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Abstract

While self-driving cars are a hot topic in these days, fewer people know that the same
level of automation is being developed in the maritime industry. To enhance safety on
board and to ensure the optimal utilization of crew members, automated assistant so-
lutions are implemented on cargo ships and vessels.

This thesis deals with a monocular camera-based system, that is capable of detection
obstacles in open sea scenarios, and to estimate surrounding vehicles’ distance and
bearing. After a solid research of existing methods and literature, an algorithm has
been developed, containing three main parts. First, the real-world measurement data
and camera images are being processed. Secondly, object detection is achieved with
the YOLO deep learning methods, that achieves at a high framerate and can be used
for real-time applications. Lastly, distance and bearing values of detected obstacles are
estimated based on geometrical calculations and mathematical equations, that are val-
idated with ground truth measurement data.

Having multiple weeks of recorded measurement data from a RoPax vessel operat-
ing from Helsinki, allowed testing and validation already during the development
phase. Results have shown that the systems’ detection capability is highly affected by
the image resolution, and that distance estimation performance is reliable until 2-3 kil-
ometers, but estimation errors rise at farther distances, due to physical limitations of
cameras. In addition, as an interesting evaluation method, a survey has been con-
ducted with industry professionals, to compare human distance estimation capability
with the developed system. As a conclusion it can be stated that a significant need and
huge potential can be found in automated safety solution in the maritime industry.
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1. INTRODUCTION

1.1. Background of research problem
Robotics, automation, and autonomous systems are currently leading technological
fields. Sensor technology, data analytics and computing power has gone through sig-
nificant improvement in the last years, that enables and increasing level of automation
[1].

Although the industry of self-driving cars has the largest attention, since it has im-
pact on most households’ future mobility, well-being, and safety, nearly all other fields
are part of a rushing development phase in the transportation industry. In case of cargo
ships, large vessels and ocean liners the trend is the same, due to newest technological
innovations they are going through a dynamic improvement like never before. Auto-
matic applications can help navigation on opens sea, docking in harbors or detecting
obstacles on the route that could lead to hazardous events. With a stepwise implemen-
tation of these safety and comfort functions on watercrafts, single assistant functional-
ities are turning into highly automated, unmanned vessels.

This thesis investigates the possibility and feasibility of a monocular camera-based
object detection systems, that is capable of recognizing and localizing relevant obsta-
cles at open sea scenarios and estimate their distance and bearing. This kind of com-
puter vision-based solution can significantly contribute to the safety and reliability of
automated vessels, help in navigation, and could lead to unmanned bridge conditions
in the industry.

1.2. Motivation
The future of maritime industry is going in the direction of a so called B0 conditionally
and periodically unmanned ships. Advanced technological solutions have led to a de-
creasing number of persons on the bridge already in the past years. Although cargo
vessels are equipped with a large variety of sensors, the regulatory frameworks are
not yet ready to allow the absence of the Officer of the Watch (OOW). Regardless of
weather conditions, visibility or easily manageable traffic situations, to ensure safe op-
erations regulations require personal to look out the bridge window at all times [1].

The operating crew on the bridge often spends an entire work shift with looking at
radar screens, monitoring the environment through the window without intervention
or touching any equipment, even in secure scenarios with clear visibility conditions.
Same and similar monotonous and actionless work often leads to frustration, mental
fatigue and lack of alertness. All these effects can result in human failure, lower reac-
tion times and incorrect decision-making.

To meet the requirements of current regulations, human eyes might be replaced by
intelligent camera systems, that enable the optical scanning of the environment at all
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times. If it could be proved by supportive measurements, that computer vision-based
solutions perform similarly or even better than human lookout persons, the level of
automation in the maritime industry could increase further. The implementation of
such an optical monitoring system would result in more efficient utilization of vessel
crew, increasing mental health and a safer journey.

Furthermore, the motivation behind utilizing a monocular camera system is to be
able to reach significant cost reduction. Although most distance estimation algorithms
are based on stereo vision, and a single camera solution is full of technical challenges,
a functionally working estimation system would bring many benefits and competitive
advantages for future applications.

1.3. Objectives and scope
The objective of the thesis is to develop a monocular camera-based distance estimation
system as a combination of object detection and distance measurement, based on the
research of feasible methods of state-of-the-art solutions. Although computer vision
and machine learning methods provide multiple tools to create innovative solutions,
each use-case requires a different approach. Combining the right object detection tech-
nique with solid mathematical models, would allow to return radial distance and bear-
ing values of vessels from given input images, within a certain accuracy.

Camera based solutions have always some level of uncertainty, since they rely on
visual attributes and optical phenomenas that are highly affected by weather condi-
tions and visibility. The scope of the thesis, as an experimentation in the field, therefore
focuses on a solution for optimal conditions, exaggerated scenarios such as nights and
fog are not guaranteed.  Furthermore, as the assistive functionality is planned to facil-
itate the crew’s monotonous work, the relevant setting is at open sea.  As a matter of
course, the purpose of the thesis is to create a working solution, where the main func-
tionalities are working properly, in order to build a solid ground for future develop-
ments.

1.3.1. GOAL OF THE THESIS

The overall goal of the thesis is to confirm or refute the fact, whether a monocular
camera-based assistance system could significantly improve the safety and establish
new features in the maritime industry. To compare the developed system’s results to
the existing human performance, a numerical comparison should be made.

In addition, based on validated data, performance measures should evaluate the ob-
ject detection efficiency and distance estimation accuracy of the solution, with the aim
to give substantial advice on the feasibility and emerged limitations that may have
effect on the installation in commercial use.
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1.3.2. SCOPE OF THE TECHNICAL REALIZATION

The technical realization consists of two main steps, first the relevant objects must be
detected on given input images, then an estimation has to be given on distance and
bearing. Although a general solution, that is compatible with multiple vessels, would
be an ideal scenario, computer vision-based systems often require prior knowledge of
the camera mounting, setting and camera calibration.

The thesis is based on the data of a cruise ship, operating from Helsinki. Since the
camera has a fixed mounting position, the system’s estimation is optimized on the
given vessel’s technical parameters, meaning that a stable operation can be only guar-
anteed on the mentioned vessel or ship, with really similar properties.

Furthermore, the objective of the thesis is to detect obstacles in open sea scenarios,
therefore it’s not intended to work properly in crowded situations, where a city’s land-
scape or group of islands can be seen in the background, instead of a clear horizon.
Finally, vessels and cruise ships have to deal with a variety of weather conditions and
have to operate also under limited visibility. As mentioned before, most camera sys-
tems are highly affected by visibility, and since the thesis was developed on a prede-
fined setting with hardware limitations, it cannot be assured that foggy, dark periods
and similar challenging scenarios are also handled properly.

1.4. Overview
The thesis is divided into three main parts, theoretical introduction to provide proper
background knowledge, a detailed explanation of the technical solution and finally, a
demonstration of results and drawing conclusion.

1.4.1. THEORETICAL BACKGROUND

The theoretical introduction is laying a foundation to have proper background
knowledge on automation in maritime industry, trends in computer vision and possi-
bilities with state-of-the-art solutions of deep learning. To understand the chosen
methodology and the details of the technical realization, it is necessary to introduce
the technology briefly.

1.4.2. METHODOLOGY OF TECHNICAL SOLUTION

The main part of the thesis deals with a thorough explanation of the developed tech-
nical solution. Details of data labelling, object detection and distance estimation will
be described in this section.
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1.4.3. RESULTS AND CONCLUSION

Finally, the systems performance will be evaluated based on multiple metrics, and
based on the outcome, a sufficient conclusion will be drawn to answer the questions
mentioned as the goals of the thesis. As an outlook, appropriate suggestions will be
made based on the results and arisen limitations.
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2. THEORETICAL AND CONCEPTUAL BACKGROUND

2.1. Automation of vessels

2.1.1. HISTORY AND FUTURE OUTLOOK

The operation of cargo vessels and container ships has always been a mixture of com-
plex tasks. Controlling the engines, docking in harbors, navigation between continents
and steering in crowded traffic situations are just a few essential tasks that captains,
and the crew must handle on a regular basis.

The rapid growth of automation has reshaped the working principles of these crafts,
while the reliability of robotic applications have taken over many tasks in the last dec-
ades. The effect can be seen clearly on Figure 1, due to assistive and automatic func-
tions, the minimally required crew size has been diminished significantly.

[2]

Figure 1 - The changing number of crew size on cargo ships [3]

The rising need for safety, simplification of operations and reduction of cost are all
key indicators why developments are accelerated, and the digitalization of shipping is
more dynamic as ever before. The application of game changer technologies in marine
solutions are fundamental steps to keep a competitive advantage in the industry  [3].

Although the tendency shows that an unmanned operation could be reached soon,
autonomous solutions still require the presence of humans on board. There is a large
step between partly automated, remote controlled or fully automated systems [4]. [5]

250

140

100

40
16

0

50

100

150

200

250

300

350

1860 1880 1900 1950 2000

A
ve

ra
ge

 n
um

be
r o

f c
re

w

Year

Crew size on cargo ships



6

Figure 2 - High level working principle of automated solutions [6]

At the current stage, automated vessels have assistive functionalities, such as obsta-
cle detection and obstacle avoidance, that rely on sensor data. The forming smart har-
bors and the increasing communication between collaborative vessels establish the
way for self-docking solutions soon. In long term, all these developments tend to reach
a fully automated vessel, where small ferry boats, but even large cargo ships could
navigate from one harbor to another autonomously, without human intervention.

