
Automated security analysis in a
SCADA system

Akzharkyn Duisembiyeva

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo, Finland August 13, 2020

Supervisor

Prof. Jan-Erik Ekberg and prof.
Mathias Ekstedt

Advisor

Engla Ling

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Akzharkyn Duisembiyeva
Title Automated security analysis in a SCADA system
Degree programme School of Sciences
Major Security and Cloud Computing Code of major SCI3084
Supervisor Prof. Jan-Erik Ekberg and prof. Mathias Ekstedt
Advisor Engla Ling
Date August 13, 2020 Number of pages 112 Language English
Abstract
Supervisory control and data acquisition (SCADA) is a computer system for analysing,
and monitoring data, as well as, controlling a plant in industries such as power grids,
oil, gas refining, and water control. SCADA belongs to the category of critical systems
that are needed to maintain the infrastructure of cities and households. Therefore,
the security aspect of such a system has a significant role. The early SCADA systems
were designed with the operation as the primary concern rather than security since
they were a monolithic networked system without external access. However, the
systems evolved, and SCADA systems were embedded with web technologies for users
to monitor the data externally. These changes improved the efficiency of monitoring
and productivity; however, this caused a problem of potential cyber-attacks to a
SCADA system. One such example was Ukraine’s power grid blackout in 2015.
Therefore, it is beneficial for the security of a SCADA system to create a threat
modeling technique that can understand the critical components of SCADA, discover
potential threats, and propose possible mitigation strategies.

One issue when creating a threat model is the significant difference of SCADA
from traditional Operational Technology (OT) systems. Another significant issue is
that SCADA is a highly customisable system, and each SCADA instance can have
different components. Therefore, for this work, we implemented a threat modeling
language scadaLang, which is specific to the domain of a SCADA system. We started
by defining the major assets of a SCADA system, attackers, entry surfaces, and built
attacks and defense strategies. Then we developed a threat modeling domain-specific
language scadaLang that can create a threat model for a particular instance of
SCADA taking the differences in components and connections into account. As a
result, we achieved a threat modeling language for SCADA, ensured the reliability of
the results by peer-reviewing of an engineer familiar with the domain of the problem,
and proposed a Turing test to ensure the validity of the result of scadaLang as the
future development of the project.
Keywords threat modeling, DSL, MAL, cyber security, SCADA

Aalto-universitetet, PB 11000, 00076 AALTO
www.aalto.fi

Sammandrag av diplomarbetet

Författare Akzharkyn Duisembiyeva
Titel Automatiserad säkerhetsanalys av SCADA system
Utbildningsprogram Säkerhet och molnberäkning
Huvudämne Säkerhet och molnberäkning Huvudämnets kod SCI3084
Övervakare Engla Ling
Handledare Prof. Jan-Erik Ekberg, Prof. Mathias Ekstedt
Datum August 13, 2020 Sidantal 112 Språk Engelska
Sammandrag
Supervisory control and data acquisition (SCADA) är ett datorsystem för att analy-
sera och monitorera data samt kontrollera anläggningar för industrier såsom energi-
system, olja, raffinering av gas och vatten. SCADA tillhör den kategori av kritiska
system som krävs för att bibehålla städer och hushålls infrastruktur. Därför är
säkerhetsaspekten av ett sådant system av stor roll. De tidiga SCADA systemen
var utformade med funktionen som huvudsaklig oro istället för säkerheten då de var
monolitiska nätverkssystem utan extern åtkomst. Systemen utvecklades emellertid
och SCADA systemen blev inbyggda med webbteknologier så att användare kan
monitorera data externt. De här förändringarna förbättrade effektiviteten av moni-
torering och produktivitet men skapade problemet med potentiella cyber-attacker
mot SCADA systemen. Ett sådant exempel är Ukrainas energy systems elavbrott
som skedde 2015. Därför är det fördelaktigt för säkerheten av SCADA systemen att
skapa en hotmodelleringsteknik för att bättre förstå de kritiska komponenterna av
SCADA, hitta potentiella hot och föreslå potentiella förmildrande strategier.

Ett problem för utvecklingen av en hotmodell är den stora skillnaden mellan SCA-
DA från traditionella nätverkssystem inom industri. Ett annat stort problem är att
SCADA är ett justerbart system och varje SCADA instans kan ha olika komponenter.
Därför utvecklar vi i detta arbete ett språk för hotmodellering scadaLang som är
specifikt för domänen SCADA system. Vi började med att definiera de huvudsakliga
komponenterna av SCADA system, angriparna, attack ytorna och även bygga attac-
ker samt försvarsstrategier. Sen utvecklade vi ett språk för hotmodelleringen som
är domänspecifikt, scadaLang som kan skapa en hotmodell för en specifik instans
av SCADA där skillnaderna på komponenter och sammankopplingar tas till hänsyn.
Som resultat har vi skapat ett språk för hotmodellering för SCADA,verifierat resultat
med hjälp av en ingenjör med domänkännedom och föreslagit ett Turing test för att
förbättra verifieringen av resultatet som ett framtida arbete.
Nyckelord hotmodellering, DSL, MAL, cybersäkerhet, SCADA

Copyright © 2020 Akzharkyn Duisembiyeva

Contents
Abstract 2

Abstract (in Swedish) 3

1 Introduction 6
1.1 Motivation . 6
1.2 Problem Statement . 7
1.3 Goals of the Thesis Work . 7
1.4 Research Question . 7
1.5 Ethics and Sustainability . 8
1.6 Delimitation . 9
1.7 Structure of the Report . 9

2 Background 10
2.1 SCADA Overview . 10

2.1.1 SCADA architecture overview 10
2.1.2 SCADA security assessment 11
2.1.3 SCADA communication protocols 13
2.1.4 Security zones in SCADA . 14

2.2 Threat Modeling . 15
2.2.1 Taxonomy of threat modeling techniques 15
2.2.2 CVSS score . 17

2.3 Meta Attack Language (MAL) . 18
2.3.1 MAL Syntax and Overview 18
2.3.2 Testing at MAL . 20
2.3.3 Probabilistic model of MAL 22

2.4 Related Works . 24
2.4.1 Model-driven security engineering and Domain-specific languages 24
2.4.2 Threat modeling projects for SCADA 25

3 Methodology 26
3.1 Method . 26
3.2 Data Collection . 26

3.2.1 Assets and Layers selection 26
3.2.2 Data Sources and Processing 28

3.3 Risk Assessment Strategy Design . 29
3.4 Assessing the Reliability and Validity of DSL for Threat Modeling

based on MAL . 31

4 Implementation of scadaLang 33
4.1 Scope and Assumptions . 33
4.2 Assets and Categories . 33

4.2.1 Categories . 33
4.2.2 Domain Feature Matrix . 34

i

ii

4.3 Actors . 35
4.4 Attacker Profiles . 36
4.5 Attacks . 36

4.5.1 Entry surface . 38
4.5.2 ICCP server (frontend and backend servers) 38
4.5.3 RTU . 39
4.5.4 Communication front end . 39
4.5.5 HMI + Thin client . 42
4.5.6 Alarm . 44
4.5.7 App server . 44
4.5.8 Postgre and Oracle Database 46
4.5.9 Real-time Database . 48
4.5.10 Antivirus Server . 48
4.5.11 Backup server . 50
4.5.12 Directory Service . 51
4.5.13 Product . 52
4.5.14 Other servers: DNS, NIS, NTP 53
4.5.15 Data Engineering / new HMI server 53
4.5.16 Accounts . 55
4.5.17 Firewall . 55
4.5.18 Zones . 55
4.5.19 Data diode . 55
4.5.20 Router . 55

4.6 Associations . 56
4.7 Potential Mitigation for SCADA . 58

4.7.1 ICCP server (frontend and backend servers) 58
4.7.2 RTU . 59
4.7.3 Communication front end . 59
4.7.4 HMI + Thin client . 60
4.7.5 Alarm . 60
4.7.6 App server . 60
4.7.7 Databases . 61
4.7.8 Antivirus Server . 61
4.7.9 Backup server . 61
4.7.10 Directory Service . 63
4.7.11 Product . 63
4.7.12 Other servers: DNS, NIS, NTP 63
4.7.13 Data Engineering / new HMI server 63
4.7.14 Accounts . 64
4.7.15 Firewall . 64
4.7.16 Zones . 64

4.8 Risk Assessment . 65
4.8.1 ICCP server (frontend and backend servers) 66
4.8.2 RTU . 66
4.8.3 Communication frontend . 66

iii

4.8.4 HMI + Thin client . 67
4.8.5 App server . 67
4.8.6 Databases . 68
4.8.7 Antivirus Server . 68
4.8.8 Backup server . 68
4.8.9 Directory Service . 69
4.8.10 Product . 69
4.8.11 Data Engineering / new HMI server 69
4.8.12 Accounts . 70
4.8.13 Firewall . 70

5 Creating a Threat Model for a SCADA Instance Using scadaLang 71
5.1 System Assets . 73
5.2 Security Assets . 73
5.3 Communication Assets . 73

6 Results of Attack Simulations 75
6.1 Loss of Availability . 75
6.2 Theft of Operational Information . 78
6.3 Loss of Control . 80
6.4 Loss of Safety . 82

7 Discussion, Limitations, and Future Work 84
7.1 Discussion . 84
7.2 Limitations . 84
7.3 Future work . 85

8 Conclusions 87

References 88

A Overall Attack Graph 94

B Example of Unit Testing a DSL Based on MAL 95

C All attacks and Mapping MITRE Into Threat Modeling of SCADA 98

D Code of scadaLang 100

List of Figures
2.1 A typical Supervisory control and data acquisition (SCADA) Archi-

tecture in a simplified logical view [6] 11
2.2 Layers of a SCADA system. Figure taken from [6] 12
2.3 Summary of Common Vulnerability Scoring System (CVSS) v3 Base

Metrics. Figure taken from [38] . 18
4.1 Attacks relations for Inter-control communication protocol (ICCP)

server . 38
4.2 Attacks relations for Communication front end server 41
4.3 Attacks relations for Human Machine Interface (HMI) 43
4.4 Attacks relations for App server . 45
4.5 Attacks relations for the Database 47
4.6 Attacks relations for Antivirus server 49
4.7 Attacks relations for Backup server 51
4.8 Attacks relations for Directory Service 52
4.9 Attacks relations for Data Engineering (DE) server 54
4.10 General assets and associations selected for this implementation . . . 56
5.1 Creating a threat model for a particular SCADA instance based on

scadaLang . 71
6.1 Attack steps to shut down Communication frontend 75
6.2 Alternative path to shut down Communication frontend 75
6.3 Full attack steps to shut down Communication frontend 77
6.4 Attack steps to steal operational information 78
6.5 Full attack steps to access files in Backup server 79
6.6 Attack steps to control slave devices 80
6.7 Full attack steps to install a rogue master device 81
6.8 Attack steps to start the wrong alarm 82
6.9 Alternative attack paths to start the wrong alarm 82
6.10 Full attack paths to start the wrong alarm 83
A.1 Overall attack graph . 94

iv

List of Tables
2.1 SCADA protocols overview. 13
2.2 Generalised zones in SCADA . 14
2.3 Severity levels in CVSS v3 system [37] 17
2.4 Assertion methods for writing tests in Meta Attack Language (MAL) [39] 22
2.5 Distribution functions available in MAL [40] 23
3.1 List of assets in a SCADA and their categorisation for this work

based on KTH Threat Modeling Method (KTMM) 28
3.2 Mapping CVSS score to MAL probability distribution 30
4.1 Asset feature matrix . 35
4.2 List of main actors in SCADA . 36
4.3 Associations between assets and encoded attacks 57
4.4 List of protection mechanisms for Inter-control communication pro-

tocol (ICCP) asset in SCADA . 58
4.5 List of protection mechanisms for Communication front end asset in

SCADA . 59
4.6 List of protection mechanisms for Human Machine Interface (HMI)

asset in SCADA . 60
4.7 List of protection mechanisms for App server asset in SCADA 60
4.8 List of protection mechanisms for Database assets in SCADA 61
4.9 List of protection mechanisms for Antivirus Server asset in SCADA . 61
4.10 List of protection mechanisms for Backup Server asset in SCADA . . 61
4.11 List of protection mechanisms for Directory Service asset in SCADA 63
4.12 List of protection mechanisms for Product asset in SCADA 63
4.13 List of protection mechanisms for Data Engineering (DE)/new Human

Machine Interface (nHMI) asset in SCADA 63
4.14 List of protection mechanisms for Accounts asset in SCADA 64
4.15 CVSS for vulnerabilities and mapping to HMI4 attack step 65
4.16 Severity scores and CIA impact for Inter-control communication

protocol (ICCP) attacks . 66
4.17 Severity scores and CIA impact for Remote Terminal Unit (RTU)

attacks . 66
4.18 Severity scores and CIA impact for Communication Frontend attacks 66
4.19 Severity scores and CIA impact for Human Machine Interface (HMI)

attacks . 67
4.20 Severity scores and CIA impact for App server attacks 67
4.21 Severity scores and CIA impact for Database attacks 68
4.22 Severity scores and CIA impact for Antivirus Server attacks 68
4.23 Severity scores and CIA impact for Backup Server attacks 68
4.24 Severity scores and CIA impact for Directory Service attacks 69
4.25 Severity scores and CIA impact for Product attacks 69
4.26 Severity scores and CIA impact for DE/nHMI Service attacks 69
4.27 Severity scores and CIA impact for Account attacks 70
4.28 Severity scores and CIA impact for Firewall attacks 70

v

vi

7.1 List of attacker profiles for SCADA threat model 86
C.1 All Attacks . 100

1

Acronyms
AD Active Directory
API Application Program Interface
CC Control centre
CIA Confidentially, Integrity, Availability
CII Critical information infrastructure
Comm Communication
CVE Common Vulnerabilities Enumeration
CWE Common Weaknesses Enumeration
CVSS Common Vulnerability Scoring System
CNI Critical National Infrastructure
CDIO Conceive, Design, Implement, Operate
CDITO Conceive, Design, Implement, Test, Operate
DB Database
DBMS Database Management System
DE Data Engineering
DMZ Demilitarised Zone
DNP3 Distributed Network Protocol 3
DNS Domain Name Space
DoS Denial-of-Service
DDoS Distributed denial-of-service
DSL Domain-specific language
EPO ePolicy
ES Expert System
FAIR Factor Analysis of Information Risk
GUI Graphical User Interface
ICCP Inter-control communication protocol
ICS Industrial Control Systems
ICMP Inter Control Message Protocol
IDS Intrusion Detection Systems
IEC International Electrotechnical Commission
IED Intelligent Electronic Device
INSPIRE INcreasing Security and Protection through Infrastructure REsilience
IT Information Technology

2

IPS Intrusion Prevention System
HMI Human Machine Interface
nHMI new Human Machine Interface
KTH Royal Institute of Technology
KTMM KTH Threat Modeling Method
MAL Meta Attack Language
MiM Man-in-Middle attack
MAC Mandatory Access Control
NIS Network Information System
NIST National Institute of Standards and Technology
NGFW Next Generation Firewall
NTP Network Time Protocol
NVD National Vulnerability Database
ODBC Open Data Base Connectivity
OS Operating System
OT Operation Technology
PASTA Process for Attack Simulation and Threat Analysis
PBX Private Branch Exchange
PCN Process Control Network
PCS Process Control System
PLC Programmable Logic Controllers
ProdZone Production Zone
ROC Remote Operator Console
RDB Real-time database
RTU Remote Terminal Unit
SCADA Supervisory control and data acquisition
SIS Safety Instrumented Systems
SHARP Security-Hardened Attack Resistant Platform
SELinux Security-enhanced Linux
SQL Structured Query Language
SSO Site security officer
TCP Transmission control protocol
TTC Time-To-Compromise
UDP User datagram protocol

3

UML Unified Modeling Language
VIKING Vital Infrastructure, Networks, Information and Control Systems

Management
WAN Wide Area Network

4

Glossary
Admin accounts type of account with high privileges. 28

Adversary The malicious actor. 64

ANSI/ISA a compliance institute that offers security standards for organisations.
14

CIA properties of the system that relate to the confidentiality, integrity and avail-
ability of communication between entities of this system. 37

CISA: Industrial Control Systems US governmental standard for homeland se-
curity. 8, 58, 87

CNI (the UK), a term used by governments to group the fields of industries, sectors
and assets that are necessary for the economy, daily life of society and security.
6

Domain-specific language The language designed to solve the specific set of
problems. 18

ExploitDB a vulnerability database for collecting and maintaining information
about discovered computer security vulnerabilities. 46

IEC 60870-5-104 IEC standard used for control in electrical engineering and power
system automation applications.. 64

IEC 622443-1 IEC standard used for the security of Industrial Control System
(ICS) networks. 14

IEC 62254-1 IEC standard used for the manufacturing operations management
domain (reference model for computer integrated manufacturing). 14

KTH threat modeling method Adaptation of the PASTA and FAIR method-
ologies with the following phases: 0. Scope and Delimitations; 1. Business
Analysis; 2. System Definition and Decomposition; 3. Threat Analysis; 4.
Attack and Resilience Analysis; 5. Risk Assessment and Recommendations..
28

Mimikatz Windows tool for post-exploitation and dumping passwords memory,
PINs and Kerberos tickets. 48, 52

MITRE non-governmental organisation that conducts security research. 7, 8, 25,
26, 33, 37, 39, 41, 43, 45, 46, 50, 51, 54, 58, 60, 71, 72, 75, 84, 85, 87

Modbus a communication protocol originally designed for programmable logic
controllers, and nowadays commonly available for connection of industrial
electronic devices. 13

5

OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation, a
threat modeling technique. 15

Sandia National Laboratories Part of the PCS security project of the Institute
for Information Infrastructure Protection (http://thei3p.org). 14

SCADA is a computer system for analysing, monitoring data and controlling a
plant in industries as electricity, oil, gas refining and water control.. 6

Service accounts type of non-human account dedicated for automation of services.
These accounts are more privileged than a user, but do not have admin
privileges. 28

STRIDE threat modeling framework proposed by Microsoft. 15, 16

Trust boundary an abstract logical zones that is different from another trust
boundary due to access levels. 55

User accounts type of account that offers least privilege level and allows to have a
limited read permissions only. 28

http://thei3p.org

6

1 Introduction
Supervisory control and data acquisition (SCADA) is a computer system for data
monitoring and analysis, as well as controlling a plant in industries such as power
grids, oil, gas refining, and water control. SCADA is an essential core of Process
Control System (PCS) [1], a key component of Critical National Infrastructure
(CNI) [2], and have a signification role in daily life of Swedish population [3]. In early
SCADA systems, there was no importance assigned to cyber-security, and, therefore,
the topic of security analysis of SCADA systems is relatively new [4]. Section 1.1
provides a short introduction about SCADA and its security aspect. This thesis
assesses the security of SCADA and proposes a tool to investigate potential attacks
and vulnerabilities. Section 1.2 provides a problem statement for the work, section 1.3
describes the goals, while section 1.4 showcases the research questions in this work.
Section 1.5 discusses the ethical concerns and issues related to sustainability. In
section 1.6, we discuss the scope of the project and its delimitation. Section 1.7
navigates through the further chapters of the report.

1.1 Motivation
The Ministry of Justice of Sweden [3] states that the electric power industry, which
utilizes systems like SCADA, has a major impact on national well-being. The security
topic of SCADA has national importance, which was stressed by the Protective
Security Act (SOU 2015:25). Early SCADA was a standalone, isolated system where
cyber-security attacks were less priority than operation security. The significant
change in the security of the SCADA system happened from the 2000s when these
systems became embedded with web technologies for efficient monitoring [5]. These
drastic shifts lead to a host of desirable advantages like the increase of data inter-
exchange and easy management of production capabilities [5]. However, these drastic
shifts also lead to disadvantages, the most important of which was the rise of
cyber-attacks.

According to Ahmed et al. [6], the architecture of SCADA systems drastically
evolved compared to their earlier predecessors. The early-stage SCADA systems
consisted of input/output devices, and the signals were transmitted between the
master and remote units. Later, the communication between units became wireless
and relied on IP. The key change occurred when the internal network and external
components started to integrate, allowing the SCADA to connect with the corporate
intranet. These internal components had direct access to the Internet, making the
previously closed system available for connecting to the outside world, which led to
potential threats.

One popular approach towards mitigating potential security vulnerabilities is
a threat modeling. Threat modeling is a risk assessment technique that identifies
potential threats to the system. Threat modeling consists of several phases. First of
all, we assess the system and identify assets that are components of the system and
actors who interact with the system. The next phase is to define potential attackers
and their capabilities. This phase is followed by building attack graphs to identify

7

potential threats for each attacker. Finally, a threat model proposes a protection
strategy and generates a risk assessment for the system. Creating threat models
can be time-consuming, as the attack graphs grow larger and become more complex.
To mitigate this drawback, we can use Domain-specific language (DSL) for attack
simulations. Domain-specific language (DSL) for attack simulations provides a way
to automate the generation of attack graphs. One such language is Meta Attack
Language (MAL) [7].

In this work, we extend MAL to build a threat modeling language for SCADA,
and create a tool that can generate a threat model for an instance of SCADA using
our language.

1.2 Problem Statement
As described in the section 1.1, the attacks on SCADA increased drastically in recent
years. Moreover, SCADA is a highly customisable system and can have different
setups. It makes it difficult to create a generalised framework for all instances of
the same SCADA system. How can we assess the security of SCADA? We can find
important information in configuration files. However, to our best knowledge, no
threat modeling tool can make use of this information. Can we utilize important
information in configuration files to build a threat modeling tool for a generalised
SCADA system?

1.3 Goals of the Thesis Work
This project aims to assess the security of a SCADA system, and develop a Domain-
specific language (DSL), which we can use to generate a threat model for a particular
instance of SCADA. We can achieve our goal with two objectives. The first objective
is to develop a domain-specific threat modeling language specification based on MAL
that would fit the SCADA architecture. For this, we make use of state-of-the-art
methodologies for threat modeling (Factor Analysis of Information Risk (FAIR),
KTMM, MITRE), which we thoroughly explore in chapters 3 and 4. The second
objective is creating a threat model for a SCADA instance using the developed
language. For that, we get the configuration files of a particular SCADA system.
Based on information in the files, we generate a threat model for this instance.

