p1 ∈ placements, ∀p2 ∈ placements where

p1 6= p2 ∧

priority(p1) = priority(p2) ∧

table(p1) = table(p2) ∧

match(p1) ∩match(p2) 6= ∅ ∧

instructions(p1) 6= instructions(p2) :

¬p1 ∨ ¬p2 (7.15)

Equation (7.15) shows the partial expressions the solver generates to disal-

low such conflicts. The equation considers all pairs of rules at the same priority

with an intersecting match, and disallows any combination with different in-

structions.

7.4.6 Disallow Placements with Conflicting Instructions

The transformations the solver uses to build a solution derive their placement

priorities from the priority of the original rule. In the case of split and direct

placements, the priority is the scaled priority of the original rule, and for merge

placements, it is the sum of the scaled priorities. As a result, it is common for

the SAT solver to return placements with overlapping matches but different

priorities within the same table. Only the highest priority placement is actually

‘hit’ by packets. All of these placements except the highest priority placement

shadowed.

Thus the placement hit must be a valid substitute for any placement it

shadows; otherwise, the solution loses the forwarding behaviour of the shad-

owed placement. The rule-fitting solver generates split transformations for all

valid placements in a table, even considering those with the ‘wrong’ placement

153

(§6.3.6). Therefore, for all valid substitute placements, a split transformation

exists. If such a transformation does not exist with a given placement, then it

is improbable that it is a valid substitute, so the rule-fitting solver can avoid

exploring this solution.

Therefore, the rule-fitting solver adds partial expressions to disallow a com-

bination of placements within the same table with the same match but different

instructions or actions.

∀plo ∈ placements, ∀phi ∈ placements where

priority(plo) < priority(phi) ∧

table(plo) = table(phi) ∧

match(plo) ⊆ match(phi) ∧

instructions(plo) 6= instructions(phi) :

¬(plo ∧ phi) (7.16)

For all conflicting, fully shadowed placements, plo, and the corresponding

higher priority rule, phi, Equation (7.16) creates a partial expression to disallow

both placements. As a result, the final SAT expression is only satisfied when

all shadowed placements in the same table matches have the same instructions

as the placement hit instead.

The subtle difference between this restriction and placements at the same

priority (§7.4.5) is that partial overlaps at the same priority are invalid at the

same priority.

7.4.7 Require a Table-Miss Rule

In OpenFlow 1.3, a table-miss rule is placed at the lowest priority and matches

all packets not matched by other rules in that table. A table-miss rule defines

forwarding using instructions just as any other rule does. If a table-miss rule

154

is not included, the default behaviour is to drop these unmatched packets.

Note, that OpenFlow switches may allow an operator to override this default

behaviour for a switch globally.

While it is valid not to install a table-miss rule and rely on the default

behaviour of a switch, it is better to install these rules explicitly. The advantage

of explicit table-miss rules is two-fold: 1) it does not rely on the default global

table-miss action for a switch, and 2) it reduces the search space in the SAT

solver. The search space reduction is because a ruleset without a table-miss

rule is the same as a ruleset with a table-miss drop rule explicitly installed.

To this end, the rule-fitting solver first creates boolean variables to track

the tables in the target pipeline that packets reach. Then the rule-fitting solver

adds a constraint that requires a table-miss rule in all reached tables.

∀p ∈ {placements where p has a goto instruction} :

p→ trx where trx represents the next table x

and

tr0 . table 0 is always reached (7.17)

Equation (7.17) maps every placement to the corresponding table it goes

to, trx. Thus, when true, trx represents that packets reach table x. Addition-

ally, because all packets enter the pipeline at the first table, its corresponding

variable tr0 must always be true.

∀trx ∈ tables-reached :

trx →
∨
{p ∈ table-miss placements where table(p) = x} (7.18)

With table variables defined, now the rule-fitting solver can require a table-

miss rule in every table packets reach. Equation (7.18) adds partial expression

that requires reachable tables to a have a table-miss rule.

155

7.4.8 Hit Placement Variables

Combinations of placements can overlap each other, such that a high priority

rule completely shadows a lower priority rule. In this situation, the lower

priority rule is redundant, as packets never reach it and so it does not affect

forwarding.

Within a table, if multiple placements have the same match, the highest

priority rule determines forwarding, we say this highest priority placement is

‘hit’. Including any combination of shadowed placements in the ruleset does

not affect forwarding. Therefore, the solver should not consider the same

combination of hit placements more than once, as only the hit placements

determine forwarding.

It is not possible to disallow all shadowed rules, as every input rule requires

a transformation (§7.4.6), a condition the solver might only be able to satisfy

with a shadowed placement. So instead, the rule-fitting solver adds variables

to the expression which represent the hit placements, to avoid rechecking equi-

valent solutions.

For each placement, the solver introduces a new variable to signify the

placement can be ‘hit’, i.e. the highest priority rule in a table with a given

match. To explain the logic we require, consider the placements p1, p2, p3, and

p4 all within the same table with the same match but at different priorities,

where p1 has the highest priority and p4 the lowest priority. For every place-

ment px, there is a corresponding hit placement variable hx set only if px is

selected and the highest priority rule. Therefore, if p1 is selected it always sets

156

h1, however, h3 is only set if p1 and p2 are not selected but p3 is.

∀px ∈ placements :

{p0, p1...pn} ∈ placements where

match(pn) = match(px) ∧

table(pn) = table(px) ∧

priority(pn) > priority(px) :

(px ∧ ¬p0 ∧ ¬p1 ∧ ... ∧ ¬pn)↔ hx (7.19)

For each placement, px, Equation (7.19) creates a partial expression that

creates and maps the corresponding hit placement variable hx to be true only

when ‘hit’. The partial expression assigns the hit placement variable (hx) to

true when the original placement (px) is true, but no higher priority placements

that shadow it are true ({p0, p1...pn}).

A unique set of hit placements is a unique solution, which could have

different forwarding behaviour to another. Thus the solver, on subsequent it-

erations, adds a clause to ensure that it will not consider the same combination

of hit placements again.

7.4.9 Built-in Rules

A Table Type Pattern might optionally specify built-in rules. Built-in rules are

most often used to define table-miss behaviour. The solver maps built-in rules

into the SAT problem like it does for direct transformations but ensures they

are always selected. Built-in rules are not considered in conflicting instructions

(§7.4.6) as they cannot be removed and therefore, can only be overridden by

a rule with conflicting instructions.

157

7.5 Solving and Building the Solution Ruleset

The rule-fitting solver combines all partial expressions in the previous sections

using AND to create the complete SAT expression. The rule-fitting solver

expresses the SAT problem in the CNF DIMACS format, a format compatible

with the majority of SAT solvers, allowing it to use any off-the-shelf SAT

solver. In our implementation, we use the MiniSat2 SAT solver API [50],

which allows us to add constraints incrementally, which improves performance

on subsequent runs.

The SAT solver either returns a solution, or that the boolean expression

is unsatisfiable. If unsatisfiable, the solver can not find a solution to the rule-

fitting problem, so it exits. Otherwise, the SAT solver returns a solution; this

solution has all boolean variables assigned to a concrete value, either true or

false.

The rule-fitting solver collects all selected transformations and constructs

the corresponding candidate ruleset. The solver then converts this candidate

ruleset into a canonical Multi-Terminal Binary Decision Diagram (MTBDD)

for equivalence checking using the technique described in Chapter 4. If the

forwarding is equivalent to the input ruleset, the rule-fitting solver has found

a valid solution which it can return.

Otherwise, the candidate ruleset was not equivalent, so the rule-fitting

solver refines the SAT expression and reruns the SAT solver. The rule-fitting

solver repeats this process until it finds a valid solution or determines the

problem is unsatisfiable. Section 7.6 describes the additional clauses the solver

adds to the SAT expression before rerunning the solver.

7.6 Refining the SAT Expression

If the solution was not successful or the solver is searching for all possible solu-

tions, the rule-fitting solver will rerun the SAT solver to find another solution.

However, first, the rule-fitting solver needs to add a clause to the SAT problem

158

to avoid rechecking the same solution (§7.6.1). Additionally, in the case that

the solution returned was unsuccessful, the solver analyses what went wrong

and adds clauses to prohibit that particular combination of placements again

(§7.6.2).

7.6.1 Ensure the Same Solution is Not Returned Again

As described in Section 7.4.8, the hit placement variables represent a unique

solution ruleset with regards to forwarding behaviour. Once a solution is

checked, the rule-fitting solver adds a clause to stop the SAT solver returning

that exact combination of hit placements again.

∀h ∈ hit-placements :

∨ ¬h, if h = True

h, if h = False

 (7.20)

Equation (7.20) shows how the solver constructs a partial expression which

avoids rechecking the same hit placements and, therefore, solution. The ex-

pression the solver constructs requires at least one hit placement change its

value either from true to false or false to true.

7.6.2 Isolating Forwarding Conflicts

While requiring the SAT solver to select different hit placements ensures the

rule-fitting solver makes progress with each iteration, this does not reduce the

search space. Limiting the search space is particularly useful to solve problems

with many rules as these often have intractable search spaces.

With an invalid solution, part of the packet-space will observe the correct

forwarding, and the other part incorrect forwarding. Therefore, if we can

add constraints to stop the SAT solver returning this incorrect forwarding,

these constraints can drastically cut down the search space. Instead of the

rule-fitting solver only adding a constraint that a specific combination of hit

159

placements is incorrect, the solver adds more specific constraints which express

particular placements are not compatible.

The solver calculates the symmetric difference between the forwarding be-

haviour of the input ruleset and the candidate ruleset. More concretely, the

rule-fitting solver uses the BDD difference operation as described in §4.2.3. The

rule-fitting solver maps this difference, currently expressed as a BDD, back to

concrete paths in the original ruleset. The solver finds these concrete paths

by computing rules which match this difference in the single-table version of

the ruleset, accounting for priority. This rule-fitting solver has already created

this single-table version of the ruleset as part of equivalence checking. Each

rule in the single-table saves a copy of the rules which formed it, therefore the

corresponding path in the original ruleset.

Then, using the same technique, for each path through the original ruleset,

the solver calculates the corresponding paths in the candidate ruleset that

packets incorrectly take.

