
Secure Lifecycle Management for
Internet of Things Devices

Tolgahan Akgün

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo, Finland 31.7.2020

Supervisors

Prof. Tuomas Aura, Aalto University
Prof. Danilo Gligoroski, NTNU

Advisors

Sandeep Tamrakar, D.Sc. (Tech.), Huawei Technologies
Philip Ginzboorg, D.Sc. (Tech.), Huawei Technologies

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333888682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c⃝ 2020 Tolgahan Akgün

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Tolgahan Akgün

Title Secure Lifecycle Management for Internet of Things Devices

Degree programme Master’s Programme in Security and Cloud Computing
(SECCLO)

Major Security and Cloud Computing Code of major SCI3084

Supervisors Prof. Tuomas Aura, Aalto University
Prof. Danilo Gligoroski, NTNU

Advisors Sandeep Tamrakar, D.Sc. (Tech.), Huawei Technologies
Philip Ginzboorg, D.Sc. (Tech.), Huawei Technologies

Date 31.7.2020 Number of pages 54 Language English

Abstract
In recent years, IoT devices have been adopted for various uses cases including for
home applications such as smart lighting and heating and cooling systems. The IoT
devices are simple and constrained devices. Usually, these simple devices are paired
with and managed by controller devices such as smartphones over home wireless
network. The pairing protocol along with the command and control protocols between
the IoT device and the smartphone are usually proprietary. Therefore, users are
required to install a dedicated application to access and control each brand and type
of device. LwM2M has been designed as an open standard to increase interoperability
between the simple devices from different ecosystems. It can be used to secure the
connection between the simple device and the controller. The LwM2M protocol uses
pre-shared keys, raw public keys, and X.509 certificates for authentication. However,
these authentication methods have some deployment and scalability problems, and
out-of-band authentication has been suggested as an alternative. This thesis project
aims to adapt the LwM2M protocol for secure device pairing and lifecycle management
for Internet of Things device in such a way that it can be used with out-of-band
authentication. A proof-of-concept prototype has been implemented with Raspberry
Pi 3 B+ as the simple device and an Android smartphone as the controller.

Keywords IoT security, Out-of-band, Authentication, QR code, OMA LwM2M

4

Preface
I want to thank Professor Tuomas Aura, Professor Danilo Gligoroski and my instruc-
tors Sandeep Tamrakar and Philip Ginzboorg.

Otaniemi, 31.7.2020

Tolgahan Akgün

5

Contents
Abstract 3

Preface 4

Contents 5

Abbreviations and Acronyms 7

1 Introduction 9

2 Background 13
2.1 Internet Standards . 13

2.1.1 Constrained Application Protocol 13
2.1.2 Lightweight Machine-to-Machine 13
2.1.3 Datagram Transport Layer Security 15

2.2 Industry Solutions . 17
2.2.1 Apple HomeKit . 17
2.2.2 Xiaomi IoT Cloud . 18
2.2.3 Samsung SmartThings . 18

2.3 QR Code . 20

3 System Description 21
3.1 Lifecycle of IoT Devices . 21
3.2 Lifecycle Procedures . 21

3.2.1 Manufacturing Procedures . 21
3.2.2 Bootstrap Procedures . 22
3.2.3 Factory Reset Procedures . 22

3.3 Architecture . 23
3.3.1 Entities . 23
3.3.2 Interfaces . 23

3.4 Types of Credentials . 24
3.4.1 Bootstrap Credentials . 24
3.4.2 Operational Credentials . 25

3.5 Adaptation of LwM2M . 25
3.6 Security . 28

4 Implementation Details 30
4.1 Platform Description . 34

4.1.1 Raspberry Pi . 34
4.1.2 DTLS Library . 35
4.1.3 WiringPi . 35

4.2 Software Architecture and Components 36
4.3 Design of Out-of-Band Channel Message 38
4.4 Results . 40

6

5 Discussion and Analysis 42
5.1 One-way vs. Two-way OOB . 42
5.2 Denial of Service Attacks . 42
5.3 Data Storage . 43
5.4 Key Length . 44
5.5 Random Number Generation . 44
5.6 Code Size . 45
5.7 Hash Length . 47
5.8 Discussion . 48
5.9 Limitations . 49
5.10 Future Work . 49

6 Conclusion 50

References 51

7

Abbreviations and Acronyms

AES Advanced Encryption Standard
API Application Programming Interface
ASCII American Standard Code for Information Interchange
CoAP Constrained Application Protocol
CRUD Create, Read, Update and Delete
DDoS Distributed Denial of Service
DER Distinguished Encoding Rules
DoS Denial of Service
DSA Digital Signature Algorithm
DTLS Datagram Transport Layer Security
DVR Digital Video Recorder
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDHE Elliptic Curve Diffie-Hellman Ephemeral
ECDSA Elliptic Curve Digital Signature Algorithm
EdDSA Edwards-Curve Digital Signature Algorithm
FreeRTOS Free Real-time Operating System
GPIO General Purpose Input/Output
HAP HomeKit Accessory Protocol
HTTP Hypertext Transfer Protocol
ID Identity
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
IPSec Internet Protocol Security
LED Light Emitting Diode
LoRaWAN Long Range Wide Area Network
LwM2M Lightweight Machine-to-Machine
M2M Machine-to-Machine
mDNS Multicast Domain Name System
MFi Made for iPhone/iPod/iPad
MitM Man-in-the-middle
NAT Network Address Translation
NFC Near Field Communication
NIST National Institute of Standards and Technology
OMA Open Mobile Alliance
OOB Out-of-band
OS Operating System
PEM Privacy Enhanced Mail
PKI Public Key Infrastructure
PoC Proof-of-Concept
PSK Pre-shared Key

8

PWM Pulse Width Modulation
QR Code Quick Response Code
RAM Random Access Memory
REST Representational State Transfer
RFC Request for Comments
RFID Radio-frequency Identification
ROM Read-only Memory
RPK Raw Public Key
RSA Rivest-Shamir-Adleman (cryptosystem)
SD Card Secure Digital Card
SHA Secure Hash Algorithm
SMS Short Messaging Service
SoC System on a Chip
SRP Secure Remote Password
SSH Secure Shell
SSID Service Set Identifier
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
USB Universal Serial Bus
VPN Virtual Private Network
WiFi Wireless Fidelity
WLAN Wireless Local Area Network
WPA2 Wi-Fi Protected Access 2

1 Introduction
The Internet of Things (IoT) is a network of devices that can communicate without
the need of a human intervention. The IoT term was first introduced by Kevin
Ashton in 1999 [1]. In the early stages, the use of IoT was limited to Radio-Frequency
Identification (RFID) to manage supply chains. Later, the IoT concept evolved to
include other kinds of connected devices like wearables, home appliances, various
sensors and lighting.

There is a high variation in the IoT devices capabilities, technologies, and quality
of implementation, which means that there is also a high variation in their security
level. Also, the number of IoT devices has been increasing rapidly, and this increase
is predicted to continue. According to a survey by Ericsson, the total number of
IoT devices is expected to increase on the average at the rate of 15 % annually [2]
between 2019 and 2025, from 10.8 billion to 24.9 billion devices.

The growing use of IoT devices worldwide increases the risks of breaches of privacy
and data security. This, in turn, implies that there is higher potential for attacks
involving IoT devices [3]. The threat is that systems containing IoT devices may be
vulnerable to attacks via those devices when the connected “things” are exploited by
attackers. As one example, in August 2016, the Mirai botnet consisting of webcams,
Digital Video Recorders (DVRs) and routers was used to launch a Distributed Denial
of Service (DDoS) attacks on popular web sites including Twitter, Netflix, Reddit,
and GitHub [4]. According to a survey by F-Secure, the number of attack events
measured from January through June 2019 was twelve times higher when compared
with the same period in 2018, and they claimed that this increase was largely driven
by IoT-related traffic [5].

IoT devices can be classified based on their capabilities. For example, in RFC 7228
[6] they are categorized based on the amount of random access memory (RAM) and
code size, as shown in Table 2.

Classification Data Size (e.g., RAM) Code Size (e.g., Flash)
Class 0, C0 <<10 kB <<100 kB
Class 1, C1 ∼10 kB ∼100 kB
Class 2, C2 ∼50 kB ∼250 kB

Table 2: Classification of IoT devices based on memory size [6].

Let us consider the impact of the memory size on the IoT device’s connectivity.
Devices in Class 0 (less than 10 kB of RAM and less then 100 kB of Flash) have
severe constraints for the ability to communicate securely. These devices are typically
are pre-configured and connected to proxies or gateways rather than directly to the
internet [6].

It is challenging to employ a full protocol stack that includes protocols like Hypertext
Transfer Protocol (HTTP) and Transport Layer Security (TLS) on the top of Trans-

10

mission Control Protocol (TCP) in devices of Class 1 (about 10 kB of RAM and about
100 kB of Flash) due to the memory and RAM space. However, those devices can
use more lightweight protocols like Constrained Application Protocol (CoAP) and
Datagram Transport Layer Security (DTLS) on the top of User Datagram Protocol
(UDP). The code base and and processing requirements of the software have to be
quite constrained [6].

Devices in Class 2 (about 50 kB of RAM and about 250 kB of Flash) can perform
on a par with mobiles phones or notebooks in supporting most security protocols.
However, the protocol implementations have to be lightweight and energy-efficient.
Class 2 devices can be used to control and provide connectivity to the less capable
Class 0 and 1 devices [6].

Device lifecycle management is a set of integrated steps which defines the entire
lifecycle of a product including design, manufacturing, deploying, updating and
disposing [7]. The management of IoT devices during their lifecycle is one of the key
issues in the IoT network. One way to solve this issue is to design a custom-made
set of protocols. This approach enables making a coherent, “turn-key” solution that
fits well with the designer’s needs. However, it leads to a closed, tightly-controlled
IoT ecosystem. Apple HomeKit Accessory Protocol (HAP) [8] is an example of this
approach. Section 2.2.1 describes HAP in more details.

Another way of solving this issue is adapting a set of standard protocols while aiming
to change them as little as possible. The potential advantage of this approach is
that it saves design and implementation time and enables an open IoT ecosystem.
Specifically, this work has adapted the Lightweight Machine to Machine (LwM2M)
specifications by Open Mobile Alliance [9] for the management of IoT devices in the
consumer’s home. In this case, the IoT device is part of the home Wireless Fidelity
(WiFi) network and it is controlled via the smartphone of the user. (See Figure 1).

Figure 1: IoT devices in home WiFi network.

11

The LwM2M specifies an architecture, illustrated in Figure 2, which includes a client,
IoT device, and two servers: LwM2M Bootstrap Server for setting up the client, and
LwM2M Server for controlling and communicating with the client after the initial
setup.

Figure 2: LwM2M entities.