1.4 Research Question
The project focuses on building the threat modeling language for SCADA. In this
work, we ask the following research questions:

• How can we build a DSL for threat modeling specifically fit for SCADA? Can
we utilise state-of-the-art methodologies for threat modeling (FAIR, MITRE)
of SCADA?

• How can we apply this language for generating a threat modeling tool for a
particular SCADA instance using configuration files? Do these configuration

8

files provide sufficient data to successfully model and assess the security of a
SCADA system?

1.5 Ethics and Sustainability
The general purpose of this work is to provide a security assessment for a SCADA
system using available data from configuration files and open-source security knowl-
edge bases. We take all the data for attack steps from the open-source MITRE
knowledge base. The general assets for the work correlate with assets described in
MITRE knowledge base. There was no fabrication while taking the images of attack
steps or reporting of results. The report and the degree work do not have plagiarised
content. All the materials in this work are properly cited. The work does not leak
any confidential information about a SCADA system.

The work output cannot be exploited with bad intent by attackers. Threat
modeling provides the analysis of the system and the theoretical description of
potential attack steps. At first glance, these attack steps could leak information on
how the system could be exploited. However, the work uses attacks from open-source
MITRE, which is publicly accessible. If the attacker prefers so, he or she can use
the attack techniques from the MITRE knowledge base directly as a guideline. In
addition to that, the names of assets and associations that were described in this
work are not unique terms for a particular company, but rather an obfuscation.
The protection mechanisms are also taken from MITRE knowledge base, or CISA:
Industrial Control Systems, in case the protection mechanism are not available in
MITRE. All these measures solve the problem of using this work as a directive of
breaking into the SCADA system.

On the economic and sustainability front, we made the best effort to reduce time
and computation while creating a threat model. In other words, time and complexity
required for proposing a threat model. For example, our proposed solution’s main
idea is to generate a threat model for a particular SCADA instance considering the
proper assets. The instance might have a different setup from another instance, and,
therefore, we propose attack steps that match only the needed asset. This avoids
building unnecessary and redundant attack steps that do not possess a value for a
threat model.

Our work contributes to making the SCADA system more secure and sustainable.
The insecure SCADA systems could be categorised as unsustainable systems in terms
of operation and environmental impact. SCADA suffers from inefficient patch delivery,
time-consuming maintenance, and expensive hardware and software repair [8]. In
addition to that, the system is geographically distributed with weak protection, and
a successful exploit on one of the sites could spread on others [9]. Other issues
connected with the impact of security breaches is the environmental pollution caused
by SCADA incidents [10]. Examples of such breaches took place in Siberian Pipeline
(1982), Bellingham, WA Gas Pipeline (1999), Maroochy Water System(2000), and
others [10]. Contributing to the security of SCADA would benefit the sustainability
of this system in terms of operation and ecology.

9

1.6 Delimitation
The work has the following delimitation due to time constraints. The following is
not in the focus of this work:

• This work does not consider attacks against safety systems and protection
against manual misconfiguration.

• This work does not consider any attacks toward field units. We consider field
units to be an entry surface in this work.

• This work proposes a Turing test for enhancing the validation of results but
does not implement it. Turing test for enhancing of the validation of results is
a future extension of work.

1.7 Structure of the Report
Chapter 2 provides the background information to make a reader familiar with the
notions used in this work. Chapter 3 gives information about the analysis of collected
data and methodology. Chapter 4 presents “scadaLang", DSL for threat modeling
based on MAL for a general threat modeling for SCADA. Chapter 5 presents a threat
model for a particular instance of SCADA using proposed scadaLang. Chapter 6
presents the results and findings. In chapter 7 we discuss our work and state
limitations and future work. Chapter 8 concludes the work and summarizes our
findings.

10

2 Background
This chapter gives the necessary background information for the reader to get familiar
with the main notion and terms used in this work. Section 2.1 gives information
about SCADA systems, security issues in SCADA, communication media in SCADA
and the notion of zones. Section 2.2 explains the important definitions for threat
modeling that are used for this work, as well as gives information about Common
Vulnerability Scoring System (CVSS), a security metric used in threat modeling for
describing criticality of an attack step. Section 2.3 dives into the MAL language
framework. Section 2.4 provides information about previous work in this topic.

2.1 SCADA Overview
In this section we explain what SCADA means. We discuss the architecture of
SCADA and security issues in this system.

2.1.1 SCADA architecture overview

Modern SCADA systems have a complex heterogeneous architecture that consists of
geographically distributed components [2]. Figure 2.1 demonstrates the simplified
version of how the SCADA works. In general, a Control centre (CC) and field sites
comprise a SCADA system.

Control centre (CC) is the hub of the system consisting of the following units:
HMI, database management system (Historian), and SCADA server. Based on
the configuration, the system can also have the load sharing server, Inter-control
communication protocol (ICCP) server, backup servers, replicas, antivirus servers,
directory servers, workstations, and other. CC consists of a primary site and backup
sites. The main functionality of CC is planning, monitoring, and control.

CC is connected with the Corporate Network (Company Support Zone), and the
communication can be established through a network connection. Older versions
of SCADA used Private Branch Exchange (PBX) for this communication, while
modern SCADA uses internet connections between Corporate Network and CC. This
connection is needed in SCADA to ensure the constant company support for CC.

On the other hand, field sites are connected with CC via satellite, radio/mi-
crowave/cellular networks or Wide Area Network (WAN), and are geographically
distributed in various locations. Field sites are equipped with Programmable Logic
Controllers (PLC) or Remote Terminal Unit (RTU) that are needed to control the
state of the system on-site. Field sites also send regular health checks to CC. Com-
munication Frontend servers accept the data from all field devices. Human operators
can access this data through Human Machine Interface (HMI), and Historian archives
it.

11

Figure 2.1: A typical SCADA Architecture in a simplified logical view [6]

2.1.2 SCADA security assessment

The early SCADA systems did not consider cyber-security attacks as a major concern
due to its standalone nature [11]. The priority was given to operational security.
Fernandez et al. [1] mentions that PCS requirements were the main requirements that
SCADA needed to fulfil during the early stage. The assessment of the security of the
system included only the physical security of components and networks. However,
the situation changed in the last decade, since the early security standard became
outdated [2]. Therefore, the SCADA security standards needed to be reworked, and
National Institute of Standards and Technology (NIST) published the risk assessment
and security guide in 2014 in a document “System Protection Profile Industrial
Control Systems". SCADA systems control critical industrial systems, and, therefore,
serve as a fascinating target for attackers [12]. One of the most well-known examples
is the Stuxnet virus that was designed to harm automated systems, such as SCADA,
in 2010 [10]-2012 [13]. As a result, the Stuxnet virus affected 50,000 - 100,000
computers worldwide. The example of Stuxnet inspired attackers to create more
powerful and sophisticated attacks, such as “Flame", which is considered an espionage
tool, and “Duqu" which used the same techniques as Stuxnet [10].

According to Schneider, Obermeier, and Schlegel [12], the security in SCADA
systems differ from traditional Operation Technology (OT) system in some ways.
First of all, some systems have unprotected legacy parts that are of particular
interest. Secondly, the main requirement for these systems is constant availability.
This constant availability requirement is related to the fact that this system is
connected to physical systems supported by a large number of sensors. These sensors
also serve as an attack surface. Thirdly, unlike the OT systems, the SCADA system
cannot be turned off, which, in the case of forensics, complicates the data acquisition
and analysis [6]. Ahmed et al. [6] mentioned the following potential attacks in

12

SCADA:

• Security Component Malfunctioning

• Insider Attacks

• Unauthorized Access

• Technology Improvement as a threat

• Shifting of Trust Boundaries

Figure 2.2: Layers of a SCADA system. Figure taken from [6]

Figure 2.2 introduces the hierarchical concept of layers, which is a convenient
way to group the components of SCADA based on their purpose, location and
functionality. The regulatory levels handle process control [14], while supervisory
control layers are responsible for the diagnosis of the system [15].

According to Men et al. [16], HMI is the most straightforward way to get into
the system. The first way to achieve it is social engineering or phishing of a
human operator. The second way is to obtain the administrative privileges on
the Communication frontend that communicates with remote units on the field.
Obtaining administrative access to Communication frontend can lead to sending
incorrect data to a CC and all connected RTUs. Thirdly, there is a threat connected
with the external SCADA system. Taking over the Inter-control communication
protocol (ICCP) would lead to gaining access to a CC. The potential threats involve
internal SCADA’s trust boundary as well. The key component of the system is a

13

Directory Service. Directory Service is responsible for authentication, and in case of
obtaining the administrative right on Directory Service, there is a great threat to
the whole system.

2.1.3 SCADA communication protocols

When it comes to describing the communication means in SCADA, it is necessary
to pay attention to the fact that the choice of communication means or protocol
depends on the noise and speed of data transmission [17].

Currently, the most prevalent protocols include Modbus [1] and Distributed
Network Protocol 3 (DNP3) [17] that is used to communicate with PLC. Table 2.1
presents some of the protocols in a SCADA system.

Protocol Description
Modbus A widely used, industrial control protocol which

relies on a simple request/reply procedure be-
tween a CC and field devices. There are two main
variants Serial and TCP [18].

DNP3 The primary SCADA protocol used in the electri-
cal power grid [19]. The protocol supports three
main communication models between a CC and
field devices, unicast, broadcast, and a mode for
unsolicited responses from field devices [20].

ICCP The standard CC-to-CC communication protocol.
The protocol can run on top a range of transport
layer protocols, but it is often used on top of
TCP/IP to establish a point to point connection
between to CCs [21].

IEC 60870-5-101 / 104 Communication between components of a
SCADA system relies on IEC 60870-5-101 and
IEC 60870-5-104 international standards [22].
These standards were designed by International
Electrotechnical Commission (IEC), and enable
message transmission between CC and remote
field units. These standards also include remote
control protocols IEC 60870-5-101 and IEC 60870-
5-104 which use dedicated optical fibers, digital
radio links or mobile networks [23]. These proto-
cols define a communication between CC to field
units.

Table 2.1: SCADA protocols overview.

14

2.1.4 Security zones in SCADA

Mahan et al. [24] defines security zone as “a collection of information systems
connected by one, or more, internal networks under the control of a single authority
and one security policy". The important features of security zones or zones are as
follows [24]:

• Zones should separate the critical assets from common ones;

• Assets under the same zone have the same zone policy;

• The boundary of the zones should be accurate, and the communication between
the assets in this zone to other external assets should be filtered;

• Any services, application and protocols that are carrying information from the
zone to outside environment should be blocked;

The number of zones vary based on necessity of the system, however, security stan-
dards (ANSI/ISA, IEC 622443-1, IEC 62254-1) and Sandia National Laboratories [25]
propose the generalised zones. Table 2.2 groups these zones together.

IEC 622443-1, IEC
62254-1

ANSI/ISA Sandia National Labo-
ratories

Automation Zone (pro-
cess, safety and protec-
tion, basic control/local
control)

Enterprise (corporate)
Zone

Corporate Zone

Operation Control (super-
visory control) Zone

CC Zone (primary and
backup CC)

Process Control Zone

Operation support (oper-
ation management) Zone

DMZ (Historian and
ROC)

DMZ

Business support Zone
(Business planning and lo-
gistics)

Site Control Zone (local
operator and engineering
workstations, servers, and
SCADA devices)

Corporate (enterprise and
common services) IT zone
External Integration Zone
(third-party services)

Table 2.2: Generalised zones in SCADA

Figure 2.2 demonstrate the example of zoning of SCADA system. DMZ is also
referred as “screened subnet". This zone is located logically between two logical
networks. The purpose of DMZ is being a shield for an internal protected network
with releasing restricted access to data in the internal zone for external sources. The

15

recommendation by [24] states that the system should consist of external and internal
DMZ.

External DMZ should provide a public access to external-facing servers without
any traffic between servers inside DMZ as depicted in Figure 2.2.

Enterprise Zone is also termed as “Corporate Support Zone" to support SCADA
remotely for customers.

Secure Production Zone (ProdZone) has the highest priority, and it is responsible
for processes handling. This zone is also termed as Process Control Network (PCN).
Byres, Karsch, and Carter [26] mentions that this zone should be isolated from both
Corporate (Enterprise) Zone and Internet systems through the firewalls.

2.2 Threat Modeling
In this section, we discuss the concept of threat modeling and provide the essential
definitions that we use in this report.

2.2.1 Taxonomy of threat modeling techniques

UcedaVelez and Morana [27] shows that the majority of attacks took place when the
system was unintentionally designed with flaws and security bugs or when security
was not prioritised. This correlates with the issues at SCADA as described in
section 2.1.2. Therefore, the notion of “threat modeling" becomes important.

Definition 2.1. Threat modeling - “a strategic process aimed at considering strate-
gic attack scenarios and vulnerabilities within a proposed or existing application
environment to identify risk and impact levels". The application environment refers
to the object of the threat modeling process [27].

Threat modeling is a risk assessment technique that identifies potentials threats to
the system. These threats could be resolved while developing the system. Examples of
threat modeling approach are STRIDE developed by Microsoft [28], OCTAVE created
by CERT Division of the SEI [29], Factor Analysis of Information Risk (FAIR) [30] or
Process for Attack Simulation and Threat Analysis (PASTA) introduced by UcedaV-
elez and Morana [27]. Royal Institute of Technology (KTH) also developed a threat
modeling technique KTMM [31]. KTMM is a combination of FAIR and PASTA.
In summary, the core of threat modeling techniques as STRIDE and PASTA is
identifying the main assets (described in definition 2.2), the attacker (described in
definition 2.3), actors of the system and their roles (administrative with higher privi-
lege or user with lower privilege), the data flow and architecture of the system. After
analysing this information in this work, we can develop an attack tree (described
in definition 2.4). Finally, knowing the potential vulnerabilities and issues, we can
propose the risk assessment (described in definition 2.5), mitigation strategy, and
how it can reduce the damage or possibility of an attack.

Definition 2.2. Asset - in general, can relate to “component of the system, function
or process, data" which value can be “associated with business critically" [27].

16

The assets can be divided into groups or categories based on different factors.
For the categorisation of assets in this paper, we selected the KTH Threat Modeling
Method (KTMM) categorisation of assets. KTMM has convenient and simple asset
types. Below are categories of the assets that we use for this paper:

• Function - this category includes components “that feature some kind of
behaviour".

– Services - this subcategory includes applications and features that face
users (actors).

– Platforms - this subcategory includes non-end user-facing applications
and software, unlike services subcategory. These assets build an infras-
tructure for services, e.g., Operating System (OS), middleware, Database
Management System (DBMS), and servers.

– Hardware - this subcategory includes all physical assets that serve as
deployment infrastructure for platforms and services, e.g., computers,
work stations.

• Data - this category includes assets that constitute some information in the
system, e.g., log files, credentials, configuration data.

• Networks - these assets include communication media that connect functions
and transmit data, e.g., Ethernet, firewalls, routers.

Definition 2.3. Attacker (adversary) - a malicious actor with the intent to disrupt
the Confidentially, Integrity, Availability (CIA) properties of the system.

Attackers use vulnerabilities to exploit the system. Attackers can differ based
on their motivation, skills, and resources. Script kiddies have beginner skills with a
motivation to learn and limited resources. They do not impose a critical risk to the
SCADA system. On the contrary, cyber-criminals and government-sponsored groups
of attackers have high motivation, skills, financial resources, time, and equipment.
Therefore, these types of attackers are a serious threat to the SCADA system. As for
SCADA, the attacks from the second category have a higher possibility of occurrence
based on previous attacks described in 2.1.2. As an example, Sandworm Team is
a cyber-espionage group of attackers that is related to the Ukrainian energy sector
attack (2015) [32].

Definition 2.4. Attack tree - a threat modeling technique popularised by Bruce
Schneider in 1999 [33] that places the attacks in a tree form where the root is a goal
of an attack and leaves are the starting point to achieve it [33].

The nodes in a tree are divided into OR and AND nodes. When the node is
marked with OR label, any attack branch of this node could be used (e.g., cheapest
attack branch). In the case of AND label of the node, all the attack branches must
be fulfilled [33]. Other risk assessment techniques adopted the method of building
attack trees as STRIDE and PASTA.

17

Definition 2.5. Risk assessment - “is a process of identifying the risks to system
security and determining the probability of occurrence, the resulting impact, and
additional safeguards that would mitigate this impact" [34]. PASTA model is inte-
grated with a generic risk assessment process as NIST Risk Assessment Methodology
in Special Publication 800-30.

After building a risk assessment based on potential attacks, we can suggest
mitigation for the particular issue.

2.2.2 CVSS score

CVSS is a system that allows us to assign numeric values of severity and impact
of a vulnerability based on calculations by researchers [35]. The severity level of
attacks is divided into low, mid, high, and critical impact levels by Stouffer, Falco,
and Scarfone [36]. This work focuses on version 3 of the CVSS scoring model.

Rating CVSS Score Example
None 0.0 No impact
Low 0.1-3.9 Insignificant impact on

business or operation
Medium 4.0-6.9 Limited access to key com-

ponents of the system
High 7.0-8.9 Significant data loss or

downtime of the system
Critical 9.0-10.0 Root-level compromise of

key components of the sys-
tem or infrastructure de-
vices

Table 2.3: Severity levels in CVSS v3 system [37]

The CVSS v3 model uses three categories of metrics: base, temporal and envi-
ronmental. Base metrics are the characteristics of a vulnerability that are constant,
regardless of time or user environments. On the other hand, temporal metrics take
into account properties of a vulnerability that might change over time, like patches.
Environmental metrics gives the option to customise the score based on desired user
environment factors. For this work, we only take into account the Base metrics.
Table 2.3 represents the severity scores in Base metrics in CVSS v3.

18

Figure 2.3: Summary of CVSS v3 Base Metrics. Figure taken from [38]

2.3 Meta Attack Language (MAL)
In this section, we discuss the Meta Attack Language (MAL) developed by KTH,
give the explanation of the language and probability distribution at MAL.

2.3.1 MAL Syntax and Overview

MAL [7] is a type of Domain-specific language that provides the syntax and compiler
for building further language specification for a problem designed by KTH. In this
work, we discover whether this technique can suit threat modeling of SCADA. MAL
language utilises the terms “Asset", “Attacker", “Attack", “Association", “Category",
and “Defense" described in previous section 2.2.1.

Below we can see the sample code1 for creating a MAL specification:
category System {

asset Computer {
let allFolders = folder.subFolder*

| connect
-> access

E firewallExists
<- firewall
-> firewall.bypass

E! noFirewall
<- firewall
-> firewallBypassed

| firewallBypassed @hidden
-> access

| vulnerability
-> compromise

& access
-> compromise

& compromise
-> allFolders().accessFolder

// Let substitution

1https://github.com/mal-lang/mal-documentation/wiki/MAL-Code-Examples. Accessed
on 29.06.2020

https://github.com/mal-lang/mal-documentation/wiki/MAL-Code-Examples

19

}
asset Folder {

| accessFolder
-> stealSecrets

| stealSecrets
}

}
category Security {

asset Firewall {
& bypass [Bernoulli(0.2)]

-> computer.firewallBypassed
hardened

-> bypass
}

}
associations {

Computer [computers] * <-- Protect --> 0..1 [firewall] Firewall
Computer [computer] * <-- Contains --> * [folder] Folder
Folder [folder] 1 <-- Contains --> * [subFolder] Folder

}

Asset are mainly zones, communication media, database records, accounts, and
servers in the SCADA system. MAL utilises the Abstract Assets type, which, in
contrary to standard Asset cannot be instantiated. In addition to that, MAL enables
the inheritance between parent and child assets, which helps avoid multiple definitions
of the same attack steps in case a child class extends the base functionality of a
parent asset. The code below exemplifies the inheritance between assets in MAL2.
asset Parent

{
[parent logic]
}

asset Child extends Parent
{

[parent + child logic]
}

asset OperatingSystem
{

[OperatingSystem logic]
}

asset Linux extends OperatingSystem
{

[OperatingSystem + Linux logic]
}

Attacks are the ways to access the assets. For the work, one of the ways to get
these attacks are using the adversarial attack model at MITRE Industrial Control
Systems (ICS) knowledge base. MAL files contain the attack steps. Each step is
either logical conjunction (OR in attack trees in 2.4, | in MAL) or disjunction of
other steps (AND in attack trees in 2.4, & in MAL). One attack step can lead to
another attack step, which is denoted as -> in MAL. In other words, to reach the
attack step “stealSecrets" in asset “Folder", we need to perform “accessFolder" attack
step first.
asset Folder {

| accessFolder
-> stealSecrets

| stealSecrets
}

Association is MAL defines the connection between two assets that can lead
to an attack from one asset to another. In other words, the association provides
information about how one sensitive asset could be reached from another.

2The code was slightly modified because of a typo in the original resource. The authors were
notified about the error.

20

associations {
Computer [computers] * <-- Protect --> 1 [firewall] Firewall
Computer [computer] * <-- Contains --> * [folder] Folder
Folder [folder] 1 <-- Contains --> * [subFolder] Folder

}

In the example above, we can observe associations between two assets Computer
and Firewall, Computer and Folder, Folder and Folder. The associations are called
Protect and Contains. MAL language supports following relations between assets
(denoted as multiplicities in associations in MAL):

• Many-to-Many (e.g., * <– Contains –> *),

• One-to-Many (e.g., 1 <– Contains –> *),

• Many-to-One (e.g., * <– Contains –> 1),

• One-to-One (e.g., 1 <– Contains –> 1),
A Firewall can be connected to zero or more assets Computer through the role

computers ([computers]) and a Computer can be connected to one Firewall through
the role firewall. The roles are denoted as [role], or in this case ([computers]) or
([firewall]). In MAL this is known as a role.