The transformations the solver created have correct forwarding in isolation;

therefore, this difference in forwarding is because either packets do not reach

these placements, or do so in the wrong order. Placements are unreachable

when shadowed by other placements or in an unreachable table. A shadowed

placement can be resolved by either removing any conflicting higher priority

placements or moving the unreachable placement to be reachable. If a place-

ment is in an unreachable table, then that placement needs to be moved, or

a split transformation selected that includes a rule to direct packets to that

table. If placements differ due to being in the wrong order, then the solver

needs to select a different set of placements for the original rules. In all cases,

either the solver needs to pick new placements for the conflicting rules in the

input ruleset path or remove the conflicting placements hit in the candidate

ruleset.

Therefore, a conflicting path between the input and candidate ruleset may

be resolved by either picking a different transformation for a rule in the input

160

path or by removing the hit placement in the candidate ruleset. The solver

constructs the following partial expression to represent this constraint.

∀pathi ∈ conflicting input paths :

∀pathr ∈ conflicting candidate paths of pathi :

Let {t1...} = the selected transformations for the rules in pathi

Let {h1...} = the hit placements corresponding to the rules in pathr

¬
[∧[

{t1...} ∪ {h1...}
]]

(7.21)

Equation (7.21) shows how the rule-fitting solver generates a partial ex-

pression to prohibit a path in the input ruleset, pathi, conflicting with a cor-

responding path in the candidate ruleset, pathr. The solver generates a partial

expression for all conflicting paths in the input and candidate ruleset, hence

the ∀ iteration over all items in both sets of paths. Both paths are a sequence

of rules through each pipeline. From the rules in pathi, Equation (7.21) builds

the set of corresponding selected transformations ({t1...}), i.e. those trans-

formations set true in the candidate solution for a rule. Similarly, for the rules

(aka placements) in pathr, Equation (7.21) builds the set of corresponding hit

placements ({h1...}).

The partial expression disallows all of these selected transformations and

hit placements to be true in future solutions. Therefore, for the next solution,

the SAT solver must either replace one input transformation or remove a hit

placement.

Chapter 8

Evaluation

This chapter presents an evaluation of the performance of our implementation

of the rule-fitting solver described in Chapters 5 to 7. This chapter evaluates

both the time taken to find solutions and the number of valid solutions, if any,

found by the rule-fitting solver.

By far, the most substantial challenge of this research was constraining the

search space to a tractable size. Hence the main focus of this evaluation is on

the optimisations and techniques we developed to better guide the rule-fitting

solver to finding valid solutions quickly.

It did not make sense to perform a direct comparison to other algorithmic

methods, such as FlowConvertor [37] and FlowAdapter [38], as their approach

heavily relied on metadata which our approach specifically avoids. The types

of problems FlowConvertor and FlowAdapter aimed to solve are distinctly

different from the problems we aimed to solve with our technique, making any

direct comparison unpractical.

First, Section 8.1 presents our evaluation methodology, including the rule-

sets and pipelines used for the evaluation (§8.1.1). Then Section 8.2 presents

our evaluation of the usefulness of converting a ruleset to a single-table as a

preprocessing step. Section 8.3 presents our evaluation of the performance

improvement of ruleset compression. Section 8.4 presents an evaluation of

the constraints we add to the SAT expression and their ability to reduce the

162

Original ruleset size: 20
After ruleset_hook: 42 210.0%
After pre_solve (compression etc.): 10 50.0%
Post solve size: 8
Solution ruleset size: 25 125.0%

Iterations: 10000
Solutions Checked: 10000
Valid Solutions: 8229
Unique Solutions: 7
Re-actioning Splits Added: 30
SAT Variables: 52
SAT Sln Variables: 46
SAT Clauses: 100
SAT Search Space List: 4, 5, 4, 5, 4, 5, 5, 4, 5, 5
SAT Search Space: 4000000

Figure 8.1: An example of the internal metrics the rule-fitting solver collects.
The ruleset metrics include a count of the input ruleset size at different stages.
In this example: ruleset hook is after conversion to a single-table (§4.2.1), pre
solve is after ruleset compression (§6.2.3), post solve the solution size for the
compressed ruleset, and the final solution size is after applying the solution
back to the original ruleset. Iterations is the number of calls to the SAT
solver, and, typically matches the number of solutions checked. The valid
solutions metric is the number of solutions the SAT solver returned that are
equivalent to the input forwarding. A difference between valid and unique
solutions indicates the solver is unnecessarily rechecking the same solution; for
this example the SAT constraints which normally prevent this are disabled.
SAT solution variables are the number of variables which represent a unique
solution and must change on the next iteration. The SAT search space is the
number of transformation combinations, given only the primary constraint
that the SAT solver picks one placement for each rule.

size of the problem without excluding valid solutions. Finally, Section 8.5 dis-

cusses the difficulties present in trying to fit a real-world ruleset to a real-world

pipeline and the limitations of our approach.

8.1 Measurement Methodology

All performance testing was performed on a Ubuntu 16.04 machine, with an

Intel i7-4790 @ 3.6Ghz (boost 4.0Ghz), with 8GB of RAM and the Linux 4.15

kernel. We limited the RAM available to the rule-fitting solver to 3.5GB.

The rule-fitting solver is a single-threaded Python application which we ran

163

on Python 2.7. Internally, the solver uses unordered data structures, and

run-to-run may explore a different number of candidate solutions, due to the

order candidate solution are returned influencing the refinement constraints

the solver adds.

We used a script to collect timing results; the script repeated each test 10

times. Each test was preceded by an additional warm-up run so that accessed

files were cached in memory to ensure the best consistency possible between

runs. For timing results, we report the mean along with the 95% confidence

interval.

We instrumented the rule-fitting solver to collect both extensive timing and

internal metrics. Figure 8.1 gives an example of the internal metrics that the

rule-fitting solver collects. These metrics include the size of the ruleset as it

progresses through the solver, the number of solutions found, the number of

iterations of the SAT solver, and metrics about the size of the SAT problem.

Figure 8.2 shows an example of the timing information that the rule-fitting

solver collects. The solver reports wall-clock times for each major processing

stage as a hierarchy. Times nested under another (parent) time are subtasks

of the parent. A parents time includes the time of its subtasks. Not all nested

times add to 100% because we only timed select tasks. The total time is

measured from within the rule-fitting solver and therefore excludes the time

to load Python and the libraries the rule-fitting solver imports. Our script

additionally records the entire wall-clock of a run, and we have found this

unrecorded overhead to be consistently 0.6s. As this overhead is constant and

fundamentally uninteresting, we do not report it in the results shown in this

chapter.

8.1.1 Pipelines and Rulesets for Evaluation

For the evaluation of the effectiveness of the ruleset preprocessing and the

boolean satisfiability constraints, we constructed two pipelines and correspond-

ing rulesets. We perform this analysis on these small rulesets, as without all

164

Total Runtime: 13.167580s
Loading TTP: 0.001442s (0%)
Loading Ruleset: 0.007606s (0%)
Pre Solve: 0.001464s (0%)

Compress Ruleset: 0.001446s (99%)
Solver Init: 0.000494s (0%)
Run Solver: 13.103029s (100%)

Compute Dependencies: 0.000580s (0%)
Generating Transformations: 0.019510s (0%)

Split Placements: 0.014709s (75%)
Direct Placements: 0.003125s (16%)
Merge Placements: 0.000033s (0%)
Compress Priorities: 0.000436s (2%)
Re-actioning: 0.001133s (6%)

Build SAT Expression: 0.001680s (0%)
SAT Solving Time: 2.529629s (19%)

Init SAT Solver: 0.004831s (0%)
Solution Building: 2.329341s (18%)
Solution Compare: 8.100654s (62%)

Post Solve: 0.052857s (0%)
Applying Model: 0.052793s (100%)

Verifying Solution: 0.027161s (51%)

Figure 8.2: An example of the timing information the rule-fitting solver col-
lects. Times are from a wall-clock and are reported in seconds. Each level of
indentation represents the task occurs within the parent time; the associated
percentage is relative to the parent. The total runtime is measured from within
Python and does not include the time to load libraries.

SAT constraints or preprocessing optimisations the size of the problem grows

immensely, and larger problems become intractable.

Figure 8.3 shows the first pipeline, the 5-table pipeline, which we based

on the OF-DPA bridging and routing pipeline. The only significant difference

from the original OF-DPA pipeline is that it does not require a VLAN match

in all of its tables. We have chosen this because the rule-fitting solver lacks the

transformations to handle adding new VLANs to packets in this situation. We

crafted the other pipeline, the 2-table pipeline, shown in Figure 8.4, with a

contrasting table layout while still supporting the same forwarding. To convert

rules between these two pipelines, the rule-fitting solver must make significant

transformations to the opposing ruleset.

Our 5-table pipeline only retains the tables necessary for switching and

165

Termination

Match: eth_dst,
in_port
Action: goto
routing
Miss: goto
switching

Routing

Match: ip_dst
Action: output, set
mac_dst, set
mac_src, goto TCP
filtering
Miss: goto TCP
filtering

Switching

Match: eth_dst
Action: output
Miss: flood, goto
TCP filtering

TCP Filtering

Match: tcp_dst
Action: clear
actions
Match: eth_dst,
in_port
Action: —
Miss: goto learning

Learning

Match: eth_src,
in_port
Action: output
Miss: goto ACL

Figure 8.3: 5-table pipeline: A bridging and routing pipeline which uses
write and clear-actions. This pipeline is based on the OF-DPA pipeline and
represents its complexity without packets requiring a VLAN to traverse the
tables. All rules must write actions to the packets action set so the TCP
filtering table can reverse any forwarding decision. The output to controller
action in the learning table is the one exception which is applied immediately.
The first table, termination, splits packets into either the routing or switching
tables based on Ethernet destination. We placed the learning table at the end
of the pipeline so that the pipeline does not send filtered packets to the control-
ler. Note: the learning table is a special table in OF-DPA that synchronises
its entries from the switching table, we define it explicitly as our solver cannot
handle this non-standard behaviour.

routing from the OF-DPA pipeline. The 5-table pipeline still includes complex-

ity; it uses a separate table for each different network function. The pipeline

splits into two parallel paths, one for routing and the other for switching. The

routing and switching tables recombine for filtering. Another complexity of the

5-table pipeline is that it uses write-actions to store forwarding decisions in a

set against each packet until the final table executes these actions. Rules can

drop (filter) unwanted packets by clearing this action set. Due to this action

set, to fit rules to this pipeline, the solver must find the correct ‘wrong’ action

for rules and remove it later in the pipeline as described in Section 6.3.6.