LwM2M also defines an extensive library of application-level abstractions, called
Objects, for managing and controlling resources in IoT devices using the Constrained
Application Protocol (CoAP). CoAP has been designed for constrained devices by
Internet Engineering Task Force (IETF) [10]. This thesis conceives the configuration
shown in Figure 3, where CoAP runs on top of DTLS and UDP in the user’s home
WiFi network.

Figure 3: The protocol stack in our proof-of-concept implementation.

Our adaptations of LwM2M include (i) porting of the LwM2M Servers to a smart-
phone, and (ii) changing the initial setup of the IoT device (bootstrap in LwM2M
terminology) so that it fits to the home use case.

A proof-of-concept prototype has been implemented on Raspberry Pi as the LwM2M
Client and Android smartphone as the LwM2M Bootstrap Server and LwM2M
Server to demonstrate the proposed approach. This thesis focuses on the lifecycle
management of IoT device. The implementation of the LwM2M Servers in the
Android smartphone is a subject of another master’s thesis that was written in the
same project [11].

12

The rest of this thesis is organized as follows. Section II describes the background and
existing solutions related to this work. Section III presents the system description of
our LwM2M adaptation and an overview of the proof-of-concept prototype imple-
mentation. Section IV contains additional details of the implementation. Section
V discusses several aspects of the proposed system based on the findings during its
design and implementation.

13

2 Background

2.1 Internet Standards
2.1.1 Constrained Application Protocol

Constrained Application Protocol (CoAP) is an application layer protocol designed
for constrained devices. It was introduced in RFC 7252 [10] by IETF in 2014. The
protocol provides a RESTful interface for constrained devices. It adopts HTTP-like
Representational State Transfer (REST) design with a compact binary representation,
which is easy to parse for constrained devices. It supports the create, read, update,
delete (CRUD) operations like HTTP [10]. Therefore, CoAP messages can easily
be translated into HTTP requests, which makes it easier to integrate with web
applications.

The protocol targets simple devices, and it is possible to implement it with 8.5 kB of
memory and 1.5 kB of RAM [12]. One CoAP message can be as small as 4 bytes.
Thus, the simple design and simple message structure provide low bandwidth usage
and low implementation complexity. CoAP carries messages between constrained
devices and machine-to-machine (M2M) applications over lossy networks. HTTP
cannot work efficiently on the datagram protocols [13]; however, CoAP can work
efficiently on top of several transport protocols like UDP and Short Message Service
(SMS) (it also supports other protocols, see Figure 4). The support for different
datagram protocols makes it possible to use CoAP for one-to-many and many-to-one
communication. LwM2M employs CoAP to transmit messages between LwM2M
nodes. CoAP itself does not provide security. Instead, it uses DTLS or lower layer
security protocols, such as Virtual Private Network (VPN) and Internet Protocol
Security (IPSec), to secure the communication.

2.1.2 Lightweight Machine-to-Machine

The Lightweight machine-to-machine (LwM2M) protocol was introduced in 2017 by
Open Mobile Alliance (OMA). It was designed to suit the needs of constrained IoT
devices. Management and control of a device are integrated into one protocol. It
supports remote control, firmware upgrade, certificate provisioning, access control
policy and other functionality that is needed to manage an IoT device throughout
its lifecycle.

The LwM2M protocol can run on top of different communication technologies like
TCP, UDP, and Non-IP protocols like Low Power Wide Area Network (LoRaWAN).
The support of different transport protocols makes LwM2M flexible and inter-operable
with other systems. Figure 4 shows the supported protocols in different layers of the
protocol stack.

LwM2M employs CoAP for exchanging data between the IoT devices, LwM2M Server
and LwM2M Bootstrap Server [9]. CoAP can be regarded as a binary and lightweight
version of HTTP, which is designed for constrained devices [14]. The CoAP protocol
was designed specifically for IoT devices [10], since HTTP is not suitable due to the

14

long messages and complex parsing logic. A CoAP message can be as small as 4
bytes (details on CoAP in Section 2.1.1). CoAP itself does not provide message
security; however, the CoAP messages can be protected using transport layer security
such as TLS or DTLS or an application layer security such as Object Security for
Constrained RESTful Environments (OSCORE) protocol [10, 15].

Figure 4: LwM2M protocol stack, adapted from [9].

Figure 5: LwM2M objects, adapted from [16].

LwM2M defines application-level abstractions, which are called LwM2M Objects.
Figure 5 shows the LwM2M Object Model. An LwM2M Object is a collection of
individual resource definitions, each of which refers to a piece of information or
system component like temperature value and battery level. Figure 6 shows an
example LwM2M Location Object. The LwM2M Servers are allowed to read, write
and execute the resources. However, the permissions for these operations are defined
by the LwM2M Access Control Object which is set during the bootstrap.

The role of the LwM2M Server is to manage and control LwM2M Clients, and the
role of the LwM2M Bootstrap Server is to provision the LwM2M Clients with the
required credentials and connectivity information for the LwM2M Server. Typically,
the credential is an LwM2M Server account for LwM2M Client, which might be
in form of a pre-shared key (PSK), raw public key (RPK) and X.509 certificate.
This provisioning step is called bootstrap. LwM2M supports four different types of
bootstrap: factory bootstrap, bootstrap from smartcard, client initiated bootstrap,
and server initiated bootstrap.

Factory Bootstrap: During manufacturing in the factory, the LwM2M Clients are
provisioned with the required configuration such as a certificate, PSK and LwM2M
Server connectivity information.

15

Figure 6: An example LwM2M Location Object, adapted from [16].

Bootstrap from Smartcard: If the device supports smartcard, then the bootstrap
information is received from the smartcard. In case of smartcard removal and
disablement, the bootstrap information is deleted from the client.

Client Initiated Bootstrap: The LwM2M Client initiates a connection to the LwM2M
Bootstrap Server and retrieves the required credentials and connectivity information
for the LwM2M Server. This mode requires the LwM2M Client to have a preloaded
LwM2M Bootstrap Server Account in the device. The system that is designed in
this thesis is based on the Client Initiated Bootstrap.

Server Initiated Bootstrap: A registered LwM2M Client can trigger server initiated
bootstrap operations. For server initiated bootstrap, there already must be a connec-
tion between the LwM2M Client and Server to enter this mode.

2.1.3 Datagram Transport Layer Security

Datagram Transport Layer Security (DTLS) is a secure data transfer protocol which
is used to protect data over datagram protocols (typically UDP). It provides an
authenticated, confidentiality and integrity protected communication channel [17].
DTLS is an adaptation of TLS to provide same level of security for stateless connection
protocols such as UDP [18]. DTLS 1.0 was introduced in RFC 4347 [19] by IETF in
2006. Then, it was superseded by DTLS 1.2 in RFC 6347 [18] in 2012. As of July
2020, DTLS 1.3 is still in draft [20]. The proof-of-concept (PoC) prototype that is
implemented in this thesis uses DTLS 1.2.

DTLS is designed to work over unreliable transport channels, unlike TLS. TCP is
slow due to its connection-oriented architecture. When data transfer speed is more
important than reliability, or the protocol needs to be lightweight, DTLS is typically
preferred over TLS. TLS cannot tolerate data loss and arrival of out of sequence data
packages. Therefore, DTLS is preferred over TLS for IoT applications since it is less
resource-intensive and does not need a large buffer to hold packages for reordering.

16

DTLS mainly adapts the TLS to solve the aforementioned limitations for stateless
connection protocols while providing the level of security. Figure 7 shows the details
of the DTLS handshake. It is important to comprehend the DTLS handshake to
understand the proposed system in this work. This work extends the part of the
handshake which authenticates the client. Section 3.5 explains this extension in
detail.

Due to the connectionless architecture of UDP, DTLS is vulnerable to DDoS attacks
[21]. Therefore, DTLS tries to mitigate the possible threats using cookie. The cookie
should be generated from the connection parameters, such as client IP (Internet
Protocol) address and port, and with a pre-defined random value. The DTLS
handshake and cookie usage are as follows:

1. The client sends ClientHello message to the DTLS server to initiate a DTLS
connection.

2. The server responds with a HelloVerifyRequest message, which contains a
cookie in such a way that it can be verified without any per-client state on
the server [18]. The cookie may be the hash of the concatenated string of the
client IP address, port, and a pre-defined random value. The random value
must be secret, and the client must not know it.

3. After the client gets the HelloVerifyRequest message, it resend the ClientHello
message with the cookie. The DTLS server should not allocate any resource
before getting a ClientHello message with a valid cookie.

4. After getting the valid ClientHello message, the server sends ServerHello,
ServerKeyExchange, CertificateRequest and ServerHelloDone messages.

5. The client sends Certificate, ClientExchange, CertificateVerify, ChangeCipher-
Spec and Finished messages. The client sends the Certificate message if the
server asks for the client certificate with CertificateRequest message.

6. The server sends ChangeCipherSpec and Finished messages, and the connection
is established between the client and server.

This cookie mechanism mitigates the denial of service attacks and amplification
attacks because the ClientHello message is longer then the HelloVerifyRequest only
as the size of the cookie.

The messages marked with * in Figure 7 are optional, and they depend on the
server’s credentials. The CertificateRequest message is sent to client in order to ask
for the client certificate. When the client gets this message, it replies with the client
certificate. Later, the client certificate is used to authenticate the client. DTLS
supports mutual authentication. However, usually only the server is authenticated.
In the system that is designed in this thesis, we only authenticate the client based
on its certificate and the out-of-band (OOB) channel message. The messages in the
handshake have to be received and delivered in order. DTLS can handle messages
which arrive out of sequence after the handshake is completed [18].

17

Figure 7: DTLS handshake steps in DTLS 1.2 [22].

2.2 Industry Solutions
2.2.1 Apple HomeKit

Apple HomeKit is a platform which enables smart home devices to be connected and
control from iOS and macOS devices. It provides appliance manufacturers a platform
to design and produce HomeKit-enabled devices. In a home with HomeKit, the
smart devices can communicate with each other easily. The devices can be collected
under a group so that devices can be controlled together in each room or in the entire
house [23].

Apple HomeKit primarily uses a proprietary MFi (made for iPhone/iPod/iPad)
authentication co-processor to authenticate the devices. The authentication co-
processor allows the device to work within HomeKit framework. The authentication
co-processor contains a cryptographic proof (a key-pair and a certificate) which can
be used as a mechanism to prove that the device is a licensed device approved by
Apple to be used with Apple devices. An accessory manufacturer that wishes their
devices to work with HomeKit must obtain the MFi certification process. Also, Apple
started to support authentication without the co-processor after iOS 11.3 release.

The HomeKit devices are paired with an iOS device which acts as the admin controller.
The pairing procedure relies on OOB channel data transfer of an 8-digit pass-code.
Along with the OOB channel, also the authentication co-processor is used depending
on the device certification. The OOB channel exists in 2 forms: scanning a QR
code on the device and transferring the 8-digit code manually from the device to the
admin controller. After the OOB channel data transfer, the devices executes the

18

Secure Remote Password (SRP) protocol. Both of the devices derive long term keys
and they exchanges the keys with key exchange protocols. Then, the devices uses
the long term keys to authenticate each other and generate session keys.

