
Aalto University

School of Science

Master’s Programme in Security and Cloud Computing

Ngadhnjim Plaku

Online Platform for Interactive Tutori-
als: Provisioning Virtual Environments

Master’s Thesis
Espoo, July 31, 2020

DRAFT! — July 31, 2020 — DRAFT!

Supervisors: Professor Mario Di Francesco, Aalto University
Professor Pietro Michiardi, EURECOM

Advisor: Professor Mario Di Francesco

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333888775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Ngadhnjim Plaku

Title:
Online Platform for Interactive Tutorials: Provisioning Virtual Environments

Date: July 31, 2020 Pages: 50

Major: Security and Cloud Computing Code: SCI3084

Supervisors: Professor Mario Di Francesco
Professor Pietro Michiardi

Advisor: Professor Mario Di Francesco

Traditionally, whenever students learn a new technology, they need to either set
up their working environments on their own machines or go to physical labora-
tories provided by the teaching institutions. In the first case, the setup of the
needed tools is cumbersome or even impossible on all personal computers; in the
second case, laboratories for certain topics are not feasible due to the threat to the
stability and security of the system. Recently, virtualization has been extensively
used to provide dedicated environments with full control over the system and to
create interactive tutorials that engage the student with the learning resources
through a web browser. However, most of the tools that are publicly available
are built for specific purposes and are not extensible. There are many situations
where organizations need customized solutions that give them full control over
the system to offer better support as well as progress tracking and automated
assessment. This thesis describes the implementation of OnPIT, an online plat-
form for interactive tutorials. Different from the existing work, OnPIT is based
on software containers. Moreover, it provides access to learning environments
through a web browser, side by side with the tasks to be completed during a
tutorial. Furthermore, OnPIT allows the creation of new tutorials that are pre-
configured with the necessary tools, it can be scaled based on the demand and
the available resources, and it also supports automated assessment. The thesis
overviews the overall design and implementation of OnPIT. Afterwards, it details
the provisioning of dedicated environments based on software containers, includ-
ing the security issues and technology limitations as well as possible solutions to
overcome them.
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Abbreviations and Acronyms

API Application Programming Interface
AWS Amazon Web Services
CLI Command Line Interface
CNI Container Network Interface
CPU Central Processing Unit
CRI Container Runtime Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
I/O Input/Output
IP Internet Protocol
KVM Kernel-based Virtual Machine
OCI Open Container Initiative
OnPIT Online Platform for Interactive Tutorials
OS Operating System
REST Representational State Transfer
RST reStructuredText
SQL Structured Query Language
SSH Secure Shell
UID Unique Identifier
URL Uniform Resource Locator
VM Virtual Machine
VMM Virtual Machine Monitor
WS WebSocket
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Chapter 1

Introduction

Technological advancements have pushed learning towards digitalization. Re-
cently, online learning systems have been developed for a set of use cases rang-
ing from professional trainings in industry to distance learning in academia
[40]. The benefits of online learning systems include lower cost, easier scaling
and infrastructure upgrade as well as flexibility with remote and self-paced
learning [19].

Learning computer science in higher education is typically supported by
hands-on exercises. These exercises are performed either on student’s per-
sonal computers or on shared computers offered by the academic institution.
There have been many efforts to shift from such a traditional approach to-
wards new online tools that provide the same capabilities as well as person-
alized interaction and learning paths [40]. This has started with the advent
of web technologies that enabled online tutoring based on demand. These
solutions offer interactive tutorials mainly targeting programming languages,
by allowing the user to write the code in the browser, compiling it on the
back end and presenting the output back to the user [26].

The advent of virtualization technologies enabled both better resource
utilization and the creation of isolated instances of an operating system.
This led to new opportunities for learning systems to provide a dedicated
machine to a student for learning purposes [27, 30]. These machines are
typically accessed through some form of remote connection, such as SSH.
However, an increasing number of applications are integrating an interactive
terminal into a web page. This allows the combination of the terminal and
the teaching material to create a better learning experience for the students.

These dedicated environments are built for specific courses and provide
the infrastructure and the tools needed. This is used for a wide range of top-
ics in computer science from operating systems and system administration
to networking and security [28]. However, computer science is a fast-evolving

7



CHAPTER 1. INTRODUCTION 8

field and new topics such as cloud computing and machine learning are also
finding their way into online learning systems with platforms such as Kata-
coda1.

1.1 Motivation

Online learning systems are built by institutions for their own needs or for
dedicated purposes. Most of the systems focus on offering solutions for a
specific course, technology or platform and the main targets are programming
languages and web technologies. Even the systems that provide access to
dedicated infrastructure through virtualization do not provide a full set of
features that would make them fully reusable and extensible. Creating new
content and customizing course environments is not easy when offering a
solution based on virtual machines. Furthermore, relying on third party
services is not feasible for many institutions that need custom features and
in-house support, limited access to enrolled students and progress tracking.

1.2 Contribution

This thesis presents the design and implementation of OnPIT, an online
learning platform for interactive tutorials. The platform offers tutorials ac-
cessible through a web browser, accompanied with isolated and dedicated
environments to each student. It gives access to these environments through
a terminal in the web browser, as it were a virtual machine inside the browser.
In addition, OnPIT is scalable, allows easy creation of content and customiza-
tion of the environments, restricting access only to enrolled students as well
as customized progress tracking.

This thesis establishes the following contributions:

• realizes the feasibility of provisioning isolated environments through
containerization;

• discusses the limitations of container technology in terms of extensibil-
ity;

• presents the trade-offs between security and extensibility when using
software containers;

• introduces alternative solutions that combine containers with VMs and
evaluates their interoperability with the current implementation;

1https://www.katacoda.com/

https://www.katacoda.com/
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• compares the considered solutions in terms of performance, extensibil-
ity and security.

1.3 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 overviews the tech-
nologies and major concepts relevant for this thesis. Chapter 3 describes
the design and implementation of OnPIT, an online platform for interactive
tutorials. Chapter 4 explains how this platform provisions the learning envi-
ronments for the students. Chapter 5 evaluates the provisioning tools used
in terms of security and interoperability. Finally, Chapter 6 concludes the
thesis and suggests potential future work.



Chapter 2

Background

This chapter overviews the major technologies this thesis is built upon.
It first introduces the traditional virtualization technology also known as
hypervisor-based virtualization. It then presents the common components
and concepts related to the container technology. Moreover, it discusses
Docker and Kubernetes, the most popular software tools for creating and
managing containers. Finally, the chapter considers the security features
provided by these technologies.

2.1 Virtualization

Virtualization was introduced as a solution to overcome issues in allocating
resources to multiple applications running on the same physical machine at
the same time. One such example is a single application taking up most of the
resources, thus degrading the performance of the other applications running
on the same machine. Before the introduction of virtualization, it was not
possible to limit the resources to a given application. The only solution
to this problem was to run each application on its own physical machine.
However, this solution came with additional maintenance costs and it was
not scalable.

As an alternative, virtualization provides isolation to the applications
while they still run on the same physical resources, allows better utilization
as well as scalability, and has a lower cost [31].

Typically, virtualization refers to a software layer wrapping an operating
system to make it appear as a standalone physical machine [33]. This layer
provides to the operating system the same environment as if it were a real
device. These virtual environments are created by a piece of software called
a Hypervisor or Virtual Machine Monitor (VMM) [34]. These environments

10



CHAPTER 2. BACKGROUND 11

(a) Type I (b) Type II

Figure 2.1: Types of Virtual Machine Monitors [37]

are known as virtual machines. Each of the created virtual machines can run
their own operating system: even though they share the physical resources
of the host machine, they are logically as separate as if they were different
physical machines. As a result, this technology can be used for providing
independent and isolated environments to different applications as well as to
reduce the number of physical machines needed.

