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Social media platforms play a crucial role in regulating public discourse. Recog-
nizing the importance of understanding this complex phenomenon a large body of
research has been published in attempts to model how information spreads within
these platforms. These models are termed information propagation models. The
majority of the existing information propagation models attempt to capture the
causal relationship between to two information spreading events through model-
ing the probabilities of information transmission between the two users or through
capturing the temporal correlations that exist between the events.

While these models have been successful in the past, they fail to capture the
various properties that have emerged in the recent past. One emerging property
that has been presented in the recent analysis is the role the content of informa-
tion plays in regulating the patterns of information spread. Specifically, social
scientists believe that in the presence of large amounts of information, users tend
to interact with items that help confirm their own views.

This thesis explores a possible method to incorporate user-specific and event-
specific features to existing information propagation models by scaling the edge
parameters. Through modeling the scaling factors to capture the phenomena
of selective exposure due to confirmation bias, we showcase the ability of our
approach to capturing complex social dynamics. Through experiments on both
synthetic and real-world datasets, we validate the advantages that could be gained
over the existing models. The presented approach exhibits clearly visible perfor-
mance gains on the network recovery task and performed competitively against
the baselines.

Keywords: information propagation, topic-aware models, social media
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Chapter 1

Introduction

1.1 Introduction

The universal adoption of online social networks has created drastic changes
in our lives over the past decade. Most of us sign in and go through our
feeds and share things at least once a day. The most famous memes of the
month are rapidly adopted and re-shared without much thought into how
these memes became famous in the first place. While memes are not crucial
information, the same effects are sometimes exhibited for other important
news items.

Presently the majority of the users in the world are expected to be using
social media sites as their news source. It has also been adopted as the plat-
form for several other facets of our life including job hunting, sales for small
scale businesses and hobby clubs, etc. It is surprising that for something
that affects us at such a large scale, we still do not know much about how
it operates. Investigating the dynamics of social media has a broad range of
impacts like discovering implicit biases, more efficient viral marketing strate-
gies, identifying bad actors’ spreading propaganda etc.

The flow of information online exhibits a propagation like phenomena
with stories shared by a user being re-shared by his friends and henceforth.
It has been a widely studied topic, with most of the work modeling the pro-
cess of propagation as an event where a node influences another node to
activate on an item. Such models were well studied in the field of epidemi-
ology for studying methods in which contagion spreads, in the field of viral
marketing to find the best marketing strategies, etc. As these models started
being adopted to model social network-related problems, many of the earlier
simplifying assumptions were also adopted.

While these early models are still valid for this online phenomena, they
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CHAPTER 1. INTRODUCTION 7

are not developed to capture the complexities of information flow online.
Recent models have tried to overcome many of the earlier challenges but
still fall short in many regards. One of the main areas it falls short is in
accounting for the role the content plays. While models utilize network
structures available as friendship/follower graph to perform studies, all most
all overlook the very important role of the content on the interactions. The
interaction between two users and the resulting link between them usually
exhibit some topic as context. For example, a person x is more probable to
interact on a sports-related post of the person y whom he plays some sport
with than his family member.

1.2 Problem Statement

Through this work, I aim to explore ways of incorporating the context-
dependent features into the existing information propagation models. I in-
tend to explore the existing models of information propagation, focusing on
continuous-time propagation models relying on point processes, and device
a method to extend these models. I make an intuitive assumption that there
are two sets of features with the first set of them describing the features
specific to events and the second set describing node-specific features.

Using these two sets of features, I wish to incorporate known phenomena
from the fields of sociology into propagation models. To this extent, I will
also explore the works in sociology to find ideas for the model formulations.

1.3 Structure of this thesis

This thesis is split into seven chapters. Chapter two introduces the tools and
techniques required for the development of the techniques required for this
project.

Chapter Three provides a historical perspective of the propagation mod-
els, its applications, and few works from the domain of sociology theorizing
certain dynamics observed on social media.

In Chapter Four, we describe the methodology used for the experiments.
We start by presenting a prevalent model before presenting extensions to
these models to incorporate topic-awareness.

In Chapter Five, we describe the motivations and details regarding the
experimental setups, present the obtained results, and perform a brief eval-
uation of the results.
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In Chapter Six, we discuss interesting results obtained through the ex-
periments, the relevance of the work, and challenges faced during the course
of this work.

Lastly, Chapter Seven concludes this work with a summarization of the
findings of this research. We also present a set of future works that could be
performed to follow this line of research.



Chapter 2

Preliminaries

In this chapter, we go over the basic concepts and definitions used throughout
this work. We begin by introducing information propagation by presenting a
formal definition, a few motivating examples, and defining a cascade. In the
following section, we describe the basics of point processes that are utilized
in model formulations. The last section discusses topic modeling techniques
that are utilized to extract features from text documents.

2.1 Propagation

Propagation (also called diffusion), at a local level, is the process by which an
item (information, disease, news, etc) is passed on to others by individuals.
Others then make a choice to activate on the item or not. Here, activation
is a context-dependent action that is taken in response to being exposed to
the item. In the context of epidemiology, where the item is a disease, the
activation action would be contracting the disease once exposed to another
infected person. The complex dynamics resulting in exposure and the pos-
sible activation of others are of interest in the study of propagation models.
The local interactions also result in an interesting global phenomenon due to
the exponential nature of the propagation. For example, the current Covid-
19 pandemic can also be characterized as an instance of propagation, where
the virus propagates through the population. We all have read reports about
how the disease spreads from person to person and has taken measures to
stop the spread in our locale. This is a prime example of how small changes
in local interactions can have macroscopic changes in the progress of propa-
gation.

Classical epidemiological models like SI, SIS, SIR, etc. were devised to
explain and understand the various disease spreading phenomena. These
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initial variations relied on the modeling choice of how the disease stages
progress in an individual. A concise representation of this process is shown
in Fig 2.1. These models are very simplistic and considered the interactions
that result in the transmission of disease to occur uniformly random between
each pair of individuals.

Figure 2.1: Different Kinds of Epidemic Models.

2.1.1 What is a cascade?

In the scope of information propagation, the term cascade is used to refer to
the information regarding the pathways taken by an item during propagation.
For example, in the case of epidemiology, a cascade would be a directed tree
with all the edges pointing away from the root (patient zero) node. The
cascades are the observable realizations of the underlying propagation models
and are hence imperative to understanding information propagation models.
This has been showcased by the extensive efforts for contact tracing in the
ongoing Covid-19 pandemic.

Throughout this work, we use the term cascade to define information
regarding the spread of a given item. Note that this definition differs from
the well-known definition in behavioral economics, where a cascade defined
as the phenomenon in which a given population of people makes the same
decision sequentially.

2.1.2 Propagation in social networks

The fields within which research regarding propagation models is performed
have expanded into new domains to adapt to changing technology, with social
media related propagation leading the other fields. Information diffusion also
exhibits many similarities with the existing epidemiological models. Just like
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people pass on diseases to their neighbors, people who were privy to a piece
of information could pass it on to people whom they come in contact with.
With the advent of the online social media culture, the space for information
diffusion has shifted from real-world interactions to over these social media
platforms. This has fueled the explosion of the information flow, resulting in
people replacing traditional sources of information with social media. Even
with access to massive amounts of data generated every hour, we are unable
to learn models which could effectively predict the propagation of a given
item.