Apple HomeKit is a closed and tightly-controller ecosystem. Also, it is not an open
standard like LwM2M. Thus, Apple HomeKit is not reviewed by researchers as
rigorously as open standards.

2.2.2 Xiaomi IoT Cloud

Xiaomi IoT Cloud is an ecosystem which consists of an IoT cloud system, a gateway
device, and connected IoT devices attached to the gateway. The gateway provides
a connection between the devices which do not support WiFi and the IoT cloud
system. Usually, the devices which support Zigbee are connected to the gateway,
and the gateway is connected over WiFi and the internet to Xiaomi Cloud. Other
devices which support WiFi are directly connected to Xiaomi Cloud over WiFi and
the internet. The connected devices are controlled with a smartphone [24]. Figure 8
shows the Xiaomi IoT Ecosystem.

Each Xiaomi IoT device is equipped with a unique Id and 128-bit Advanced Encryption
Standard (AES) key [24]. The key is static, and it is not updated or provisioned
during pairing. Initially, IoT devices which support WiFi are paired with the phone
as shown with dashed lines in Figure 8. During the pairing process, each device is
provisioned with a unique token, and it is used to authenticate the device to the cloud.
After the pairing, the devices establish a connection to the cloud or to the gateway
device depending on their wireless protocol support. Then, the controller device
sends the command and control messages over the internet to the cloud services.
Hence, the messages are passed through the cloud. The controller provisions required
connectivity information and credentials. Then, the controller devices sends only
control messages to the IoT devices through the cloud.

In 2018, several security vulnerabilities were found on some Xiaomi IoT devices by
Dennis Giese, such as data residual after factory reset and poorly generated 256-bit
encryption keys which have much less than 256-bit entropy [24]. If the credentials
are not generated properly, it may cause the system to be vulnerable to brute force
attacks. The credentials must be generated with high entropy as described in Section
3.2.1 to mitigate such vulnerabilities.

2.2.3 Samsung SmartThings

The SmartThings platform was initially introduced as an open-source platform in
2012 [25]. Later, the company which owns the SmartThings platform was acquired
by Samsung, and the platform has evolved to a vendor-based model. The platform
connects IoT devices through a hub device (also called home controller or gateway),
which is controlled by client and cloud applications [26].

The smart devices are paired with the hub device, which supports communication
protocols such as Zigbee, Z-Wave and Bluetooth. The connection between Z-Wave

19

Figure 8: Xiaomi IoT Ecosystem, adapted from [24].

smart devices and the hub are secured by 128-bit AES encryption [27]. During
the pairing, Z-Wave uses the Elliptic Curve Diffie-Hellman (ECDH) key exchange
algorithm. The public keys of the smart devices are verified over an OOB channel.
The OOB channel can be either scanning a QR code on the device or typing the first
5 digits of the decoded text in the QR code. The first digits of the QR code message
are obfuscated during the wireless transmission. This mitigates the possibility for
man-in-the-middle impersonation of devices during the pairing process. An example
QR code is shown in Figure 9. The encoded text is: 34028-23669-20938-46346-33746-
07431-56821-14553. The text includes 40 digits, which represent 128-bits of data.
The underlined first 5 digits are used for manual typing. In this pairing system,
the manual typing is less secure compared to the QR code scanning, because the
verification of the device public key is based on a 5 digit number instead of a 40 digit
number.

Figure 9: Example QR code for SmartThings.

20

2.3 QR Code
Quick Response code (QR code) is a 2-dimensional data matrix that encodes text
and binary data. QR code was invented in Japan in 1994 to track automobile parts
[28]. They have become popular also outside the automotive industry due to fast
readability, low production cost, and greater storage capacity compared to standard
barcodes. Nowadays, they are widely adopted and deployed for various purposes,
such as advertisements, mobile payment and access control [28, 29].

A QR code consists of black squares arranged in a square grid on a white background
which can be read by an imaging device like a camera. The encoded data is then
extracted from patterns that are present in both horizontal and vertical components
of the image [28]. A QR code can encode data up to 4296 alphanumeric characters
[28].

QR codes support several error correction ratios. The supported error correction
ratios are 7%, 15%, 25% and 30% [28]. Roughly speaking, a QR code which is created
with 7% error correction ratio can be read even if 7% of its area is damaged. The
bigger error correction ration means the bigger QR code size.

QR codes are vulnerable to modification and replacement attacks. Slight modifications
on the QR codes can go unnoticed by humans since QR codes are not a human-
readable format. Furthermore, an attacker can replace a legitimate QR code with a
malicious one or paste the malicious one over the legitimate one [29]. This attack is
easy to perform if the QR code is deployed in a form that is easy to remove such as
a sticker. Krombholz et al. [29] proposed digital signatures to mitigate these attacks.
While reading the QR code, the digital signature is also read. Then, this signature
can be verified by trusted root certificates. However, this will increase the size of
the QR codes due to the overhead of the signature, and it would require each QR
code to be signed by a certificate authority. Note that the signature in the QR code
mitigates only modification attacks. An attacker can still replace a signed QR code
with another QR code with a valid signature.

21

3 System Description

3.1 Lifecycle of IoT Devices
This section describes the target system. This section is based on Huawei internal
document [30].

The lifecycle of IoT device can be thought of having two modes: factory mode and
operational mode, as Figure 10 shows. In the lifecycle, there are procedures that
change the mode of the simple device: manufacturing, bootstrap, and factory reset
procedures. The procedures are explained in Section 3.2

Factory mode: In the factory, the manufacturer builds the device. Then, the device
manufacturer injects initial bootstrap credentials and trust anchors (see Section 3.4)
for verifying peers into the simple device. The simple device starts its lifecycle in
the factory mode when it leaves the factory. In this mode, the device is ready to be
taken into use via the bootstrap procedures.

Operational mode: A simple device in the operational mode connects and communi-
cates with a controller securely using operational credentials (see Section 3.4). Once
the simple device is in the operational mode, it can be controlled by the controller
device. The simple device continues to remain in this mode unless the factory reset
procedure is triggered.

Figure 10: Lifecycle modes of a simple device.

3.2 Lifecycle Procedures
3.2.1 Manufacturing Procedures

During the manufacturing process, bootstrap credentials may be injected in the
simple device. The bootstrap credentials may be a shared key with an identifier, or a
device certificate and a corresponding key pair. The bootstrap credentials may also
include metadata such as how to discover the device for bootstrapping.

The process to generate these credentials and the process to inject them on simple
devices must be secured to prevent credential leakage. For example, a 128-bit
encryption key must have 128-bits of entropy. The key should not be generated

22

by hashing a low-entropy alphanumeric text. The injection phase may also include
additional steps where a reference to the bootstrap credentials is made available. For
instance, this may be a QR code containing a hash of the device certificate, or the
shared key may be printed in an additional leaflet to be included in the packaging.

The process of injecting bootstrap credentials are specific to manufacturers. Therefore,
it is not further discussed in this thesis.

3.2.2 Bootstrap Procedures

The bootstrap procedure involves interaction between the simple device and the
controller device. In this procedure, the controller device provisions operational
credentials to the simple device. The operational credentials are used by the simple
device to authenticate itself to other simple devices and the controller.

Trust roots are used by the simple device to authenticate other simple devices and
the controller device. The operational credentials contain either an asymmetric key
pair and a certificate, creating a binding between the public key and the simple
device identity, or a symmetric key and key identifier. Either of the key types can
be generated in the simple device, or they may be generated by the controller and
transferred to the simple device during the bootstrap procedures. If the key is an
asymmetric key pair, a certificate is issued to the public key of the key pair by
the controller. The certificates issued to devices and trust roots together form an
end-user specific public key infrastructure (PKI), in which the end user’s devices
can authenticate each other. If the key is a symmetric key, a unique key identifier is
created by the controller.

The bootstrap procedures consist of three phases:

Out-of-band phase: Simple-device specific data is transferred to the controller via an
out-of-band channel. The transferred data is used in the discovery and bootstrap
phase. The structure of the OOB channel message is explained in Section 4.3.

Discovery phase: The controller discovers the simple device and then connects to it.

Bootstrap phase: The controller performs the bootstrap procedures over a secure
channel, including the provisioning of the operational credentials, which has been
established after the discovery phase.

3.2.3 Factory Reset Procedures

The factory reset procedure returns the simple device from the operational mode
back to the factory mode. This procedure wipes all the operational credentials and
operational data stored on the simple device. The bootstrap credentials that were
injected during the manufacturing process are retained since these credentials are
required for bootstrap procedures when the device is reused. The factory reset can
be triggered by a button on the device or remotely via controller.

23

3.3 Architecture
Figure 11 shows an overview of the system. The designed system consists of two
main parts: simple device and controller. This thesis focuses on the simple device
part of the system. The details of the controller part are the subject of another
master thesis that was done parallelly in the same project [11]. The controller details
is the topic of another master’s thesis [11] in the same project. The controller and
simple device presents three interfaces: bootstrap, management, and usage.

The controller device have three entities that are responsible for carrying out the
procedures: bootstrap, management, and usage. Note that it is not necessary that
all 3 entities reside in the same physical device. The controller entities could be
distributed to different locations. For example, the Bootstrap Entity could be in
a smartphone, while the management and usage entities are in a remote server.
However, the communication and coordination between the distributed entities of
the controller are not in the scope of this thesis.

Figure 11: Overview of the system [30].

3.3.1 Entities

Bootstrap Entity: This entity is responsible for the bootstrap procedures of the simple
device in the controller when the device is in the factory mode. It uses the bootstrap
interface and an OOB channel communication.

Management Entity: This entity uses the management interface to control the simple
device when the device is in the operational mode.

Usage Entity: This entity accesses the services offered by the simple device when the
device is in the operational mode via the usage interface.

3.3.2 Interfaces

Bootstrap interface: It is used to provision the simple device with operational creden-
tials and trust roots (e.g., list of root certificates, or shared keys). The operational

24

credentials are used by third parties (controller devices and other devices) to authen-
ticate the simple device, and trust roots are used by the simple device to authenticate
the third parties. The third-party entities are the controller entities. The bootstrap
procedure can be initiated by the simple device if the simple device is in the factory
mode. Upon successful completion of the bootstrap procedure, the simple device
switches to the operational mode.

Out-of-band interface: It is used to provide an additional authentication mechanism
to increase the security of the bootstrap interface. It can also be used to enhance
the discovery mechanism between the simple device and the Bootstrap Entity before
the execution of the bootstrap procedure.

Management interface: It is used to manage the simple device. The management
procedures may include the possibility to add, change, and remove operational
credentials and trust roots. The management procedures may also include the
possibility to initiate the factory reset procedure. Management procedures can be
performed with the simple device if the simple device is in the operational mode.