There are two main types of hypervisors: Type I (Bare Metal) and Type
II (Hosted), [36], illustrated in Figure 2.1.

• A type I hypervisor runs as an operating system or kernel directly
on top of the bare machine. The hypervisor has the mechanisms to
schedule and allocate the system resources to the virtual machines.
Products built according to this approach include Xen [21], VMware
ESX [32] and Microsoft Hyper V [38].

• A type II hypervisor runs as an application on top of a host operating
system. It provides services to support virtualization, but it does not
schedule and allocate the system resources. Instead, this is handled by
the host operating system. Products built according to this approach
include QEMU [22], VMWare Workstation [37] and Microsoft Virtual
PC [29].

2.2 Containerization

A software container is a lightweight alternative to virtualization [39]. Like
virtual machines, containers offer resource isolation and allocation, however,
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Figure 2.2: Container evolution [17]

they do not virtualize the hardware but are software units sharing the same
operating system [23]. Such a unit represents a package of the application
code and all its dependencies. Packaging applications as containers makes
them more lightweight and efficient compared to virtual machines, since they
do not contain an operating system image within. The decoupling of the soft-
ware from its environment through containerization results in a consistent
behavior of the applications no matter the infrastructure. Figure 2.2 illus-
trates the evolution from traditional deployment to virtualization and then
to containers.

There are many advantages that have made containers popular: First,
container images are easier to create and deploy using tools such as Docker.
Since they do not need an operating system within, containers are lightweight
and allow fast, reliable and frequent image build and deployment [39]. In ad-
dition, containers are more efficient with resource utilization, thus providing
higher density of the applications. Since containers package both the appli-
cation code and its dependencies, the applications running within contain-
ers are decoupled from infrastructure. Furthermore, Containers can run on
many operating systems, on-premises, in the cloud or bare metal. Since the
containers are software packages created using Linux features such as names-
paces and cgroups, they can be monitored from the host system to ensure
that they are healthy and to retrieve metrics about their resource utilization.

2.2.1 Container Images

A container image is a file that contains the executable code needed for
creating a container at runtime. Container images are typically stored in
a so-called registry server. They are pulled from such a registry and used
locally to create and run containers. Almost all major tools and container
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engines support a standardized format from the Open Container Initiative
(OCI). This standard1 defines the image format as a group of tar files, known
as layers, and a manifest.json file which contains metadata.

2.2.2 Container Engines

A container engine is a software that handles requests from the command line
interface as well as from container orchestration tools. When the given com-
mand requires running a container, the engine pulls the specified image from
the registry server and runs the container through the container runtime.
In addition, the engine decompresses the container image on the disk and
prepares the settings and metadata that the container runtime needs, based
on the default settings from the container image and the user input. The
major container engines include Docker2, LXD3 and RKT4. Using the OCI
standard for container images enables interoperability between the container
engines [1].

2.2.3 Container Runtimes

A container runtime is a software that executes containers and manages
their lifecycle. A container runtime is a lower level component and it is
typically used in a container engine and not standalone. Similar to container
images, OCI specifies a standard for container runtimes. Moreover, they
provide runc5 as a reference implementation. This is the most widely used
container runtime and many container engines, including Docker and CRI-
O6, rely on it. Other OCI-compliant runtimes include crun, railcar and Kata
Containers [1]. The implementation of the OCI standard allows containers
to run consistently across different container engines.

The container runtime is responsible for retrieving and acting based on the
instructions of the container engine. Furthermore, it starts the containerized
processes by communicating with the kernel through system calls.

1https://github.com/opencontainers/image-spec
2https://docs.docker.com/engine/
3https://linuxcontainers.org/
4https://coreos.com/rkt/
5https://github.com/opencontainers/runc
6https://cri-o.io/

https://github.com/opencontainers/image-spec
https://docs.docker.com/engine/
https://linuxcontainers.org/
https://coreos.com/rkt/
https://github.com/opencontainers/runc
https://cri-o.io/
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2.2.4 Container Orchestration

Container orchestration is the process of automatic management of contain-
ers [1]. Orchestrations tools automate many tasks, such as provisioning and
deployment of containers, scaling up or down, availability, resource alloca-
tion, health monitoring, and so on. Typically, container orchestration tools
take a configuration file for each application that runs as a container. These
files describe the desired state of the application container, including the
image to be used, network settings and volumes to be mounted. When a
new container needs to be deployed, the orchestrator schedules the container
applications based on the predefined configuration settings.

There are many orchestration tools developed, such as Swarm, Mesos,
and Kubernetes. However, Kubernetes is the most widely supported tool
and is considered as the de facto standard.

2.3 Docker

Docker is an open source platform for developing, shipping and running con-
tainerized applications [3]. Such a platform provides the tools needed to
manage the lifecycle of the containers. It allows to containerize and run an
application as a unit in an isolated environment. Isolation, security, and less
resource utilization as well as being lightweight compared to a hypervisor,
enable users to run more containers than virtual machines. Furthermore,
a Docker container is independent from the underlying infrastructure and
this enables the users to run the application the same way no matter the
deployment environment.

Docker uses a client-server architecture that consists of a server, a REST
API and a command line interface (CLI) client. The CLI uses the Docker
REST API to control or interact with the server. The server, also known as
the Docker daemon (dockerd), creates and manages Docker objects, such as
images, containers, networks, and volumes.

Figure 2.3 illustrates the architecture of Docker. Here the Docker client
receives a command from the user and forwards it to the Docker daemon
through the REST API. The Docker daemon listens for API requests and
manages Docker objects accordingly. When an image is required as a result
of a user command, it is pulled from a registry which can be private or public
(e.g. Docker Hub), then it is stored in a local cache and used for creating a
new container instance.

By default, the daemon listens for API requests through a unix domain
socket. At the beginning, Docker was a monolithic application. Over time,
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some functionalities were decoupled from the main project. This way con-
tainerd, a high-level container runtime, took the responsibility of managing
the container lifecycle by passing the commands to the low level runtime,
runc. Since then, using Docker indirectly calls containerd, which in turn
calls runc. However, containerd can be used as a standalone runtime and it
has its own CLI command ctr. Runc is the component that handles the con-
tainer lifecycle management and it is the reference runtime implementation
of the OCI specification. Figure 2.4 illustrates the path from Docker to the
containers.

The most common Docker objects managed by the daemon are images
and containers. Images act as templates for creating containers. Users can
create their own images or use those created by others and made publicly
available in a registry. Building an image is accomplished through a Docker-
file or by saving the state of a running container. The Dockerfile contains the
instructions needed to create and run the image. Each instruction creates
a so-called layer in the image. When an image is changed and rebuilt, only
the layers which have been updated are rebuilt. On the other hand, a con-
tainer is a runnable instance of an image. Containers can be managed using
the Docker API or CLI. By default, a container provides some level of iso-
lation from the host machine and other containers, but this can be changed
based on the per-image settings and by configuration options provided upon
creating or starting it.

Docker is written in the Go language and its functionality is based on sev-
eral features of the Linux kernel. Docker Engine combines different features

Figure 2.3: Docker architecture [3]
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Docker containerd runc Container

Figure 2.4: Docker components stack

of the Linux kernel – namely, namespaces, control groups, and UnionFS –
into a wrapper called a container format. Each of them is described briefly
below:

• Namespace7 is a feature that makes the processes within it have an iso-
lated view of a specific resource. Docker creates a set of namespaces for
each container that is run. Such namespaces include: ProcessID, net-
working, InterProcess Communication, mount and Unix Timesharing
System. Each of them helps containers to achieve their isolated view of
the system. ProcessID namespace provides process isolation enabling
processes in different namespaces to use the same PID number. Net-
working namespace isolates the networking interfaces. Similarly, In-
terProcess Communication namespace isolates IPC resources. Mount
namespace manages the filesystem mount points for each namespace.
Whereas Unix Timesharing System namespace isolates system identi-
fiers between processes.

