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Abstract
WebAssembly, colloquially known as Wasm, is a specification for an intermediate representation

that is suitable for the web environment, particularly in the client-side. It provides a machine
abstraction and hardware-agnostic instruction sets, where a high-level programming language
can target the compilation to the Wasm instead of specific hardware architecture. The JavaScript
engine implements the Wasm specification and recompiles the Wasm instruction to the target
machine instruction where the program is executed. Technically, Wasm is similar to a popular
virtual machine bytecode, such as Java Virtual Machine (JVM) or Microsoft Intermediate Language
(MSIL).

There are two major implementations of Wasm, correlated with the two most popular web
browsers in the market. These two are the V8 engine by Chromium project and the SpiderMon-
key engine by Mozilla. Wasm does not mandate a specific implementation over its specification.
Therefore, both engines may employ different mechanisms to apply the specification. These dif-
ferent implementations may open a research question: are both engines implementing the Wasm
specification equally?

In this thesis, we are going to explore the internal implementation of the JavaScript engine
in regards to the Wasm specification. We experimented using a differential fuzzing technique, in
which we test two JavaScript engines with a randomly generated Wasm program and compares its
behavior. We executed the experiment to identify any anomalous behavior, which then we analyzed
and identified the root cause of the different behavior.

This thesis covers the WebAssembly specification extensively. It discusses several foundational
knowledge about the specification that is currently lacking in references. This thesis also presents
the instrumentation made to the JavaScript engine to perform the experiment, which can be a
foundation to perform a similar experiment. Finally, this thesis analyzes the identified anomaly
found in the experiment through reverse engineering techniques, such as static and dynamic
analysis, combined with white-box analysis to the JavaScript engine source code.

In this experiment, we discovered a different behavior of the JavaScript engine that is ob-
servable from the perspective of the Wasm program. We created a proof-of-concept to demonstrate
the different behavior that can be executed in the recent web browser up to the writing of this
thesis. This experiment also evaluated the implementation of both JavaScript engine on the Wasm
specification to conclude that both engines implement the specification faithfully.

Keyword webassembly, fuzzing, c++, compiler, testing, programming language, static analysis,
dynamic analysis
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Abstrait
WebAssembly, familièrement connu sous le nom de Wasm, est une spécification pour une

représentation intermédiaire qui convient à l’environnement Web, en particulier du côté client. Il
fournit une abstraction de la machine et des jeux d’instructions indépendants du matériel, où un
langage de programmation de haut niveau peut cibler la compilation sur le Wasm au lieu d’une
architecture matérielle spécifique. Le moteur JavaScript implémente la spécification Wasm et recom-
pile l’instruction Wasm en l’instruction machine cible où le programme est exécuté. Techniquement,
Wasm est similaire à un bytecode de machine virtuelle populaire, comme Java Virtual Machine
(JVM) ou Microsoft Intermediate Language (MSIL).

Il existe deux implémentations majeures de Wasm, en corrélation avec les deux navigateurs
Web les plus populaires. Ces deux sont le V8 de Chromium et le SpiderMonkey de Mozilla. Wasm
n’exige pas une implémentation spécifique sur sa spécification. Par conséquent, les deux moteurs
peuvent utiliser des mécanismes différents pour appliquer la spécification. Ces différentes implé-
mentations peuvent ouvrir une question de recherche: les deux moteurs implémentent-ils également
la spécification Wasm?

Dans cette thèse, nous allons explorer l’implémentation interne du moteur JavaScript par
rapport à la spécification Wasm. Nous avons expérimenté en utilisant une technique de fuzzing
différentiel, dans laquelle nous testons deux moteurs JavaScript avec un programme Wasm généré
de manière aléatoire et comparons son comportement. Nous avons exécuté l’expérience pour
identifier tout comportement anormal, puis nous avons analysé et identifié la cause profonde des
différents comportements.

Cette thèse couvre largement la spécification WebAssembly. Il aborde plusieurs connaissances
fondamentales sur la spécification qui manquent actuellement de références. Cette thèse présente
également l’instrumentation faite au moteur JavaScript pour effectuer l’essai, qui peut être une
base pour effectuer une essai similaire. Enfin, cette thèse analyse l’anomalie identifiée trouvée
dans l’essai grâce à des techniques d’ingénierie inverse, telles que l’analyse statique et dynamique,
combinées avec une analyse en boîte transparente au code source du moteur JavaScript.

Dans cette essai, nous avons découvert un comportement différent du moteur JavaScript qui
est observable au point de vue du programme Wasm. Nous avons créé une preuve de concept pour
démontrer les différents comportements qui peuvent être exécutés dans le navigateur Web récent
jusqu’à l’écriture de cette thèse. Cette essai a également évalué l’implémentation des deux moteurs
JavaScript sur la spécification Wasm pour conclure que les deux moteurs implémentent fidèlement
la spécification.