166

TCP Filtering

Match: tcp_dst
Action: —
Miss: goto forwarding

Forwarding

Match: eth_src, eth_dst,
in_port, ip_dst
Action: ctrl, flood, output, set
eth src, set eth dst
Miss: —

Figure 8.4: 2-table pipeline: A simple two-table pipeline compatible with the
5-table OF-DPA based pipeline shown in Figure 8.3. We designed the pipeline
to contrast with the 5-table pipeline such that conversion between pipelines
requires the extensive transformation of the ruleset. The pipeline performs all
forwarding in the second table using apply-actions, rather than using write-
actions spread over multiple tables as in the 5-table pipeline. The first table
filters unwanted packets by applying no action, rather than the second to last
table in the 5-table pipeline, which drops packets using clear-actions.

Additionally, we have exposed the learning table at the end of the 5-table

pipeline. The OF-DPA learning table synchronises with the switching table

and sends packets from unknown hosts to the controller for learning. Broad-

com’s OF-DPA TTP description does not include the learning table because

OpenFlow 1.3 cannot represent a synchronised table. The OF-DPA document-

ation does not specify the exact point the pipeline send packets for learning

to the controller. It is reasonable to assume the pipeline would filter packets

before sending them to the controller. Thus, we have placed the learning table

at the end of the pipeline, after filtering, to match this assumption.

The 2-table pipeline moves the filtering table to the start of the pipeline,

which is a more natural location. Then we elected to combine all forward-

ing decisions into one table as this requires the rule-fitting solver to perform

extensive splitting or merging of rules to convert between these rulesets.

Figure 8.5 shows the ruleset for the 5-table pipeline we use for our testing.

This ruleset contains 20 rules. Because we performed most of our experiments

with ruleset compression enabled, the size of the input ruleset is not a signi-

ficant factor. With compression enabled, all similar rules are compressed into

one regardless of the ruleset size. For our evaluation of ruleset compression, we

vary the size of this ruleset. We vary the size of the ruleset by replacing the first

three rules in the switching and learning tables with the number corresponding

167

Termination
Match Action
eth_dst goto
...:01 Routing
...:02 Routing
— Switching

Routing
Match Write Actions
ip_dst output goto
1.0.0.0/8 20 filtering
10.0.0.0/8 20 filtering

— 21 filtering
— — filtering

Switching
Match Write Actions
eth_dst output goto
...:0a 10 filtering
...:0b 11 filtering
...:0c 12 filtering
— flood filtering

TCP filtering
Match Write Actions

tcp_dst eth_dst clear-actions goto
80 — yes —
443 — yes —
— ...:01 no —
— ...:02 no —
— — no learning

Learning
Match Apply Actions

eth_src in_port output
...:0a 10 —
...:0b 11 —
...:0c 12 —
— — controller

Figure 8.5: The 5-table ruleset corresponding to the 5-table pipeline we used
in our evaluation of the rule-fitting solver. The first table of the ruleset is
the termination table. All rules are listed top to bottom from highest to
lowest priority. In addition to the actions shown, the rules in the routing table
rewrite the Ethernet source and destination. In the routing table, the third
rule provides a default route which overrides the fourth rule, which is the built-
in table-miss rule. This ruleset compresses well, all rules with the same match
and actions compress to a single rule.

to the hosts learnt for that experiment.

We derived the ruleset for the 2-table from the 5-table ruleset by putting

the two TCP filtering rules in the first table. Then we merged all other paths

through this ruleset into single rules placed in the second table. The 2-table

equivalence of this ruleset contains 25 rules.

8.2 Evaluation of Single-Table Preprocessing

This section evaluates the usefulness of converting a ruleset to an equivalent

single-table as a preprocessing step in the rule-fitting solver as described in

Section 6.2.1. There is no additional overhead for the rule-fitting solver to

convert a ruleset to a single-table, as the rule-fitting solver already converts

the ruleset to a single-table to check its equivalence.

In theory, the key advantages to preprocessing the input ruleset to a single-

table are that every rule represents the complete end-to-end forwarding beha-

viour of the pipeline and the rule-fitting solver does not need to generate merge

168

Input Total Runtime (ms) Ruleset Size Solutions Iterations Search Space
Multi-Table 139 ±2% 8 1 4 96
Single-Table 134 ±1% 7 1 4 16

Table 8.1: A performance comparison of the rule-fitting solver between a multi-
table and single-table input ruleset when converting from the 2-table ruleset to
the 5-table pipeline. The runtime is the total time from loading the inputs to
generating an output; the ruleset size is the input ruleset size after compression.
The search space is the number of possible combinations of transformations if
you pick one for each rule. There is very little difference between fitting the
multi-table input and the single-table input. This lack of difference is because
the 2-table ruleset puts all forwarding (the majority of its complexity) in one
table, so the multi-table input is very similar to the single-table ruleset.

transformations. However, a single-table ruleset typically contains more rules

than its multi-table equivalent, which would take longer to process. In con-

trast, the key advantage of using a multi-table input ruleset is that it retains

the logical separation of network functions as rules remain split between tables

which can guide the solver.

We evaluate the advantages and disadvantages of preprocessing to a single-

table compared to the original input by converting between the 2-table and

5-table pipelines (§8.1.1). For this experiment, we configured the rule-fitting

solver with ruleset compression enabled and to generate all possible solutions.

The rule-fitting solver compresses the ruleset after converting it to a single-

table. We ran each test 10 times. In this discussion we refer to the experiment

with preprocessing to a single-table enabled, simply as using single-table input

and with this preprocessing disabled, using a multi-table input. Note however,

this conversion happens in the ruleset preprocessing stage of the rule-fitting

solver.

Tables 8.1 and 8.2 show a performance comparison of the rule-fitting solver

between a multi-table and single-table input ruleset. Table 8.1 shows the

results for converting the 2-table ruleset to the 5-table pipeline, and Table 8.2

shows the results for converting the 5-table ruleset to the 2-table pipeline.

In both cases, the single-table ruleset includes fewer rules than the original

ruleset. While we expect the equivalent single-table ruleset to be larger, ruleset

169

Input Total Runtime (ms) Ruleset Size Solutions Iterations Search Space
Multi-Table 1902 ±9% 12 0 558 352800000
Single-Table 125 ±2% 10 10 10 4000000

Table 8.2: A performance comparison of the rule-fitting solver between a multi-
table and single-table input ruleset when converting from the 5-table ruleset
to the 2-table pipeline. With multi-table input, the rule-fitting solver does not
find a solution and takes longer than with the single-table input to complete.
This longer time is due to the larger search space, from considering more
transformations of rules, which requires more iterations of the SAT solver to
explore fully.

compression was able to reduce the ruleset size more than with the multi-

table input. For rulesets with more complex relationships between rules, the

compressed single-table might still be larger than a compressed multi-table

ruleset. Anecdotally, we have found that even with more complex rulesets

compression reduces the expansion from converting a ruleset to a single-table

to manageable levels.

Table 8.1 shows little difference between the single-table and multi-table

inputs when converting the 2-table ruleset to the 5-table pipeline. The results

are similar because the 2-table ruleset has the majority of its logic condensed

into one table, so the rule-fitting generates transformations which are very

similar to the single-table input.

Table 8.2 shows a significant performance difference between the single-

table and multi-table input, a mean total runtime of 125ms compared with

1.9s. Also, the rule-fitting solver does not find a solution for the multi-table

input, but does for the single-table input.

Merge transformations primarily explain the increased runtime with a multi-

table input. The first stage of the rule-fitting solver cannot predict which

transformations a solution requires, so it generates all possible transforma-

tions. Generating these merge transformations can get expensive for a ruleset

with many tables. The longest path a packet can take through the 5-table

pipeline is four tables long. The first stage of the solver must generate merge

transformations for rules between two adjacent tables in this path, then for

rules across three tables, and then finally four. The final stage of the solver

170

must search this larger number of transformations which explains the increase

in the runtime and iterations of the solver.

The lack of a solution with a multi-table input is most likely due to indi-

vidual rules not representing the complete forwarding behaviour, but this is

difficult to verify. Because transformations only represent partial forwarding,

it is harder for the second stage of the solver to find the correct combination.

Additionally, the rule-fitting solver does not consider combinations of split

and merge transformations, which misses searching rule transformations with

a multi-table input. Ignoring these combinations does not affect a single-table

input as there are no merge transformations to consider.

Overall we have found that single-table input is easier to fit into a new

pipeline. We have found the increased ruleset size of a single-table is mitigated

by ruleset compression, and that merge transformations for multi-table inputs

become unwieldy for long pipelines.

8.3 Evaluation of Ruleset Compression

This section evaluates the performance trade-off of ruleset compression, as

described in Section 6.2.3. With compression enabled, the rule-fitting solver

compresses the ruleset into a form with fewer rules while maintaining the

interactions between those rules. Compression groups similar rules from the

input ruleset into one representative rule. Once the rule-fitting solver finds a

valid solution for the compressed ruleset, the solver applies this solution to the

original ruleset.

In theory, compressing a ruleset reduces the size of the problem the solver

is working with, which should be faster. However, compressing a ruleset incurs

the additional overhead of compressing the ruleset and applying the solution

found back to the original ruleset. This section quantifies this trade-off between

the overhead of compressing a ruleset and the decreased time to solve the

problem.

171

To quantify the trade-off, we designed and ran an experiment to compare

the performance of the rule-fitting solver with and without compression for

rulesets of different sizes. The experiment compared the performance of fitting

the 5-table ruleset back into the 5-table pipeline (§8.1.1). The rule-fitting solver

was configured to convert the pipeline to a single-table as part of preprocessing,

thus making the task of fitting to the same pipeline non-trivial. The rule-fitting

solver converted the ruleset to a single-table before compressing it.