• Control groups (cgroups)8 are used to limit the available resources to
a specific container. This allows Docker to share hardware resources
among many containers while having control over resource allocations
for each of them.

• Union file systems (UnionFS), are layer-based file systems, making
them lightweight and fast. They are used by Docker for efficient stor-
age of the container images. Docker creates a read-only layer for each
instruction in the Dockerfile of an image. When a container is created,
a new writable layer is added. All changes to a container are stored in
this layer, thus enabling multiple containers to share the same under-
lying image [2].

7https://man7.org/linux/man-pages/man7/namespaces.7.html
8https://man7.org/linux/man-pages/man7/cgroups.7.html

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
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Figure 2.5: Components of Kubernetes [9]

2.4 Kubernetes

Kubernetes is an open-source container orchestration tool based on Google’s
internal system called Borg [25]. Since its introduction, Kuberentes has be-
come the most widely used orchestrator. It can handle load balancing and
expose a container to the outside world; it can also automate container de-
ployment and removal, and adjust the allocated resources based on the de-
sired state described by the user. Kubernetes relies on a cluster consisting
of at least one worker machine, called a node, which can be a physical or
virtual machine. Given a cluster of nodes and the instructions for the de-
sired containers’ state, Kubernetes automatically establishes and keeps that
state with the optimal usage of resources. Even if a container fails or is not
responsive, Kubernetes kills and replaces it automatically until it comes back
to a normal state. Furthermore, Kubernetes offers storage and management
for sensitive information, such as passwords, tokens, and keys.

2.4.1 Main Components

Usually a Kubernetes cluster consists of multiple nodes to provide high avail-
ability. Inside these worker nodes, Kubernetes runs the application workloads
as pods. Pods are the smallest deployment units in Kubernetes, and they con-
sist of one or more containers with shared resources [13].

The worker nodes and pods in the cluster are managed by a control plane
which comprises many components. These components have specific roles
when it comes to responding to cluster events and maintaining the desired
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state. Even though these components can run on separate machines, usually
all of them reside on the same machine and this machine does not act as a
worker node (i.e., does not run containers). Similarly, each worker node con-
sists of a set of components which ensure that the pods that are assigned to
them are running. Figure 2.5 shows a Kubernetes cluster, whose components
are detailed below [9].

The control plane components are as follows:

• kube-apiserver is an implementation of an API server for Kubernetes.
The API server has direct access to the cluster, and it exposes the
Kubernetes API to users, tools and other components in the cluster. It
is implemented as a RESTful API and stores the API objects in the etcd
persistent storage [15, 24]. Command line tools such as kubectl and
kubadm (commonly used by developers to interact with the Kubernetes
API) make API calls to this server on behalf of the user;

• etcd is a key value storage used for saving all Kubernetes objects. It
provides reliable and consistent storage for distributed systems;

• kube-scheduler is a component that assigns a node to a newly created
pod. It makes the node choice based on resource requirements, and
other constraints and specifications;

• kube-controller-manager is a component that runs controllers. Each
controller is assigned to a Kubernetes resource type and is responsi-
ble for sending messages to the API server to bring the current state
closer to the desired state [9]. The Kubernetes controllers include node
controller, which responds when a node goes down; replication con-
troller, which maintains the correct number of pod replicas; endpoints
controller, which populates the Endpoints object; and Service Account
Token controllers, which create default accounts and access tokens;

• cloud-controller-manager is a component that links a cluster with a
cloud provider API and separates the components interacting with that
cloud from those that interact only with the cluster [9]. The controllers
belonging to this component include: node controller, which determines
whether a node has been deleted if it stops responding; route controller,
which sets up routes in the cloud infrastructure; and service controller,
which creates, updates and deletes cloud provider load balancers.

The components that run on each node in the cluster are:
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• kubelet ensures that containers are running in a Pod. It takes a set of
PodSpecs and ensures that the containers described there are running
and healthy;

• kube-proxy is a network proxy that maintains network rules on nodes,
enabling communication between the cluster components and with ex-
ternal components;

• container runtime is the software that runs containers, such as Docker,
containerd or CRI-O.

2.5 Security

Docker containers take advantage of namespaces to achieve their isolation
[5]. Each of the used namespaces isolates a certain class of resources. For ex-
ample, process ID namespace prevents processes running within a container
from seeing or interacting directly with the processes running in another con-
tainer, or in the host. Similarly, network namespace provides each container
with its own network stack.

Control groups are another feature used by containers to control resources
but they do not offer isolation. Instead, they help the system protect against
denial of service attacks [5].

Since containers share the operating system with the host, most of the
system-level tasks are delegated to the host system. As a result, in gen-
eral containers can run their application with less capabilities and privileges
than the host system. Docker allows the configuration of these capabilities
depending on the needs of each use case.

On the other hand, Kubernetes builds on top of these container features
and provides to the user a set of capability controls. These controls can
be used to limit the resources used on a cluster, define user privileges of
each node, prevent loading of some kernel modules, set up network policies,
authentication, role based access control, secrets management and more [12].



Chapter 3

Online Platform for Interactive
Tutorials

Online Platform for Interactive Tutorials (OnPIT) is a system that enables
students to carry out interactive tutorials through a web application [11].
This chapter describes the design and implementation of OnPIT. It first de-
scribes the system. Afterwards, it presents the implementation of the system
architecture. The first component described is the web server and its fea-
tures, which include a description of the course content management, the web
terminal and its communication with the corresponding sandboxed environ-
ment, the automated assessment of the exercises as well as authentication
and authorization of users. Finally, it discusses how data is stored in the
system.

3.1 System Architecture

OnPIT has several components that enable it to provide interactive tutorials
through a web browser, provision isolated environments for each user, au-
tomate the assessment of the tutorials and manage the content. Figure 3.1
overviews the system and its components.

The platform runs within a Kubernetes cluster. The cluster contains a
web server and a database. It also launches containers which are used as
environments for the interactive tutorials and allows their integration based
on virtual machines. To retrieve the course content created by the teachers,
it connects to a git server from which it receives updated content whenever
it is changed. The platform is accessible only through the web server which
accepts client requests over HTTP and WebSocket.

Currently, the system resides on Google Cloud Platform. However, it is

20
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Figure 3.1: Architecture of the system

not dependent on a specific cloud provider and it can be deployed on any of
them or even on-premise.

3.2 Web Server

The web server is the main component of the platform. It serves as the entry
point for the user requests and communicates with all the other components
of the system to handle tasks such as storing and retrieving the data, provi-
sioning the learning environments and assessing the tutorials. The web server
is implemented in Python1 with Django2 web framework. The main respon-
sibility of the web server is to display the web application to the users. To
do so, it needs to store the content and process it based on the functionality
that the platform intends to provide.

The platform allows teachers to create their own courses. The content
of the courses is created into files following a specific format (described in
Section 3.2.1) and stored in a git repository. To add a course to the platform,
the web server provides to the teachers a web interface where they give the
information needed to retrieve the data from the repository.

The courses consist of one or more labs. Each lab is split to several steps
that contain the teaching material or the instructions for the exercise. The
teacher also provides some metadata about the courses and labs, and specifies

1https://www.python.org/
2https://www.djangoproject.com/

https://www.python.org/
https://www.djangoproject.com/
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Figure 3.2: Workflow of a tutorial

how each step of a lab is automatically assessed. The web server takes all this
information and transforms it into HTML. Figure 3.2 illustrates the workflow
of a tutorial. The courses are listed in the main page and upon clicking
any of them the user is redirected to a sub-page specific to that course,
which lists the labs contained therein. When a lab is clicked, the server
shows a terminal page which contains the instructions on one side and the
terminal for completing the exercises on the other side. The web server also
handles the binding of the terminal to a dedicated environment (described in
Section 3.2.2) and instructs the provisioning of these environments (discussed
in Chapter 4).