Usage interface: It is used to use and operate the simple device. The user operations
include any operations that are associated with the features of the simple device.
User operations can be performed with a simple device if the simple device is in the
operational mode.

3.4 Types of Credentials
3.4.1 Bootstrap Credentials

The simple device is provisioned with bootstrap credentials during the manufacturing
of the device. The bootstrap credentials are simple-device specific and should be
unique. The bootstrap credentials can be used during the bootstrap procedure to
increase the security of the bootstrap procedure. The bootstrap credentials can be
the following:

Symmetric key: A symmetric key is typically conveyed to the controller device via
out-of-band means to provide the authentication of the simple device.

Asymmetric key pair: The hash of an asymmetric key pair’s public key is typically
conveyed to the controller device via out-of-band means to provide the authentication
of the simple device. The asymmetric key might be a raw public key (RPK).

Asymmetric key pair and device certificate: The information may be conveyed to the
controller device via out-of-band means to provide the authentication of the simple
device. The device certificate provides additional means to authenticate the device
remotely, and it can also be used to provide other services like attestations. The
device certificate might be X.509 certificate.

25

3.4.2 Operational Credentials

The operational credentials are provisioned to the simple device during the bootstrap
procedure. The operational credentials may include but are not limited to:

Asymmetric key pair: The asymmetric key pair is used by the simple device to
authenticate itself to another device. The asymmetric key pair is generated during
the bootstrap procedure either by the simple device or the controller. In the former
case, the simple device requests a certificate for the key pair generated by the device
from the controller device, and in the latter case, the key pair is transferred to the
simple device during the bootstrap procedure together with the certificate for that
key pair.

Certificate: The certificate is used to bind an identity assigned by the controller to
the asymmetric key pair of the operational credentials. The certificate is issued by
the controller device which is capable of issuing certificates for simple devices. The
certificate can be generated by a user-specific certification authority, or it can be
generated as a self-signed certificate by the controller. The certificate is used together
with the asymmetric key pair in any PKI-capable protocol such as DTLS and TLS.

Symmetric key: The symmetric key pair is used by the simple device and another
device either directly or indirectly to authenticate the simple device to the other
device. The symmetric key is generated during the bootstrap procedure either by
the simple device or the controller. Both the simple device and the controller store
securely the symmetric key and associate it with the key identifier.

Key identifier: The key identifier is used to identify a symmetric key. The key
identifier is created during the bootstrap procedure by the controller. The controller
must assign a unique key identifier to each generated symmetric key value.

Trust roots: The trust roots are used as roots of trust for any certificate validation
process, i.e., they are used to authenticate other devices and entities in any PKI-
capable protocol. Trust roots can also be used to authenticate other devices and
entities using a shared symmetric key. In this case, the trust roots contain a list of
<symmetric key, key identifier> pairs of other devices.

3.5 Adaptation of LwM2M
The LwM2M specification requires that the LwM2M Client is authenticated to the
LwM2M Server and LwM2M Bootstrap Server. This can be accomplished with a
pre-shared key or public key infrastructure. However, in the cases where a PKI does
not exist, authentication is a major problem. Furthermore, PKI helps the controller
to authenticate the simple device; however, it does not help the controller to uniquely
identify a simple device. Also, the controller device needs metadata to discover
the simple device during the bootstrap. Therefore, this thesis proposes the use of
OOB channel communication to transfer the metadata to enable the discovery of the
simple device by the controller and information about the simple device credentials
to uniquely identify each simple device. To transfer this information, this thesis

26

proposes the use of QR code scanning as the OOB channel communication. LwM2M
bootstrap sequence was modified to include the OOB communication.

Figure 12 shows the bootstrap steps for a standard LwM2M Client and LwM2M
Bootstrap Server. The steps are as follows:

1. The LwM2M Client initiates a DTLS connection to the LwM2M Bootstrap
Server.

2. The LwM2M Bootstrap Server authenticates the LwM2M Client during the
DTLS channel establishment based on the credentials of the LwM2M Client.
The credential might be a PSK, an RPK, or an X.509 certificate.

3. The LwM2M Client initiates the bootstrap sequence.

4. The LwM2M Bootstrap Server sends the LwM2M Server Object and LwM2M
Security Object to the LwM2M Client. Other objects such as WLAN Connec-
tivity information can optionally be sent if the LwM2M Client needs them.
The LwM2M Bootstrap Server can determine whether the client needs the
extra information by checking the device type and in-band channel type. The
device and in-band channel type are indicated in the OOB channel message
(see Section 4.3).

5. The LwM2M Bootstrap Server sends the Bootstrap-Finish message.

6. After completing the bootstrap, the client closes the LwM2M Bootstrap Server
connection. Then, the client initiates a new DTLS connection to the LwM2M
Server with the credentials and the connection information in the LwM2M
Server Object which received during the bootstrap. Then, the LwM2M Client
registers to the LwM2M Server.

In the proposed adaption in this thesis, simple device takes the role of LwM2M
Client, and the controller (Bootstrap Entity) takes the role of LwM2M Bootstrap
Server. In the adaption, the bootstrap steps are as follows:

1. The LwM2M Client opens a wireless access point.

2. The controller scans the QR code on the simple device and then connects to
the wireless access point which is hosted by the simple device.

3. The LwM2M Client initiates a DTLS connection to the LwM2M Bootstrap
Server when the controller device connects to the access point. The access point
will probably have a Dynamic Host Configuration Protocol (DHCP) server;
thus, the connection can be triggered by an IP lease trigger. The DHCP server
leases only one IP, and it is the bootstrap server IP address.

4. The LwM2M Bootstrap Server authenticates the LwM2M client during the
DTLS channel establishment. For example, if the LwM2M Client uses X.509
certificate or RPK, the controller can authenticate the client by comparing the
hash of the client credential and the hash in the OOB message. If the client
uses PSK, the controller can authenticate the client with the PSK in the OOB

27

Figure 12: Bootstrap steps.

message. Figure 13 shows the authentication steps for X.509 certificate based
authentication during the DTLS handshake and the bootstrap procedures.

5. The LwM2M Client initiates the bootstrap sequence.

6. The LwM2M Bootstrap Server sends the LwM2M Server Object and LwM2M
Security Object to the LwM2M Client. Other objects such as WLAN Connec-
tivity can optionally be sent if the LwM2M Client needs them. The LwM2M
Bootstrap Server can determine whether the client needs the extra information
by checking the device type. The device type can be deduced from the device’s
account identity (ID) with a type indicating prefix which is concatenated to
the account ID.

7. The LwM2M Bootstrap Server sends the Bootstrap-Finished message.

8. After the bootstrap is completed, the device closes the LwM2M Bootstrap
Server connection and the access point. Then, it connects to the home WiFi
network.

9. The client initiates a new DTLS connection to the LwM2M Server with the
credentials and the connection information in the LwM2M Server Object which
received during the bootstrap. Then, the LwM2M Client registers to the
LwM2M Server.

28

Figure 13: Authentication steps.

3.6 Security
The lifecycle procedures change the lifecycle mode of the simple device. Therefore,
the procedures have a crucial effect on the lifecycle of IoT devices, and they should
be carried out by authorized parties.

The OOB channel message security has a remarkable impact on the security of

29

the bootstrap procedures. Most OOB channels including QR code scanning are
vulnerable to eavesdropping [31]. Several OOB channels are susceptible to message
tampering or spoofing. This opens a vulnerability to impersonation and man-in-
the-middle (MitM) attacks. There should be a mechanism to prevent or detect
modifications of the printed QR code e.g., the QR code might be printed on the
device with permanent ink.

The length of the certificate hash in the OOB channel message affects the system
security. The length should be defined according to the relevant standards such
as National Institute of Standards and Technology (NIST) Recommendation for
Applications Using Approved Hash Algorithms.

During the factory reset procedures, the operational credentials and any user data
must be securely wiped from the device. Data residue in the device may cause
privacy issues like leaking sensitive information about the user. The simple device
can use secure key storage to keep the keys safe. Also, the memory area which
holds the user data can be encrypted with a key that is stored in a secure hardware
module. Encrypting the user data and storing the key in a secure hardware provides
protection for the stored user data. Simply wiping the encryption key securely is
enough to make the user data unrecoverable.

The LwM2M specification supports different credential types; no security, PSK,
RPK, and X.509 certificates. No security and RPK should be supported as they are
mandated by the LwM2M standard [10]. However, it is recommended that the no
security option should be used with other security protocols like OSCORE. Not using
encryption (i.e., DTLS, TLS) means that the data is transferred as plain text. An
unencrypted and non-integrity-protected connection is vulnerable to eavesdropping
and alteration. Therefore, when encryption is not used, the other security protocols
should be used to secure the communication.

30

4 Implementation Details
This section explains the details of the proof-of-concept prototype and explains the
libraries and platforms that are used.

The PoC prototype is implemented with two Raspberry Pies and one Android
smartphone. The system can be implemented with several different configurations. As
stated in Section 3, the entities in the controller device can be distributed to different
locations and devices. Figure 14, 17, and 20 show three different implementation
configurations.

Figure 14: Configuration 1 overview.

Figure 15: Configuration 1 during bootstrap mode.

Figure 14 shows the first implementation configuration. In the first configuration,
the LwM2M Server and LwM2M Bootstrap Server are in the controller device. In
the bootstrap mode, the LwM2M Client opens a WiFi access point and waits for the
controller to connect to it. The controller scans the QR code on the LwM2M Client,
then discovers the LwM2M Client. During the discovery phase, WiFi connection is
established between the LwM2M Client and the controller. After the WiFi connection
is established, DTLS connection is established between the LwM2M Client and the
controller. Then, the bootstrap procedures take place between the controller and
the LwM2M Client. Figure 15 shows the communication channels between the

31

Figure 16: Configuration 1 during operational mode.

LwM2M Client and the controller during the bootstrap. After the bootstrap, the
LwM2M Client closes the WiFi access point, and both the client and the controller
switch to the home WiFi network. The LwM2M Client switches to operational mode
after the bootstrap is completed. During the operational mode, the LwM2M Client
and controller can send messages to each other over the home WiFi router. Figure
16 shows the communication channels between the client and the controller in the
operational mode.

This configuration is easier to implement compared to the other configurations
since the configuration does not require extra communication channels between the
entities. However, due to the limitations on porting the Leshan LwM2M Server
implementations to Android, this configuration was not implemented [11].

Figure 17: Configuration 2 overview.

Figure 17 shows the second implementation configuration. In the second configuration,
the LwM2M Server and LwM2M Bootstrap Server are in a gateway device. The
gateway device might be the home router or a separate device. In the second
configuration, the LwM2M Client opens a WiFi access point. Then, the controller
device scans the QR code on the simple device and transfers the decoded QR code
message to the gateway device over HTTP Representational State Transfer (REST)
Application Programming Interface (API). Figure 18 shows the communication
channels between the gateway device, the controller, and the LwM2M Client. The

32

Figure 18: Configuration 2 during bootstrap mode.

