
Authentication and Authorization
for the front-end web developer

Biraj Paul

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 22.6.2020

Supervisor

Prof. Tuomas Aura

Advisor

Niall O’Donoghue, M.Sc., Gofore

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333888655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2020 Biraj Paul

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Biraj Paul
Title Authentication and Authorization for the front-end web developer
Degree programme CCIS
Major Secure Systems Code of major SCI3042
Supervisor Prof. Tuomas Aura
Advisor Niall O’Donoghue, M.Sc., Gofore
Date 22.6.2020 Number of pages 61 Language English
Abstract
Traditional web pages are hosted and served through a web server that are executed
in a web browser in the user’s devices. Advancement in technologies used to create
web pages has led to a paradigm shift in web development, leading to concepts
such as front-end and back-end. Browser-based technologies, particularly JavaScript,
has seen enormous advancements in functionalities and capabilities. This led to a
possibility of creating standalone web applications capable of running in the browser
and relying on the back-end server only for data. This is corroborated by the rise
and popularity of various JavaScript frameworks that are used by default when
creating web applications in modern times. As code running on a web browser can
be inspected by anyone, this led to a challenge in incorporating authentication and
authorization. Particularly because storing user credentials and secrets on the web
browser code is not secure in any way.

This thesis explores and documents authentication and authorization methods
that can be securely implemented in a front-end web application. Token-based
authentication and authorization has become widely accepted as the solution. OpenID
Connect and OAuth 2.0 protocols were explored, which are the most commonly
used token-based solution for authentication and authorization. Furthermore, three
use-cases were described that used token-based solutions in real world client projects.

Keywords Token-based authentication, OpenID Connect, Front-end web
development

4

Contents
Abstract 3

Contents 4

Abbreviations 5

1 Introduction 7

2 Background 9
2.1 Single-Page Application and Traditional Web Application 9

2.1.1 Traditional Web Application 9
2.1.2 Single-Page Application (SPA) 12

2.2 Authentication . 13
2.3 HTTP Basic Authentication . 14
2.4 API Keys . 15
2.5 Token-based Authentication . 16
2.6 Session Management . 22
2.7 Access Control . 27
2.8 SSO Integration . 29
2.9 Single Logout . 30
2.10 Token storage . 34
2.11 Software Development Kits . 35
2.12 Credentials Manager . 38

2.12.1 Credentials Management API 40
2.12.2 Web Authentication API . 40

2.13 Authentication and Authorization in Native applications 43

3 Use Cases 46
3.1 Industrial Control System . 46

3.1.1 Architecture . 46
3.2 Social Media Center . 49
3.3 Component Library . 54

3.3.1 Proposal . 55

4 Summary 57

References 59

5

Abbreviations

ACL Access Control List
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CDN Content Delivery Network
CORS Cross Origin Resource Sharing
CRUD Create Read Update Delete
CSS Cascading Style Sheet
CTAP Client to Authenticator Protocol
DOM Document Object Model
FCP First Contentful Paint
FIDO Fast Identity Online
HMAC Hash-based Message Authentication Code
HS256 HMAC with SHA-256
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IAM Identity and Access Management
IdP Identity Provider
IoT Internet of Things
IETF Internet Engineering Task Force
JS JavaScript
JSON JavaScript Object Notation
JWT JSON Web Token
JWKS JSON Web Key Set
JWK JSON Web Key
MD5 Message-Digest Algorithm 5
MVC Model-View-Controller
NFC Near Field Communication
NPM Node Package Manager
OIDC OpenID Connect
OP OpenID Connect Provider
OS Operating System
PaaS Platform as a Service
PKCE Proof Key for Code Exchange
RBAC Role-based Access Control
REST Representational State Transfer
RP OpenID Connect Relying Party
RPC Remote Procedure Call
RS256 RSA (Rivest–Shamir–Adleman) Signature with SHA-256
SDK Software Development Kits
SEO Search Engine Optimization
SET Security Event Token
SHA256 Secure Hash Algorithm 256-bit
SPA Single Page Application

6

SSL Secure Socket Layer
SSO Single Sign On
TLS Transport Layer Security
TPM Trusted Platform Module
UUID Universally Unique Identifier
URL Uniform Resource Locator
URI Uniform Resource Identifier
USB Universal Serial Bus
UI User Interface
W3C World Wide Web Consortium
XHR XMLHttpRequest
XML Extensible Markup Language
XSS Cross Site Scripting
iOS iPhone Operating System
kB kilobyte

1 Introduction
The 21st century saw widespread adoption and availability of internet since its
introduction in the early 1980s. Since its foundation in 1994, the World Wide Web
Consortium (W3C) has overseen the development and refinement of web standards
and technologies that helped shape the internet into its current form. Primarily,
the internet served as a medium of information that people could access from their
personal computers. In the modern age, it has evolved into a medium that allows
organisations to run businesses which customers can access through their mobile
devices from anywhere.

Information on the internet is accessed through a web browser, which is an
application that runs on the user’s devices. Through a browser, the user navigates
to a web site, which hosts the web pages. A web page is identified through a unique
Uniform Resource Locator (URL). A URL identifies the domain of a web site and is
distinct from other URLs. A web page is written in the Hypertext Markup Language
(HTML). It is parsed by the browser and displayed according to the standards and
rules that govern HTML. An HTML page is styled with Cascading Style Sheets
(CSS), while interaction capabilities are provided by JavaScript (JS). During its
early adoption, when these technologies were still at their nascent stages, the web
pages were very minimalistic and contained minimal use of JavaScript. Most of the
business logic of the web pages which are also referred to as web applications, were
contained in the code that was hosted in the servers.

Since then, the capabilities of web browsers and the related technologies have
grown tremendously. Particularly, the advancements in JavaScript allow web appli-
cation developers to do a wide range of advanced operations. This led to a shift in
the web development paradigm where a web page got divided into the front-end and
back-end. The front-end represents the presentational part of a web page, which is
displayed to the user in a browser, and the back-end represents the business logic,
which is hidden away from the public. Furthermore, the capabilities of JavaScript
for making asynchronous server calls changed how web applications are developed.
It resulted in protocols such as REST and RPC APIs gaining mainstream adoption.
Instead of making a server call for every page, the whole web application is loaded
into the browser in the initial call. It resulted in the decrease of server calls and
provided a much richer user experience where the interaction of the user with the web
page is not blocked while the application loads data and resources asynchronously
from the back-end server. This is corroborated by the usage of front-end libraries
such as React, Angular and Vue, which are used by default when developing a web
application in the present time.

Authentication and authorization operations have always been a part of the
back-end in a web application. Since the back-end code is not available to the public,
it is the most logical choice for such operations. Storing the user’s information and
secret securely was not possible in the browser, as anyone is able to see the code and
data. With the introduction of token-based authentication and authorization, the
possibility of moving those operations in to the web browser became feasible. Web
browsers provided better security than before for storing the tokens and sensitive

8

information. Moreover, the security of the transport layer also increased significantly
through the SSL/TLS protocol. This allows tighter de-coupling between the front-end
application and the back-end servers. In some cases, it even allows an application to
run without a back-end server, instead being statically hosted through a Content
Delivery Network (CDN).

In this thesis, we explore and document the authentication and authorization
methods that front-end developers should be aware of. We look at token based
authentication and authorization approaches, particularly the OpenID Connect
(OIDC) protocols. Finally, we document three use cases that the author worked
on during his professional experience, which utilize the documented token based
authentication and authorization methods.

9

2 Background
A conventional web application has two layers — the front-end and the back-end.
Most web applications implement the business logic based on CRUD philosophy.
This can be briefly described as:

• Create — Creating data that is provided by the client.

• Read — Read data that is stored in the data storage.

• Update — Update the stored data upon client input.

• Delete — Delete the stored data upon client input.
The front-end is the presentational layer of the web application that is responsible for
displaying the user interface through which a user interacts with the web application.
The user triggers events by interacting with the elements of the user interface. The
front-end application is responsible for handling the events and passing them to the
back-end using CRUD events.

The front-end communicates with the back-end through Application Programming
Interfaces (API). The back-end typically exposes API end-points for a specific CRUD
task, such as creating, or reading a data item. The front-end queries the end-points
along with the data attributes, which are needed by the back-end to perform the
specified action. Here, the process of authorization and authentication comes into
the picture to protect the data and the services at the back-end. The web application
needs to employ measures such that only known and authorized users are able to
read, delete or make changes to the data. As the back-end reacts to the requests
made by the front-end, the front-end must implement the processes and mechanisms
through which a user can be authenticated and authorized with the back-end.

2.1 Single-Page Application and Traditional Web Applica-
tion

Web applications are computer programs that are accessed with and run in a web
browser. They use the Hypertext Markup Language (HTML) for presenting the
content, Cascading style sheets (CSS) for styling the content and JavaScript (Js)
for making the HTML elements interactive. Web applications are always hosted
by a service called the back-end service, identified by a Uniform Resource Identifier
(URI), which listens to requests, upon which the server delivers the web application
resources to the requesting front-end application in the browser. Upon receiving
the requested content from the back-end service, the browser parses the content
and displays the webpage to the user in the browser. Considering this flow, web
applications can be divided into two categories.

2.1.1 Traditional Web Application

A traditional web application is characterized by the back-end service processing
and serving every page that is hosted by the web server. HTML documents provide

10

Figure 1: Traditional web application architecture.

hyperlinks (a tags), which are used to provide links to various pages of the web
content. Every click to an a tag directs the browser to the back-end service, which
processes the request, fetches and constructs the requested page, and sends it back
to the web browser.

A traditional web application has several advantages which are listed below:

• The First Contentful Paint (FCP), which is defined as the time taken by the
web browser to display the web page for the first time after requesting it from
the back-end service, is low. This is because the back-end service only sends a
small subset of the entire web application, which corresponds to the resources
associated with the first page.

• It provides easy Search Engine Optimization (SEO), which helps web search
engines to index the pages, thus providing better possibility for the search
engine to list them when a user searches for any term relevant to the web
application.

• It has a minimal set of requirements for the browsers to display the webpage.
Especially when the browser has JavaScript turned off, a traditional web
application can provide most of the core functionality.

Despite the advantages listed above, traditional web applications have taken the
role of a legacy system. It was the primary approach to developing web applications

11

in older times. It has several disadvantages when compared to a SPA, which is the
primary approach taken towards web application development in the modern times:

• It is network heavy, which means that every page requires a network request
to the back-end service. In environments where network bandwidth is limited,
it results in a decline in the user experience.

• It requires more effort in terms of security as every page in the web application
has to be secured.

• It results in lower performance in terms of speed when compared to a SPA.
The interaction time with the user also increases as the user has to wait for the
browser to fetch the navigated web page every time a new page is requested.

Figure 2: Traditional web application route change.

When the browser makes the initial request to the back-end server, the server
responds with the index.html page and all the scripts, style sheets and the assets
along with it. When the user click an a tag, the browser triggers a new request to
the URL specified by the a tag’s link attribute. If the link is absolute, then the
exact URL is used for the request. If the link is relative, then the browser contruct’s
the full URL by taking the domain of the web page, and appending the link value
to it. Page change route links are usually provided as relative URLs. Once the
back-end server receives the request for the route change, it processes the request,

12

and contructs the new page, and sends the html page along with all the scripts, style
sheets and other assets associated with the page. This operation is followed for every
page to which the user navigates and after each form submission.

2.1.2 Single-Page Application (SPA)

Figure 3: Single-page application architecture.

As the name suggests, an SPA consists of a single web page which is loaded only
once by the web browser. The SPA architecture follows the Model-View-Controller
(MVC) pattern. Views represent the pages or sections that are displayed to the user.
Models represent the data that is associated with a View. Controller acts as the
bridge between the Views and Models. An important characteristic of an SPA is
the mapping of URIs to Views. The controller maps a URI with a particular View,
which is displayed along with the associated data whenever it is requested. [1] [2]

SPA has several advantages when compared to traditional web applications, which
are listed below.