Whenever the student sends a command through the terminal, the server
checks whether that command achieves the result expected from that step.
The assessment rules for each step are specified by the teacher when cre-
ating the course, and this is further discussed on Section 3.2.3. If a step is
completed successfully, this is shown by a progress bar on top of the terminal.

Finally, the web server also handles the authentication and authorization
of users (discussed in Section 3.2.4).
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3.2.1 Content Management

OnPIT enables teachers to create their own course content. Such a content
is defined as a directory of RST3 and YAML4 files. A course has one or more
labs, the content for each of them is in a sub-directory. Both course and lab
directories contain a YAML file. An example YAML file for a lab is shown
in Listing 1.

t i t l e : T i t l e o f the lab
d e s c r i p t i o n : d e s c r i p t i o n o f the lab
d e t a i l s :

i n t r o :
t ex t : i n t r o . r s t

s t ep s :
− name : s tep1

t i t l e : T i t l e f o r s tep 1
text : s tep1 . r s t

− name : s tep2
t i t l e : T i t l e f o r s tep 2
text : s tep2 . r s t

f i n i s h :
t ex t : f i n i s h . r s t

grader : grader . py
i n i t i a l i z a t i o n S c r i p t : setup . py
environment :

image : ubuntu
technology : conta ine r

Listing 1: Example YAML file for a lab

The YAML files contain metadata about the corresponding course or
lab, such as the title and a description. In addition, the YAML file of the
course lists the directory paths for each of its labs, while the YAML file
of the lab lists each of the tutorial steps and their corresponding files. The
textual content of each step is written using RST (reStructuredText) markup
language, which is chosen because it has an easy syntax, it is extensible, and
it can be converted to other formats. OnPIT automatically converts the
content of these files into HTML and displays it during the tutorial steps
without the need for further modifications.

3https://docutils.sourceforge.io/rst.html
4https://yaml.org/

https://docutils.sourceforge.io/rst.html
https://yaml.org/
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A lab can also have two python files: a setup script, which is executed
before the learning environment is displayed to the student, and a grading
script, which contains the code for the automated assessment of each step
(described on Section 3.2.3). In addition, a lab chooses one of the technologies
and images supported by the system.

An example file hierarchy of a course directory is shown below:
course directory

course index.yaml

lab name

lab index.yaml

intro.rst

step1.rst

step2.rst

finish.rst

grader.py

setup.py

lab name 2

...

OnPIT downloads courses from git repositories. To add a new course to
OnPIT, a teacher has to push the content to a git repository and then give
the repository URL through the web interface. In addition, OnPIT auto-
matically gets a notification when the content is updated on the repository
and performs a new pull to get the updates. This is achieved through web-
hooks5. When a course is created, OnPIT generates the necessary credentials
and a URL that is given to the git host. When an event (e.g., push) is trig-
gered, OnPIT receives an HTTP POST message to this URL and updates
the local content to keep it on sync with the git repository. This enables
the teachers to automatically update the course content without interaction
with the platform itself.

3.2.2 Terminal Binding

The web terminal is implemented using a front-end component called xter-
mjs6. This terminal instance allows binding to the background process in the
web server through the WebSocket protocol. The WebSocket protocol facili-
tates the data transfer between the browser and the server since it maintains
a communication between the two and enables transfer in both directions.

5https://docs.github.com/en/developers/webhooks-and-events/

about-webhooks
6https://xtermjs.org/

https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
https://xtermjs.org/
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On the other end of the communication, the web server connects to the
sandboxed environment through SSH communication. This way, the web
server acts as an intermediary between the sandboxed environment (which
is provided to a user) and the web browser. Any input from the terminal
on the web browser is sent to the web server, which then forwards it to the
environments over SSH. Similarly, any output stream coming from the envi-
ronment, is forwarded to the front-end terminal which renders and displays
it to the student.

3.2.3 Automated Progress Tracking

OnPIT allows teachers to automate the assessment of their courses. This
is done by giving the instructions to the platform through a python script.
This assessment script is located inside the directory of a lab. The assessment
scripts contain the instructions for evaluating the successful completion of a
step in the lab. These instructions are sent from the web server to the student
environment through an SSH connection with root privileges. The instruc-
tions are executed with root privileges and can monitor the state changes on
the system to track the achievement of the tutorial goals. In addition, the
tutorial steps can be assessed based on the input stream which contains the
command of the student. This allows the teacher to check that the student
is using a specific command to achieve the result. The result from the execu-
tion of an assessment command is sent back to the web server, which stores
the result and updates the web browser view for the student.

3.2.4 Authentication and Authorization

Authentication is the process of verifying the identity of a user, while autho-
rization is the process of verifying that the user can perform an action. To
use OnPIT, users have to be authenticated. The platform offers two meth-
ods of authentication: third party authentication with Google and built-in
authentication, which is handled through Django on the web server.

Google authentication allows Aalto University members to authenticate
to the platform by logging in to Google with their university accounts and is
limited to users within the organization.

As an alternative, the users can register and login with the system’s
authentication. Django offers authentication features that handle user ac-
counts, groups and permissions. OnPIT uses these features to provide user
registration and login, as well as role-based access control.

OnPIT has two groups of users: teachers and students. Teachers can
create and manage courses, as well as enroll their students to these courses.
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On the other hand, students are allowed access only to the courses that they
are enrolled into.

Necessary authorization checks are implemented to make sure that neither
students nor teachers can access courses that they do not own or that they
are not enrolled to. In addition, users are not allowed to carry actions that
are not allowed by their roles (e.g., a student is not able to create courses).

3.3 Database

OnPIT needs a persistent storage for data such as user information and their
progress on the assignments. In addition, data storage can also be used for
the content of the courses, to facilitate the data retrieval and management.

The platform uses a relational database. This was chosen because OnPIT
has simple and well-defined data structures and relations between them, as
shown in Appendix A.

The chosen management system for the database is PostgreSQL7, which
runs inside a container within the Kubernetes cluster, and it communicates
only with the web server, which inserts and consumes the data. PostgreSQL
was chosen because it is major open source software and it is officially sup-
ported by Django. Thus, all the database operations take place through
the Django integration, by working with classes and objects instead of SQL
queries. Furthermore, Django maintains a persistent connection with the
database to decrease response time without having to open a connection on
each request.

7https://www.postgresql.org/

https://www.postgresql.org/


Chapter 4

Provisioning Student Environments

This chapter explains how OnPIT provisions the learning environments for
students. The chapter starts with an overview of the possible implemen-
tation of such environments based on software containers. Afterwards, it
presents some alternative solutions based on lightweight VMs and how they
are integrated in the system.

4.1 Container-based Environments

The main components of OnPIT, including the web server and database,
already exist inside a Kubernetes cluster. Therefore, building the learning
environments on top of the same platform allows easier system integration
and management of the environments from within the web server. This is
achieved by running a container for each session of a lab and then passing
the input/output streams between the container and the web terminal that
is shown to the user, using the web server as an intermediary.

Implementing the environments based on this design has two main steps,
as shown in Figure 4.1. First, the web server manages the lifecycle of the
student containers based on the students’ interaction with the system. Next,
it obtains a terminal connection to the container and pass the input/output
streams between the container and the student. To manage the lifecycle
of the containers, the web server connects to the Kubernetes API Server.
Upon receiving the instructions from the web server, Kubernetes creates or
deletes a student’s container. To establish a direct communication between
the container and the web server, the container runs an SSH server to which
the web server connects as a client.

