
Aalto University

School of Science

Master’s Programme in Security and Cloud Computing

Adika Bintang Sulaeman

A Highly-Available Multiple Region Multi-
access Edge Computing Platform with
Traffic Failover

Master’s Thesis
Espoo, July 29, 2020

Supervisors: Professor Antti Ylä-Jääski, Aalto University
Professor Panagiotis Papadimitratos, KTH

Advisors: Dr. Kimmo Hätönen, Nokia Bell Labs
Marco Spanghero, KTH

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333888664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Adika Bintang Sulaeman

Title:
A Highly-Available Multiple Region Multi-access Edge Computing Platform with
Traffic Failover

Date: July 29, 2020 Pages: 57

Major: Security and Cloud Computing Code: SCI3084

Supervisors: Professor Antti Ylä-Jääski, Aalto University
Professor Panagiotis Papadimitratos, KTH

Advisors: Dr. Kimmo Hätönen, Nokia Bell Labs
Marco Spanghero, KTH

One of the main challenges in the Multi-access Edge Computing (MEC) is steer-
ing traffic from clients to the nearest MEC instances. If the nearest MEC fails, a
failover mechanism should provide mitigation by steering the traffic to the next
nearest MEC. There are two conventional approaches to solve this problem, i.e.,
GeoDNS and Internet Protocol (IP) anycast. GeoDNS is not failover friendly
because of the Domain Name System (DNS) cache lifetime. Moreover, the use of
a recursive resolver may inaccurately translate the IP address to its geolocation.
Thus, this thesis studies and proposes a highly available MEC platform lever-
aging IP anycast. We built a proof-of-concept using Kubernetes, MetalLB, and
a custom health-checker running on the GNS3 network emulator. We measured
latency, failure percentage, and Mean Time To Repair (MTTR) to observe the
system’s behavior. The performance evaluation of the proposed solution shows
an average recovery time better than one second. The number of failed requests
and latency overhead grows linearly as the failover time and latency between
two MECs increases. This thesis demonstrates the effectiveness of IP anycast for
MEC applications to steer the traffic to the nearest MEC instance and to enhance
resiliency with minor overhead.

Keywords: multi-access edge computing, traffic failover, anycast, high
availability

Language: English

2

Acknowledgements

I would like to express my gratitude to all people whose help and assis-
tance help me finishing the thesis. First of all, I would like to thank the
supervisors/examiners and advisors from Aalto University and KTH: Pro-
fessor Antti Ylä-Jääski, Professor Panagiotis Papadimitratos, and Marco
Spanghero. My deepest gratitude goes to the Nokia Bell Labs, especially
Dr. Kimmo Hätönen, for the guide, assistance, and help throughout the
technical and writing sections of the thesis.

My thanks also go to my thesis opponent, Abhishek Kumar Misra, whose
feedback on my thesis has been very constructive. I would also give my
gratitude to the European Union with the Erasmus+ scholarship to help me
study in these universities.

Last but not least, I would like to thank my family and my fiancée for
their support throughout my life and study.

Espoo, July 29, 2020

Adika Bintang Sulaeman

3

Abbreviations and Acronyms

3GPP 3rd Generation Partnership Project
AF Application Function
API Application Programming Interface
ARP Address Resolution Protocol
AS Autonomous System
ASN Autonomous System Number
AWS Amazon Web Services
BFD Bidirectional Forwarding Detection
BGP Border Gateway Protocol
CDN Content Delivery Network
CNCF Cloud Native Computing Foundation
DN Data Network
DNS Domain Name System
DoS Denial of Service
eBGP external Border Gateway Protocol
ECMP Equal-Cost Multi-Path
ECS EDNS Client Subnet
EIGRP Enhanced Interior Gateway Routing Protocol
EKS Elastic Kubernetes Service
ETSI European Telecommunications Standards Institute
FQDN Fully Qualified Domain Name
GCP Google Cloud Platform
GKE Google Kubernetes Engine
GSLB Global Server Load Balancer
iBGP internal Border Gateway Protocol
IGP Interior Gateway Protocol
IoT Internet of Things
IP Internet Protocol
IS-IS Intermediate System to Intermediate System
ISP Internet Service Provider

4

IXP Internet Exchange Point
LADN Local Area Data Network
LDP Label Distribution Protocol
LER Labeled Edge Routers
LSP Label-Switched Path
LSR Label Switched Routers
LTE Long-Term Evolution
MEC Multi-access Edge Computing
MEO Multi-access Edge Orchestrator
MNO Mobile Network Operator
MPLS Multiprotocol Label Switching
MRAI Minimum Route Advertisement Interval
MTBF Mean Time Between Failure
MTTF Mean Time To Failure
MTTR Mean Time To Repair
MTU Maximum Transmission Unit
NB-IoT Narrowband IoT
NEF Network Exposure Function
OOM Out Of Memory
OSPF Open Shortest Path First
OSS Operations Support Systems
P Router Provider Router
PE Router Provider Edge Router
PoP Point of Presence
RAN Radio Access Network
REST Representational state transfer
RFC Request For Comments
RIP Routing Information Protocol
RPS Requests Per Second
SBA Service-Based Architecture
SLA Service Level Agreement
TCP Transmission Control Protocol
TTL Time to live
UDP User Datagram Protocol
UE User Equipment
UPF User Plane Function
VIP Virtual Internet Protocol
VPN Virtual Private Network

5

Contents

Abbreviations and Acronyms 4

1 Introduction 8
1.1 Research Questions . 9
1.2 Objectives and Thesis Contributions 9
1.3 Methodology . 10
1.4 Scope and Delimitation . 10
1.5 Ethics and Sustainability . 11
1.6 Structure of the Thesis . 11

2 Background 12
2.1 Megasense Project and Nokia Bell Labs IoT Data Streaming

Platform . 12
2.1.1 Megasense Project . 12
2.1.2 Nokia Bell Labs IoT Data Streaming Platform 13

2.2 Multi-Access Edge Computing (MEC) 13
2.2.1 MEC and 5G . 14
2.2.2 Intra-MEC Network 15
2.2.3 Inter-MEC Network Architecure 17
2.2.4 MEC and Cloud Computing 18
2.2.5 Kubernetes as a Platform for MEC 19

2.3 Connecting Clients to the Nearest MEC Application Instances 20
2.3.1 GeoDNS . 21
2.3.2 Anycast . 22

2.4 Related Works . 22

3 Designing and Building Highly Available MEC Systems 24
3.1 Requirements . 24
3.2 Design Principles . 24
3.3 System Design . 25

3.3.1 Overview of the System Design 25

6

3.3.2 Algorithms for MEC Traffic Failover 27
3.3.3 Enhancing Availability Using Rate Limiting 28

3.4 Proof of Concept Implementation 29
3.4.1 Internal-MEC Implementation 29
3.4.2 Inter-MEC Network Implementation 31

4 Experiment 33
4.1 Experiment Testbed Setup . 33
4.2 Method of Experiment . 34
4.3 Metrics Measurement . 35

4.3.1 Measuring Latency from Clients to Sample Application
Instances in Different MECs 36

4.3.2 Measuring Mean Time to Repair From an Application
Instance Failure . 37

4.3.3 Measuring Failover Time 38
4.3.4 Application Instances Failure 40
4.3.5 MEC Hosts Failure . 42
4.3.6 HTTP Flooding DoS Attack Mitigation 43

5 Discussion 46
5.1 MEC Availability Enhancement 46
5.2 Security Considerations . 47

5.2.1 Denial-of-Service Attack Mitigation 48
5.2.2 Route and Service Hijacking 48
5.2.3 Privacy Issues . 49

6 Conclusion and Future Work 50
6.1 Conclusion . 50
6.2 Future Work . 51

7

Chapter 1

Introduction

Internet of Things (IoT) generates a continuous data stream, resulting in a
large volume of data. Sending all data to a remote process that is too far from
the data source may not be economical due to the data transfer cost. Further-
more, higher network round-trip time from clients to remote processes may
increase the overall application latency. Edge computing, loosely defined as a
system that brings computation closer to the source of data, aims to shorten
the latency by minimizing round-trip time between two geographically sep-
arate processes. In this thesis, edge computing refers to Multi-Access Edge
Computing (MEC), an ecosystem that provides a platform to deploy appli-
cations in the Radio Access Network (RAN) of the 5G system. With edge
computing, it is possible to filter and compress data near the data source
before sending it to a remote storage or give adequate responses to the IoT
device to operate with a shorter latency.

A single MEC system aims to serve clients within the specified area within
a few kilometers to keep the network latency minimized. Thus, companies
may want to deploy multiple applications in different MECs to serve more
users in different locations. MEC ecosystem must ensure the end-users ac-
cess the most optimally performing MEC services and provide failover or
backpressure handling if the MEC services are not responsive to enhance the
system’s uptime in case of failure, improving the overall quality of MEC.

Megasense project [7][6] is a large scale IoT project that deploys a massive
number of geographically scattered sensors. It can take the benefit of the
MEC data offloading so that data can be filtered and compressed before
sending it to a remote persistent data storage. This thesis focuses on building
an availability-improved MEC platform to minimize the downtime and data
loss in several failure scenarios.

8

CHAPTER 1. INTRODUCTION 9

1.1 Research Questions

There are some challenges in building an availability-improved MEC. Finding
the nearest MEC application instance is an inherent challenge of this type
of applications. This thesis formulates the following research questions to
address the previously mentioned challenges:

• RQ1. How does the MEC system help the clients connect to
the optimal MEC application instances?

The optimal MEC application instances are the nearest healthy MEC
application instances. A healthy MEC application instance is the one
that can respond to a client request within a user-defined timeout. The
question also applies to a situation where there is a failure in the nearest
healthy MEC application instance.

• RQ2. How to enhance the availability of MEC application
instances?

The answer to the research question RQ1 must always hold even if
the nearest MEC fails to keep the availability high. Availability refers
to the ability of the whole system to keep serving clients despite an
ongoing failure. The availability of a system implies the reliability.
This research question focuses on how to provide the availability on
the infrastructure level, not on the application level.

1.2 Objectives and Thesis Contributions

The main objective of the thesis is to study and propose a MEC system that
can answer the research question RQ1 and RQ2, which is to find the correct
MEC application instances and to enhance the availability of a MEC system.
The key contributions of this thesis are as follows:

• Studying, proposing, and building a proof of concept of a MEC platform
that helps clients discover the nearest MEC application instances.

• Studying, proposing, building a proof of concept, and discussing en-
hancement to the availability of a MEC system.