Category in MAL is a group of assets that are connected based on the security
properties and rules. In the aforementioned example we can see two categories
“System" and “Security". MAL language allows us to choose names for categories
and grouping logic based on the developer’s judgment.

Defense in MAL is the mitigation strategy that helps to fight against the potential
attack. Defense against a particular attack step is denoted as # in MAL.
category Security {

asset Firewall {
& bypass [Bernoulli(0.2)]

-> computer.firewallBypassed
hardened

-> bypass
}

}

2.3.2 Testing at MAL

MAL language supports unit testing that can be used to test attack steps and specific
functions of the language. In order to run tests, a developer needs to use the JUnit
library of Java.

Let’s consider the following assets with attack steps:
asset Network {

| access
-> hosts.connect

}

asset Host {
| connect

-> access
| authenticate

-> access
| guessPassword

-> guessedPassword
| guessedPassword [Exponential(0.02)]

-> authenticate
& access

}

21

In order to write a unit test we need to instantiate a model of scadaLang with two
test objects of Host and Network. If two assets have an association, MAL generates an
add function between two objects. This function is written as <asset1>.add<Role2>,
where asset1 is a name of the first asset, which is a Network in our case, and Role2
is name of the role in a association with the capitalised first letter [39].

After creating assets and associations, we can initiate an attacker and provide an
entry point as an initial attack step. After that, we can test whether we can expect
to reach another attack step and how difficult the attack step was. MAL provides
several assertion methods for the test. Table 2.4 describes these methods3. In our
sample scenario, an attacker needs to spend some effort to access a server object of
type Host, starting from accessing a Network.
public class ExampleLangTest {

@AfterEach
public void deleteModel() {

Asset.allAssets.clear();
AttackStep.allAttackSteps.clear();
Defense.allDefenses.clear();

}
}

public class TestGuessPassword extends ExampleLangTest {
private static class GuessPasswordModel {

public final Network internet = new Network("internet");
public final Host server = new Host("server");

public GuessPasswordModel() {
internet.addHosts(server);

}
}

@Test
public void testGuessPassword() {

var model = new GuessPasswordModel();

var attacker = new Attacker();
attacker.addAttackPoint(model.internet.access);
attacker.addAttackPoint(model.server.guessPassword);
attacker.attack();

model.server.access.assertCompromisedWithEffort();
}

}

3Table from original source has some typos. The table in this work has some modifications
compared to original source. Authors were notified about these errors.

22

Assertion method Description
assertUncompromised() Check for unsuccessful compromise of

the attack step.
assertUncompromisedFrom(<parent>) Check for unsuccessful compromise of

the attack step from the specified parent
attack step.

assertCompromisedInstantaneously() Check for successful and immediate com-
promise of the attack step.

assertCompromisedWithEffort() Check for successful compromise of the
attack step but only after some effort/-
time is spent.

assertCompromised Instantaneous-
lyFrom(<parent>)

Same as assertCompromisedInstanta-
neously from specified parent attack
step.

assertCompromised WithEffort-
From(<parent>)

Same as assertCompromisedWithEffort
from specified parent attack step.

Table 2.4: Assertion methods for writing tests in MAL [39]

2.3.3 Probabilistic model of MAL

MAL uses a probabilistic model to estimate Time-To-Compromise (TTC) for each
attack step. TTC is used to measure the effort for an attacker to perform an attack.
In MAL, TTC is evaluated in the number of days that attacker needs to perform an
attack step [7] successfully.

MAL language uses global and local TTC measurements. Local TTC refers to
a single attack step, while global TTC refers to several attacks steps to achieve a
target asset. The probability of global TTC is computed as

Φ(A) = P (Tglob(A) = t),

where A is Attack step, Tglob is TTC the asset starting from initial step [7].
MAL uses the probability distribution model, where given n, m, k ∈ N, n < m < k:

• 5 % of attacks success can happen within n time (s),

• 50 % of attacks success can happen within m time (s),

• 95 % of attacks success can happen within k time (s).

23

Distribution Parameters Limits Expected Val-
ues

Bernoulli p, probability 0 ≤ p ≤ 1 E(Bernoulli(p)) =
p

Binomial n, trials and p,
probability

0 ≤ n, 0 ≤ p ≤ 1 E(Binomial(n, p))
= n * p

Exponential λ, rate 0 < λ E(Exponential(λ))
= 1

λ
Gamma k, shape and θ,

scale
0 < k, 0 < θ E(Gamma(k, θ))

= k * θ
LogNormal µ, mean and σ,

standard deviation
0 < σ E(LogNormal(µ, σ))

= e(µ+σ2/2)

Pareto m, minimum and
α, shape

0 < m, 0 < α E(Pareto(m, α)) =
∞ if m ≤ 1, other-
wise (m ∗ α)

(α − 1)
TruncatedNormal µ, mean and σ,

standard deviation
0 < σ E(TruncatedNormal(µ, σ))

= µ
Uniform min and max min ≤ max E(Uniform(min,

max)) =
(min + max)

2
Table 2.5: Distribution functions available in MAL [40]

In this work, we focus on two probability distributions: Bernoulli and Exponential.
In Table 2.5, the Bernouli(0.5) function represents the 50 % certainty of an attack
success. For all uncertain attack steps, we multiply the probability of distribution by
Bernouli(0.5), while, in case of certain attack steps, we do not need this multiplication.
Exponential function here is responsible for attack difficulty. This function shows
how many days it is needed for an attacker to compromise an asset. As an example,
Exponential(0.1) is mapped to 10 days to compromise, while Exponential(0.01) is
mapped to 100 days to compromise. The more difficult attack step for an asset is,
the more days it takes to compromise an asset.

In the following example, 4 we can see how probability distributions are attached
to an attack step in MAL.
category Systems
{

asset Computer
{

| compromise [Exponential(0.1)]
}

}

4https://github.com/mal-lang/malcompiler/wiki/Supported-distribution-functions.
Accessed on 29.06.2020

https://github.com/mal-lang/malcompiler/wiki/Supported-distribution-functions

24

Here, to compromise a Computer, an attacker needs ten days with the certainty that
this attack will succeed.

2.4 Related Works
Our research on previous works covers two topics: model-driven security engineering
and DSL, and threat modeling projects for the domain of SCADA. In subsection 2.4.1
we cover the notion of model-driven security engineering and DSL. In subsection 2.4.2
we discuss previous works on threat modeling for SCADA.

2.4.1 Model-driven security engineering and Domain-specific languages

Model-driven security engineering focuses on reusing the design models to perform
a security analysis [41]. In other words, model-driven security engineering outputs
security implementations automatically based on the security specifications model.
A model-driven security engineering facilitated the application of DSL to express
the security requirements of a system or a software [42]. Using the DSL, we can
build systems or tools that assess the security of a system or software during
phases of building, deployment, and production. Previous languages for security
as CORAS [43], UMLSec [44] and SecDSVL [45] are good examples of such DSLs.
CORAS is a model-driven risk-analysis language for threat modeling [43]. UMLSec
extends the capabilities of Unified Modeling Language (UML) by assessing the
security of the software as well [44]. However, one issue with UMLSec is that the
security assessment happens at the beginning of the building of software, which
overlooks the potential issues that can in the middle or end of the building. SecDSVL
is also a DSL for enterprise security modeling [45] that extends the capabilities of
UMLSec. In addition to that, Almorsy and Grundy [45] introduced a way to ensure
the changes to the deployed system after finding security issues. The disadvantage of
these languages, however, is a lack of automated analysis. Instead, these languages
focus on producing security properties with manual analysis [42].

One way of addressing such a lack of automated analysis is an attack graphs-
based DSL. Topological Vulnerability Analysis (TVA) system is one example of
such a tool which models the security conditions in the network for multi-step
network penetration, and applies the attacks from the database of exploits [46]. TVA
system also proposes the computation of hardening measures and assess the alerts.
Another example of attack graphs-based DSL is Meta Attack Language (MAL).
MAL produces the probabilistic attack graph from a given system specification. This
DSL combines the attack graphs-based DSL with a model-driven security engineering
approach.

There are good examples of how MAL could be extended for creating threat
modeling languages for various domains: vehicleLang and corelang. vehicleLang is
dedicated for modeling of cyber-attacks towards the domain of vehicles, and corelang
is a core threat modeling language designed for modeling standard attacks towards
an abstract Information Technology (IT) system [42].

25

2.4.2 Threat modeling projects for SCADA

KTH research groups worked on a Vital Infrastructure, Networks, Information and
Control Systems Management (VIKING) project from 2008 to 2011 to build a
threat modeling framework for determining security issues in a SCADA system [47].
According to to [21], the main security challenges in SCADA are as follows:

• Diversity of technology stack in SCADA. The field RTUs can have a code
written in the ’70s, while the CC is the most modern system with the newest
technology stack.

• ICCP was not designed with the CIA properties in mind.

• The Denial-of-Service (DoS) attacks are a prevalent threat to the continuous
availability of SCADA.

The main limitations of a VIKING project was a focus on data exchange between a
CC and other components of SCADA, and application layer security [47].

INcreasing Security and Protection through Infrastructure REsilience (INSPIRE)
is another project which focuses on the security of SCADA.INSPIRE provides direc-
tives for properly configuring, managing, and securing Critical information infrastruc-
ture (CII), such as SCADA [48]. INSPIRE presents a simulation tool PSS-Cincal
CRISP, which could be used in various industries. Nevertheless, the main disadvan-
tage of this project is the high-level approach in finding potential threats, which does
not provide any concrete action points or protection mechanisms [48].

Recently, MITRE created a knowledge base for attacks against Industrial Control
Systems (ICS), ATT&CK for Industrial Control Systems (ICS) [49]. According to
MITRE knowledge base for attack adversaries towards ICS, the attacks towards
these systems are different from attacks from other MITRE knowledge bases [49].
First of all, attackers focus on disturbing the system and causing harm to human
operators. Secondly, ICS operators are working continuously 24/7 and are responsible
for collecting information about the state of the system. This makes them a target
for attackers to incorrectly accept the incoming information about the state of the
system. The third difference is the heterogeneous nature of ICS. Unlike other systems,
SCADA has various environments, hardware, software, and communication protocols,
which complicates the process of creating the attack adversaries and collecting the
unified techniques applicable for all SCADA systems. The main advantages of this
knowledge base are giving a full vision of the system, information about previous
attacks and attackers, and covering all the possible security threats.

26

3 Methodology
This chapter describes the process of collecting and analysing data that is needed for
creating a threat modeling language for a SCADA system based on MAL, as well
as building a specific SCADA system threat model based on the proposed language.
Section 3.1 describes the selected methodology technique and the reasoning for its
selection. Section 3.2 describes how we collect the data from available sources and
process it. In section 3.3, we present our suggested risk assessment strategy to
incorporate Common Vulnerability Scoring System (CVSS) to MAL. Section 3.4
outlines the results assessment and validation process.

3.1 Method
This work follows Engineering Conceive, Design, Implement, Test, Operate (CDITO)
method. CDITO enhances Conceive, Design, Implement, Operate (CDIO) [50]
framework with additional testing process. This method concentrates on creating
and operating new products or systems focusing on the strategic importance of
research and understanding the industry needs [51]. This method suits our needs,
since we first of all design our language (choose the scope of assets and TTC),
implement (gather all needed data and create a language based on MAL), perform
available tests (MAL unit tests) and then operate. Method of surveying can be used
for enhancing the validity of output using Turing tests. This is elaborated further in
section 3.4.

3.2 Data Collection
We collect relevant data that fall under these categories: Assets and Actors. According
to MITRE [52], assets are software, hardware, OS, communication protocols and
embedded devices. Actors are the key engineering roles that work directly with the
SCADA system.

3.2.1 Assets and Layers selection

Due to the heterogeneous nature of ICS systems, it is necessary to generalise and
categorise assets. Section 2.1.1 explains the architecture of a SCADA system. The
generalisation of ICS assets are as follows [52]:

• Control server (referred further as “App server")

• Data historian (referred further as “Database")

• Field Controller/RTU/PLC/Intelligent Electronic Device (IED) (referred fur-
ther as “RTU")

• HMI

• Input/Output Server (referred further as “Communication front end")

27

• Safety Instrumented System/Protection Relay

• Engineering workstation (laptops, mobile devices)

Table 3.1 represents assets available at SCADA for this work, and categorises into
three group based on the functionalities: network, function (platform and service) and
data as described in 2.2.1. For the convenience, network is related to communication
means, function/service is the category of assets that face the external clients or
actors, and function/platform are internal assets that include infrastructure and are
not accessible for external components.

28

Asset KTH threat modeling method
Type

Production zone network
Enterprise zone network
PCN network
DMZ network
Development zone network
Global zone network
Management zone network
ICCP zone network
Training zone network
Firewalls network
Data diodes network
Router network
IDS network
ICCP frontend server function/platform
ICCP backend server function/platform
Directory Server (e.g., AD, Redhat Di-
rectory Server)

function/platform

Control centre (CC) function/platform
HMI Servers, Thin Client, new HMI function/platform
Field units, RTU function/platform
Communication front end function/platform
Backup servers, replicas function/platform
DNS, NTP, NIS servers function/platform
Data Engineering servers function/platform
Alarm function/platform
PostgreSQL database data
Real-time database data
Oracle database data
Service accounts function/service
User accounts function/service
Admin accounts function/service
ICCP network

Table 3.1: List of assets in a SCADA and their categorisation for this work based on
KTMM

3.2.2 Data Sources and Processing

We collect the data used in this work from various documents and configuration files:

• IP packet filter rules (configured with iptables utility program),

29

• configuration files,

• output of configuration tools.

The project uses different configuration files that represent different SCADA instances.
Having necessary input data to work with is important to build a threat modeling
language for SCADA. Later, using this language, we can build a threat modeling
tool for various SCADA setups.

When the SCADA setup is built, configuration files store information about
the hosts, networks, databases, and products. However, configuration files lack
information about the firewall rules. We can find the rules for packet transmission
and traffic that can via the use of iptables command inside Linux hosts.

The steps for data processing in this work are as follows:

• Reviewing the provided script files and documents to assess the assets at
SCADA.

• Collecting and defining assets that are relevant to the scope of this work

• Identifying threats and threat actors

• Summarising the most harmful threats

• Iteration over the found results

• Providing the mitigation strategies

• Generating a risk assessment

3.3 Risk Assessment Strategy Design
One of the challenges of creating a threat model for SCADA is performing an accurate
risk assessment for a particular system. Not all of the attacks that utilise the same
strategy have the same impact on different SCADA [4] systems, and therefore, we
need to evaluate which attacks have a higher impact on a specific system than others.

In this work, we map CVSS scoring system, which measures the severity of
a vulnerabilities, into probabilistic model of MAL. As described in section 2.3.3,
probabilistic model of MAL uses TTC metric. TTC is computed as

TTC = attack difficulty ∗ certainty of attack success

.
There is an explicit relation between attack difficulty and CVSS score. The

Base score and Environmental score of CVSS scoring system considers the Attack
Complexity as a factor that determines the score. Keramati, Akbari, and Keramati
[53] performed a similar mapping with regards to CVSS temporal scoring and attack
difficulty. Keramati, Akbari, and Keramati [53] stated that the higher the temporal
score is, the easier it is for an attacker to make an exploit. We consider this relation
in this work.

30

Since the attack difficulty offered by MAL describe the Time-To-Compromise
(TTC) for an attack step, we map the Attack Complexity of CVSS into TTC supported
by MAL discussed in more details in section 2.3.3. First of all, we define which
factors are considered for Attack Complexity of CVSS. Attack complexity describes
the situation when there exist any conditions that can prevent an attacker from
exploiting a vulnerability. Whenever such conditions exist, an attacker needs to
dedicate more time to collect additional information about the target asset or prepare
an exploit [54].

Holm, Ekstedt, and Andersson [55] describe the relation between security metrics
using CVSS information and TTC as a Pearson correlation5. Researchers took into
consideration several security metrics that use CVSS data and concluded that the
more CVSS data is taken into consideration, the higher the Pearson correlation
coefficient is between security metrics using CVSS information and TTC.

For this work, we implicitly derive the certainty of the success of an attack from
CVSS score. Sawilla and Ou [56] explains that the “likelihood the attack path can
lead to a successful exploit" is a necessary factor in determining the criticality of an
attack.

CVSS rating Ordinal distri-
bution

Mapping to at-
tack difficulty

Mapping to cer-
tainty of success

Critical EasyAndCertain attack is straight-
forward with lower
than medium diffi-
culty.

if the attack is suc-
cessful, then prior-
ity of resolving is
high

High HardAndCertain difficult to exploit. if the attack is suc-
cessful, then prior-
ity of resolving is
high

Medium HardAnd Uncer-
tain

difficult to exploit. if the attack is
less successful,
then priority of
resolving is lower

Low EasyAnd Uncer-
tain

the least difficult
to exploit.

if the attack is
less successful,
then priority of
resolving is lower

Table 3.2: Mapping CVSS score to MAL probability distribution

In this work, we designed a way to map a CVSS score of vulnerabilities into
MAL distribution probability. First of all, we collect the CVSS scores for Common
Vulnerabilities Enumeration (CVE) vulnerabilities that could be used to exploit an
attack step. Then we compute an average of the score of all CVE vulnerabilities.

5Pearson correlation coefficient is a statistic that measures linear correlation between two
variables

31

We use this value as an Attack severity score. Attack severity score follows the same
categorisation (low, mid, high, critical) as CVSS score for vulnerabilities.

The mapping of Attack severity into MAL probabilistic model for this work
follows the rules:

• Severity Level: Critical -> straightforward, no any special authentication
credentials are needed, root-level compromise of servers or infrastructure devices,
lower than medium difficulty. For the scope of this work, an attacker would
require ten days to complete an attack step since an attacker needs to perform
a straightforward exploit without any special authentication credentials or
obtaining valid accounts through time-consuming phishing or social engineering
campaign.

• Severity Level: High -> difficult to exploit. For the scope of this work, it takes
100 days for an attacker to complete an attack step, as an attacker needs to
perform time-consuming attack preparation as a phishing campaign or obtain
root access to the system.

• Severity Level: Medium -> less difficult than hard but still difficult, require
user authentication. For the scope of this work, it takes 100 days for an attacker
to complete an attack step, as an attacker needs to perform time-consuming
attack preparation as a phishing campaign to get the user account. This attack
takes the same time as a high severity attack. However, the probability of
success is only 50 percent.

• Severity Level: Low -> requires local or physical system access, little impact
on the organization, the least difficult. For the scope of this work, it takes
ten days for an attacker to complete an attack step as an attacker already has
local or physical system access.

Table 3.2 summarises the mapping of CVSS score to attack difficulty and certainty
and describes which probability function was selected to map the CVSS score.

3.4 Assessing the Reliability and Validity of DSL for Threat
Modeling based on MAL

The process of evaluation of DSL for threat modeling based on MAL consists of three
parts: assessing the reliability, assessing the validity of the language by SCADA
experts, and enhancing a formal validity of scadalang in a real-life scenario using
the Turing test. The first part of the evaluation includes testing the implementation
and logic in the first step. These tests provide an estimation of whether the DSL
based on MAL is capable of giving a reliable threat model for a specific problem. In
our case, the specific problem is generating a threat modeling language for SCADA.
The explanation of writing tests for DSL for threat modeling using MAL is given in
appendix B. The second part includes cross-referencing with another expert that had
an experience with MAL, and engineer experts in SCADA. Experts can guarantee

32

that the language could be applied to generate a threat model for a domain of
SCADA using scadaLang.

The enhancement of formal validation of scadaLang can strengthen the results
and ensure that scadaLang is applicable for threat modeling of SCADA in real-life
scenario. One example of such enhancement of validation is using the Turing test
by inviting experts in the industry (in our work, experts of SCADA). DSL for
threat modeling based on MAL fall under the definition and categorisation of Expert
System (ES) because it aims to offer a solution for a complex problem in a specific
domain (which needs a human expert in solving issues for this domain) “at the level
of human expert performance" [57].

Turing test is a method to estimate whether a program can perform a “thinking
like a human expert" [58]. Typically, in the case of validating ES, we can run
numerous tests and compare the output with the output from an expert in this
domain based on his/her judgment and opinion. The success rate of ES can be
calculated subjectively and objectively by an expert [57]. In our case, an expert needs
to compare the attack path prepared by a human and the attack path generated
from the language towards the same goal, starting from the same entry point. These
experiments can be repeated with several experts. Then, these two outputs can be
given to another independent expert that needs to distinguish whether a human
expert or an ES proposed the specific solution. This independent expert compares
two attack paths and gives an independent judgment used as a success rate.

The output of such a Turing test can enhance the validity of the threat model
generated by DSL based on MAL for a particular SCADA instance.

33

4 Implementation of scadaLang
This chapter present a DSL for language of a SCADA system called scadaLang
based on MAL. Section 4.1 describes the scope and assumption for a scadaLang.
Section 4.2 presents the assets that we selected for scadaLang. Section 4.3 and
section 4.4 describe the actors in the system, accounts and potential attackers.
Section 4.5 lists all potential attacks per each general asset in SCADA in scadaLang.
Section 4.6 demonstrate the associations between assets and attacks encoded in
the asset. Section 4.7 proposes mitigation strategy for aforementioned attacks.
Section 4.8 generates a risk assessment for proposed attacks in a SCADA system.
The code for scadaLang can be found in appendix D

4.1 Scope and Assumptions
The assumptions for scadaLang are as follows:

• We assume that attacks originate from outside SCADA. The scope of this
language does not consider the attacks inside the Enterprise/Corporate Zone,
which we discussed in section 2.1.4.

• We assume that MITRE gives valid information about attacker groups and
attack techniques.

• Assets that belong to Safety Instrumented Systems (SIS)/Protection Relay are
not considered into the scope of this language.

• Assets that belong to Engineering workstation (laptops, mobile devices) are
not considered into the scope of this language.

• This work focuses on the attacker with relatively high skills and motivation
that targets SCADA system with malicious intent. One such example is a
rogue employee (both current or former employees).