2.1.2. OPERATIONAL BENEFITS

Naturally, there are solid reasons and a variety of benefits that require the advance-
ment and digitalization of vessels.

One of the main arguments is safer operation. In 96% of accidents in marine scenar-
ios, human errors are shown to be the root cause [6]. With reducing human-caused
errors, many accidents and collisions could be prevented, and a safer operation could
be ensured  [7]. The motivation is not to replace and dismiss human labor, but to use
the power of engineering to eliminate risks and to assist decision making.

Furthermore, increased efficiency is needed for a sustainable business and to reduce
costs. With the help of newest technologies, a more intelligent navigation can be
reached that results in a more economical service. The optimal utilization of vessels
does not only provide an economic business model for technology provider compa-
nies, but allows a more environmental friendly operation of such systems.
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2.1.3. TECHNOLOGICAL CHALLENGES

The robustness, reliability and the future acknowledgement of automatic functionali-
ties rely on technology. If the machine will be the number one decision maker in the
coming decades, the systems must detect and measure all surrounding vehicles and
obstacles to understand traffic scenarios.

Changing weather conditions complicate the perception of the environment, there-
fore proper sensor technology must be used, that will be introduced in later sections.
Although many sensors exist and are implemented on vessels, sensor fusion makes it
possible to process reliable measurement values and to create robust systems. Another
technological challenge is having adequate computing power. Multiple high-quality
sensors produce a large amount of data that has to be stored with a high framerate. In
addition, state-of-the-art solutions are often based on machine- and deep-learning
methods that solve complex equations and require compelling computing power.

Besides the fact, that latest technology is the fundamental building brick of such so-
lutions, technical challenges are not the withdrawing factors of these systems. Several
successful pilot projects globally have proven, that technology could be ready and
solid enough to proceed with autonomous functions.

2.1.4. LEGAL BARRIERS

One of the main restraining forces for the implementation of automatic solutions is the
absence of a comprehensive legal framework. Regulations lag behind technology and
cannot hold the dynamic speed of technological developments.

There is a major uncertainty in legislation since autonomous ships have never ex-
isted before. Similar use-cases, such as self-driving cars, have also a poorly established
framework, therefore legislators are limited in relying on pioneering regulations. A
strong collaboration is needed between tech companies and law-makers, since a trans-
parent development roadmap and technical capabilities of systems define the base for
new legal rights and licenses.

Moreover, the compliance of varying national and international regulations are chal-
lenging, due to the fact that countries stand at different levels of legislation. Thus, ship-
ping has always played a key role in global transportation, regulations on autonomous
functions must hold on international levels, to avoid intermittent operation opportu-
nities. In practice, all affected countries will not be able to change their laws in the same
dynamic, due to disharmonic innovativeness and technical, economical and political
interests. Therefore, most innovative countries are the leaders of reformatory technol-
ogies, where successful pilot projects can set trustfulness, so countries from the second
wave can adapt, based on the reliable experience of pioneers.
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Since most of the automatic functions will likely require connectivity with surround-
ing vessels and cloud-based solutions, cyber security will play a key role in enhancing
safe operations. From one hand, they are exposed to a high risk of hacker attacks that
might be able to take over control of systems or disturb sensors technology. On the
other hand, telecommunication coverage is often poor on open seas where even a blind
operation must be guaranteed. Cyber security methodologies today are already at a
high technological level, but missing regulations and exact requirements are again de-
laying factors for applying innovations of the future.

2.2. Commonly used sensors in maritime situations
A key element of automatic solutions is the perception of the environment with the
help of sensors. Marine vehicles run under both normal an extreme weather condi-
tions, such as low visibility at night, storms, foggy days or even snowing. Since most
situations have devious drawbacks, vessels are equipped with a wide variety of sen-
sors to have a proper overview of the environment, that allows a safe navigation. In
this section, the most common maritime equipment is introduced to have a better un-
derstanding behind the motivation of applying a camera-based system.

2.2.1. RADAR

Radars, that transmit and receive electromagnetic waves were applied from old times
onward. Already in the middle of the 20th century, they were counted as irreplaceable
navigational instruments [8]. This fact has not changed since then, radars as still one
of the primary sensors that provide safe navigation on seas. In case a larger vessel or
cargo ship is in the range of detection, the transmitted electromagnetic waves get re-
flected, while the receiver unit processes the signals. Based on the returning energy the
distance, bearing and velocity of an existing object can be calculated.

The widespread utilization of radars is due to its many advantageous properties. A
robust working principle and resistance against weather conditions, darkness and fog
allow a long range of detection under various conditions. In the maritime industry, a
cleared sea and the low number of objects foster the distance measurement accuracy,
compared to the applications on land. [9] [10]

Figure 3 - Marine radar and radar image [10] [11]
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Despite the fact, that radars are robust sensors with high measurement accuracy, the
measurements lack many informative properties of the objects. Based on the received
energy, the radar cross section (RCS) is the only key indicator in defining the size and
type of the detected obstacles [11].  Unfortunately, the RCS values are highly influ-
enced by the material and distance of the objects, therefore the radar measurements
observe rather the existence and position of sea vehicles. Lastly, smaller vessels often
reflect a small amount of electromagnetic waves, thus cannot be detected properly by
the radar.

2.2.2. LIDAR

Light Detection and Ranging (LIDAR) is a laser-based distance measurement technol-
ogy commonly used in autonomous systems. The sensor emits pulsed laser beams in
certain directions, usually in 360 degrees, that get reflected by objects inside the de-
tected range. Based on the returning signals and elapsed time, the distance of points
can be estimated. The rotating sensor then generates a 3D point cloud of the environ-
ment, based on the single measurement points [12].

Compared to radar sensors, one of the main advantages of lidars is that they repre-
sent detected objects by many measurement points, that can more precisely determine
the exact shape which is the basis of a profound object classification. Furthermore, the
working principle allows an independence on the quality of natural lighting condi-
tions, it can be used both in daylight and at night under normal circumstances [13].

On the other hand, the reachable measurement range is limited to a few kilometers,
and the resolution deteriorates significantly in the far. In addition, snowing, heavy
rainfall, and dense fog, all of them induce measurement errors since the laser beams
may get reflected by the particles of the residual.

2.2.3. AIS

The Automatic Identification System (AIS) is the most informative platform in the mar-
itime industry, an indispensable tool for collision avoidance. Although the equipment
is not a sensor, the automatic tracking system transmits valuable details of surround-
ing vessels and sea vehicles. The monitoring system provides vital signals such as a
unique identification number, position, speed and course of the vessel, the anticipated
destination, and the estimated time of arrival. Its undoubtful, that no other sensor
could elaborate such a wide variety of information [14].

Despite the fact, that the AIS system appears like a complex and reliable source in
general, it has many downsides as well. The broadcasting frequency can sometimes
alter significantly, second based signaling can attenuate to even three minutes. The ego
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sea vehicle is exposed to the vessels in the intermediate environment, since the trans-
mission of AIS signals is their duty, the ego vessel itself is just a passive listener. In the
unlikely event, when the transmission drops out, the AIS is turned off or a small and
medium size vessel is not registered in the system at all, it is not possible to receive
any information of surrounding vehicles. For the above-mentioned reasons, one can-
not rely truly on the AIS data, there is certainly a need for an additional active moni-
toring solution.

2.2.4. CAMERA AND THERMAL CAMERA

Vision based sensors, such as cameras and thermal cameras combine many advantages
of previously mentioned sensors, and have the most similar properties in functional-
ity, compared to human eyes. Based on regulations, the human vision and the sight-
based environment monitoring is a mandatory prescription on the bridge.

Cameras have a wide viewing angle and can observe the environment on a large
range. Theoretically, the limitation of the viewing distance is the horizon, or objects
that are above the horizon even further, assuming that a modern industrial camera is
used. Computer vision-based solutions are a commonly used and efficient tool in de-
tection and classification of objects, such as vessels, islands, reefs or mainland. Based
on lens properties and geometrical rules, even distances, bearings and sizes can be
estimated.

Unfortunately, bad weather conditions, fog and darkness, that result low visibility
affect the observation capability of cameras pretty much. If the lighting conditions are
not suitable, the physical requirements for the proper operation are not met. Thermal
cameras can be a great suit for applications facing multiple environmental conditions,
however a high resolution and clear thermal contours are necessary. Since thermal
cameras do not see colors, they can only differentiate between objects and background
elements if a significant difference in temperature is visible. In the maritime use-case,
the hull of vessels has often similar thermal reflection as the sea nearby, but the engine
compartment and the chimney can be detected due to their higher temperature.

2.2.5. COMPARISON OF SENSORS

There is no straightforward answer whether one sensor is better than the other. All of
them have many attributes than can be beneficial or detrimental in certain use-cases.
As a summary, the following Table compares the most relevant properties of sensor
types introduced earlier.
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Radar Lidar Camera Thermal camera
Range of detection
Dependency on weather
Availability in darkness
Object classification
Data density
Cost of equipment

      Good:               Fair:               Poor:

Table 1 – Comparison of radar, lidar, camera and thermal camera

The main motivation of the thesis is to evaluate the possibility of applying monocu-
lar cameras for distance estimation of objects. As the table also states, camera systems
could be financially sustainable solutions for detecting vessels and estimating their
distance and bearing.