CHAPTER 1. INTRODUCTION 10

1.3 Methodology

This thesis follows the design science methodology to achieve its objectives.
There are seven guidelines of design science methodology [34] which this
thesis follows:

• Design as an artifact: This thesis delivers proof of concepts as a software
and simulation as artifacts

• Problem relevance: The objectives of this thesis is to develop a solution
for Nokia Bell Labs, especially for the MegaSense project [7]

• Design evaluation: The evaluation involves testing the system and an-
alyze the data of experiments to measure correctness, performance,
security and reliability

• Research contributions: This thesis aims to contribute to the field of
edge computing by studying a certain way to improve availability and
discusses the trade-offs

• Research rigor: The thesis relies on thorough literature review, design,
experiment, and evaluation

• Design as a search process: To find the right artifact to propose, this
thesis relies on finding and combining the existing approaches and ap-
plying it to the MEC problems it focuses on

• Communication of research: The thesis is presented to academia, technology-
oriented fellows in industry

1.4 Scope and Delimitation

The thesis’ primary focus is on the MEC infrastructure level, especially on
the IP network layer and above. Therefore, there are some assumptions made
as readily available systems.

The first assumption is that this thesis assumes the 5G core network
functions are already implemented and accessible via a particular program-
ming interface. For example, European Telecommunications Standards In-
stitute (ETSI) defines some of the 5G functionalities, such as Network Ex-
posure Function (NEF) is accessible through a Representational state trans-
fer (REST) Application Programming Interface (API). Second, the thesis
assumes that multiple MECs belong to a single Mobile Network Operator

CHAPTER 1. INTRODUCTION 11

(MNO). Thus, the managed MECs belong to the same Autonomous System
(AS) number.

A network emulation software is used to develop the proof of concept
of the MEC network infrastructure. Due to the limitation of the network
emulator used, the connection from the user equipment (clients) to the 5G
network is omitted. The capability of the network nodes in the topology
built is limited to the inherent capability of the software used.

1.5 Ethics and Sustainability

This thesis is built on top of various free and open-source software libraries
and tools. All of the libraries and tools used for this thesis have either MIT

or Apache-2.0 license, while the emulator has GNU GPL license. This thesis
does not violate the terms and conditions of the licenses.

The data gathered in this thesis contains neither personal nor production
data. Thus, this thesis has no ethical issues regarding the data exposure.
Also, this thesis does not fabricate any data for the experiment. The related
work of others as the ground material of this thesis has been appropriately
cited.

The sustainability of this thesis is supported by leveraging existing pro-
tocols to solve the research problems. The thesis proposes a solution that
should work backward compatible and is possible to extend for future needs.

1.6 Structure of the Thesis

The thesis is organized as follows. Chapter 2 reviews the literature and gives
background information of the project, MEC, and related works. Chapter 3
shows the design and implementation detail of the proposed solution. Chap-
ter 4 gives the experiment detail as well as the result of the experiment and
measurement. Chapter 5 provides discussion and analysis on the availability
enhancement achieved and the security consideration of the system. Finally,
Chapter 6 concludes this thesis and discusses the future work.

Chapter 2

Background

This chapter provides a study of the related technologies, techniques, and lit-
erature. It begins with the overview of Nokia Bell Labs IoT data streaming
platform and its use for the MegaSense project, a project aiming to gather
environment data with IoT technology accurately. Then, it discusses the
MEC infrastructure and its framework. The chapter continues with the con-
ventional techniques to help clients discover the nearest application instances
and their tradeoffs. This chapter also discusses the standard availability en-
hancement techniques. Last but not least, it presents some of the related
work to this thesis.

2.1 Megasense Project and Nokia Bell Labs

IoT Data Streaming Platform

2.1.1 Megasense Project

MegaSense is a joint research project by several parties, including Nokia Bell
Labs and the University of Helsinki, aiming to collect data from both low-end
and high-end sensors and leverage machine learning to calibrate data from
low-end sensors [7][6]. The sensor devices in a sensor network send data to
a single sink or gateway. This gateway is connected to the internet using
various interfaces, such as Ethernet, Narrowband IoT (NB-IoT), Long-Term
Evolution (LTE), and the upcoming 5G network. The gateway or sink sends
the sensor data stream to the Nokia Bell Labs IoT data streaming platform,
which processes, stores, and manages the dissemination of the sensor data.

12

CHAPTER 2. BACKGROUND 13

2.1.2 Nokia Bell Labs IoT Data Streaming Platform

The Nokia Bell Labs IoT data streaming platform is a distributed system-
based platform built by Nokia Bell Labs to ingest, process, and disseminate
data from IoT devices or other network equipment devices. The system is
based on microservices with the asynchronous messaging pattern, utilizing a
pluggable message broker such as Kafka or ActiveMQ. The critical compo-
nents of this streaming platform are:

• Data Fetcher (DF): Sensors in the IoT network sends data to a gateway.
DF can run in the gateway or farther machine, such as MEC. DF is
responsible for data pre-processing such as filtering and compressing,
before sending it to the remotely deployed Data Switch (DS).

• Data Switch (DS): DS is the pluggable message broker, such as Apache
Kafka. DS runs in MEC or cloud.

• Data Hub (DH): DH is the endpoint for the users or operators. For
example, if users want to see some data, they send a request to the DH.
The DH then subscribes to DS to fetch the necessary data.

• Coordinator: The Coordinator is responsible for managing and coordi-
nating all components of the IoT data streaming platform.

The IoT data streaming platform can virtually be deployed in various
underlying infrastructures, such as on-demand cloud infrastructure such as
Amazon Web Services (AWS) or Google Cloud Platform (GCP), or on-
premise cloud and edge infrastructure. The deployment options of this stream-
ing platform may vary depending on the available resources and the system’s
goal. The first and simplest option is to deploy everything on the cloud.
This approach is the simplest to deploy and manage because every com-
ponent runs in a single location, which makes deployment and monitoring
easier. However, the downside is that it introduces higher latency and is
cost-ineffective since gateway needs to send all sensor data to the cloud. The
second option is to have DF on the sink/gateway of the sensor network, and
the other components on MEC or cloud. In this way, the data sent from the
client-side to the remote data processors is already filtered and compressed,
which improves the efficiency of the data transmission.

2.2 Multi-Access Edge Computing (MEC)

Multi-access edge computing (MEC) is a platform that provides means of
deploying applications on the 5G RAN. In a simple term, MEC brings cloud

CHAPTER 2. BACKGROUND 14

capabilities closer to the clients. MEC aims to bring computation closer to the
data source, so that data offloading and processing can be done not too far
from the data source. User equipment devices, such as mobile phones, IoT
devices, and autonomous cars, are the prime example of the data sources
[56]. With MEC, the network round-trip time and the data sent to a further
endpoint can be minimized, improving the quality of the service and reduces
the data transfer cost.

The MegaSense project is one of the use cases of MEC. If one million
devices send temperature, humidity, and air pollution data every second in a
region, after 6 hours, there will be 21.6 million data sent from all devices. The
cost of data transfer for a large amount of data may be expensive, especially
if it must transit through a paid network. The IoT devices instead send data
to the MEC, and the MEC application compresses the data before sending
it to the persistent database in a remote-cloud. Another example is when
the IoT devices need some feedback from the remote application. Interacting
with a MEC instead of a farther cloud reduces the overall application latency
by shortening the network’s round trip time.

2.2.1 MEC and 5G

5G technology embraces MEC by providing means to deploy MEC in the user
plane of the 5G network. 5G architecture is based on Service-Based Archi-
tecture (SBA), in which each component communicates with each other via a
defined Application Programming Interface (API) [9]. Figure 2.1 shows the
components of 5G system architecture. According to The European Telecom-
munications Standards Institute (ETSI), MEC is deployed in the N6 reference
point, which is the interface between User Plane Function (UPF) and Data
Network (DN), which is an external IP network.

5G system provides some critical enablers to MEC [9]. First, 5G provides
a concept of Local Area Data Network (LADN), a geographically isolated
network that can provide high data rate, low latency, and service localization
in 5G [43]. The location of the LADN is within the DN component, which
has the N6 interface connection to the UPF, as shown in Figure 2.1. 5G
core network is responsible for selecting the UPF to route the traffic to the
LADN, known as Local Routing and Traffic Steering. 5G core network and
Application Function (AF) can exchange information via Network Exposure
Function (NEF) for various purposes, such as exposing bandwidth manager,
User Equipment (UE) identity, and radio network information APIs.

There are two main APIs that engineers might consider when architect-
ing and developing MEC applications [52]. The first one is Mx2 API [28],
which enables the operators to interact with the MEC applications, such as

CHAPTER 2. BACKGROUND 15

Figure 2.1: 5G SBA system architecture [9]

giving commands to start, stop, and delete MEC applications. The second
one is Mp1 API [25], which allows MEC applications to interact with MEC
systems so that they can make service discovery of and consume other MEC
applications. There are also Radio Network Information API [27] and Lo-
cation API [26] although these APIs are not mandatory for deploying MEC
applications. Figure 2.2 shows the entities of MEC in the 5G ecosystem with
its reference points.

In the Figure 2.2, the blue boxes are the MEC platform infrastructure
components. The operators deploy, delete, and manage MEC application
services through Operations Support Systems (OSS) software. The OSS
requests operations to the Multi-access Edge Orchestrator (MEO). The MEO
validates the requests from OSS and checks the request to the company
policy. Then, MEO sends requests to the MEC Platform Manager. The
MEC Platform is responsible for providing the runtime functionalities to the
running MEC application services, such as service registry, DNS handling,
and filtering rules control.

2.2.2 Intra-MEC Network

A MEC can be considered as a microdata center which is close to the data
sources. Hence, the network architecture can be thought of as a smaller
version of a typically much bigger data center. MEC hosts are virtualized
on top of bare-metal machines, such as the Nokia AirFrame Open Edge

CHAPTER 2. BACKGROUND 16

Figure 2.2: Entities in MEC [52]

Server [1], with type-1 hypervisors such as VMWare, Xen or Linux KVM.
The compute resources on the MEC can be managed by a platform, such as
OpenStack and OpenVIM [54].

The internal MEC network topology can follow the Clos network topology,
which consists of the spine and leaf layer to build a full-mesh host network
[23]. The leaf layer consists of Top of Rack (ToR) switches, and the spine
layer consists of switches that connect all ToR switches in the leaf layer
[23][10]. Figure 2.3 illustrates the network architecture with Clos topology
of a MEC. This network architecture is a simplified version of the network
architecture found in the data center. MEC uses a border router to connect
itself to the outside network [14].

Inside the MEC, the best practice is to run external Border Gateway
Protocol (eBGP) with private Autonomous System (AS) numbers (64512 to
65535) for the nodes inside [23]. Using eBGP instead of internal Border
Gateway Protocol (iBGP) is simpler to manage because it does not rely on
Internal Gateway Protocol (IGP) to distribute the advertisement and best
path selection. To prevent the count-to-infinity problem, the leave nodes
have different AS numbers, but the spine nodes have the same AS numbers,
except for inter-POD nodes. In this way, since the path lengths from the
border router to every MEC host are the same, the border router can load

CHAPTER 2. BACKGROUND 17

Figure 2.3: Intra-MEC Network Architecture

balance the traffic with Equal Cost Multipath (ECMP).