4.2 Assets and Categories
In this section we describe the assets and categories for scadaLang. In 4.2.1 we group
assets into categories, while in 4.2.2 we present assets in scadaLang.

4.2.1 Categories

As described in section 2.3.1, categories are used for grouping of assets. For scadaLang,
we divide the assets into three category: System, Communication and Security. As
mentioned in section 3.2, all assets are categorised into KTMM types: function/ser-
vice, function/platform, data and network. In scadaLang, the mapping from MAL
types into categories is as follows:

• Function/platform -> System category

34

• Function/service -> Security category

• Network -> Communication category

• Data -> Data category

The naming for the categories is subjective, and based on our preferences. To the
current extend of MAL, these categories do not affect neither assets, nor attacks, nor
defense, nor risk assessment. The main purpose of categories is to organise assets
together.

4.2.2 Domain Feature Matrix

The domain of our work is a SCADA system. Table 4.1 contains these domain-specific
assets divided into aforementioned categories.

As explained in section 4.2, some assets as RTU are considered out of scope
for this work. Three servers: DNS, NIS, and NTP are present in the language
specification, but they have lower importance in this language, and, thus, marked as
out of the scope in the Table 4.1.

35

Category Asset scadaLang Out of scope

System

ICCP server x
HMI x
RTU x
Communication
front end

x

Alarm x
App Server x
Database x
Antivirus server x
Directory service x
Backup server x
Product x
DNS server x
NIS server x
NTP server x
DE server x
nHMI server x
Software

Security

User Account x
Admin Account x
Service Account x
Vulnerability

Comm

Firewall x
Zones x
Router x
Data diodes x

Table 4.1: Asset feature matrix

Mainly, assets are obtained from configuration files mentioned in 3.2. If some
important information is missing, we can use other sources of information about the
traffic and firewall rules.

4.3 Actors
In this section, we describe the actors of the system. For the convenience, we selected
only actors that are key to a SCADA, since they have access to multiple components
of the system. In this work, we do not focus on all actors in a SCADA system.
Table 4.2 focuses on actors that primarily work with such assets that can serve as an
entry point for potential attacks.

36

Actor Description
HMI Operator monitoring and controlling the power

transmission network
Admin User monitoring system health and updating

control system configuration
Admin Directory Service User monitoring service account and access

through Directory Service
Trainer and students running simulations
Data engineer updating the power system model
Production planner viewing historical data and creating plans
Field engineer sending the data from RTU to Communi-

cation front end
Table 4.2: List of main actors in SCADA

4.4 Attacker Profiles
As discussed in section 4.1, in our work we mainly focus on Rogue Employees. Rogue
actors that we consider for this language in SCADA for this work are as follows:

• HMI Operator can is considered rouge, when the accounts to HMI were leaked.
This way the attack path can start from HMI.

• Field engineer can also be a rogue actor to generate the attacks starting from
RTU to the CC.

• Admin User of other SCADA that is connected to the current SCADA can be
rogue, when the first system got compromised.

External SCADA is another system which communicates with the current SCADA
through ICCP. Having a connection to another SCADA system is necessary to ensure
the guaranteed availability of the service in case of any critical issues. If the secondary
SCADA fails to attacks, the primary SCADA becomes vulnerable to attacks through
ICCP.

Field units include all components of SCADA that collect information about the
state of the system in the field. Therefore, we can assume that malicious actors could
misconfigure the data that field units send to CC.

4.5 Attacks
In this section we demonstrate attack techniques and vulnerability exploits for
SCADA. This work proposes the attack techniques from ATT&CK matrix for ICS
as described in section 4.1. For mapping of ATT&CK matrix for ICS knowledge
base into our attacks we considered the following rules:

37

• MITRE provides a matrix of attack steps (referred as “techniques") grouped
into “tactics". Some techniques might occur in several tactics. In our work, we
renamed some attack steps. In appendix C, we give an explanation of which
attack step in scadaLang refer to which technique in MITRE.

• The tactic “Impact" refers to goals of attack path in scadaLang. We do not
consider any goal of attack path outside of the tactic “Impact". We do not
modify the impact of an attack based on our judgement. Instead, we only
follow ATT&CK matrix for ICS to determine an impact for an attack step.

• We do not have attacks that do not have a correspondence to ATT&CK matrix
for ICS.

The attack techniques vary based on target key assets. Most importantly, avail-
ability of the SCADA is the main priority from CIA properties. This is due to
necessity to continuously preserve the industrial processes putting data loss and
confidentiality aside as less priority. Overall, we summarised the goals of attackers
into the following categories:

• Manipulating sensitive data,

– Loss of view,
– Manipulation of view,
– Theft of Operational Information6

• Disrupting the safety of operation in SCADA

– Damage to property 7

– Loss of safety8

• Disrupting the availability of the system.

– Loss of Productivity and Revenue9

– Denial of control

These aforementioned goals match “Impact" tactics at MITRE as described in
section 4.1. Subsection 4.5.1 provides the information about the entry surface for the
attacks. Further subsections discuss the attacks defined for each asset in section 4.2.
For convenience in this report, we used the alphanumeric codes, e.g. “ICCPS1" (for
an attack in ICCP server, where number was selected for notation purpose only)

6https://collaborate.mitre.org/attackics/index.php/Technique/T882. Accessed on
29.06

7https://collaborate.mitre.org/attackics/index.php/Technique/T879. Accessed on
29.06

8https://collaborate.mitre.org/attackics/index.php/Technique/T880. Accessed on
29.06

9https://collaborate.mitre.org/attackics/index.php/Technique/T828. Accessed on
29.06

https://collaborate.mitre.org/attackics/index.php/Technique/T882
https://collaborate.mitre.org/attackics/index.php/Technique/T879
https://collaborate.mitre.org/attackics/index.php/Technique/T880
https://collaborate.mitre.org/attackics/index.php/Technique/T828

38

4.5.1 Entry surface

Entry surface include the assets and techniques that are the closest to malicious
actor due to the system configuration (e.g. front-end web servers or applications for
external users) or due to vulnerabilities (e.g. the kernel version, malicious library
version found, possibility of buffer overflow due to weak code, lack of data sanitising
and validation). As for SCADA, this work focuses on three entry surfaces as discussed
in 2.1.2:

• External SCADA

• Field units

• HMI

4.5.2 ICCP server (frontend and backend servers)

• ICCPS0.Server compromise

• ICCPS1.Accessing logs to collect information

• ICCPS2.Obtain valid account

• ICCPS3.Remote System discovery

• ICCPS4.Remote File copy

• ICCPS5.Stealing Passwords from Memory

Figure 4.1 presents the relations between attack steps and which attack steps
lead to another.

Figure 4.1: Attacks relations for ICCP server

39

The starting point for an attacker in this and further attacks is compromising
the server, i.e., getting physical access to the server. The access may not be an
administrative one. In this work, we use the terms “host" and “server" interchangeably.

After an attacker could get into the server, there are attack paths: enumerating the
host, uploading the file, or looking for other hosts from this host. We enumerate10 the
host to find any potentially useful information for gaining administrative access [59].
To enumerate the host, an attacker could check the logs (MITRE attack technique
nr. T811) for any valid accounts (MITRE attack technique nr. T859). As for
uploading the file, an attacker can copy the malicious files to this host (e.g., using
Metasploit, an attacker can place a Mimikatz tool in a remote host to crack the
system credentials or perform a pass-the-hash attack). This attack step corresponds
to a remote file copy (MITRE attack technique nr. T867). The third attack path is
trying to look for other hosts in the network. This attack direction corresponds to
remote system discovery (MITRE attack technique nr. T846. An attacker can use
tools like nmap/Zenmap to scan the open ports in other hosts. Such a scenario can
happen when an attacker wants to get into the App server through the ICCP server.

The impact of Obtaining valid account, Remote system discovery and Obtain
password from memory attacks is Theft of Operation Information. Theft of Operation
Information includes obtaining valid accounts, information about other hosts in the
network, and others.

4.5.3 RTU

• RTU1.Remote System Discovery

We do not consider attacks at the field against RTU in the scope of this work. For this
work, we consider a compromised RTU as an access point. Therefore, we obfuscate
these attacks.

4.5.4 Communication front end

• CF0.Server compromise

• CF1.Obtain valid accounts

• CF2.Using default credentials

• CF3.Accessing logs to collect information

• CF4.Service discovery

• CF5.Administrative access to Communication front end

• CF6.Service stop
10Enumeration is a procedure where an attacker establishes an active connection to the target hosts

to discover potential attack vectors in the system. This procedure is used for further exploitation
of the system [59].

40

• CF7.Shut down Communication front end

• CF8.Remote System discovery

• CF9.Remote File copy

• CF10.Stealing Passwords from Memory (Mimikatz)

This asset is accessed by a Field Engineer discussed in section 4.3. The main way
to access the Communication front end discussed at this work is from RTU. In
case we consider that this field engineer can be rogue or an attacker obtained access
to an account, we have a threat that he/she can send the wrong commands and
disrupt the system. Another way to access the Communication front end is through
Directory Service as Admin User. In case Admin Directory Service User is rogue, the
access to the Communication front end is compromised. To our best knowledge, the
Communication front end does not have replicas, so shutting down a Communication
front end could disrupt the system.

Figure 4.2 presents the relations between attack steps and which attack steps
lead to another.

41

Figure 4.2: Attacks relations for Communication front end server

The starting point for an attacker is compromising the server, i.e., getting physical
access to the server. The attacker can then proceed to enumerate the host, i.e., collect
relevant information about the server. An attacker can find relevant information by
manually inspecting logs and other interesting system files or utilising automated
enumeration tools(MITRE attack technique nr. T811). Such an approach can lead
the attacker to obtain valid accounts for some systems (MITRE attack technique nr.
T859). Alternatively, an attacker can utilise system discovery tools, e.g., using nmap,
and scanning techniques to discover relevant connected systems and components to
pivot the attacks (MITRE attack technique nr. T846). Moreover, an attacker can
utilise remote file copy techniques to bring malicious tools to the server (MITRE
attack technique nr. T867). Such tools could allow the attacker to obtain an admin
account from memory (MITRE attack technique nr. T843/T845). After getting

42

administrative access to the Communication frontend, an attacker can try to shut
down Communication frontend.

The impacts of attack paths are Theft of Operation Information, Damage to
property, Loss of availability and Denial of Control. Theft of Operation Information
includes obtaining valid accounts, information about other hosts in the network, and
others. Damage to property includes shutting down the service to harm to operation.
Loss of availability, in return, is similar to damage to property. However, it focuses
on disrupting the availability for a longer period rather than damaging. Denial of
control is a similar impact as a loss of availability.

4.5.5 HMI + Thin client

• HMI0.Server compromise

• HMI1.Accessing logs to collect information

• HMI2.Obtain valid account

• HMI3.Man-in-the-Middle

• HMI4.Modify alarm settings

• HMI5.Administrative access to HMI

• HMI6.Remote system discovery

• HMI7.Place a ransomware

This asset is assessed by an Operator discussed in Table 4.2. In case we consider
that this Operator can be rogue or an attacker obtained access to an account, we
have a threat that he/she can send the wrong commands and disrupt the system.
HMI can be a Graphical User Interface (GUI) or a server with GUI. Since there is
no information about this in configuration files, we consider the second case. The
assumption is then that HMI is a Windows server with GUI.

Figure 4.3 presents the relations between attack steps and which attack steps
lead to another.

43

Figure 4.3: Attacks relations for HMI

The starting point for an attacker is compromising the server, i.e., getting physical
access to the server. After an attacker acquires access to a server, the next steps could
be either enumerating the host (referred as checking the logs in the figure) (MITRE
attack technique nr. T811) for any valid accounts (MITRE attack technique nr.
T859), or remote system discovery (MITRE attack technique nr. T846), e.g., using
nmap command to find other hosts in the network, or Man-in-Middle attack (MiM)
attack (MITRE attack technique nr. T859) to sniff the communication between HMI
and other SCADA components, e.g., Alarm. After an attacker obtains an admin
account to HMI, an attacker can place ransomware (e.g., LockerGoga, nr. S0008 in
MITRE) that can erase or corrupt a data visible for Operator in GUI.

There are ways to manipulate data other than implementing ransomware. .
Nevertheless, we follow MITRE suggested attacks, which highlighted ransomware as
an impact for “Manipulation of view".

The impacts of attack paths are Theft of Operation Information, Manipulation
of view, and Loss of view. Theft of Operation Information includes obtaining valid

44

accounts, information about other hosts in the network, and others. Manipulation of
view includes editing the information visible in GUI at HMI for an Operator, while
the loss of view involves shutting down the GUI.

4.5.6 Alarm

• AL1.Boot / Unboot alarm

• AL2.Start alarm

“Boot alarm" and “start alarm" are commands in configuration file given as the input
for generating a scadaLang as described in 3.2.2. Malicious use of either of them can
harm the system. The impact for both attacks AL1 and AL2 are loss of safety.

4.5.7 App server

• APS0.Server compromise

• APS1.Obtain valid accounts

• APS2.Using default credentials

• APS3.Accessing logs to collect information

• APS4.Service discovery

• APS5.Administrative access to App server

• APS6.Service stop

• APS7.Remote System discovery

• APS8.Install rogue master device

• APS9.Data exfiltration

• APS10.Man-in-the-middle-attack

• APS11.Masquerading

App server is composed of several Linux servers and replicas. All of them constitute
one asset for this work. Shutting down App server is not beneficial, because there
are several replicas. APS11.Masquerading is disguising a malicious application as a
standard tool.

Figure 4.4 presents the relations between attack steps and which attack steps
lead to another.

45

Figure 4.4: Attacks relations for App server

The starting point for an attacker is compromising the server, i.e., getting physical
access to the server. The attacker can then proceed to enumerate the host, i.e., collect
relevant information about the server. An attacker can find relevant information by
manually inspecting logs and other interesting system files or utilising automated
enumeration tools (MITRE attack technique nr. T811). Such an approach can lead
the attacker to obtain valid accounts for some systems (MITRE attack technique nr.
T859). Alternatively, an attacker can utilise system discovery tools, e.g., using nmap,
and scanning techniques to discover relevant connected systems and components to
pivot the attacks (MITRE attack technique nr. T846). The attacker can acquire

46

administrative access by utilising valid accounts from the enumeration or in case the
App server has the default username and password (MITRE attack technique nr.
T812). After accessing the administrative access to App server, an attacker can either
proceed to data exfiltration (MITRE attack technique nr. 867), or masquerading
(MITRE attack technique nr. 849), or MiM (MITRE attack technique nr. 830) or
installing rogue master device (MITRE attack technique nr. 848). Masquerading
involves techniques to disguise malicious application as standard (genuine) software.
An attacker can use this technique to install spyware in the system that is difficult
to find since it pretends to look like standard software. MiM includes sniffing the
communication between App Server and other components of a SCADA system to
learn about other hosts or study the underlying network.

The impacts of attack paths are Theft of Operation Information, Manipulation of
view, and Loss of productivity and revenue. Theft of Operation Information includes
obtaining valid accounts, information about other hosts in the network, and others.
Manipulation of view includes editing the information visible in GUI at the App
server for an App server Admin. Loss of productivity and revenue is similar to
the loss of availability. However, since the App server focuses on monitoring and
processing the data, disrupting the availability of hosts could lead to ineffective
operations in the SCADA system.

4.5.8 Postgre and Oracle Database

• DB1.Bypass input validation

• DB2.SQL injection

• DB3.Command-line execution through SQL injection

• DB4.Data exfiltration

• DB5.Accessing logs to collect information

• DB6.Obtain valid account

• DB7.Administrative access to a Database (DB)

• DB8.Data corruption

SCADA has variations of DB to use. In this work, we focus on Oracle DB and
Postgre DB as the most commonly employed relational database solutions for large
scale systems. Since Postgre DB are open-source and do not require licenses to
purchase and renew, there is a trend to shift to open-source and free alternatives,
e.g., shifting from Oracle DB to Postgre DB. Therefore, making specific attacks from
ExploitDB instead of focusing on general attacks from MITRE is important. The
attacks for Oracle DB are from 2010, which makes them outdated. We found fewer
vulnerabilities in ExploitDB and CVE/Common Weaknesses Enumeration (CWE) for
Oracle DB. Compared to Oracle DB, Postgre DB has more vulnerabilities recorded
in ExploitDB and CVE/CWE.

47

Figure 4.5 presents the relations between attack steps and which attack steps
lead to another.

Figure 4.5: Attacks relations for the Database

The entry point for an attacker is bypassing user input validation that can
occur when the user input is not sanitised and validated on the client-side. Such
vulnerability can lead to Structured Query Language (SQL) injection, e.g., when
there are no prepared statements, and an attacker could insert a malicious SQL

48

statement. With the help of such an attack, the attacker can delete the tables in DB
or query user and admin DB accounts. After successful SQL injection, an attacker
can execute further malicious commands. One such example is accessing logs in
DBMS to obtain valid accounts to get admin access in DBMS.

The impacts of attack paths are Theft of Operation Information, and Manipulation
of view. Theft of Operation Information includes obtaining valid accounts, information
about other hosts in the network, and others. Manipulation of view includes editing
the information in DB that is shown in other components of SCADA.

4.5.9 Real-time Database

• DB1.Bypass input validation

• DB2.SQL injection

• DB3.Command line execution through SQL injection

• DB4.Data exfiltration

• DB5.Accessing logs to collect information

• DB6.Obtain valid account

• DB7.Administrative access to Oracle Database

• DB8.Data corruption

Real-time DB uses modelled SQL and utilises Oracle DB technologies. We can
assume that attacks towards Oracle and PostgreSQL apply here.

4.5.10 Antivirus Server

• AV0.Server compromise

• AV1.Obtain valid accounts

• AV2.Using default credentials

• AV3.Accessing logs to collect information

• AV4.Service discovery

• AV5.Service stop

• AV6.Man-in-the-middle-attack

• AV7.Modify the configuration of antivirus agents and repositories

• AV8.Remote File copy

• AV9.Stealing Passwords from Memory (Mimikatz)

49

The antivirus server in a SCADA system used for this work is implemented with
ePolicy (EPO) server. However, other providers are also available. EPO server [60]
is a central repository for storing all antivirus software (McAfee) installations and
configurations. To the best of our knowledge, EPO server uses Windows OS. However,
for this work, the Antivirus server is not a target asset. Attackers would access the
antivirus central repository to misconfigure the antivirus software in other hosts.
After misconfiguring the antivirus on other hosts, an attacker can proceed further to
other services or data.

Figure 4.6 presents the relations between attack steps and which attack steps
lead to another.

Figure 4.6: Attacks relations for Antivirus server

The starting point for an attacker is compromising the server, i.e., getting physical
access to the server. The attacker can then proceed to enumerate the host, i.e., collect

50

relevant information about the server. An attacker can find relevant information by
manually inspecting logs and other interesting system files or utilising automated
enumeration tools(MITRE attack technique nr. T811). Such an approach can lead
the attacker to obtain valid accounts for some systems (MITRE attack technique nr.
T859). Alternatively, an attacker can utilise system discovery tools, e.g., using nmap,
and scanning techniques to discover relevant connected systems and components to
pivot the attacks (MITRE attack technique nr. T846). Moreover, an attacker can
utilise remote file copy techniques to bring malicious tools to the server (MITRE
attack technique nr. T867). Such tools could allow the attacker to obtain an
admin account from memory (MITRE attack technique nr. T843/T845). After
getting administrative access to the antivirus server, an attacker can try to modify the
antivirus configuration files. This attack step can lead to the stop of antivirus software
in other hosts. The attacker can achieve this attack if the Antivirus server is left
with the default username and password (MITRE attack technique nr. T812). The
impacts of attack paths are Theft of Operation Information, and Damage to property.
Theft of Operation Information includes obtaining valid accounts, information about
other hosts in the network, and others. Damage to property includes shutting down
a central repository to harm other hosts.

4.5.11 Backup server

• BS0.Server compromise

• BS1.Obtain valid accounts

• BS2.Using default credentials

• BS3.Accessing backup files to collect information

• BS4.Administrative access to Backup server

• BS5.Data exfiltration

Backup server is a valuable target, since attacker can exfiltrate data (files, con-
figuration data, access logs) from backup servers. Backup servers are responsible
for automated backup and recovery supports disk storage or tape storage targets.
Figure 4.7 presents the relations between attack steps and which attack steps lead to
another.

51

Figure 4.7: Attacks relations for Backup server

The starting point for an attacker is compromising the server, i.e., getting physical
access to the server. After an attacker had access to a server, the next steps could
be accessing backup files (MITRE attack technique nr. 811) or looking for default
credentials (MITRE attack technique nr. 812) to get admin access of backup server.
The factory/manufacturer of a backup server could set default credentials. The
backup files can contain valid accounts (MITRE attack technique nr. 859), which
can grant admin access for an attacker.

The impact of attack paths is Theft of Operation Information. Theft of Operation
Information includes obtaining valid accounts, information about other hosts in the
network, and others.

4.5.12 Directory Service

Directory Service in this scope of work are mainly focused on Windows AD, but the
general attacks can be generalised for other OS [61].

• AD0.Server compromise

52

• AD1.Obtain AD Admin Account

• AD2.Remote File copy

• AD3.Stealing Passwords from Memory using (Mimikatz)

• AD4.Remote system discovery

A Directory service, e.g., Active Directory (AD), provides the methods for storing data
in the network and providing access to this data for network users and administrators.
Directory Service is not a target itself; the administrator’s account in a Directory
Service is a target to reach assets as App server or Communication frontend.

Figure 4.8 presents the relations between attack steps and which attack steps
lead to another.

Figure 4.8: Attacks relations for Directory Service

4.5.13 Product

A product is a vendor software or program, residing on App Servers. Depending
on the system, products might also reside on HMI [14]. In this work, we focus
on products that reside on App Servers. The functionality of products in SCADA
systems are as follows: [14]:

• Providing Open Data Base Connectivity (ODBC) for database;

• Providing libraries of Application Program Interface (API) support for pro-
gramming languages, e.g., C, C++, Visual Basic 6;

53

• Facilities for exporting configuration data;

• Support archiving and logging of databases;

The possible attacks against the product are as follows:

• PR1.Product infection

• PR2.Product deletion/corruption

The product itself is not a target but rather a stepping stone for further attack.
The Product asset facilitates and supports the processes in SCADA. The impact of
attacks PR1 and PR2 are loss of revenue and productivity.