One of the possible issues could be due to the fact that often the informa-
tion present online is not complete. There are possible hidden interactions
that cannot be observed. Most often the activation events are known but the
exact exposure that caused the activation is unknown. Most datasets con-
tain information of activation times for nodes given an item but the exact
source (or sources in some cases) that caused the activation are unknown. An
added challenge usually is that we are unable to assign the events observed
online to distinct items. But for the works presented in this thesis, we make
the relaxing assumption that items are clearly identifiable. More formally, a
cascade is a collection of tuples (node, time) for the activation times of the
nodes for a given item.

2.2 Point processes

A temporal point processes(TPP) is a stochastic process whose realization
consists of discrete events localized in time with the set of events D = ti
where ti ∈ R+. Given a history of events H, one can characterize the time t
of the next event is given by the functions below, illustrated in Fig. 2.2

• Conditional probability density function f ∗(t) = f(t|H(t)) is the prob-
ability for the next event to occur in the interval [t, t+ dt) conditional
on the past events H

• Cumulative distribution funtion F ∗(t) = F (t|H(t)) =
∫ t
ti−1

f ∗(τ)dτ , is

the probability that the next event will occur before time t. Here, ti−1
is the timestamp of the last event in H(t).

• Survival function S∗(t) = S(t|H(t)) = 1−F ∗(t), is the complementary
cumulative distribution function. It gives the probability that the next
event will not occur before time t.

Throughout this thesis, we utilize the superscript ∗ to indicate that the
function is conditional on the history of events.
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A temporal point process can also be defined under a counting process
representation, N(t), which counts the number of events until time t.

N(t) =
∑
ti∈H

u (t− ti) (2.1)

where u(t) is the unit step function at 0. At this point it is useful to define
differential of the counting process as dN(t) = N(t + dt) − N(t) ∈ {0, 1},
where dt is an arbitrarily small time chosen such that no more than one event
could occur within this time frame.

𝑡 

𝑓∗(𝑡) 

𝑆∗(𝑡) 

Pr. event survives 
 after 𝑡 (survival function) 

𝐹∗(𝑡)  

Pr. event occurs  
before 𝑡 (cdf) 

𝑡 + 𝑑𝑡 𝑡 

𝑓∗ 𝑡 𝑑𝑡 

Pr. event occurs  
between [𝑡, 𝑡 + d𝑡] 

Figure 2.2: An illustration of the conditional probability density function
f ∗(t), cumulative distribution F ∗(t) and the survival function S∗(t). Image
Courtesy: Fig. 3 of [11]

Using the density function described above to model a point process has
two drawbacks. Firstly, it is non-intuitive for us to define the dynamics
through modeling appropriate density functions. Having to define a function
to capture the dynamics we are interested in and ensuring that the function
satisfies the constraint

∫∞
ti−1

f ∗(τ)dτ = 1 in order for it to be valid probability

density function is a hard task. Secondly, it is hard to combine several
temporal point processes in terms of their density function. Let us consider
two point processes with historiesH1 andH2 with their respective probability
density functions f ∗1 and f ∗2 respectively. If we want to define a combined
point process with history Hcomb = H1 ∪ H2, it is highly non trivial to do
define the new probability density function f ∗comb in terms of f ∗1 and f ∗2 .

We can overcome the drawbacks defined in the above defining a condi-
tional intensity function λ∗(t) = λ(t|H(t)). This term is usually referred to
as the hazard function in survival analysis. It is the conditional probabil-
ity that the event will occur at time [t, t + dt) provided the event has not
happened before t.
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λ∗(t)dt =
f ∗(t)dt

S∗(t)
(2.2)

We could think of the conditional intensity as an instantaneous rate of an
event occurring. Characterizing the point processes in this manner overcomes
the above-mentioned drawbacks. Thinking about the intensity function as
an instantaneous rate is much more intuitive when we think about modeling
various dynamics. For example, if we want to model the process as a self-
excitatory, we can model the intensity function λ∗ such that its value increases
every time an event occurs. Also, combining multiple point processes resolves
to just the addition of their respective intensity functions. Consider the case
of two processes described above, the conditional intensity of the combined
process λ∗comb is,

λ∗comb(t)dt = E[dNcomb(t)|H(t)] (2.3)

= E [dN1(t) + dN2(t)|H(t)] (2.4)

= E [dN1(t)|H1(t)] + E [dN2(t)|H2(t)] (2.5)

= λ∗1(t) + λ∗2(t) (2.6)

Furthermore, we can calculate the intensity function f ∗() and the survival
function S∗() from the conditional intensity function λ∗(t) using the formulas
below,

S ∗(t) = exp
(
−
∫ t

ti−1

λ∗(τ)dτ
)

f ∗(t) = λ∗(t)exp
(
−
∫ t

ti−1

λ∗(τ)dτ
)

The derivations have of these equations are presented in the Appendix A.

2.3 Topic Modeling

With large amounts of data being collected every day, it becomes difficult
to utilize information from the text collected. Topic modeling techniques
fulfill the need to organize, search, and comprehend large amounts of text
information. Topic modeling is the process of identifying groups of words
(which represent a topic) in a set of documents. These topics can be useful in
applications like information retrieval systems, customer service automation,
and any other instance where features of the text are needed. We take a
closer look at the topic modeling method used within this work below.
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2.3.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised algorithm that defines
a generative model to describe the documents as a bag of words (i.e, order
does not matter) [5]. The key assumption used to describe the generative
process is that: each document can be described by a distribution of top-
ics and each topic can be described by a distribution of words. Assuming
that we intuit the presence of k topics across all documents. The generative
process first samples a topic probabilities from the topic distribution θ. The
algorithm selects a topic using the topic probability and samples a word from
the Dirichlet distribution of words within the topic. The algorithm repeats
this step N times to obtain the sample document. A plate diagram of the
generative model is shown in Fig 2.3. Here α and β are latent hyperparam-
eters of the Dirichlet distribution. We perform inference to find these latent
hyperparameters, hence the name Latent Dirichlet Allocation.

Figure 2.3: Plate diagram of LDA model. Picture courtesy: Bkkbrad CC
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3610403



Chapter 3

Related Works

In this chapter, we review the works related to the information propagation
models leading up to the present. In the first section of this chapter, we
go over the models that have been formulated as information propagation
models. Note that we limit this section to only include works formulating
a complete model of information propagation from which we could simu-
late realizations of data. We begin by going through early influences of the
epidemiological model on propagation, the formulation of the discrete-time
models, the extension of these models to include topic aware interactions, and
finally ending with a discussion of the more recent probabilistic continuous
time models.

In the following section, we discuss works involving applications and sub-
problems which extend ideas of propagation models. We split this section into
three subsections, with the first two sections assigned to the tasks of network
recovery and influence maximization respectively. We assigned these two
tasks individual subsections due to the extensive amount of work present for
these tasks. We dedicate the final subsection to discuss other related works
that do not fall into any of the above categories.

The ’social’ aspect of the interactions on social media are often overlooked
in the research of propagation models. If one wishes to improve the propa-
gation models to help fit the real-world dynamics better, it is necessary to
look at the prevalent dynamics that have been discussed and formulate our
models keeping these in mind. To this end, we dedicate the last section to
review a few works from sociology or social network analysis to glean some
insight.