2.2.3 Inter-MEC Network Architecure

The N6 interface connects the MEC to the users in the mobile network via
RAN. The border router is connected to the edge router of the Internet Ser-
vice Provider (ISP) or MNO to have the Internet connection [41]. The back-
bone network of the ISP can use any IGP routing protocol to operate, such
as Open Shortest Path First (OSPF), Routing Information Protocol (RIP),
Intermediate System to Intermediate System (IS-IS), or Enhanced Interior
Gateway Routing Protocol (EIGRP) [14]. One of the options to build a
dedicated network interconnecting these MECs on top of the ISP backbone
network is with Multiprotocol Label Switching (MPLS) Virtual Private Net-
work (VPN). Figure 2.4 illustrates the inter-MEC network architecture.

MPLS uses labels in layer-2 instead of IP addresses to route the traffic.
In this way, it does not rely on the IP routing table in the routers in the ISP
backbone network. The MPLS path is called the Label-Switched Path (LSP)
[30]. In the MPLS network, the edge routers are called Labeled Edge Routers
(LER) or Provider Edge (PE) routers. MEC border routers connect to the

CHAPTER 2. BACKGROUND 18

Figure 2.4: Inter-MEC Network Architecture

PE routers. The intermediate routers in the LSP are called Label Switched
Routers (LSR) or Provider (P) routers. The most straightforward protocol
to distribute the label of MPLS is Label Distribution Protocol (LDP), which
relies on IGP routing protocol such as OSPF or RIP to distribute the label.

2.2.4 MEC and Cloud Computing

MEC is not a replacement for the cloud technology. MEC is intended as the
complementary technology for cloud systems. With MEC, the applications
may follow the fog for a transparent computing framework [50]. This frame-
work divides the system into an end-user layer consisting of IoT devices, edge
server layers consisting of edge services, core network layers comprising the
core internet network infrastructure, and cloud layer comprising clusters of
servers.

Megasense project follows the transparent computing framework. The
data source is the IoT devices. The data offloading happens in both IoT

CHAPTER 2. BACKGROUND 19

gateway, referred to as fog, and MEC, referred to as the edge. The data
may be optionally sent to a remote persistent data storage in the cloud.
Following this abstraction is useful when there is a need to offload data at
multiple layers.

2.2.5 Kubernetes as a Platform for MEC

There are some flavors of Kubernetes designed for edge computing, such as
KubeEdge and K3S. KubeEdge is a Cloud Native Computing Foundation
(CNCF) sandbox project that aims to adapt Kubernetes as a platform for
edge computing [4]. K3S, built by Rancher, is a lightweight and stripped-
down version of Kubernetes [3]. K3S uses a lightweight containerd, an
alternative container engine as a replacement of Docker and uses sqlite3 to
replace etcd as the default storage.

As previously mentioned, MEC consists of several host machines and an
edge router. The Kubernetes as a platform to orchestrate the MEC appli-
cations, runs on bare-metal hosts. Unlike exposing applications in a man-
aged Kubernetes solution such as Amazon Elastic Kubernetes Service (EKS)
or Google Kubernetes Engine (GKE), exposing deployed Kubernetes ser-
vice on bare-metal environments requires some cumbersome works. For in-
stance, exposing any service, including Ingress Controller with Kuber-
netes’ Service type LoadBalancer, cannot be done out-of-the-box. Expos-
ing services with Service type NodePort is difficult to manage in the long
run and does not scale well. To alleviate this problem, a project named
MetalLB leverages Address Resolution Protocol (ARP) and Border Gateway
Protocol (BGP) to expose the services [5].

In the MetalLB ARP mode, one Kubernetes node announces the services’
IP addresses to the border router with ARP protocol. In other words, one
node spoofs the IP addresses of the services. When incoming traffic arrives
at that node, the traffic is forwarded to the service by KubeProxy. In the
MetalLB BGP mode, all nodes make a BGP peering session with the border
router. MetalLB also has a BGP speaker, which tells the border router
how to route the traffic to the intended services. MetalLB in BGP mode
is more complicated than in ARP mode. However, MetalLB in BGP mode
allows load balancing on the IP layer level if the border router supports
Equal Cost Multi-Path (ECMP). One caveat with ECMP is if one node fails,
the running connections to different nodes may also be disrupted depending
on the hashing algorithm used [44]. For example, with consistent hashing
algorithms such as Maglev, at most only k/n connections will be disrupted,
where k is the number of active connections and n is the number of nodes
[24].

CHAPTER 2. BACKGROUND 20

2.3 Connecting Clients to the Nearest MEC

Application Instances

The clients start to communicate with the MEC application instance by mak-
ing a service discovery. Service discovery, in this context, is defined as the
mechanism that allows the clients to query the IP address associated with the
domain of a service. The service registry, which lets the MEC services regis-
ter themselves, is coupled with the service discovery provider. A prominent
example of a service discovery is DNS-based service discovery.

It is essential to build a secure service discovery. Since the service discov-
ery is the first step clients do before making any contact with the intended
services, a false returned IP address or disruption of the service discovery
provider’s availability can be fatal. Trabelsi et al. suggest the requirements
of secure service discovery [57]:

• Authentication: the client is sure that the reply comes from the right
service registry.

• Privacy: the client’s privacy is protected so that any parties cannot
learn the pattern and do inference attack.

• Access control: service registry may want to advertise the services to
the authorized clients only.

• Availability: service registry is protected to any attack that may disrupt
the availability, such as Denial of Service (DoS) attack.

In addition, in the MEC context, service discovery provides a way for
clients to discover the nearest available MEC service. Achieving this goal
while maintaining the requirements of secure service discovery is not a trivial
task.

ETSI suggests several considerations when building service discovery so-
lutions for MEC services [52]:

• DNS-based: clients of the edge services may not be aware of edge ser-
vices, and must be able to get the IP address of the edge services using
DNS queries. This aims to ease of deployment by not introducing new
protocols to existing deployed clients [8].

• Domain name: the service must register the Fully Qualified Domain
Name (FQDN) that clients know and can query to DNS server to get
the IP of the FQDN

CHAPTER 2. BACKGROUND 21

There are two common techniques to help clients traffic go to the nearest
application instances, GeoDNS and anycast.

2.3.1 GeoDNS

If there are multi-region MEC services, MEC can adapt the GeoDNS tech-
nique to return the nearest MEC service to the client. This technique, also
known as Geo-IP mapping, is commonly used in Content Delivery Network
(CDN) [35]. GeoDNS receives IP address clients (in the DNS context, clients
are also called resolvers) and gets the coordinate of the resolving by looking
up from a database. It then measures the distance between the clients and
services and returns the nearest service IP. GeoDNS is simple to implement,
since it relies only on DNS implementation to achieve its goal. However,
GeoDNS-based approach has several disadvantages.

The first distinct disadvantage is that GeoDNS is not the best way to
provide failover because of the DNS caching in the recursive DNS resolver or
the end devices themselves. If the application for the respective IP address
fails, and the DNS updates its database for the next query, the update is
not updated to the cache of the recursive DNS resolver. The window time
between the failure and the next query is when clients cannot talk to the
respective endpoint. From our experience, some IoT devices even query DNS
only once upon start-up and do not respect the DNS cache timeout.

Another disadvantage is if the clients connect to a public DNS resolver,
such as Google’s or Cloudflare’s public DNS, the GeoDNS sees the public
DNS resolver IP address instead of the clients’ IP address, which can mislead
GeoDNS to not return the nearest endpoint to the client. This is not desirable
because it makes the Geo-IP mapping useless. For example, if the client’s
location is in Helsinki, and the DNS resolver is in Munich, and there are two
server endpoints in Stockholm and Aachen, the Geo-IP mapping will not give
an advantage to the client. If the DNS recursive resolver is provided by the
ISP, which is supposedly not too far from the clients, the impact might not
be that significant [40].

The motivation behind public DNS is to let users change their preferred
DNS because the DNS provided by ISP may violate privacy by selling brows-
ing history to advertisers [15], may be less performant, or may block some
domain name [49][2]. DNS EDNS Client Subnet (ECS) (RFC 7871) mitigates
this problem by bringing the clients’ subnets to the recursive DNS queries
[16].

The DNS ECS solution in RFC 7871 [16] does not come without a prob-
lem. The first issue with bringing clients’ subnets to the DNS recursive
queries is the privacy of the clients [16][21]. Using the ECS-enabled DNS

CHAPTER 2. BACKGROUND 22

query makes it possible for the third party to learn the services and clients
geographical distribution. Due to this privacy related-issue, RFC 7871 rec-
ommends the ECS is disabled by the DNS and suggests that any approach
that introduces additional metadata be avoided in order to keep users privacy
[16]. As a result, many local ISP DNSes do not implement this feature.

2.3.2 Anycast

Anycast refers to a practice where multiple discrete instances have a single IP
address [36]. Clients traffic go to the nearest application instances because
of the shortest path that a routing protocol chooses. Anycast is a common
practice for DNS operations [18].

Unlike the GeoDNS approach, anycast neither suffer the privacy-related
issue nor the DNS cache and Time To Live (TTL) problems. Since it does not
rely on the DNS query, the failover between one instance to another might be
faster, depending on the routing convergence time within the network. An-
other advantage of anycast is that it helps absorb DoS attack localized to the
nearest application instance only, and keep the other application instances
untouched [48].

Anycast also has some downsides. In practice, it is more complex to set
up than GeoDNS because it requires some network set up by the ISP in
the backbone network. Furthermore, if the failure happens too often, which
means the route changes too often, it leads to route flapping, which prevents
the network from converging [18]. Anycast is inherently not aware of the
system load. Hence, it will always route the traffic to the nearest destination
regardless of its conditions.

2.4 Related Works

Google combined anycast and load balancing for some of its application ser-
vices [58]. The application was running behind a load balancer, and the load
balancer leveraged IP anycast. The application instances were replicated
behind the load balancer. If an instance failed, the load balancer knew by
monitoring the heartbeat and removed the instance from the load balancer
entry. The global route changed only happen when the load balancer failed,
not when the application instances failed.

Dropbox used Global Server Load Balancer (GSLB) on the DNS level,
which decided which IP address it should return by combining Geo-IP map-
ping techniques with Real User Metrics [32]. Real User Metrics was a collec-
tion of Point of Presence (PoP) performance, obtained by Dropbox desktop

CHAPTER 2. BACKGROUND 23

clients. The desktop clients periodically probed multiple PoPs and sent the
results to the aggregator. In this way, the GSLB was aware of the perfor-
mance of each PoP.