Figure 19: Configuration 2 during operational mode.

gateway device establishes WiFi and DTLS connection to the LwM2M Client. The
bootstrap procedures take place between the gateway device and the simple device.
After the bootstrap is completed, both the client and the gateway device switch to the
home WiFi network. During the operational mode, the controller sends command and
management messages over the HTTP REST API to the gateway device. Then, the
gateway device converts the messages into LwM2M messages and sends them to the
simple device over the DTLS channel. Figure 19 shows the communication channels
between the gateway device, the client, and the controller during the operational
mode. This configuration supports multiple controllers.

Figure 20 shows the third implementation configuration. In the third configuration,
the LwM2M Server and LwM2M Bootstrap Server are in a cloud system. The cloud
system may be provided by the device manufacturer. In this configuration in the
bootstrap mode, the LwM2M Client opens a WiFi access point. Then, during the
discovery phase, the controller scans the QR code, then it stores the decoded and
sends the data to the LwM2M Bootstrap Server through the HTTP REST API in
the cloud over the internet. The controller device either downloads the bootstrap
information from the bootstrap server and sends the information to the client or
acts as a message forwarder between the bootstrap server and the client. Figure 21
shows the communication channels in the bootstrap mode. The controller establishes
WiFi and DTLS connection to the client. Then, it either sends the stored bootstrap
information or forwards the messages from the bootstrap server in the cloud. After

33

Figure 20: Configuration 3 overview.

Figure 21: Configuration 3 during bootstrap mode.

the bootstrap is completed, the client closes the WiFi access point and switches to
the home WiFi network. In the operational mode, the controller sends command
and management messages to the LwM2M Server in the cloud through the HTTP
REST API. The LwM2M Server converts the HTTP REST API messages into
LwM2M messages and sends them to the client over the internet. Figure 22 shows
the connections in the operational mode. In this configuration, the controller does
not have to stay connected to the home WiFi network to control and manage the
client since the LwM2M Server is accessible over the internet.

34

Figure 22: Configuration 3 during operational mode.

This configuration is possible because the bootstrap server is not authenticated in the
bootstrap procedures. Also, the controller can act as a message forwarder if it supports
Multipath TCP [32]. Multipath TCP enables a device to simultaneously connect to
WiFi and cellular network. Thus, the controller device can receive messages from
the cloud system and forward them to the simple device over the WiFi connection.

4.1 Platform Description
4.1.1 Raspberry Pi

Raspberry Pi is a low cost, single board computer family designed by Raspberry
Pi foundation. The Raspberry Pi family has various models for different purposes.
It supports different operating systems which are mostly based on Linux such as
Raspbian, DietPi and RISC OS. This platform is widely used for PoC projects due to
the low cost and community and library support. Therefore, Raspberry Pi 3 Model
B+ was chosen for the PoC prototype. More IoT oriented platforms, such as Onion
Omega2 and ESP8266, could be chosen; however, that platform lacks support and
has compatibility problems with some software libraries.

The Raspberry Pi 3 Model B+ has a quad-core ARM Cortex-A53 processor inside a
Broadcom BCM2837B0 system-on-chip (SoC) module. It has a Gigabit Ethernet
module over Universal Serial Bus (USB) 2.0 and an on-board WiFi module, which
supports Institute of Electrical and Electronics Engineers (IEEE) 802.11.b/g/n/ac
modes. Raspberry Pi 3 Model B+ has 40 general-purpose input and output pins,
which enable it to interact with peripheral devices like sensors and actuators 1. These
pins are used to control the light emitting diode (LED) and push button in our PoC
prototype.

1https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus

35

4.1.2 DTLS Library

Since the Wakaama project uses the tinydtls library for the DTLS layer, it would
be natural to also use tinydtls in our implementation. However, tinydtls does not
support authentication based on X.509 certificates, and it supports only two cipher
suites. During initial experiments, we found that Wakaama tinydtls integration
supports only the shared-key authentication option, and that tinydtls is rather fragile:
it crashed when another DTLS server implementation presented the client with
unknown authentication options.

For those reasons, we looked into OpenSSL, GnuTLS, and MbedTLS as alternatives
to tinydtls during the design. In the end, we chose MbedTLS, firstly because it is
designed for resource-constrained embedded devices, and secondly, because there
were people in the same project who were familiar with MbedTLS.

X.509 cert. raw public key pre-shared key
tinydtls ✕ ✓ ✓

OpenSSL ✓ ✕ ✓

GnuTLS ✓ ✓ ✓

MbedTLS ✓ ✕ ✓

Table 3: Types of credentials in four cryptographic libraries.

Table 3 shows the types of credentials supported in those four cryptographic li-
braries. For full compatibility with CoAP, the DTLS library should support the
TLS-PSK-WITH-AES-128-CCM-8, TLS-ECDHE-ECDSA-WITH-AES-128-CCM-8
cipher suites; raw public key; and the “no security” authentication options. Note that
since MbedTLS lacks raw public key support, it does not fulfill all of requirements
of CoAP. However, since authentication based on raw public key is a subset of the
authentication based on X.509 certificates, it should not be difficult to add support
for raw public key authentication to MbedTLS.

MbedTLS (previously know as PolarSSL) is an open-source TLS/DTLS/SSL (SSL
stands for Secure Sockets Layer) library, which is developed by ARM. The library is
coded in C. It supports Distinguished Encoding Rules (DER) and Privacy Enhanced
Mail (PEM) encoded X.509 certificates and more than 150 cipher suites 2. Supporting
DER encoded certificates is important for the LwM2M protocol since all certificates
are sent in DER format over the network. MbedTLS also supports static allocation
of memory. Thus, it is suitable for resource-constrained devices, such as embedded
devices and IoT devices.

4.1.3 WiringPi

WiringPi is a pin-based General Purpose Input/Output (GPIO) access library written
in C for Raspberry Pi. It enables C programs to control GPIO pins, pulse width
modulation (PWM) functionality on the pins, and to register interrupt service

2https://tls.mbed.org/supported-ssl-ciphersuites

https://tls.mbed.org/supported-ssl-ciphersuites

36

routines. This library is used to control the LED brightness and to trigger factory
reset on push button press. It requires root privileges to make changes to the pins.
Thus, the program which uses this library has to be executed with root privileges.

4.2 Software Architecture and Components
In the PoC implementation, the second configuration was implemented (the other
configuration details in Section 4). The PoC prototype is based on three main
components: the simple device, the gateway device, and the controller. The simple
device is Raspberry Pi 3 Model B+, which acts as an LwM2M client. The gateway
device is Raspberry Pi 3 Model B+, which hosts the LwM2M Server and LwM2M
Bootstrap Server. The controller is an Android smartphone, which hosts LwM2M
Server and LwM2M Bootstrap Server. Figure 23 shows an overview of the PoC
prototype. However, the bootstrap server is not necessarily required if the LwM2M
Server information is provisioned during the manufacturing process.

Figure 23: Overview of the PoC prototype

The core of the LwM2M Client is the Wakaama project. The Wakaama project
is an open-source LwM2M Client implementation. The project uses several other
open-source projects, such as Erbium CoAP and tinydtls 3. Wakaama itself does
not implement its own DTLS functionality; by default it utilizes tinydtls (a DTLS
library for IoT devices 4) to secure the connections. Tinydtls does not support X.509
certificates. It supports only PSK, RPK, and NoSec authentication mode. In the
PoC implementation, X.509 certificate support was added to Wakaama by integrating
it with MbedTLS (more details on MbedTLS in Section 4.1.2).

3https://github.com/eclipse/tinydtls
4https://projects.eclipse.org/projects/iot.tinydtls

https://github.com/eclipse/tinydtls
https://projects.eclipse.org/projects/iot.tinydtls

37

The messages between the LwM2M Client and LwM2M Servers are transported with
UDP over Internet Protocol (IP). The LwM2M Client and the LwM2M Servers
are connected over WiFi network. LwM2M supports several other communication
protocols, such as SMS and cellular IoT communication protocols. However, UDP is
more suitable for home users. Figure 24 shows the software libraries which are used
in the PoC prototype and the corresponding layers in the protocol stack.

Figure 24: Software components

Figure 25: Persistent objects in the PoC prototype.

The LwM2M Objects consist of mandatory and optional fields. Depending on the
application, the optional fields may need to be implemented. For example, in the
PoC prototype, the LwM2M Client controls the brightness of the LED. The dim
value of the LED is an optional field in the LwM2M Light Control Object.

The LwM2M Client implements seven LwM2M objects as Figure 26 shows. The
security, server and device objects are mandatory to implement for an LwM2M Client;

38

Figure 26: Supported objects in the implementation.

The other objects are optional. WLAN connectivity and light control objects are
added to the Wakaama project for the PoC. The Wakaama project normally stores
theses LwM2M Objects in RAM. After the device is rebooted or the program is
restarted, all the objects are gone. To store the objects in the read-only memory
(ROM), object storage functions were added. Figure 25 shows the objects that are
stored in the file system. The security, server, and WLAN connectivity objects are
stored as a binary file in ROM. The binary file format was chosen to save memory
space and to comply with the LwM2M standard. LwM2M requires the clients to
store the certificates in DER format, which is a binary encoding format for X.509
certificates.

Each layer and software library fulfills the functionality of the LwM2M Client. The
client provides four interfaces: OOB, bootstrap, management, and usage. The OOB
channel interface is based on providing a QR code that is printed on the retail box
of the LwM2M Client device. The bootstrap, management, and usage interface are
provided by the Wakaama project. Wakaama handles the state transitions, bootstrap
procedures, and management operations. It dispatches the usage messages, such
as turn on a light and turn off a light, coming from the controller to the relevant
software libraries via function calls.

In the PoC prototype, the client opens a WiFi access point. The access point
functionality is implemented with hostapd software.

4.3 Design of Out-of-Band Channel Message
In the PoC prototype, the OOB message is transferred via QR code scanning. QR
code is scanned by the controller, which is an Android smartphone. The reasons for
choosing this technique are as follows: First, QR codes are easy to create, compared to,
e.g., near-field communication (NFC) tags or data-modulated audio signal. Second,
smartphones typically already include an integrated camera.

This section describes the OOB channel message, shown in Figure 27, that is
transferred from the simple device to the controller. This message is designed

39

to support several in-band communication technologies like WiFi and Bluetooth.
However, only WiFi in-band channel is used in the PoC prototype. It also supports
several types of device credentials including pre-shared key, raw public key, and X.509
certificate.

Figure 27: Structure of the OOB message.

The following example demonstrates the structure of the OOB channel message:

01;EP:055192;T:LED;WIFI;WPA2-PSK:huawei_iot:5bd1f120735d1ba4e2d2149ae
b891850;03;367f36ee1f5e272cfbca1ca35a73e42b;34;;

Each message field is separated with a semicolon (;), sub fields are separated with a
colon (:), and double semicolons (;;) denote the end of the string. The message fields
from left to right are as follows:

• 01: The protocol version for the OOB message structure; This field makes it
easier to define new versions of the OOB message structure.