2.3. Object detection methodologies and deep learning
Computer vision as a tool can be applied in many use-cases. Object recognition is used
to identify a specific object on an image, while classification aims to select the class or
category of an object. The relevant field of computer vision regarding the thesis is ob-
ject detection, that not only identifies the specific category of the object, but also finds
its location on the image. The output is usually a bounding box, that shows the external
boundaries of the target. Object detection methods are applied in various fields of tech-
nology, such as surveillance and tracking persons on security cameras, face detection
or recognizing cars and pedestrians for driver assistant systems [15].

2.3.1. TRADITIONAL COMPUTER VISION METHODS FOR OBJECT DETECTION

The human brain can easily detect and classify objects, but what attributes characterize
a different type of vessels specifically? Is it the shape or color? While the human brain
processes the information automatically, the characterization and definition of marine
vehicles have to be taught for computers and camera systems.

The usage of Fourier Descriptors is a traditional, template-based computer vision
method to detect objects. The approach uses shape information, the contours of the
objects are represented by vectors and the outline itself is described as a mathematical
function. In order to detect vessels, the mathematical function of a reference object’s
contour has to be set and compared with other edges on the image. If the function of
the target’s edge is similar to the template, the object of the category is recognized on
the image. Fourier descriptors are efficient methods in some cases, but the dynamically
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changing environment in maritime scenarios are a way too complex task to solve. On
a horizontal image, multiple types of vessels would all require a template shape to be
compared, and changing orientation and alignment also lead to multiple outlines of
vessels. If satellite images would be used, the FD process may perceive the cigar-
shaped boats from a top-view, but that is not the case in this research. Furthermore,
vessels in the far are represented by only a low number of pixels, where the mathe-
matical functions of the object’s outline would inaccurate, making the comparison re-
sults uninterpretable [16].

Another possibility could be the saliency method, that tries to identify image regions
which stand out relatively to their neighboring pixels and grab attention on the picture
[17]. Based on a research paper submitted by members of the Nanyang Technological
University in Singapore, a method called global sparsity potential has been developed
to find maritime obstacles on the sea. The basic idea of the feature is to find texture of
objects that are not similar to other areas on the sea surface, meaning the presence of
distinct objects [18]. Although the research paper states great results, based on an anal-
ysis of a large image dataset utilized in the thesis, many cases cannot be detected with
the method. A starting point of the algorithm is the segmentation of the sky and the
sea surface to select the region of interest. It turned out, that the approach is limited to
vessels, which’s shape is located below the horizon, since that is the region where the
comparison takes place. In many general traffic scenarios, a significant part of the ves-
sels are above the horizon. Moreover, the dataset has shown, that there is a wide vari-
ety of light conditions, where humidity or fog blurs the image in a way, that the con-
tainer ships’ or ocean liner’s texture and color appears the same as the water surround-
ing them. Last but not least, the surface of oceans is really noise from a computer vision
perspective, since the waves, sunshine and clouds can create changing colors and
strong edges, that could lead to false detections.

2.3.2. OBJECT DETECTION USING THE POWER OF DEEP LEARNING

Besides traditional computer vision methods, deep learning (DL) gained ground as
one of the top techniques in object detection for its performance and adaptability.
These State-of-the-Art algorithms are based on convolutional neural networks with
many layers, that can learn object classes on thousands of training images recognize
new input images with a high accuracy and efficiency.
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Figure 4 – Object detection and image segmentation in maritime surveillance [20]

Image segmentation is the pixel-wises semantic annotation of the whole picture, where
image parts get divided into regions with homogeneous class labels [19]. A deep neu-
ral network can be trained to distinguish between the sea, background, sky, land or a
specific object seen on the image. During the process, each pixel is assigned to an image
part category. Although the detected obstacles’ form can be described more precisely
than in other methods, this level of accuracy is not intimately relevant for distance
estimation, moreover, the increased need for computing power could be detrimental
for the intended system.

The topmost technological method required for the thesis is object detections using
deep convolutional networks. Given an input image, the network can decide the exist-
ence of vessels and also find the location represented by a bounding box. In order to
learn such features, a large amount of datapoints need to be labelled. On one hand,
some datasets, such as the Singapore Maritime Dataset, exists already that contain
more than 200 thousand images that can be used for custom training [20]. On the other
hand, some high level, open source detectors are already available online and have the
capability of detecting required objects. As an example, an easy-to-use, highly efficient
network is YOLO, that can detect vessels and performs on an industrial level. Due to
its individual approach, it achieves a high framerate that allows a close to real-time
perception.

2.4. Computer vision for distance estimation
The first challenge of the thesis task is to detect the obstacles on the sea. That is an
essential part, since the position of the vessels set the base for the distance estimation
algorithms. This section introduces conceptual possibilities for measuring distances
based on visual information.
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2.4.1. STEREO CAMERAS

Stereo cameras are a fundamental solution for depth perception on images. Using two
cameras with a special alignment can create a pixel-wise depth map of the visible en-
vironment. Stereo vision is similar to the human eyes sight and the brains capability
to understand two dimensional images in space. The method is based on geometrical
calculations, where the recorded images are shifted with a known offset, and based on
these prior adjustments, the two pictures can be confronted, and distance can be cal-
culated [21].

The main downside of the approach is that all the infrastructure, hardware and com-
putation is doubled. First of all, two camera have to be installed, a need for larger com-
putational power is essential for real-time image processing and also, double of the
normal storage space is required to process the images taken at the same time [22] [23].

Figure 5 - Stereo camera model illustration [23]

2.4.2. MONOCULAR CAMERAS

Monocular camera-based systems for distance estimation are still under research,
there is no established method yet. As mentioned earlier, a significant cost reduction
can be achieved with solutions using single cameras, they have a huge potential, but
of course, the developments are more challenging compared to other technologies.

First of all, one of the basic but theoretically correct and implementable solution is
the usage of the pinhole camera model. Based on prior knowledge of the detected sur-
face, mounting position and lens properties, geometric equations and mathematical
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models can be set up and distance calculations can be made. In general, if the size of
an object is known, a conversion between pixels and distances can be made and a pro-
portional technique can be applied. After a successful calibration, the distance can be
easily estimated by the number of pixels that the edge of an object contains. However,
in maritime scenarios, the orientation and type of vessel are continuously changing,
taking any prior assumption on the size of vessels could be misleading. Open sea sce-
narios can be approximated as a flat surface, where with the help of known Earth cur-
vature properties and camera mounting height, distances can be estimated based on
the relative alignment on the surface.

In some cases, the relative position of the marine objects is inspected between the
ego vessel and the horizon, which is detected in the early phase of algorithms [24].
Since the horizon is a straight line in optimal case, with the help of open source com-
puter vision libraries, it can be detected with Hough Transform or Canny Edge Detec-
tion. From one hand, the horizon can be used as a reference point with known distance,
but it can also be used to define region of interests and a separator between sky and
sea.

Even if the utilization of the horizon seems logical, many doubts appear in real
world applications. First of all, if an island, mainland or a mountain appears in the
background, the horizon detection may fail. The clear contour that can be seen on open
sea will disappear. Secondly, foggy, and cloudy weather often obscure the horizon, it
changes to a blurred line or cannot be seen at all. Using the horizon as part of an algo-
rithm might create to many dependencies that lead to failed operation in complicated
weather conditions. Finally, the roll-pitch-yaw angles have to be considered in case a
camera is mounted on a buoy, but large ocean liners that are used in the thesis are
significantly less affected.

Additionally, a more advanced solutions called Optical Flow also exist, that uses a
single monocular camera for distance estimation. The idea behind the method is that
it analysis the pixelwise change and the displacement of certain pixel regions between
two consecutive images [25]. In robotic applications or ground vehicles, they can be
used on small distances with reasonable alteration of images. Unfortunately, at open
sea the scenario is quite static, there is lack of changing reference points since the only
objects are the targets themselves, that are moving with unknown velocity and orien-
tation as well.

2.4.3. DISTANCE ESTIMATION WITH MACHINE LEARNING

Finally, distance estimation on images could be also achieved with monocular cameras
and machine learning techniques. The Institute of Automation in Bremen has devel-
oped DisNet, a Multi Hidden-Layer Neural Network for railway operations, applied
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on smaller distances compared to the maritime use-case [26]. The inputs of the super-
vised learning method are bounding box coordinates of various objects together, with
ground truth measurement values coming from a Lidar sensor.

More than 2000 datapoints have been used to train the model, which is actually an
image-based regression problem of coordinates and distances. Unfortunately, the mar-
itime scenario requires not just objects with distance in a few hundred meters, but
datapoints from multiple kilometers and with widely spread vessels on the side of
images as well. Based on rules of thumb, a training of such a model would require
nearly 10.000 training images for the maritime application, which is not possible given
the available ground truth measurements and the scope of the thesis. Moreover, the
trained model highly depends on the mounting height and mounting angle, it’s hard
to parametrize as a general solution, therefore in case a similar solution is implemented
on a new vessel, another dataset has to be recorded and the model must be retrained.

As a summary, traditional geometrical solutions with single cameras tend to be the
best practices for distance estimation in the current use-case. Besides their easy imple-
mentation and acceptable computing power needs, they can be parameterized well
with just a few variables, that allow a scalable and sustainable solution for the future.
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3. TECHNICAL DESIGN AND REALIZATION

3.1. Research plan
Many solutions exist in the field of object detection and measuring values on images.
Even though, the challenges of the current marine use-case require a grounded choice
of technologies to achieve prominent results. This section explains in detail, how the
advantageous properties of existing methods have been combined to build a complex,
multifunctional system.