15
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3.1 Models of Information Propagation

The earliest analysis of propagation (or what is now characterized as prop-
agation) over networks revolved around performing explanatory analysis for
epidemiological models. These models tried to extend the already existing
concepts of disease spreading to incorporate the network structure. Many
of the early formulations for information propagation were inspired by the
similarities between the spread of an epidemic and the transmission of infor-
mation in society. These early works could be grouped into two formulations.
The general idea within both these formulations was that the infected nodes
try to exert an infecting-influence over the uninfected nodes, with the differ-
entiating aspect between them being their modeling of influence between a
node and its infected neighbors.

Shelling and Granovetter proposed a form of influence where susceptible
nodes were infected by an item based on the combined effect of all influ-
ence exerted [15, 35]. Many different variations of this model have been
considered in relating works ranging from majority voting[4], dynamics of
cooperation[29], spread of contagions [31] and adoption of technology [40].
All of the above works can be characterized by what is called the Linear
Threshold Model (LT). Within this model, a susceptible node v activates on
an item if the following condition was satisfied:∑

u∈Fi(v,t)

wu,v ≥ θv (3.1)

Here Fi(v, t) represents the neighbors of v that are already infected by item
i, wu,v terms are weights signifying the strength of influence exerted by a
neighbor u on v and θv is the node-specific threshold after which the node
gets infected.

The other formulation of models came from the research of interacting
particles in probability theory [10, 25]. This class of models formulated in-
fection of a node as a result of an influence exerted by a single neighbor
independent of the other influences. The simplest formulation of the model
came to be called the Independent Cascade Model (IC). Within this model,
each user u has a fixed probability pu,v to infect its neighbor v once it gets
infected. Within this model, a node getting infected at time t could only
infect its neighbors at the next time step t+ 1.

Few early papers which added a topic-aware perspective to the problems
around information propagation were aimed at finding topic experts [36],
extending PageRank by incorporating topic-similarity between users and the
link structure into account [38], jointly learning the topic distribution of
documents and users [26, 27] etc.
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Barbieri et al. provided an extension on the basic IC and LT models
to incorporate a topic-aware nature [3]. The extension to a topic aware
setting was achieved by replacing the individual parameters on the edges
with a topic-specific parameter vector dependent of a finite set of topics.
The probability of transmission over an edge was specified as the result of
the dot product with the topic vector of the item i under consideration as
shown in Eq3.2 and Eq. 3.3.

piv,u =
K∑
z=1

γzi p
z
v,u (3.2)

wti(v) =
K∑
z=1

∑
uFi(v,t)

γzi p
z
v,u (3.3)

The phenomenon of propagation remained the same as the classical mod-
els, with the extension only changing how the edge probabilities/weights were
calculated. Given a dataset of theD in the form of tuples (User, Item, T ime),
where a tuple e : (u, i, t) ∈ D indicates that user u adopted item i at time t,
each event e was assumed to have been caused by influence from any (or all,
in case of Topic-aware LT model) of the events in its neighborhood within
the time interval [t −∆, t]. The parameters of the model were shown to be
inferable using an EM algorithm.

In their work Barbieri et al. also put forward a novel AIR model [3] as
an alternative model based on the idea of collective influence. The proposed
AIR model had sought to address two key limitations of the past models: the
need for the discretization of time and the need for edge parameters. The
new model moved past the need for edge parameters by expressing the nodes
model completely in terms of the Authoritativeness of a user in a topic (A),
Interest of a user for a topic (I), and Relevance of an item for a topic (R). The
three terms are vector-valued parameters with each entry of vector signifying
the authority/interest of the user or the topic distribution of the item. The
probability of a user u to activate on an item i with a topic distribution Z,
at time t, is described by,

P (i|u, t) =
∑
z∈Z

P (z|u)P (i|u, z, t) ≥ θu (3.4)

where P (z|u) is interest I of user and the probability of activation due to the
topic z was modelled as a logistic function.

P (i|u, z, t) =
exp

{∑
v∈Fi(v,t)A

z
v +Rz

i

}
1 + exp

{∑
v∈Fi(v,t)A

z
v +Rz

i

} (3.5)
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The authors also describe an EM-type algorithm to infer the parameters
of a relaxed model. The logistic function above overcomes the limitations
in time discretization. This was one of the earliest models to formulate a
continuous-time propagation model.

Rodriguez et al. presented one of the first works utilizing point pro-
cesses to formulate a propagation model [34] by modeling the time taken for
transmission of items over an edge as realizations of a point process. They
modeled the probability density of an event ev occurring as a result of an
event eu with decaying density functions like the exponential distribution,

f(tv|tu, αu,v) = αu,v · e−αu,v(tv−tu) (3.6)

Using this density function over edges and utilizing simplifications from the
point process formulations the authors arrived at a convex objective function
to optimize the problem statement. The probability densities over edges can
be thought of as extending the IC model to the time domain. Authors
further enforce limitations upon the model to ensure the independence of the
influence from parent nodes. Due to these similarities, this model represented
an elegant extension of the IC model to the continuous-time domain.

In a follow-up work, Rodriguez et al. described a generalization of point
process-based IC models into two classes [13]. They described a model which
formulate the conditional intensity function (or hazard function) of a node as
additive or multiplicative term of activations in the neighborhood of a given
node. Within the additive case, the conditional intensity function of a node
u at time t was described as a summation over the edge parameters of scaled
by a time shaping function γ of hazard functions of its neighbors.

αu(t) = αT
u IFi(u,t) (3.7)

The continuous-time cascade without the independent influence constraints
from [34] was shown to be a special case of the additive class of models. The
second class of models described used a multiplicative equation to describe
the hazard function of a node.

αu(t) = µu
∏

v∈Fi(u,t)

βvu (3.8)

The multiplicative class allowed for the hazard function to decrease as a
result of certain activation events. This was its sole advantage against the
additive class.
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3.2 Applications utilizing propagation mod-

els

Some of the work surrounding ideas of information propagation have solely
focused on solving a specific problem instead of developing a fully defined
propagation model. In this section we go through the some of the key appli-
cations that have been developed. Due to the overwhelming amount of focus
on two key applications: Network recovery and Influence maximization; we
describe them in individual subsections before going into more generic works.

3.2.1 Network Recovery

Many real-world phenomena have unknown underlying dynamics. In the
scope of information propagation, the most crucial information that could
be sometimes unknown is the underlying network of influence. This problem
arises as we can only observe realizations of the underlying dynamic system
through events. The problem of effectively inferring the underlying network
is hence a crucial task for analysis of these systems.

Rodriguez et al. posed the problem of inferring the underlying network
of inference as an iterative algorithm [12]. At the core of their algorithm,
they formulate the network recovery task as the task of finding maximum
weighted spanning tree for each cascade. The probability of transmission
over an edge was modeled as an exponentially decaying probability function
of the time difference between the two events. They showed how to utilize
the Kirchhoff’s theorem to calculate the probability of a cascade considering
all possible spanning trees of propagation. This allows them to calculate the
probability of all the cascades given a candidate network. They show that
this objective is submodular and device a greedy algorithm to pick the edge
that maximizes the probability of generating the cascades.