• EP:055192: The device name and type (EP stands for end point); It is used as
identity for the LwM2M Server account. The device name is generated during
the manufacturing, and it must be unique.

• T:LED: This field indicates the device type. The device name may be required
for the LwM2M Servers to identify the device correctly and determine the extra
information that the device needs during the bootstrap procedures.

• WIFI: The in-band channel communication protocol; In-band channel might
be other communication protocols such as Bluetooth and Zigbee.

• 03: The device credentials type; Possible values of this field: 00, 01, 02, 03 are,
respectively: no security, PSK, RPK and X.509 certificate.

40

• WPA2-PSK:huawei_iot:5bd1f120735d1ba4e2d2149aeb891850: The credentials
for the in-band communication channel that is used during bootstrap, when the
simple device acts as a WiFi access point. These three fields include the security
algorithm (WPA2-PSK), Service Set Identifier (SSID) (huawei_iot), and the
PSK (5bd1f120735d1ba4e2d2149aeb891850). These fields can be extended in
the future to support other authentication types such as 802.11x.

• 367f36ee1f5e272cfbca1ca35a73e42b: The leftmost 16 bytes of the SHA-256
(Secure Hash Algorithm 256) hash of simple device certificate in hexadecimal
format.

• 34: A checksum value for verifying manual entry of the QR code data, in case
the QR code scanning fails by the smartphone camera. This is the leftmost
byte of the SHA-256 hash of the previous field.

The encoding of this message as the QR code is shown in Figure 28.

Figure 28: QR code OOB message example.

The checksum value was added to the message structure since the QR code scanning
may fail, and the user may be required to type the encoded data in the QR code. To
support manual typing, the values in the QR code are encoded as American Standard
Code for Information Interchange (ASCII) characters. The QR code sticker has to
include the same data also as text.

The message format does not use fixed-length fields. This provides flexibility to the
message structure. For example, in the future, if the hash length or the WiFi PSK is
found to be short, then the values can be extended.

During the bootstrap procedures, an attacker can sniff the 802.11 4-Way Handshake
and then mount a Denial-of-Service (DoS) attack on the WiFi connection. Then, the
attacker can crack the PSK with offline brute force attack. However, using a strong
PSK (in the PoC prototype it is 128-bit) mitigates this attack.

4.4 Results
This thesis integrates the OOB channel communication and the LwM2M standard
to securely manage the lifecycle of IoT devices. The designed system uses the OOB

41

channel to identify each IoT device uniquely. The OOB channel message contains
information about the simple device credentials and in-band channel configuration.
The simple device credentials may be a PSK or an RPK or an X.509 certificate. If
the simple device uses PSK, the PSK is transferred over the OOB channel. If the
credential is in the form of an RPK or X.509 certificate, the hash of the public key
or certificate is transferred.

The security of the system depends on the following assumptions. First, it is assumed
that the OOB channel message cannot be altered or spoofed. Depending on the
simple device credentials, it might be vital that the OOB channel message is not
eavesdropped. If the simple device uses the PSK authentication method, then
the confidentiality of the OOB channel message is vital, because the PSK will be
available as plain text in the OOB channel message. Once the OOB channel message
is eavesdropped, then the communication between the simple device and the controller
is compromised. Second, the hash algorithm that generates the digest value from the
certificate and the other used protocols like DTLS is secure. Hence, creating another
certificate with the same hash value is not feasible with the current computation
power. Third, the controller is not the attacker.

42

5 Discussion and Analysis

5.1 One-way vs. Two-way OOB
In the designed system in this thesis, the controller device is not authenticated. The
first controller which connects to the simple device takes control of it. The uses the
“resurrecting duckling” security policy [33].

The resurrecting duckling security policy may lead impersonation attack for the
controller. A malicious controller may try to mount an impersonation or MitM
attack on the WiFi in-band channel between the bootstrap server and the simple
device during bootstrap. Then, the malicious controller may try to take control of
the simple device by accepting any certificate or RPK hash before the legitimate
controller since the controller is not authenticated. However, if the simple device uses
a WiFi PSK that is resistant to brute force attacks and the OOB channel message is
not eavesdropped, the malicious controller cannot mount this attack.

In this thesis, a QR code is used as the OOB channel. Nowadays, most smartphones
have a built-in camera. Therefore, the QR code scanning method can be supported
by most smartphones. However, the QR code scanning transfers data only from the
simple device to the controller; not the other way. Due to this limitation, implementing
mutual authentication of the parties during the bootstrap is challenging. Note that
mutual authentication could be done also in this case by using a symmetric key, which
is transferred over OOB interface during the bootstrap. However, using symmetric
key has its own weaknesses. For example, if an attacker manages to read the content
of the QR code, then in the case of symmetric key, all security of the bootstrap is
lost, while in the case of hash of RPK or certificate, the attacker still has to find a
second-preimage of the hash.

In general, mutual authentication between the controller and the simple device can
be done if both of them support a two-way OOB channel such as NFC. On the other
hand, such OOB channels would require extra hardware in the simple device.

5.2 Denial of Service Attacks
In the PoC prototype, the Raspberry Pi is powered up with wall plug. However,
in the case that the device is battery powered and accessible from the internet, an
attacker may try to consume the battery power to cause denial of service.

Denial of service attack might be accomplished by sending a large number of data
packets to the simple device. While the device tries to handle the excessive incoming
data, the battery of the device will drain faster.

However, malicious incoming traffic does not present a great risk in a home network
setting, since home networks are typically located behind a network address translator
(NAT) and the devices in the local network are not accessible from outside.

43

5.3 Data Storage
The LwM2M Objects are stored as binary files without encryption in the Raspberry
Pi file system. The LwM2M Security Object holds information about the client
certificate, private key, and authentication method. Figure 29 shows the LwM2M
Security Object in the file system. If somebody gains write access to the file system,
they can easily modify the object data. For example, the SECURITY_MODE field,
which is only one-byte length, determines the authentication method for the LwM2M
Server connection. Changing this one byte will cause the client not to use encryption.
However, the LwM2M Server should reject the authentication if the method does not
match the authentication method in the corresponding client account. For example,
the private key of the client is also stored as unencrypted in the object data. On the
other hand, if someone gains read access to the memory, they can read the private
key, then impersonate the simple device. These objects must be protected.

Figure 29: Security object in the file system.

Raspberry Pi is a single-board computer that does not have a hard disk. It stores its
file system on an SD Card. Hence, the LwM2M Objects are stored on the Secure
Digital (SD) Card in the experimental setup. An SD Card is a storage media with
a NAND flash with an integrated controller. NAND flash memory can withstand
100,000 write cycles during the lifetime [34]. Therefore, the integrated controller in
the SD Card tries to distribute the write counts over the whole memory to minimize
wearing out of the flash memory. This protection mechanism has the notion of logical
page numbers and physical page numbers. It acts as an intermediate block mapper
between the logical blocks and physical blocks. Due to this mechanism, the real
written blocks for an LwM2M Object cannot be determined by the operating system.
While wiping an LwM2M Object from the file system, because of this intermediate
controller in the SD Card, it cannot be guaranteed that the object data is wiped
securely. Storing the objects in secure hardware storage or storing the objects in
encrypted form and storing the key in secure hardware storage mitigates this data
erasure problem.

In real-life implementation, the simple device should have a secure hardware storage
module or a raw flash memory without the intermediate controller. This ensures
that the stored data is wiped securely from the simple device.

44

It is important to check that the running firmware in the simple device is not modified
throughout the lifecycle of the simple device. Not checking the running software
allows an attacker to inject malware or entirely replace the firmware, leaving the
device vulnerable. Anyone who has write access to the memory of the simple device
can modify or corrupt the software. For example, an attacker could install his own
malicious firmware to the simple device, and then he can sell the device as a second-
hand device. The new owner cannot know whether the simple device runs genuine or
malicious firmware. There is no built-in protection mechanism for this type of attack
in the PoC prototype. However, this threat can be mitigated by using secure boot.

Secure boot is a mechanism that prevents the execution of unauthorized code when
the device boots. This can be accomplished in several ways. One way is to allow
only the execution of binaries which are signed by the device manufacturer. The
other way is using trusted boot loaders and security microprocessors. By employing
the secure boot, any code modification is detected and the device does not run the
modified software.

5.4 Key Length
The PoC prototype uses 256-bit Elliptic Curve Cryptography (ECC) public key
based on the NIST P-256 curve (also known as secp256r1 and prime256v1). The
public key is used to authenticate the simple device to the controller. 256-bit ECC
public key has the same level of security as a 128-bit symmetric key or 3072-bit RSA
key, as Table 4 shows. According to NIST [35], a 128-bit key is considered to be
secure until 2030. Also according to ECRYPT [36], this key length is considered to
be secure until 2028.

Security strength (bits) Key size (bits)
ECC RSA/DSA/DH

80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 512 15360

Table 4: Security and key length comparison of ECC and RSA [37].

5.5 Random Number Generation
As mentioned in Section 5.4, the prototype uses Elliptic Curve Cryptography. During
the encrypted session establishment, the prototype uses Elliptic Curve Diffie-Hellman
Ephemeral (ECDHE) to exchange keys. The simple device uses Elliptic Curve Digital
Signature Algorithm (ECDSA) to identify itself to the LwM2M Bootstrap Server by
creating a valid signature over the messages.

In ECDSA, generating cryptographically secure random numbers is crucial. Using

45

faulty random number generators or using the same random number more than
once in ECDSA may leak the device’s private key. There is a real-world example of
ECDSA private key leakage when it is deployed with poorly implemented random
number generators. In Chaos Communication Congress in 2010, a hacker group
called fail0verflow presented a way to reveal the ECDSA signing key from PlayStation
3 gaming consoles [38]. The root cause of the vulnerability was the faulty random
number generator implementation.

The random number generation problem can be solved by using the deterministic
ECDSA [39] or Edwards-Curve Digital Signature Algorithm (EdDSA) [40]. The
deterministic ECDSA and EdDSA were introduced in RFC 6979 and RFC 8032,
respectively. In deterministic ECDSA and EdDSA, the random value is derived
from the private key and the messages [39, 40]. Thus, these signature algorithms are
secure to use in systems that lack secure random generators.

5.6 Code Size
The Wakaama project was integrated with MbedTLS and WiringPi to create the
PoC prototype. Table 5 shows the additions to the Wakaama base project and
Table 6 shows the details of the integration. LwM2M WLAN Object and Light
Control Object were added to the base project. The Wakaama project can store
the LwM2M Objects only in RAM. To store objects persistently, the object storage
functionality was added. The Wakaama project supports only the PSK authentication
method. With MbedTLS integration, the project supports also certificate-based
authentication. The most time-consuming part of the project was the MbedTLS
integration part. MbedTLS is a flexible library; however, it does not automatically
manage the handshake steps and connection state. It is necessary to manage the
states by adding extra controls. Also, the Wakaama project uses internal timers
to manage the registration and bootstrap states. MbedTLS has to cooperate with
the internal timers. Due to these limitations, the implementation took a couple of
months.