3.1.1. INTRODUCTION OF THE METHODOLOGIES

The development is built on three main components. First of all, data collection was
needed to pair up real-world camera images with ground truth measurement data.
Secondly, the object detection method had to be developed, to recognize and localize
vessels on images. Finally, based on location inputs of the object detection, a distance
estimation approach had to be established.

The data serving as a base for the thesis was a large set of measurements, recorded
on a cruise ferry that operates from Helsinki. Camera images, GPS positions, internal
sensors and many more were recorded in various traffic and weather conditions. RGB
cameras are the first input for the system, were object detection is applied. Based on
the analysis of the literature review and existing solutions, a deep learning-based
method has been chosen. In case a cargo ship, ocean liner or other type of vessel gets
selected by the detector, a representative point must be chosen for further calculations
on distance end bearing. During the development phase, GPS coordinates served as a
comparison, to validate the estimation capability of sensors. While current ships are
equipped with a large number of sensors, the final system developed as part of the
thesis are not based on sensor fusion. In contrary, a blind method is used, where the
input information relies only on one single RGB color image.

3.1.2. THEORETICAL CAPABILITIES AND LIMITATIONS

Besides having the power of newest technology, some theoretical capabilities and lim-
itations, the system is affected by, must be clarified in advance. Two main facts have
the most impact on the systems performance, one of the is the curvature of the Earth,
the other is the image resolution and quality the input images are recorded with.

As a fact, the Earth is spherical, which means that a human or a camera sees the
horizon as the end of the ocean surface. In theory, but also in practice, object farther
than the horizon can be also seen, however, the current use-case limits the system for
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objects before the horizon. It is necessary to see the bottom of objects since their loca-
tion is a crucial step in distance estimation. Unfortunately, only the upper part of ob-
jects can be seen behind the horizon, which means that their real height is unknown
and could be arbitrary high in theory. In addition, the observation height plays a key
role in determining how far the horizon can be seen.

Figure 6 – Distance of the horizon based on observation height

As Figure 6. also states, the higher the observer is placed, or a camera is mounted,
the farther the horizon is seen. The video cameras used in the thesis are set around a
height of 30 meters, meaning that the real distance of the horizon is around 20 kilome-
ters, assuming the globe as a perfect sphere with radius of 6371 kilometers. Therefore,
the upper theoretical limit of detecting an obstacle on the sea, using the currently
equipped vessels, is around 20 kilometers.

Another key factor is the resolution of the images, that highly affects both object
detection, and the distance observation as well. An important question, but difficult to
be answered, is the minimum observable size of vessels in term of pixels. At a shorter
distance, vessels appear larger and are represented by many pixels. From one hand,
they can be detected easier due to their size, but the real advantage is, that a more
detailed shape and color pattern can be identified, due to the large number of repre-
senting pixels. In contrary, at a farther distance, the shape of marine obstacles only rely
on a few pixels, meaning that only a low-resolution, discrete contour is visible. The
vessels’ most straightforward characteristic, for deep learning-based object detection
algorithms is the connection of edges and the outline. Unfortunately, due to the above-
mentioned reasons and basic physical parameters, it is expected to see deteriorating
performances at higher distances.
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Moreover, the distance resolution, that defines the estimation capability of systems,
is dependent on the number of vertical pixel points. Images describe the visual world
in a discrete way by pixels. A pixel does not only mean a single point in the real world,
but cover a larger sea surface area, in the current case. Since the camera is mounted in
an angle of nearly 15 degrees compared to horizonal, as a result, a changing resolution
will be seen in relation to the distances.

The exemplary drawing on Figure 7. demonstrates that there is a significant difference
in observed areas by pixels at the bottom and the top of images. At the beginning, at
shorter distances, a single step in pixels means 10-15 centimeters change in reality. The
d1 and dn values indicate, as further the pixels are determined, the larger the covered
distances get. Based on mathematical calculations, the distance steps reach even a few
kilometers difference near the horizon, meaning that a detection error of only one pixel
will immediately lead to an estimation error, of kilometers order of magnitude. Such
physical limitations must be considered when designing estimation systems and eval-
uating their performance.

Last but not least, illumination properties, visibility conditions and changing envi-
ronment will play a key role in the system’s performance. The water surface is a highly
textured plane that can change rapidly among different faces, such as an orange color
at sunset, blue when clear sky or grey in stormy weather. The detection of small objects
therefore results in a challenging task, since the fore and background do not have a
homogeneous character, larger waves and clouds can eventuate strong environmental
contours, while the critical obstacle, such as a grey ship might be blurred by fog. Given
the above, camera-based observation systems have not just physical limitations, but
are affected by a variate of complication circumstances and challenges.
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Figure 7 – Changing distance resolution based on pixel steps in the image plane (red)
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3.2. Data collection and labelling
The method developed in the thesis is a concept solution for industrial application
purposes. A standardized camera with fixed mounting height and positions had to be
set to conduct further research on existing methodologies. The primary source infor-
mation for the computer vision-based system is the camera images itself. An industrial
camera equipped on a RoPax vessel cruising from Helsinki served as the base for the
developments. Although single camera images would be sufficient for object detection
methods, distance estimation requires ground truth measurement data from addi-
tional sensors, to have a profound basis for comparison and validation purposes.

3.2.1. DESCRIPTION OF DATA

The proprietary communication protocol used in the thesis is developed specifically
for real-time system’s applications. The protocol is programming language independ-
ent and is suitable for applications where low latency and high bandwidth is crucial.
Messages contain both internal and vessel specific sensors measurements, which can
be processed online or offline by using the protocol-specific API.

One of the main features of the protocol in the maritime use-cases is the Automatic
Identification System (AIS), where vital details are sent across vessels inside a given
region. AIS encompasses a unique identificatory called Maritime Mobile Service Iden-
tity (MMSI), GPS position coordinates, vessel bearing and speed and many more de-
scribing the current status of surrounding vessels. Once a ship is equipped with AIS,
an ego vehicle can track and localize traffic companions within a certain radius. From
the perspective of the research work, the GPS coordinates are the most crucial infor-
mation to generate ground truth training points. Once the camera images, that are re-
ceived in the communication files, contain vessels, the timestamp can be compared
with recorded AIS information in the same moment, meaning that based on GPS loca-
tion, the vessels can be recognized and identified instantly. Basic mathematical calcu-
lations can later on determine distances and bearings with a high accuracy.

3.2.1.1. Internal sources

In this thesis the recorded internal measurements of a maritime technology company
were used, that contain cruises operating from Helsinki in various weather and light-
ning conditions. The recordings are coded with a communication protocol and had to
be processed beforehand, to reach camera images and AIS data in appropriate format.
In total, 200 files were recorded, each of them containing a timeframe of 20 minutes,
resulting an overall set of more than 65 hours of operation time. Naturally, not all of
them contain applicable scenarios or visible vessels, but a large dataset was available
for development. Detailed data processing methods will be described in later sections.
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3.2.1.2. External sources

While the internal dataset contained both images and distance measurements, some
external data sources can be found as well. However, it is important to highlight, that
accurate distance information was only available for the used dataset, but object de-
tection could be assisted with external data.

One of the most expanded data is collected in the Singapore Maritime Dataset
(SMD). It contains both onshore and onboard camera images and videos of crowded
traffic situations around the Singapore harbor. Many researches focusing on object de-
tection and classification of vessels are based on SMD. In this thesis, the object detec-
tion method is a more sophisticated and commonly applied method, where the usage
of external sources would not result in significant performance improvements or
would be out of the scope. Unfortunately, SMD does not contain distance information,
therefore the performance could not have been validated. Besides SMD, other mari-
time datasets exist as well, but none of them provide additional measurements. Usu-
ally internal, industry-heavy research has been conducted in the field, were open-
sourced data would endanger competitive advantage.

3.2.2. LABELLING METHOD

The labelling method, to combine camera images with GPS coordinates of visible ves-
sel were divided into two main subtasks. First of all, the raw measurements had to be
processed, meaning that the camera images and the AIS data had to be subtracted from
a large set of information, that was encrypted in the binary files. After gaining the right
format of images and the GPS information surrounding obstacles, a timestamp-wise
comparison was made. The next sections explain the two subtasks in detail.

3.2.2.1. Processing raw data files

As mentioned before, the measurement files contain all the necessary information that
serves as a base for the thesis. The raw data file stores the AIS information, that was
transmitted by marine vehicles in a range of 40-50 kilometers around the ego vehicle.
The vessel specific information arrives in the AIS data structure, containing the MMSI
identifier, latitude and longitude information paired with a global timestamp. Alt-
hough many more details are transmitted and recorded, in this case GPS coordinates
are essential, but also sufficient values for further calculation.

AIS information is received as individual packages, each vessel in transmitting its
information every few seconds. In many cases, multiple packages arrive at the same
timestamp, but still individually. The regularity of messages varies and is depending
on the velocity as well, since vessels moving at a higher speed transmit their values
every few seconds, but docked ships send their updated AIS only after a couple of
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minutes. Besides arising challenges with the transmission frequency, it is also a vali-
dation, that camera-based systems have a market need and potential, since objects
could be tracked at a much higher framerate compared to the AIS.