4.5.14 Other servers: DNS, NIS, NTP

• DNS0.Server compromise

• DNS1.DNS poisoning/spoofing

• DNS2.Shut down DNS service on a port

• NTP0.Server compromise

• NTP1.Stop service

• NTP2.Alter clock configurations

These asset are present in the system, however, these servers are not considered as
important in this work. We assume that the attacker obtained service account to
DNS server. NIS was removed from consideration.

4.5.15 Data Engineering / new HMI server

• DE/nHMI0.Server compromise

• DE/nHMI1.Remote file copy

• DE/nHMI2.Stealing Passwords from Memory

• DE/nHMI3.Obtain valid accounts

• DE/nHMI4.Using default credentials

• DE/nHMI5.Accessing logs to collect information

• DE/nHMI6.Service discovery

• DE/nHMI7.Administrative access to server

• DE/nHMI8.Data exfiltration

54

For this work, DE/nHMI servers are primarily used to store data for analytic purposes.
Further capabilities of DE/nHMI servers as running Communication front end and
HMI applications are considered out of scope.

Figure 4.9 presents the relations between attack steps and which attack steps
lead to another.

Figure 4.9: Attacks relations for DE server

The starting point for an attacker is compromising the server, i.e., getting physical
access to the server. After an attacker had access to a server, the next steps could
be enumerating the host (referred as accessing the logs (MITRE attack technique
nr. 811)), remote file copy (MITRE attack technique nr. 867) or looking for default
credentials (left as a plain text in files or system logs) (MITRE attack technique nr.
812) to get admin access of DE/nHMI. The ultimate goal for an attacker is to get
an admin account toDE/nHMI, which could give an opportunity to either exfiltrate
the data or corrupt the data (MITRE attack technique nr. T831/T832).

The impacts of attack paths are Theft of Operation Information, and Manipulation
of view. Theft of Operation Information includes obtaining valid accounts, information

55

about other hosts in the network, and others. Manipulation of view includes editing
the information in DE/nHMI servers.

4.5.16 Accounts

• SAC1.Brute force

• SAC2.Bribing SCADA engineer described in Table 4.2

• AC1.Brute force

• AC2.Phishing SCADA engineer

• AC3.Bribing SCADA engineer described in Table 4.2

Service account is type of account given for automation purposes for automated
user. The admin on the system can give such type of credential to some automated
systems, e.g. Continuous Integration (CI)/Continuous Delivery (CD) pipeline.

4.5.17 Firewall

• FW1.Bypass Firewall

A misconfigured firewall may enable a reverse connection. A reverse connection
allows the attacker to establish communication from the compromised device to the
attacker’s device, rather than the typical forward connection from the attacker’s
device to the compromised device.

4.5.18 Zones

We can consider a zone as a Trust boundary. Once an attacker is inside one zone,
he/she can access servers within this zone. In this work scope, we use Zones as assets,
but do not focus on attacks towards the zone. Instead, we focus on attacks towards
the hosts located in this zone.

4.5.19 Data diode

Data diode is a hardware solution, and, thus, requires physical attacks. We do not
focus on physical attacks against data diode.

4.5.20 Router

Router information is not given in the configuration files, however, we consider that
the router exists in SCADA system.

56

4.6 Associations
Associations between assets demonstrate how we can reach one asset from another.
Associations between assets also carry information about the attack from one asset
to another. The names of associations follow the techniques under tactics “Initial
Access", “Execution" and “Discovery" in ATT&CK matrix for ICS. Figure 4.10
represents all of the assets and associations between assets that we consider for
scadaLang.

Figure 4.10: General assets and associations selected for this implementation

Table 4.3 demonstrates the associations between assets and the attacks from
configuration files. We match naming for these associations with MITRE techniques
naming convention for consistency.

Association Asset 1 Asset 2 Starting at-
tack

Resulting at-
tack

Discover App Server ICCP server remote system
discovery
AND obtain
valid account

server compro-
mise

Discover RTU Comm front
end

remote system
discovery

server compro-
mise

Discover Comm front
end

App server remote system
discovery
AND obtain
valid account

server compro-
mise

Discover HMI App server remote system
discovery
AND obtain
valid accounts

server compro-
mise

57

Connect App server Alarm MiM start alarm,
unboot alarm

Connect HMI Alarm MiM start alarm,
unboot alarm

Access App server Oracle DB,
Postgre DB,
Real-time DB

remote system
discovery
AND obtain
valid accounts

bypass input
validation

Discover App server Antivirus
server

remote system
discovery
AND obtain
valid accounts

server compro-
mise

Discover App server Backup server remote system
discovery
AND obtain
valid accounts

server compro-
mise

Access App server Product MiM product infection,
product corruption

Access Host Zone gain initial ac-
cess

server compro-
mise

Compromise User Account Host remote system
discovery

brute force,
bribing
SCADA
Engineer,
phish SCADA
Engineer

Compromise Admin Ac-
count

Host remote system
discovery

brute force

Compromise Service Ac-
count

Host remote system
discovery

brute force,
bribing
SCADA
engineer

Physical
access

Diode Zone physical shut-
down

gain initial ac-
cess

Bypass Firewall Zone bypass firewall gain initial ac-
cess

Reconfigure Firewall Router access router reconfigure
router

Access Host Directory Ser-
vice

remote system
discovery
AND obtain
valid accounts

server compro-
mise

Table 4.3: Associations between assets and encoded attacks

58

4.7 Potential Mitigation for SCADA
In this section we will propose potential mitigation strategy for the attacks presented
in section 4.5. The mitigation strategy is based on MITRE and, in case we cannot
get information from MITRE, we also add mitigation strategy from CISA: Industrial
Control Systems [62]. Tables in this section provide the protection mechanisms for
attacks per each asset in the scope of this threat model for SCADA.

4.7.1 ICCP server (frontend and backend servers)

Attack Protection
ICCPS2 Multifactor Authentication
ICCPS5 Hardening Profile
ICCPS3 IDS, Hardening Profile

Table 4.4: List of protection mechanisms for Inter-control communication protocol
(ICCP) asset in SCADA

IDS is a tool to protect the system by raising the alarm whenever the security of
the system was compromised, such that a Site security officer (SSO) can perform
countermeasure actions [63]. The difference between IDS and traditional firewalls is
their capabilities. The traditional firewall has a set of rules applied to deny or allow
traffic in a network. A firewall prevents the intrusion if we define a proper set of rules
for a network. Disadvantages of such a system are the “all-or-nothing" approach [64]
and lacking an alarm, and, hence, ignoring the system’s potential vulnerability. On
the contrary, IDS monitors the network system, uses the common pattern from
previous attacks (signatures), and starts an alarm in case of suspicious activity. IDS
reports these activities for SSO for further investigations. Additional component and
extension to IDS,Intrusion Prevention System (IPS), prevents detected intrusions
and performs access control [65].

Next Generation Firewall (NGFW) combines the functionality of both. Additional
functionality for NGFW has a deeper inspection mechanism with the help of antivirus,
anti-spam, and IDS allows it to detect more unintended activity than a traditional
firewall can do [64]. There are several products in this market, e.g. Fortigate11

Nevertheless, SCADA is different from the classic OT system, and, therefore,
the detection and prevention tools might not meet the requirements of SCADA [66].
Zhu and Sastry [66] mentions that academic and industry community made an effort
to adapt IDS specifically for SCADA. According to Zhu and Sastry [66], the main
issues are as follows:

11https://www.fortinet.com/products/next-generation-firewall.html. Accessed on
29.06

https://www.fortinet.com/products/next-generation-firewall.html

59

• The simulated data can be different from real-life measurements for gas, oil,
electricity, and others. Such separation can cause difficulty in differentiating
between abnormal and desired data to be sent to CC.

• SCADA heavily depends on the ability to have a 24/7 availability with CC
getting data from ICCP server and taking a decision process. Therefore,
the authentication mechanism between field units and CC needs to detect
the malicious commands in a real-time while having a continuous response.
However, the authentication mechanism can complicate the work of IDS.

• SCADA has a static topology with simple data transmission protocols as
described in 2.1.3

The solutions proposed by Zhu and Sastry [66] are Model-Based IDS using Mod-
bus/TCP,Anomaly-Based Intrusion Detection, Configurable Embedded Middleware-
Level Detection, Security-Hardened Attack Resistant Platform (SHARP) and other
probabilistic approaches. Hardening is a set of rules in OS that prevents some
unintended actions.

4.7.2 RTU

In the scope of this threat model, we cannot provide a protection mechanism for
RTU, since we do not focus on attacks towards RTU. Instead we consider only that
RTU is an entry surface for attacks as mentioned in 4.5.1.

4.7.3 Communication front end

Attack Protection
CF1 Multifactor Authentication
CF2 Hardening Profile
CF5 On-demand Account
CF8 IDS
CF10 Hardening Profile

Table 4.5: List of protection mechanisms for Communication front end asset in
SCADA

Similar to 4.7.1, the IDS could be used to detect abnormal activity in the communi-
cation between App Server and Communication front end. On-demand accounts can
be done by allocating admin account for a limited period of time and only upon a
request.

60

4.7.4 HMI + Thin client

Attack Protection
HMI2 Multifactor Authentication
HMI3 IDS
HMI4 Multifactor Authentication
HMI5 On-demand Account
HMI7 Hardening Profile, Scheduled Backup, Malware

Detection and Antivirus
Table 4.6: List of protection mechanisms for Human Machine Interface (HMI) asset
in SCADA

To protect access to important components of HMI we should use multi-factor
authentication. As for HMI7, various protection mechanisms against a ransomware,
e.g. LockerGoga, include regular backup on the server, additional layer of control of
application, server and traffic, strengthen the access control policy [67].

4.7.5 Alarm

The possible way to mitigate unauthorised access to Alarm is to use IDS and monitor
the network.

4.7.6 App server

Attack Protection
APS3 Encryption
APS5 On-demand Account
APS10 Network Segregation
APS10 IDS
Table 4.7: List of protection mechanisms for App server asset in SCADA

As mentioned in 4.5.7, for the scope of this work, App servers are composed of
Linux servers. Security-enhanced Linux (SELinux) is an extension for Linux Kernel
that enhances the standard Linux restrictions for access permissions by providing
Mandatory Access Control (MAC) list. As for Network Segregation to encounter
APS10.Man-in-the-middle attack from App server, there are protection mechanisms
in MITRE T83012. One such mitigation is that we should ensure that ICS and IT

12https://collaborate.mitre.org/attackics/index.php/Technique/T830. Accessed on
29.06

https://collaborate.mitre.org/attackics/index.php/Technique/T830

61

networks cables are kept separate. IDS should report any abnormal activity in the
communication between App servers and other SCADA components.

4.7.7 Databases

Attack Protection
DB2 Input Sensitisation
DB2 Prepared Statement
DB3 Input Sensitisation
DB3 Prepared Statement
DB5 Encryption
DB7 On-demand Account
Table 4.8: List of protection mechanisms for Database assets in SCADA

Database assets, like Real-time database (RDB) and Postgres/Oracle DB, require
constant protection as they enable the operation of SCADA. The logs in DBMS
could be encrypted and accessed by DBMS Admin user. DBMS Admin user should
be given an account and access only on demand and for a limited period of time.

4.7.8 Antivirus Server

Attack Protection
AV2 Hardening Profiles
AV6 IDS
AV7 On-demand Account

Table 4.9: List of protection mechanisms for Antivirus Server asset in SCADA

An example of hardening rules is not allowing the default credentials on Antivirus
server.

4.7.9 Backup server

Attack Protection
BS4 Data Encryption for a Storage
BS4 On-demand Account
BS5 IDS

Table 4.10: List of protection mechanisms for Backup Server asset in SCADA

62

In SCADA all the previous information about the state of the system and metrics
are preserved in a backup server. This asset has a high value for an attacker, as it
contains the sensitive industrial information. The access should be granted only upon
a request for a limited period of time. Moreover, it is necessary to constantly check
the data in the backup servers and monitor server failures. IDS should monitor the
traffic to back up server especially on off-hour times, when the traffic is not expected.

63

4.7.10 Directory Service

SCADA system has providers of directory service. For this work, we focus on AD
from Windows.

Attack Protection
AD1 On-demand Admin Account

Table 4.11: List of protection mechanisms for Directory Service asset in SCADA

As for the defense mechanisms for Directory Service, the most important is
to protect the access to admin account on Directory Service.This can be achieved
through on-demand accounts.

4.7.11 Product

Attack Protection
PR1, PR2 Application Security Guidelines

Table 4.12: List of protection mechanisms for Product asset in SCADA

4.7.12 Other servers: DNS, NIS, NTP

As stated in 4.2, these services have a less importance in this work. Therefore, we do
not focus on defense mechanisms for DNS, NIS, and NTP.

4.7.13 Data Engineering / new HMI server

Attack Protection
DE/nHMI6 Whitelists

Table 4.13: List of protection mechanisms for Data Engineering (DE)/new Human
Machine Interface (nHMI) asset in SCADA

Whitelisting includes limiting the hosts to discover from DE/nHMI server. This
also includes the protocols that DE/nHMI server does not allow, e.g. Inter Control
Message Protocol (ICMP) ping.

64

4.7.14 Accounts

Attack Protection
AC1, AC2 Multi-factor Authentication for User Account
Table 4.14: List of protection mechanisms for Accounts asset in SCADA

As mentioned in section 2.1.2 SCADA system focuses on availability rather than
confidentiality and integrity of data. Thus, controlling authorisation and access levels
is important.

4.7.15 Firewall

The majority of SCADA implementations have the security gateways located at
the border of the zone to manage the traffic flow. Security gateways (for instance,
firewalls) resolve the features as the network traffic management and security screening
of the zone [68]. Firewalls are general and standard solutions for security between
zones, but have security flaws, e.g., missed security patches, configuration mistakes,
A lack of deep packet inspection or Distributed denial-of-service (DDoS) attacks.
More advanced and stronger security solutions between zones include data diodes.

Stouffer, Falco, and Scarfone [36] defines data diode as “is a network appliance
or device allowing data to travel only in one direction". Since data diodes are
hardware solutions without connection to the Internet, we can eliminate any possible
software-based attacks [69]. Nevertheless, this solution is expensive and mainly used
for the military, where the network zones are categories into low and high-security
zones [70]. In addition to that, the solution of using data diodes has some drawbacks:
using a one-directional User datagram protocol (UDP) protocol over two-directional
Transmission control protocol (TCP), which does not ensure the safety and reliability
of data transmission [71]. Therefore, we cannot guarantee that this solution can
work as a panacea for all issues related to communication systems.

4.7.16 Zones

Giani et al. [17] mentioned that the prevalent protocols used for communication
between components in SCADA lack authentication and confidentiality mechanisms.
In order to resolve this issue, IEC 60870-5-104 suggests protection mechanism as
constant monitoring for abnormal activity [22]. Nevertheless, Maynard, McLaughlin,
and Haberler [72] raise a concern that in a real-life case, the protection mechanism
is delayed due to legacy equipment, operation, and cost management.

The importance of protecting the physical layer is connected with the robust
capabilities of Adversary when it has physical access to the system and communication
networks [5]. Such attacks towards a physical layer have an impact on the whole
SCADA. The primary strategy in this category is IDS and appropriate firewall
policies.

65

4.8 Risk Assessment
As discussed in section 3.3, we map a Severity score per an attack into MAL
probability distribution. In chapter 6, we discuss how these probability values
affected the selection of attack paths by an adversary. Tables in this section present
these scores and how attacks affect CIA properties.

For evaluating the Attack severity score, we computed an average score per each
factor in CVSS framework for several CVE vulnerabilities that we can exploit to
make an attack. Table 4.15 demonstrates an example of computing Attack severity
score for an attack HMI4. Modify alarm settings.

CVSSv3 fac-
tor

CVE-2016-
5787

CVE-2020-
6992

CVE-2018-
17904

HMI4

Attack Vec-
tor (AV)

Local Local Network Local

Attack Com-
plexity (AC)

Low Low Low Low

Privileges Re-
quired (PR)

Low High None Low

User Interac-
tion (UI)

Required None Required Required

Scope (S) Changed Unchanged Changed Changed
Confidential-
ity (C)

Low High Low Low

Integrity (I) Low High Low Low
Availability
(A)

Low High None Low

Result of at-
tack severity

Medium Medium Medium Medium

Table 4.15: CVSS for vulnerabilities and mapping to HMI4 attack step

Further Attack severity computation follows a similar logic. However, this
approach has limitations:

• The Attack severity is an average of scores. This approach has limitations, e.g.
for Attack complexity factor, average of Low, High is Medium, but Medium
does not exist for Attack complexity factor in CVE scoring system. The better
approach would have been using a Mode13. Nevertheless, using a Mode of
scores also has limitations, e,g., a Mode for None, None, High is None, which
does not properly represent the score.

• The CVE scores for the same product vary based on the vendor and version of
the model. We compute an average score for SCADA vulnerabilities that we

13Mode is the value that appears most often in the data set

66

found from National Vulnerability Database (NVD). However, each SCADA
system has different vendors. There could be vendors or versions of a model
that are not in this particular SCADA system. Therefore, the score might get
changed significantly.

4.8.1 ICCP server (frontend and backend servers)

Attack CIA Risks Severity
ICCPS1 CI 1.5
ICCPS1 CI 2.0
ICCPS3 A 2.5
ICCPS4 IA 3.0
ICCPS5 CI 2.0

Table 4.16: Severity scores and CIA impact for Inter-control communication protocol
(ICCP) attacks

4.8.2 RTU

Attack CIA Risks Severity
RTU1 A 2.5

Table 4.17: Severity scores and CIA impact for Remote Terminal Unit (RTU) attacks

4.8.3 Communication frontend

Attack CIA Risks Severity
CF1 CI 2.0
CF3 CI 1.5
CF4 CA 1.5
CF5 CIA 4.0
CF6 A 2.0
CF7 A 4.0
CF8 A 2.5
CF9 IA 3.0
CF10 CI 2.0
Table 4.18: Severity scores and CIA impact for Communication Frontend attacks

67

4.8.4 HMI + Thin client

Attack CIA Risks Severity
HMI1 CI 1.5
HMI2 CI 2.0
HMI3 CIA 1.5
HMI4 I 4.0
HMI5 CI 4.0
HMI7 A 3.0

Table 4.19: Severity scores and CIA impact for Human Machine Interface (HMI)
attacks

4.8.5 App server

Attack CIA Risks Severity
APS1 CI 2.0
APS2 CI 2.5
APS3 CI 1.5
APS4 CA 1.5
APS5 CIA 4.0
APS6 A 2.0
APS8 A 2.0
APS9 CIA 4.5
APS11 A 3.0

Table 4.20: Severity scores and CIA impact for App server attacks

68

4.8.6 Databases

Attack CIA Risks Severity
DB1 CIA 2.0
DB2 C 4.5
DB3 CI 2.0
DB5 CI 1.5
DB6 CI 2.0
DB7 CI 4.0
DB8 CIA 4.5

Table 4.21: Severity scores and CIA impact for Database attacks

4.8.7 Antivirus Server

Attack CIA Risks Severity
AV1 CI 2.0
AV3 CI 1.5
AV4 CA 1.5
AV5 A 2.0
AV6 CIA 1.5
AV7 IA 4.0
AV8 IA 3.0
AV9 CI 2.0

Table 4.22: Severity scores and CIA impact for Antivirus Server attacks

4.8.8 Backup server

Attack CIA Risks Severity
BS1 C 3.8
BS3 CI 3.5
BS4 CIA 4.0
BS5 CIA 4.5

Table 4.23: Severity scores and CIA impact for Backup Server attacks

69

4.8.9 Directory Service

Attack CIA Risks Severity
AD1 CIA 4.0
AD2 IA 3.0
AD3 CI 2.0
AD4 A 2.5

Table 4.24: Severity scores and CIA impact for Directory Service attacks

4.8.10 Product

Attack CIA Risks Severity
PR1 IA 4.0
PR2 A 3.5

Table 4.25: Severity scores and CIA impact for Product attacks

4.8.11 Data Engineering / new HMI server

Attack CIA Risks Severity
DE/nHMI1 IA 3.0
DE/nHMI2 CI 2.0
DE/nHMI3 CI 2.0
DE/nHMI4 CI 2.5
DE/nHMI5 CI 1.5
DE/nHMI6 CA 1.5
DE/nHMI7 CIA 4.0
DE/nHMI8 CA 4.5

Table 4.26: Severity scores and CIA impact for DE/nHMI Service attacks

70

4.8.12 Accounts

Attack CIA Risks Severity
AC1 CI 3.5
AC2 CIA 3.5
AC3 CIA 4.0

Table 4.27: Severity scores and CIA impact for Account attacks

4.8.13 Firewall

Attack CIA Risks Severity
FW1 A 3.5

Table 4.28: Severity scores and CIA impact for Firewall attacks

71

5 Creating a Threat Model for a SCADA Instance
Using scadaLang

In this chapter we provide an explanation for the tool that generates a threat model
for an instance of SCADA using scadaLang.

Figure 5.1: Creating a threat model for a particular SCADA instance based on
scadaLang

Figure 5.1 presents how we can get generate a threat model for a particular
SCADA instance from configuration files, and IP packets routes described in sec-
tion 3.2.2. Each SCADA instance has configuration files that describe how the
components of SCADA are connected with each other. We use the information
in configuration files to map into assets and associations defined by scadaLang in
section 4.2. The MITRE attacks defined in section 4.5 is collected into a JSON
file. The Severity scores described per each attack in section 4.8 and protection
mechanisms described in section 4.7 are also collected into JSON files. The output of
this work are scadaLang files (*.mal) for a SCADA instance. The generated (*.mal)
file can then be packaged into (*.scad) to be opened with be SecuriCAD software
developed by Foreseeti14. The software allows us to make attack simulations that
will be explained further in the upcoming chapter 6.