Components Lines of code
Baseline 34900
Additions 3500
Total 38400

Table 5: Our additions to the Wakaama project (only C source files and scripts,
rounded to the nearest hundred).

The executable code size of the Wakaama project without any encryption support
is 124 KB. After integrating the project with MbedTLS, the executable code size
increased to 304 KB. Table 7 shows the executable code size for the base project and
the PoC prototype. Furthermore, all these executable code was compiled with GNU
Compiler Collection (gcc) optimization flags enabled. Most of the increase is caused by
the multiple cipher suites support and X.509 certificate support. The implementation

46

Components Lines of code
Object storage 500
MbedTLS integration 1400
Light control object 400
WLAN management 100
WLAN object 500
Other 600

Table 6: The details of our additions to Wakaama project (only C source files and
scripts, rounded to the nearest hundred).

supports six different cipher suites as Figure 30 shows. The executable code size can
be decreased by limiting the number of the cipher suites. To calculate the executable
code size properly, MbedTLS library is statically linked to the executable file 5. The
WiringPi library cannot statically be linked to the executable code. Therefore, it is
used as a shared library.

Components Code size (KB)
Wakaama project base 124
Wakaama + MbedTLS 304

Table 7: Executable code size of the PoC prototype.

Figure 30: Supported cipher suites in the PoC prototype.

The executable code may also require an operating system depending on the deployed
platform. For example, the binary code can be integrated with the Free Real-time
Operating System (FreeRTOS). FreeRTOS requires around 9 KB ROM memory 6.
As a result, the binary code and the operating system sum up to 313 KB. The total
code size cannot fit a Class 2 IoT device, which has 250 KB flash memory (see Table
2). However, we believe that the code can further be optimized to fit the code into a
Class 2 IoT device.

5http://wiringpi.com/wiringpi-deprecated
6https://www.freertos.org

http://wiringpi.com/wiringpi-deprecated
https://www.freertos.org

47

5.7 Hash Length
The OOB channel message contains the truncated hash of the client RPK or X.509
certificate. Two of the important properties of a cryptographic hash function are
second-preimage resistance and collision resistance.

Second-preimage resistance means that the probability of finding another value which
results in the same hash output is negligible. The collision resistance means that
the probability of finding two distinct values which result in the same hash value is
negligible [41].

Truncating the hash output decreases the collision resistance of the hash value.
Therefore, the collision resistance of SHA-256 truncated to 128 bits is 128/2 = 64
bits.

In the case that the manufacturer is the attacker, for 128-bit truncated output of the
SHA-256 hash function, the collisions can be generated with a birthday attack at a
computational cost that is similar to brute forcing a hash of half of the truncated
hash length. On the other hand, if the manufacturer is the attacker, it can do more
serious damage than creating collisions in certificate hashes by, e.g, device cloning,
putting a backdoor in the simple device firmware and impersonation using the private
key.

The following formula approximates the collision probability of the hash values:

p(n, k) ≈ 1 − e− k(k−1)
2n [42].

In the formula, k refers to the number of generated hash values, n refers to the
number of possible hash values, and p(n, k) refers to the collision probability after k
hash values have been generated. Table 8 shows p(n, k) for various values of n and k.

p(n, k): probability of a random hash collision
n: nr. of possible
hash values 10−9 10−6 10−3 0.01 0.25 0.5

232 3 93 2.9x103 9.3x103 5x104 7.7x104

264 190,000 6,100,000 1.9x108 6.1x108 3.3x109 5.1x109

2128 8.2x1014 2.6x1016 8.3x1017 2.6x1018 1.4x1019 2.2x1019

2256 1.5x1034 4.8x1035 1.5x1037 4.8x1037 2.6x1038 4.0x1038

Table 8: The work required to find a hash collision at a given probability for different
hash sizes.

A man-in-the-middle attacker who is trying to intercept the in-band communication
during the bootstrap has to find a certificate whose truncated hash value matches
with the hash value in the OOB message. On the other hand, it does not help this
attacker to find a collision: two certificates with identical hash value, which does not

48

match that in the OOB message. For that reason, SHA-256 truncated to 128 bits,
which has 128 bits level of second-preimage resistance, should be sufficient for our
scenario.

Another threat arises when, due to technical problem or malicious intent, the manu-
facturer produces certificates which are very likely to have the same hash value. In
that case, the man-in-the-middle attack can be done, for example, as follows; An
attacker obtains a set of devices from the manufacturer and extracts their private
keys. Then, he can try to intercept the in-band bootstrap messages, and if he has a
matching certificate and key pair, then he can succeed to become main-in-the middle.

5.8 Discussion
Security is one of the key issues in consumer IoT. In this thesis, a system has
been designed and implemented based on the Open Mobile Alliance Lightweight
Machine-to-Machine specification to securely bootstrap, manage, control, and use
IoT devices.

A PoC prototype was implemented based on the designed system with two Raspberry
Pies and one Android smartphone. The Android smartphone is the controller. One
of the Raspberry Pies is the LwM2M Client and the other one is the gateway device
which hosts the LwM2M Bootstrap Server and LwM2M Server. The controller scans
the QR code on the IoT device and sends the decoded data to the gateway device
to identify and authenticate the IoT device. The controller is not authenticated,
and the client trusts the first controller that connects to it. The Wakaama LwM2M
Client project was modified and integrated with MbedTLS. The client controls an
LED light with LwM2M messages. The LwM2M Client is bootstrapped with the
LwM2M Bootstrap Server in the gateway device, and then the client is registered to
the LwM2M Server.

A registered LwM2M Server can register a new LwM2M Server, return the device to
factory settings, and update firmware in the simple device. Therefore, the permissions
for the LwM2M Server should be restricted if there is more than one LwM2M Server
(see Section 2.1.2).

The Leshan LwM2M project was modified to support identification and authentication
based on the OOB channel message by Amel Bourdoucen [11], which compared the
hash in the QR code with the certificate hash that was received from the LwM2M
Client during the DTLS handshake. It would be easier to implement a custom-
designed protocol with the OOB channel message to demonstrate that the designed
system works. However, the custom protocol would not be suitable for heterogeneous
IoT networks since it would require more development time and integration time for
each type of device. Using the LwM2M protocol saves design and implementation
time since it is an open standard and open-source implementations are available.
Also, the standard protocols are reviewed by more people; thus, they have more
secure design compared to custom protocols. For different types of devices, the
relevant LwM2M objects already exist in the OMA object registry. Currently, there

49

are around 300 LwM2M objects in the registry 7. Therefore, it is easy to deploy the
system to different IoT devices.

As a result, the designed system is practical and applicable to home IoT devices.
Since it uses standard protocols, it requires less design and implementation time
compared to custom ones.

5.9 Limitations
The Wakaama project has not been very active since February 2019 and there were
more than 50 open issues in the project. Also, there was no documentation about
the project. Therefore, the PoC implementation was challenging.

The PoC project was developed for Raspberry Pi. Raspberry Pi does not have a
built-in screen or a powerful graphic processor. Therefore, it is not suitable to write
code directly on a Raspberry Pi due to the limited computation power. It was
necessary to build a development environment for Raspberry Pi. The file system of
the Raspberry Pi was mounted as a network folder over Secure Shell (SSH) to the
development computer. Then, the code was developed on a development laptop and
synchronized over the SSH connection. The code was compiled and tested in the
Raspberry Pi over SSH.

Initially, it was planned to port Leshan Server implementations to Android operating
system (OS).

The PoC prototype was designed and implemented during the global COVID-19
pandemic, and there were governmental restrictions like movement restrictions and
social distancing regulations. Not being able to present in the company made the
testing and implementation more challenging. These limitations caused further
challenges during the implementation.

5.10 Future Work
For future work, the server authentication and secure key storage functionalities can
be added to the system. In the PoC prototype, static IP addresses were used. It can
be improved with Multicast Domain Name System (mDNS). Also, the other system
configuration mentioned in Section 4 can be implemented. The LwM2M Server and
LwM2M Bootstrap Server could not be ported to Android due to several limitations
[11]. The servers can be ported to Android.

7https://github.com/OpenMobileAlliance/lwm2m-registry

https://github.com/OpenMobileAlliance/lwm2m-registry

50

6 Conclusion
Device lifecycle management is a set of integrated steps that defines the entire lifecycle
of a product including design, manufacturing, deploying, updating and disposing.
The management of IoT devices during their lifecycle is one of the key issues in the
IoT networks.

This thesis presents a system design that combines QR code scanning and the
Lightweight machine-to-machine (LwM2M) protocol to securely manage the lifecycle
of IoT devices starting from the manufacturing throughout the device lifetime. For
the QR code scanning integration, the LwM2M specification has been modified as
little as possible.. Additionally, the designed system defines the required procedures
and steps to secure the lifecycle of IoT devices and user data inside them. The
devices are paired and controlled with a smartphone. A proof-of-concept (PoC)
prototype has been implemented with a Raspberry Pi, which acts as the IoT device,
and a smartphone, which acts as the controller. The designed system and the PoC
prototype have been analyzed in various aspects, and the main findings have been
presented.

In the designed system, the user scans the QR code of the device with his/her
smartphone’s camera to start the initial setup of the IoT device. The security of
the initial setup is based on the metadata and the information of the IoT device’s
credentials in the QR code, which may include, e.g., the pre-shared key of the device
or the hash of the device’s public key. After the initial setup, the IoT device joins to
the home WiFi network, and it is controlled via the user’s smartphone.

The designed system authenticates and uniquely identifies each IoT device with the
information in the QR code. The communication channels between the IoT device
and the controller are secured by Datagram Transport Layer Security (DTLS). The
details and implementation of the controller part are the subjects of another master
thesis that was done parallelly in the same project [11].

As a result, the designed system is practical and applicable to consumer IoT. The
designed system is based on open standards and commonly used technologies. There-
fore, it requires less design and implementation time compared to custom-made
protocols.

51

References
[1] Kevin Ashton, How to Fly a Horse: The Secret History of Creation, Invention

and Discovery. Doubleday, 2015, pp. 9–13.

[2] Ericsson. Internet Mobility Report, November 2019. https://www.ericsson.com/
en/mobility-report/reports/november-2019. Accessed: 01.06.2020.

[3] Alma Oracevic, Selma Dilek, and Suat Özdemir, “Security in internet of things:
A survey,” in 2017 International Symposium on Networks, Computers and
Communications (ISNCC). Marrakech, Morocco: IEEE, May 2017, pp. 1–6.

[4] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas,
“DDoS in the IoT: Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84,
July 2017.

[5] F-Secure. Attack Landscape H1 2019.