• It provides faster performance and improved user experience. Since the whole
web page is controlled by JavaScript, it provides faster response to user inter-
actions and page loads.

• It requires less network bandwidth. The FCP is higher than a traditional
web application, since the whole JavaScript bundle is loaded into the browser
initially. However, subsequent traversal within the routes require less interaction

13

with the back-end service. The routes are handled by the Controller, and the
data associated with a page within an active route is asynchronously fetched
from the back-end service using XHR requests.

• It provides offine capabilities as the browser can cache the whole application.

Since SPAs can exist without a back-end server, web developers often take the
approach of serving them through Content Delivery Networks (CDNs). SPAs take
advantage of increased capability and browser support for Asynchronous JavaScript
and XML (AJAX) calls for making server side calls from within the JavaScript.
Furthermore, the development and wide adoption of Representation State Transfer
(REST) APIs made SPAs an attractive option for web developers to build the web
application with. The stateless nature of REST APIs allows decoupling between
the web application and the API service, thus allowing them to perform their tasks
independantly.

For complex applications, SPAs are often developed and served in conjunction
with a back-end server within the same domain. The back-end server hosts the
SPA and implements REST API routes, which are used to send and fetch data
asynchronously from the SPA.

In the context of web application development, a front-end developer is primarily
concerned with creating the user-facing side of the application. This is often called
the public client, as all the code resides within the user browser and is available for
anyone to inspect. A back-end application supports the front-end services by taking
care of resource access and resource management, which are not visible to the end
users. The front-end services and the back-end services can also exist at different
end-points. The term front-end server is often used for a service that provides
publically available URIs over a network that gives access to the SPA.

When the user triggers a route change, the JavaScript bundle handles the request,
loads the requested page, and loads it in to the browser. It also updates the browser
URL to reflect the route change. The route change does not trigger a new request
to the server. The JavaScript bundle follows two different strategies to achieve
this. One strategy is known as Hash strategy where the JS bundle uses the hash
symbol in the URL to trigger the route change. By default, the browser does
not send a new request to the server if any part of the URL string after the hash
changes. For example, a route change to load a dashboard page changes the URL
from https://www.example.com to https://www.example.com/#/dashboard. Another
strategy is by using the newer HTML5 history APIs. By using the pushstate and
replacestate functions, the JavaScript bundle is able to change the browser URL
without triggering a new request to the server.

2.2 Authentication
Authentication refers to the process of identifying an entity in a secure way. This
entity can be a user, a device or a service. Authentication in information systems
is needed so that protected services and resources are not accessed by someone
or something without proper authorization. In very simple terms, authentication

14

Figure 4: Single-page application route change.

answers the question "Who are you?" and authorization answers the question "Are
you allowed to make that request or access that resource?". The process of answering
these questions requires secure verification of the entity in question.

In a web application architecture, the role of authentication comes into play when
a client or a user wants to access an API exposed by an API server. Below, we outline
some of the common authentication mechanisms that are used for web applications.

2.3 HTTP Basic Authentication
The Internet Engineering Task Force (IETF) specifies several authentication and
authorization mechanisms that web clients can employ. The most basic form of
authenticating a user is by passing the user provided username and password in the
HTTP Authorization header field. It is based upon a challenge-response mechanism
where the web client responds to a challenge by the server when accessing an end-
point. There are two schemes that can be applied in this form of authentication. The
first scheme is called Basic scheme, in which the web client sends the username and
password encoded in the base64 encoding after concatenating them in this format:
username:password [3]. The second scheme is called the digest scheme where the
client responds to the challenge by the web server in the form of a hashed string that
consists of the username, password and a unique server nonce value [4]. Initially MD5
was used as the hashing algorithm, but later revisions of the specification allow the
strong SHA-256 algorithm. Although the digest authentication offers better security

15

than basic authentication, it is not widely used in web client authentication.
Next, we will explain in more detail how the HTTP basic authentication is

implemented. The server prompts the user to provide their authentication credentials.
This is done with the HTTP header field www-authenticate. The values for this field
are comma separated name=value pairs. One of the values that is identified in this
header is the realm. The realm defines a space reserved within the server upon which
the client request is authenticated. It identifies a space and scope within which
the resources of the server are protected. A client wishing to authenticate itself to
the server needs to provide the requested information in the HTTP Authorization
header field. In this process, the user provides a plain-text username and password
to the client application. The client application uses the credentials to contruct a
base64-encoded string after concatenating the username and password with a colon
in between. It is also possible for a proxy to relay the authentication challenge to the
client by using the header Proxy-Authenticate. The client responds to this challenge
with a Proxy-authorization field in the header. In both the request and response
headers, the scheme for the authentication need to be specified. In this case, it is
passed as Basic.

This authorization mechanism by itself does not inherently provide any security
benefits and, thus, is vulnerable to security attacks. The base64 encoding of the
credentials is sometimes mistaken for an encryption mechanism, but in reality, the
code can be decoded back to obtain the plain-text values. Instead, it relies on the
security and encryption of the channel through which the data is transmitted. One
such way is by using HTTPS, which is the HTTP protocol encrypted with SSL/TLS,
which has become the de-facto standard for secure web communication protocol.

2.4 API Keys
API keys are randomly generated and secure shared secrets between a client and an
API producer. The clients can be individual users or projects consuming the API.
When used for authenticating users, the API server generates a unique secret for
each user. An API server in this context is the same entity as the back-end server. It
handles the generation of API keys, storing them in the database, and checking every
incoming API request for the correct API key. An API key should be random such
that it cannot be guessed. A good approach is to use the user’s Universally Unique
Identifier (UUID), which is a random string generated by the application for every
registered user. To prevent forgery of the key, it can optionally be signed with a
shared secret key. The API server sends this generated API key to the user through
an HTTP redirect after initial authentication or registration of the user. Depending
on the implementation, the API keys can be sent to the client as a cookie or as a
redirect parameter. If sent as a cookie, the secret is stored in the user’s browser
for the domain corresponding to the API server. Every subsequent request to the
API server will include the cookie in its request parameters, and it is used by the
API server to authenticate the user. When sent as a redirect parameter, the client
application should store the API key in browser storage. From the front-end client
application, the API key is passed with every request to the web API. The key can

16

be passed either as a request parameter within the contructed URL in a HTTP GET
request, as a x-api-key header field in a HTTP POST request.

GET https://api.example.com?api_key=<API-KEY>

GET https://api.example.com
x-api-key: <API-KEY>

While API keys provide an easy way to authenticate clients and maintain their
sessions, they are considered relatively insecure. Since it is a shared secret, exposure
of the key can allow malicious users to impersonate the registered user. Alternatively,
API keys are commonly used to identify projects rather than individual users. In
this scenario, a front-end service exists between the client devices and the API
server, which acts as a proxy between the two. Since the front-end server cannot
be accessed by the users, it can securely store the API key. It adds the API key
for every forwarded request to the API server and relays the response back to the
client. The front-end server maintains its own implementation of authenticating and
identifying individual users.

When distributing API keys by API servers to web developers, the web developer
is asked to register the application, upon which they receive a unique API key. This
API key is shown with a message that it will be shown only once, and the web
developer should save it securely. A common mistake that a web developer does is
embedding the API key into the code itself on the front-end server. This will result
in the API key getting exposed to the public, if the code is publicly shared in a code
hosting repository. Instead, a better approach is to use environment variables to
store the API keys, and using the environment variables in the code. One of the most
popular approach for hosting a web application is to use a cloud provider’s Platform
as a Service (PaaS). Most PaaS providers come with inbuilt environment variable
configuration, which allows the web developer to define the API keys in the cloud
provider dashboard itself. Naturally, an even bigger mistake would be to embed the
application’s API key into the client-side JavaScript or to otherwise expose it to the
web browser. [5] [6]

2.5 Token-based Authentication
Token-based authentication is another solution, which has gained popularity in recent
years. The previously discussed authentication mechanisms follow a stateful approach,
which results in issues with scalability and heterogeneity. Token-based authentication
allows a stateless authentication flow where the server does not have to maintain
any state related to the client.

In the token-based authentication approach, the front-end application connects to
a separate Identity Provider (IdP) by redirecting the user to a user interface provided
by the IdP. The IdP authenticates the user, typically with a username and password.
Additionally, the IdP can employ an extra layer of identification, such as a one-time
password sent to the user’s registered mobile device. Once authenticated, the IdP
sends an ID token, which claims the identity of the user, back to the client. The

17

IdP also sends an access token to the client for accessing the protected APIs. The
front-end application needs to store the access token so that it can be used for future
access to protected resources.

OpenID Connect (OIDC) is a standardized protocol that is used to implement
token-based authentication [7]. It is built on top of OAuth 2.0 specifications that
defines the steps to obtain the ID token. OIDC defines the additional openid scope
value which must be sent in the authentication request [8]. The authorization server
returns the ID token in the form of a JWT. The ID token primarily serves as an
assertion for the authenticated state of the user. The ID token contains the identity
information about the authenticated user in the form of claims. OIDC defines a
set of rules for validating the ID token before the information in it can be trusted
and used. It is important to note that the claims that are contained in an ID token
can be accessed through the /userinfo end-point of an authorization server [7]. The
OpenID client must present the access token to obtain the information from this
end-point. ID tokens are useful because it represents the current logged in status
of the user through a number of additional claims, such as the issuer identifier, the
subject identifier, the audience who the ID token is intended for, the expiration time,
and the end-user authentication time. Another important authentication request
parameter is the response_type which determines the tokens that will be returned.
The response_type should contain the value id_token if an ID token is needed. [9]

OIDC specifies two approaches based on the type of the application. In an
architecture where most of the application logic is handled in the server, such as a
traditional web app executing in a server or a single-page application that is backed
by a back-end middleware, OIDC specifies the authorization code flow. In this
approach, most of the authentication logic is handled in the back-end middleware or
server. It is the OIDC client in this case. In a high level overview, the OIDC client
receives an authorization code in response to an authentication request sent to the
IdP’s authentication end-point. The OIDC client then uses this authorization code
to get the ID token and access token from a token end-point. This flow is defined
in the OAuth 2.0 specification [8]. The authorization server must always return an
access token. OIDC builds on top of this by requiring the authorization server to
send the ID token along with the access token. [10]

Based on the architecture of the application, the necessity of the access token
may differ. For example, for an application that only uses an authorization server for
identity assertion of its end user, the claims present in the ID token is sufficient. The
application may not need an access token as it is not accessing the user’s resources
from the resource server. The access token will still be issued if authorization code
flow is used and it can be used only for the scopes that were granted. In this case,
the access token can access the /userinfo end-point to get information about the
same claims that is present in the ID token.

The Authorization code flow steps are detailed as follows [7]:

• The client initiates the authentication with the IdP by a user interaction, such
as clicking a button.

• The client invokes the /authentication end-point at the IdP. OIDC specifications

18

Figure 5: Authorization code flow.

requires the scope value to contain openid if an ID token is required. The
response_type in this flow should be code.

• The IdP redirects the user’s browser to the IdP login page.
HTTP/1.1 302 Found
Location: https://example.idp.com/login

?response_type=code
&scope=openid
&client_id=<CLIENT-ID>
&state=<RANDOMLY-GENERATED-STATE-VALUE>
&redirect_uri=https%3A%2F%2Fexample.client.com%2Fcallback

19

The user is presented with a screen where they authenticate themselves with
their credentials. Furthermore, the page also presents a list of actions and
resources that the client asks access to. The user must consent to the requests
before the IdP can grant the access token to the client.

• The IdP redirects back to the callback URL that the client registered with
the IdP. The IdP sends a one-time authorization code as a parameter of this
redirect.