The configuration file that we use for parsing needs to match the following format
(.JSON):
"Host":{

""<host name>":{
"IPAddr":<ip address>
"LAN":<zone name>

},
<all hosts>

}
"Network":{

<Zones>
}
"UserAccounts":{

<Accounts>
}
"appl_server":{

""<App server name>":{
"account":<account name>
"additional_nodes": <host names>
"applications":<product names>
"dbi":<database name>
"supervised_by":<app server name>

14https://www.foreseeti.com. Accessed on 29.06

https://www.foreseeti.com

72

}
<all app servers>

}
"backup_server":{

<backup servers>
}
"de_server":{

"DATAENG":{
"PRODUCTS":{

<products>
}
"account":<account name>
"appl_servers":<app server name>
"databaseId":<database name>
"normal_nodes":<host names>

}
}

"mmi_server":{
<HMIs>

}
"networkServices":{

"Inhouse":{
"DNSServers":<host name>
"KerberosServers":<host name>
"NISServers":<host name>
"NTPServers":<host name>

}
}
"routing":{

"Inhouse":{
"default":{

""<Zone name>":<host name>
}

}
}

The configuration file that matches such format is parsed into assets. In upcoming
sections 5.1, 5.2 and 5.3, we discuss the parsed assets. The associations between
assets are also defined in the configuration file. For the convenience, we grouped the
assets into categories as explained in section 4.2.1.

One example of how the tool parses the configuration data into assets and
associations is as follows:

• We have the aliases (<App server name>) for application servers under
appl_server. We create an Asset App server for each app server that we
parse.

• We parse the values from keys account, additional_nodes, applications, dbi,
supervised_by to establish the association between an app server and other
SCADA components.

Other assets and associations are also created based on parsed information from the
configuration file.

This tool needs to get an input configuration file. If the vendor does not have
a configuration file, this tool might not be fit. Hence, the vendor needs to fill the
information according to the aforementioned structure.

The information file from MITRE knowledge base is collected into the following
JSON file:
{
"assetsAttackTags":{

<asset name1>: [<asset tag1>, <asset tag2>]
<asset name2>: [<asset tag1>, <asset tag2>]
...

}
"attacks": {

<asset tag>: [
<attacks>

},

73

...
},
"potentialAttacksInAssociation": {

<association name>: [<attack asset 1>, <attack asset 2>],
...

},
"attacksChain": {

<asset tag>: [
<attack name>: [<attacks>]

],
...

}

The Attack severity scores are written in the JSON file:
{
<attack name1>: <score1>,
<attack name2>: <score2>,
...
}

5.1 System Assets
Assets 4.5.2 - 4.5.15 are grouped together into the category of System assets.

Regarding Communication front end, OS for Communication front end can vary
based on instance of SCADA. Therefore, for this work in 4.5.4 scadaLang presents
OS-independent attack techniques.

Based on provided SCADA configuration, we can have different DBMS. Therefore,
we can have either OracleDatabase or PostgreDatabase. Based on information in
configurations, our tool selects the attacks that are relevant to the particular DBMS.

Logically, HMI has a GUI for Operators described in section 4.3. Thin Client
can be located in a separate zone, e.g., Production zone. In particular configurations,
HMI and Thin Client are located in the same machine.

As for the antivirus servers, backup servers, DE servers, and nHMI servers, not
all instances have these servers. When our tool generates a threat model for an
instance of SCADA, the servers mentioned above are added if they are present in
the configuration.

Directory Servers (e.g., AD, Redhat Directory Server) are assets responsible for
managing authorisation and access. Based on the configuration settings, Directory
Servers can be Windows- or Linux-based.

5.2 Security Assets
Assets in section 4.5.16 are grouped together into the category of Security assets.
Overall, scadaLang covers “User Account", “Service Account" and “Admin Account"
assets discussed in 4.5.16. At least one administrative account should be present for
our tool to generate a threat model in a SCADA instance.

5.3 Communication Assets
Assets in 4.5.17- 4.5.20 are grouped together into the category of Communication
assets. Security zones in SCADA system is a highly customisable part of the system.
The names of zones can differ, as well as how other assets are located in zones.

74

Overall, as mentioned in section 2.1.4, industry standards define the number of zones
for a system like SCADA. Following these, our tool parses the zones into assets and
connects to the hosts located in the zone.

Not all information about the communication can be fully inferred from configu-
ration files. Our tool needs to get other information as DNS rules. For the future
improvements, Zone asset should be parsed as Trust boundary instead.

75

6 Results of Attack Simulations
In this chapter, we discuss the results of the attack simulations. Each attack has an
entry point as described in section 4.5.1, and leads to an impact defined by MITRE
as explained in section 4.5. Section 6.1 describe an attack scenario with an impact
on availability of SCADA. In section 6.2, we can see an example of attack simulation
that leads to theft of operation information, while in section 6.3 we can examine an
attack simulating with the purpose of loss of control. Section 6.4 demonstrates one
example of the loss of safety, however, in this work, we do not cover manual system
misconfigurations that could lead to harm to a human operator due to the loss of
safety.

6.1 Loss of Availability
Loss of availability is the process when the essential components or the system were
disputed, which led to the failure of delivering the services or products.

Figure 6.1 demonstrates how an attacker can stop the service at Communication
Frontend starting from RTU.

Figure 6.1: Attack steps to shut down Communication frontend

In Figure 6.1, we can observe the attack simulation result produced by SecuriCAD.
According to the documentation of SecuriCAD, the yellow paths are more difficult
to perform than red ones. Moreover, the thick lines are more important than thin
ones. As for the exclamation mark, the attack steps that have it can be reached with
additional paths [73].

Figure 6.2 demonstrates additional paths that were not selected by an attacker.

Figure 6.2: Alternative path to shut down Communication frontend

76

As mentioned in section 4.8, each step has a probability distribution. Based on
this value, an attacker would prefer one attack path instead of other. Figure 6.3
summarises the alternative paths depicted in Figure 6.2. The red path in the figure
demonstrates the least difficult and most certain attack path. The grey and yellow
paths denote the alternative path that was not selected for this simulation.

77

Figure 6.3: Full attack steps to shut down Communication frontend

78

6.2 Theft of Operational Information
Theft of operational information is the process when an attacker obtains access to
operational information in a production environment to gain industrial knowledge or
learn about future operations in the system.

Figure 6.4 demonstrates how an attacker can get into Backup server starting
from RTU.

Figure 6.4: Attack steps to steal operational information

In this scenario, an attacker could access the files stored in a backup server, which
leads to disrupting the confidentiality properties of the system.

Same as Figure 6.1, in Figure 6.4, we can observe the attack simulation result
produced by SecuriCAD. According to the documentation of SecuriCAD, the yellow
paths are more difficult to perform than red ones. Moreover, the thick lines are more
important than thin ones. As for the exclamation mark, the attack steps that have
it can be reached with additional paths [73].

Figure 6.5 summarises the full path depicted in Figure 6.4, where an attacker
could choose to go through ICCP server. SecuriCAD did not generated additional
paths for this attack. The red path in the figure demonstrates the least difficult and
most certain attack path. The grey and yellow paths denote the alternative path
that was not selected for this simulation.

79

Figure 6.5: Full attack steps to access files in Backup server

80

6.3 Loss of Control
A loss of control is a process when an operator is not capable of running any commands.
Figure 6.6 demonstrates how an attacker can get into App server starting from RTU.

Figure 6.6: Attack steps to control slave devices

In this scenario, an attacker would need to install a rogue master device to
leverage control server functions and send malicious commands to slave devices. This
action affects the integrity of communication between master and slave devices, since
an attacker may impersonate the genuine master device.

Figure 6.7 summarises the full path depicted in Figure 6.6. SecuriCAD did not
generated additional paths for this attack. The red path in the figure demonstrates
the least difficult and most certain attack path. The grey and yellow paths denote
the alternative path that was not selected for this simulation.

81

Figure 6.7: Full attack steps to install a rogue master device

82

6.4 Loss of Safety
A loss of safety is a process when a particular set of operations is not accomplished,
leading to unsafe conditions or threats to the system’s operation. One such example
is starting the wrong alarm or dismissing the actual alarm. In SCADA systems, in
the worst case, this can lead to missing a failure of a critical process. Figure 6.8
demonstrates how an attacker can get into Alarm starting from HMI.

Figure 6.8: Attack steps to start the wrong alarm

In this scenario, an attacker could connect to Alarm through HMI to start a
wrong alarm. In the worst case, an attacker would dismiss an alarm, which would
allow the attacker to hide his presence or facilitate reaching further goals. Figure 6.9
provides the alternative paths that attacker did not choose.

Same as Figure 6.1, 6.4 and 6.6, in Figure 6.8, we can observe the attack simulation
result produced by SecuriCAD. According to the documentation of SecuriCAD, the
yellow paths are more difficult to perform than red ones. Moreover, the thick lines
are more important than thin ones. As for the exclamation mark, the attack steps
that have it can be reached with additional paths [73].

Figure 6.9: Alternative attack paths to start the wrong alarm

83

Figure 6.10 describes the full attack paths to Alarm. The red attack steps denote
the path that is more likely to be chosen by an attacker, as it is less difficult and
more certain. The grey and yellow attack steps constitute an alternative attack path
described in Figure 6.9

Figure 6.10: Full attack paths to start the wrong alarm

84

7 Discussion, Limitations, and Future Work
In this chapter, we discuss our work, state the limitations, and propose some
improvements. In section 7.1, we discuss if our solution is valid or not, if our
approach and methodology were right, and address related work. In section 7.2, we
state the limitations of our work and explain we decided not to include them in this
work. In section 7.3, we propose some improvements and future work.

7.1 Discussion
This work presents a scadaLang and a tool for generating a threat model for a specific
instance of SCADA using scadaLang. SCADA experts validated scadaLang, and
an example of a threat model that a tool can generate. scadaLang combines the
research and technical knowledge, since we use MITRE knowledge base with attacks
specific for a SCADA system, and use configuration files from a real SCADA system
to understand the components and their connections. Therefore, scadaLang resolves
the problem of previous works in this field, where the tools could not either match
SCADA requirements or proposed attacks that are not suitable for a SCADA system.
Regarding the approach and methodology for this work, we used the CDITO method
for this work and found it convenient and applicable for creating scadaLang and the
tool. Moreover, we propose other methods as surveying for enhancing the validity of
scadaLang.

As for mapping of the Attack severity score into TTC for an attack in scadaLang,
we generated our own model. The mapping is based on many assumptions and
simplifications. We compute an average of CVSS scores of CVE vulnerabilities from
NVD that could lead to this particular attack. Computing average has limitations,
which could give us a change in the Attack severity score. In addition to that, CVE
vulnerabilities of products depend on the version, model, and vendor, which also
affects the Attack severity score.

7.2 Limitations
This work had some limitations in the implementation that is the topic of further
improvement. First of all, the work did not include any manual configuring of safety
instructions. As mentioned in MITRE, one of the attacker goals is causing an outrage
that could potentially lead to harm for a SCADA engineer [74]. Therefore, SCADA
systems have safety instructions on the components of the system, e.g., tags attached
to hardware, or Safety Instrumented Systems (SIS) to automate actions to keep safety
in a plant. An attacker might try to misconfigure these safety systems manually.
However, in this work, we do not consider such types of attacks. Secondly, the scope
of the work is limited to assets and attacks in the CC. Any attacks towards field
units, RTUs, are not considered in the language specification. In this work, we focus
on a single attack from RTU to the Communication front end and consider RTU as
an entry point for attackers.

Additional limitations of this work include suggested mapping of CVSS score into

85

attack difficulty and certainty. A possible further improvement to this work might be
enhancing the proposed model of computing the Time-To-Compromise (TTC) with
considering additional factors that are relevant to SCADA, e.g., zones and required
availability of critical components.

7.3 Future work
First of all, one further improvement to the project includes obtaining information
from other files, e.g., DNS records. Currently, we use the configuration files for
collecting assets and associations in scadaLang. We use MITRE knowledge base
for the information for attacks and mitigation strategies. Using scadaLang we
can generate a threat model for a given SCADA instance. By considering the
supplementary information provided in other files, we can cover further metrics for
attacks and mitigation strategies, which would increase its accuracy.

The other future work is an enhancing of validation of scadaLang through the
Turing test. To ensure that the attacks presented in this works are not distinguished
from attacks made by a human, this work can utilize a Turing test. A Turing
test relies on the judgment and analysis of experts on how this work performs.
For achieving better results, it is vital to access the proposed model over time
continuously.

The third future work is multiple attacker profiles. In this work, we only consider
a single attacker profile, choosing depth over breadth. A future work proposal would
be to explore the other attacker profiles interested in cyber-attacks towards SCADA.
Table 7.1 proposes a number of those attackers profiles to considered for SCADA
threat modeling. Script kiddies are less motivated to attack SCADA due to the low
return value and high complexity of the system compared to their low skills and
resources. On the other hand, ethical hackers are more motivated by the complexity
of the system and aim to document and disclose their findings. Hacktivists, in
particular political hacktivists, have a higher motivation to perform malicious actions
on SCADA due to its critical importance. State-sponsored groups, Cyber-criminals
and Rogue Employees pose the highest risk to SCADA due to their high skill level,
vast resources, and strong motivation towards malicious intent. State-sponsored
groups target critical infrastructure systems, like SCADA, in order to politically
attack a country.

Attacker
type

Motivation Skills Resources Examples

Script kiddies Low Low Low -
Ethical hack-
ers

Low-Mid Mid Mid -

Hacktivists Mid Mid-High Low-Mid -

86

Cyber-
criminals

Mid-High High High Vitek Bo-
den, 2000
Maroochy
Shire cyber
event [75]

Rogue employ-
ees

Mid Mid Mid-High Actors

State-
sponsored

High High High Sandworm,
ALLAN-
ITE, Lazarus
group15

Table 7.1: List of attacker profiles for SCADA threat model

15https://collaborate.mitre.org/attackics/index.php/Groups Accessed on 25.06.2020

https://collaborate.mitre.org/attackics/index.php/Groups

87

8 Conclusions
The security of SCADA has great importance since this category of systems belong to
Critical National Infrastructure (CNI). The early SCADA was an isolated monolithic
system relying on hardware security. The availability of SCADA was more priority
over confidentiality and integrity. Nevertheless, the development of technologies and
the necessity of more efficient managing of SCADA led to making the system more
comprehensive. In return, this made the system vulnerable to cyber-attacks.

This work presents the scadaLang, threat modeling DSL based on Meta Attack
Language (MAL). In particular, the work presents the MAL specification of the
language prepared for SCADA addressing the potential attacks and present vulnera-
bilities that are specific to a SCADA system. We use MITRE knowledge base for
the attacks and proposed mitigation strategies. In case a mitigation strategy for an
attack is not given in MITRE, we use other sources, e.g., CISA: Industrial Control
Systems.

Another focus of this work was automating the security analysis of a SCADA
system. SCADA is a highly customisable system and can have different setups. This
work utilized the information given in configuration files and documents per each
system to generate a threat model for each setup. As a result, we developed a
software that can create a threat model using scadaLang per specific given instance
of SCADA.

We collected assets from different configuration files. We discovered that the
assets vary per each configuration. Some assets are present in all configurations
(App server), while other assets as Backup Server are only available in some of them.
To examine how to reach one asset from another, we used the information from
configuration files and output of iptables command. We discovered three assets that
can serve as an entry point for an attacker.

We simulated attack steps for four different SCADA instances. For each attack
step, we also enabled a defense mechanism and attached a TTC value. SecuriCAD
makes a simulation, and an attacker chooses the least difficult step with a higher
probability of success for attack simulation. We made several simulations with
different impacts (e.g., loss of control, loss of availability, theft of operational informa-
tion), and for each attack simulation, we observed additional paths. We discovered
that additional paths that an attacker did not proceed with during simulating in
SecuriCAD require either more steps to perform or needs to compromise more assets,
or have a lower TTC value.

88

References
[1] Eduardo B Fernandez et al. “On building secure SCADA systems using security

patterns”. In: Proceedings of the 5th Annual Workshop on Cyber Security and
Information Intelligence Research: Cyber Security and Information Intelligence
Challenges and Strategies. 2009, pp. 1–4.

[2] Yulia Cherdantseva et al. “A review of cyber security risk assessment methods
for SCADA systems”. In: Computers & security 56 (2016), pp. 1–27.

[3] Ministry of Justice of Sweden. “A national cyber security strategy”. In: (2016).
Accessed: 18.04.2020, https://www.government.se/4ada5d/contentassets/
d87287e088834d9e8c08f28d0b9dda5b/a-national-cyber-security-strategy-
skr.-201617213.

[4] Eric J Byres, Matthew Franz, and Darrin Miller. “The use of attack trees in
assessing vulnerabilities in SCADA systems”. In: Proceedings of the international
infrastructure survivability workshop. Citeseer. 2004, pp. 3–10.

[5] Simon Duque Anton et al. “Two decades of SCADA exploitation: A brief
history”. In: 2017 IEEE Conference on Application, Information and Network
Security (AINS). IEEE. 2017, pp. 98–104.

[6] Irfan Ahmed et al. “SCADA Systems: Challenges for Forensic Investigators”.
In: ABB Corporate Research (2012).

[7] Pontus Johnson, Robert Lagerstrom, and Mathias Ekstedt. “A Meta Language
for Threat Modeling and Attack Simulations”. In: ARES 2018: Proceedings
of the 13th International Conference on Availability, Reliability and Security.
2018, pp. 1–8.

[8] Robert E Johnson. “Survey of SCADA security challenges and potential attack
vectors”. In: 2010 International Conference for Internet Technology and Secured
Transactions. IEEE. 2010, pp. 1–5.

[9] Jason Stamp et al. “Sustainable security for infrastructure SCADA”. In: Sandia
National Laboratories, Albuquerque, New Mexico (www. sandia. gov/scada/-
documents/SustainableSec urity. pdf) (2003).

[10] Bill Miller and Dale Rowe. “A survey SCADA of and critical infrastructure inci-
dents”. In: Proceedings of the 1st Annual conference on Research in information
technology. 2012, pp. 51–56.

[11] Jian Guan, James H Graham, and Jeffrey L Hieb. “A digraph model for risk
identification and mangement in SCADA systems”. In: Proceedings of 2011
IEEE International Conference on Intelligence and Security Informatics. IEEE.
2011, pp. 150–155.

[12] Johannes Schneider, Sebastian Obermeier, and Roman Schlegel. “Cyber Secu-
rity Maintenance for SCADA Systems”. In: ABB Corporate Research (2017).

[13] Wang Yong et al. “Stuxnet Vulnerabilities Analysis of SCADA Systems”. In:
ABB Corporate Research (2012).

https://www.government.se/4ada5d/contentassets/d87287e088834d9e8c08f28d0b9dda5b/a-national-cyber-security-strategy-skr.-201617213
https://www.government.se/4ada5d/contentassets/d87287e088834d9e8c08f28d0b9dda5b/a-national-cyber-security-strategy-skr.-201617213
https://www.government.se/4ada5d/contentassets/d87287e088834d9e8c08f28d0b9dda5b/a-national-cyber-security-strategy-skr.-201617213

89

[14] Axel Daneels and Wayne Salter. “What is SCADA?” In: (1999).
[15] Saurabh Amin et al. “Cyber security of water SCADA systemsPart I: Analysis

and experimentation of stealthy deception attacks”. In: IEEE Transactions on
Control Systems Technology 21.5 (2012), pp. 1963–1970.

[16] Jiaping Men et al. “Finding sands in the eyes: vulnerabilities discovery in
IoT with EUFuzzer on human machine interface”. In: IEEE Access 7 (2019),
pp. 103751–103759.

[17] Annarita Giani et al. “A testbed for secure and robust SCADA systems”. In:
ACM SIGBED Review 5.2 (2008), pp. 1–4.

[18] Peter Huitsing et al. “Attack taxonomies for the Modbus protocols”. In: Inter-
national Journal of Critical Infrastructure Protection 1 (2008), pp. 37–44.

[19] Samuel East et al. “A Taxonomy of Attacks on the DNP3 Protocol”. In:
International Conference on Critical Infrastructure Protection. Springer. 2009,
pp. 67–81.

[20] Gordon Clarke, Deon Reynders, and Edwin Wright. Practical modern SCADA
protocols: DNP3, 60870.5 and related systems. Newnes, 2004.

[21] György Dán et al. “Challenges in power system information security”. In: IEEE
Security & Privacy Magazine 10.4 (2012), pp. 62–70.

[22] Yi Yang et al. “Intrusion detection system for IEC 60870-5-104 based SCADA
networks”. In: 2013 IEEE power & energy society general meeting. IEEE. 2013,
pp. 1–5.

[23] Ensotest. “Introduction to the IEC 60870-5-104 standard”. In: (2020). Accessed:
08.08.2020, https://www.ensotest.com/iec-60870-5-104/introduction-
to-the-iec-60870-5-104-standard/.

[24] Robert E Mahan et al. Secure data transfer guidance for industrial control and
SCADA systems. Tech. rep. Pacific Northwest National Lab.(PNNL), Richland,
WA (United States), 2011.

[25] Steven Cheung et al. “Using model-based intrusion detection for SCADA
networks”. In: Proceedings of the SCADA security scientific symposium. Vol. 46.
Citeseer. 2007, pp. 1–12.

[26] Eric Byres, John Karsch, and Joel Carter. “Firewall deployment for scada and
process control networks”. In: Centre for Protection of National Infrastructure,
Government Digital Service (2005).

[27] Tony UcedaVelez and Marco M Morana. Risk centric threat modeling. Wiley
Online Library, 2015.

[28] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen. “A descriptive study
of Microsofts threat modeling technique”. In: Requirements Engineering 20.2
(2015), pp. 163–180.