Based on the incoming data from the files, the information gets processed immedi-
ately, distance and bearing are calculated while running. In a real-world application,
this would mean real-time calculation time. The distance of two distinct GPS locations
have been calculated with the help of the python geopy library, using a formula in-
vented by Thaddeus Vincenty. Built upon two iterative steps, geodesic distances can
be calculated using latitude and longitude coordinates as inputs. The accuracy of the
approach outperforms other methods, where instead of a perfect spherical, a precise
ellipsoidal modeling of the Earth is undertaken [27]. For bearing calculation, some in-
itial statements have to be clarified. A few general approaches exist, that are used in
maritime situations and geodesy, where given two different points with coordinates,
the absolute bearing can be defined [28]. However, it is important to mention that the
camera system will be only able to estimate a relative bearing value, since the heading
of the vessel will not be used as an input parameter, to ensure a standalone function-
ality. After the calculation of the absolute bearing, the heading needs to be extracted
to provide comparable results for validation purposes later. Given two points with
coordinates in radian A (lat1, long1) and B (lat2, long2), the following equations can be
applied:

𝑑𝑖𝑓𝑓𝐿𝑜𝑛𝑔 = 𝑙𝑜𝑛𝑔2 − 𝑙𝑜𝑛𝑔1

𝑥 = sin (𝑑𝑖𝑓𝑓𝐿𝑜𝑛𝑔) ∙ cos (𝑑𝑖𝑓𝑓𝐿𝑜𝑛𝑔)

𝑦 = cos(𝑙𝑎𝑡1) ∙ sin(𝑙𝑎𝑡2) − sin (𝑙𝑎𝑡1) ∙ cos (𝑙𝑎𝑡2) ∙ cos (𝑑𝑖𝑓𝑓𝐿𝑜𝑛𝑔)

𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑎𝑡𝑎𝑛
𝑥
𝑦

Note, that the atan() function returns values between the range of -180° and 180°, but
in the current use-case, the compass bearing must be calculated. Hence, the initial bear-
ing value needs to be normalized, to receive results between 0° and 360°. After the
conversion of the initial bearing from radians to degrees, the final step is:

𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑐𝑜𝑚𝑝𝑎𝑠𝑠 = (𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙  + 360) % 360

(1)

(2)

(3)

(4)

(5)
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When the calculations are done for a single message, the information package, con-
taining MMSI identifier, latitude, longitude, distance and bearing values, get stored in
a pandas data frame [29]. In addition, a simple filter is added to each line, that checks
whether a vessel is possibly visible or not. If a vessel is less than 20 kilometers far, and
the coordinate is within a certain viewing angle compared to the ego ship, the visible
flag is set to true, otherwise to false.

MMSI Latitude Longitude Radial distance Bearing Visible flag
0 230986940 60,1542 24,8895 0,7899 -11,3493 True
1 230046990 59,7365 24,6029 4,2768 4,8112 True
2 636014356 60,2057 25,6238 1,1189 36,4791 True
3 230125940 60,0902 25,9856 2,8719 -48,0089 False
4 230184000 59,9436 24,9259 2,6544 -22,5734 True
5 255805884 59,9074 25,558 7,1415 55,9423 False

… … … … … …

Table 2 – Stored AIS values in Pandas Dataframe

Two important design considerations have to be explained. First of all, a real-time
refreshing table could be made, that always shows the last known position of each
vessel. This method could be used on vessels in real application, where the exact posi-
tion of surrounding vessels is required always at the current time. In this case, the data
is only needed to be comparable with the image stream to identify detected objects.
Unfortunately, the image stream and AIS messages are not always synchronized, that
could lead to miscalculations and the processing and comparison of both information
at the same time were not efficient. More details are explained in the next section. The
other design concept that has to be mentioned is the event-based refreshing of the da-
tabase. Logically, one would only consider the incoming AIS messages, where dis-
tances and bearing get calculated and stored after no further update is received. Nev-
ertheless, since the camera is mounted on a moving vessel, and sometimes the trans-
mission of signal is delayed by 10-15 seconds, the moving state of the ego vessel must
be acknowledged in addition. For this reason, the database must be refreshed when an
event of incoming AIS message is happening, or the ego vehicle transmits a new posi-
tion. In practice, at a given timestamp all newly received positions have to be pro-
cessed and all known positions from the last timestamp have to be updated. Since the
method is calculation heavy, the data is not utilized in real time, but for each measure-
ment file, a large data frame gets stored to a CSV file, containing all incoming infor-
mation, ego position updates and necessary calculations for each timestamp within a
recorded time window. The stored CSV file is later on serving as a base for the next
step, where GPS coordinates, distances and bearing get compared with the camera
images based on the recorded timestamp.
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3.2.2.2. Comparison of camera images and relevant obstacles

Camera images arrive as an image stream with a high framerate. However, with lack
of vessels, many images are not relevant and even when some are visible, it is not
necessary to process images more frequently than a couple of seconds. Each image is
paired with a timestamp, that serves as a base for comparison. Using the generated
CSV file described in the earlier section, theoretically visible objects will be selected for
each image and the visible object in practice can be assigned.

This method allows to determine ground truth distance and bearing values to ves-
sels appearing in the images. Unfortunately, it is a manual task. Although the detection
of objects is possible by a computer, the pairing with measurement values require ac-
curate decision making. First of all, a false comparison can undermine the performance
of the system, as the whole distance estimation method is based on the generated val-
idation data. Therefore, a manual supervision is needed to avoid possible errors. Sec-
ondly, measurement based, theoretically visible objects cannot always be localized on
the images, due to visibility conditions, covering of geographical objects or overlap-
ping obstacles. Moreover, the MMSI identifier has to be checked to assure a correct
detection and pairing. Last but not least, the timestamp of the image stream and the
refreshing of AIS information is not necessarily fully aligned. The two systems work
independently, therefore the most accurate pairing can be done only, when the closest
timestamp is chosen. As mentioned in the earlier section, the comparison is not made
while running and processing the files, because the shifted timestamps could results
situations, when the closest AIS update is after the image stream, which leads to more
accurate values, which could not have been produced if only earlier updates would
have been taken into consideration.

Moreover, an important design choice is the analysis of all surrounding vehicles
even in the past. The flag, that states the potential visibility of objects, is helpful when
choosing the seen object from the measurements. However, in many cases a standing
or moving object outside of the viewing area can fall into the visible region of the ves-
sels change position and rotate accordingly. Therefore, the incoming AIS message
stream always needs to be processed and values from the past have to be updated,
without filtering out implausible obstacles. This case is mostly relevant for vessels
transmitting their information only every few minutes, since the ego vessel’s trajectory
can change drastically within that time.

This section has introduced a parallel method that helps to generate validation data
to determine the performance of distance estimation methods later on. Although, an
adaptive, real-time solution would be preferred on the bridge, the current use-case
differs, and different requirement are needed. In this research, the only input for the
real-life application is a single camera image, where object detection and estimation
has to be applied. Therefore, the separation of processes was only needed to create
training data and will not affect or delay calculation times for the final system.
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3.3. Object detection
After the receiving and processing of data has been discussed in the previous section,
the second phase of the algorithm deals with object detection on camera images, which
will build the ground for the distance estimation methods later. Object detection is a
complex task, where relevant marine obstacles have to be identified as a classification
problem, and as an additional step, an image-based, pixel-wise localization has to be
made. Based on a detailed experimentation of State-of-the-Art methodologies, a deep
learning-based approach has been chosen as the primary object detection method.

3.3.1. USING YOLO OBJECT DETECTION LIBRARY FOR EXPERIMENTATION

Many convolutional neural network-based architectures deal with object detection,
such as RetinaNet-50, RetinaNet-101, R-CNN, Fast R-CNN or YOLO. Region proposal
based convolutional networks such as R-CNN are not designed for real time imple-
mentation, since they can only perform at a low framerate. Fast and Faster R-CNN are
already sped up solutions that are close to real-time, but region proposal methods are
still bottlenecks of the system.

You Only Look Once (YOLO) object detection library, is a SoTA solution that out-
performs many other architectures due to an outside of the box principle, interpreting
the challenge as a regression problem. Instead of defining regions, YOLO uses a single
convolutional network that predicts bounding boxes and class probabilities for each
of them, only after one single look at an image [30].

An image is split into a certain number of grids, typically with a 19x19 pixel size,
each of them responsible for predicting a number of bounding boxes. In the next step,
a class probability and offset value is assigned to each bounding box, meaning that the
probability is determined, whether a cell contains a certain object. Furthermore, the
class with the maximal probability is chosen as the type of the object, while a particular
grid cell with the highest probability also localizes the object within an image. YOLO
is a magnitude faster compared to other object detection algorithms and can reach even
up to 45 frames per second.

Although 45 frames are not required in the maritime use-case, a system capable of
real-time detection is necessary for safety critical industrial applications. Nevertheless,
the YOLO network struggles with identifying small objects, which would be an im-
portant feature for detecting obstacles at higher distances. In the current solution, the
detection speed and detection capability hat to be compromised, where the framerate
benefits provided by YOLO were significantly higher, as the detection capability of
other networks [31].
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Figure 8 – Accuracy comparison of deep learning architectures [31]

Figure 9 – Detected frames per seconds of deep learning architectures [31]

The Darknet YOLO v3 approach, which was chosen as the primary object detection
method in the thesis, was trained on the COCO dataset on hundred thousands of im-
ages. In total, around 80 object categories are pretrained on the networks with a large
set of data, which also allowed the detection of ships and vessels. Interestingly, the
original YOLO v3. Implementation based on the work of J. Redmon and A. Farhadi
[32] had slightly lower performance as the high-level, easy to use, open source com-
puter vision library called cvlib, which is based on exactly the same networks [33].
After both methods were implemented, the cvlib has been chosen for its user friendli-
ness. Based on further analysis, the color coding and processing method of saturation
values seem to lead to dissimilar results in detection performance.