HTTP/1.1 302 Found
Location: https://example.client.com/callback

?code=<AUTHORIZATION-CODE>
&state=<SAME-STATE-VALUE-THAT-THE-CLIENT-SENT-BEFORE>

• The client processes the redirect request and sends an HTTP POST request to
the IdP to its token end-point. The authorization code, client ID and client
secret is sent as parameters to this request.

POST /token HTTP/1.1
Host: example.idp.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic <CLIENT-ID-AND-SECRET>

grant_type=authorization_code
&code=<AUTHORIZATION-CODE>
&redirect_uri=https%3A%2F%2Fexample.client.com%2Fcallback

• The IdP processes the request, verifies the authorization code, client ID and
client secret, and replies back to the request with the ID and access token. It
also sends the refresh token in this step if it was requested by the client.

• The client processes the reply, parses the ID token and creates a new session
for the user with the information from the ID token and redirects the user to
the application’s dashboard page. If the client requires access to protected
resources, it saves the access token.

An important step in this flow is client authentication with the token end-point.
OIDC defines a few methods that should be supported by the IdP. In each one
of them, the client sends different information to the IdP in the client secret field
mentioned above. They are detailed as follows [7]:

• client_secret_basic — In this method, the client uses HTTP Basic Authentica-
tion mechanism to authenticate to the IdP token end-point. The client must
send the client_secret that it received from the IdP when registering with the
IdP.

20

• client_secret_post — This method is the same as client_secret_basic except
that the client_id and client_secret is sent as request parameters in the request
body in a HTTP POST request.

• client_secret_jwt — In this method, the client creates a Hashed Message
Authentication Code (HMAC) using an algorithm such as HMAC SHA-256.
The HMAC is created using the client_secret that it receives from the IdP.
The client is required to include the following claims in the JWT: iss, sub,
aud, jti and exp. The iss (issuer) and sub (subject) claims should be the
client_id of the client. The aud (audience) claim should be the URL of the
token end-point of the IdP, which identifies the IdP as the audience for this
JWT. The jti (JWT ID) should be a unique identifier for the token such
that this token is used only once. The exp (expiry) is the expiration time
which states the time after which the token should not be used. The client
should send this token as a client_assertion parameter in the request body,
along with a client_assertion_type parameter whose value should always be
urn:ietf:params:oauth:client-assertion-type:jwt-bearer.

• private_key_jwt — This method follows the same principle as client_secret_-
jwt. The only difference is that instead of creating an HMAC, the client signs
the JWT using its private key. The client should have registered a public key
with the IdP.

• none — In this method, the client does not authenticate itself against the token
end-point.

OpenID connect also specifies the Implicit code flow, which is specifically catered
to web apps running in the browser. Single-page applications belong to this category.
In the Implicit code flow, the ID token is directly sent back to the client from the IdP
without any authorization code. The response_type in this flow should be id_token.
If the access token is desired alongside the ID token, then the response_type should
be id_token token. Since HTTP is a stateless protocol, the IdP has to send the tokens
back to the web app through an HTTP redirect. This exposes the ID and access
token through the browser history, which can be snooped by malicious programs in
the form of plugins in the user agent. ID tokens themselves are not used for accessing
any protected resources or for authentication. They merely assert the authentication
status of the end-user, and contains the end-user’s information. So, the risk involved
with its leak is lower than the access token leak. For this reason, the Implicit flow is
not recommended if the client needs the access token along with the ID token. This
risk is also present when using Authorization code flow in a browser based app. The
client secret cannot be securely stored because the browser code and data can be
viewed by everyone.

To avoid these risks, IETF introduced the authorization code flow along with
Proof Key for Code Exchange (PKCE) for browser-based applications and native
applications that cannot obtain and store a client secret securely [11]. The PKCE
plays the role of the client secret in the authorization code flow. Originally it is

21

a part of the OAuth 2.0 specification which, by extension, gets applied to OIDC
specification. If the initial authentication request does not contain the openid value
in the scope parameter, then only the access code is returned. However, if the openid
value is added to the scope parameter, then the ID token is returned along with
the access token. To implement authentication with this approach, the front-end
application has to follow the steps below [11]:

Figure 6: Authorization code flow with PKCE.

• The application initiates the authentication with the IdP by a user action such
as clicking a button.

• The application generates two artifacts code_verifier and code_challenge. The
code_verifier is a randomly generated 128 bit string consisting of alphanumeric
characters along with a few special characters. The code_challenge is generated

22

from the code_verifier by encrypting it with a cryptographic hash algorithm,
typically SHA256, and then encoding it in base64URL format.

• The application sends the code_challenge along with a redirect_uri to the
authentication server in an authentication request using HTTP redirect. scope
should contain openid as one of its values if an ID token is needed. The
response_type should be code.

• The authentication server authenticates the user, typically through a username
and password. After the user is authenticated, it prompts the user for consent
to grant access to the user’s resources to the requesting client application.

• Once the consent is given, the authorization server saves the code_challenge
and sends a cryptographically generated random authorization code to the
client application using the redirect_uri.

• The client application gets the authorization code and sends a POST request to
the authorization server requesting the ID token and access token. The client
needs to send the code_verifier and the authorization code in this request.

• The server verifies the code_verifier with the code_challenge that it stored
in the earlier request. Additionally, it verifies the authorization code. If the
verification succeeds, the server replies to the POST request with the ID token
and the access token, and the server also deletes the code_verifier as used.

• The client application parses the ID token and creates a personalized dashboard
with the claims information. It stores the access token in its internal storage
for use during future resource access requests.

2.6 Session Management
The ID token and access token that are issued by the Identity provider are often
short-lived due to security considerations. This creates a situation where the client
needs to request for new tokens from the authorization server once the existing
tokens expire. The OIDC client should handle the sessions for both the ID token
and the access token. The tokens may have different expiry times. It is important to
distinguish and identify the uses of the two tokens for the application’s use cases.
The audience of an ID token is the OIDC client and the audience of an access token
is the resource server. An ID token gives to the client information about the user’s
identity and authentication status. This information is provided in the claims field of
the ID token payload. This token is used to generate a custom profile with the claims
fields. Access tokens, on the other hand, are used by the client to access resources on
behalf of the user. OIDC specification defines user-sessions as a continuous period of
time during which the OIDC client has a valid authenticated status with the IdP.
User-session management relates to checking this authenticated status. If a session
expires, all existing tokens are invalidated, and new tokens are issued after the user

23

Figure 7: Session management using silent re-authentication.

re-authenticates. This includes the access token even if the access token was still
valid according to its expiration time.

There are two primary approaches to maintaining a session. One approach is called
silent re-authentication [7]. The web application follows the usual authentication flow
providing the same parameters to the IdP authorization end-point. This approach
requires the client to periodically query the OpenID provider about the end user
session status. For example, in OpenID Connect, the prompt=none field in the
request tells the identity provider that the authentication should not ask for end
user interaction. If the session is still valid in the IdP, the IdP will reply with the
requested tokens. Additionally, OIDC defines error response codes that the IdP
should include in the response parameter error_description if the silent authentication
did not succeed. These error responses are login_required, interaction_required and

24

consent_required.

• login_required — This code is sent when the user is not logged in with the IdP.

• interaction_required — This code is sent when the user is logged in with the
IdP and has authorized the application with the IdP, but the IdP needs to
perform some additional interaction with the user before refreshing the ID
token.

• consent_required — This code is sent when the user is logged in with the IdP
but the IdP requires end user consent before granting the application access to
the user’s identity and access to resources.

The OIDC client should follow the above mentioned responses with a redirect to
the IdP’s authorization endpoint without the prompt=none because the IdP requires
user interaction to complete the authentication.

A second approach is to use hidden iframes connected to the IdP, which is polled
by the web-client at regular intervals to get the session status [12]. This is done
through cross origin communication between the OIDC client and the IdP. The
OIDC client loads an invisible iframe with a URL source provided by the IdP. This
allows the IdP to run in its own security context within the OIDC client. The OIDC
client uses the Window.postMessage API to send messages to the IdP iframe, which
uses the same API to reply back to the OIDC client. Messages within each iframe are
received with a message event listener, which is triggered when the iframe receives a
message through the postMessage API. OIDC defines two metadata endpoints in the
form of URLs that the IdP should implement to support this functionality. The first
URL, check_session_iframe, is provided as a source to the invisible iframe that loads
the IdP implemented page into the iframe. The second URL, end_session_endpoint,
is provided by the IdP so that the OIDC client can redirect to it when it wants to
end a session such as when the user wants to log out.

To keep track of the session state, OIDC defines a parameter called the session_-
state. It is calculated from the client_id, origin URL, browser state and a salt,
which are then hashed cryptographically. It is calculated by the IdP and sent to
the OIDC client along with the initial authentication response. The browser state is
maintained by the IdP and stored at the OIDC client in the form of a cookie or in the
browser local storage. It is IdP-implementation dependant which is updated during
meaningful events such as login, logout etc. It is not recommended for the IdP to
change the browser state too often, as it will trigger a change in session_state and
additional network traffic to reflect the change at the OIDC client. It is stored under
the IdP domain so that it is not accessible outside its domain. The IdP accesses
it through the page that is run in the invisible iframe under its own domain. The
origin URL refers to the origin URL of the initial authentication response. This is
typically a reference to the IdP’s origin URL. [12]

The OIDC client loads an invisible iframe with a URL from its own domain to
communicate with the IdP iframe. This iframe sends the client_id and the session
state with each session check request made to the IdP iframe. The OIDC client

25

Figure 8: Session management using hidden iframes.

iframe should know the ID of the IdP iframe to send the request. The IdP utilizes
the client_id sent by the OIDC client iframe, the origin URL of the IdP, and the
browser state stored in the browser to recalculate the session state. Then it matches
it against the session state passed by the OIDC client. Based on the match, the IdP
replies with three possible status values.

• changed — If the two session states do not match, the IdP sends this response.
Upon receiving the response, the OIDC client iframe should initiate a silent
re-authentication with the IdP using prompt=none. The OIDC client iframe
needs to send the old ID token as a id_token_hint parameter in the request.
If the IdP responds back with an ID token for the same user, then the OIDC
client stores the ID token and updates the session state value received along
with the response. If the OIDC client does not receive an ID token or receives

26

an ID token for a different user, then it indicates the end of a session, and the
OIDC client should handle it as a logout for the current user.

• unchanged — If the two sessions states match, the IdP replies with this response.
The OIDC client does not need to take any further action in this case, as it
indicates that the user session is still valid.

• error — If the IdP cannot calculate the session state from the parameters
received through the OIDC client request, it replies with this response. The
web application should handle this case as a logout for the user session. Upon
receiving this error response, OIDC mandates that the OIDC client should not
perform a re-authentication with prompt=none parameter so that it does not
cause potential infinite loop requests with the IdP.

To end the session with the IdP during a user log out, the OIDC client redirects
the browser to end_session_endpoint URL. The OIDC client is required to pass the
current ID token as an id_token_hint parameter. Optionally, the OIDC client can
also pass a post logout redirect URL as a post_logout_redirect_uri. If provided, the
IdP redirects the browser to this URL after logging the user out. The URL should
be registered with the IdP before it can be used.

The OAuth 2.0 specification introduced refresh tokens, which can be used to
request the IdP for a new access token once the current one expires [8]. Since
the OpenID Connect specification was built upon the OAuth 2.0 specification, it
introduced the openid scope parameter, which must be sent if an ID token is needed
along with the access token. This scope parameter can be sent both in the initial
authentication request and when using the refresh token. Refresh tokens are often
long lived, which allows the web application to maintain an active session without
forcing the user to go through the authentication and authorization flow all over
again.