We changed the size of the ruleset by varying the number of learnt hosts in

the pipeline. For each host learnt, we placed a corresponding rule in both the

Switching and Learning table. Because the solver generates the single-table

ruleset from the Cartesian product of all tables, the number of rules in the

preprocessed single-table ruleset scales with the number of hosts squared.

In addition to the host rules, the ruleset contained a fixed number routing

and filtering rules to represent complexity. The termination table contained

two rules which directed two Ethernet destinations to the routing table. The

routing table contained two /24 routes and a default. The filtering table

contained two rules which dropped packets on TCP destination port, and two

rules corresponding to the termination table to stop learning routed packets.

Our experiment collected metrics from the rule-fitting solver when solving a

problem with between 0 and 50 learnt hosts with compression both enabled and

disabled. We configured the solver to find the first valid solution, rather than

all solutions. We only take the first solution because an uncompressed ruleset

can generate a large number of solutions, from picking different transformations

for similar rules. We ran each test ten times.

Figure 8.6 plots the total runtime for the experiment comparing the per-

formance of the rule-fitting solver with and without compressing the ruleset.

In all cases, the rule-fitting solver is faster when it compresses the ruleset first

when compared with using the uncompressed ruleset. Consider the ruleset

with zero hosts learnt, therefore when the fewest rules can be compressed, and

the relative overhead of compress will be its highest. This ruleset still con-

172

0 10 20 30 40 50

102

103

104

105

106

Number of Hosts Learnt

To
ta
lR

un
ti
m
e
(m

s)

Compressed
Uncompressed

Figure 8.6: The total runtime of the rule-fitting solver to find the first valid
solution fitting a variable-sized 5-table ruleset, first merged to a single-table,
back into the 5-table pipeline. The y-axis reports the rule-fitting solver’s mean
total runtime in milliseconds on a log scale. The x-axis reports the number of
hosts learnt in the ruleset. For each host learnt, two rules are added to the
ruleset. The compressed ruleset significantly outperforms the uncompressed
ruleset in all cases. With zero hosts learnt, the rule-fitting solver finds a
solution to the compressed ruleset in 86ms compared to 213ms for the uncom-
pressed ruleset. The difference is much higher with 50 hosts learnt, with the
compressed ruleset taking 6.1s compared to 12min 38s when uncompressed.

tained two fixed routing and filtering rules which the solver compressed from

two rules in each table down to one rule. The overhead of compression for

this ruleset was insignificant and took 0.55 ms of the total time of 86ms while

applying the solution back to the original ruleset took 11ms.

Table 8.3 shows a breakdown of where the rule-fitting solver spent time for

the compressed rulesets and Table 8.4 shows the same breakdown for uncom-

pressed rulesets. Comparing the one-off costs between the two, the combined

time of compression and initialisation for a compressed ruleset is always sig-

nificantly less than the initialisation time of the uncompressed ruleset. The

iteration time for the compressed ruleset is constant and always lower than

without ruleset compression.

The time to apply the compressed ruleset back to the uncompressed input

is a one-off cost for a compressed ruleset, but an uncompressed ruleset incurs

a similar amount of work on every iteration. Applying the compressed ruleset

173

Test Timing (ms)
Hosts Learnt Total Compress Init Iter Apply Iterations

0 86 ±1% 0.55 ±0% 56 ±0% 3.1 ±1% 11 ±1% 1
1 135 ±1% 0.79 ±9% 89 ±1% 8.8 ±2% 18 ±2% 1
3 164 ±1% 1.5 ±4% 89 ±1% 8.7 ±3% 43 ±1% 1
5 214 ±1% 2.9 ±2% 89 ±1% 9.0 ±4% 85 ±2% 1
10 445 ±5% 12 ±5% 91 ±4% 9.5 ±1% 287 ±7% 1
20 1165 ±2% 72 ±5% 94 ±4% 10 ±4% 907 ±2% 1
30 2250 ±1% 236 ±1% 89 ±1% 9.2 ±1% 1789 ±1% 1
50 6285 ±1% 1363 ±3% 90 ±1% 10.0 ±2% 4553 ±1% 1

Table 8.3: Distribution of rule-fitting solver time with ruleset compression en-
abled. The initialisation time is the one-off time taken to find transformations
and construct the SAT problem. Iteration time is the cumulative time spent
running the SAT solver and checking solutions. In all cases, the rule-fitting
solver found a valid solution to every problem after one iteration. Other than
with zero hosts learnt, the initialisation and iteration time is identical as the
compressed ruleset always contains the same number of rules. With no hosts
learnt the compressed ruleset is smaller as it does contain any rules to rep-
resent learnt hosts and therefore is solved faster. The difference between the
total time and sum of all other times listed is the time to load the ruleset and
Table Type Pattern from disk.

back to the input ruleset firsts builds the output ruleset based on the solution

to the compressed ruleset and then verifies the output ruleset is equivalent to

the original. With an uncompressed ruleset, every SAT solver iteration incurs

a similar cost as it must build and verify the full-sized ruleset. A compressed

ruleset still incurs a cost per iteration, but the cost is much smaller because

the ruleset is smaller.

Thus, it is not surprising that the results show the time spent solving and

applying a compressed ruleset is always lower than the time spent solving the

same uncompressed ruleset. Table 8.4 shows that uncompressed rulesets re-

quired more iterations to solve, three iterations with 50 hosts learnt, compared

to the compressed ruleset, which was always solved on the first iteration.

The number of iterations for an uncompressed ruleset is larger because with

more rules and therefore transformations there is a higher chance of conflicts.

Much of the iteration time with the larger uncompressed rulesets comes from

detecting and adding SAT clauses to prevent these conflicts. The rule-fitting

solver spent 91% of its total time detecting and adding SAT clauses when

174

Test Timing (ms)
Hosts Learnt Total Compress Init Iter Apply Iterations

0 213 ±1% — 188 ±1% 8.5 ±1% — 1
1 297 ±5% — 240 ±5% 38 ±12% — 2
3 598 ±1% — 388 ±1% 186 ±1% — 3
5 1133 ±1% — 653 ±1% 450 ±2% — 3
10 5048 ±2% — 1881 ±1% 3120 ±2% — 3
20 30765 ±1% — 6087 ±1% 24588 ±1% — 3
30 108454 ±1% — 12759 ±2% 95548 ±1% — 3
50 758012 ±1% — 34811 ±1% 722886 ±1% — 3

Table 8.4: Distribution of rule-fitting solver time with an uncompressed rule-
set. Overall increasing the number of hosts and therefore rules in the ruleset
increased the time the rule-fitting solver took to find a valid solution. For the
smaller problems with five or fewer hosts learnt, the one-off initialisation costs
exceed the iteration time spent checking candidate solutions. For ten or more
hosts, the iteration time exceeds the initialisation time. These larger rule-
sets produce larger candidate rulesets, hence the time to build and verify the
solutions equivalence increases on each iteration. Additionally, there are more
iterations: iterations increases from 1 to 3. Therefore three candidate solu-
tions needed to be built and verified before the solver found a valid solution. A
significant portion of the iteration time comes from refining the SAT problem,
which significantly reduces the iterations required to find a valid solution.

Original Multi-Table Single-Table
Ruleset Uncompressed Compressed Uncompressed Compressed

Faucet Access 1,937 70 3,901 94
Faucet Router 582 360 5,281 902

Table 8.5: The results of compressing real-world Faucet rulesets. The original
rulesets use multiple tables, and we compare the number of rules in each ruleset
when compressed and uncompressed. Additionally, we compare the results of
compression on each ruleset when first converted to a single table.

fitting the uncompressed ruleset with 50 hosts learnt.

Overall, we have found that the time to compress a ruleset is insignificant

compared to the time it saves when computing a solution. Even if a ruleset

is incompressible, the overhead of attempting would be insignificant. We have

always found ruleset compression to be beneficial, in many cases improving

the performance of the solver by orders of magnitude. For example, the solver

found a valid solution when fitting the ruleset with 50 learnt hosts in 12min

38s when uncompressed compared to 6.1s when compressed.

175

8.3.1 Compression of Real-World Rulesets

This section presents the compression ratio achieved on two real-world rule-

sets. We use the same two rulesets as we used in the evaluation of the equi-

valence checking (Section 4.3.3). Faucet Router and Faucet Access as used in

the evaluation of the equivalence checking. Faucet Router and Faucet Access

were collected from two OpenFlow switches in a real-world enterprise deploy-

ment [42] which were programmed by the Faucet [7] controller. The Faucet

controller was configured to perform VLAN switching, IPv4/6 routing, and

stateless firewalling. Faucet Router has more complexity than Faucet Access

as it was connected to the upstream and carried routes. Faucet Access does

not carry routes, but had a larger ruleset due to having more ports, each with

a stateless firewall policy applied.

Table 8.5 shows the reduction in ruleset size achieved by running the com-

pression algorithm on these two real-world Faucet rulesets. The compression

achieved on the Faucet Access ruleset was substantial, the multi-table ruleset

compressed to 3.6% of its original size, while the single-table ruleset com-

pressed to 2.4% of the single-table size. For the Faucet Access, the compressed

single-table ruleset is only 34% larger than the original compressed ruleset.

Faucet Router did not compress as well, due to additional complexity in

its pipeline. Compression decreased the Faucet Router multi-table ruleset to

67% of its original size, and the single-table ruleset to 17% of its original

size. Overall, these results show that our ruleset compression technique can

real-world rulesets, despite their complexity.

8.4 Evaluation of SAT Constraints

This section presents an evaluation of the effectiveness of the SAT constraints

described in Chapter 7. Our evaluation considers both the impact on per-

formance and the solutions returned to ensure a constraint does not exclude

a valid solution. The evaluation started from the least constrained SAT prob-

176

lem (with the solutions to explore): picking one transformation for each rule.

Then we introduced one constraint at a time until all constraints described in

Chapter 7 were added. Our evaluation script repeats each test 10 times and

collects the metrics from the solver for comparison, as described in Section 8.1.