[29] Christopher J Alberts and Audrey Dorofee. Managing information security
risks: the OCTAVE approach. Addison-Wesley Longman Publishing Co., Inc.,
2002.

https://www.ensotest.com/iec-60870-5-104/introduction-to-the-iec-60870-5-104-standard/
https://www.ensotest.com/iec-60870-5-104/introduction-to-the-iec-60870-5-104-standard/

90

[30] Jack Freund and Jack Jones. Measuring and managing information risk: a
FAIR approach. Butterworth-Heinemann, 2014.

[31] Robert Lagerstrom. “Attack simulations of viable cities (smart facilities)”.
In: (2020). Accessed: 22.06.2020, https://www.hbv.se/contentassets/
5c2b43290a84481dbe13cc197ebece3d/presentation-robert-lagerstrom-
kth.pdf.

[32] MITRE. “Groups”. In: (2020). Accessed: 10.05.2020, https://attack.mitre.
org/groups/.

[33] Nataliya Shevchenko et al. Threat modeling: a summary of available methods.
Tech. rep. Carnegie Mellon University Software Engineering Institute Pittsburgh
United , 2018.

[34] Ronald S Ross. Guide for conducting risk assessments. Tech. rep. 2012.
[35] Pengsu Cheng et al. “Aggregating CVSS base scores for semantics-rich network

security metrics”. In: 2012 IEEE 31st Symposium on Reliable Distributed
Systems. IEEE. 2012, pp. 31–40.

[36] Keith Stouffer, Joe Falco, and Karen Scarfone. “Guide to industrial control
systems (ICS) security”. In: NIST special publication 800.82 (2011), pp. 16–16.

[37] Umesh Kumar Singh and Chanchala Joshi. “Quantitative security risk evalua-
tion using CVSS metrics by estimation of frequency and maturity of exploit”.
In: Proceedings of the World Congress on Engineering and Computer Science.
Vol. 1. 2016, pp. 19–21.

[38] Luca Allodi et al. “Estimating the assessment difficulty of CVSS environmental
metrics: an experiment”. In: International Conference on Future Data and
Security Engineering. Springer. 2017, pp. 23–39.

[39] MAL-lang. “Instantiating Language Models”. In: (2020). Accessed: 16.07.2020,
https://github.com/mal-lang/mal-documentation/wiki/Instantiating-
Language-Models.

[40] MAL Compiler. “Supported distribution functions”. In: (2020). Accessed:
18.04.2020, https://github.com/mal-lang/malcompiler/wiki/Supported-
distribution-functions.

[41] Linzhang Wang, Eric Wong, and Dianxiang Xu. “A threat model driven
approach for security testing”. In: Third International Workshop on Software
Engineering for Secure Systems (SESS’07: ICSE Workshops 2007). IEEE. 2007,
pp. 10–10.

[42] Simon Hacks et al. “Creating Meta Attack Language Instances using ArchiMate:
Applied to Electric Power and Energy System Cases”. In: 2019 IEEE 23rd
International Enterprise Distributed Object Computing Conference (EDOC).
IEEE. 2019, pp. 88–97.

[43] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-driven risk analy-
sis: the CORAS approach. Springer Science & Business Media, 2010.

https://www.hbv.se/contentassets/5c2b43290a84481dbe13cc197ebece3d/presentation-robert-lagerstrom-kth.pdf
https://www.hbv.se/contentassets/5c2b43290a84481dbe13cc197ebece3d/presentation-robert-lagerstrom-kth.pdf
https://www.hbv.se/contentassets/5c2b43290a84481dbe13cc197ebece3d/presentation-robert-lagerstrom-kth.pdf
https://attack.mitre.org/groups/
https://attack.mitre.org/groups/
https://github.com/mal-lang/mal-documentation/wiki/Instantiating-Language-Models
https://github.com/mal-lang/mal-documentation/wiki/Instantiating-Language-Models
https://github.com/mal-lang/malcompiler/wiki/Supported-distribution-functions
https://github.com/mal-lang/malcompiler/wiki/Supported-distribution-functions

91

[44] Jan Jürjens. “Towards development of secure systems using UMLsec”. In:
International Conference on Fundamental Approaches to Software Engineering.
Springer. 2001, pp. 187–200.

[45] Mohamed Almorsy and John Grundy. “Secdsvl: A domain-specific visual
language to support enterprise security modelling”. In: 2014 23rd Australian
Software Engineering Conference. IEEE. 2014, pp. 152–161.

[46] Sushil Jajodia and Steven Noel. “Topological vulnerability analysis: A powerful
new approach for network attack prevention, detection, and response”. In:
Algorithms, architectures and information systems security. World Scientific,
2009, pp. 285–305.

[47] Network and Systems Engineering. “Summary of VIKING results”. In: (2020).
Accessed: 18.07.2020, https : / / www . kth . se / polopoly _ fs / 1 . 407987 .
1550158302!/Menu/general/column-content/attachment/FinalProjectReport_
WEBversion.pdf.

[48] Salvatore DAntonio et al. “INcreasing Security and Protection through Infras-
tructure REsilience: The INSPIRE Project”. In: Critical Information Infras-
tructure Security: Third International Workshop, CRITIS 2008, Rome, Italy,
October 13-15, 2008. Vol. 5508. Springer. 2009, p. 109.

[49] MITRE foundation. “Overview of MITRE ICS”. In: MITRE ICS (2020). Ac-
cessed: 18.04.2020, https://collaborate.mitre.org/attackics/index.
php/Overview.

[50] CDIO. “Worldwide CDIO initiative”. In: (2020). Accessed: 30.07.2020, http:
//www.cdio.org.

[51] Helene Leong. “Designing a CDIO Programme: The CDIO Syllabus and Stan-
dards”. In: (2020). Accessed: 30.07.2020, http://www.kanazawa-it.ac.jp/
cdio/english/file/slide10_leong.pdf.

[52] MITRE foundation. “Assets in MITRE ICS”. In: MITRE ICS (2020). Accessed:
18.04.2020, https://collaborate.mitre.org/attackics/index.php/All_
Assets.

[53] Marjan Keramati, Ahmad Akbari, and Mahsa Keramati. “CVSS-based security
metrics for quantitative analysis of attack graphs”. In: ICCKE 2013. IEEE.
2013, pp. 178–183.

[54] First. “Common Vulnerability Scoring System version 3.1: User Guide”. In:
(2020). Accessed: 18.04.2020, https://www.first.org/cvss/user-guide.

[55] Hannes Holm, Mathias Ekstedt, and Dennis Andersson. “Empirical analy-
sis of system-level vulnerability metrics through actual attacks”. In: IEEE
Transactions on dependable and secure computing 9.6 (2012), pp. 825–837.

[56] Reginald E Sawilla and Xinming Ou. “Identifying critical attack assets in
dependency attack graphs”. In: European Symposium on Research in Computer
Security. Springer. 2008, pp. 18–34.

https://www.kth.se/polopoly_fs/1.407987.1550158302!/Menu/general/column-content/attachment/Final Project Report_WEB version.pdf
https://www.kth.se/polopoly_fs/1.407987.1550158302!/Menu/general/column-content/attachment/Final Project Report_WEB version.pdf
https://www.kth.se/polopoly_fs/1.407987.1550158302!/Menu/general/column-content/attachment/Final Project Report_WEB version.pdf
https://collaborate.mitre.org/attackics/index.php/Overview
https://collaborate.mitre.org/attackics/index.php/Overview
http://www.cdio.org
http://www.cdio.org
http://www.kanazawa-it.ac.jp/cdio/english/file/slide10_leong.pdf
http://www.kanazawa-it.ac.jp/cdio/english/file/slide10_leong.pdf
https://collaborate.mitre.org/attackics/index.php/All_Assets
https://collaborate.mitre.org/attackics/index.php/All_Assets
https://www.first.org/cvss/user-guide

92

[57] Osman Balci and Eric P Smith. Validation of expert system performance. Tech.
rep. Department of Computer Science, Virginia Polytechnic Institute & State ,
1986.

[58] Ayse Pinar Saygin, Ilyas Cicekli, and Varol Akman. “Turing test: 50 years
later”. In: Minds and machines 10.4 (2000), pp. 463–518.

[59] Infosec. “What is Enumeration?” In: (2020). Accessed: 10.08.2020, https:
//resources.infosecinstitute.com/what-is-enumeration.

[60] McAfee. “Introduction to McAfee ePolicy Orchestrator”. In: (2020). Accessed:
16.05.2020, https://www.mcafee.com/enterprise/en-us/downloads/
trials/epolicy-orchestrator.html.

[61] McAfee. “Managing McAfee ePO users with Active Directory”. In: (2020). Ac-
cessed: 16.05.2020, https://docs.mcafee.com/bundle/epolicy-orchestrator-
5.9.x-product-guide/page/GUID-17CC4F49-DDAA-4282-A778-5B4D71BE236B.
html.

[62] Department of US homeland security. “CISA: Industry Control Systems”. In:
(2016). Accessed: 18.04.2020, https://www.us-cert.gov/ics.

[63] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy. Tech.
rep. Technical report, 2000.

[64] Eric Geier. “Intro to Next Generation Firewalls”. In: (2011). Accessed: 12.05.2020,
https://www.esecurityplanet.com/security-buying-guides/intro-to-
next-generation-firewalls.html.

[65] John R Vacca. Network and system security. Elsevier, 2013.
[66] Bonnie Zhu and Shankar Sastry. “SCADA-specific intrusion detection/preven-

tion systems: a survey and taxonomy”. In: Proceedings of the 1st workshop on
secure control systems (SCS). Vol. 11. 2010, p. 7.

[67] Trend Micro. “What You Need to Know About the LockerGoga Ransomware”.
In: (2019). Accessed: 28.05.2020, https://www.trendmicro.com/vinfo/
us/security/news/cyber-attacks/what-you-need-to-know-about-the-
lockergoga-ransomware.

[68] Yi Sun et al. Distributed computer network zone based security architecture.
US Patent 9,419,941. 2016.

[69] Paul Francis Mevec and Ibrahim A Marhoon. Systems, methods, and computer
medium to securely transfer business transactional data between networks having
different levels of network protection using barcode technology with data diode
network security appliance. US Patent 9,210,179. 2015.

[70] Industrial Control Systems Cyber Emergency Response Team. “Recommended
Practice: Improving Industrial Control System Cybersecurity with Defense-
in-Depth Strategies”. In: (2016). Accessed: 18.04.2020, https://www.us-
cert.gov/sites/default/files/recommended_practices/NCCIC_ICS-
CERT_Defense_in_Depth_2016_S508C.pdf.

https://resources.infosecinstitute.com/what-is-enumeration
https://resources.infosecinstitute.com/what-is-enumeration
https://www.mcafee.com/enterprise/en-us/downloads/trials/epolicy-orchestrator.html
https://www.mcafee.com/enterprise/en-us/downloads/trials/epolicy-orchestrator.html
https://docs.mcafee.com/bundle/epolicy-orchestrator-5.9.x-product-guide/page/GUID-17CC4F49-DDAA-4282-A778-5B4D71BE236B.html
https://docs.mcafee.com/bundle/epolicy-orchestrator-5.9.x-product-guide/page/GUID-17CC4F49-DDAA-4282-A778-5B4D71BE236B.html
https://docs.mcafee.com/bundle/epolicy-orchestrator-5.9.x-product-guide/page/GUID-17CC4F49-DDAA-4282-A778-5B4D71BE236B.html
https://www.us-cert.gov/ics
https://www.esecurityplanet.com/security-buying-guides/intro-to-next-generation-firewalls.html
https://www.esecurityplanet.com/security-buying-guides/intro-to-next-generation-firewalls.html
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/what-you-need-to-know-about-the-lockergoga-ransomware
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/what-you-need-to-know-about-the-lockergoga-ransomware
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/what-you-need-to-know-about-the-lockergoga-ransomware
https://www.us-cert.gov/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://www.us-cert.gov/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://www.us-cert.gov/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf

93

[71] Boo-Sun Jeon and Jung-Chan Na. “A study of cyber security policy in industrial
control system using data diodes”. In: 2016 18th International Conference on
Advanced Communication Technology (ICACT). IEEE. 2016, pp. 314–317.

[72] Peter Maynard, Kieran McLaughlin, and Berthold Haberler. “Towards under-
standing man-in-the-middle attacks on iec 60870-5-104 scada networks”. In:
2nd International Symposium for ICS & SCADA Cyber Security Research 2014
(ICS-CSR 2014) 2. 2014, pp. 30–42.

[73] SecuriCAD. “Attack Paths”. In: (2020). Accessed: 18.07.2020, https : / /
community.securicad.com/attack-paths/.

[74] MITRE. “MITRE ATT&CKő for Industrial Control Systems: Design and
Philosophy”. In: (2020). Accessed: 30.07.2020, https://collaborate.mitre.
org/attackics/img_auth.php/3/37/ATT%26CK_for_ICS_-_Philosophy_
Paper.pdf.

[75] Marshall Abrams and Joe Weiss. “Malicious control system cyber security
attack case study–Maroochy Water Services, Australia”. In: McLean, VA: The
MITRE Corporation (2008).

https://community.securicad.com/attack-paths/
https://community.securicad.com/attack-paths/
https://collaborate.mitre.org/attackics/img_auth.php/3/37/ATT%26CK_for_ICS_-_Philosophy_Paper.pdf
https://collaborate.mitre.org/attackics/img_auth.php/3/37/ATT%26CK_for_ICS_-_Philosophy_Paper.pdf
https://collaborate.mitre.org/attackics/img_auth.php/3/37/ATT%26CK_for_ICS_-_Philosophy_Paper.pdf

94

A Overall Attack Graph

Figure A.1: Overall attack graph

95

B Example of Unit Testing a DSL Based on MAL
In this example, we create a test model DatabasesModel with several test cases. For
this work, we use the Java language. Let us review how the user can bypass input
validation and access data in a database. We assume that the attacker is already in
a server and is trying to corrupt data in a database. For this scenario, bypassing
put validation is an entry point. As we can see after this attack succeeded, we
managed to perform further attack steps as accessing logs to collect information,
administrative access to the DB, and data corruption. The situation can be different
when the defense mechanisms as sanitising client-side input and validating client-side
input are enabled. In this case, the attacker needs some effort to perform further
attack steps.

public class TestDatabases extends SCADALangTest {
private static class DatabasesModel {

public final OracleDatabase oracleDatabase = new
↪→ OracleDatabase("testOracleDB");

public final PostgreDatabase postgreDatabase = new
↪→ PostgreDatabase("testPostgreDB");

public final RealTimeDatabase realTimeDatabase = new
↪→ RealTimeDatabase("testRDB");

public final AppServer appServer = new AppServer("testAppServer");

public DatabasesModel() {
oracleDatabase.addAppservers(appServer);
postgreDatabase.addAppservers(appServer);
realTimeDatabase.addAppservers(appServer);
appServer.addOracledatabases(oracleDatabase);
appServer.addPostgredatabases(postgreDatabase);
appServer.addRealtimedatabases(realTimeDatabase);

}
}

@Test
public void testOracleDatabasesBypassInputValidation() {

var model = new DatabasesModel();

var attacker = new Attacker();
attacker .addAttackPoint(model.oracleDatabase.bypassInputValidation);

attacker .attack() ;
model.oracleDatabase.sqlInjection.assertUncompromised();
model.oracleDatabase

.commandLineExecutionThroughSQLInjection.assertUncompromised();
model.oracleDatabase.dataExfiltration.assertUncompromised();
model.oracleDatabase.accessingLogsToCollectInformation.assertUncompromised();
model.oracleDatabase.obtainValidAccount.assertUncompromised();
model.oracleDatabase.administrativeAccessToDatabase.assertUncompromised();

96

model.oracleDatabase.dataCorruption.assertUncompromised();

}

@Test
public void testOracleDatabasesBypassInputValidationWithDefense() {

var model = new DatabasesModel();

var attacker = new Attacker();
attacker .addAttackPoint(model.oracleDatabase.bypassInputValidation);

attacker .attack() ;

var defense1 = new Defense("sanitizeClientSideInput");
var defense2 = new Defense("validateClientSideInput");
defense1.isEnabled();
defense2.isEnabled();
model.oracleDatabase.bypassInputValidation.assertUncompromised();
model.oracleDatabase.sqlInjection.assertUncompromised();
model.oracleDatabase

.commandLineExecutionThroughSQLInjection.assertUncompromised();
model.oracleDatabase.dataExfiltration.assertUncompromised();
model.oracleDatabase.accessingLogsToCollectInformation.assertUncompromised();
model.oracleDatabase.obtainValidAccount.assertUncompromised();
model.oracleDatabase.administrativeAccessToDatabase.assertUncompromised();
model.oracleDatabase.dataCorruption.assertUncompromised();

}

@Test
public void testPostgreDatabasesBypassInputValidation() {

var model = new DatabasesModel();

var attacker = new Attacker();
attacker .addAttackPoint(model.postgreDatabase.bypassInputValidation);

attacker .attack() ;
model.postgreDatabase.sqlInjection.assertUncompromised();
model.postgreDatabase

.commandLineExecutionThroughSQLInjection.assertUncompromised();
model.postgreDatabase.dataExfiltration.assertUncompromised();
model.postgreDatabase.accessingLogsToCollectInformation.assertUncompromised();
model.postgreDatabase.obtainValidAccount.assertUncompromised();
model.postgreDatabase.administrativeAccessToDatabase.assertUncompromised();
model.postgreDatabase.dataCorruption.assertUncompromised();

}

@Test
public void testPostgreDatabasesBypassInputValidationWithDefense() {

97

var model = new DatabasesModel();

var attacker = new Attacker();
attacker .addAttackPoint(model.postgreDatabase.bypassInputValidation);

attacker .attack() ;

var defense1 = new Defense("sanitizeClientSideInput");
var defense2 = new Defense("validateClientSideInput");
defense1.isEnabled();
defense2.isEnabled();

model.postgreDatabase.sqlInjection.assertUncompromised();
model.postgreDatabase

.commandLineExecutionThroughSQLInjection.assertUncompromised();
model.postgreDatabase.dataExfiltration.assertUncompromised();
model.postgreDatabase.accessingLogsToCollectInformation.assertUncompromised();
model.postgreDatabase.obtainValidAccount.assertUncompromised();
model.postgreDatabase.administrativeAccessToDatabase.assertUncompromised();
model.postgreDatabase.dataCorruption.assertUncompromised();

}

@Test
public void testRealTimeDatabasesBypassInputValidation() {

var model = new DatabasesModel();

var attacker = new Attacker();
attacker .addAttackPoint(model.realTimeDatabase.bypassInputValidation);

attacker .attack() ;
model.realTimeDatabase.sqlInjection.assertUncompromised();
model.realTimeDatabase

.commandLineExecutionThroughSQLInjection.assertUncompromised();
model.realTimeDatabase.dataExfiltration.assertUncompromised();
model.realTimeDatabase.accessingLogsToCollectInformation.assertUncompromised();
model.realTimeDatabase.obtainValidAccount.assertUncompromised();
model.realTimeDatabase.administrativeAccessToDatabase.assertUncompromised();
model.realTimeDatabase.dataCorruption.assertUncompromised();

}

@Test
public void testRealTimeDatabasesBypassInputValidationWithDefense() {

var model = new DatabasesModel();

var attacker = new Attacker();
attacker .addAttackPoint(model.realTimeDatabase.bypassInputValidation);

attacker .attack() ;

98

var defense1 = new Defense("sanitizeClientSideInput");
var defense2 = new Defense("validateClientSideInput");
defense1.isEnabled();
defense2.isEnabled();

model.realTimeDatabase.sqlInjection.assertUncompromised();
model.realTimeDatabase

.commandLineExecutionThroughSQLInjection.assertUncompromised();
model.realTimeDatabase.dataExfiltration.assertUncompromised();
model.realTimeDatabase.accessingLogsToCollectInformation.assertUncompromised();
model.realTimeDatabase.obtainValidAccount.assertUncompromised();
model.realTimeDatabase.administrativeAccessToDatabase.assertUncompromised();
model.realTimeDatabase.dataCorruption.assertUncompromised();

}
}

C All attacks and Mapping MITRE Into Threat
Modeling of SCADA

Asset Attack Code MITRE code
ICCP Server ICCPS1 T811

ICCPS2 T859
ICCPS3 T846
ICCPS4 T867

RTU RTU1 T846
CF CF1 T859

CF2 T812
CF3 T811
CF4 T846
CF5 T859
CF6 T881
CF7 T816
CF8 T846
CF9 T867

HMI HMI1 T811
HMI2 T859
HMI3 T830
HMI4 T838
HMI5 T859
HMI6 T846
HMI7 S0008

App server APS1 T859

99

Asset Attack Code MITRE code
APS2 T812
APS3 T811
APS4 T846
APS5 T859
APS6 T881
APS7 T846
APS8 T848
APS9 T867
APS10 T830
APS11 T849

Database DB4 T867
DB5 T811
DB6 T859
DB7 T859
DB8 T867

Anti-virus server AV1 T859
AV2 T812
AV3 T811
AV4 T846
AV5 T881
AV6 T830
AV8 T867

Backup Server BS1 T859
BS2 T812
BS3 T811
BS4 T859
BS5 T867

Active Directory AD1 T859
AD2 T867
AD4 T846

Product PR1 T873
PR2 T873
DNS2 T816

NTP server NTP1 T816
DE Server DE1 T867

DE3 T859
DE4 T812
DE5 T811

100

Asset Attack Code MITRE code

Table C.1: All Attacks

D Code of scadaLang

#id: "org.mal−lang.scadalang"
#version: " 1.0.0 "

category Networking{
abstract asset Zone{

| gainInitialAccess [Exponential(1)]
−> bypassFirewall

| bypassFirewall
}

asset ProductionZone extends Zone
{ | gainInitialAccess [Exponential(1)]