Since refresh tokens can be used to directly acquire access tokens, it is of paramount
importance that they stored securely. In a public client such as a single-sage ap-
plication, the refresh token can be stored in the browser localStorage or in cookies.
Furthermore, refresh tokens are granted for a single use, which means a new refresh
token is sent by the authorization server along with the access token. This still does
not prevent malicious programs in the browser from getting access to the refresh
token, paricularly if stored in the localStorage.

To maintain the user session, the web application needs to request new tokens
before the existing tokens expire. All tokens are opaque to the web application,
which means the web application cannot read the access token and get the expiration
details from it. Authorization servers are often configured to send the parameter
expires_in, which contains the amount of time after which the tokens would expire.
The web application needs to read and store this value and implement an automatic
request well before the tokens expire.

27

2.7 Access Control
In a traditional web application, access control is generally a part of the back-end
where every route checks whether the user is allowed to access that route. However,
in SPAs, where the whole application runs in the user’s browser, implementing access
control strategy in the front-end comes into the picture as an important task.

From a security standpoint, access control in a browser-based application relates
to simplifying and enhancing the user’s experience while using the application. Since
browser-based applications can be inspected and modified, the control checks must
be performed in the back-end. Implementing redundant access control checks in the
front-end has several advantages as detailed below:

• It prevents unwanted asynchronous AJAX calls to the server. A web appli-
cation loads certain parts of the user interface and populates it with data
asynchronously. The application is optimized for performance by avoiding
server calls for data that the user does not have access to.

• It prevents displaying UI elements for performing operations that the user is
not authorized to. The web application performs better through enhanced
page load and response times, and provides coherence in user experience by
removing points of error.

• It enhances the user experience by displaying proper messages to the users
when performing unauthorized actions.

The most commonly used access control method in web applications is Role-
Based Access Control (RBAC). While configuring authorization servers, each user is
assigned a Role, Group or Permission. A user can be assigned a role, which defines a
specific set of permissions that the user is allowed to do. For example, a user with
the role Admin can have the permission to ADD or DELETE users. However, a
user with the role Visitor may only have the READ permission. Users can also
be assigned to groups, where each group has a set of assigned permissions that its
members are allowed to do.

Access control can be implemented using custom scopes, which refer to the
allowed actions against a particular resource. They are typically represented in the
form resource:action. When requesting access tokens from the authorization server,
the front-end application has to include in the request a scope parameter, which
is a space-separated list of strings. The authorization server replies back with the
allowed permissions in the scope parameter in the access token. Furthermore, the
authorization server can also display a UI prompt to the user where the user can
consent or dissent to the permissions requested by the client application. Based on
the user action, the authorization server can modify the set of permissions before
sending the list of scopes back to the web application. The list of defined custom
scopes is decided by the API developer. They are usually provided to the application
developer through the API documentations.

In SPAs, routes and UI elements should be protected based on the permissions
obtained in the scope. This can be achieved by maintaining a list of all roles and

28

allowed permissions in the web application. Based on the obtained scope, the front-
end application can implement route guards that prevent a user from navigating to
the protected route. For example, a user with the Visitor role should not be able to
access the /admin route. Furthermore, UI elements should be disabled or hidden
from certain common pages based on the user roles. For example, in a Dashboard
page, there can be a Add user button, which should be visible only to users in the
Admin role. [13]

Figure 9: Access token validation check.

Every access request is checked in the resource server for validation. This is
necessary because a malicious user can bypass the access control checks in the front-
end web application. Typically, resource servers communicate with authorization
servers for validating an access request. Authorization servers maintain Access
Control Lists (ACL) which contains information about the users along with their

29

roles and permissions. OAuth 2.0 specifies a /introspect end-point that resource
servers can use to validate an access token [14]. It is recommended to not expose
this end-point publically as it may return sensitive information about the client.
A common approach is to use it in a private server which only the resource server
can access. Additionally, it is recommended that this end-point is protected by an
authentication mechanism such as HTTP Basic authentication. This request returns
a JSON object that contains information about the access token and the client. The
active field states if the access token is valid. Based on the implementation, client
id, scope, username and exp fields are also returned. The resource server checks the
scope field to determine if the access token has the permission to access the requested
resource. If permission is not granted, then it returns an unauthorized error response
to the client. The resource server can cache the values of the /introspect end-point
for performance considerations. The cache expiry times are determined by security
and performance trade-offs. Shorter expiry times will result in better security. Higher
expiry times may result in situations where the resource server validates an expired
token.

2.8 SSO Integration
Single sign on (SSO) allows a user to use the same credentials in a number of
applications within an organisation. User’s credentials are registered and stored
in the organisation’s IdP. Every application within the organisation share a trust
relationship with the IdP. For every application, the users are redirected to the IdP’s
login page where they authenticate themselves. After authentication, the IdP shares
the authentication status with the application. With OIDC, the authentication
status is shared through the ID token. [15] [16]

JWT is most commonly used for the token. The payload field of the ID token
contains a number of claims that represent information about the user. This informa-
tion is used by the front-end client application to create a personalized experience for
the user. Before accessing the payload, the front-end application needs to decode the
ID token and verify the signature of the JWT. According to the standards, the JWT
payload is encoded in base64URL format [17]. Thus, the raw payload information
can be found by just decoding the payload in base64URL.

Secondly, it is important to verify that the received token is legitimate. There
are various steps that need to be taken by the front-end application to verify the
authenticity of the token. The first step is to verify the signature of the JWT. The
IETF specification supports various algorithms for signing the JWT [17]. Out of
them, the most used ones are HS256 (symmetric) and RS256 (asymmetric). The
algorithm used by the IdP to sign the JWT is included in the alg header field of the
JWT. For public facing applications such as SPAs, HS256 is not applicable since
it uses a shared secret key, which is used both for signing and verification. Public
facing applications have no way to store this secret key in a secure manner. This
option is applicable if the application architecture uses a back-end proxy API server
that handles the tokens on behalf of the SPA client. RS256 is used instead for public
facing SPA clients, and it uses asymmetric cryptography. The IdP server signs the

30

JWT using its private key before sending it to the client. The client uses the public
key of the IdP server for verifying the signature.

To get the public keys, the IdP must expose an endpoint that provides the caller
configuration information about the IdP. The OIDC specification defines this endpoint
as /.well-known/OpenID-configuration concatenated to the IdP host address [18] [19].
For example, if the host address of the IdP is https://www.example.com, then the
configuration information URL is https://www.example.com/.well-known/OpenID-
configuration. The JSON object received as a response to this API contains a
jwks_uri field which points to the location of the IdP’s JSON Web Key Set object
(JWKS). The JWKS contains an array of JSON Web Keys (JWK), which represent
the cryptographic keys used by the IdP to sign the JWTs [20]. Each JWK contains
a kid and the public key amongst other fields. The client matches the kid value with
the one that it receives in the JWT token and uses the public key for the verification
process.

Apart from the signature, three other important fields need to be verified which
are the Issuer iss, the Subject sub and the Audience aud, which are included in the
token payload. The issuer field represents the IdP that issues the token. The subject
field is a unique identifier for the end-user within the IdP (OIDC Provider), who is
being authenticated. The audience is the entity who is expected to receive and verify
the token. The OIDC specification state that the audience field must contain the
client ID of the OIDC client. The OIDC client, in this case, is the back-end server
or front-end application, which receives the tokens from the IdP. The client ID is
issued to an OIDC client when it is registered with the IdP (OIDC provider). The
audience field also allows custom values which are application specific and should be
verified if required by the application.

Once verified, the front-end application can use the subject identity (sub) and
other claims that are contained inside the JWT payload. The OpenID connect
specification define a number of standard claims related to the identity of the user.
These values can be used by the front-end application to create a local profile. To
receive the claims in the ID token, the application needs to include the appropriate
scope values while making the authentication request. An example is scope=openid
profile email address phone. The list of scopes is space delimited. The openid scope
value states that the client wants to use the OpenID protocol for authentication
and expects an ID token in the response. The profile scope represents that the
client application wants access to the public profile of the user, which includes the
name, gender, picture and birthday. The front-end developer should only ask for
the minimum necessary set of claims. The user is asked for their consent when
they authenticate themselves with the IdP whether they allow the requesting web
application to access their data. Hence, the requested scope may not fully reflect the
claims that are actually returned. [21]

2.9 Single Logout
OIDC provides specifications that support single log out. The principal idea behind
single log out is to end the user’s session for all web applications to which the user

31

is logged in with the same IdP. It allows the ease of logging out once, instead of
logging out of each web application individually.

When logging a user out of a web application, the application has to handle a few
scenarios to ensure a successful log out. First, it needs to clear session variables from
its own security context that it maintains for the web application. Then, it must
perform a logout with the IdP, which clears the session from the IdP. Depending
upon the use cases, the web application can perform a local logout or a global logout.
In the local logout, the web application logs the user out of the currently active
application that initiated the logout. In a global logout, the IdP triggers the logout
of all applications that have an active session for the user.

For local logout, the OIDC client can implement a simple logout mechanism based
on timeout logic. Every ID token contains an expiration field that specifies the time
until when the ID token is valid. The OIDC client starts an internal timer, which
triggers a logout when the ID token expiration time is reached. This mechanism will
not work, however, if the OIDC client uses refresh tokens to persist the user session
or uses periodic silent authentication to keep the user logged in.

The OIDC session management spec describes how a web application can perform
a local logout [12]. The Session management section describes how a OIDC client
maintains a session with the IdP. For a OIDC-client-initiated logout, the client first
clears its own security session with the user. Then, it redirects the browser to an
IdP-defined endpoint, which clears the IdP-maintained session for the user. The
IdP needs to implement a service discovery endpoint, as specified by OIDC, through
which the OIDC clients can find its logout URL. With the redirect request, the client
sends the id_token_hint, post_logout_redirect_uri and state parameters. At the
logout endpoint, the IdP should ask the user whether they want to log out of the IdP
as well. This triggers a global logout depending on the choice by the user. For a IdP
initiated logout, the OIDC client should periodically query the IdP about the session
status for the user. This is done using two invisible iframes, one created by the OIDC
client on from its own domain with a page containing session management functions,
and one created by the OIDC client with the session URL provided by the IdP. The
two iframes communicate with each other through the window.postMessage API. For
every request, the IdP responds with one of the status values changed, unchanged or
error. If the status is changed, the RP should initiate a silent re-authentication with
the IdP. If the IdP responds with no ID token or an ID token for a different user,
the OIDC client should handle this as a logout. If the status is error, the OIDC
client should also handle it as a logout without trying any silent re-authentication.

For global logout, OIDC specifies two mechanisms: Front channel logout [22] and
Back channel logout [23]. Front channel logout uses the browser to handle redirects
that perform the logout steps. It is used by single-page application clients that handle
session management in the front-end. Back channel logout is performed by the IdP
through direct communication with the OIDC client. In this case, the client is an
intermediate back-end web server that handles the authentication, authorization and
session management with the IdP. For a front-end developer, understanding the
front channel logout mechanism is important. [24] [25]

Figure 10 shows the front-channel logout flow between the IdP and the OIDC

32

Figure 10: OIDC Front-channel logout.

clients. The OIDC clients are SPAs that are running in the user’s browser. In the
front-channel logout, the IdP has no direct way of contacting the client or server
side of the other applications B and C to log the user out from those applications.
Instead, the user’s browser needs to send those logout notifications to the servers
of applications B and C. To implement this, every application should register a
front_channel_logout URI with the IdP. The user initiates the global logout from
application A through the browser which triggers the IdP’s global logout mechanism.
The IdP’s response to the browser contains an IdP-implemented global logout page
that informs the servers of applications B and C about the logout. This is done by
rendering an iframe within the global logout page. Due to the same origin policy,
the global logout page creates a new iframe for each of the applications with their
registered front_channel_logout URI. The servers then notify the client parts of

33

applications B and C in the user’s browser and also delete the session state form the
servers themselves. Finally, the IdP redirects back to application A’s post-logout
URL.

Figure 11: OIDC Back-channel logout.