This architecture allows the teachers to offer different container environ-
ments based on their course content. To do so, they need to specify the name

27
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Figure 4.1: Container-based environments

of the container image for each lab; the image is then pulled from a container
registry and launched when a student opens the lab. Docker Hub includes
so-called official images1 which provide the basic starting points for a num-
ber of projects, ranging from operating systems, to programming language
runtimes and other services, and they are supported and maintained by the
corresponding upstream projects. These images are a reliable option for base
images. However, most of them need to be modified to fit the purposes of
OnPIT (i.e., to allow access from the web server to the container).

The following sections analyze the potential use of Docker containers for
more complex environments, namely Docker itself and Kubernetes.

4.1.1 Docker in Docker

There are many situations where it would be useful to run Docker inside a
Docker container. There are two options to use Docker in Docker. In the
sibling mode, the Docker running inside the container is the same as the one
running on the host. Instead, in the nested mode, the container runs a real
independent Docker, which starts and manages child containers, as opposed
to sibling containers in the previous case.

The first mode relies on exposing the Docker socket to the container that
needs access to it through a volume. Using the Docker CLI, this can be
achieved with:

1https://docs.docker.com/docker-hub/official_images/

https://docs.docker.com/docker-hub/official_images/
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docker run -v /var/run/docker.sock:/var/run/docker.sock ...

However, this mode is not appropriate for OnPIT, since each of the stu-
dents should have their own instances of Docker and they should be sand-
boxed.

The second mode does not have such a straightforward implementation
since, by default, Docker containers are not able to run a Docker daemon in-
side. This is because of the restrictions that were put in place to achieve the
isolation properties that Docker offers. One such design choice was dropping
kernel capabilities that were not needed for general use cases or that were con-
sidered dangerous (e.g., cap_sys_admin capability, which allows mounting
filesystems). Moreover, they are not allowed to access any cgroup devices2.
To overcome these limitations, a container can be started with the privileged
flag. When this flag is used, the container is started with all the kernel capa-
bilities and without the limitations of the device cgroup controller, thereby
giving the container almost the same access to the host as if there was no
container isolation [4].

Using this flag, a new Docker environment for the students can be cre-
ated based on an operating system image from Docker Hub. A well-known
operating system such as Ubuntu is run with:

docker run --privileged -it ubuntu bash

This command pulls an image named ubuntu from the Docker Hub registry.
Afterwards, it creates and starts a privileged container process, and it creates
an interactive bash shell connected to the container.

After getting access to the container, Docker engine (docker-ce), the com-
mand line interface for the engine (docker-ce-cli) and containerd are installed
inside it.

When the installation is finished, the Docker Daemon is started using the
dockerd command. To verify the status of the installation the docker info

command can be used.
In addition, depending on the settings of the Docker running on the host,

there might be issues with the container’s filesystem. There is an official
Docker3 image on Docker Hub that handles these issues. The specific image
tag that does this is dind (standing for Docker in Docker). This image is
based on Alpine4 and in addition to installing the necessary packages for
running Docker, it also shares as a volume the directory where Docker stores
the containers (i.e., /var/lib/docker). This container also runs a script that

2https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
3https://hub.docker.com/_/docker
4https://alpinelinux.org/

https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
https://hub.docker.com/_/docker
https://alpinelinux.org/
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makes sure that the cgroupfs (i.e., kernel’s cgroup interface through a filesys-
tem) is properly mounted.

Once the built setup is working, the current state of the container can be
saved using the docker commit command. This creates a new image that
can be saved and pushed to a registry. Alternatively, a Dockerfile that has all
the instructions described above can be created and used to build an image.

Using a privileged environment like this is also possible in Kubernetes,
therefore this container can be integrated with OnPIT. However, to enable
the web server to communicate with the container, the container needs to
establish an SSH server to which the web server can connect. Moreover, since
this container needs to use the privileged flag and potentially create volumes,
this information should be given to the web server to properly configure the
container through Kubernetes API Server.

4.1.2 Kubernetes in Docker

There are different ways of setting up a Kubernetes cluster, based on the ease
of operation and management of the cluster and available resources. Kuber-
netes can run on a local machine, on-premises or in the cloud. Typically,
a deployment on a local machine is used for creating a learning or testing
environment. For such use cases, the Kubernetes community has developed
specific tools to make it easier to set up a local cluster that is adapted to
the resource constraints of personal machines. Such supported tools include
Minikube, kind and K3s. When it comes to production environments, there
are many custom solutions based on the cloud provider or the bare metal
environment used.

Minikube5 is the most popular tool for setting up a local Kubernetes
cluster. Typically, it runs a single-node Kubernetes cluster inside a virtual
machine on the device. The VM driver can be changed using the flag driver
when starting Minikube. It supports many drivers, such as docker, virtual-
box, kvm2, hyperv, vmware and none. The none driver works only on Linux
systems with Docker installed and sets up the cluster on the host itself in-
stead of a VM. This driver allows Minikube to run within a Linux container
that supports Docker. The Docker in Docker image used previously can serve
as a base image for such a Minikube in Docker environment.

kind6 (Kubernetes in Docker) is a tool that uses Docker containers as
nodes for creating a Kubernetes cluster. Its initial purpose was to be used
for testing Kubernetes itself. Similarly, kind depends on Docker for creating

5https://minikube.sigs.k8s.io/docs/
6https://kind.sigs.k8s.io/

https://minikube.sigs.k8s.io/docs/
https://kind.sigs.k8s.io/
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its Kubernetes cluster. Again, running kind inside a container is possible
and the same Docker in Docker image built previously can be used as a base
image for the new container.

K3s7 is also a certified Kubernetes distribution, which is designed for run-
ning on resource-constrained machines. K3s installation relies on systemd8

for its features. However, systemd is not part of Docker containers. To use
systemd inside a container, the container needs additional capabilities from
the operating system of the host. Like with Docker in Docker, the capabil-
ities needed to run systemd and K3s within a container can be enabled by
using privileged containers.

In all the cases, kubectl can be installed and used for interaction with the
API server through the command line interface.

4.2 Virtual Machine-based Environments

Nowadays, there is a clear distinction between traditional hardware virtual-
ization and the recent OS-level virtualization through containers. Each of
these technologies has its own advantages and drawbacks, and users are usu-
ally faced with difficult trade-offs when choosing between the two. VMs offer
more security and robustness, but that comes at a higher resource utilization.
On the other hand, containers offer lower boot time and overhead as well as
easier management, but there is the risk of an attacker escaping the sandbox
and compromising the host system. This section considers the possibility of
creating the student environments with some technologies that try to bring
together features of containers and VMs, to narrow the gap between the two.

4.2.1 Kata Containers

Recently, there have been many attempts at building tools that have the
advantages of both technologies, with primary focus on the speed of the
containers and the security of the VMs [20]. One such attempt is the com-
bination of VMs and containers to create a layered security model by run-
ning the containers, which already offer some level of isolation, inside their
own VMs as an additional layer. One implementation of this model is Kata
Containers9, an open source container runtime that wraps containers with
lightweight virtual machines, thus providing better isolation through hard-
ware virtualization [7]. The container runtime, known as kata-runtime, is

7https://k3s.io/
8https://wiki.archlinux.org/index.php/systemd
9https://katacontainers.io/

https://k3s.io/
https://wiki.archlinux.org/index.php/systemd
https://katacontainers.io/
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Figure 4.2: Docker components stack with kata-runtime

OCI-compliant. As a result, it works seamlessly with any container engine
that supports the OCI runtime specification (e.g., Docker) as well as Kuber-
netes, since it supports Kubernetes CRI through CRI-O and the containerd
CRI plugin. kata-runtime creates a virtual machine within which it launches
containers or pods, created by either the container engine or Kubernetes
kubelet. This enables Kubernetes to transparently choose between the de-
fault runtime (such as Docker) and kata-runtime. Figure 4.2 illustrates the
Docker stack with runc and kata-runtime running side by side.