More advanced techniques to route traffic between edges can also be done
with traffic engineering. Facebook developed Edge Fabric, an SDN-based
solution to steer traffic to the optimal CDN by modifying BGP routes of
peered routers [53]. Edge Fabric continuously monitored the performance
and capacity of the CDNs. It dynamically changed the routing table of the
BGP routers to steer the traffic based on the monitored CDN performance
and capacity. Google built Espresso, an SDN-based approach to do global
traffic engineering [61]. Espresso built the routing path in a centralized
server and applied the routing with MPLS to the MPLS switches as the data
plane. MPLS was commonly used for traffic engineering by applying label
switching, allowing a routing that is independent of the routers’ IP routing
tables [55]. Espresso also had BGP speakers to peer with other BGP routers.
Espresso enabled Google to do application-aware traffic routing.

Chapter 3

Designing and Building Highly
Available MEC Systems

This chapter discusses the proof of concept of the proposed solution. It begins
with the system requirements, adopted design principles, and the system
design of the proposed solution.

3.1 Requirements

To deliver the desired system, the design must ensure that it can be inte-
grated into the existing mechanisms. There are several requirements that the
proposed solution has to meet:

• The operation of the proposed solution must comply with the 3GPP
standards and/or ETSI group specifications for MEC.

• The MEC infrastructure is transparent to the clients, and the clients
may not be aware of MEC at all. The proposed solution must not rely
on changing the behavior of the clients or to change the protocol that
is already standardized.

• The MEC application must be stateless. In other words, the clients’
requests do not depend on the previous responses from the MEC ap-
plications.

3.2 Design Principles

The system design of this thesis follows these principles:

24

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS25

• Pragmatic approach: the solution tries to solve an engineering problems
pragmatically. The implemented system design as the proof of concept
will be measured to see its effectiveness in solving the problems.

• Seamless integration: the solution solves the problem seamlessly, with-
out breaking changes or backward compatibility issues with the existing
status of software stacks and protocols.

• Leveraging existing tools, libraries, software, and protocols: the solu-
tion uses existing open source tools and protocols to build the solution.

3.3 System Design

This section discusses the system design of the MEC system and how it
improves the availability. It starts with an overview of the system. Then, it
goes deeper by discussing the design of the MEC internal network, followed
by the inter-MEC network.

3.3.1 Overview of the System Design

MEC application instances leverage anycast addressing to help routing clients’
traffic to the nearest instance. The main reason for the use of anycast ad-
dressing instead of GeoDNS is because many IoT devices do not resolve the
hostname when the cache is expired, which does not allow the traffic to go
to a different endpoint throughout the lifetime of the IoT devices. Anycast
also allows for faster failover than the DNS because DNS has cache timeout
and no strict implementation on the client’s side to do DNS lookup when the
DNS timeout expires.

Figure 3.1 shows the generic design of MEC system. The internal MEC
network follows the architecture explained in Section 2.2.2 enhanced with
Bidirectional Forwarding Detection (BFD) to detect hosts or links failure
quickly. With BFD, the border router can detect the failure in around 50
milliseconds by consuming only limited bandwidth in its operation [19]. BFD
works by making a session between any two nodes and sending a periodic
message to notify their life. If the session is down and several periodic mes-
sage is not received, the link is considered down.

Every application instance exposed to the outside world is allocated a vir-
tual Internet Protocol (VIP) address. The BGP speaker advertises the VIP
address to the MEC border router. A custom agent monitors the applica-
tion performance by fetching the performance data from the default system
monitor. The agent also probes the application instances periodically as a

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS26

Figure 3.1: Internal MEC Design

health check. If an application instance does not respond to the probes, the
agent can ask the BGP speaker to stop advertising the associated VIP ad-
dress. BFD daemon runs on every node so that the MEC border router knows
instantly if the MEC hosts are running.

This thesis also experimented with a proxy in front of the MEC applica-
tion instances to investigate a further possibility of enhancement. The proxy
may help implement rate-limiting, Transport Layer Security (TLS) termina-
tion, and IP addresses blocking in case there is a need to block malicious IP
addresses. This thesis examines the effectiveness of a rate-limiter as a proxy,
while the other tasks such as TLS termination and IP address blocking are
left for future work.

Figure 3.2 shows the inter-MEC network design. The ISP backbone net-
work provides an inter-MEC network with MPLS LSP. With MPLS, the
routing for the traffic does not rely on the IP routing table on the router,
but on the label assigned on the router in between layer-2 and layer-3 of the
protocol. MPLS LSP makes the routing independent of the routing table and
makes it an MPLS VPN. Combined with anycast, this inter-MEC network

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS27

is the failover path in case of a complete application failure in one MEC.

Figure 3.2: Inter-MEC Network Design

3.3.2 Algorithms for MEC Traffic Failover

The MEC application instances fail if they are unable to serve clients’ re-
quests. Failure happens for various reasons, but this thesis focuses on two
main reasons: MEC hosts failure, or the application is overloaded and fails
to restore its state.

If a failure happens, MEC stops advertising the VIP address of the failed
MEC application instances. Since the application instance uses anycast, a
new advertisement containing different routes to the same VIP address des-
tination will come to the border routers of MEC. The network converges
when all nodes in the network have received an advertisement and form a
steady path. The failover time is bound to the network convergence time
because the traffic relies on inter-MEC network that the routing protocol
builds.

In a multiple-operator network, the advertisement interval may vary. The
variance in the advertisement interval can lead to exponential convergence
time [29]. However, all of the MEC resides in a single backbone network
in this inter-MEC network design, and the advertisement time can be set
homogeneous to prevent the exponential convergence time problem.

The agent, as shown in Figure 3.1, monitors the health of the MEC appli-
cation instances. It probes the port of the application instances periodically
and monitors the CPU usage of the MEC application instances. The agent
decides that the MEC should stop advertising the VIP address of an appli-
cation if the agent fails to probe the MEC application instance subsequently
or if the application hits CPU limit usage set by the operator for a prolonged
amount of time. It must be noted that the limit set must not be too small to

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS28

avoid route flapping, but not too large to keep the failover’s responsiveness.
Algorithm 1 shows the pseudocode of how the agent works.

Algorithm 1: Algorithms for the agent to do the health check

Data: interval, appFailureCounter, threshold
1 start the agent;
2 allApps = read file configuration;
3 while true do
4 wait(interval);
5 foreach app ∈ allApps do
6 status = probe host;
7 if status == unhealthy then
8 appFailureCounter[app] += 1;
9 if appFailureCounter[app] > threshold then

10 stop advertising VIP of the app;
11 end

12 end

13 end

14 end

If some hosts fail, the traffic still goes to the same MEC location, although
there will be some possible connection resets by the router when calculating
the equal-cost multipath. If all hosts in a MEC fail, the border router removes
those failed hosts from the routing table. Then, the new route coming from
the anycast advertisement will re-route the traffic to the second nearest MEC
instance.

3.3.3 Enhancing Availability Using Rate Limiting

Rate limiting means limiting incoming rates to a particular defined limit.
If the rate of the incoming traffic from a particular IP address exceeds the
limit, the rate limiter will return an error to the request. This thesis used
Nginx as the rate limiter.

Nginx uses leaky bucket algorithm to implement the rate-limiting [45].
Leaky bucket algorithm puts the incoming requests in a buffer (or a bucket
as an analogy) and processes the requests with a maximum rate of R. If
the rate of the incoming requests is larger than R and the buffer is full,
the incoming requests ”spills” out of the buffer and not processed [11]. In
this way, the rate received by the MEC application instance is limited to R
requests per second for each client.

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS29

3.4 Proof of Concept Implementation

The proof of concept consists of two main parts. The first one is the agent
that monitors the application instances and decides on the failover, written
in Golang 1.14. The second part is the MEC ecosystem emulation. GNS3
Network Emulator is used to build the network topology. All the routers
used in the emulator run Linux OS, with FRRouting installed to provide
the Linux kernel with routing capabilities. Kubernetes and MetalLB are
used as the orchestration framework and as a BGP speaker for the exposed
MEC application instances. An open-source BFD daemon, aiobfd, is used
as daemons for all the MEC hosts. Table 3.1 summarizes the tools used to
build the proof of concept.

Software Name Version Function
GNS3 2.2.6 Network emulator
Kubernetes v1.18.2 Orchestration framework
FRRouting v7.3 Software suite providing router capability to

Linux
MetalLB v0.9.3 Load-balancer for bare metal Kubernetes
aiobfd v0.2 BFD daemon written in Python
client-go v0.18.0 Golang client library to interact with Kuber-

netes cluster

Table 3.1: Software and libraries used

3.4.1 Internal-MEC Implementation

The implementation of the internal MEC system follows the design in Fig-
ure 3.1. There is at least one border router as the ingress and egress of the
MEC. The border router makes eBGP peers session with MEC hosts as well
as the router in the backbone network. The border router and all connected
nodes inside the MEC are BFD enabled to detect a link or node fault early.
The border router runs Linux version 5.3 with fib multipath hash policy=1

to enable per-flow load balancing [39]. Per-flow load balancing decides the
path to select based on the source IP address, source port, destination IP
address, and destination port. In this way, the multipath hash policy helps
avoid transport layer packet re-ordering.

Kubernetes is installed on all MEC hosts, referred to as Kubernetes nodes
in the Kubernetes context. Kubernetes metrics-server is installed to read
the resource consumption, such as CPU and memory usage, of the appli-
cations deployed. The agent reads the resource consumption data through

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS30

the Kubernetes API server. The BFD daemon is installed as DaemonSet so
that it runs in every Kubernetes node. The BFD DaemonSet must be set
hostNetwork=True to expose its port without load-balancing the traffic by
the KubeProxy.

The agent, named srvbend, is deployed as the type Deployment. To
make the decision done by the srvbend simple and consistent, the number of
replicas needed is only one. Figure 3.3 illustrates the design implementation
of the internal system of the MEC.

Figure 3.3: Internal MEC implementation diagram

MEC application instances are typically deployed with type Deployment,
although the application owner is not restricted to choose another type such
as DaemonSet. Independent MEC application should be ideally exposed with
Service type LoadBalancer with externalTrafficPolicy: Local set. In
this way, the border router load balances the incoming traffic with equal
cost to the nodes where the application instance Pods are running. MetalLB
looks at the Service with type LoadBalancer, assigns a VIP address for

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS31

that Service, and the MetalLB’s BGP speaker advertises the VIP address
to the border router.