An IdP initiates a back-channel global logout by sending a logout request to every
additional client that has an established session to their registered back_channel_-
logout URI. The IdP sends a logout token, which is known as a Security Event Token
(SET) [26]. A SET is JWT token that represents a set of security and identity related
events that occur for a client. The OIDC specification defines a set of required claims
that should be present in the SET to identify it as a logout token. These are listed
below:

• iss — The issuer of the SET, which is the identifier of the IdP.

34

• aud — The audience of the SET, which is the client ID of application the SET
is intended for.

• iat — The issued at time, which tells the time the SET was issued at.

• jti — The JWT ID, which uniquely identifies the SET.

• events — This claim contains a JSON object, whose key should be
http://schemas.openid.net/event/backchannel-logout and the value should be
an empty JSON object {}

A back-channel logout request from the IdP to a client looks like this:

POST /backchannel_logout HTTP/1.1
Host: client.com
Content-Type: application/x-www-form-urlencoded

logout_token=<SET logout token>

Upon receiving a back-channel logout request with a SET, the client should validate
the SET token. The validation steps are similar to the validation steps of an ID
token. Additionally, the client should verify that the SET contains an events claim
with correct JSON object as defined above, and it did not receive any other logout
token before with the same jti claim value. If any of the validation steps fail, the
client should respond with a HTTP 400 Bad Request error. After the validation
passes, the client performs its own implementation-specific logout process. The client
can use the sub or iss claims in the SET to locate any session variables in its session
and clear them out. After a successful logout, the client responds back to the IdP
with a HTTP 200 response.

2.10 Token storage
Token storage is inherently more secure in a back-end server than in a front-end
application running in a web browser. A front-end web application running in a web
browser is called a public facing client because its source code and data are fully
visible to the user from the web browsers. Back-end servers do not allow access to
their code to the public. It is accessed only by the developers who have access to
the development environment. The functionalities of a back-end server are provided
through public APIs, which can be called by any public client. For each request to an
API, the back-end server replies back with data that the user requested. The public
client is not exposed to how the data is provided or where it is comes from. Therefore,
storing sensitive information is considered secure in the back-end environment.

On the other hand, since the full source code of the front-end web application
is visible to everyone, extra precautions must be taken when storing and using
sensitive information from it. Shared secret keys, which are used in asymmetric key
cryptography, are never stored in public facing clients.

35

The access token that is used in OIDC operation is a bearer token. Anyone with
access to it can make a valid request to an API that accepts the token. Furthermore,
it needs to be sent in as Bearer header field in the HTTP request. For a web
application that has a back-end server, the tokens are securely stored in the back-end
server. It modifies each outgoing API request by injecting the tokens, and relays the
API replies back to the web applications. For web applications that do not have a
back-end server, such as static web applications, the injection of access token into
every request must be done by the JavaScript code.

Access and Refresh tokens can be stored in the web browser in the localStorage or
sessionStorage. Browsers can store key:value pairs in these storage locations. Session
storage persists the data across a single session. It allows access to data only within
the window or tab in which the data was created. The session storage is cleared once
the user closes the browser. Local storage persists the data even after the browser is
closed. This data can be shared across different tabs and windows. Browsers store
these values on a per-origin policy, which means they do not allow cross-domain
access to these storages. However, any JavaScript running on the domain of the
application can access the storage. This poses a security risk which is known as Cross
Site Scripting (XSS). The XSS vulnerability can also be in a third party library,
which is used in the web application. [27]

To avoid the risks associated with storing tokens in the browser storage, OIDC
providers (OP) can choose to store the tokens in cookies. Cookies are also stored in
the browser on a per domain basis, which means that a web page can only access a
cookie which is associated with its domain. Cookies provide a number of flags that can
be set to prevent them from being compromised. The OP can set a cookie’s Secure
flag to ensure the cookie is sent only with HTTPS requests, and the httpOnly flag to
ensure the JavaScript cannot access it using the document.cookie DOM API. The
sameSite cookie can also be set which ensures the cookie is sent only on same-origin
requests. Browsers, however, have a size limit of 4 kilobytes for cookies. Therefore,
any data or token larger than 4kB cannot be stored in a cookie. [28]

2.11 Software Development Kits
Software Development Kits (SDK) are tools that allow developers to use certain
functionality. SDKs group operations and functionality pertaining to a certain logic
and expose APIs that can be called to execute them. SDKs contain instructions
to developers regarding their usage on the supported platforms. They are easy to
integrate with existing applications, thus providing a convenient way for develop-
ers to introduce new functionality to their web applications. Authentication and
Authorization SDKs are one example. The steps required to perform authentica-
tion and authorization are laid down by specifications. The translation from those
specifications to code should result in the same functionality in every application.
By grouping together these steps in one place and exposing them through APIs has
several advantages as mentioned below:

• Developers do not have to write the same code for every application that follows

36

the same authentication and authorization steps. This significantly reduces
the cost and time needed to develop and release an application.

• Developers do not have to worry about the steps that are performed to achieve
a certain operation. Application developers do not have to be concerned about
the methods of implementing certain operations such as token storage and
session management. Storage and retrieval of tokens are handled by the SDK.
Creation of iframes for session management and periodic polling of the IdP are
handled by the SDK. The SDK contains robust error handling mechanisms that
covers every boundary and edge cases. The SDK developers are responsible for
maintaining the SDK and ensuring that the SDK works as intended without
any flaws or vulnerabilities.

• Introducing new features and maintaining existing features can be done in one
place instead of all the applications that use them. Having a single code eases
debugging and fixing bugs.

• It provides a unified experience throughout similar applications. With the same
configuration, the developer can ensure that the operations will work in similar
ways across the applications.

• SDKs follow a uniform patterns in their APIs and usage. This abstraction of
the core operations allows easier migration between different platforms.

• IdP implement and release the URL end-points in different versions. To
maintain compatibility, new versions are published in a different URL. SDKs
maintain the URL end-points that are used with a particular IdP. Since
migrating to a newer version of the URL is internally handled by the SDK, the
application developer does not have to worry about it. Without an SDK, the
migration would need to be done for every application, which can be tedious
and error prone. Furthemore, the IdP might change the operation with the
new URLs. Without an SDK, the application developer would have to change
the operation logic for every application.

Most identity providers have JavaScript SDKs available for use with a web client.
Every SDK starts with loading the JavaScript bundle in the web page. This is
done by the script tag with its src pointing to the bundle URL provided by the
identity provider. This downloads the SDK on page load and exposes a global
variable, through which the APIs of the SDKs are accessed. Web applications should
consider Cross Origin Resource Sharing (CORS) policy when accessing resources
from external servers. CORS is a mechanism that web browsers implement to prevent
JavaScript code from accessing data, that originates from a different origin than the
page where the code runs. For example, SDKs handle errors and display the error
message through error logs for debugging, which are essential for a developer using
the SDK. When the SDK script is loaded from the external site, the browser shows a
Script Error message in the logs instead of the proper error message. This happens
because the same-origin policy check within the browser prevents sharing of the error

37

Figure 12: Script loading with CORS

log data across different domains. The same-origin check is not done by browsers
when a script is loaded from an external server using the script tag. This can be
circumvented with two steps. First, the crossorigin attribute on the script tag is set
to anonymous, which tells the browser to enable Same Origin policy on the request
[29]. Second, The external IdP server which hosts the SDK script responds to the
request by including Access-Control-Allow-Origin header with the Origin value of
the request. When both values match, the web browser allows data sharing from
the external script. Apart from the crossorigin attribute, the script tag can also
include the defer and async attributes [29]. defer ensures that the script is executed
after the whole page has finished parsing, and the async attribute ensures that the
script is run in the background. These two attributes ensure that the download and
execution of the script does not block the parsing and rendering of the main HTML
page.

Every SDK requires an initial configuration after loading the script. The con-
figuration usually takes the client ID, token scopes and other IdP related fields.
Most SDKs require an API key in the configuration, like Google’s JavaScript SDK.

38

Although it is insecure for user authentication, Google uses API keys to restrict the
number of requests that can be made to its API and is not related to user authen-
tication. A different web application can be prevented from using the API key by
using the HTTP referrer header field. The referrer field contains the information of
the last web page that the user visited. For API requests, it would contain the value
of the proper web application domain that called the API. The referrer header field
is a retricted field which cannot be modified programmatically through JavaScript.
The developer also needs to configure the accepted referrer values in the SDK’s
configuration portal.

Using the APIs is straightforward. They use asynchronous programming either
by using callbacks or promises. JavaScript callbacks or promises are functions that
are passed as a parameter to an SDK function. The SDK function calls the callback
function with the defined parameters after it has executed its own code. Every
SDK defines which parameters need to be passed with the callback function when
calling the APIs. For example, Facebook’s JavaScript SDK passes the result of a
login call in a response object. The SDK manages the token storage, revocation and
renewal, if supported. For every authentication and authorization related call, the
SDK automatically adds the tokens to the API calls.

A common functionality that all SDKs provide is authenticating a user and
providing an ID token to the calling web application. Most SDKs come with a
pre-built login button that is styled according to the IdP’s unique design. They offer
a plug-and-play approach, enabling web applications to support the IdP’s identity
services with minimal settings. Developers can also use their login API for achieving
the same result. A common trend for displaying the IdP’s login page is by opening a
pop-up window, instead of a redirect. In these cases, the pop-up window and the
original application window communicate via the postMessage API. The original
application listens for a message event that is sent by the pop-up window. The
message contains the tokens and information about the login process. For security
reasons, the original application should always check the origin of every request
received through the message event. It should only accept and process messages that
are sent from a known and trusted origin.

2.12 Credentials Manager
Credentials manager is built into to user-agent and helps manage user credentials.
The World Wide Web (W3C) consortium defines the Credentials Management API
that user-agents should provide, through which web applications can interact with the
Credentials Manager [30]. Through the Credentials Manager, front-end developers
can streamline authentication in their applications while providing an enhanced user
experience by reducing the frequency of user interaction.

Credentials Management API provides a number of benefits which are detailed
below:

• Users do not need to remember their username and password, as it is saved in
the Credentials Manager. This allows users to set a secure password consisting

39

Figure 13: Credentials Management API usage

of random strings. Furthermore, this eliminates the need for a third-party
password manager.

• Web applications can perform auto-sign in with the saved credentials. Since
sessions usually expire after a day, users are not greeted with a login form every
time they visit the web page. Considering that the credentials of the user do
not change, this allows for simulating a virtually permanent session.

• Credentials Manager supports saving federated login credentials alongside
password-based credentials. This allows web applications to integrate federated
identity managers into their application while using the Credentials Manager.

• Web Authentication API, built on top of Credentials Management API, allows
using physical objects, such as a USB fob or a biometric reader, as identification
entities. This eliminates text-based passwords, thus raising the level of security.

40

2.12.1 Credentials Management API

Credentials Management API exposes interfaces to interact with the Credentials
Manager. At this moment, it is supported by 83% of the browsers in use. Web
applications can use these API through the navigator.credentials object. The API
offers four main functions [30]:

• navigator.credentials.create — This API creates a Credential object which
contains the user credentials. It can either be PasswordCredential or Federat-
edCredential. PasswordCredential takes a user ID and password as required
values. FederatedCredential takes user ID and the federated identity provider
as required values. The username and password is automatically detected from
HTML input elements through the autocomplete attribute. HTML specifica-
tions define the autocomplete attribute values username for the username or
user ID, new-password for a new password, which is used in a register form
where ther user is creating a new password, and current-password for the user’s
current password.

• navigator.credentials.store — This API stores a credential into the Credentials
Manager store. This is called after creating a Credential using the create API.
The user agent always notifies the user before storing a password. It can store
the Credentials only if the user consents.

• navigator.credentials.get — This API gets a credential stored in the Credentials
Manager store.