−> ntpserver.serverCompromise,
physicalShutdownDiod,
directoryservice .remoteSystemDiscovery,
dnsserver.remoteSystemDiscovery,
ntpserver.remoteSystemDiscovery,
directoryservice .serverCompromise,
dnsserver.serverCompromise,
nisserver .remoteSystemDiscovery,
nisserver .serverCompromise

| bypassFirewall [Bernoulli (0.5)]
−> firewall .bypassFirewall

| physicalShutdownDiod [Exponential(0.1)]
−> diod.physicalShutdownDiod

}
asset DemilitarizedZone extends Zone
{ | gainInitialAccess [Exponential(1)]

−> accessToDMZ
| accessToDMZ
| bypassFirewall [Bernoulli (0.5)]

−> firewall .bypassFirewall

101

| physicalShutdownDiod [Exponential(0.1)]
−> diod.physicalShutdownDiod

}

asset SupportZone extends Zone {
| bypassFirewall [Bernoulli (0.5)]

−> firewall .bypassFirewall
| physicalShutdownDiod [Exponential(0.1)]

−> diod.physicalShutdownDiod
}

asset Firewall extends Host
{ | bypassFirewall [Bernoulli (0.5)]

−>
accessRouter,
productionzone.bypassFirewall,
supportzone.bypassFirewall,
demilitarizedzone.bypassFirewall

| accessRouter
−> router.reconfigureRouter

}
asset Diod
{ | physicalShutdownDiod [Exponential(0.1)]

−> productionzone.physicalShutdownDiod,
demilitarizedzone.physicalShutdownDiod,
supportzone.physicalShutdownDiod

}
asset Router
{ | reconfigureRouter

−> firewall .accessRouter
}
asset NextGenerationFirewall
{ | exploitVulnerableFunction
}
asset DNSServer extends Host
{ | serverCompromise [Bernoulli(0.5)]

−> shutdownDNSService,
poisonDNS

| shutdownDNSService
| poisonDNS
| remoteSystemDiscovery [Bernoulli(0.5)]

−> serverCompromise
}
asset NISServer extends Host
{ | serverCompromise [Bernoulli(0.5)]

102

| remoteSystemDiscovery [Bernoulli(0.5)]
−> serverCompromise

}
asset NTPServer extends Host
{ | serverCompromise [Bernoulli(0.5)]

−> alterClockConfigurations,
stopService

| alterClockConfigurations [Bernoulli (0.5)]
| stopService
| remoteSystemDiscovery [Bernoulli(0.5)]

−> serverCompromise
}
}

category Security{

abstract asset Account{
| bruteForce [Bernoulli (0.5)]

| bribeSCADAEngineer [Exponential(0.1)]
}

asset AdminAccount extends Account{
| phishSCADAEngineer [Bernoulli(0.5)]

}

asset ServiceAccount extends Account{ }

asset UserAccount extends Account{
| phishSCADAEngineer [Bernoulli(0.5)]

}
}

category System{
abstract asset Host {

| serverCompromise [Bernoulli(0.5)]
}
asset DirectoryService extends Host
{ | serverCompromise [Bernoulli(0.5)]

−> obtainPasswordFromMemory,
remoteSystemDiscovery,
accessLogs

| obtainPasswordFromMemory [Bernoulli(0.5)]
−> obtainValidAccount

& remoteSystemDiscovery [Bernoulli(0.5)]
−> cfs .serverCompromise,

103

hmis.serverCompromise,
obtainValidAccount

| accessLogs
−> obtainValidAccount

& obtainValidAccount [Bernoulli(0.5)]
−> obtainAdminAccount

| obtainAdminAccount
}
asset AppServer
{ | serverCompromise [Bernoulli(0.5)]

−> remoteSystemDiscovery,
accessingLogsToCollectInformation,
useDefaultCredentials

& remoteSystemDiscovery [Bernoulli(0.5)]
| useDefaultCredentials [Bernoulli (0.5)]

−> administrativeAccessToAppServer,
serviceStop

& obtainValidAccount [Bernoulli(0.5)]
−> administrativeAccessToAppServer,

dataExfiltration ,
goToOtherSystemComponents

| dataExfiltration [Exponential(0.1)]
−> dataCorruption

& serviceStop [Bernoulli (0.5)]
| accessingLogsToCollectInformation [Exponential(1)]

−> serviceDiscovery,
obtainValidAccount

& serviceDiscovery [Exponential(1)]
−> serviceStop,

manInTheMiddle
& manInTheMiddle [Exponential(1)]

−> goToOtherSystemComponents
| administrativeAccessToAppServer [Exponential(0.1)]

−> dataExfiltration,
installRogueMasterDevice,
masquerade

| installRogueMasterDevice [Bernoulli(0.5)]
−> collectData

| collectData
| dataCorruption [Exponential(0.1)]
| goToOtherSystemComponents

−> audiblealarm.startAlarm,
audiblealarm.unbootAlarm,

products.productInfection,
iccpserver .serverCompromise,

104

postgredatabases.bypassInputValidation,
oracledatabases.bypassInputValidation,
backupserver.serverCompromise,
realtimedatabases.bypassInputValidation,
products.productCorruption,
products.productInfection,
cfs .serverCompromise,
antivirus .serverCompromise,
hmis.serverCompromise

| masquerade [Bernoulli(0.5)]
onDemandAccount

−> administrativeAccessToAppServer
networkSegregation

−> manInTheMiddle
logsDataEncryption

−> accessingLogsToCollectInformation
}

asset OracleDatabase
{ | bypassInputValidation [Bernoulli(0.5)]

−> sqlInjection
| sqlInjection [Exponential(0.1)]

−> commandLineExecutionThroughSQLInjection
| commandLineExecutionThroughSQLInjection [Bernoulli(0.5)]

−> accessingLogsToCollectInformation
| accessingLogsToCollectInformation [Exponential(1)]

−> obtainValidAccount
& obtainValidAccount [Bernoulli(0.5)]

−> administrativeAccessToDatabase
| administrativeAccessToDatabase [Exponential(0.1)]

−> dataCorruption,
dataExfiltration

& dataCorruption [Exponential(0.1)]
& dataExfiltration [Exponential(0.1)]
sanitizeClientSideInput

−> sqlInjection ,
commandLineExecutionThroughSQLInjection,
bypassInputValidation

validateClientSideInput
−> bypassInputValidation

usePreparedStatement
−> sqlInjection ,

commandLineExecutionThroughSQLInjection
onDemandAccount

−> administrativeAccessToDatabase

105

}
asset PostgreDatabase
{ | bypassInputValidation [Bernoulli(0.5)]

−> sqlInjection
| sqlInjection [Exponential(0.1)]

−> commandLineExecutionThroughSQLInjection
| commandLineExecutionThroughSQLInjection [Bernoulli(0.5)]

−> accessingLogsToCollectInformation
| accessingLogsToCollectInformation [Exponential(1)]

−> obtainValidAccount
& obtainValidAccount [Bernoulli(0.5)]

−> administrativeAccessToDatabase
| administrativeAccessToDatabase [Exponential(0.1)]

−> dataCorruption,
dataExfiltration

& dataCorruption [Exponential(0.1)]
& dataExfiltration [Exponential(0.1)]

sanitizeClientSideInput
−> sqlInjection ,

commandLineExecutionThroughSQLInjection,
bypassInputValidation

validateClientSideInput
−> bypassInputValidation

usePreparedStatement
−> sqlInjection ,

commandLineExecutionThroughSQLInjection
onDemandAccount

−> administrativeAccessToDatabase
}
asset RealTimeDatabase
{ | bypassInputValidation [Bernoulli(0.5)]

−> sqlInjection
| sqlInjection [Exponential(0.1)]

−> commandLineExecutionThroughSQLInjection
| commandLineExecutionThroughSQLInjection [Bernoulli(0.5)]

−> accessingLogsToCollectInformation
| accessingLogsToCollectInformation [Exponential(1)]

−> obtainValidAccount
& obtainValidAccount [Bernoulli(0.5)]

−> administrativeAccessToDatabase
| administrativeAccessToDatabase [Exponential(0.1)]

−> dataCorruption,
dataExfiltration

& dataCorruption [Exponential(0.1)]
& dataExfiltration [Exponential(0.1)]

106

sanitizeClientSideInput
−> sqlInjection ,

commandLineExecutionThroughSQLInjection,
bypassInputValidation

validateClientSideInput
−> bypassInputValidation

usePreparedStatement
−> sqlInjection ,

commandLineExecutionThroughSQLInjection
onDemandAccount

−> administrativeAccessToDatabase
}
asset BackupServer
{ | serverCompromise [Bernoulli(0.5)]

−> accessBackupFiles,
useDefaultCredentials

| accessBackupFiles [Bernoulli (0.5)]
−> obtainValidAccount

| useDefaultCredentials [Bernoulli (0.5)]
−> administrativeAccess

& obtainValidAccount [Bernoulli(0.5)]
−> administrativeAccess,

dataExfiltration
| administrativeAccess [Exponential(0.1)]

−> dataExfiltration
| dataExfiltration [Exponential(0.1)]
encryptStorageData

−> administrativeAccess
}
asset IccpServer extends Host
{ | serverCompromise [Bernoulli(0.5)]

−> remoteFileCopy,
remoteSystemDiscovery,
accessingLogsToCollectInformation

| remoteFileCopy [Bernoulli(0.5)]
−> obtainPasswordFromMemory

& remoteSystemDiscovery [Bernoulli(0.5)]
| accessingLogsToCollectInformation [Exponential(1)]

−> obtainValidAccount
& obtainValidAccount [Bernoulli(0.5)]

−> goToOtherSystemComponents
| goToOtherSystemComponents

−> appservers.serverCompromise
| obtainPasswordFromMemory [Bernoulli(0.5)]

−> obtainValidAccount

107

hardenProfile
−> appservers.serverCompromise

intrusionDetectionSystem
−> remoteSystemDiscovery

}
asset DataEngineeringServer extends Host
{ | serverCompromise [Bernoulli(0.5)]

−> remoteFileCopy,
accessLogs,
useDefaultCredentials

| remoteFileCopy [Bernoulli(0.5)]
| accessLogs
| useDefaultCredentials [Bernoulli (0.5)]
| obtainPasswordFromMemory [Bernoulli(0.5)]
| stealingPasswordsFromMemory [Bernoulli(0.5)]
| obtainValidAccount [Bernoulli(0.5)]

−> administrativeAccess
| administrativeAccess [Exponential(0.1)]
| accessingLogsToCollectInformation [Exponential(1)]
| serviceDiscovery [Exponential(1)]
| administrativeAccessToDEServer [Exponential(0.1)]
| dataExfiltration [Exponential(0.1)]
whitelistHosts

−> serviceDiscovery
onDemandAccount

−> administrativeAccessToDEServer
}
asset Product
{ | productInfection [Bernoulli (0.5)]

| productCorruption [Exponential(0.1)]
applyApplicationSecurityGuidelines

−> productInfection,
productCorruption

}
asset Alarm
{ | unbootAlarm [Bernoulli(0.5)]

| startAlarm [Bernoulli (0.5)]
}
asset HumanMachineInterface
{ | serverCompromise [Bernoulli(0.5)]

−> accessingLogsToCollectInformation,
manInTheMiddle

| accessingLogsToCollectInformation [Exponential(1)]
−> obtainValidAccount

& obtainValidAccount [Bernoulli(0.5)]

108

−> modifyAlarmSettings,
administrativeAccessToHMI

| modifyAlarmSettings [Exponential(0.1)]
−> audiblealarm.unbootAlarm,

audiblealarm.startAlarm
| manInTheMiddle [Exponential(1)]

−> modifyAlarmSettings,
remoteSystemDiscovery

& remoteSystemDiscovery [Bernoulli(0.5)]
−> appservers.serverCompromise,

directoryservice .serverCompromise
| administrativeAccessToHMI [Exponential(0.1)]

−> placeRansomware
| placeRansomware [Bernoulli(0.5)]
hardenProfile

−> placeRansomware
intrusionDetectionSystem

−> remoteSystemDiscovery,
manInTheMiddle

scheduleBackup
−> placeRansomware

malwareDetectionAndAntivirus
−> placeRansomware

onDemandAccount
−> administrativeAccessToHMI

}
asset AntivirusServer extends Host
{ | serverCompromise [Bernoulli(0.5)]

−> remoteFileCopy,
remoteSystemDiscovery,
accessingLogsToCollectInformation,
useDefaultCredentials

| remoteFileCopy [Bernoulli(0.5)]
−> obtainPasswordFromMemory

& remoteSystemDiscovery [Bernoulli(0.5)]
| useDefaultCredentials [Bernoulli (0.5)]

−> serviceStop,
administrativeAccess

& obtainValidAccount [Bernoulli(0.5)]
−> appservers.serverCompromise

& serviceStop [Bernoulli (0.5)]
| administrativeAccess [Exponential(0.1)]

−> manInTheMiddle,
modifyConfigurationOfAntivirusAgentsAndRepositories

| accessingLogsToCollectInformation [Exponential(1)]

109

−> serviceDiscovery,
obtainValidAccount

| serviceDiscovery [Exponential(1)]
−> manInTheMiddle,

serviceStop
& manInTheMiddle [Exponential(1)]

−> appservers.serverCompromise
| modifyConfigurationOfAntivirusAgentsAndRepositories [Exponential(0.1)]
| obtainPasswordFromMemory [Bernoulli(0.5)]

−> obtainValidAccount
| stealingPasswordsFromMemory [Bernoulli(0.5)]

}
asset CommunicationFrontend extends Host
{ | serverCompromise [Bernoulli(0.5)]

−> remoteFileCopy,
remoteSystemDiscovery,
accessingLogsToCollectInformation,
useDefaultCredentials,
rtus .remoteSystemDiscovery

| remoteFileCopy [Bernoulli(0.5)]
−> obtainPasswordFromMemory
& remoteSystemDiscovery [Bernoulli(0.5)]
| useDefaultCredentials [Bernoulli (0.5)]

−> serviceStop,
administrativeAccessToCommFrontend

& obtainValidAccount [Bernoulli(0.5)]
−> appservers.serverCompromise,

directoryservice .serverCompromise
& serviceStop [Bernoulli (0.5)]

−> shutDownCommFrontend
| accessingLogsToCollectInformation [Exponential(1)]

−> serviceDiscovery,
obtainValidAccount

| serviceDiscovery [Exponential(1)]
−> serviceStop,

obtainValidAccount
| administrativeAccessToCommFrontend [Exponential(0.1)]

−> shutDownCommFrontend
| shutDownCommFrontend [Exponential(0.1)]
| obtainPasswordFromMemory [Bernoulli(0.5)]
−> obtainValidAccount

onDemandAccount
−> administrativeAccessToCommFrontend

}
asset RemoteTerminalUnit

110

{ | remoteSystemDiscovery [Bernoulli(0.5)]
−> cfs .serverCompromise

}
}

associations{
DirectoryService [directoryservice] 1

<−−LinuxDirectoryServiceAccess−−> 1 [useraccount] UserAccount
DataEngineeringServer [dataeng] 1 <−−DataEngineeringAccess−−> 1

[serviceaccount] ServiceAccount
DirectoryService [directoryservice] 1

<−−WindowsDirectoryServiceAccess−−> 1 [administrator] AdminAccount
HumanMachineInterface [humanmachineinterfaces] ∗ <−−MMIAccess−−> 1

[appserveraccounts] AdminAccount
AppServer [appservers] 1 <−−AntivirusAccess−−> ∗ [antivirus]

AntivirusServer
AppServer [appservers] ∗ <−−AlarmAccessFromAppServer−−> 1

[audiblealarm] Alarm
CommunicationFrontend [cfs] 1 <−−DirectoryServiceAccess−−> 1

[directoryservice] DirectoryService
BackupServer [backupserver] 1 <−−BackupServerAccess−−> 1 [appservers]

AppServer
HumanMachineInterface [hmis] 1 <−−DirectoryServiceAccess−−> 1

[directoryservice] DirectoryService
AppServer [appservers] ∗ <−−AppServerAccess−−> ∗ [hmis]

HumanMachineInterface
HumanMachineInterface [hmis] ∗ <−−AlarmAccessFromMMI−−> 1

[audiblealarm] Alarm
Product [products] 1 <−−ProductAccess−−> 1 [appservers] AppServer
CommunicationFrontend [cfs] ∗ <−−RtuAccess−−> ∗ [rtus]

RemoteTerminalUnit
AppServer [appservers] ∗ <−−DatabaseAccess−−> ∗ [realtimedatabases]

RealTimeDatabase
AppServer [appservers] ∗ <−−DatabaseAccess−−> ∗ [postgredatabases]

PostgreDatabase
IccpServer [iccpserver] ∗ <−−AppServerAccess−−> ∗ [appservers]

AppServer
AppServer [appservers] ∗ <−−DatabaseAccess−−> ∗ [oracledatabases]

OracleDatabase
CommunicationFrontend [cfs] ∗ <−−RtuAccess−−> 1 [appservers] AppServer
Firewall [firewall] ∗ <−−SupportZoneAccess−−> ∗ [supportzone]

SupportZone
AppServer [appservers] 1 <−−AppServerAccess−−> 1 [supportzone]

SupportZone
Diod [diod] 1 <−−DiodAccess−−> 1 [demilitarizedzone] DemilitarizedZone

111

ProductionZone [lans] ∗ <−−NISServerAccess−−> ∗ [nisserver] NISServer
ProductionZone [lans] ∗ <−−NTPServerAccess−−> ∗ [ntpserver] NTPServer
Firewall [firewall] 1 <−−RouterAccess−−> 1 [router] Router
ProductionZone [lans] ∗ <−−DNSServerAccess−−> ∗ [dnsserver] DNSServer
Diod [diod] 1 <−−DiodAccess−−> 1 [productionzone] ProductionZone
Firewall [firewall] ∗ <−−ProductionZoneAccess−−> ∗ [productionzone]

ProductionZone
Diod [diod] 1 <−−DiodAccess−−> 1 [supportzone] SupportZone
ProductionZone [lans] ∗ <−−DirectoryServiceAccess−−> ∗

[directoryservice] DirectoryService
AppServer [appservers] 1 <−−AppServerAccess−−> 1 [productionzone]

ProductionZone
Firewall [firewall] ∗ <−−DemilitarizedZoneAccess−−> ∗ [demilitarizedzone]

DemilitarizedZone
AppServer [appservers] 1 <−−AppServerAccess−−> 1 [demilitarizedzone]

DemilitarizedZone
}

	Abstract
	Abstract (in Swedish)
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Goals of the Thesis Work
	1.4 Research Question
	1.5 Ethics and Sustainability
	1.6 Delimitation
	1.7 Structure of the Report

	2 Background
	2.1 SCADA Overview
	2.1.1 SCADA architecture overview
	2.1.2 SCADA security assessment
	2.1.3 SCADA communication protocols
	2.1.4 Security zones in SCADA

	2.2 Threat Modeling
	2.2.1 Taxonomy of threat modeling techniques
	2.2.2 CVSS score

	2.3 Meta Attack Language (MAL)
	2.3.1 MAL Syntax and Overview
	2.3.2 Testing at MAL
	2.3.3 Probabilistic model of MAL

	2.4 Related Works
	2.4.1 Model-driven security engineering and Domain-specific languages
	2.4.2 Threat modeling projects for SCADA

	3 Methodology
	3.1 Method
	3.2 Data Collection
	3.2.1 Assets and Layers selection
	3.2.2 Data Sources and Processing

	3.3 Risk Assessment Strategy Design
	3.4 Assessing the Reliability and Validity of DSL for Threat Modeling based on MAL

	4 Implementation of scadaLang
	4.1 Scope and Assumptions
	4.2 Assets and Categories
	4.2.1 Categories
	4.2.2 Domain Feature Matrix

	4.3 Actors
	4.4 Attacker Profiles
	4.5 Attacks
	4.5.1 Entry surface
	4.5.2 ICCP server (frontend and backend servers)
	4.5.3 RTU
	4.5.4 Communication front end
	4.5.5 HMI + Thin client
	4.5.6 Alarm
	4.5.7 App server
	4.5.8 Postgre and Oracle Database
	4.5.9 Real-time Database
	4.5.10 Antivirus Server
	4.5.11 Backup server
	4.5.12 Directory Service
	4.5.13 Product
	4.5.14 Other servers: DNS, NIS, NTP
	4.5.15 Data Engineering / new HMI server
	4.5.16 Accounts
	4.5.17 Firewall
	4.5.18 Zones
	4.5.19 Data diode
	4.5.20 Router

	4.6 Associations
	4.7 Potential Mitigation for SCADA
	4.7.1 ICCP server (frontend and backend servers)
	4.7.2 RTU
	4.7.3 Communication front end
	4.7.4 HMI + Thin client
	4.7.5 Alarm
	4.7.6 App server
	4.7.7 Databases
	4.7.8 Antivirus Server
	4.7.9 Backup server
	4.7.10 Directory Service
	4.7.11 Product
	4.7.12 Other servers: DNS, NIS, NTP
	4.7.13 Data Engineering / new HMI server
	4.7.14 Accounts
	4.7.15 Firewall
	4.7.16 Zones

	4.8 Risk Assessment
	4.8.1 ICCP server (frontend and backend servers)
	4.8.2 RTU
	4.8.3 Communication frontend
	4.8.4 HMI + Thin client
	4.8.5 App server
	4.8.6 Databases
	4.8.7 Antivirus Server
	4.8.8 Backup server
	4.8.9 Directory Service
	4.8.10 Product
	4.8.11 Data Engineering / new HMI server
	4.8.12 Accounts
	4.8.13 Firewall

	5 Creating a Threat Model for a SCADA Instance Using scadaLang
	5.1 System Assets
	5.2 Security Assets
	5.3 Communication Assets

	6 Results of Attack Simulations
	6.1 Loss of Availability
	6.2 Theft of Operational Information
	6.3 Loss of Control
	6.4 Loss of Safety

	7 Discussion, Limitations, and Future Work
	7.1 Discussion
	7.2 Limitations
	7.3 Future work

	8 Conclusions
	References
	A Overall Attack Graph
	B Example of Unit Testing a DSL Based on MAL
	C All attacks and Mapping MITRE Into Threat Modeling of SCADA
	D Code of scadaLang