Zhou et al. presented a method which utilized Hawkes processes to model
propagation [41]. The events were assumed to be realizations from a set of N
Hawkes processes which were coupled with each other. Each Hawkes process
modeled the events occuring at a particular node and was coupled with its
neighbors. To enforce the inference algorithm to recover a more sparse and
clustered network, the authors imposed regularizers for both sparsity and
low-rank on the adjacency matrix. While the problem formulation does de-
scribe a propagation model, we attribute this as focusing on network recovery
as the of novelty their model arises from their efforts to recover sparse and
low rank networks.
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3.2.2 Influence Maximization

Influence maximization deals with choosing a good initial set nodes such that
the cascades from these nodes have high spread. The expected spread of a
given seed set A is called the influence σ(A) of the set. The problem of
influence maximization asks us to return the best initial set of nodes of size
k, which would induce the highest spread.

Domingos and Richardson were the first to propose and study the prob-
lem of influence maximization [9]. The authors considered the advantages
that could be gained from incorporating known network data into the mar-
keting challenges. The authors utilized the collaborative filtering datasets to
model the influence between nodes as a Markov random field. The proposed
models utilizes the collaborative filtering datasets to learn either an underly-
ing network or given the network an efficient maximizing marketing targets.
They utilize a relaxation labeling to learn the marketing targets/network
structure.

Kempe et al. further developed the idea of influence maximization for
the classical IC and LT models[20]. The influence function was shown to
to be submodular and hence feasible to utilize the greedy algorithm with
approximation guarantees.

Chen et al. extended the ideas of the influence maximization presented
for IC to the TIC model [6]. Their approach to influence maximization
relied on computing maximum influence arborescence tree for each node and
utilizing the tree to compute the expected infection probability of the node
given any seed set S. To compute the influence we could just sum over the
infection probabilities of every node. Since the TIC model is topic aware,
each influence maximization task was based on given topic distribution query
Q. The authors showcased the submodularity of the objective and presented
a greedy algorithm to compute provably approximate solutions. In order to
overcome the challenge of computing costly marginal influence models the
authors also present performance speed ups.

Rodriguez et al. presented a method to compute the influence func-
tion exactly and perform approximate influence maximization efficiently for
continuous-time IC models [14]. They approached the influence of maximiza-
tion as a budgeted task based on a specified time limit T . They devised a
method to describe the infection of a given node v as the state transitions of
a continuous-time Markov chain (CTCM). The states of the Markov chain
consisted of all possible subsets of infected nodes and the nodes dominated by
them in terms of infecting v. We call a node u as dominated when all paths
from u to v contain at least one infected node. By defining the infinitesimal
generator matrix of CTCM directly utilizing the edge parameter (αij) of the
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exponential transmission likelihoods, the authors were able to compute the
exact probability of node a being infected within the interval of inference.
While this method resulted in exact solutions for influence estimation, the
algorithm was prohibitively expensive as the states of the CTCM would in-
volve all s-t cuts with all the seed nodes S partitioned in the source-set (s)
and the target node v in target set (t). In the second half of the article,
the authors describe an efficient sampling-based approach to compute the
influence function.

3.2.3 Other applications

Leskovec et al. discussed the problem of sensor placement problem on net-
works to minimize the outbreak detection time[24]. Given a prior distribution
over the origin of an outbreak, their objective function tried to ensure the
selection of items that reduced criteria like detection likelihood, detection
time or the population affected. They showcased that the outbreak detec-
tion problem can be reduced to influence maximization in the Triggering
model of propagation if we revert the arcs of the directed graph presented.
The different criteria for the objective results in varying kinds of influence.
The use of detection likelihood criterion of outbreak detection is equivalent
to maximizing the minimum infection probability among all nodes, detec-
tion time criteria equate to influence maximization with time budgets and
population affected equates to generic influence maximization task where the
eventual spread is maximized.

De et al. presented a combined model integrating opinion formation and
information diffusion[7]. Their framework was based on the two basic ideas:
i) a user’s opinions are unknown until a realization of it appears through
an event, and ii) users change their opinion of a particular topic once they
are exposed to other opinions. Their novelty relied on modeling the for-
mer opinion which, though intuitive, was ignored in other previous works of
opinion dynamics. Their proposed model modeled user’s latent opinions as
stochastic processes modulated by a set of marked jump stochastic differen-
tial equations.

L(α,µ,A,B) =
∑

ei∈H(T )

log p
(
mi|x∗ui (ti)

)
︸ ︷︷ ︸

message sentiments

+
∑

ei∈H(T )

log λ∗ui (ti)−
∑
u∈V

∫ T

0

λ∗u(τ)dτ︸ ︷︷ ︸
message times

(3.9)
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They showed that the model exhibited Markov property for the set of in-
tensity functions of the model (x∗(t),λ∗(t),N (t)). This key property of
their formulation allowed them to perform efficient estimation through con-
vex programming, scalable simulations, and the ability for efficient opinion
forecasting.

He et al. in their formulation of HawkesTopic model incorporated topic
modeling with Hawkes processes [16]. The multivariate Hawkes process was
used to define the propagation pathways of events and assumed a CTM model
for generating the documents related to those events. The text relating to
each of the events was modeled as the marks associated with the Hawkes
processes. Within their model, the topic probability of a new independent
event by a user was modeled by sampling a topic distribution η from a lo-
gistic normal distribution using user-specific hyperparameters (refer Fig ??).
All subsequent events due to the propagation of this event were modeled
through a noisy propagation of the topic distribution from parent to child.
This resulted in a combined likelihood function to infer the Hawkes process
parameters, the user-specific hyperparameters, and the word distribution per
topic.

Another novel interesting application utilizing point processes was pre-
sented by Kim et al [21] where they presented a framework CURB to improve
the fact-checking mechanism through crowdsourcing. Within their setting
they formulated the events as 5-tuples e:= (user, time, story, reshare, flag)
to signify the time at with a user was exposed to a story and the possible
actions of resharing or flagging the story. Under the assumption that the
user trustworthiness scores were known a priori, they formulate the objective
function of the model as an intensity function that finds the optimal time to
fact check an item. By leveraging ideas from crowdsourcing and stochastic
optimal control, not only are they able to prioritize stories for fact-checking,
but they also are able to update the user trustworthiness on his flagging be-
havior. Their complex model is an ensemble that fits well together to solve
the hard task of scheduling fact-checking.

3.3 Analysis of social networks

Understanding the importance of various factors in steering online discourse
and opinion formation, extensive research has been performed towards un-
derstanding the dynamics of this process. Some inroads have been made into
some of the dynamics steering the diffusion like novelty factor [39], strength
of social ties [30] , memory effects, the social reinforcement and the non-
redundancy of contacts [28] etc. We take a closer look at some of these works
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which could give us insights that help improve future propagation models.