YOLO has shown compelling results during the development phase. While larger
vessels in the front of the image are easily detectable, smaller ships at farther distances,
near the horizon were often not detected. As mentioned in earlier section, on low qual-
ity images, the shape of the vessels in the far are not well-sophisticated, since only a
low number of pixels define the outline of the hull. A more detailed performance eval-
uation can be found later in the Results and Discussion section.
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3.4. Distance estimation with traditional computer vision methods
In the Theoretical overview section multiple methodologies for distance estimation have
been introduced, strengths, and weaknesses of have been analyzed and a combination
of methods has been selected for further steps. A basic requirement for the developed
concepts solution was the usage of a monocular camera from the beginning on. In this
section, two methods are introduced, a tradition bottom-up geometric solution based
on the pinhole camera model and lens properties, and a sampling-based top-down
method, that builds a distance mapping on processed measurement values as a regres-
sion problem.

3.4.1. PRIOR ASSUMPTIONS AND KNOWN UNCERTAINTIES

As it was partly discussed in the Theoretical capabilities and limitations section, some
prior assumptions and uncertainties have to be given attention to and be explained.
Due to the fact, that the thesis discusses a concept solution using a monocular camera,
limitations can be applied, and the performance can be analyzed, but the effect of prior
assumptions have to be dealt with.

First of all, in the oncoming calculation models, the ocean in the observable range is
considered as a flat surface. Based on calculations with a horizon distance at 20 kilo-
meters, the maximal offset, between a perfect spherical shape and the flat representa-
tion, is below 10 meters which can be negligible at the current stage. From one hand,
it does not have a significant effect on distance estimation, and sometimes, at the open
sea also waves can reach to that height in normal circumstances. Secondly, the per-
spective representation of the image plane causes a distortion in distance steps of pix-
els. As mentioned earlier, at lower pixels, that show closer parts of the ocean in reality
the pixelwise step in distance is low and precise. However, as farther points are cov-
ered, a pixel step can lead to kilometers change in the distance plane. As Figure 10
states, the larger distances are observed, the less pixels are representing a certain dis-
tance region meaning a lower resolution quality.

Figure 10 - Number of pixels for distance categories
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Furthermore, there are three main factors that create uncertainty in the estimation
methodology. In context to the previously mentioned change in distance resolution,
the pixel selection of vessels must be as precise as possible. For estimation of parame-
ters, a representative point has to be selected after detection of marine obstacles. The
representative point is on the bottom part of the vessel, that has the highest correlation
with the measured distances in real life scenarios. Due to some uncertainty in the
YOLO based object detection method, bounding boxes might be shifted by a few pixels
around or inside a given object. While it does not cause problems at shorter distances,
issues arise when estimating vessels in the far. If even one pixel difference takes place,
the observed value will lead to an error of kilometers magnitude or more. Therefore,
some correction steps need to be undertaken, to prevent large pixel errors and mini-
mize estimation digressions.

The next uncertainty is caused by the asynchronous sampling of AIS messages and
camera images. Camera images used as inputs of the system can be accessed with a
frequency depending on the framerate. In contrary, the AIS and ago motion infor-
mation messages, that are the main values for ground truth distance calculation, arrive
in unpredictable time intervals and shifted compared to the images. For this reason,
the surrounding vehicles seen on the image cannot be compared and combined with
AIS data from measured at the same timestamp. Based on an image, the algorithm
chooses the values from the closest possible timestamp, whether it was recorded be-
fore or after the image was taken, since the closest timestamps will achieve the smallest
prediction error. In conclusion, although the best possible AIS and image combination
is selected, there is still an error by default that can lead to incorrectness in the distance
and bearing calculation.

Lastly, the vessel size itself generates uncertainty to the system. The detected objects
are a few hundred meters long, and it is not explicitly defined, which point of it is or
has to be taken into consideration. In marine traffic, the Closest Point of Approach
(CPA) is usually selected, since that defines the most critical position and the shortest
acting time, the Time to Closest Point of Approach (TCPA). Although it is the most
logical reference point, it is not necessarily correct when considering measurement
files as ground truth data for validation. In most cases, the AIS transmission point of a
vessel varies between the front and the back of the boat. If always the closest points
would be considered, the system would be affected by a large, unpredictable distance
error from the beginning on. Therefore, to average the error and to create a generic
solution, always a point from the middle of the ships have to be selected. Hence, the
AIS transmission points error, that cannot be dealt with beforehand, is minimized by
this design decision.
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3.4.2. REMOVAL OF BOUNDING BOX ERROR

All three uncertainties as a combination deteriorate the distance estimation capability
of the system. In order to minimize the risk of known error sources, the bounding box
error can be reduced by a short set of functions.

Figure 11 – Removal of the bounding box error. (1) Range of interest (2) Gaussian blur (3) Canny edge detection

In case an object is detected properly, a bounding box is created to define the region
the obstacle is in. Sometimes the bounding box is larger than the object, in other cases
a few sides or parts are cut through. Both cases are possible error sources that have to
be prevented. When a bounding box is set, the algorithm extends it to a range of inter-
est, practically meaning, that the bottom part of the box is expanded. Hereby it is as-
sured, that the bottom of the detected vessel is inside of the analyzed region. As a next
step, a Gaussian blur is applied with a kernel size of 3x3. Based on tests of multiple
combinations, 3x3 based smoothing provided the best results as a preprocessing step.
Finally, the Canny edge detection method was implemented, to identify the outline,
especially the bottom part of the vessel. With the help of this step-by-step method, the
middle point of the vessel’s bottom can be easily selected, meaning also, that the
bounding box error could be minimized significantly.

3.4.3. DETAILED EXPLANATION OF A BOTTOM-UP METHOD

Now that objects are detected and some elementary error sources have been elimi-
nated, a solid ground is set to apply distance estimation methods. The first bottom-up
method builds up a mathematical model from geometrical principles, into a high-level
distance mapping of image pixels. The approach is based on perspective geometry of
image points on the ocean surface, approximated as a plane.

(1) (2) (3)



30

Figure 12 - Perspective image of points on a plane [34]

Given the mounting height and mounting angle of the camera, the image resolution,
and the camera field of view the geometric mapping can be applied. This geometrical
solution has been selected to be able to parametrize the model with initial values, to
have an adaptable solution for vessels with different setups.

Parameter type Parameter value
Mounting height 30 m
Mounting angle -15°
Image resolution 704 x 576
Camera FOV 82°x 60°

The principle of the estimation method is, that a fixed camera setting defines a clear
part on the ocean surface for each pixel, that concludes the whole visible region as one.
As a first step, to each pixel with X-Y coordinates a distance value gets assigned, that
is calculated based on geometrical properties and equations, since points on the image
and scene planes are related by a projective transformation. Defining the values for the
whole image, result in a complex, pixelwise distance mapping. When an object gets
detected and localized, a representative point is selected and based on their X-Y coor-
dinates, a distance value can be looked up and returned from the predefined mapping.

To calculate the values of the distance map pixelwise, first the middle column in the
vertical direction has to be determined. Knowing the camera height, the mounting an-
gle from the horizontal direction and the vertical FoV of the camera, distances can be
calculated with the following formula using the pinhole camera model:

𝑑 =
ℎ

tan (𝛽𝑖)

where βi is the angle of the viewing axis and the horizontal direction. Figure 13 indi-
cates two essential angles, βmid that is equal with the mounting angle and defines the
optical axis, which is the middle point of the image. Furthermore, β0 indicates the low-
est visible part of the image, that is equal with the border of a blind spot region.

(6)
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While the calculation of remarkable points is trivial, the challenge relies in the division
of viewing axes and angles between the endpoints. At first, a solution would be to split
the vertical Field of View in the number of the vertical image resolution to equal parts.
Unfortunately, that assumption is mathematically not correct, since the angles deter-
mined by the viewing ranges are constant, but in reality, the pixels, that are a unit step
on the image are constant and the viewing angle is changing.

To utilize the βi angles on Figure 14, that are necessary for distance estimation, the αi

angles have to be calculated and added to the mounting angle, by that the optical axis
of the image plane is rotated. Based on the sketch seen on Figure 13, the following
equations can be determined:

tan(𝛼1) =
1 𝑝𝑥

𝑑𝑖𝑠𝑡𝑝𝑖𝑛ℎ𝑜𝑙𝑒

Where 𝑑𝑖𝑠𝑡𝑝𝑖𝑛ℎ𝑜𝑙𝑒 is the distance between the focal point and the image plane. With
reshaping the equation, the angles shown in Figure 14 can be calculated as follows:

Focal point

Optical axis

1 px

1 px

1 px

1 px

1 px

1 px

𝛼1 > 𝛼2 > 𝛼3

α1

α2

α1

α2

α3

α3

Figure 14 – Approximated vertical alignment of pixels and angles

Figure 13 – Field of View, Mounting Angle, Blindspot angle, Optical axis angle
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𝛼1 = atan
1 𝑝𝑥

𝑑𝑖𝑠𝑡𝑝𝑖𝑛ℎ𝑜𝑙𝑒

𝛼1 + 𝛼2 = atan
2 𝑝𝑥

𝑑𝑖𝑠𝑡𝑝𝑖𝑛ℎ𝑜𝑙𝑒

𝛼1 + 𝛼2 + 𝛼3 = atan
3 𝑝𝑥

𝑑𝑖𝑠𝑡𝑝𝑖𝑛ℎ𝑜𝑙𝑒

Following these steps until 288, that is the half of the image resolution and defines the
half of the image plane, brings us to a general equation:

𝛼1 =
𝑛=288

𝑖=1

atan
𝑝𝑖𝑥𝑒𝑙𝑠𝑡𝑒𝑝𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ∙ 𝑖

𝑑𝑖𝑠𝑡𝑝𝑖𝑛ℎ𝑜𝑙𝑒

Where:

𝑛 =
𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡

2 =
576

2 = 288

𝑝𝑖𝑥𝑒𝑙𝑠𝑡𝑒𝑝𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
𝐹𝑜𝑉 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 =
60

576 = 0.10417

𝑑𝑖𝑠𝑡𝑝𝑖𝑛ℎ𝑜𝑙𝑒 =
𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡

2
𝑡𝑎𝑛 𝐹𝑜𝑉 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

2
=

288
tan(30°)

With the equation (11), all the changing angles can be calculated and added step by
step to the direction of the optical axis, thereby all the vertical distance can be calcu-
lated with the equation (6).