Figure 4.3 shows the architecture of kata-runtime and its integration to
Docker and Kubernetes (through CRI). Each of the components are described
below:

• kata-runtime is an OCI-compatible runtime. Thus, it handles all the
commands specified by the OCI specification. Additionally, it launches
the hypervisor for creating a VM for each container or pod, and the
kata-shim instances (described next).

• kata-shim is a process that acts as a layer between a container shim,
such as containerd-shim or conmon10, and kata-agent (described next).
This is needed since a traditional shim running on the host cannot
monitor processes within a VM. Thus, kata-shim acts as the process
that the shim can monitor, and it handles all the streams and signals
from the shim to the container process.

• kata-agent is a process that manages the containers and the processes
within them. It relies on libcontainer11, a library that is also part
of runc, to manage the container lifecycle. It communicates with the

10https://github.com/containers/conmon
11https://github.com/opencontainers/runc/tree/master/libcontainer

https://github.com/containers/conmon
https://github.com/opencontainers/runc/tree/master/libcontainer
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Figure 4.3: Architecture of Kata-containers

other components over gRPC and it can run many containers in the
same VM.

The agent process is started by kata-runtime inside the virtual machine,
and it runs as a daemon. This agent and kata-runtime communicate
through the gRPC protocol. The protocol is used by the runtime to
send the container management commands to the agent and to trans-
fer all the input/output streams (stdout, stderr, stdin) between the
containers inside the VM and the container engine (e.g., Docker).

The hypervisor boots an operating system image by using a given Linux
kernel. Both the kernel and the OS image are optimized for fast boot
time and minimal resource utilization, providing only the necessary
services to run a container workload. The image is based on Linux
and runs only the init daemon (systemd) and the kata-agent. How-
ever, kata-runtime allows users to specify a different image, kernel or
hypervisor.

• kata-proxy is a process that enables kata-agent to access multiple clients
on a VM. This is necessary since a VM can run multiple container pro-
cesses and depending on the way that the guest and host VMs com-
municate, there might be a need for multiplexing and demultiplexing
the I/O streams to and from the containers. The proxy routes the I/O
streams and signals between shim instances and the agent. Connection
with the agent is done through a Unix domain socket, while the gRPC
requests are multiplexed through the yamux12 library.

Typically, containers have network isolation through namespaces. For
instance, by default Docker adds a container to a network that is isolated from
the host but shared between the containers. This can however be specified by

12https://github.com/hashicorp/yamux

https://github.com/hashicorp/yamux
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users, who have control over the networks available and to which of them a
container is attached. Generally, containers implement local Ethernet tunnels
through virtual ethernet (veth) devices13. These devices are created in pairs:
one end is connected to the container’s networking namespace, while the
other one is connected to the host OS. However, some hypervisors cannot
handle veth interfaces; a more common mechanism used by VMs is called
TAP14. Kata-runtime automatically handles the connection between veth
and TAP interfaces.

To use kata-containers with Kubernetes, each of the worker nodes should
have kata-runtime installed since a kubelet inside the node relies on a con-
tainer runtime for managing the containers. Despite its OCI-compliance,
kata-runtime cannot distinguish between the pods and containers. By de-
fault, a kubelet communicates with the runtime and requests a container cre-
ation for each pod or container needed. Upon such a request, kata-runtime
creates one VM for each pod and container. The additional information
needed to differentiate between pods and containers is provided by the Ku-
bernetes CRI runtime.

One of the main goals of OnPIT is to run student environments with
cloud-native technologies, such as Docker and Kubernetes. However, running
these technologies in a container-based architecture exposes the host machine
to various security threats. Kata Containers improves security, while at the
same time allowing the container environments to run as described in the
previous section since it seamlessly integrates with Kubernetes. The only
modification needed to use Kata Containers is changing the runtime when
launching a container.

To minimize the boot time and resource utilization, Kata Containers uses
a minimal operating system and kernel for the guest VM. As such, the offered
OS and kernel might not fulfill the requirements for running some specific
applications and in such situation, custom kernels should be created.

4.2.2 Ignite

Ignite15 is an open source administration tool for Amazon’s Firecracker mi-
croVM16, an open source KVM implementation optimized for high security
and isolation through virtual machines, while providing high speed and low
resource consumption similar to containers. It was developed for Amazon

13https://man7.org/linux/man-pages/man4/veth.4.html
14https://www.kernel.org/doc/Documentation/networking/tuntap.txt
15https://github.com/weaveworks/ignite
16https://firecracker-microvm.github.io/

https://man7.org/linux/man-pages/man4/veth.4.html
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://github.com/weaveworks/ignite
https://firecracker-microvm.github.io/
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Web Services and is used in the Lambda17 serverless computing platform
and the Fargate18 serverless compute engine for containers.

Ignite intends to make using Firecracker less challenging for users of con-
tainer technologies. It achieves this by providing a user experience that
resembles that of containers. Specifically, Ignite adapts the docker CLI com-
mands to manage Firecracker VMs the same way Docker manages runc con-
tainers. This way, Ignite enables developers to deploy and manage VMs in
the same manner as they would do with container workloads. Furthermore,
it also automatically handles networking, giving to the VM the same IP that
it would take if it were run as a container.

Ignite maintains the start up and shut down speed of Firecracker [16]. To
do so, running an image with Ignite boots a new VM through Firecracker.
The kernel starts the system initialization (i.e., executes /sbin/init) in the
VM and afterwards, Ignite connects the VM to the container networking
(through CNI). The image used by Ignite is a Docker container image. How-
ever, it does not run as a container within the VM, but instead it runs as
a real VM with a dedicated kernel. This abstracts even more the idea of
running a container as a VM, since the developer can run the same Docker
image as a VM without knowing how to use a specific VMM or how to set
up specific settings (e.g., the networking interfaces).

Ignite uses CNI19 as the default plugin to manage networking [10]. This
plugin allows VMs to connect on the same network as the containers when
using Docker or Kubernetes, and to map the ports from the VM to the host.
However, it does not support communication between multiple nodes. A CNI
plugin that supports packet routing between many hosts is needed for that
purpose.

Figure 4.4 illustrates the architecture of Ignite. First, the Docker image

17https://aws.amazon.com/lambda/
18https://aws.amazon.com/fargate/
19https://github.com/containernetworking/cni

https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://github.com/containernetworking/cni
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Figure 4.5: Integration of Ignite to OnPIT

is pulled using the container runtime. This image is used to run a container.
The root filesystem of this container is exported and together with the im-
age of the kernel they are used to create the snapshot that is going to be
used for the VM. Inside the running container, Ignite launches a component
called ignite-spawn. This process starts Firecracker, which in turn creates the
virtual machine by communicating with KVM. Furthermore, ignite-spawn re-
moves the IP address from the container and gives the same IP to the VM.
Finally, ignite-spawn also creates a bridge from the containers veth interface,
which is created by the runtime, to the TAP device which is used by Fire-
cracker. This way, all the communication is passed from the container to the
VM.

Figure 4.5 shows how Ignite is integrated to OnPIT. To integrate Ignite
with OnPIT, the web server needs to initiate the start up and shut down
of the VM, and to establish an SSH connection to it. Since Ignite uses
virtualization, it cannot exist inside a container, but it has to run on the
host (i.e., one of the Kubernetes nodes) or in a different machine. After
that, it needs to somehow expose an interface for the web server to send the
instructions for managing the lifecycle of the VM (equivalent to the requests
for the Kubernetes API). To implement this, the machine that runs Ignite
exposes an API server which accepts the requests from the web server and
has direct control over Ignite. Upon the creation of a VM, this API server
retrieves the IP address and sends it to the web server, which now can directly
establish the connection to the VM and forward the input/output streams
to the student’s browser.