Figure 3.1: Top 50 threads in the news cycle with highest volume for the
period Aug 1 - Oct 31, 2008 of Memetracker Dataset. Each thread consists
of all news articles and blog posts containing a textual variant of a particular
quoted phrases. Image courtesy:[23]

The dynamics of collective attention is at the core of making and spread-
ing information online[39]. As such it has been studied by psychologists,
economists, and researchers in the field of marketing advertising. Wu et al.
performed an empirical analysis of the role of novelty on the collective at-
tention on topics on the news aggregator site digg.com. Their observation
led them to conclude that a single novel factor can describe the collective
attention. They concluded that the attention with a group decays with
a stretched-exponential law, suggesting the existence of a time frame over
which attention fades naturally.

Another important phenomenon that is related to the concept of novelty
is the bursty nature of the news cycles present online. It has been shown
that bursty patterns can be visible both at an individual scale [2] and at
universal scale in phone communications, web browsing, online interactions,
etc [19, 33]. This pattern of interactions online has been shown to exist. One
example of this occurrence in the memetracking application is shown in Fig
3.1.
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Methods

In this chapter we motivate and explain our approach to incorporating topic
awareness into propagation models. The first part of this chapter describes
extensions to independent cascade models using point processes which allow
it to utilize temporal information. The methods described in this section
follow formulations presented in earlier work [34]. The later part of this
chapter describe how we can extend this formulation to include topic level
information by introducing a scaling factors dependent on event and node
features.

4.1 Continuous time Independent Cascade

The classical independent cascade model ignores the rich temporal data by
partitioning the time over which the cascade happens. The time axis is split
into discrete epochs and an item has a chance of being propagated along an
edge over two consequent epochs with a fixed probability. In essence the IC
model only utilizes information of which events occurred before any given
event e.

The independent cascade model can be extended to the continuous do-
main by probabilistic modeling of edge transmission dynamics. This refor-
mulation changes the single randomized propagation decision of the classical
IC model to a function of time. In order to ensure the possibility of all
relevant transmission times we model the time taken by the information to
transmit over an edge as a probability distribution. A simple formulation of
the probability distribution is to model the time taken for an information to
travel over an edge as an exponential distribution.

Consider events of the form ei : (ui, ti) which are part of a single cascade,
where ui represents the node at which the the ith infection occurred and
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ti represents its time-stamp. For a given event ei, the time taken for the
information present in this event to spread to one of its neighbour (uj) to
cause an event ej can be given by,

f (tj|ti) = αui,uj · e
−αui,uj (tj−ti) (4.1)

The function is parametrized by an edge specific parameter αui,uj . Intu-
itively, this parameter α is analogous to the edge specific probability parame-
ter from the classical discrete time IC model. A large value of αui,uj represents
that the time taken for information to propagate through the edge ui − uj
would be low, which translates to higher probability of transmission within
the interval of observation. Note that, in the discussion of continuous time
models we assume that all analysis occurs over a given time interval which
we term as the interval of observation. This is required as the edge specific
probability distributions have infinite support ([0, inf)). For small values, the
probability mass of the distribution is diffuse across time that the probability
that the event falls within our interval of observation becomes small.

4.2 Topic Aware Model

The formulation for edge dynamics described in the above section is agnostic
towards the rich features available at the node level. The additional infor-
mation that is typically overlooked while modeling transmission dynamics
across a specific edge are: the node level features of the two nodes involved
Iui , Iuj ; and the event specific details fi, fj. Note that, we represent an event
x as a tuple ex : (ux, tx, fx) and the node level features of the nodes involved
in the event as Iux .

For our formulation of topic aware modeling we draw upon the idea that
confirmation bias is a driving force towards selective exposure to information
[22]. Within our setting this would translate to an evidence of high correla-
tion between a user’s interests and the items he chooses to get influenced by.
To model this, we replace the simple scale parameter αui,uj with a functional
form based on the latent representation of the target user’s topic interests
Iuj and the latent representation of the infecting item ei. We choose a topic
feature scaled edge parameter as our functional form for its elegance and
simplicity (See 4.4).
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α̂i,j = f(ti, tj, fi, Ij) (4.2)

=
αi,j

d(Ij, fi)
(4.3)

f (tj|ti, fi, Ij) =
αi,j

d(Ij, fi)
· e−

αi,j(tj−ti)
d(Ij ,fi) (4.4)

The value of the distance function hence modifies a common edge param-
eter to make the transmission more or less probable. By adjusting the range
of possible values this distance function is allowed to take, we can control
the amount of scaling to be introduced by the topic specific interactions.

The changes in edge dynamics due to our formulation can be easily high-
lighted in by observing Fig. 4.1. The infection probability of continuous
time independent cascade model (ContInd) (Fig. 4.1 top row) is agnostic
to the infecting item’s features or any user interests. We also include in
this comparison the another work by Wang et.al. which extend on the ba-
sic model to include user specific priors in the probability density function.
The topic aware effect of the target user’s interests and the infecting item is
easy to notice in Fig. 4.1 (bottom-right). The edge transmission probability
changes over time depending on the closeness between feature of the infect-
ing event and the target user’s personal interests. As the feature of infecting
item moves closer towards the user’s interests the distribution becomes more
narrow and hence increases likelihood of interacting within the interval of
observation. In the simplest case the event features and the user interests
are known a priori, and help improve on the basic model.

4.2.1 Likelihood Formulation

The edge dynamic formulated in the above section can be represented as a
point process with the probability density function of the process specified
by the details of infecting event (Eq (4.4)). Therefore we model each pos-
sible edge transmission as a point process. At this point we recall a few
notations from the literature of point processes which help us formulate the
likelihood term. We define the cumulative density function of a point pro-
cess as F (tj|ti, fj, Ii). For two nodes ui, uj infected by an item at times
ti, tj : ti < tj, the probability that the node ui was not able to infect uj can
be modelled as the survival function S(t). Also recall that the conditional
intensity or hazard rate can be calculated based on the density function and
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Figure 4.1: The probability space of an event ei(Iui = 0.5, fi = 0.7) causing
an event ej(Iuj = 0.3, fj = 0.4) plotted to highlight differences in propagation
dynamics. The individual plots were generated by only varying the two axis
variables holding other variables constant.

survival function (Eq (4.6)).

S (tj|ti, fj, Ii) = 1− F (tj|ti, fj, Ii) (4.5)

λj|i =
f (tj|ti, fj, Ii)
S (tj|ti, fj, Ii)

(4.6)

Under the assumptions of the independent cascade model of propagation
the likelihood of an event ei being the cause of an event ej can be given by
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the pdf of the probability function f (tj|ti) along with the probability that
none of its neighbours were able to spread the information to the node within
until time tj.

p(ej|ei) = f (tj|ti)×
∏

uk∈Nj ;j 6=k,tk<tj

S (tj|tk) (4.7)

To formulate the effect of all possible neighbours we sum over all previous
events in the the neighbourhood Nj of node uj to obtain the likelihood of
event ej

L(ej) =
∑

ui∈Nj ;ti<tj

p(ej|ei) (4.8)

=
∑

ui∈Nj ;ti<tj

f (tj|ti)×
∏

uk∈Nj ;j 6=k;tk<tj

S (tj|tk) (4.9)

We have defined the likelihood of an event from a given cascade. In order
to expand the likelihood term to the whole dataset we need to expand the
notation of an event to also include a cascade ID. Considering the dataset
consisting events of the form ei : (ui, ti, fi, ci), we add cascade specification to
the neighbourhood notation from above to constraint that only considering
events from the same cascade. For clarity, we use the notation Ñi to signify
that we refer to events in the neighbourhood of ui from the cascade ci. The
likelihood of the whole dataset could now be formulated as,

L(D) =
∏
j∈D

L(ej) (4.10)

=
∏
j∈D

∑
ui∈Ñj ;ti<tj

f (tf |ti)×
∏

uk∈Ñj ;j 6=k;tk<tj

S (tj|tk) (4.11)

=
∏
j∈D

∑
ui∈Ñj ;ti<tj

f (tj|ti)
S (tj|ti)

∏
uk∈Ñj ;tk<tj

S (tj|tk) (4.12)

=
∏
j∈D

∏
uk∈Ñj ;tk<tj

S (tj|tk)
∑

ui∈Ñj ;ti<tj

λi,j (4.13)

The transformation from step one to step two removes the j 6= k term of
the second product by multiplying and dividing by S (ti|tj).