[6] Carsten Bormann, Mehmet Ersue, and Ari Keränen, “Terminology for
Constrained-Node Networks,” Internet Requests for Comments, RFC Editor,
RFC 7228, May 2014.

[7] Leila Fatmasari Rahman, Tanır Özçelebi, and Johan Lukkien, “Understanding
IoT systems: A life cycle approach,” Procedia Computer Science, vol. 130, pp.
1057–1062, 2018.

[8] Apple Inc., “HomeKit Accessory Protocol Specification (Non—Commercial
Version) Release R1,” Tech. Rep., 2017.

[9] Open Mobile Alliance, “Lightweight Machine to Machine Technical Specification:
Core V1.1,” 2018.

[10] Zach Shelby, Klaus Hartke, and Carsten Bormann, “The Constrained Application
Protocol (CoAP),” Internet Requests for Comments, IETF, RFC 7252, June
2014.

[11] Amel Bourdoucen, “Securing Communication Channels in IoT using an Android
Smart Phone,” Master’s thesis, Department of Future Technologies, University
of Turku, Finland, June 2020.

[12] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels, “A Low-Power
CoAP for Contiki,” in 2011 IEEE Eighth International Conference on Mobile
Ad-Hoc and Sensor Systems, Valencia, Spain, November 2011, pp. 855–860.

[13] Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo
Voigt, “Lithe: Lightweight secure coap for the internet of things,” IEEE Sensors
Journal, vol. 13, no. 10, pp. 3711–3720, August 2013.

[14] Christian Lerche, Laum Nico, Frank Golatowski, Dirk Timmermann, and
Christoph Niedermeier, “Connecting the web with the web of things: lessons
learned from implementing a CoAP-HTTP proxy,” in IEEE 9th International

https://www.ericsson.com/en/mobility-report/reports/november-2019
https://www.ericsson.com/en/mobility-report/reports/november-2019

52

Conference on Mobile Ad-Hoc and Sensor Systems, Las Vegas, NV, USA, October
2012, pp. 1–8.

[15] Zach Shelby, Klaus Hartke, and Carsten Bormann, “The Constrained Application
Protocol (CoAP),” Internet Requests for Comments, IETF, RFC 7252, June
2014.

[16] Telit IoT Platform. LWM2M Object model. https://docs.devicewise.com/
Content/GettingStarted/LWM2M-Object-model.htm. Accessed: 11.06.2020.

[17] Hannes Tschofenig and Thomas Fossati, “Transport Layer Security (TLS) /
Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things,”
Internet Requests for Comments, RFC Editor, RFC 7252, July 2016.

[18] Eric Rescorla and Nagendra Modadugu, “Datagram Transport Layer Security
Version 1.2,” Internet Requests for Comments, RFC Editor, RFC 6347, January
2012.

[19] Eric Rescorla and Nagendra Modadugu, “Datagram Transport Layer Security,”
Internet Requests for Comments, RFC Editor, RFC 4347, April 2006.

[20] Eric Rescorla, Nagendra Modadugu, and Hannes Tschofenig, “The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3, (draft),” Internet Re-
quests for Comments, RFC Editor, RFC draft.

[21] Yassine Maleh, Abdellah Ezzati, and Mustapha Belaissaoui, “DoS Attacks Anal-
ysis and Improvement in DTLS Protocol for Internet of Things,” in Proceedings
of the International Conference on Big Data and Advanced Wireless Technologies.
Blagoevgrad, Bulgaria: Association for Computing Machinery, November 2016.

[22] Maleh Yassine and Abdellah Ezzati, “Towards an Efficient Datagram Transport
Layer Security for Constrained Applications in Internet of Things,” International
Review on Computers and Software, vol. 11, pp. 611–621, July 2016.

[23] Gack Davidson, Apple Homekit: The Beginner’s Guide. CreateSpace Indepen-
dent Publishing Platform, 2017.

[24] Dennis Giese, “Having fun with IoT: Reverse Engineering and Hacking
of Xiaomi IoT Devices,” in DEFCON 26, Las Vegas, Nevada, USA,
August 2018, Accessed: 18.06.2020. [Online]. Available: https://media.
defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/
DEFCON-26-Dennis-Giese-Having-Fun-With-IOT-Updated.pdf

[25] Jose Garcia and Cihan Varol, “SmartThings Event Export using SmartApps,”
in 2019 7th International Symposium on Digital Forensics and Security (ISDFS),
Barcelos, Portugal, June 2019, pp. 1–6.

[26] Kaniz Fatema Tuly, “A Survey on Novel Services in Smart Home (Optimized
for Smart Electricity Grid),” Master’s thesis, Department of Computer and In-
formation Science, Norwegian University of Science and Technology, Trondheim,
2016.

https://docs.devicewise.com/Content/GettingStarted/LWM2M-Object-model.htm
https://docs.devicewise.com/Content/GettingStarted/LWM2M-Object-model.htm
https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/DEFCON-26-Dennis-Giese-Having-Fun-With-IOT-Updated.pdf
https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/DEFCON-26-Dennis-Giese-Having-Fun-With-IOT-Updated.pdf
https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/DEFCON-26-Dennis-Giese-Having-Fun-With-IOT-Updated.pdf

53

[27] SmartThings Inc. SmartThings Support, Z-Wave General Info. https://support.
smartthings.com/hc/en-us/articles/204392790-Z-Wave-General-Info. Accessed:
17.06.2020.

[28] DENSO Corporation. (2011) QR Code Essentials. http://www.nacs.org/
LinkClick.aspx?fileticket=D1FpVAvvJuo%3D&tabid=1426&mid=4802. Access:
05.06.2020.

[29] Katharina Krombholz, Peter Frühwirt, Peter Kieseberg, Ioannis Kapsalis,
Markus Huber, and Edgar Weippl, “QR Code Security: A Survey of Attacks
and Challenges for Usable Security,” in Human Aspects of Information Security,
Privacy, and Trust, Crete, Greece, June 2014, pp. 79–90.

[30] Huawei Security Protection Technology Lab, “Lifecyle Management of Simple
Devices (unpublished Tech. Rep.),” , February 2020.

[31] Sampsa Latvala, Mohit Sethi, and Tuomas Aura, “Evaluation of Out-of-Band
Channels for IoT Security,” SN Computer Science, vol. 1, no. 1, September
2019.

[32] Tongguang Zhang, Shuai Zhao, Bingfei Ren, Shi Yulong, Bo Cheng, and Junliang
Chen, “Performance enhancement of multipath tcp in mobile ad hoc networks,”
in IEEE 25th International Conference on Network Protocols (ICNP).

[33] Frank Stajano and Ross Anderson, “The Resurrecting Duckling: Security Issues
for Ad-hoc Wireless Networks,” in Security Protocols, 7th International Workshop.
Cambridge, UK: Springer Berlin Heidelberg, April 1999, pp. 172–182.

[34] Bhupendra Singh, Ravi Saharan, Gaurav Somani, and Gaurav Gupta, “Secure
File Deletion For Solid State Drives,” in Advances in Digital Forensics XII:
12th IFIP WG 11.9 International Conference, New Delhi, January 4-6, 2016,
Revised Selected Papers, ser. IFIP Advances in Information and Communication
Technology, vol. 484. Springer International Publishing, 2016.

[35] Elaine Barker, “NIST Special Publication 800-57 Part 1 Revision 5, Recommen-
dation for Key Management: Part 1 – General,” Tech. Rep., May 2020, https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf.

[36] Nigel Smart, ECRYPT – Coordination & Support Action, “D5.4 Algorithms,
Key Size and Protocols Report (2018),” Tech. Rep., February 2018, https:
//www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf.

[37] Nurzhan Zhumabekuly Aitzhan and Davor Svetinovic, “Security and Privacy
in Decentralized Energy Trading Through Multi-Signatures, Blockchain and
Anonymous Messaging Streams,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 840–852.

[38] Yuval Yarom and Naomi Benger, “Recovering OpenSSL ECDSA Nonces Using
the FLUSH+ RELOAD Cache Side-channel Attack,” IACR Cryptology ePrint
Archive, vol. 2014, February 2014.

https://support.smartthings.com/hc/en-us/articles/204392790-Z-Wave-General-Info
https://support.smartthings.com/hc/en-us/articles/204392790-Z-Wave-General-Info
http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo%3D&tabid=1426&mid=4802
http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo%3D&tabid=1426&mid=4802
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

54

[39] Thomas Pornin, “Deterministic Usage of the Digital Signature Algorithm (DSA)
and Elliptic Curve Digital Signature Algorithm (ECDSA),” Internet Requests
for Comments, RFC Editor, RFC 6979, August 2013.

[40] Simon Josefsson and Ilari Liusvaara, “Edwards-Curve Digital Signature Algo-
rithm (EdDSA),” Internet Requests for Comments, RFC Editor, RFC 8032,
January 2017.

[41] Mihir Bellare and Phillip Rogaway, “Collision-Resistant hashing: Towards mak-
ing UOWHFs practical,” in Advances in Cryptology — CRYPTO ’97. Santa
Barbara, CA, USA: Springer Berlin Heidelberg, August 1997, pp. 470–484.

[42] Ganesh Gupta, “What is Birthday attack??” February 2015. [Online]. Available:
https://dx.doi.org/10.13140/2.1.4915.7443

https://dx.doi.org/10.13140/2.1.4915.7443

	Abstract
	Preface
	Contents
	Abbreviations and Acronyms
	1 Introduction
	2 Background
	2.1 Internet Standards
	2.1.1 Constrained Application Protocol
	2.1.2 Lightweight Machine-to-Machine
	2.1.3 Datagram Transport Layer Security

	2.2 Industry Solutions
	2.2.1 Apple HomeKit
	2.2.2 Xiaomi IoT Cloud
	2.2.3 Samsung SmartThings

	2.3 QR Code

	3 System Description
	3.1 Lifecycle of IoT Devices
	3.2 Lifecycle Procedures
	3.2.1 Manufacturing Procedures
	3.2.2 Bootstrap Procedures
	3.2.3 Factory Reset Procedures

	3.3 Architecture
	3.3.1 Entities
	3.3.2 Interfaces

	3.4 Types of Credentials
	3.4.1 Bootstrap Credentials
	3.4.2 Operational Credentials

	3.5 Adaptation of LwM2M
	3.6 Security

	4 Implementation Details
	4.1 Platform Description
	4.1.1 Raspberry Pi
	4.1.2 DTLS Library
	4.1.3 WiringPi

	4.2 Software Architecture and Components
	4.3 Design of Out-of-Band Channel Message
	4.4 Results

	5 Discussion and Analysis
	5.1 One-way vs. Two-way OOB
	5.2 Denial of Service Attacks
	5.3 Data Storage
	5.4 Key Length
	5.5 Random Number Generation
	5.6 Code Size
	5.7 Hash Length
	5.8 Discussion
	5.9 Limitations
	5.10 Future Work

	6 Conclusion
	References