If a proxy is used in front of the MEC application instances, the proxy can
be deployed as a Kubernetes ingress controller. The ingress controller has a
Kubernetes Service with type LoadBalancer, in which the MetalLB BGP
speaker will announce the external VIP address. The ingress controller will
forward the traffic to the internal Service of the MEC application, which has
the type of ClusterIP. The Kubernetes Ingress sets the rules to forward
the traffic. The rate-limiting can be configured by changing the configuration
of the ingress annotation [46].

3.4.2 Inter-MEC Network Implementation

The implementation of the inter-MEC network follows the design in Fig-
ure 3.2, which is implemented as shown in Figure 3.4. MECs are connected
via an MPLS network, forming a full-mesh MEC network. LDP is configured
on the routers in the backbone network to generate labels and exchange them
between MPLS routers. Each MEC is connected to PE router, and the PE
routers might be connected via P routers.

Figure 3.4: Inter-MEC network via backbone network emulated in GNS3

The interior network routing protocol of the backbone network is OSPF
with area 0. PE and P routers are routed with OSPF via their loopback

CHAPTER 3. DESIGNING AND BUILDING HIGHLY AVAILABLEMEC SYSTEMS32

interface. All PE routers form iBGP sessions with Minimum Route Adver-
tisement Interval (MRAI) set to 5 seconds, as suggested by the RFC 4271
[59].

Chapter 4

Experiment

This chapter provides the details of the experiment. It starts with the detail
of the experiment testbed setup. Then, it defines the experiment metrics and
how to measure them. Finally, it shows the result of the metrics measurement.

4.1 Experiment Testbed Setup

We built a testbed on GNS3 network emulator to experiment with the pro-
posed solution. The GNS3 network emulator server that hosted the virtual
machines ran on a remote host owned by Nokia. The remote host ran Linux
Ubuntu 18.04 with 10 CPU cores and 32 GB of RAM. Since all the virtual
machines ran on a single machine, the network latency between the nodes in
the experiment was negligible. Each router in the experiment had 1500 MB
of RAM and one virtual CPU, while the MEC hosts had 3300 MB of RAM
and three vCPUs.

The experiment setup consisted of four MECs and one cloud environment.
The MECs were connected to a single backbone network of a certain ISP with
a certain AS number, while the cloud belonged to another AS. These two
different backbone networks were connected via an Internet Exchange Point
(IXP). Table 4.1 shows the AS numbers set up in the experiment.

A sample application addressed with IP anycast was deployed in all MECs
and cloud. This sample application was an HTTP server written in Python
3 with Flask framework version 1.1.1. Each application instance Pod had 30
milli-CPU to run. To emulate the latency in the backbone network, each
router in the backbone network shaped the traffic using tc command to add
6 ms additional latency for each of its network interfaces. Figure 4.1 shows
the complete setup of the system.

33

CHAPTER 4. EXPERIMENT 34

Name ASN
MEC-1 (border router) 65533
MEC-2 (border router) 65534
MEC-3 (border router) 65535
MEC-4 (border router) 64513
ISP X 64500
ISP Y 64501
Cloud (border router) 65536

Table 4.1: AS numbers of MECs, ISPs, and clouds

4.2 Method of Experiment

The experiment compares the data of the experiment metrics with and with-
out the proposed solution. The goal is to observe the improvement in the
availability in respect to some design decision that this thesis takes [42]. The
method for the experiment loosely follows the Chaos Engineering approach
[51]. In this approach, the experiment defines the steady state behavior of
the MEC application services, introduces events that can disrupt the system,
hypothesize the system state under those events, and takes measurement to
observe the deviation from the hypothesis. The steady state is defined as:

Steady State. The latency and successful requests that clients perceive when
interacting with MEC application services in an optimal condition

Then, we introduce two events that may disrupt the availability of the
MEC application services:

• e0: MEC application instances stop running.

• e1: An extreme increase of traffic from clients.

The event e0 happens when there is something wrong with the application
that can be killed by the underlying system, such as when it has memory
leak and eventually killed by Out Of Memory (OOM) killer, or a bug in the
code of the MEC application that can cause it to stop working. This case
is also possible when the Kubernetes fails to schedule the Pods to the nodes,
while the nodes are still maintaining BFD connection with the border router.
The event e1 happens when the number of clients within the served area is
increasing or under a DoS attack. Given the steady-state and the events
introduced, we come up with a hypothesis:

CHAPTER 4. EXPERIMENT 35

Figure 4.1: Full setup of the experiment

Hypothesis. The events e0 and e1 occurring to the system will not change
the system behavior from the steady state 4.2

Experiment metrics need to be measured to disprove the Hypothesis. We
are interested in how far the results deviate from the Hypothesis.

4.3 Metrics Measurement

The experiment aims to analyze whether the proposed solution answers the
research questions mentioned in the Section 1.1. To see how effective the
proposed solution answers the research question RQ1, which asks how the
MEC steers the clients’ traffic to the nearest MEC instances, and the research
question RQ2, which asks how to enhance the availability, the following
metrics need to be observed:

• Latency; defined as the perceived time by the client to send a request
to the MEC application service and receive a response. The primary

CHAPTER 4. EXPERIMENT 36

focus is how a failure or disruption affects the latency perceived by
clients.

• Percentage of failed requests; the failed request is defined as the request
from the client that receives no response from the MEC application
services. The main focus is to observe the number of failed requests in
case of a failure.

• Mean Time To Repair (MTTR); defined as the average time of a system
to recover from a failure [13]. We will observe how long the MTTR is
when a failure happens.

The goal of the measurement is to observe how the proposed solution
improves the resiliency of MEC systems. By observing the resiliency im-
provement, we can infer the enhancement in the overall availability and the
quality of service that MEC systems may offer. As previously mentioned, we
will measure and observe several metrics.

The first metric to measure is the base latency and failure percentage.
The base latency and failure percentage are latency and failure percentage
that clients perceived in a normal and optimal condition. These are the basis
used to define the Steady State.

The second metric to measure is the MTTR of an application with the
plain Kubernetes-based failover. This metric will provide insights for how
long the application is unavailable before applying the solution. We can also
say that this is the base case for the failure.

After applying the solution, the failover time is measured to observe the
time it takes to shift the traffic to another MEC. The failover time affects
the overall MTTR after the solution has been applied.

Lastly, two major events are introduced to disrupt the system, and the
measurement will observe how the system reacts. The first event is the
failure event, which is separated into two sub events. The first sub event is
the application instance failure, and the second sub event is the MEC hosts
failure. The second event is an enormous traffic that resembles a DoS attack.

4.3.1 Measuring Latency from Clients to Sample Ap-
plication Instances in Different MECs

This measurement aimed to get the latency of the system in an optimal
condition that defined the Steady State. We measured the base latency from
the client to MEC application instances by measuring the time it took to
complete a request to every MEC application instances. One application

CHAPTER 4. EXPERIMENT 37

instance was also deployed on the cloud without any failover mechanism,
intended as the sink of all traffic in case of all MECs fail.

We measured the latency from a client connected to UPF-1 to the MEC
application instances in various locations. The nearest application instance
in an increasing order were MEC-1, MEC-2, MEC-3, MEC-4, and cloud, as
it is shown in Figure 4.1. The distance is determined by the number of hops
from the UPF to the MECs. Table 4.2 shows the latency from the clients to
the same sample application located in different MECs and cloud measured
with 33 times of repetition. In addition to the latency data in the table, there
was no failure happened in this base case scenario.

UPF-1 to Average
latency

Median
latency

Standard
deviation
latency

MEC-1 6.09 6.0 0.9
MEC-2 60.35 60.0 0.95
MEC-3 82.91 83.0 1.29
MEC-4 142.09 106.5 43.82
Cloud 90.03 90.0 0.94

Table 4.2: Latency for the Steady State

4.3.2 Measuring Mean Time to Repair From an Ap-
plication Instance Failure

The first case to consider was when all of the application instances, which
were instantiated as Pods, fail. During the experiment, a client made an
HTTP GET request to the MEC application instance every 100 milliseconds.
Then, the application instance (Pod) in the nearest MEC was deliberately
deleted.

Kubernetes provides resiliency by maintaining the number of Pods run-
ning as specified in the Kubernetes Deployment. In this way, clients do not
perceive noticeable availability issues unless all Pods are deleted. If all Pods
are deleted, clients will notice a failure until all Pods are ready. The time
window between the failed Pod to restore is the time to repair, which is
affected by the Kubernetes system’s ability to re-spawn the Pods and the
application-dependent startup time.

Figure 4.2 shows the time to repair of the sample application. Based on the
experiment with our sample application with 13 samples in the experiment,

CHAPTER 4. EXPERIMENT 38

the MTTR for the pod deletion was 17171.92 milliseconds with a median of
17138.0 milliseconds and a standard deviation of 538.28 milliseconds.

Figure 4.2: Time to repair from a pod deletion

4.3.3 Measuring Failover Time

One of the ways to measure the failover time is by observing the number of
packet loss during a constant stream of data sent from a client to an appli-
cation instance [37]. Figure 4.3 illustrates the technique to measure failover
time.

Figure 4.3: Measuring failover time

To measure the failover, a client sends a single User Datagram Protocol
(UDP) packet at a constant rate, which is every ten milliseconds in this case.

CHAPTER 4. EXPERIMENT 39

The data sent must not be larger than the Maximum Transmission Unit
(MTU) of an IP datagram to make the packet loss observation easier. The
client sends a unique, incremental identifier to the server. The packet loss
is detected by the number of missing identifiers received by the application
instance. The failover time is the number of packet loss multiplied by the
transmission interval. Equation 4.1 formulates the failover time measure-
ment.

Failover time = lost packets ∗ transmission interval (4.1)

Based on the experiment, the average failover time from the nearest MEC-
1 to another nearest MEC is less than 1 second. If the next nearest healthy
MEC application instance is in MEC-2, the average failover time is 596.67
millisecond with a standard deviation of 159.21 millisecond. The failover to
MEC-3 takes an average of 793.33 millisecond with a standard deviation of
184.79 millisecond. The failover to the farthest MEC, MEC-4, takes an aver-
age of 678.34 milliseconds with a standard deviation of 277.59 milliseconds.
Figure 4.4 shows the bar plot of the failover time with the standard deviation
as the error plot.

The bar plot in Figure 4.4 does not show incremental failover time despite
the incremental distance of the alternative MEC locations. The reason is
because a route advertisement does not come from the distant alternative
MEC every time there is a failure. Instead, it comes from the PE router
that is connected to the MEC border router. For example, consider the
routing table for the destination address of 11.11.11.11 for a particular MEC
application below. Every PE router is connected to MEC forms a full mesh
network. As a result, they have the same AS path even though the OSPF
path is different, which then affects the best path selection due to IGP metrics
difference [17]. Because PE router already keeps the path to the other MEC
location, if the directly connected MEC withdraws the route, this PE router
will advertise the next best route to the directly connected MEC border
router.