Since the default networking plugin uses the same network as the con-
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tainers, by default, the web server is able to communicate with the VMs the
same way it does with the container-based solution.

Finally, since Ignite can use any OCI-compliant image, the system allows
reusing the same images built for the previous technologies above, and run-
ning them directly as VMs instead of containers, without needing further
capabilities from the host operating system.



Chapter 5

Evaluation

This chapter evaluates and compares the previously presented technologies in
terms of security and interoperability with both OnPIT and the technologies
used for the learning environments.

5.1 Security

5.1.1 Containers

Containers share the host’s kernel and their isolation is achieved through
software virtualization; thus, there is the risk of exposing the host through
exploits from within a container. Such exploits lead to breaking the isolation
properties of containers and escalating privileges. An example of such an
attack is the recent runc vulnerability1 that allows an attacker to obtain root
access on the host. Moreover, if there is a vulnerability on the host kernel, it
can be exploited from inside the container, resulting in a direct attack to the
host. The best protection against vulnerabilities such as these is to update
the host software including the Docker Engine, as well as the Docker images,
since they are often patched with protective measures against newly found
vulnerabilities.

Another measure is preventing privilege escalation through binaries that
run with elevated privileges (i.e., they have setuid or setgid permissions). In
Docker, this is done using --security-opt=no-new-privileges, while in
Kubernetes, it is achieved by setting allowPrivilegeEscalation field to
false in the Security Context.

As mentioned in the Chapter 4, Docker disables by default some ca-
pabilities that are considered more dangerous. The most secure model is

1https://nvd.nist.gov/vuln/detail/CVE-2019-5736
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achieved by disabling all of them (with --cap-drop all) and then adding
(with --cap-add) only those needed for each specific container.

When it comes to networking, containers can communicate with each
other by default. This feature is disabled by providing the --icc=false

flag when running the Docker daemon. If some container communication
is allowed, it is individually set for each container. In Kubernetes, this is
achieved by using Network Policies.

Another important requirement is the availability of the system. To avoid
resource exhaustion by a malicious user, Docker allows setting limits on re-
source usage, such as memory, CPU and maximum number of restarts, file
descriptors and processes.

5.1.2 Container Privileges

In Chapter 4 we considered the option of running Docker and Kubernetes
inside a Docker container. The first method of using Docker from within a
container exposes the Docker socket from the host. Since the owner of this
socket is root, giving users of OnPIT access to the socket is the same as
giving root access to the host.

The second method needs a privileged container. Privileged containers
are spawned because the workloads running within them need system-level
permissions. For a use cases such as OnPIT, users already have access to the
container through a terminal. These users are considered as potential adver-
saries: if they are given or somehow gain root access inside the container,
they are able to execute code directly on the host with all of the available
capabilities, including the previously mentioned cap sys admin. Since the
users already have access to the container through the web terminal, they can
find and exploit vulnerabilities within the container to gain root privileges
and then try to exploit the host itself. To protect against these privilege
escalation attacks, Docker allows using an unprivileged user inside the con-
tainer, who has lower permissions. The user can be specified at either run
time (through the -u flag) or build time (by adding the USER directive in the
Dockerfile). In Kubernetes, the same configuration is achieved by setting the
runAsNonRoot field to true under Security Context.

Even though launching a container with a non-root user is recommended,
there are applications that need root privileges. Such an example is the
Docker daemon. Using Docker implies running the Docker daemon, which
requires root privileges inside the container. At the same time, this process
also needs additional capabilities from the host and the container has to be
launched as privileged. To allow access from non-root users, Docker creates a
group docker during installation. The members of this group can build and
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execute containers without sudo. Despite giving the impression of improved
security, this mechanism de-facto gives root access to anyone who belongs
to the group. This is because Docker itself still runs as root. For instance,
Docker allows sharing any directory of the host with the container, and it
does not limit the permissions of the container on such a directory, thereby
giving the container full access to it. The command below is an example of
how to display the content of the shadow file – which stores the passwords of
system users and is only accessible by privileged users – as a non-privileged
user by exploiting the privileges of Docker itself:

docker run -v /etc:/data ubuntu cat /data/shadow

The command creates a shared volume between the host and the newly
created container. The volume on the host points at the etc directory and
is mapped to the data directory in the guest container. This guest container
can read the data inside etc as if it was the owner of the directory, bypassing
the permission checks. This could be used by a user of OnPIT, to obtain
root access within the container and to tamper with the system,

The Docker community is working on a mode, called rootless, that allows
the Docker daemon and containers to run as a non-root user to mitigate
potential vulnerabilities in the daemon and the container runtime [14]. How-
ever, at this stage the mode is only experimental and has many limitations.

Another option for preventing privilege escalation from within a container
even when a root user is used within the container is to re-map this user to
a non-root user on the host [6]. The range of UIDs assigned to the user
work as normal UIDs within the namespace, but the process has no privi-
leges on the host system. This mode is activated on the daemon with the
--userns-remap flag. The mode is similar with rootless, but in this case the
daemon on the host still runs with root privileges, while in rootless mode both
the container and daemon run as non-root users. However, userns-remap
does not work for system-level workloads because it is not compatible with
the --privileged flag.

In some scenarios, an application needs additional capabilities (such as
Docker) in a container and it also needs to be exposed to untrusted parties.
In this case, it is recommended to restrict the capabilities and devices to
the minimum needed for the specific container instead of running the con-
tainer with the --privileged flag. For this purpose, Docker provides the
--device, --cap-add and --cap-drop flags [4]. These commands give con-
trol over individual devices and capabilities, as briefly mentioned above.

Except for Docker, similar challenges and security issues are faced when-
ever the applications running within a Docker container need additional ca-
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pabilities. One such example mentioned in Chapter 4 is systemd, which is
needed for installing K3s.

5.1.3 VMs

Both VM-based technologies considered in Chapter 4 (i.e., Kata Containers
and Ignite) offer improved security over containers.

Kata Containers is built with the specific purpose of providing a security
sandbox for containers. All the security considerations mentioned above can
also be applied to kata-runtime. However, from a security perspective, kata-
runtime is preferable to runc, since it provides another layer of isolation
through hardware virtualization and it has its own dedicated kernel. This
avoids exposing the host system in case the container is compromised and an
attacker manages to escape the isolation properties within it. If a privilege
escalation happens, the attacker only gets access to the VM that wraps the
container, which provides another layer of defense and reduces the attack
surface.

Sharing the resources of the host, such as adding capabilities and accessing
host devices, is also supported by kata-runtime. However, this does not give
access to the real host machine, but to the guest VM. This allows kata-
runtime to be used even with more risky privileges while still being isolated
from the host machine.

On the other hand, Ignite relies on Firecracker for handling the isolation.
Similarly, Firecracker uses hardware virtualization and its security properties
are comparable to other VM technologies. However, since it uses minimal
kernel and limited number of emulated devices, its attack surface is also
smaller. Furthermore, it is already proven to be secure enough to run multiple
tenants on the same hardware in AWS.

5.2 Interoperability

5.2.1 Containers

The container-based environments are the easiest and most straightforward
solution when it comes to interoperability with the implemented system. Us-
ing containers as student environments takes advantage of the container fea-
tures and it is fully integrated with the OnPIT system through Kubernetes.
This makes it easy to manage and scale based on the actual demand.

OnPIT allows easily incorporation of new courses given a container image
and a corresponding Kubernetes object file, if the container has different
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requirements. The teachers have a wide range of tools and technologies that
come as containerized applications. Many of them have public official images
in Docker Hub, which can be extended to create custom environments for
the students. Any application that can run as a Docker container, can be
integrated to the system. The only needed modification is extending the
image by running an SSH server on it and adding the necessary certificate
that allows the web server to authenticate against it.