Now that the vertical angles and distances are assigned correctly, the horizontal di-
vision of pixel values has to be completed. The camera used in the application has a
wide viewing range, meaning that the distance is highly affected at the side of the im-
ages. As a reference, the values of the middle column on the image are used for each
row to generate the mapping sideways. Similarly, to the vertical calculations, the angle
steps are calculated based on the horizontal FOV of the camera and the horizontal res-
olution of the image. The parceling is completed, when each X-Y points on the image
were assigned an estimated distance value, which can be approximately displayed as
heatmap of distances and coordinates. Figure 15 is based on calculated values but
serves only as a visualization to show the extension of distance categories. In the de-
veloped algorithm, each single pixel has a unique distance value assigned.

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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Figure 15 - Generated distance heatmap

As a final step, the distance heatmap has to be aligned with the real camera image.
The camera used in the thesis was set up with a wide-angle lens that creates a barrel
distortion on the image. To avoid a bent horizon and amorphous shape of vessels, an
image rectification process has been applied with the help of camera calibration values.
Interestingly, the rectified camera images could still not be perfectly overlaid, some
misalignment has occurred near the horizon. The geometrical calculations are theoret-
ically correct, but the issue might rely on approximated mounting height and angle
from beforehand. A wrong mapping between the image and the distance map result
in wrong estimation, therefore the issue needed to be corrected. To achieve a correct
re-mapping, a recalculation has been done that takes the pixel value of the horizon as
an additional parameter. Knowing the exact location of the farthest point, helps to re-
calculate the mapping between the horizon and the bottom of the image, that is the
first visible part after a blind spot region.

Figure 16 – Shifted mapping of distance heatmap and camera image (left), corrected alignment (right)
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With the completion of the final correction step, a fully functional concept solution
has been developed. Giving an input image, the obstacle gets detected using the YOLO
network, a reference point gets selected and the adequate distance values get returned
based on X-Y coordinates. The developed solution was validated on over 100 data-
points with known real-world distances and image location. Detailed results and eval-
uation are explained in later sections.

Figure 17 - Visualization of detected vessels

A main advantage of the solution is adaptability, due to the fact that changing a few
initial parameters can recalculate the distance heatmap, if the method would be ap-
plied with a camera at a higher mounting point or a lower vessel. Furthermore, the
basic geometrical calculations are mathematically proven and do not require special
computational power, meaning that a real-time application is possible. On the other
hand, some drawbacks are due to the discrete representation of the world through
pixels. Each pixel defines a smaller or larger region on the ocean surface, where the
whole region is concluded with on distance value. In reality, the distances vary within
the observed range, but that cannot be analyzed in more detail by cameras. In the cur-
rent implementation, the shortest distance within a region was selected for safety pur-
poses, but in the future, the averaged middle-point could be considered. Furthermore,
theoretical knowledge with prior assumptions and methods in optimal scenarios can-
not always be applied in practice, where many more factors are affecting a system.
Therefore, another method has been developed as well, that relies only on recorded
data points.

3.4.4. DETAILED EXPLANATION OF A SAMPLING BASED TOP-DOWN METHOD

The idea behind a sampling based, top-down method was to eliminate prior assump-
tions or geometric calculations and have a focus only on sampled data points. Simi-
larly, to the solution of the Institute of Automation in Bremen, a set of 100 points have
been selected by their X-Y values with known distance. The question is whether any
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correlation can be found among X-Y points and distances based on a low number of
training points.

Figure 18 - Sampled datapoints and quadratic function of horizon

The only input for the approach, besides the set of datapoints, is the mathematical
function of the horizon, that can be calculated based on a few reference points. The
horizon is appearing on the images as a quadratic function with a certain offset from
the top of the image. This particular quadratic function contains all the points that are
approximately at an equal distance around the visible horizon. Similarly, all equally
far points, from the base point of the ego vessel, are located on a curved line, that is
shifted with a certain value from the top. When interpreting the challenge as a regres-
sion problem, preliminary results have shown that level of 0,8211 correlation can be
found, up to four kilometers, between the distance of datapoints and the shifting value
of the function. At regions between 2-3 kilometers, the method was able to predict
distances with a relative error of less than 10%. However, at smaller distances and
ranges above 4 kilometers, the method failed and could not provide acceptable results.

Complex regression problems require a large number of datapoints, to find a gener-
alized solution with reasonable results and with avoiding overfitting. The principle of
the approach was an interesting experiment, but a dataset of only 100 values were with
orders of magnitudes smaller as would be needed. As the paper, created by the re-
searchers and developers of DisNet also states, machine learning based distance esti-
mation requires at least thousands of training datapoints to achieve significant results
[26]. Unfortunately, collecting that amount of data was not possible during the thesis
and was out of scope. Moreover, linear regression-based solutions, applied for the cur-
rent use-case, try to approximate mathematically provable geometrical theorems,
meaning that a higher uncertainty and accuracy is expected from the beginning on.
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3.5. Bearing estimation based on geometry and sampling points
As the parameters estimated earlier, the calculation of the bearing is also affected by a
number of uncertainties. While the physical limitation that result in distance estima-
tions are not relevant for bearing, camera distortion and lens properties and mappings
between image plane and ocean surface do influence the results. The method used for
bearing estimation is solved as a regression problem with over 100 datapoints.

Datapoints on an image have clear X-Y values, which can serve as a base for multiple
calculations. A basic approach is to calculate an angle from the ego vessels reference
point on the image, which is the middle pixel of the bottom row.

𝛾 =  −  atan
𝑋𝑖𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒

2 − 𝑋𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡

𝑌𝑖𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒 − 𝑌𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡
= −  atan

352 − 𝑋𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡

576 − 𝑌𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡

Naturally, the angle on the image plane is not equal with the bearing value on the
water surface, but with known values, the calculated angle for each datapoint can be
plotted in relation to the real-world bearing value.

Figure 19 - Bearing estimation based on regression

As it can be seen on Figure 19, a pattern can be recognized and a with help of the
Least-Squared-Error method, a regressive trendline with a known mathematical func-
tion can be set. Although linear regression has also achieved outstanding results with
over 0.98 correlation, a third order polynomial line has been fitted to the datapoints.
Due to the tangent functions hyperbolic attribute, the values follow the regression line
without overfitting.

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 =  −0.0004 ∙ 𝛾3 − 0.0004 ∙ 𝛾2 + 1.5529 ∙ 𝛾 + 2.00449
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Given an X-Y value on the cameras input, the angle on the image can be calculated
from the reference point and with the polynomial equation, the bearing can be esti-
mated. Based on a test set of 100 datapoints, a correlation of 0.9943 has been achieved,
resulting in an overall performance of less than 0.59° average absolute error.
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4. RESULTS AND DISCUSSIONS

4.1. Performance analysis
During the development phase, many methods have been tested in each research area.
The analysis in this section deals with the most promising methods that either provide
good results or have beneficial properties, such as adaptability or usability. Similarly,
how the development phase was divided into object detection and distance estimation,
the performance analysis presents both areas independently.

4.1.1. PERFORMANCE OF OBJECT DETECTION

After a solid research on methodologies, the YOLO deep learning frameworks has
been chosen as the primary object detection method for the thesis. As a general evalu-
ation for the deep learning method, only a few false positive cases have occurred, but
most issues were true negative cases, when existing vessels could not be identified and
localized on camera images. Close-by, colorful shapes were detected correctly, but
ships at farther distances and distorted forms on the side of images were challenging.
Presumably, the explanation is that the training dataset for the framework has been
prepared on large quality, colorful images with clear shapes and adequate contrasts.
In contrary, images taken in real-life conditions show low-stimulus scenarios with less
outstanding features and blurred colors, not even talking about foggy weather. More-
over, due to a low image quality, smaller appearing vessels did not contain enough
pixels to define a clear outline, that could be detected as a feature for the system.

Ratio of
correctly
detected
images

Type of
image

Ratio of
correctly
detected
vessels

Google Full HD Distorted SD

73% 50% 42%

90% 85% 52%
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As it was predicted in detail in earlier sections and proved with test measurements,
the image quality and resolution play a key role in detection performance. The evalu-
ation has measured in how many cases at least one vessel was detected on an image
and how many vessels were recognized from all. Three different image classes have
been tested, Google images, Full HD camera images and distorted SD images that were
used in the thesis work. Results has shown, that while Google like images have de-
tected vessels on images correctly in 90% of the cases, only half of the validation im-
ages were recognized as containing a vessel for Distorted SD images. In addition, on
images with multiple vessels 73% of all objects have been detected, but the real-world
full HD images have already dropped back to 50%. While at least one vessel was rec-
ognizable in most cases, smaller vessels were already a difficulty for the system. Alt-
hough it needs to be highlighted, that the distorted SD resolution images contained
some highly challenging scenarios, only 42% of the ships were recognized. Besides the
fact of being detected, the confidence of an object class does also play an important
role. In can be stated, that most objects in the ship category were classified with an
average confidence score between 70-90%.