Network Next Hop LocPrf Path
∗> 11 . 11 . 11 . 11/32 1 0 . 1 1 . 1 1 . 5 65533 64512 ?
∗ i 5 . 5 . 5 . 5 100 64513 64512 ?
∗ i 4 . 4 . 4 . 4 100 65535 64512 ?
∗ i 3 . 3 . 3 . 3 100 65534 64512 ?

Listing 4.1: AS paths to an anycast endpoint on the routing table of the PE
router

CHAPTER 4. EXPERIMENT 40

Figure 4.4: Failover time to different MEC locations

4.3.4 Application Instances Failure

When an application fails, the agent fails to probe the heartbeat of the appli-
cation, and patches the Service type from LoadBalancer type to ClusterIP

type. In this way, the MetalLB BGP speaker stops advertising the VIP ad-
dress, and the new route advertisement will come from the backbone net-
work’s PE router. During the transition time, the clients may experience
”[Errno 101] Network is unreachable” error from the border router. This is
because when the new route has not arrived yet from the PE router, the
border router replies ICMP packet type 3 (”destination is unreachable”) to
clients to inform that the IP address of the MEC application instance is not
in the routing table. Figure 4.5 shows how the client perceives the latency
when the nearest MEC application Pod fails, and how the latency is restored
once the failed instance went up.

The latency perceived by a client shown in Figure 4.5 is the same as the
latency shown in Table 4.2. When the nearest MEC application instance fails,
the client’s traffic goes to the second nearest MEC application instance. As

CHAPTER 4. EXPERIMENT 41

Figure 4.5: The effect of latency perceived by the client when the nearest
MEC application instance fails

the topology shown in Figure 4.1, there are six hops before the traffic reaches
the MEC hosts in the second nearest MEC. In the backbone network, there
is 6 millisecond additional delay per hop. As a result, when the application
instance in the MEC-1 fails, and the traffic goes to the MEC-2 instead,
the client experiences an additional 54.26 millisecond in latency on average,
and 2.34% failed requests. The average duration of the additional latency
perceived by clients will be as long as the MTTR of Pod failure, which is
17138.0 millisecond. The failure is due to the ”destination is unreachable”
error returned by ICMP when the route advertisement has not arrived yet on
the MEC’s border router. This disproves the hypothesis by deviating 54.26
milliseconds in the latency and an increasing number of errors as large as
2.34%.

CHAPTER 4. EXPERIMENT 42

4.3.5 MEC Hosts Failure

The consequence of MEC host failure vary depending on different situations.
When a node failure happens, yet there is a redundant Pod running in another
healthy node, the border router will evict the route to the failed node, and
the traffic will be routed to the Pod in the healthy node. However, if all
nodes hosting the Pods fail, the traffic must be redirected to the next nearest
MEC as a failover. The srvbend agent is not useful if it is also down along
with the node. In this case, the BFD plays the primary role in telling the
border router about the failure. Figure 4.6 shows how the client perceives the
latency when the node fails and never goes up again. Unlike the application
instance failure scenario where the MTTR approximation is possible, hosts
failure’s MTTR is more challenging to estimate since this thesis does not rely
on any bare metal management framework. In this case, a host failure must
be handled and mitigated manually.

Figure 4.6: The effect of latency perceived by the client when the nearest
MEC node fails

In this scenario, what clients perceived is almost the same as the previous

CHAPTER 4. EXPERIMENT 43

scenario when the Pod fails. The only difference is in the first scenario, the
resiliency is managed by the Kubernetes scheduler, while MEC hosts failure
is not managed.

4.3.6 HTTP Flooding DoS Attack Mitigation

This experiment investigated whether this traffic failover solution was suit-
able for mitigating flooding DoS attacks by switching the traffic to another
healthy MEC. This experiment instantiated the Steady State as a client send-
ing a constant requests rate of 5 Requests Per Second (RPS). To introduce
an anomaly event e1, there was one malicious user who attacked the MEC
application instance by saturating its computation resource with DoS attack.
The attacker sent a continuous 2000 RPS while the client still did its regu-
lar operation of sending five RPS. The experiment was run for two minutes.
This experiment was limited to the HTTP flooding DoS attack only. We
then measured the latency and success rate of legitimate traffic to see if the
Hypothesis still held.

Table 4.3 shows the measurement of the quality of service perceived by a
client in several different conditions. Under a normal condition, the MEC ap-
plication can serve the client within 6 milliseconds without any error request.
However, under a DoS attack, the quality of the service drops significantly.

No attack Attacked,
no miti-
gation

CPU load-
based
failover

Rate-
limiter, 5
RPS

Median latency
(ms)

6 15000 49 8

Failed requests
(percent)

0 65.79 82.95 0

Table 4.3: The client’s perceived quality of service during normal and
application-attacked conditions

When undergoing a flooding attack, the median latency perceived by
the client is 15000 milliseconds, with 65.79% of 504 gateway timeout error
requests. This shows how a simple flooding attack can overwhelm the MEC
application and disturbs the availability of the service. The MEC application
cannot handle the requests because under an attack, the CPU usage saturates
and cannot process incoming requests.

The traffic failover mechanism, which shifts the traffic from the client
to the next nearest healthy MEC, mitigates this problem by examining the

CHAPTER 4. EXPERIMENT 44

CPU usage continuously every 3 seconds. If, after 15 milliseconds, the usage
is 100%, the traffic is shifted to the next nearest MEC to distribute the load.
However, the result does not show a satisfying outcome. While the median
latency improves significantly, the number of failed requests deteriorates from
65.79% to 82.95%.

The reasons behind this result are the following. First, if the second near-
est MEC is as powerful as the first victim, shifting the traffic to that MEC
will not improve anything. Second, while the traffic shifts, there is a possi-
bility that the request fails due to ”destination unreachable” as the previous
experiments already explained. Third, the system does not differentiate at-
tack traffic to the legitimate traffic. Hence, the effort to tame the attack by
failing the attacker’s traffic will affect the legitimate traffic too.

A rate limit mitigates this type of attack successfully. The rate limit is im-
plemented as an Nginx proxy acting as the Kubernetes ingress controller.
Table 4.3 shows how successful the rate limit in mitigating HTTP flooding
attack is. With the limit of 5 RPS set on the rate limiter, the client perceives
the median latency of 8 millisecond without any error request. The result
disproves the hypothesis by only 2 millisecond additional latency from the
steady state. This is because the rate limiter used the Leaky-Bucket algo-
rithm to hold the incoming traffic and returned HTTP 503 if the bucket is
full. Since the traffic coming to the application is limited, the CPU usage of
the application does not reach the maximum threshold of CPU usage. Fig-
ure 4.7 shows that during the experiment, the CPU usage does not reach the
maximum threshold set.

From this experiment, we can see that there is no magic number for the
rate limit that can work nicely with all cases. Instead, an experiment before
deploying the application may help to determine the appropriate rate limit to
set. The use of The Utilization Saturation and Errors (USE) Method [31] may
help in finding the saturation in the utilization to conclude an appropriate
maximum rate limit set.

The use of rate limiter is only one of the approaches to mitigate DoS
attacks. Other techniques might be combined to build a more secure system,
such as inspecting User-Agent header of HTTP, blocking the IP address of
the attacker automatically, and so on.

CHAPTER 4. EXPERIMENT 45

Figure 4.7: CPU usage under an HTTP flooding attack (maximum of 30
milli CPU)

Chapter 5

Discussion

This chapter discusses the implication of the proposed solution to the avail-
ability as the answer of the research questions defined in the Section 1.1. In
addition, it also discusses the security considerations of the proposed solu-
tion.

5.1 MEC Availability Enhancement

Availability is defined as the ratio of the uptime to the sum of uptime and the
downtime, which makes a value between 0 and 1 [47]. In other words, avail-
ability is the probability that a system runs as defined by the requirement
or Service Level Agreement (SLA). The uptime is defined as the average
operation time between any two failure events, known as Mean Time Be-
tween Failure (MTBF). MTBF is a term used for a repairable system, while
Mean Time To Failure (MTTF) is used for a non-repairable system [38]. We
consider MTBF since the MEC platform will repair the failure automati-
cally. The downtime is the average duration of the failure, known as MTTR.
Equation 5.1 shows how to calculate the availability.

Availability =
MTBF

MTBF + MTTR
(5.1)

RQ1 questions the mechanism to help clients connect to the nearest MEC
application instances. This thesis answers RQ1 by proposing a MEC system
that leverages IP anycast. With the topological setting shown in Figure 4.1,
clients connected to UPF-1 connect to the application instance in the MEC-
1. If that application fails, those clients will connect to MEC-2, which is the
next nearest instance, with the failover time shown in Figure 4.4. Compared
to GeoDNS, the proposed system does not need to infer the clients’ locations,

46

CHAPTER 5. DISCUSSION 47

thus it avoids requiring information that might be sensitive. The drawback
is that it is more complicated to deploy since it relies on the network infras-
tructure at a large scale to make routes between MECs. Another significant
advantage is that it has a better failover time, which we leverage to enhance
the availability.

RQ2 challenges MEC to enhance the applications’ availability on the in-
frastructure level. The proposed solution improves the availability by short-
ening the repair time and extending the time between failure. Since the
MTTR is smaller and the MTBF is larger, according to the Equation 5.1,
the Availability is increased. Without the proposed solution, the MTTR
of Pod deletion is 16.505 seconds. Meanwhile, with the proposed solution,
the failover time (MTTR) is less than 1 second, as shown in Figure 4.4.
The equation below shows how to find the availability improvement that the
solution offers.

Availability improvement = Awith solution − Ano solution

= A′ − A

=
MTBF ′

MTBF ′ + MTTR′ −
MTBF

MTBF + MTTR

The MTTR before applying the solution is not always predictable. While
the MTTR for a Pod deletion time is predictable, on the vanilla bare metal
environment, MEC hosts failure duration is difficult to predict because some
physical failures may take longer to repair. In both failure cases, the solution
still works, and the failover result is not dependent on neither failure cases.
Therefore, the availability improvement will seem much higher on a system
with a high MTTR value before the solution applied.

The availability of the system defines the QoS offered by the application
owner. For example, while an increment of 0.5% in availability does not
seem significant, the failure time of 800 milliseconds versus 17000 millisecond
per failure event is significant in terms of user experience. For time-critical
applications such as Industrial IoT and vehicular communications, the failure
time difference matters.

5.2 Security Considerations

This section discusses the security aspects that need to be considered follow-
ing the design decision this thesis took. This thesis leverages the distributed
deployment of applications and network layer techniques, especially IP any-

CHAPTER 5. DISCUSSION 48

cast, to build a highly available MEC platform. These two properties that
the system relies on have several inherent security implications.