The Likelihood formulation in Eq. (4.13) only accounts for events from
the dataset. For the evaluation of propagation parameter of an edge it is
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also useful to realize that the failure of propagation along an edge is also
a useful information. While finding all edges over which an item does not
transmit is impossible to find, we can make the claim that any edge from
a node x infected by a specific cascade to an uninfected node y have failed
to propagate the item within the interval of observation [tx, T ]. Hence we
incorporate these terms also into our likelihood term.

L(D) =
∏
j∈D

∏
uk∈Ñjtk<tj

S (tj|tk)
∑

ui∈Ñj ;ti<tj

λi,j (4.14)

×
∏
j∈D

∏
uk∈Ñj ;tk<T

S (T |tk) (4.15)

=
∏

i∈D∪D

∏
ti>T ;uk∈Ñj ;tk<T

S (T |tk)
∏

uk∈Ñj ;tk<ti

S (ti|tk)
∑

uj∈Ñj ;tj<ti

λi,j (4.16)

We can solve this likelihood through maximum likelihood inference pack-
ages.

min
α≥0
− logL(D) (4.17)

4.2.2 Properties

4.2.2.1 Convexity of objective

Since the survival functions are log concave and the hazard function is con-
cave it follows that the log likelihood is concave and hence the optimal pa-
rameters can be found using convex solvers.

4.2.2.2 Distributed Inference

The equation in Eq(4.16) has some useful properties when it comes to dis-
tribution. To perform inference of any give edge parameter α̂i,j, we only
require the source and target node histories. Hence we are able to parallelize
the inference mechanism over multiple machines which helps scale the model
to large datasets well.
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Experiments

The experimental setups used to validate our model are presented in this
chapter. The first section discusses the experiments performed on syntheti-
cally generated datasets which acts as a sanity check to showcase the workings
of our model. The following section presents the experiments on real-world
datasets.

5.1 Experiments on Synthetic data

5.1.1 Synthetic Dataset Generation

This subsection focuses on performing experiments on synthetic networks
that mimic the structure of directed social networks. Two versions of net-
works are generated to test the accuracy of our models. Both the networks
consist of 1000 nodes with an average of 12000 directed edges. The first
network has a power-law cluster graph [18] structure. User-level features are
randomly assigned from the Uniform distribution in the range [-1,1]. The
second network is a two clustered graph generated using a stochastic block
model[17] with intracluster and intercluster edge probabilities of 0.02 and
0.004 respectively. The user level features of each of the clusters are drawn
from normal distributions with means 0.5 and -0.5 and standard deviation
0.5. This version of dataset is an attempt to simulate the homophilic nature
of cluster formation online. We sample 20 different networks within each
version to account for randomness in the generative process.

The edge specific parameters α were drawn from a Uniform distribution
in the range [0.1,1]. Seed nodes of individual cascades are randomly selected
to form the root of the cascade tree and the event-feature of the item is
drawn from a Uniform distribution in the range [-1,1]. We simulate the
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generative process of TopicContInd to generate the cascade dataset. Within
this generative process, the event-level features of source events are copied to
subsequent events with a small noise feature added. The absolute difference
in opinion is calculated and scaled to [1−κ, 1+κ] range to act as the distance
function. For our experiments, we use a κ value of 0.5.

For comparison, the accuracy of the learned parameters is evaluated by
iteratively increasing the number of cascades used for inference. The accu-
racy values for each cascade count are averaged over 20 runs to avoid any
bias that could be introduced due to the cascade seed selection. The mean
squared error of the learned parameters is averaged over multiple networks
and plotted in Fig 5.1.

Note that we are performing a comparative analysis to understand how
our model and the baseline would perform under the assumption that the
data generating process exhibits selective exposure phenomena. These ex-
periments could be considered as sanity checks for our model.

Figure 5.1: Accuracy of learned Parameter

Both models perform comparatively for random graph but the difference
between the models is more prominent for the two clustered graphs. ContInd
model overestimates the edge parameters within a cluster due to the increased
interaction with items shared by users from the same cluster.
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5.2 Experiments on real data

For our experiments, we use the MemeTracker dataset consisting of around
172 million blogs and news articles published between September 1, 2008,
and August 31, 2009. The dataset was used by Leskovec et.al [23] to develop
a framework to track and identify distinct popular phrases in online news
media. For our works, we extract two versions of datasets, based on how we
define cascades from the raw data and compare the results obtained. The
differences between the two versions lie only in their formulation of cascades
within MemeTracker.

5.2.1 Data Description

Each entry in the dataset consisted of the following information: URL of the
webpage from which the post was collected (P), the time at which the page
was published (T), quotes extracted from the page (Q), links to webpages
with related content (L). An example entry is shown below:

P http://blogs.abcnews.com/politicalpunch/2008/09/obama-s

ays-mc-1.html

T 2008-09-09 22:35:24

Q that’s not change

Q you know you can put lipstick on a pig

Q what’s the difference between a hockey mom and a pit

bull lipstick

Q you can wrap an old fish in a piece of paper called change

L http://reuters.com/article/politicsnews/idusn294435642008

0901?pagenumber=1&virtualbrandchannel=10112

L http://cbn.com/cbnnews/436448.aspx

L http://voices.washingtonpost.com/thefix/2008/09/bristol_pa

lin_is_pregnant.html?hpid=topnews

The author’s resulting works also resulted in a dataset consisting of clus-
tering of similar phrases present in the MemeTracker dataset. This dataset
has also been made available by the authors and is also utilized in our ex-
periments to generate an event and node-level features. An example of the
PhraseClustering dataset is shown below.

2 4 we’re not commenting on that story i’m afraid 2131865

2 2 we’re not commenting on that 489007

2008-11-26 01:27:13 1 B http://sfweekly.com/news/b...

2008-11-27 18:55:30 1 B http://constantine.blogspot.com...
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2 2 we’re not commenting on that story 2131864

2008-12-08 14:50:18 3 B http://gaming247.com/2008/12/08...

2008-12-08 19:35:31 2 B http://jstation.com/2008/12/hom...

5.2.1.1 Nodes

For our modeling, we use individual domains to act as the nodes of our
network. To this effect, the domain names were extracted from each URL.
From these the most frequent 500/2000 domains were selected initially. This
initial set was used to extract a graph. We select the largest connected
component present within this graph and keep these nodes as our final set
of nodes.