Following is the list of SAT constraints we add, starting from the least con-

strained problem and cumulatively adding constraints. The remainder of this

section uses the bolded friendly name to reference the cumulative constraints.

One Transformation (§7.4.1 to 7.4.3): The least constrained problem pos-

sible. Constrained to pick only one transformation per input rule, this

includes the SAT constraints to identify fully-merged rules and place

merged rules in the same table. The SAT solver picks a different com-

bination of transformations each iteration.

Placements (§7.4.4): In addition, links transformations to their correspond-

ing placements in the SAT expression. The solver picks a different com-

bination of placements each iteration.

Placement Conflicts (§7.4.5 and 7.4.6): In addition, adds constraints to

prevent overlapping placements at the same priority with conflicting in-

structions and to prevent fully-shadowed rules with the conflicting in-

structions. The solver picks a different combination of placements each

iteration.

Table-Miss (§7.4.7): In addition, adds a constraint to ensure that every table

with a rule installed includes a table-miss rule. Without an explicit table-

miss rule the solver assumes the a default drop behaviour. The solver

picks a different combination of placements each iteration.

Hit Placements (§7.4.8): In addition, links variables to represent the place-

ments which are actually hit by packets. The solver picks a different

combination of hit placements each iteration.

177

Constraints Timing (ms)
(Cumulative) Total Build SAT Solve SAT Verify Iterations

One Transformation 13323 ±1% 6.7 ±4% 2325 ±2% 10774 ±1% 10000a

Placements 439 ±3% 8.3 ±4% 60 ±16% 262 ±3% 240
Placement Conflicts 200 ±2% 8.3 ±5% 19 ±12% 65 ±1% 64

Table-Miss 187 ±3% 8.7 ±5% 15 ±10% 57 ±4% 49
Hit Placements 134 ±6% 10 ±16% 4.0 ±10% 14 ±10% 10

Forwarding Conflicts 128 ±3% 9.0 ±4% 3.9 ±9% 13 ±3% 10

aThe experiment was limited to the first 10000 solutions out of 4 million

Table 8.6: Timing results of the rule-fitting solver converting from the 5-table
ruleset to the 2-table pipeline. Build SAT reports the one-off cost to build
the SAT expression and initialise the SAT solver. Solve SAT measures the
time spent in the SAT solver, and Verify measures the time spent building and
checking the equivalence of the candidate solution. Both Solve SAT and Verify
times are cumulative across all of SAT solver iterations. The one-off time to
build the SAT problem is insignificant compared to the Solve and Verify times.
The total time includes everything from loading the ruleset to outputting a
solution. All cases see a better or equal runtime after adding more constraints.

Forwarding Conflicts (§7.6.2): In addition, each iteration computes con-

straints based on the specific conflicts between the expected forwarding

and incorrect forwarding in the candidate solution. This is in addition

to picking a different combination of hit placements each iteration.

We present an evaluation of the usefulness of these SAT constraints when

converting between the 2-table pipeline and 5-table pipeline (§8.1.1). For rule-

set preprocessing, we enabled both single-table conversion and ruleset com-

pression. The 5-table ruleset once compressed and converted to a single-table

contained ten rules, while the 2-table ruleset contained seven rules. Although

both of these rulesets are small, the size of the problem can still grow large,

so we place an upper limit on the number of SAT solver iterations at 10,000.

Table 8.6 shows the timing results of converting the 5-table ruleset to the

2-table pipeline and Table 8.7 shows the corresponding metrics from the rule-

fitting solver. Both tables are ordered from least constrained (i.e. largest

search space) at the top to all constraints at the bottom. With only the one

transformation constraint there were 4 million combinations of transforma-

tions, however, we stopped the solver after considering 10 thousand. Because

many transformations share placements, adding placements variables and de-

178

Constraints Solutions SAT Metrics
(Cumulative) Valid Uniq. Iterations Var. Sln Var. Clauses

One Transformation 8229 7 10000a 52 46 100
Placements 155 10 240 66 14 184

Placement Conflicts 49 10 64 66 14 190
Table-Miss 49 10 49 68 14 197

Hit Placements 10 10 10 82 14 237
Forwarding Conflicts 10 10 10 82 14 237

aThe experiment was limited to the first 10000 solutions out of 4 million

Table 8.7: Solver metrics when converting from the 5-table ruleset to the 2-
table pipeline. Iterations reports the number of unique solutions to the SAT
expression. We want to lower iterations as much as possible without decreasing
the number of unique solutions. An increase in the number of clauses indicates
the solver has added more constraints, but not if they are effective. Var.
reports the number of boolean variables in the SAT expression, and Sln Var.
the number of variables which define a unique solution. Using placement
variables (instead of transformations) to define a unique solution dropped the
combinations returned by the SAT solver from 4 million down to 240. Without
hit placements and table-miss constraints, a unique combination of solution
variables does not always map to a unique candidate ruleset. The difference
between valid and unique solutions shows how many times the SAT solver
returned a valid solution that was the same effective ruleset as another already
seen. A difference other than zero indicates duplicate processing of solutions.
The addition of hit placements reduces this difference to zero as expected.
Once the rule-fitting solver adds hit placements, all candidates returned from
the SAT solver are valid solutions, so there are no forwarding conflicts to add.

fining a unique SAT solution by these placements reduces the search space

significantly to 64. Table 8.6 shows that additional constraints added min-

imal extra compute time to the one-off cost of building the SAT problem, yet

significantly reduced the time spent verifying solutions. With additional con-

straints, the number of iterations of the SAT solver decreased significantly;

thus, the rule-fitting solver had fewer candidate solutions to verify and was

faster.

Table 8.7 shows the number and types of solutions each constraint removes.

Adding placement variables and using them to define a unique SAT solution

significantly reduced the number of solutions returned by the SAT solver from

4 million to 240, as iterations shows. Adding placement conflict constraint

reduced iterations further to 64. Adding the table-miss constraint removed 15

179

Constraints Timing (ms)
(Cumulative) Total Build SAT Solve SAT Verify Iterations

One Transformation 262 ±2% 5.6 ±5% 4.9 ±14% 149 ±2% 16
Placements 248 ±1% 6.5 ±3% 6.2 ±6% 140 ±1% 16

Placement Conflicts 130 ±1% 6.7 ±4% 2.1 ±6% 26 ±1% 4
Table-Miss 131 ±1% 7.2 ±4% 2.1 ±7% 26 ±1% 4

Hit Placements 132 ±1% 7.8 ±3% 2.1 ±7% 26 ±6% 4
Forwarding Conflicts 135 ±1% 7.8 ±2% 3.1 ±7% 27 ±2% 4

Table 8.8: Timing results converting from the 2-table ruleset to the 5-table
pipeline. After adding placement variables, all additional constraints failed
to reduce the number SAT solver iterations. After which, there is a slight
increase in run-time as we add more constraints due to the one-off cost of
adding additional constraints.

Constraints Solutions SAT Metrics
(Cumulative) Valid Uniq. Iterations Var. Sln Var. Clauses

One Transformation 1 1 16 17 12 23
Placements 1 1 16 38 21 82

Placement Conflicts 1 1 4 38 21 89
Table-Miss 1 1 4 42 21 106

Hit Placements 1 1 4 63 21 157
Forwarding Conflicts 1 1 4 63 21 157

Table 8.9: Solver metrics when converting from the 2-table ruleset to the 5-
table pipeline. After adding placement conflicts, iterations remained at 4; thus,
all additional constraints, despite adding clauses, did not reduce the size of the
problem.

invalid candidate solutions from consideration, as evidenced by the decrease in

SAT solver iterations with the number of valid solutions remaining unchanged.

Adding hit placements and using them to define a unique SAT solution entirely

eliminated rechecking the same candidate ruleset. Hit placements reduced the

SAT solutions by 39 to 10, all of which are valid solutions and resulted in

unique rulesets. Forwarding conflicts had no effect, as the rule-fitting solver

only generates them from invalid solutions.

With only the one transformation constraint, only seven unique solutions

were found out of a possible ten because we limited the rule-fitting solver to

check only the first 10,000 candidate solutions. After that, the rule-fitting

solver always finds ten unique solutions, which means that no SAT constraints

removed search space that contained valid solutions.

180

Table 8.8 shows the timing results of converting the 2-table ruleset to the 5-

table pipeline and Table 8.9 shows the corresponding metrics from the solver.

For this conversion, the rule-fitting solver had very few options for each in-

put rule’s placement. With only the one transformation constraint, the SAT

solver returned only 16 candidate solutions. Adding the placement variable

constraints reduced this to 4, no other constraints reduced the number of can-

didate solutions the SAT solver returned. As a result, Table 8.8 shows all

additional constraints increased the solve time by a minimal amount, due to

the extra work in computing these constraints. Table 8.9 shows additional

constraints increased the number of clauses, so the rule fitting-solver added

extra SAT constraints. But as the number of iterations remained unchanged,

these new clauses were already encompassed by the existing constraints.

Overall we have found the SAT constraints are beneficial to performance

and do not exclude search space that contains valid solutions. Often con-

straints significantly improve performance by orders of magnitude, by reducing

the number of solutions to the SAT expression. Such as taking a search space

of 4 million down to 10. We have not found any cases where these constraints

incorrectly exclude valid solutions.

8.5 Discussion

8.5.1 Real-World Considerations

Thus far, we have evaluated our rule-fitting solver against our handcrafted

rulesets and pipelines. One of which, the 5-table pipeline, was based on the

real-world OF-DPA pipeline, and included many of its complexities. The rule-

fitting solver was able to fit a different ruleset to this pipeline. However, we

have been unable to get the rule-fitting solver to fit real-world rulesets to

real-world pipelines. Here we discuss some reasons for this.

For a real-world ruleset and a real-world pipeline, it may simply not be

possible to fit the ruleset. However, due to the complexity of the problem,

181

there is also no way to know if it is possible. We have found example cases

where, given the transformations our rule-fitting solver generated, it was not

possible to fit a ruleset. One example is from trying to fit the ruleset collec-

ted from a Faucet controller into a modified version of the OF-DPA pipeline.