In addition, as previously discussed, containers share most of the oper-
ating system features with the host system and it is not possible to run
system-level workloads inside a container by default. A workaround to this
restriction is running the container with the --privileged flag. Indeed, this
breaks all the isolation assumptions of Docker, since when a Docker container
is launched with this flag, it gets access to all capabilities and all host devices.
If such containers are needed, then the specific capabilities and other security
settings need to be provided through the Kubernetes’ Security and Network
Policies. This is an added complexity for the teacher or system administrator
and assumes that a teacher can take such decisions that affect the security
and availability of the whole system, which is not desirable.

5.2.2 VMs

Using VM-based solutions with OnPIT require installation of the technologies
alongside the existing Kubernetes cluster. This brings up the need to set up
a custom cluster of machines that is used for the Kubernetes cluster and the
additional technologies, instead of utilizing a Kubernetes implementation
from the cloud provider (e.g., the Google Kubernetes Engine).

Both Kata Containers and Ignite are straightforward to install and set
up.

The runtime of Kata Containers is OCI-compliant, and this enables it to
seamlessly plug in to any container engine that supports the standard. It also
supports the Kubernetes CRI, allowing integration to Kubernetes for orches-
tration. This makes its integration to OnPIT seamless, since after installing
the runtime in each worker node, the only step needed to switch between runc
and kata-runtime is setting the io.kubernetes.cri.untrusted-workload

annotation for the specific container to true. kata-runtime also supports
sharing the resources of the host, such as adding capabilities and accessing
host devices. However, this does not give access to the real host machine, but
to the guest VM. This allows OnPIT to rely on the hypervisor for providing
isolation between the containers, even for those with more dangerous capa-
bilities. On the other hand, Ignite does not plug into Docker or Kubernetes
and needs to be used as an independent tool – at least, with the current im-
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plementation. However, compared to traditional hypervisors, Ignite provides
a familiar CLI that resembles the Docker CLI, and it utilizes OCI-compliant
images to create the VM it starts. Ignite also transparently attaches to the
same network interface as containers, allowing communication between the
containers and the VMs.

The difference between Kata Containers and Ignite is that Ignite takes
a Docker image and runs it as a real VM. Using Ignite for the learning
environments means that the user has direct access to a virtual machine,
and it does not run containers inside the VM (unless a runtime is installed
to be used by the user). Since Ignite runs a Docker image as a VM, all the
container settings needed to run system-level workloads inside containers are
no longer necessary, since the student environment is a traditional virtual
machine and not a container.

Both these solutions make use of light virtual machines to improve the
boot time and resource overhead. Ignite achieves this by utilizing Firecracker,
while Kata Containers allows selecting different hypervisors, including (but
not limited to) Firecracker. However, an instance of Firecracker with Kata
Containers only serves as a wrapper, since the OCI image is spawned as a
container inside it.

Firecracker is capable of running thousands of VMs on the same hardware.
Its memory overhead is as small as 3% and allows high density of VMs, while
the CPU overhead is even smaller [18]. Moreover, its boot time is as little as
150ms. Even though it runs a minimal Linux system, it runs any software
that does not have specific hardware requirements and it also allows hosts to
configure memory and CPU cores exposed to a VM.

On the other hand, the difference on boot time between kata-runtime and
runc is negligible if the VM is started with only one virtual CPU [35]. This
is the default setting, and increasing it impacts the VM’s boot time and the
memory footprint.

Due to architectural differences between container runtimes and Kata
Containers, the latter has some limitations that should be taken into consid-
eration [8]:

• it does not support Docker host network. As a result, it is not possible
to directly access the host network from within the VM;

• it does not support network namespace sharing between containers;

• it does not support the Security Enhanced Linux (SELinux);

• it is not straightforward to apply resource limitations. Sometimes the
constraints need to be applied at both container and VM level.



Chapter 6

Conclusion

Learning computer science is facilitated with hands-on exercises through in-
teractive tutorials on different topics. This thesis presented the design and
implementation of OnPIT, an online platform for interactive tutorials. The
platform is accessible online through a web browser and gives access to a
dedicated virtual learning environment. The learning environment provides
pre-installed software tools needed for a tutorial and is isolated from the other
instances. OnPIT allows teachers to create their own content and extend the
basic functionality of labs with new customized environments. Addition-
ally, the platform implements authentication/authorization mechanisms and
enables teachers to specify rules for automated progress tracking.

The platform is built with a container architecture based on Docker and
Kubernetes. This thesis evaluated the feasibility of using Docker contain-
ers as isolated learning environments for the students. When it comes to
the supported content, the container-based implementation allows extension
of environments by utilizing any container image supported by Docker and
Kubernetes. However, there are applications that by default cannot run in-
side containers. The thesis presented the limitations of Docker containers by
evaluating the feasibility of running Docker and Kubernetes inside a Docker
container. This was achieved by obtaining additional privileges and capabil-
ities from the host operating system.

However, running containers with additional capabilities opens more secu-
rity issues in terms of isolation, especially if they are not configured properly
or give access to untrusted users. To overcome these issues, this work pre-
sented alternative solutions that combine containers with VMs to provide the
advantages of both. First, it presented Kata Containers, a container runtime
that runs containers inside their own VMs. Next, it presented Ignite and
Firecracker, which allow Docker images to run as VMs with minimal kernels
and minimal operating systems instead of containers. The thesis presented
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their architecture and showed how they are integrated into the platform. Fur-
thermore, it showed that these technologies can be used instead of Docker
containers since the performance overhead is negligible when using their de-
fault options. These solutions also provide improved isolation and security
through hardware virtualization. Kata Containers allows running containers
with additional privileges and capabilities, while giving access to these fea-
tures from the guest VM, thus maintaining the isolation properties. Similarly,
Firecracker relies on virtualization technology for its isolation, and since it
has its own kernel and operating system, the applications running within the
VM can get direct access to all the features of the operating system.

Future work could address the direct integration of Firecracker VMs into
Kubernetes. Furthermore, the resource limitation of VMs could be dynami-
cally changed based on the needs of every instance. In addition, OnPIT could
be extended to allow students to run multiple environments at the same time
and integrate other features on the browser, such as a text editor, to make
the work easier.
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Appendix A

Database Schema

This appendix shows the schema of the database which consists of the follow-
ing tables: Course (stores the content of courses), Labs (stores the content
of labs), Grade (stores the progress of students on the labs), User (stores the
information of the users), CourseOwnership (stores the roles of users for each
course) and CourseToLab (stores the relations between courses and labs).
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Figure A.1: Schema of the database

50


	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure of the Thesis

	2 Background
	2.1 Virtualization
	2.2 Containerization
	2.2.1 Container Images
	2.2.2 Container Engines
	2.2.3 Container Runtimes
	2.2.4 Container Orchestration

	2.3 Docker
	2.4 Kubernetes
	2.4.1 Main Components

	2.5 Security

	3 Online Platform for Interactive Tutorials
	3.1 System Architecture
	3.2 Web Server
	3.2.1 Content Management
	3.2.2 Terminal Binding
	3.2.3 Automated Progress Tracking
	3.2.4 Authentication and Authorization

	3.3 Database

	4 Provisioning Student Environments
	4.1 Container-based Environments
	4.1.1 Docker in Docker
	4.1.2 Kubernetes in Docker

	4.2 Virtual Machine-based Environments
	4.2.1 Kata Containers
	4.2.2 Ignite


	5 Evaluation
	5.1 Security
	5.1.1 Containers
	5.1.2 Container Privileges
	5.1.3 VMs

	5.2 Interoperability
	5.2.1 Containers
	5.2.2 VMs


	6 Conclusion
	A Database Schema