5.2.1.2 Edges

The links to related articles present in the entries of the MemeTracker dataset
represents the flow of information or the evolution of the discourse in the arti-
cle. One could assume the existence of such links as signals for the presence
of an information pathway between two domains. We assume a directed
edge (u, v) exists if an article published on domain v links to an article in
the domain u.

5.2.1.3 Cascades

For the first version of the dataset, we make the relaxing assumption that
each event with similar content is part of the same cascade. To this effect,
we utilize the PhraseCluster dataset to group events into clusters and denote
each cluster as an individual cascade. We call this dataset MemePhrase.

For the second version, we assume that the existence of a path between
two events is a signal that they belong to the same cascade. We utilize the
hyperlinks to related articles of each entry to extract connected components
of events within the dataset and assume that each connected component
forms a cascade. We call this dataset MemeHyperlink.

For both of the versions, the individual entries with the extracted cascades
are identified using the whole URL, which can cause each domain to occur
multiple times within a single cascade. Here we make the relaxing assumption
that the first occurrence of a domain in each cluster is the point at which the
domain was infected by the given phrase and drop the subsequent entries.
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5.2.1.4 Event-specific & Node-specific Features

The set of phrases extracted from each event was used as event-specific text.
To capture the context of the text data we perform Latent Dirichlet Alloca-
tion (LDA) on the collection of text documents[5]. We chose LDA over more
complicated models due to its simplicity. The set of all documents used for
LDA consisted of both the event and node-specific text. The node-specific
text document was the collection of text from all events at that node. The
fact that we perform LDA on the combined collection of texts (from both
node and events) results in both sets of features to lie within the same space.

5.2.1.5 Interval of observation

One of the challenges we faced was the difference in time frames of different
cascades. Some cascades present in the raw MemeTracker dataset, lasted
less than a week in real life, while some lasted for months. We made the
simplifying assumption that all cascades discuss topics that have different
lifespans and the activations (or the rate of activations) is a signal that is
linearly scaled by the lifespan. So, we scale the time-stamps within each
cascade to the range [0,1.0].

The statistics of the extracted datasets used for experiments are presented
in table 5.1.

Dataset Nodes Edges Seeds Events
MemeHyperlink-Small 383 1176 3665 14615
MemeHyperlink-Large 1561 5280 12762 55337
MemePhrase-Small 578 1416 928 164637
MemePhrase-Large 1448 3685 2891 496553

Table 5.1: Precision-recall scores for the Activation Prediction Task.

5.2.2 Implementation Specifics

5.2.2.1 Baseline Models

ContInd /FeatureContInd : The algorithm was implemented in Python
as per the model described in the literature [34, 37]. The inference was
performed using open-source convex solvers. We compare our model to Fea-
tureContInd only on the network recovery task. ContInd will be used in all
our experiments as the main baseline metric.
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NETINF: We use an implementation by a third party developer based on
the author’s implementation written in C++ for our experiments. To the
best of our knowledge the implementation we have used only updates on the
syntactic changes occurring in the C++ language that was used for original
implementation.

5.2.2.2 Further Details

Packages used: The pipelines for data cleaning were implemented using
python scripts utilizing the pandas package available for data handling [32].
Our model (TopicContInd) was implemented in python and inference was
performed utilizing the open-source convex solver SCS/CVXOPT. The con-
vex solver is accessed from python utilizing the cvxpy library [1, 8].

Regularization: We faced some issues associated with numerical precision
errors during optimization. While debugging and analyzing the models, we
found that these numerical errors were causing suboptimal learning of pa-
rameters. For instance, we encountered some problems when the dataset
has no events to help infer the edge parameter of a specific edge. Instead of
learning these parameter values as zero, the model assigned some small value
to these edges. Through debugging we found that adding an L1 regularizer
over the parameters helps in driving the small parameter values to zero.

Distance function: The features extracted for the nodes and events using
LDA are probability simplexes each with size 10. We treat them as vectors
and use euclidean distance function before rescaling it to [1−κ, 1 +κ] range.
For our experiments on the real-world datasets, we use a value of 0.5 for κ.

d(Ij, fi) = euclidean-dist(Ij, fi) ∗ κ+ 1 (5.1)

5.2.3 Inference Tasks

In this section, we devise three tasks to compare the advantages of our model
over the baseline. In the first experiment, we test the ability of our model to
recover networks using the event data available. In the next subsection, we
compare the ability of the model to learn from past data and predict future
activations. Finally, we take a look at the model’s ability to make predictions
about new unseen cascades.
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5.2.3.1 Network Recovery

In this subsection, we evaluate the ability of our models to perform the task
of inferring the underlying network of diffusion from the available dataset.
The dataset is considered a realization of the stochastic model dependent on
the network. Hence, the ability of the model to infer the underlying network
is a good metric for models. To perform the network recovery experiment,
we devise a parameter inference task using a complete graph as the network
of interactions. The magnitude of an inferred parameter signifies the evi-
dence of an edge being present. The inferred parameters of edges that have
no realizations of transmission in the dataset will tend to zero due to the
regularizer.

Figure 5.2: Precision recall curves for the Network recovery experiment

By sorting all the edges by the magnitude of the inferred parameter, we
can devise a criterion to select edges iteratively. The extracted set of directed-
edges from the MEMETRACKER dataset is used as the ground truth for
comparison. We iteratively increase the number of edges we select and plot
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the resultant precision-recall curve and F1-score curves for comparison.

Figure 5.3: F1-scores curves for the Network recovery experiment

From Figure 5.2 and Figure 5.3, we can see a small improvement in perfor-
mance for the TopicContInd model over the baselines ContInd and Feature-
ContInd. The improvements are more visible on large versions of datasets.
While our model improves on the two baselines, it falls behind NETINF by
a considerable margin. NETINF consistently performs better than the rest
overall versions of the dataset. Note that the curves of the NETINF become
truncated as the algorithm automatically terminates based on a threshold
value of the objective.

5.2.3.2 Future cascade prediction

The advantage of using a completely specified information propagation is
that we can perform future predictions using the parameters learned. The
ability of a model to predict future behavior in a system is a useful application
with many domains. For this task, the events were partitioned into training
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and test data based on time, with the set of events split at time 0.8. The
models were trained on the training data to infer the edge parameter of the
known underlying network. The simulation was then performed using their
respective generative processes to generate events in the time period [0.8,1.0].
We could only evaluate fully formulated information propagation models for
this task and hence only compare ContInd and TopicContInd. The results
are tabulated in Table 5.2.

Dataset Metric ContInd TopicContInd

MemeHyperlink-Small
Precision 0.0401 0.0399

Recall 0.0225 0.0232

MemeHyperlink-Large
Precision 0.0043 0.0062

Recall 0.0039 0.0054

MemePhrase-Small
Precision 0.0960 0.0977

Recall 0.0757 0.0768

MemePhrase-Large
Precision 0.0059 0.0064

Recall 0.0088 0.0090

Table 5.2: Precision-recall scores for the Activation Prediction Task.

The topic aware model performs comparatively to the baseline and ex-
hibits minor improvements on majority of the datasets. It can also be seen
that our model provides a reasonable improvement on the baseline over the
MemeHyperlink-Large dataset. This is following the results seen from the
network recovery task.