The solver typically completes after 5-10 minutes without finding a solution;

the time varies depending on the order the rule-fitting solver checks candidate

solutions. We modified the OF-DPA pipeline to remove some non-standard

tables, which used vendor extensions, that our rule-fitting solver would not

interpret correctly. The Faucet ruleset dropped packets destined to particular

Multicast Ethernet addresses in its first table. In the OF-DPA pipeline, these

drop rules can be installed in the ACL table; however, each rule must addi-

tionally match the VLAN present bit. Because all packets must be assigned

a VLAN when they enter the OF-DPA pipeline, this will match all packets.

However, our rule-fitting solver does not consider this placement valid, because

it does not correctly match untagged packets like the original rule does.

In this case, this was a limitation of our rule-fitting solver. However, we

found modifying the Table Type Pattern, to allow the VLAN match to be

omitted, still did not result in the rule-fitting solver finding a valid solution.

The other common failure scenario is running out of memory when fitting

to a less constrained pipeline. The solver exhausts memory because it gener-

ates all possible transformations in its first stage. For a pipeline with fewer

constraints, the rule-fitting solver generates more placements for each rule. A

longer pipeline exacerbates this problem as split transformations traverse all

possible paths through these tables, each table multiplies the size of the prob-

lem by the number of partial placements. We encountered this issue when

trying to refit a ruleset collected from a Faucet controller back into its own

pipeline, for which we had created the Table Type Pattern. Fitting this ruleset

ran out of memory because the pipeline is eight tables long and most tables

accepted rules with an output action. For input rules with multiple output ac-

tions, this resulted in many unique placement combinations with these actions

182

spread throughout the pipeline.

This failure represents the trade-off between searching for all possible ways

to place a ruleset and keeping the problem size tractable.

8.5.2 Assumptions and Limitations of our Approach

In this section, we highlight the significant assumptions made by and lim-

itations of our approach. Many of these we have highlighted or alluded to

previously in the relevant section.

Our technique generates all possible transformations of each in-

put rule, which grows exponentially with the number of choices

available in the target pipeline. As mentioned in the discussion above,

this works for constrained pipelines where the number of choices is small, for

example, where only one or two tables can match a header field or apply an

action. However, for a flexible pipeline such as a software pipeline where all

tables support all types of actions and matches, our algorithm will run out

of memory as it tries all possible combinations of actions and matches split

across all tables. A complementary technique is needed for this flexible target

pipeline case and remains an area for future research.

Our technique assumes a single path through the target pipeline

can fully represent the forwarding of an input rule. Otherwise, rule-

fitting fails. A counter-example to this assumption is a target pipeline that

splits into two separate paths, for example, one set of tables for handing IPv4

packets and another for IPv6. Rule-fitting to a split pipeline like this could be

resolved by designing a new type of transformation for a split path or removing

the one transformation per input rule SAT requirement (§7.4.1). Both options

will increase the number of candidate solutions the solver needs to explore.

Our approach finds valid solutions; these are not necessarily good

solutions. Our research has not considered the optimality of the rule-fitting

solution. The optimality of the solution remains a future direction for research.

Our approach finds a valid solution for one ruleset at a point in

183

time. Our approach does not guarantee the stability of the result generated,

that means rerunning the solver with the same input might result in a com-

pletely different output ruleset. This also means an incremental update to the

input ruleset (either adding or removing a rule) might drastically change the

solution ruleset which might not be possible to install to the switch without

temporarily interrupting forwarding. We believe the model created by ruleset

compression (§6.2.3) could be applied to incremental updates, in many cases,

to avoid a complete recalculation. Additionally, we decided to solve the prob-

lem of fitting a ruleset into a pipeline, rather than all combinations of rules

a controller could generate; this means an incremental change the controller

makes to the input ruleset can result in an unsolvable problem. This is not

suitable for deployment. Result stability and incremental updates remain a

significant area for future research.

We strictly enforce ruleset equivalence when checking if a solution

is valid, relaxing this enforcement would find more valid solutions.

If a particular type of packet is known not to be present on a network, the

forwarding a switch applies to this type of packet is irrelevant. For example,

rule-fitting for a switch in the core of an MPLS network could exclude all non-

MPLS packets from the equivalence check and thus find more valid solutions.

While, from a security perspective, it is preferable to install a rule to drop non-

MPLS packets explicitly, the target hardware or existing controller might not

support it. One possible way to relax the equivalence check in such a scenario

is to add an extra table to the start of both pipelines to drop non-MPLS

packets before running the equivalence check.

In a similar vein, we have only considered the rule-fitting problem

for a single switch and how to fit a specific forwarding behaviour.

By opening this problem up to find a solution for an entire network or fitting

high-level language concepts (such as a tunnel between two hosts, rather than

a specific VLAN tunnel), it might be possible to find more solutions. However,

this comes at the cost of drastically increasing the size of the problem.

184

8.6 Summary

This chapter evaluated three techniques we developed to improve the per-

formance of the rule-fitting solver: preprocessing the ruleset to a single table,

compressing the ruleset during preprocessing, and adding the SAT constraints.

We found that the rule-fitting solver was faster with a single-table ruleset in-

put compared to using the original multi-table input. Additionally, the solver

failed to find a solution for the original multi-table ruleset, when it did for the

single-table input. We found that compressing the ruleset as a preprocessing

step always improved the performance of the rule-fitting solver. For a large

ruleset, compression reduced the time to find a solution from 12min 38s to 6.1s.

Our evaluation of the SAT constraints found that overall adding constraints

reduce the solve time, and at worst add negligible overhead. In this evaluation,

these constraints only prevented searching invalid and repeated solutions and

did not remove any valid solutions.

Finally, this chapter discussed the limitations of our approach and diffi-

culties we encountered when working with real-world rulesets and pipelines.

Chapter 9

Conclusion

9.1 Summary of Thesis

This thesis presented research towards the goal of improving Software-Defined

Networking (SDN) device interoperability. The ultimate goal of this work

was to create a general algorithmic approach to the rule-fitting problem for

constrained fixed-function pipelines. In this research, we developed a rule-

fitting solver to convert an existing OpenFlow 1.3 ruleset to a new target

pipeline.

Towards the goal of solving the rule-fitting problem, we encountered and

found solutions to two significant problems.

The first problem considered was how best to represent the constraints of

an OpenFlow hardware pipeline. This thesis compared two existing solutions

to this problem: Table Type Patterns [3] and OpenFlow Feature Messages [12].

We found that Table Type Patterns were the best choice for our research, as

they could fully describe the constraints of fixed-function pipelines. However,

the ecosystem around Table Type Patterns was limited, and there were prac-

tically no existing tools to interpret or create them.

This thesis introduced a library and a set of tools for working with Table

Type Patterns. The tools presented assist developers with reading and veri-

fying Table Type Patterns, and can produce a helpful recommendation as to

186

where mistakes lie and possible remediation. Additionally, this library was

designed to find valid placements for OpenFlow rules in the target pipeline.

These Table Type Pattern tools are valuable to other SDN researchers and

developers who wish to use Table Type Patterns. Towards the goal of device

interoperability, this Table Type Pattern library can verify if a ruleset is com-

patible with a network device’s pipeline.

The second problem considered was how best to check if two rulesets were

equivalent; required to check if the output of the rule-fitting solver was correct.

One difficult part of checking ruleset equivalence was representing the set of

packets which observe the same forwarding.

This thesis compared representing sets of packets as TCAM-style matches

and as a Binary Decision Diagram (BDD) [22]. The TCAM-style matches con-

sidered included OpenFlow [12] matches and Header Space [39] wildcards. We

found that these TCAM-style representations could not efficiently represent

the difference between two sets of packets, but could efficiently represent the

intersection of two sets of packets. We found BDDs could efficiently represent

the difference between two sets of packets, along with all other set operations,

and were a canonical representation.

The thesis developed a comprehensive method of checking the equivalence

between two OpenFlow rulesets. This method builds an Multi-Terminal Binary

Decision Diagram (MTBDD) representation of the ruleset, which maps sets

of packets to their corresponding forwarding behaviour. This MTBDD is a

canonical representation and is trivial to compare to another. We provided

a comprehensive way to identify equivalent actions by combining OpenFlow

write-actions, apply-actions, and groups into a canonical representation. We

found our technique took in the order 10’s of seconds to build this MTBDD

representation for real-world rulesets. This method is a useful tool for the SDN

community, including developers to check for regressions in their application

code, and researchers who are rewriting rulesets to verify their modifications.

Towards the goal of OpenFlow interoperability, this equivalence checking can

187

be used to verify two OpenFlow applications are generating equivalent rulesets.

Finally, to directly address the goal of improving OpenFlow interoperab-

ility, this thesis presented a general algorithmic approach to the rule-fitting

problem. We targeted our work to fitting a ruleset into a constrained fixed-

function pipeline. We studied the requirements of fitting a ruleset into a

real-world fixed-function pipeline, Broadcom’s OpenFlow Data Plane Abstrac-

tion (OF-DPA) pipeline. We discovered that our solver would need to deal

with complexities, including fitting to a pipeline that required the use of write-

actions and clear-actions, and fitting to a pipeline without support for arbitrary

metadata.

The solver we designed has two stages. The first stage preprocesses the

ruleset to simplify it and then generates transformations for rules and paths

which fit the target pipeline. The second stage tries to find a combination of

these transformations that result in an equivalent ruleset. This thesis described

both stages in detail.

Within these stages, a key problem we needed to solve was reducing the

problem to a tractable size. This thesis presented a method of compressing a

ruleset without losing information that the rule-fitting problem required. The

evaluation of this technique showed sizeable gains in rule-fitting performance

compared to an uncompressed ruleset. In one example, reducing the time to

find a solution from 12min 38s to 6.1s. To improve performance, developers

could apply this technique to other rule-fitting solvers and it could even be

applicable to other network analysis tools.

This thesis presented the types of rule and path transformations our rule-

fitting generates. We designed these transformations to find solutions in com-

plex circumstances, such as through paths that use write and clear-actions or

require the ‘wrong’ action.

This thesis presented a method to express picking combinations of these

transformations as a boolean satisfiability problem. We presented the con-

straints that we used to filter out combinations of transformations which were

188

unlikely to contain valid solutions. Our evaluation found that these constraints

were successful in reducing the problem size without excluding valid solutions.