• navigator.credentials.preventSilentAccess — This API prevents auto sign-in
using the user’s credentials. This is usually called after the user logs out of the
application, such that the auto sign-in flow is not performed when the user
visits the web page again.

The above API runs in a secure context of the user-agent. The secure context of
the web application is calculated by the origin of the top-most active document of
the web-page. This prevents iframes from accessing any data through the credentials
manager. Every Credential object is saved against its secure context, which is checked
every time its access is requested through the get API. Credentials Manager allows
storing multiple credentials for the same web application. If multiple credentials
exist, the user is always prompted to select the account they wish to sign in with
when performing an auto sign-in.

2.12.2 Web Authentication API

Web Authentication (WebAuthn) API is built on top of Credential Management API
that bring Public-Key based credentials to web applications. It uses authenticators
to created strongly attested and scoped Public-Key credentials and allows storage
and usage of these credentials with IdPs supporting them. An authenticator is an
abstract entity that provides and confirms the identity of the user. W3C defines the
WebAuthn Authenticator Model that lays down the protocols that an authenticator

41

Figure 14: Registration using Web Authentication API

should follow so that it can be used by a user-agent with the WebAuthn API [31].
The authenticator can be a software entity that makes use of a platforms Trusted
Security Module (TPM) or a hardware entity such as Windows Hello, or fingerprint
sensors of a mobile device. It can also be an independant FIDO-CTAP compliant
hardware module that can be used with Bluetooth or Near Field Communications
(NFC). [32]

The WebAuthn API uses the follow two APIs, which are described as below:

• navigator.credentials.create — This prompts the authenticator to create and
store a new set of public key credentials for the user.

• navigator.credentials.get — This fetches the existing public key credentials
from the store.

Two primary entities in this operation are the IdP server and the authenticator.
The server needs to support registration and authentication via asymmetric key
cryptography. The authenticator stores the identity information for the user. In a
password-based authentication, the identity information is stored in the user’s brain.

42

The registration of a web client with a compliant IdP takes place in a series of
steps as detailed below [31]:

• Server initially sends a registration challenge to a request made by the web
client. The challenge is randomly generated by the server and it is used as an
identifier of the operation. Additionally, the server sends the user information
and the client ID.

• The client calls navigator.credentials.create method and passed the challenge
parameters received by the server as a PublicKeyCredentialCreationOptions.
This object contains the client ID, user information, challenge sent by the server,
and a pubKeyCredParams object that contains the algorithms that should be
used for the credentials.

• The browser internally calls the authenticatorMakeCredential method on the
authenticator after verifying the client data, and adding some additional data
on its own together into a clientDataJSON object. The origin of the request is
also added to this object which the server uses for verifying same-origin requests.
The SHA-256 hash of the clientDataJSON, which is known as clientDataHash
is passed to the authenticator method call.

• The authenticator prompts the user for identifying themselves with available
options, such as Windows Hello, or a finger print reader. After the verification,
the authenticator creates a new asymmetric key pair and attests the public key
by signing it with its own private key. The private key on authenticators are
embedded into them during the manufacturing process. It can be validated
from a root of trust cerfificate through a certificate chain.

• The browser receives the PublicKeyCredential object, which contains an au-
thenticator generated rawId, the clientDataJSON, the attestation data created
by the authenticator and the public key. The object is sent back to the IdP
server to complete the registration process.

• The server verifies the information in the PublicKeyCredential object. Most im-
portantly, it verifies the original challenge, the client ID, and the origin. Finally,
it verifies the attestation over the clientDataHash and saves the credentials
information for future use if validation succeeds.

The authentication of a user from the web client follows similar steps to the
registration steps with a few alterations as detailed below:

• The server sends a challenge to an authentication request by the web client.
No other information is passed in this step.

• The web client calls the navigator.credentials.create method of the Credentials
Manager API. It passes the challenge in a PublicKeyCredentialRequestOptions
object to the create method, which contains the challenge sent by the server
along with some additional optional information such as the client ID.

43

• Internally, the browser calls the authenticatorGetCredential API of the authen-
ticator, passing the client ID and a SHA-256 hash (clientDataHash) of the
clientDataJSON object which contains the data that was provided in the create
call. The browser will carry out some initial verification of the data before
creating the clientDataJSON object.

• The authenticator uses the client ID to search for a matching credential, and
prompt the user for verification and consent. Once verified and consented,
the authenticator creates an attestation by signing the clientDataHash with
the user’s private key generated in the registration step. The authenticator
sends this assertion and the authenticator data back to the browser in a
PublicKeyCredential object.

• The browser sends this assertion, the clientDataHash and the authenticator
data back to the server. The server uses the user’s stored public key to verify
the assertion. Furthermore, it verifies the challenge that it sent in the first step,
the origin of the request, and the client ID. Once verified, the server logs the
user in and send the authentication tokens to the web client.

2.13 Authentication and Authorization in Native applica-
tions

Native (mobile) application development traditionally uses their own development
environments and programming languages. Two of the most popular mobile Operating
Systems in the world at this current moment are Android and iOS. Both provide their
own SDKs for application developers that enable them access to the whole ecosystem.
However, there has been a steep rise in the use of OS-agnostic tools for creating native
applications. This allows developers to target both platforms while saving significant
development time by using the same set of tools and development environment. Many
businesses have adopted this approach to provide their applications to their customers
irrespective of the OS they use. Among the libraries that exist today, React Native
and Ionic are the most popular for native application development. Developers use
web technologies like HTML, JavaScript and CSS to create the application, increasing
the adaptability and familiarity of developing native applications. This allows teams
or organisations to use their existing front-end developers in a native application
development project, instead of hiring native application development specialist
for Android or iOS. In that regard, it is important to touch upon token-based
authentication and authorization mechanisms that are followed and recommended
for native applications. [33]

OAuth 2.0 lays down some ground rules that should be followed for native
applications [34]. Native applications should use a web browser for performing the
authentication with the IdP. This is done by using platform specific APIs that allow
one app to communicate with another. Using a browser application is advantageous
because it allows applications to leverage SSO. Most IdPs save session state about a
user in the browser cookies. That way, the user can be logged in automatically on

44

Figure 15: Native app, browser and IdP interaction

every other app which uses the same IdP. On the other hand, if a native application
chooses to perform the authentication steps on its own without a browser, it will
face constraints when communicating about the session state of a user with other
applications.

The OSes allow native applications to use web-views, which are instances of a
browser that can be spawned inside an application’s context. Use of web-views are
strongly discouraged because the native application has full access to the web-view’s
context. It can record every activity happening inside the web-view and can also read
the cookies. Instead of web-views, native applications should use external trusted
browsers.

Redirecting from the browser to the native application with the authorization
code is done using Private-use URI schemes. Every application is assigned a URI
scheme by the OS. They are typically in a reverse order of web domain names. It is
encouraged that native applications use a similar scheme, for example, an app with a
domain app.example.com should use a URI scheme as com.example.app. OSes allow
applications to communicate using these private-use URI schemes. The redirect URI

45

after authenticating with the IdP should be the private-use URI. When the browser
attempts to redirect using such URI, the operating system handles the URI and
opens the application which is registered to the URI.

Native applications should use Implicit flow with PKCE. The secret verifier that
the client app generates in this approach, helps protect the authorization code re-use
if it is intercepted by another application which is registered to the same Private-use
URI. Only the app in possession of the secret verifier will be granted the tokens by
the IdP.

46

3 Use Cases

3.1 Industrial Control System
3.1.1 Architecture

The control system provides users an interface to monitor and analyze the data from
an industrial. The core services are provided by the middleware, which is responsible
for various operations such as device discovery, device management, data analysis
and API management. This middleware is based on a microservices architecture,
which allows independent development, deployment and maintenance. The API
management layer exposes various interfaces that are used by the client software to
display and interact with the data.

The IdP is a directory-based OIDC-compliant OpenID Connect provider (OP).
The company employs Identity and Access Management (IAM) tools for managing
the user data within the company. An intermediate API management layer provides
the bridge between the microservices middleware and the client application. The
API management layer provides APIs that the client calls for different services that it
wants to access. Internally, the API management layer is responsible for translating
the client-based API calls to microservices-based API calls. This allows the advantage
for the client applications to not worry about the discovery and accessibility of the
microservices directly. Apart from request proxying, the API gateway also serves as
the security layer between the IdP and client applications. It provides services such
as auditing, session management with client applications and client key storage.

There are two types of web applications in this system. The first type is a
Single-Page Application (SPA) which acts as the Relying Party (RP) itself. The
architecture is depicted in Figure 16. The RP registers itself with the IdP, which
provides the RP with a Client ID. The RP also provides a login callback URL and
logout callback URL during registration, which is required by the IdP. The IdP
redirects the browser to these callback URLs during login and logout respectively.
The SPA is hosted by a back-end server which serves the SPA when requested by the
user agent. All interactions with the IdP and API gateway happens directly from the
SPA. The SPA is responsible for storing the tokens and using them for each request
made to the APIs. The API gateway verifies the authorization tokens received with
each request. It communicates with the IdP to check the validity of the token and
incorporates access control checks against the API that is being accessed.

The RP uses Implicit grant with PKCE flow of the OIDC specification for getting
the tokens. During the authentication phase, the front-end application sends an
HTTP GET request to the authentication end-point of the IdP. First, the RP
generates a code challenge and code verifier. Then, it redirects the user-agent to
the IdP authentication end-point, and sends its client ID and code challenge as
redirect parameters. The IdP presents the user agent with the login form, where
the user provides their registered credentials. Once authenticated, the IdP redirects
the user agent to the login callback that was registered for that RP and includes
an authorization code. The RP calls the token endpoint of the IdP in an HTTP
POST request with the authorization code and code verifier. The IdP verifies the

47

Figure 16: IoT architecture.

previously sent code challege with the code verifier and replies back to the RP with
the access token and the ID token. The RP parses the JWT tokens and creates a
new session for the user and redirects the user agent to a customized home page.
The RP uses information provided with the ID token to create a new session.

The RP saves the tokens in the browser localstorage. It sends the authorization
token with each request to an API. This is done by implementing an HTTP
interceptor in the application. The HTTP interceptor intercepts every outbound
request to the API server and injects the authorization token in it as a Bearer token.
The SPA also implements route guards for the protected routes. Using the HTTP
interceptor, the SPA checks its localstorage for a valid token before granting access
to the route. If a valid token is not found, the SPA redirects the user to the login
page.

For session management, the SPA uses iframes to preform session validation with
the IdP. After receiving an ID token, it creates two iframes. The first iframe is

48

loaded using its own internal page, which contains session management operations.
The second iframe is loaded using a URL provided by the IdP. The IdP stores session
information in the browser cookies for the current user session. The SPA iframe
periodically communicates with the IdP iframe to get the session status. If the IdP
sends a changed status, the SPA tries a silent re-authentication with the IdP. If
the IdP returns an error status, the SPA treats it as a logout and initiates logout
operations.

Figure 17: IoT architecture.

The second type is an SPA supported by a back-end server which acts as the RP.
The architecture is depicted in Figure 17. The RP uses Authorization code flow for
getting the tokens. It uses the client_secret_basic method for the /token end-point
authentication. The developer saves the client_secret that it receives from the IdP
during the registration and securely stores it in the back-end.

The back-end sends the ID and access tokens to the SPA in a redirect. The
SPA stores these tokens in the browser localStorage. Token storage and session

49

management follows the same principle as the SPA without the back-end server
interaction.

3.2 Social Media Center
The Social Media Center is a web application that groups together all the posts made
by an organisation to various social media platforms and lists them in a chronological
order. It is developed and hosted by a district council in a city that wants to provide
a unified experience to its users. The organisation posts various messages throughout
the day to Twitter, YouTube, Instagram, Facebook and its own blog page. A survey
carried out by the organisation showed that most of the district’s inhabitants do not
check all the platforms. Due to the different capabilities and functionalities offered
by the aforementioned platforms, a post created in one of the platforms may not
be possible to create in the other. For example, uploading a high quality video on
YouTube or creating an event on Facebook are not supported by the other platforms.