5.2.3.3 Prediction on unseen Dataset

Another interesting result worth exploring might be the ability of the model
to make predictions on unseen topics. Specifically, we would like to com-
pare the ability of the models to predict the progression of a held-out set
of cascades. This task mimics the real-world scenarios where we only have
information about cascades that occurred in the past and we wish to make
predictions about the propagation of new piece information. The cascades
were partitioned into training and test data randomly, with 20 percent of the
cascades going into the test set. The model was trained on the training cas-
cades and we tried to recreate the test cascades by using events in the range
[0,0.2] as seed events for this cascade. The ability of the model in predicting
the rest of the events in test cascades are presented in Table 5.3

Our model performs comparatively against the baseline results but does
not improve the result with any significance.
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Dataset Metric ContInd TopicContInd

MemeHyperlink-Small
Precision 0.0528 0.0486

Recall 0.0027 0.0026

MemeHyperlink-Large
Precision 0.0391 0.0410

Recall 0.0022 0.0022

MemePhrase-Small
Precision 0.3141 0.3164

Recall 0.0785 0.0796

MemePhrase-Large
Precision 0.2101 0.2112

Recall 0.0869 0.0885

Table 5.3: Precision-recall scores on Held out items

At this point, it is worth noting that for all the experiments presented in
this section we assumed a constant scaling factor (κ) of 0.5. This should add
strain to the inference mechanism, potentially reducing its accuracy. The fact
that the presented model performs competitively against the baseline does
lead us to intuit the presence of relevant feature correlations. This evidence
is highlighted in the network recovery task, where our model outperforms
the related baselines. A preliminary analysis reveals that the noticeable
improvements in the large version of the datasets are due to the presence of
homophilic clusters of nodes. This could also be due to the larger number of
nodes with non-English text features which could also result in homophilic
clusters based on language.
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Discussion

In this chapter, we go over the insights and other noteworthy points that I
came across through the course of this thesis. The first section discusses the
possible impacts of the model presented in this work along with its relevance
in regards to past works. In the second section, we go over the main challenges
faced during this thesis.

6.1 Relevance

Within this work, I explored a possible extension to the existing influence
propagation model that could be applied to incorporate the topic awareness
to these models. This work assumes that the features are calculated sep-
arately and the calculated features are directly utilized. This is both an
advantage and a disadvantage. By not implicitly modeling the features into
the model we receive the advantage of being able to utilize various features
in complex ways that are not tied to the propagation model. The models
allows for the usage of any kind of features that could be compared to gen-
erate a similarity score. The extension fits nicely to many of the past works
allowing us to model various dynamics depending on topics, political views
or the manner of usage of different users. For example, one could model the
interaction patterns of a user with different kinds of posts (memes, news,
personal stories etc.) and utilize the affinity of a user to interact with each.

The extension can also be squarely applied to the influence maximization
work performed for the topic-agnostic baseline ContInd [14]. This gives us
the added benefit of being able to perform topic-aware influence predictions
with only a slight increase in model complexity.
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6.2 Challenges

By far, the largest challenge faced in undertaking this work was to collect a
real-life dataset to validate my hypothesis. While there exist countless infor-
mation propagation datasets, most of them don’t have any context features
associated with the propagation.

The dataset used in this work (MemeTracker), has been used in many past
works. But, each work uses its own version and it is not possible to arrive
at these versions from the explanations given. This adds to the challenge of
reproducibility1.

1we tried reaching out to some of the authors to obtain the specific datasets they used
but were not successful.
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Conclusions

This thesis has explored the possible improvements that could be obtained
by utilizing content-specific features. A review of past works on the topic
of information propagation and sociology was performed to identify better
modeling objectives. An extension to an existing model based on the scaling
of the edge parameters was presented to incorporate the topic awareness.
The validity of the model was examined through experiments on synthetic
and real-world data.

Through our synthetic experiments, we showcase the improvements that
could be gained through topic awareness in presence of homophilic clusters.
These improvements are also highlighted in the network recovery task per-
formed on real-world datasets, where our model performs considerably bet-
ter than similar baselines. Two secondary experiments also showcased that
the topic influenced the model performed comparatively to the baseline and
provided small improvements consistently. At the very least, this can be
considered as small evidence validating the use of scaling to perform topic
awareness.

While the presented analysis only focused on the selective exposure the-
ory, this work could be considered as a proof of concept for a broader class
of improvements that could be applied to the existing point process mod-
els. Other phenomena like the bursty nature of discourse, the interactions
between polarized individuals, or topic-fatigue1, etc could also be modeled
through selective scaling of the edge parameter. A list of possible future
works are presented next in the conclusion of this work.

1A term used to define a limit to a user’s interaction with a given topic
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7.1 Future Work

If one is to make more impactful progress in researching propagation models,
the first course of action would be to collect and curate a few datasets which
can act as benchmarks for all related models. A few well-rounded datasets
could help us understand more the differences between the existing models
and help progress future research.

While attempts were made to collect a dataset, the time and effort need to
collect and curate it makes it beyond the scope of this thesis. With the added
GDPR constraints and privacy policy of most social media sites, it would also
require careful obfuscation before publishing to prevent any violation. Due
to these complexities, it is more suitable to undertake a separate project to
collect and curate the datasets.

Another useful direction that the work might progress it to perform an
in-depth comparison of the existing models. While there are many research
papers on this topic, they all fall short in properly comparing their model
with relevant older models. The key drawback being they do not compare
models with the same datasets. It would be useful to do an extensive analysis
of these models with a set of common datasets showcasing different dynamics
of propagation each capture.

Theoretically, it would be interesting, to explore other formulations of
incorporating topic awareness to existing models or towards models that
could the context features. Incorporating more dynamics like novelty factor
or popularity of discussion, self-excitatory nature of interactions, etc could
be easy to formulate within this approach, requiring reformulation of just
the scaling function. Alternatively, it could also be interesting to explore
methods that also infer context features. For example, we could be able
to use EM-type algorithms to infer the features if, we formulate the scaling
function such that the objective function remains convex with respect to
these context features.
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Appendix A

Point Processes

Proposition Given a counting process N(t) with λ∗(t),f ∗(t) and S∗, then
it holds that,

S∗(t) = exp

(
−
∫ t

ti−1

λ∗(τ)dτ

)
(A.1)

f ∗(t) = λ∗(t) exp

(
−
∫ t

ti−1

λ∗(τ)dτ

)
(A.2)

Proof: We know that by definition of the survival process,

S∗(t) = 1−
∫ t

ti−1

f ∗(x)dx (A.3)

Which implies that,
dS∗(t) = −f ∗(t)dt (A.4)

Working from the equation of the intensity function,

λ∗(t) =
f ∗(t)

S∗(t)
(A.5)

= − 1

S∗(t)

dS∗(t)

dt
(A.6)

= −d logS∗(t)

dt
(A.7)

By integrating both sides of equation A.7 we can derive A.1. Combining
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A.4 and A.1 we can obtain,

f ∗(t) = −
d exp

(
−
∫ t
ti−1

λ∗(τ)dτ
)

dt
(A.8)

= λ∗(t) exp

(
−
∫ t

ti−1

λ∗(τ)dτ

)
(A.9)
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