IP anycast localizes an area that applications serve because traffic from
a particular source always goes to the nearest destination relative to the
source’s location. This property has an advantage for mitigating DoS attack
to localize the attack surface. However, this is vulnerable to route hijacking
since any entity on the backbone network can also advertise the anycast
address. Last but not least, localized applications open up possibilities to
reveal clients’ locations, which is privacy sensitive.

5.2.1 Denial-of-Service Attack Mitigation

An anycast MEC can serve as a sink to a DoS attack [36]. If the users are
highly distributed across different areas, a DoS attack from a single area only
affects the availability of the nearest MEC corresponding to the attacker’s
location, and the attack does not impact the other users connected to dif-
ferent MEC. It also has a better scaling property since it is relatively simple
to add more anycast instances in different regions. One aspect that must be
carefully considered is that when using anycast, MEC instances should not
withdraw VIP addresses during an ongoing DoS attack as it can bring the
attack to another healthy anycast instance [20].

We experimented with the availability of the MEC applications by attack-
ing them with an HTTP flooding attack with a rate-limiter as the first layer
of protection. Although rate-limiter was effective in mitigating the flooding
attack, MECs should also consider other types of attacks, such as the SYN
flood attack, smurf attack, and Slowloris attack. For example, the proxy may
use Transmission Control Protocol (TCP) SYN cookies to mitigate SYN flood
attack and connection timeout as well as maximum connections limiter to
mitigate the Slowloris attack, which implementation is widely available with
existing technologies, such as with a particular Linux setting for TCP SYN
cookies and HAProxy [12]. The border router can also filter the packet, such
as with Linux’s netfilter, to drop incoming ICMP packets with broadcast
address as their destination to mitigate the smurf attack [22].

5.2.2 Route and Service Hijacking

Malicious nodes can advertise the anycast VIP address on the network so
that the route to the malicious nodes will be installed on the ISP backbone
routers [36]. This attack is similar to the BGP hijacking attack to a certain
extent. The attacker can absorb the traffic from the clients to impersonate

CHAPTER 5. DISCUSSION 49

the legitimate MEC application instances, tamper the packets, or drop the
packets (blackhole attack).

Since the path to the MEC instances across the backbone router is de-
termined by the AS path of the BGP, the BGP advertisement should be
authenticated and integrity protected using the mechanism as specified in
RFC 2385 [33]. Besides, the application can also be enhanced with an end-
to-end security protocol such as TLS and IPSec to improve the security in
terms of confidentiality, integrity, and authentication.

5.2.3 Privacy Issues

Since a MEC serves a specific geographical area, clients’ related logs in MEC
can be used to infer the clients’ location, movements, and activities. This
logging activity may lead to privacy-related issues. Well-known network layer
techniques to work around this problem, such as using onion routing or in-
dependent proxies [60], might not be suitable since it may route the traffic
farther than it should be, eliminating the benefits of MEC. One of the most
effective ways to limit this privacy issue is a law enforcement that ISPs or
MNOs must abide so that they cannot log and reveal clients’ activities and
locations [60].

Chapter 6

Conclusion and Future Work

This chapter summarizes the contributions of this thesis, outlines the possible
impacts given from the findings of the experiment, and discusses the direction
for future work.

6.1 Conclusion

This thesis aims to study, suggest, and analyze the availability-enhanced
MEC platform with traffic failover. This thesis addresses two problems: find-
ing the nearest MEC application instance and mitigating failures of MEC
instances. We have designed, built a proof of concept, and run the experi-
ment to evaluate the performances.

We found that the IP anycast addressing strategy was effective in connect-
ing the clients in the mobile network to the nearest MEC instance. Anycast
also extends the possibility of a faster failover than DNS-based failover be-
cause clients do not have to wait for the cache to expire to reach the backup
instance. Anycast also makes the failover transparent to clients. It also does
not rely on DNS ECS, which is recommended by the RFC 7871 [16]. How-
ever, the IP anycast relies on the infrastructure at the ISP level. MEC owners
must set up a dedicated MEC network with MPLS, for instance.

MEC system mitigates the failure by connecting clients to the next nearest
healthy MEC instance. IP anycast allows clients to find the next nearest
instance via the routing protocol’s best path. Each application instance has
a VIP address that is advertised by a BGP speaker to the public network.
An agent is responsible for checking the heartbeat of the MEC application
instance. If the agent finds that the application fails, it stops the BGP speaker
from advertising the failed application instance’s VIP address. We also used
BFD to check the links and nodes connectivity, allowing a quick link or node

50

CHAPTER 6. CONCLUSION AND FUTURE WORK 51

failure detection.
With the proposed solution, we found that the failover time was less than

one second on average, and the client perceived an increase in latency and
minor failed requests if the nearest MEC fails. The latency increase grows
linearly as the latency to the next nearest MEC grows. This result shows a
significant improvement in the availability percentage of the system.

We also found that CPU usage-based failover was too aggressive and
did not differentiate between legitimate and destructing traffic. Therefore,
we found the CPU usage-based failover not practical to mitigate a massive
traffic spike, such as when undergoing an HTTP flooding attack. Instead of
CPU usage-based, we recommend the use of rate-limiting inside the MEC.
Rate limiting was proven to be more effective in mitigating this problem with
a minor decrease in the quality of the service perceived by clients.

6.2 Future Work

This thesis builds a foundation for a highly available MEC platform. We
suggest the following future work to improve and extend a more reliable
MEC platform.

Instead of LDP for distributing MPLS labels, more scalable protocols and
sophisticated technologies, such as Resource Reservation Protocol-Traffic En-
gineering (RSVP-TE) or Software-Defined Networking in a Wide Area Net-
work (SD-WAN), are recommended. With these technologies, operators can
have a more flexible and customizable network behavior to connect multiple
MECs.

The Kubernetes set up in this thesis is only responsible for a single MEC.
Each of them runs independently, and it limits the view of the overall or-
chestration for multiple MECs. We suggest the use of Kubernetes Cluster

Federation to orchestrate multiple MECs in a more scalable way. This ap-
proach allows operators to have more capabilities, such as provisioning MECs
automatically and purging MEC application automatically if there is no client
within that area.

Bibliography

[1] Airframe open edge server — nokia. https://www.nokia.com/networks/
products/airframe-open-edge-server/. (Accessed on 03/10/2020).

[2] Frequently asked questions — public dns — google developers.
https://developers.google.com/speed/public-dns/faq. (Accessed on
02/05/2020).

[3] K3s: Lightweight kubernetes. https://k3s.io/. (Accessed on
03/09/2020).

[4] Kubeedge. https://kubeedge.io/en/. (Accessed on 03/09/2020).

[5] Metallb, bare metal load-balancer for kubernetes. https://metallb.

universe.tf/. (Accessed on 03/09/2020).

[6] Sensing and analytics of air quality — university of
helsinki. https://www.helsinki.fi/en/researchgroups/

sensing-and-analytics-of-air-quality. (Accessed on 02/13/2020).

[7] About megasense — sensing and analytics of air quality — uni-
versity of helsinki. https://www.helsinki.fi/en/researchgroups/

sensing-and-analytics-of-air-quality/about-megasense, 6 2019.
(Accessed on 02/13/2020).

[8] 3GPP. Study on enhancement of support for Edge Computing in the
5G Core network (5GC). Technical Report (TR) 23.748, 3rd Generation
Partnership Project (3GPP), 12 2019. Version 0.2.0.

[9] 3GPP. System architecture for the 5G System (5GS); Stage 2. Technical
Specification (TS) 23.501, 3rd Generation Partnership Project (3GPP),
12 2019. Version 16.3.0.

[10] Abts, D., and Felderman, B. A guided tour of data-center net-
working. Communications of the ACM 55, 6 (2012), 44–51.

52

https://www.nokia.com/networks/products/airframe-open-edge-server/
https://www.nokia.com/networks/products/airframe-open-edge-server/
https://developers.google.com/speed/public-dns/faq
https://k3s.io/
https://kubeedge.io/en/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://www.helsinki.fi/en/researchgroups/sensing-and-analytics-of-air-quality
https://www.helsinki.fi/en/researchgroups/sensing-and-analytics-of-air-quality
https://www.helsinki.fi/en/researchgroups/sensing-and-analytics-of-air-quality/about-megasense
https://www.helsinki.fi/en/researchgroups/sensing-and-analytics-of-air-quality/about-megasense

BIBLIOGRAPHY 53

[11] Andrew S. Tanenbaum, D. J. W. Computer networks, 5ed. ed.
Pearson Prentice Hall, 2011.

[12] Assmann, B. Use a load balancer as a first row of defense
against ddos - haproxy technologies. https://www.haproxy.com/blog/

use-a-load-balancer-as-a-first-row-of-defense-against-ddos/, 2
2012. (Accessed on 06/09/2020).

[13] Azure, M. Overview of the resiliency pillar - azure architecture
center — microsoft docs. https://docs.microsoft.com/en-us/azure/

architecture/framework/resiliency/overview, 10 2019. (Accessed on
04/13/2020).

[14] Bonaventure, O., et al. Computer Networking: Principles, Proto-
cols and Practice. Citeseer, 2011.

[15] Brodkin, J. Senate votes to let isps sell your
web browsing history to advertisers — ars tech-
nica. https://arstechnica.com/tech-policy/2017/03/

senate-votes-to-let-isps-sell-your-web-browsing-history-to-advertisers/,
3 2017. (Accessed on 02/05/2020).

[16] C. Contavalli, W. van der Gaast, D. L. W. K. Client subnet in
dns queries. RFC 7871, RFC Editor, 5 2016.

[17] Cisco. Bgp best path selection algorithm - cisco. https://www.

cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/

13753-25.html, 9 2016. (Accessed on 05/19/2020).

[18] Cloudflare. What is anycast? how does anycast work?
— cloudflare. https://www.cloudflare.com/learning/cdn/glossary/

anycast-network/. (Accessed on 05/12/2020).

[19] D. Katz, D. W. Bidirectional forwarding detection (bfd). RFC 5880,
RFC Editor, 6 2010.

[20] D. McPherson, D. Oran, D. T. E. O. Architectural considerations
of ip anycast. RFC 7094, RFC Editor, 1 2014.

[21] De Vries, W. B., van Rijswijk-Deij, R., de Boer, P.-T., and
Pras, A. Passive observations of a large dns service: 2.5 years in the
life of google. IEEE transactions on network and service management
(2019).

https://www.haproxy.com/blog/use-a-load-balancer-as-a-first-row-of-defense-against-ddos/
https://www.haproxy.com/blog/use-a-load-balancer-as-a-first-row-of-defense-against-ddos/
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/overview
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/overview
https://arstechnica.com/tech-policy/2017/03/senate-votes-to-let-isps-sell-your-web-browsing-history-to-advertisers/
https://arstechnica.com/tech-policy/2017/03/senate-votes-to-let-isps-sell-your-web-browsing-history-to-advertisers/
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cloudflare.com/learning/cdn/glossary/anycast-network/
https://www.cloudflare.com/learning/cdn/glossary/anycast-network/

BIBLIOGRAPHY 54

[22] Documentation, N. Netfilter extensions howto: New net-
filter matches. https://netfilter.org/documentation/HOWTO/

netfilter-extensions-HOWTO-3.html. (Accessed on 06/09/2020).