We have demonstrated that the rule-fitting solver can solve problems with

complexity in a handcrafted scenario based on the OF-DPA pipeline. Our

technique does not rely on OpenFlow metadata to link paths through the

ruleset it outputs, which allows it to fit to pipelines without metadata support.

While our implementation targets OpenFlow, the key principles behind our

approach apply to other match-action style pipelines. This thesis discussed

the difficulties of fitting a real-world ruleset to a real-world pipeline and the

major assumptions and limitations of our approach.

9.2 Future Work

We have demonstrated, through implementation, that our equivalence check-

ing method works with OpenFlow rulesets. A future direction for this research

is to investigate if the same equivalence checking can be applied to rulesets

from different standards, such as P4 [10]. Another direction is to investigate

whether it is feasible to represent the forwarding behaviour of multiple connec-

ted network devices using this technique, for use in network analysis tools. A

packet sent to another networking device, starts its processing in the first table

of that device, which can be viewed as an extension of the current pipeline.

However, this introduces complexities to deal with, such as loops.

The ruleset compression presented in Section 6.2.3 significantly speed up

our rule-fitting solver and could have a broader application more generally in

network analysis tools. Network analysis tools make calculations based on the

forwarding information of network devices within a network. Further work

is needed to formalise the information lost by compression and investigate if

compression is suitable for tools which analyse a entire network. Additionally,

we previously identified that the problem of how to best compress routing

tables remains unanswered (§6.2.3.5).

189

In Section 6.3.8, we provided a list of additional transformations which

require further research into how to generate them and their usefulness. In

addition to generating the additional transformations, future research would

need to consider how these transformations interact with other transformations

and if new SAT constraints are necessary.

Our rule-fitting solver searches for the first valid solution it can find; this

might not be a good solution. For example, the ruleset output might contain

too many rules to install in hardware, despite a better solution existing. More

research is required into finding if the SAT constraints can be modified to guide

the solver towards more optimal solutions. In addition, future work could

consider if a different approach to picking combinations of transformations is

more suited to finding optimal solutions. Such research would also be useful

to optimise for other metrics such as power efficiency.

FlowAdapter and FlowConvertor have demonstrated that algorithmic rule-

fitting techniques can be run in real-time as a middle layer between controller

and switch [38, 37]. Further investigation is needed to explore the possibility

of running our rule-fitting technique in real-time. One insight is that by com-

pressing the ruleset we created a more general solution which we mapped back

to the original ruleset. Therefore, it might be possible to apply this mapping

to rules incrementally as a controller adds and removes rules without having

to rerun the full solver each time.

One problem we faced during our the research was obtaining real-world

data-sets for our testing. It was difficult to source rulesets from SDN applica-

tions and pipeline descriptions. A corpus of SDN rulesets and more generally

network data-sets would be a great asset to the research community.

We have presented one possible approach to the rule-fitting problem, and

we hope that our work provides insights for future researchers to develop new

approaches.

Bibliography

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in

campus networks,” ACM SIGCOMM Computer Communication Review,

vol. 38, no. 2, pp. 69–74, 2008.

[2] Rule-fitting overview - a collection of the libraries and tools

creating during this thesis [source code]. [Online]. Available: https:

//github.com/wandsdn/rule-fitting-overview

[3] “Openflow table type patterns,” Tech. Rep., 2014. [On-

line]. Available: https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/

OpenFlowTableTypePatternsv1.0.pdf

[4] E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan, J.-Y. Yang, and

X. Zhao, “Multi-terminal binary decision diagrams: An efficient data

structure for matrix representation,” International Workshop on Logic

Synthesis, May 1993.

[5] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An

intellectual history of programmable networks,” SIGCOMM Comput.

Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014. [Online]. Available:

http://doi.acm.org/10.1145/2602204.2602219

[6] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,

S. Azodolmolky, and S. Uhlig, “Software-defined networking: A compre-

hensive survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

https://github.com/wandsdn/rule-fitting-overview
https://github.com/wandsdn/rule-fitting-overview
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow Table Type Patterns v1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow Table Type Patterns v1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow Table Type Patterns v1.0.pdf
http://doi.acm.org/10.1145/2602204.2602219

191

[7] J. Bailey and S. Stuart, “Faucet: Deploying SDN in the enterprise,”

Queue, vol. 14, no. 5, p. 30, 2016.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,

S. Stuart, and A. Vahdat, “B4: Experience with a globally-deployed

software defined WAN,” in ACM SIGCOMM Computer Communication

Review, vol. 43, no. 4. ACM, 2013, pp. 3–14. [Online]. Available:

http://dx.doi.org/10.1145/2486001.2486019

[9] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,

R. Gopal, and J. Halpern, “Forwarding and control element separation

(ForCES) protocol specification,” Internet Requests for Comments,

RFC Editor, RFC 5810, March 2010. [Online]. Available: http:

//www.rfc-editor.org/rfc/rfc5810.txt

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Program-

ming protocol-independent packet processors,” ACM SIGCOMM Com-

puter Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[11] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN

through a future-proof forwarding plane,” in Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking.

ACM, 2013, pp. 127–132.

[12] Open Networking Foundation. (2015, Mar.) OpenFlow

Switch Specification - Version 1.3.5. [Online]. Avail-

able: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf

[13] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and imple-

mentation of Open vSwitch.” in NSDI, 2015, pp. 117–130.

http://dx.doi.org/10.1145/2486001.2486019
http://www.rfc-editor.org/rfc/rfc5810.txt
http://www.rfc-editor.org/rfc/rfc5810.txt
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf

192

[14] Broadcom Corporation, “Broadcom-switch/of-dpa: Openflow data plane

abstraction,” 2016. [Online]. Available: https://github.com/Broadcom-

Switch/of-dpa

[15] Big Switch Networks, “Hardware support and certification,” Jun. 2018.

[Online]. Available: http://opennetlinux.org/hcl

[16] Edge-Core, “AS5710-54X-EC 10GbE L3 switch with SDN capab-

ility, supporting OpenFlow 1.3 and OF-DPA,” Oct. 2017. [On-

line]. Available: https://www.edge-core.com/_upload/images/AS5710-

54X_EdgeCOS_DS_R02_20171005.pdf

[17] R. Sanger, M. Luckie, and R. Nelson, “Identifying equivalent SDN

forwarding behaviour,” in Proceedings of the 2019 ACM Symposium

on SDN Research. ACM, 2019, pp. 127–139. [Online]. Available:

https://doi.org/10.1145/3314148.3314347

[18] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and

J. Wang, “Compressing rectilinear pictures and minimizing access control

lists,” in Proceedings of the eighteenth annual ACM-SIAM symposium on

Discrete algorithms. Society for Industrial and Applied Mathematics,

2007, pp. 1066–1075.

[19] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and

S. Whyte, “Real time network policy checking using header space ana-

lysis.” in NSDI, 2013, pp. 99–111.

[20] C.-Y. Lee, “Representation of switching circuits by binary-decision pro-

grams,” Bell Labs Technical Journal, vol. 38, no. 4, pp. 985–999, 1959.

[21] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on com-

puters, no. 6, pp. 509–516, 1978.

[22] R. E. Bryant, “Graph-based algorithms for boolean function manipula-

https://github.com/Broadcom-Switch/of-dpa
https://github.com/Broadcom-Switch/of-dpa
http://opennetlinux.org/hcl
https://www.edge-core.com/_upload/images/AS5710-54X_EdgeCOS_DS_R02_20171005.pdf
https://www.edge-core.com/_upload/images/AS5710-54X_EdgeCOS_DS_R02_20171005.pdf
https://doi.org/10.1145/3314148.3314347

193

tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691,

1986.

[23] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of

a BDD package,” in Design Automation Conference, 1990. Proceedings.,

27th ACM/IEEE. IEEE, 1990, pp. 40–45.

[24] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle

1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-

Wesley Professional, 2009.

[25] M. G. Gouda and X.-Y. Liu, “Firewall design: Consistency, completeness,

and compactness,” in Distributed Computing Systems, 2004. Proceedings.

24th International Conference on. IEEE, 2004, pp. 320–327.

[26] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spectral

transforms for large boolean functions with applications to technology

mapping,” in Proceedings of the 30th international Design Automation

Conference. ACM, 1993, pp. 54–60.

[27] S. Smolka, S. Eliopoulos, N. Foster, and A. Guha, “A fast compiler for

netkat,” ACM SIGPLAN Notices, vol. 50, no. 9, pp. 328–341, 2015.

[28] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,

“Snap: Stateful network-wide abstractions for packet processing,” in Proc.

2016 ACM SIGCOMM Conf., 2016, pp. 29–43.

[29] H. Yang and S. S. Lam, “Real-time verification of network properties using

atomic predicates,” IEEE/ACM Transactions on Networking, vol. 24, pp.

887–900, 2013.

[30] S. Hazelhurst, A. Fatti, and A. Henwood, “Binary decision diagram rep-

resentations of firewall and router access lists,” Department of Computer

Science, University of the Witwatersrand, Tech. Rep, 1998.

194

[31] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra, “Fire-

man: A toolkit for firewall modeling and analysis,” in Security and Pri-

vacy, 2006 IEEE Symposium on. IEEE, 2006, pp. 15–pp.

[32] A. Prakash and A. Aziz, “Oc-3072 packet classification using bdds and

pipelined srams,” in Hot Interconnects 9, 2001. IEEE, 2001, pp. 15–20.

[33] T. Inoue, T. Mano, K. Mizutani, S.-i. Minato, and O. Akashi, “Fast

packet classification algorithm for network-wide forwarding behaviors,”

Computer Communications, vol. 116, pp. 101–117, 2018.

[34] A. Ronacher, “Flask (a python microframework).” [Online]. Available:

http://flask.pocoo.org/

[35] Microsoft, “Extension methods (c# programming guide),” Jul. 2015.