The Social Media Center fetches all posts made by the organisation in its own
accounts across the different platforms and groups them together chronologically in
one place. Users are able to browse through the list and view each post without
leaving the application. Furthermore, the application allows the users to like or
comment with their own accounts in Twitter and YouTube. Instagram does not allow
commenting or liking on any post through the APIs. It allows only business accounts
to be managed by a third-party application. The application also allows the users
to filter the posts based on platform, so that the users can choose which platform’s
feeds they want to see.

The web application is an SPA that is hosted by a back-end server. It uses OIDC
compliant access tokens with all the platforms. The application needs two different
authentication and authorization levels. The first level is to fetch all the feeds from
the organisation’s own accounts. This operation includes registering the application
with a developer account, getting the API access tokens and using the access tokens
to make calls to the APIs. The second level is to allow the users to interact with the
posts using their own account in the respective platforms.

For Twitter, the developers need to create and register their app on Twitter
developer dashboard. Once registered, Twitter provides the consumer key and
consumer secret. These allow the application to identify itself with Twitter and access
its APIs. The developer also gets the option to link an existing public account. If
done, then the developers gets an access token and access token secret. The access
token and secret are used to fetch the feeds from the council’s public Twitter feed. To
allow a user to post on their behalf, the application needs user access tokens. Twitter
uses an operation which they call 3-legged OAuth flow [35]. As a first step, the
application requests Twitter to grant it a request token. It sends its consumer_key
and a registered callback URL in this request. Twitter replies with a token and
token verifier. In the second step, the application redirects the user to Twitter’s
/authorize endpoint along with the token received in the previous step. The user
uses their credentials to authenticate themselves, unless already logged in. The user
also needs to grant access for the permissions the application requests. If granted,

50

Figure 18: Access token flow.

Twitter replies back with the same token and a token verifier to the callback URL.
As a third step, the application calls the Twitter /access_token endpoint with the
consumer key, token and token verifier. If everything checks out, Twitter replies back
with the user’s access token.

Youtube requires an API key per application to make calls to its APIs. This API
key is available to the developers once they register the app in the YouTube developer
dashboard. To get information about a particular channel, the app makes an HTTP
GET request to the channel end-point of the YouTube API URL [36]. It sends the
API key in a key parameter and the channel ID in a channelId parameter. Since the
requested channel is public and does not have any private videos, an access token
is not required. The videos in the channel are fetched from the videos end-point,
using the same API key and the Channel ID [37]. For posting comments by the user,
the web application needs to get an access token. YouTube supports the OAuth 2.0
Authorization grant flow for granting access tokens. The web application constructs

51

Figure 19: Twitter 3-legged authorization OAuth flow.

a URL to YouTube’s https://accounts.google.com/o/oauth2/v2/auth end-point along
with the client ID, redirect URI, response type and scope parameters. Then, it
redirects the user’s browser to the URL where the user authenticates themselves
in the Google IdP. After authentication, the user is asked to grant permission to
the web application for the operation that was requested. If the user grants the
permission, the IdP redirects the user’s browser to the redirect URL specified in
the earlier redirect with an authorization code. The web application sends a HTTP
POST request to https://oauth2.googleapis.com/token with the client ID, client secret,
the authorization code and a redirect URI. The IdP verifies the parameters and
replies back with an access token. The reply also contains an expires_in field that
contains the expiration time of the access token. The web application sends this
access token as a Bearer token in the Authorization header of every HTTP POST
request for making a comment. The comments are made through an HTTP POST
request to the comments end-point of the YouTube API URL [38].

52

Figure 20: YouTube Authorization code flow for user’s access token

Facebook allows access to its APIs through a suite which they call as the Graph
API platform [39]. Facebook requires applications to have a Page token to be able
to access a page. Furthermore, the token should have the MODERATE permission
granted by the page owner. Getting a page access token involves the following steps:

• Developer creates a developer account on Facebook and registers an app.

• Developer selects permission required by the app and chooses the permission
pages_read_engagement and pages_read_user_content

• Page owner grants the permission to the app to access the page.

• Developer gets short-lived user access token from the developer dashboard.

• Developer exchanges the short-lived user access token for a long-lived user
access token. This is done using an HTTP GET call to /access_token end-
point along with the client ID, client secret, and the short-lived user access

53

token. The developer gets the client ID and the client secret from the developer
dashboard.

GET https://graph.facebook.com/{graph-api-version}
/oauth/access_token
?grant_type=fb_exchange_token
&client_id={app-id}
&client_secret={app-secret}
&fb_exchange_token={short-lived-user-access-token}

• The call returns a long-lived user access token. The developer exchanges it
with a long-lived page access token using a HTTP GET call to the /accounts
end-point along with the long-lived user access token. The user-id is accessed
from the user’s Facebook account.

GET https://graph.facebook.com/{graph-api-version}/{user-
id}/accounts/
?access_token={long-lived-user-access-token}

• The call returns a long-lived page access token that contains the permission
that was granted in the earlier steps. This access token has no expiration date.

The web application uses the page access token to make requests to the /page-id/posts
end-point feeds API to get a list of all published posts in the page. The data contains
links to like and comment for each post. These redirect the user to the Facebook
post where the user can comment or like on the post.

Instagram moved its API to Facebook’s Graph API from 2018 onwards. This use
case, however, uses the old Instagram authentication APIs. It supports the OAuth
2.0 protocol for the access token exchange. To get an access token, the developer
creates a developer’s account by logging in. The credentials used for logging in are
the same as the ones used for the Instagram page of the district council. In the
developer’s dashboard, the developer creates and registers a new application. The
developer needs to provide a redirect URL, which the Instagram IdP will use for
redirects. Once successfully registered, the developer gets a client ID and client secret.
Instagram supports two methods for receiving the access token: Server side flow and
Implicit Flow. Since the relying party for this use case is the back-end server, hence
the developer uses Server side flow. First, the developer redirects the web browser
to the /authorize URL.

redirect https://api.instagram.com/oauth/authorize/
?client_id=CLIENT-ID
&redirect_uri=REDIRECT-URI
&response_type=code

The client-id is the same as the one they received from the dashboard, and the
redirect-uri is the same as the one registered in the dashboard. Instagram displays a

54

login page, where the developer authenticates using the Instagram page’s credentials.
Once the developer has logged in and approved the permissions, Instagram redirects
to the registered redirect URL with an authorization code. The developer exchanges
this authorization code with an access token by making an HTTP POST request to
the access_token end-point.

POST https://api.instagram.com/oauth/access_token/
?code=<authorization_code>
&client_id=<client ID>
&client_secret=<client secret>
&redirect_uri=REDIRECT-URI
&grant_type=authorization_code

The request contains the authorization code received in the previous step, the
client ID, the client secret, the grant type which is set to authorization_code and
the registered redirect URL. The Instagram IdP replies back with a JSON object
that contains the access token. The JSON object does not contain any expiry
date. In case the access token expires, the developer will get an error message of
type OAuthAccessTokenException. In this case, the developer has to perform the
aforementioned steps again to get a new access token. With the access token, the
developer can make API calls to fetch the posts from the page.

GET https://api.instagram.com/v1/self/media/recent
?access_token=ACCESS_TOKEN

The session is managed by the back-end server by creating a session identifier
at the start of each session and storing it in its own database. The back-end server
creates a session cookie which contains the identifier value. It saves the Twitter and
YouTube user tokens along with the session identifier. It displays the active token
information to the user in the app settings. The user is given the option to revoke
any active tokens if they so choose. Alternatively, they can revoke access to the
web application from their own Twitter or YouTube pages. During logout, the web
application clears the session cookies and removes the user tokens that it has saved.

3.3 Component Library
Component Library is a product of a design system that provides User Interface (UI)
elements. These UI elements are used to compose complex user interfaces for a web
application. A design system specifies and defines a set of design rules that ensures
uniformity and coherence. It closely follows industry standards and brand guidelines
connected to a company, and produces a single source of information on UI design.
The component library complements the design system and provides users a set of
pre-defined components which allow them to build a product adhering to the design
system guidelines.

The component library is published as an NPM package for React and Angular,
which are the two most popular front-end frameworks to create single-page Appli-
cations. The library provides a set of atomic components, as well as composite

55

components. For example, a checkbox is one of the atomic components and a dialog
modal is one of the composite components. The composite components are composed
of atomic components.

The library publishes a Login component as part of its composite components.
Users use this component in their web applications for displaying a Login UI to
their users. Being a presentational component, it only provides the text input and
password input elements, as well as APIs that pass the raw text value of these inputs
to the parent component.

3.3.1 Proposal

A common architecture paradigm for SPAs is to segregate the components into
presentational and container components. Presentational components are stateless
and are primarily concerned with how the UI looks. They are responsible for changing
the UI state in response to an event or a change in state. Container components, on
the other hand, are stateful and contain the business logic of the application. They
are concerned with performing a specific task in response to an event passed down
by the presentational components, and pass the result of the operation back to the
presentational components. In its current implementation, the Login component is
a presentational component. In this section, we discuss how it can be turned into
a library of its own that provides authentication and authorization for every web
application within the company.

The UI for the Login component and associated functionality for authentication
and authorization can be provided as a Software Development Kit (SDK). The
purpose of this SDK is to abstact the authentication and authorization steps with
the company’s IdP. The SDK will follow OIDC specifications to factilitate token
exchange with the IdP. It will expose a login API that opens up the login page
in the IdP domain. The login page will be opened via window.open browser API.
To facilitate cross-browser communication, window.postMessage API will be used.
The popup will allow the user of the web application to authenticate themselves
with the IdP, following which, the IdP will return the access token back to the web
application.

The SDK will handle the token storage in the web browser and expose APIs
through which the web application will access the tokens. The SDK will handle
session management by creating hidden iframes. It will handle silent re-authentication
before session expiration. It will also handle logout using OIDC front-channel logout
specification and provide options for logging out of the IdP if the user chooses.

The developers of the SDK should consider the consistency and coherency of the
user’s experience when integrating the SDK with their applications. A few principles
can be laid down that should be followed in regards to that.

• The SDK should clearly identify the platforms that it can be used with. For
example, a web application runs in a web browser and its context. Thus, the
supported protocols should adhere to the specifications laid down for browser-
based applications. Currently, the advancements in technologies allow the
creation of Windows-based or mobile-based applications using web technologies.

56

It allows users to use the same code to create applications for browsers and
operating system. Even if they are created using the same technologies, an
application running in the operating system runs in a different context than
an application running in the browser. Thus, the security requirements differ
vastly between the two types of applications.

• The SDK should identify the identity providers that it supports. In the context
of an organisation, it is usually a single private IdP that is maintained by
the company. The implementation of the authentication and authorization
steps should be followed according to the specifications laid down by the IdP.
It should support all the necessary configuration profiles that the users can
configure with the IdP.

• The SDK should handle all errors and provide the necessary error logs and
reports back to the developer. Furthermore, the error reports should comply
with the security standards. It should allow the authentication or authorization
steps to fail gracefully.

• Token properties such as token expiration times should follow the standards
laid down by the IdP for the application. For example, most IdPs allow the
users to set a custom expiration date for the ID tokens for certain type of
applications.

This thesis leaves a couple of areas for future work which are listed as follows:

• Implementing the Web Authentication API and analyzing its benefits and
drawbacks in terms of user experience and security.

• Implementing the proposed SDK and documenting the developer’s feedback on
its usage.