[23] Dutt, D. BGP in the Data Center. O’Reilly Media, 2017.

[24] Eisenbud, D. E., Yi, C., Contavalli, C., Smith, C., Kononov,
R., Mann-Hielscher, E., Cilingiroglu, A., Cheyney, B.,
Shang, W., and Hosein, J. D. Maglev: A fast and reliable software
network load balancer. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16) (2016), pp. 523–535.

[25] ETSI. Multi-access Edge Computing (MEC); Edge Platform Appli-
cation Enablement. Group Specification (GS) MEC.011, European
Telecommunications Standards Institute (ETSI), 11 2019. Version 2.1.1.

[26] ETSI. Multi-access Edge Computing (MEC); Location API. Group
Specification (GS) MEC.013, European Telecommunications Standards
Institute (ETSI), 9 2019. Version 2.1.1.

[27] ETSI. Multi-access Edge Computing (MEC); Radio Network Informa-
tion API. Group Specification (GS) MEC.012, European Telecommuni-
cations Standards Institute (ETSI), 12 2019. Version 2.1.1.

[28] ETSI. Multi-access Edge Computing (MEC); UE application inter-
face. Group Specification (GS) MEC.016, European Telecommunica-
tions Standards Institute (ETSI), 4 2019. Version 2.1.1.

[29] Fabrikant, A., Syed, U., and Rexford, J. There’s something
about mrai: Timing diversity can exponentially worsen bgp convergence.
In 2011 Proceedings IEEE INFOCOM (2011), IEEE, pp. 2975–2983.

[30] FRRouting. Ldp ? frr latest documentation. http://docs.frrouting.
org/en/latest/ldpd.html. (Accessed on 06/04/2020).

[31] Gregg, B. Thinking methodically about performance. Communica-
tions of the ACM 56, 2 (2013), 45–51.

[32] Guba, O., and Ivanov, A. Dropbox traffic infrastructure: Edge net-
work — dropbox tech blog. https://blogs.dropbox.com/tech/2018/10/
dropbox-traffic-infrastructure-edge-network/, 10 2018. (Accessed
on 03/09/2020).

[33] Heffernan, A. Protection of bgp sessions via the tcp md5 signature
option. RFC 2385, RFC Editor, 8 1998.

https://netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-3.html
https://netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-3.html
http://docs.frrouting.org/en/latest/ldpd.html
http://docs.frrouting.org/en/latest/ldpd.html
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/

BIBLIOGRAPHY 55

[34] Hevner, A. R., March, S. T., Park, J., and Ram, S. Design
science in information systems research. MIS quarterly (2004), 75–105.

[35] Hofmann, M., and Beaumont, L. R. Content networking: archi-
tecture, protocols, and practice. Elsevier, 2005.

[36] J. Abley, K. L. Operation of anycast services. RFC 4786, RFC Editor,
12 2006.

[37] James, T. Y. Measuring failover time for high availability network.
In Proceedings of the International Conference on Scientific Comput-
ing (CSC) (2018), The Steering Committee of The World Congress in
Computer Science, pp. 34–39.

[38] Jens Lienig, H. B. Fundamentals of Electronic Systems Design.
Springer, 2017.

[39] kernel.org. https://www.kernel.org/doc/documentation/networking/ip-
sysctl.txt. https://www.kernel.org/doc/Documentation/networking/

ip-sysctl.txt. (Accessed on 06/04/2020).

[40] Kintis, P., Nadji, Y., Dagon, D., Farrell, M., and Anton-
akakis, M. Understanding the privacy implications of ecs. In In-
ternational Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (2016), Springer, pp. 343–353.

[41] Lam, C. F., Liu, H., and Urata, R. What devices do data centers
need? In Optical Fiber Communication Conference (2014), Optical
Society of America, pp. M2K–5.

[42] Le Boudec, J.-Y. Performance Evaluation of Computer and Commu-
nication Systems. EPFL Press, Lausanne, Switzerland, 2010.

[43] Lee, J., Moon, S.-J., Bae, B., and Lee, J. Local area data network
for 5g system architecture. In 2018 IEEE 5G World Forum (5GWF)
(2018), IEEE, pp. 141–146.

[44] MetalLB. Metallb in bgp mode. https://metallb.universe.tf/

concepts/bgp/. (Accessed on 06/06/2020).

[45] Nginx. Module ngx http limit req module. http://nginx.org/

en/docs/http/ngx_http_limit_req_module.html. (Accessed on
06/04/2020).

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://metallb.universe.tf/concepts/bgp/
https://metallb.universe.tf/concepts/bgp/
http://nginx.org/en/docs/http/ngx_http_limit_req_module.html
http://nginx.org/en/docs/http/ngx_http_limit_req_module.html

BIBLIOGRAPHY 56

[46] Nnginx-ingress. Annotations - nginx ingress controller.
https://kubernetes.github.io/ingress-nginx/user-guide/

nginx-configuration/annotations/#rate-limiting. (Accessed on
06/04/2020).

[47] Pressman, R. S. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Education, jan 2014.

[48] Prince, M. Load balancing without load balancers. https://blog.

cloudflare.com/cloudflares-architecture-eliminating-single-p/,
March 2013. (Accessed on 05/12/2020).

[49] Prince, M. Announcing 1.1.1.1: the fastest, privacy-first consumer
dns service. https://blog.cloudflare.com/announcing-1111/, 4 2018.
(Accessed on 02/05/2020).

[50] Ren, J., Guo, H., Xu, C., and Zhang, Y. Serving at the edge: A
scalable iot architecture based on transparent computing. IEEE Network
31, 5 (2017), 96–105.

[51] Rosenthal, C., Hochstein, L., Blohowiak, A., Jones, N., and
Basiri, A. Chaos Engineering. O’Reilly Media, Incorporated, 2017.

[52] Sabella, D., Sukhomlinov, V., Trang, L., Kekki, S.,
Paglierani, P., Rossbach, R., Li, X., Fang, Y., Druta, D.,
Giust, F., Cominardi, L., Featherstone, W., Pike, B., and
Hadad, S. Developing software for multi-access edge computing. ETSI
white paper 20 (2019), 1–38.

[53] Schlinker, B., Kim, H., Cui, T., Katz-Bassett, E., Mad-
hyastha, H. V., Cunha, I., Quinn, J., Hasan, S., Lapukhov,
P., and Zeng, H. Engineering egress with edge fabric: Steering oceans
of content to the world. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017), pp. 418–431.

[54] Sechkova, T., Paolino, M., and Raho, D. Virtualized infrastruc-
ture managers for edge computing: Openvim and openstack comparison.
In 2018 IEEE International Symposium on Broadband Multimedia Sys-
tems and Broadcasting (BMSB) (2018), IEEE, pp. 1–6.

[55] Steenbergen, R. Mpls for dummies. Recuperado el 11 (2016).

[56] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S.,
and Sabella, D. On multi-access edge computing: A survey of the

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#rate-limiting
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#rate-limiting
https://blog.cloudflare.com/cloudflares-architecture-eliminating-single-p/
https://blog.cloudflare.com/cloudflares-architecture-eliminating-single-p/
https://blog.cloudflare.com/announcing-1111/

BIBLIOGRAPHY 57

emerging 5g network edge cloud architecture and orchestration. IEEE
Communications Surveys & Tutorials 19, 3 (2017), 1657–1681.

[57] Trabelsi, S., Pazzaglia, J.-C., and Roudier, Y. Secure web
service discovery: overcoming challenges of ubiquitous computing. In
2006 European Conference on Web Services (ECOWS’06) (2006), IEEE,
pp. 35–43.

[58] Weiden, F., and Frost, P. Anycast as a load balancing feature. In
LISA (2010), vol. 10, pp. 1–6.

[59] Y. Rekhter., T. Li, S. H. A border gateway protocol 4 (bgp-4). RFC
4271, RFC Editor, 1 2006.

[60] Yanes, A. Privacy and anonymity. arXiv preprint arXiv:1407.0423
(2014).

[61] Yap, K.-K., Motiwala, M., Rahe, J., Padgett, S., Holliman,
M., Baldus, G., Hines, M., Kim, T., Narayanan, A., Jain, A.,
et al. Taking the edge off with espresso: Scale, reliability and pro-
grammability for global internet peering. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication (2017),
pp. 432–445.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Research Questions
	1.2 Objectives and Thesis Contributions
	1.3 Methodology
	1.4 Scope and Delimitation
	1.5 Ethics and Sustainability
	1.6 Structure of the Thesis

	2 Background
	2.1 Megasense Project and Nokia Bell Labs IoT Data Streaming Platform
	2.1.1 Megasense Project
	2.1.2 Nokia Bell Labs IoT Data Streaming Platform

	2.2 Multi-Access Edge Computing (MEC)
	2.2.1 MEC and 5G
	2.2.2 Intra-MEC Network
	2.2.3 Inter-MEC Network Architecure
	2.2.4 MEC and Cloud Computing
	2.2.5 Kubernetes as a Platform for MEC

	2.3 Connecting Clients to the Nearest MEC Application Instances
	2.3.1 GeoDNS
	2.3.2 Anycast

	2.4 Related Works

	3 Designing and Building Highly Available MEC Systems
	3.1 Requirements
	3.2 Design Principles
	3.3 System Design
	3.3.1 Overview of the System Design
	3.3.2 Algorithms for MEC Traffic Failover
	3.3.3 Enhancing Availability Using Rate Limiting

	3.4 Proof of Concept Implementation
	3.4.1 Internal-MEC Implementation
	3.4.2 Inter-MEC Network Implementation

	4 Experiment
	4.1 Experiment Testbed Setup
	4.2 Method of Experiment
	4.3 Metrics Measurement
	4.3.1 Measuring Latency from Clients to Sample Application Instances in Different MECs
	4.3.2 Measuring Mean Time to Repair From an Application Instance Failure
	4.3.3 Measuring Failover Time
	4.3.4 Application Instances Failure
	4.3.5 MEC Hosts Failure
	4.3.6 HTTP Flooding DoS Attack Mitigation

	5 Discussion
	5.1 MEC Availability Enhancement
	5.2 Security Considerations
	5.2.1 Denial-of-Service Attack Mitigation
	5.2.2 Route and Service Hijacking
	5.2.3 Privacy Issues

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