[Online]. Available: https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/classes-and-structs/extension-methods

[36] Equivalence checking implementation [source code]. [Online]. Available:

https://github.com/wandsdn/ofequivalence

[37] H. Pan, G. Xie, Z. Li, P. He, and L. Mathy, “Flowconvertor: Enabling

portability of SDN applications,” in INFOCOM 2017-IEEE Conference

on Computer Communications, IEEE. IEEE, 2017, pp. 1–9.

[38] H. Pan, H. Guan, J. Liu, W. Ding, C. Lin, and G. Xie, “The flowadapter:

Enable flexible multi-table processing on legacy hardware,” in Proceedings

of the second ACM SIGCOMM workshop on Hot topics in software defined

networking. ACM, 2013, pp. 85–90.

[39] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:

Static checking for networks,” in Presented as part of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

12), 2012, pp. 113–126.

http://flask.pocoo.org/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://github.com/wandsdn/ofequivalence

195

[40] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs

is NP-complete,” IEEE Transactions on computers, vol. 45, no. 9, pp.

993–1002, 1996.

[41] F. Somenzi, “CUDD: CU decision diagram package release 3.0. 0,” 2015.

[42] WAND. Redcables SDN Network @ WAND, Waikato University.

[Online]. Available: https://redcables.wand.nz/

[43] D. Meyer. (2001) University of oregon route views archive project.

[Online]. Available: https://routeviews.org/

[44] L. Yang, B. Ng, W. K. Seah, and L. Groves, “Equivalent forwarding set

evaluation in software defined networking,” in Integrated Network and

Service Management (IM), 2017 IFIP/IEEE Symposium on. IEEE, 2017,

pp. 576–579.

[45] Broadcom Corporation, “Openflow data plane abstraction (OF-DPATM):

Abstract switch specification version 2.01,” Tech. Rep., Jan. 2016.

[Online]. Available: https://github.com/Broadcom-Switch/of-dpa/blob/

v2.0.4.1/OFDPAS-ETP100-R.pdf

[46] M. Yu, A. Wundsam, and M. Raju, “NOSIX: A lightweight

portability layer for the SDN OS,” SIGCOMM Comput. Commun.

Rev., vol. 44, no. 2, pp. 28–35, Apr. 2014. [Online]. Available:

http://doi.acm.org/10.1145/2602204.2602209

[47] Y. Tseng, “ONOS intents and northbound,” ONOS Build 2017 [Slides].

[Online]. Available: https://onosproject.org/wp-content/uploads/2018/

01/4-ONOS-Build-2017-Northbound.pdf

[48] M. Bruyère, E. Fernandes, I. Castro, S. Uhlig, R. Lapeyrade, P. Owez-

arski, A. Moore, and G. Antichi, “Umbrella: a deployable SDN-enabled

IXP switching fabric,” in ACM symposium on SDN Research, 2018, p. 2p.

https://redcables.wand.nz/
https://routeviews.org/
https://github.com/Broadcom-Switch/of-dpa/blob/v2.0.4.1/OFDPAS-ETP100-R.pdf
https://github.com/Broadcom-Switch/of-dpa/blob/v2.0.4.1/OFDPAS-ETP100-R.pdf
http://doi.acm.org/10.1145/2602204.2602209
https://onosproject.org/wp-content/uploads/2018/01/4-ONOS-Build-2017-Northbound.pdf
https://onosproject.org/wp-content/uploads/2018/01/4-ONOS-Build-2017-Northbound.pdf

196

[49] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,

S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable

fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM

Computer Communication Review, vol. 39, no. 4. ACM, 2009, pp. 39–

50.

[50] N. Een, A. Mishchenko, and N. Sorensson, “Applying logic synthesis for

speeding up SAT,” Sat, vol. 7, pp. 272–286, 2007.

[51] ONF, “Open networking foundation releases Atrium open SDN software

distribution,” [Online]. Available: https://www.opennetworking.org/

news-and-events/press-releases/2327-open-networking-foundation-

releases-atrium-open-sdn-software-distribution, [Accessed 15 September

2015].

[52] ——, “Atrium docs - home,” [Online]. Available: https://github.com/

onfsdn/atrium-docs/wiki, [Accessed 25 September 2019].

[53] ——, “CORD platform | central office rearchitected as a datacenter |

ONF,” [Online]. Available: https://www.opennetworking.org/cord/, [Ac-

cessed 25 September 2019].

[54] D. Parniewicz, R. Doriguzzi Corin, L. Ogrodowczyk, M. Rashidi Fard,

J. Matias, M. Gerola, V. Fuentes, U. Toseef, A. Zaalouk, B. Belter et al.,

“Design and implementation of an openflow hardware abstraction layer,”

in Proceedings of the 2014 ACM SIGCOMM workshop on Distributed

cloud computing. ACM, 2014, pp. 71–76.

[55] X. Sun, T. Ng, and G. Wang, “Software-defined flow table pipeline,”

in Cloud Engineering (IC2E), 2015 IEEE International Conference on,

March 2015, pp. 335–340.

[56] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet pro-

grams to reconfigurable switches,” in USENIX NSDI, 2015.

https://www.opennetworking.org/news-and-events/press-releases/2327-open-networking-foundation-releases-atrium-open-sdn-software-distribution
https://www.opennetworking.org/news-and-events/press-releases/2327-open-networking-foundation-releases-atrium-open-sdn-software-distribution
https://www.opennetworking.org/news-and-events/press-releases/2327-open-networking-foundation-releases-atrium-open-sdn-software-distribution
https://github.com/onfsdn/atrium-docs/wiki
https://github.com/onfsdn/atrium-docs/wiki
https://www.opennetworking.org/cord/

197

[57] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:

Dependency-aware rule-caching for software-defined networks,” in Proc.

ACM Symposium on SDN Research (SOSR), 2016.

[58] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane com-

pression,” in Proceedings of the 2018 Conference of the ACM Special In-

terest Group on Data Communication. ACM, 2018, pp. 476–489.

[59] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceed-

ings of the third annual ACM symposium on Theory of computing. ACM,

1971, pp. 151–158.

[60] L. A. Levin, “Universal sequential search problems,” Problemy Peredachi

Informatsii, vol. 9, no. 3, pp. 115–116, 1973.

[61] “The international SAT competitions web page,” [Online]. Available: http:

//www.satcompetition.org.

[62] M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon, “The international

SAT solver competitions,” AI Magazine, vol. 33, no. 1, pp. 89–92, 2012.

[63] DIMACS Challenge, “Satisfiability: Suggested format,” DIMACS Chal-

lenge. DIMACS, 1993.

http://www.satcompetition.org
http://www.satcompetition.org

	Front Matter
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Publications

	Introduction
	Problem Statement
	Contributions
	Table Type Pattern Tools
	Ruleset Equivalence
	The Rule-Fitting Problem

	Thesis Structure

	Background
	Software Defined Networking
	OpenFlow
	OpenFlow Forwarding Pipeline

	Diversity in OpenFlow Implementations
	Software Switch Design
	Hardware Switch Design
	Software vs. Hardware Switches
	OF-DPA: A Fixed-Function Pipeline

	Representing OpenFlow Pipelines
	OpenFlow Feature Messages
	Table Type Patterns

	Representing an OpenFlow Rule Match
	An OpenFlow Rule Match
	Header Space
	Binary Decision Diagrams
	Variations of Binary Decision Diagrams for Networking

	Summary

	Working With Table Type Patterns
	Contents of a TTP
	Our TTP Library and Tools
	Loading and Validating a Table Type Pattern
	Viewing Issues with a Table Type Pattern
	Viewing a Table Type Pattern
	Fitting a Rule into a Table Type Pattern
	Rule Fitting for Ruleset Transformation
	Optimisation

	Ruleset Equivalence Checking
	Problem Overview and Terminology
	Ruleset Conversion to a Canonical Form
	Conversion to a Single-Table Equivalence
	Identifying Equivalent Actions
	Equivalent Ruleset Behaviour
	Finding Different Forwarding Behaviour

	Evaluation
	Completeness
	The Canonical Action Set Depends on the Packet
	Actions can be Equivalent Depending on the Switch State

	Implementation
	Performance

	Related Work

	The Rule-Fitting Problem
	Motivation
	Problem Statement
	Rule-Fitting Solver Design Scope
	A General Solver

	Design Methodology
	Overview of the Rule-Fitting Solver Design
	Related Work
	Switch Abstraction Layers
	Rewriting Rulesets Algorithmically
	Summary

	Transforming Rules and Preprocessing Rulesets
	Dependencies Between Rules and Paths
	Ruleset Preprocessing
	Conversion to a Single-Table
	Removing Unreachable Rules
	Ruleset Compression
	What is a Similar Rule?
	Compression Algorithm
	Compression by Example
	What if a Single Rule From a Group Cannot be Selected While Maintaining all Dependencies?
	Compressing a Routing Table
	Related Work

	Finding Rule Transformations
	Placing a Rule in a Target Pipeline
	A Direct Transformation
	A Merge Transformation
	A Split Transformation
	Filtering Split Transformations
	Adding Additional `Wrong' Actions
	Placement Priorities
	Transformations: Future Work
	Using Metadata To Link Split Transformations
	Transforming Between Masked Matches and Exact Matches
	Field-Centric Tables

	SAT Solver: Finding a Valid Combination of Transformations
	The Boolean Satisfiability Problem
	Boolean Notation
	Considerations when Developing Partial Expressions
	The Initial SAT Expression
	Include a Transformation of Every Rule
	Fully-Merged Variables
	Ensure all Direct and Merge Placements Rules are in the Same Table
	Placement Variables
	Disallow Same-Priority Conflicting Placements
	Disallow Placements with Conflicting Instructions
	Require a Table-Miss Rule
	Hit Placement Variables
	Built-in Rules

	Solving and Building the Solution Ruleset
	Refining the SAT Expression
	Ensure the Same Solution is Not Returned Again
	Isolating Forwarding Conflicts

	Evaluation
	Measurement Methodology
	Pipelines and Rulesets for Evaluation

	Evaluation of Single-Table Preprocessing
	Evaluation of Ruleset Compression
	Compression of Real-World Rulesets

	Evaluation of SAT Constraints
	Discussion
	Real-World Considerations
	Assumptions and Limitations of our Approach

	Summary

	Conclusion
	Summary of Thesis
	Future Work