Identifying different performances across image quality, the re-training of the net-
work with custom, low-quality images and shapes was considered. However, some
benchmark measurements have shown, that using transfer learning for a network does
not necessarily provide better results until a large number of images are not reached.
The YOLO network’s ship category was trained with ten thousands of images, while
re-trained solutions with a few thousand had a lower performance compared to the
original network. Considering the scope of the thesis and the available datasets, the re-
training of the network, to achieve better performances, was not reasonable and pos-
sible at the time.

4.1.2. PERFORMANCE OF DISTANCE ESTIMATION

After experimentation with multiple methods, the bottom-up approach has provided
the best result, that builds up a distance map for each image pixel based on geometrical
calculations. As it was predicted in the beginning, it has been proven that the estima-
tion error rises on larger distances, due to physical limitations of the world’s represen-
tation by cameras.

Results have been evaluated based on a test set of 100 datapoints, that had known
distances in form of AIS information. At ranges lower than three kilometers, a relative
error of only 11-12% has been achieved. As the distances get larger and the image res-
olution deteriorates, since the number of representative pixel points decreases, the rel-
ative error starts to raise significantly as it can be seen on Figure 20.
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Figure 20 - Relative error of distance estimation based on range categories

Unfortunately, when using the camera as a discrete representation of the world,
some physical limitations have to be taken care of. Figure 21 shows explicitly, how
drastically the distance values of pixels near the horizon can change. In the thesis, most
error sources were identified in the beginning on, and possible improvement factors
have been applied. Even though, a higher resolution was physically not possible to
achieve on larger distances.

Figure 21 - Distance values near the horizon in the middle of the image

Giving the circumstances, the available data sources and the condition that a mo-
nocular camera should be used, a well performing distance estimation method has
been developed. The successfulness of the method relies in fact, that early recognition
of error sources and limitations have been made and proven by validated results. Nat-
urally, the acceptable error of such system is hard to determine, since the ground of
comparison is not settled and expectations are dependent on sensor types and appli-
cation goals. To make a relevant validation for the estimation method in the current
use-case a human comparison has been made.
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4.1.3. HUMAN COMPARISON

During the thesis, an online research survey has been conducted to measure the hu-
man distance estimation capability. The survey, that has been filled out by 55 industry
professionals, contains 10 images of open sea scenarios with vessels, where the volun-
teers had to estimate distances with limited prior knowledge. A part of the survey as-
sessed the background of volunteers, thereby a clear line could be drawn between cap-
tain and OOWs working on a ships bridge, crew members on vessels or even engineers
working in maritime related companies. Thereby, the performance could be also sep-
arated and compared with people, having different background knowledge and skills.

At first, the average of human estimates have shown distinguished results compared
to the ground truth values. However, detailed investigation has indicated, that a large
variance can be seen, sometimes even a range from 200 meters up to 20 kilometers.
Since crew members from the bridge are the most relevant category, on comparison is
based on their filtered answers. In 80% of the cases, the system developed in the thesis
has estimated a better value than the absolute average estimates of captains. When
observing individual cases across all cases, only in 17% of the volunteers could per-
form equally good or better than the developed algorithm. Interestingly, when all par-
ticipants are considered, already 23% could perform equally or better, meaning that
based on the results, a more general composition had achieved better estimations.

As a conclusion it can be stated that the developed system in the thesis could out-
perform human distance estimation capabilities on many levels. Due the high variance
and error of the manual monitoring of the environment, such technical system could
contribute to enhance safer operations in the maritime industry.

4.2. Adaptability
A key question of the developed system is in what form it can be adapted to safety
critical functionalities of future autonomous solutions. First of all, the research of SoTA
solutions serve as a solid guideline, which methodologies can have the potential to be
implemented. Knowing their advantages and drawbacks, the optimal approach can be
selected for given use-cases. Secondly, the YOLO based object detection method, that
was selected in the thesis, is an adaptive solution, independent from camera settings.
As it was stated in the Results section, possible improvement options have to be con-
sidered, to be able to detect smaller objects on larger distances. Finally, the geometrical
distance estimation method has been designed in a way, to be only dependent on a
minimal number of input parameters. With known mounting settings, camera prop-
erties and just a few camera images, the method recalculates the distance mapping for
the whole visible area. Although, a more detailed validation would be required for
further steps, the fully functional algorithms developed in the thesis can serve as a
stable ground for future developments.
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5. CONCLUSION

5.1. Retrospection to motivation and technological solutions
The overall goal of the thesis was to confirm or refute the fact, whether a monocular
camera-based assistance system could improve the safety and establish new features
in the maritime industry. However, one of the main challenges was to define, how to
measure improvements, what is the base of the comparison and how to decide what
is considered as an acceptable solution. In addition, an initial goal was to give substan-
tial advice on feasibility and emerged limitations, that might have an effect on the im-
plementation in commercial use.

At the beginning of the thesis, literature review has been conducted to explore exist-
ing solutions and methodologies, to understand strength and weaknesses that might
affect the system. Later on, a framework has been built, to generate validation data of
existing measurements, such has RGB images, thermal images and processing of GPS
coordinates. Besides using state-of-the-art solutions as a general guideline, multiple
methodologies have been experimented as a next step. Initial results have served as a
base to move towards YOLO based object detection and the geometrical bottom-up
distance estimation. Moreover, the developed approaches have been validated on
ground truth data, where results have shown an outstanding evaluation for bearing
estimation and good results for distance estimation. To answer the question how well
the system’s performance is, a manual visual monitoring has been used as a base of
comparison. In summary, the developed concept solution outperformed the human
distance estimation capability, that was collected in form of an online survey, with
more than 50 industry professionals.

Emerged limitations have been discovered in detail already at an early stage, that
affect the performance and accuracy of the system. Furthermore, eventual physical
limitations have been defined that might set boundaries for industrial applications.
With lessons learned from existing solutions and having knowledge on occurring lim-
itations, a tangible result is that future suggestions can be made to foster decision mak-
ers on feasibility of future applications.

 As an overall conclusion it can be stated, that if certain infrastructural requirements
can be achieved in a cost effective way, and some physical limitations, such as observ-
able distance, are admissible, then a similar solution can definitely enhance safer op-
eration, which leads to an optimal and efficient utilization of crew members on the
long run.
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5.2. Future suggestions
The review of existing solutions, experimentation with various methods and valida-
tion on real-world data have led to a clear conception of future improvements possi-
bilities and realistic expectations.

First of all, there is some possible space of improvement in the object detection
method. The thresholding and saliency method, that was experimented but not used
in the end, has shown promising results, but a general approach could not be devel-
oped. Changing lighting conditions have impacted the image composition too heavily,
and parameters had to be finetuned for each individual case. The method might bring
false positive cases, but a more detailed experimentation might lead to new findings.
The YOLO object detection has performed well on Google-like images, but a signifi-
cant deterioration has been found on real-life images, with less characteristic shapes
and low-contrast colors. Applying a transfer learning method and retraining the deep
learning network should be considered with a large dataset of real-life, lower quality
images. Unfortunately, lack of training images and the scope, limited the experimen-
tation possibilities in the thesis, but there is significant potential in improving the de-
tection rate. However, in the current use-case, training the framework with labeled
data points of small vessels might lead to an increasing number of false positives. Re-
gardless of the outcome, the first step for the approach needs to be a generation of a
large dataset with thousands of training images.

The distance estimation system faced many challenges. As a first suggestion, the ex-
act use-case and application area needs to be reviewed, considering the physical limi-
tations of camera-based systems. At shorter distances, the evaluation has shown ac-
ceptable and applicable results, but the working principle of cameras are a restraining
force for the performance at larger distances. Due to the changing resolution of dis-
tance estimates, when a step in pixels is taken, a new mapping method should be con-
sidered. Each pixel represents a certain area on the water surface, which can grow up
to kilometers size in the far. Instead of assigning an exact numerical value to the whole
area, the distance range covered by the pixel could be added. Thereby, unnecessary
estimation errors could be eliminated, since a higher sampling accuracy cannot be
achieved anyway. Last but not least, a high mounting height and a large negative
mounting angle is suggested. In that case, a long range can be observed, but the ma-
jority of pixels is facing the water surface, meaning that a higher resolution could be
achieved for estimation. As a matter of course, the highest possible image quality
needs to be implemented, to improve detection performance and estimation accuracy.

In addition, novel method has not been covered in the thesis, namely the usage of
thermal cameras. Based on some available test images, the object detection could be
implemented in open sea scenarios. In these cases, clear vessel shapes have been iden-
tified, but crowded situations deteriorate visible contours. Unfortunately, the YOLO
network was unable to detect vessels on thermal images, but if the network could be
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trained with objects on a large set of thermal images, a stable detection might be
achieved. Having a working solution as suggested could allow a utilization of camera
systems in all visibility conditions such as night or fog.

As a summary, the research work in the thesis has already reached valuable results
that serve as a guidance for future continuance. With the help of proven and experi-
enced suggestions, further improvements can be applied and a development direction
could be settled, that could raise detection rate and estimation accuracy to an industri-
ally applicable level.
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