57

4 Summary
In this thesis, we examined the methods related to authentication and authorization
that can be securely used in a front-end application. We documented the token based
authentication and authorization methods in detail. The OIDC specifications, which
lay down the operation principles, provide detailed steps that should be implemented
for different application scenarios. The use of JWT as the token format simplifies
its adoption across web applications. Since JWTs can be easily passed through the
HTTP protocol, it allows integration of identity and access management without
compromises in the user experience.

Different strategies can be employed based on the application architecture. For a
web application that has a back-end, Authorization Code flow can be used. Meanwhile,
a web application, such as an SPA, with no back-end, can employ Implicit flow with
PKCE. The use of PKCE is particularly important to protect a stolen authorization
code from being mis-used. Session management is done through iframes which
communicate the session status between each other through existing Web APIs.
Furthermore, the browser has robust storage facilities that allow storage of the tokens
securely.

Usage of token based identity and access control methods enable Single Sign
On capabilities for applications. This is possible because of the structured and
consistent format of the tokens. The IdP use tokens for verifying and communicating
the identity and session status of its users. It allows a stateless architecture where
a session connection does not need to be established between the client and the
IdP. However, the application should perform all the necessary verifications and
validations on a JWT to verify its authenticity before trusting and using the data
that it provides about the user. The verification steps are laid down in the OIDC
specifications.

Along with Single Sign On capabilities, OIDC also defines Single Logout methods.
Depending upon the architecture, applications can use either a front-channel logout
method or a back-channel logout method. Front-channel logout is useful for front-end
applications, as the IdP performs logout redirects through the browser. For back-end
applications, a back-channel logout is better suited, where the IdP directly opens a
logout request with the application.

We also documented some experimental browser-based technologies. The Cre-
dentials Management API brings a number of improvements to user experience
related to password management. Applications can store the user’s passwords in
the credential store and can reuse them for subsequent page visits. Furthermore,
applications can create a virtually permanent session by silently authenticating with
the stored password. The API extends its offerings by supporting federated login
credentials. Applications can use it to support for federated login through IdPs
such as Facebook and Google. Web Authentication API, which is an extension of
Credentials Management API, allows usage of asymmetric key cryptography for user
identity. Supported authenticators create a public-private key pair after user consent
and identification. The private key is stored in the authenticator, which is used to
provide attestations. Servers save the public key and identify the user by verifying

58

the attestation with it.
Finally, we went through three use cases that were implemented by the user

in different professional projects. The Industrial Control Systems case study used
token-based access management for granting access to IoT sensor data to its users.
The Social Media Center case study followed the authorization principles that are
laid down by the social media platforms, namely Twitter, Instagram, Facebook and
Google. Finally, we propose the idea of an SDK built around the login component
that is provided as a presentational component of a design system.

59

References
[1] I. Iliev and G. P. Dimitrov. Front end optimization methods and their effect.

In 2014 37th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages 467–473, 2014.

[2] J. Oh, W. H. Ahn, S. Jeong, J. Lim, and T. Kim. Automated transformation
of template-based web applications into single-page applications. In 2013 IEEE
37th Annual Computer Software and Applications Conference, pages 292–302,
2013.

[3] Julian Reschke. The ’Basic’ HTTP Authentication Scheme. RFC 7617,
September 2015. https://rfc-editor.org/rfc/rfc7617.txt.

[4] Rifaat Shekh-Yusef, David Ahrens, and Sophie Bremer. HTTP Digest Access
Authentication. RFC 7616, September 2015. https://rfc-editor.org/rfc/
rfc7616.txt.

[5] S. Farrell. Api keys to the kingdom. IEEE Internet Computing, 13(5):91–93,
2009.

[6] H. K. Lu. Keeping your api keys in a safe. In 2014 IEEE 7th International
Conference on Cloud Computing, pages 962–965, 2014.

[7] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID
Connect Core 1.0 incorporating errata set 1, November 2014. https://openid.
net/specs/openid-connect-core-1_0.html.

[8] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October
2012. https://rfc-editor.org/rfc/rfc6749.txt.

[9] D. Fett, R. Küsters, and G. Schmitz. The web sso standard openid connect:
In-depth formal security analysis and security guidelines. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pages 189–202, 2017.

[10] K. Dodanduwa and I. Kaluthanthri. Role of trust in oauth 2.0 and openid connect.
In 2018 IEEE International Conference on Information and Automation for
Sustainability (ICIAfS), pages 1–4, 2018.

[11] Nat Sakimura, John Bradley, and Naveen Agarwal. Proof Key for Code
Exchange by OAuth Public Clients. RFC 7636, September 2015. https:
//rfc-editor.org/rfc/rfc7636.txt.

[12] B. de Medeiros, N. Agarwal, N. Sakimura, J. Bradley, and M. Jones. OpenID
Connect Session Management 1.0 - draft 29, July 2020. https://openid.net/
specs/openid-connect-session-1_0.html.

https://rfc-editor.org/rfc/rfc7617.txt
https://rfc-editor.org/rfc/rfc7616.txt
https://rfc-editor.org/rfc/rfc7616.txt
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://rfc-editor.org/rfc/rfc6749.txt
https://rfc-editor.org/rfc/rfc7636.txt
https://rfc-editor.org/rfc/rfc7636.txt
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html

60

[13] Z. Triartono, R. M. Negara, and Sussi. Implementation of role-based access
control on oauth 2.0 as authentication and authorization system. In 2019
6th International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), pages 259–263, 2019.

[14] Justin Richer. OAuth 2.0 Token Introspection. RFC 7662, October 2015.
https://rfc-editor.org/rfc/rfc7662.txt.

[15] O. Ethelbert, F. F. Moghaddam, P. Wieder, and R. Yahyapour. A json token-
based authentication and access management schema for cloud saas applications.
In 2017 IEEE 5th International Conference on Future Internet of Things and
Cloud (FiCloud), pages 47–53, 2017.

[16] Steve Mansfield-Devine. Single sign-on: matching convenience with security.
Biometric Technology Today, 2011:7–11, 07 2011.

[17] Michael Jones, John Bradley, and Nat Sakimura. JSON Web Token (JWT).
RFC 7519, May 2015. https://rfc-editor.org/rfc/rfc7519.txt.

[18] N. Sakimura, J. Bradley, M. Jones, and E. Jay. OpenID Connect Discovery
1.0 incorporating errata set 1, November 2014. https://openid.net/specs/
openid-connect-discovery-1_0.html.

[19] Eran Hammer-Lahav and Mark Nottingham. Defining Well-Known Uniform
Resource Identifiers (URIs). RFC 5785, April 2010. https://rfc-editor.
org/rfc/rfc5785.txt.

[20] Michael Jones. JSON Web Key (JWK). RFC 7517, May 2015. https:
//rfc-editor.org/rfc/rfc7517.txt.

[21] San-Tsai Sun and Konstantin Beznosov. The devil is in the (implementation)
details: an empirical analysis of oauth sso systems. pages 378–390, 10 2012.

[22] M. Jones. OpenID Connect Front-Channel Logout 1.0 - draft 03, July 2020.
https://openid.net/specs/openid-connect-frontchannel-1_0.html.

[23] J. Bradley and M. Jones. OpenID Connect Back-Channel Logout 1.0 - draft 05,
July 2020. https://openid.net/specs/openid-connect-backchannel-1_0.
html.

[24] V. Rastogi and A. Agrawal. All your google and facebook logins are belong
to us: A case for single sign-off. In 2015 Eighth International Conference on
Contemporary Computing (IC3), pages 416–421, 2015.

[25] M. D. Karunanithi and B. Kiruthika. Single sign-on and single log out
in identity. In International Conference on Nanoscience, Engineering and
Technology (ICONSET 2011), pages 607–611, 2011.

https://rfc-editor.org/rfc/rfc7662.txt
https://rfc-editor.org/rfc/rfc7519.txt
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://rfc-editor.org/rfc/rfc5785.txt
https://rfc-editor.org/rfc/rfc5785.txt
https://rfc-editor.org/rfc/rfc7517.txt
https://rfc-editor.org/rfc/rfc7517.txt
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html

61

[26] Phil Hunt, Michael Jones, William Denniss, and Morteza Ansari. Security
Event Token (SET). RFC 8417, July 2018. https://rfc-editor.org/rfc/
rfc8417.txt.

[27] M. Jemel and A. Serhrouchni. Security enhancement of html5 local data storage.
In 2014 International Conference and Workshop on the Network of the Future
(NOF), pages 1–2, 2014.

[28] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan.
Cookiext: Patching the browser against session hijacking attacks. Journal of
Computer Security, 23:1–0, 09 2015.

[29] The Web Hypertext Application Technology Working Group (WHATWG) com-
munity. HTML Living Standard , July 2020. https://html.spec.whatwg.
org/.

[30] The World Wide Web Consortium (W3C). Credential Management Level 1 ,
January 2019. https://www.w3.org/TR/credential-management-1/.

[31] The World Wide Web Consortium (W3C). Web Authentication: An API for
accessing Public Key Credentials Level 1, March 2019. https://www.w3.org/
TR/webauthn/.

[32] F. Alqubaisi, A. S. Wazan, L. Ahmad, and D. W. Chadwick. Should we rush
to implement password-less single factor fido2 based authentication? In 2020
12th Annual Undergraduate Research Conference on Applied Computing (URC),
pages 1–6, 2020.

[33] M. Shehab and F. Mohsen. Towards enhancing the security of oauth implemen-
tations in smart phones. In 2014 IEEE International Conference on Mobile
Services, pages 39–46, 2014.

[34] William Denniss and John Bradley. OAuth 2.0 for Native Apps. RFC 8252,
October 2017. https://rfc-editor.org/rfc/rfc8252.txt.

[35] Twitter Inc. Obtaining user access tokens using 3-legged OAuth.
https://developer.twitter.com/en/docs/basics/authentication/
oauth-1-0a/obtaining-user-access-tokens.

[36] Youtube. YouTube Data API: Channels. https://developers.google.com/
youtube/v3/docs/channels.

[37] Youtube. YouTube Data API: Videos. https://developers.google.com/
youtube/v3/docs/videos.

[38] Youtube. YouTube Data API: Comments. https://developers.google.
com/youtube/v3/docs/comments.

[39] Facebook Inc. Facebook Graph API. https://developers.facebook.com/
docs/graph-api/.

https://rfc-editor.org/rfc/rfc8417.txt
https://rfc-editor.org/rfc/rfc8417.txt
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://rfc-editor.org/rfc/rfc8252.txt
https://developer.twitter.com/en/docs/basics/authentication/oauth-1-0a/obtaining-user-access-tokens
https://developer.twitter.com/en/docs/basics/authentication/oauth-1-0a/obtaining-user-access-tokens
https://developers.google.com/youtube/v3/docs/channels
https://developers.google.com/youtube/v3/docs/channels
https://developers.google.com/youtube/v3/docs/videos
https://developers.google.com/youtube/v3/docs/videos
https://developers.google.com/youtube/v3/docs/comments
https://developers.google.com/youtube/v3/docs/comments
https://developers.facebook.com/docs/graph-api/
https://developers.facebook.com/docs/graph-api/

	Abstract
	Contents
	Abbreviations
	1 Introduction
	2 Background
	2.1 Single-Page Application and Traditional Web Application
	2.1.1 Traditional Web Application
	2.1.2 Single-Page Application (SPA)

	2.2 Authentication
	2.3 HTTP Basic Authentication
	2.4 API Keys
	2.5 Token-based Authentication
	2.6 Session Management
	2.7 Access Control
	2.8 SSO Integration
	2.9 Single Logout
	2.10 Token storage
	2.11 Software Development Kits
	2.12 Credentials Manager
	2.12.1 Credentials Management API
	2.12.2 Web Authentication API

	2.13 Authentication and Authorization in Native applications

	3 Use Cases
	3.1 Industrial Control System
	3.1.1 Architecture

	3.2 Social Media Center
	3.3 Component Library
	3.3.1 Proposal

	4 Summary
	References