Mots Clés webassembly, fuzzing, c++, compilateur, essai, langage de programmation, analyse
dynamique, analyse statique
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Chapter 1

Introduction

"In the last few years, a significant effort has been devoted to devising

methods that exploit the technology base in a disciplined way. Although

promising, they carry along preconceptions brought from non-Web appli-

cation development. Overall, our study led us to believe that the most

critical element at this point is to formulate a concise and simple model

of what these applications are about and to build a programming system

around such a model."

Survey of Technologies for Web Application Development

Barry Doyle and Cristina Videira Lopes [12]

1.1 Motivation

In recent years, computer technology has shifted to a web-based environment.

The advent of cloud computing enables the outsourcing of computation from local

to remote machines. It creates novel inventions in web platform technologies,

both on server-side and client-side.

Web Technology Surveys estimates that the majority of the web uses PHP

[42]. A smaller portion uses ASP.NET, Ruby, and Java. Multiple technology

choices are available to use for server-side development. However, the situation

differs radically in the client-side ecosystem. JavaScript is the only option for

client-side scripting. A smaller user base uses ActionScript from Adobe Flash,

which is soon reaching its End-of-Life by the end of 2020 [26]. It follows the

Java applet and C#-based framework Microsoft Silverlight that were already

deprecated several years earlier.

This situation limits the programming language choice of client-side devel-

opers. The client-side ecosystem does not allow the use of alternative language,

which can be beneficial for app development. One main use-case is integrating

legacy codes which are written in other programming languages. The JavaScript

efficiency in executing power-intensive tasks also raises the concern since not
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every task can be delegated to the cloud.

WebAssembly opens up the possibility of integrating other programming

languages into the web-client ecosystem. WebAssembly, abbreviated as Wasm,

has been actively developed since 2015 [1]. Major browsers have been fully

supporting Wasm since the standardization of Wasm specification. Wasm allows

the use of existing programs or libraries that are written in other languages to be

run in the web browser environment. It also claims that it can harness the client

machine performance to perform compute-intensive tasks.

As a new technology, various exciting opportunities to tinker and experiment

with Wasm technology emerges. Major JS engine has pledged to support and

implement Wasm specification. As multiple implementations are developed in

parallel with different developers, different behavior between the implementation

may be possible. Moreover, despite being incorporated as required testing steps,

fuzzing has been primarily focused on the general JS engine components. Thus,

several areas in Wasm implementation are open for investigation through fuzz-

testing.

1.2 Problem Statement

This thesis aims to explore the Wasm implementation to observe any potential

misbehavior. Wasm is a relatively young technology that opens rooms for explo-

ration. Moreover, Wasm is targetted towards a wide use-case of the world wide

web, which requires scrutiny over its claim on security aspects.

The research in this thesis explores the possibility of the differences between

the implementation of the Wasm specification. We are interested in whether the

implementor, namely the JS engine, is implementing the specification accurately.

Also, we are interested in finding any possibility for unexpected behavior from

any given Wasm program, which can lead to exploits and vulnerability.

1.3 Contribution

This thesis aims to provide an introduction to the WebAssembly specification and

implementation. The writer recognizes the limited amount of academic references

for Wasm at the moment. Many resources revolve around developer blogs, articles,

specification documents, and technical documentation. Several papers provide

a foundational background of the Wasm [23, 50]. However, these papers have

been dated compared to the recent development and finalization of the Wasm

specification. Moreover, many articles and references discuss the use of Wasm

instead of its internal implementation. Thus, the thesis provides the necessary

information for the Wasm engine experiment in general.

The thesis also proposes a software design to perform differential testing.

Differential testing can be incorporated in the software development pipeline

2
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to compare multiple implementations of the same specification. Some research

and investigation conducted differential testing against compiler implementation,

such as GCC vs. LLVM [6]. As it is still in its infancy, WebAssembly has a room

to explore the differential testing on two major implementations.

Finally, the thesis gathered the experiment result. The thesis discusses the

observation from the differential testing performed. Additionally, the thesis also

presents the author’s contribution to open-source development, which occurred

during the research.

In summary, the thesis expects itself to be self-contained. It provides all

the necessary information to perform the proposed Differential Fuzzing the We-

bAssembly experiment. For a more in-depth explanation beyond the scope of the

thesis, readers are invited to also consult the cited references.

1.4 Structure of the Thesis

The thesis is organized into five main chapters apart from the first introductory

chapter.

The second chapter introduces the reader to the WebAssembly. It discusses

the conceptual overview of the Wasm to the specification of Wasm instruction

sets. The discussion continues to the Wasm integration to the JavaScript program.

Finally, the chapter concludes by introducing the two major implementations of

Wasm and their comparison.

The third chapter introduces the foundation of software testing. It dis-

cusses software testing from its basic motives in the software development life-

cycle. It also provides the general idea of fuzz testing and differential testing.

This chapter concludes by providing the argument that becomes the basis of the

experiment.

The fourth chapter explains the development of the Wasm differential

fuzzing experiment. It suggests the approaches and the main requirements

for the experiment system. Then, it tells the design rationale for the fuzzer

infrastructure, from an architectural and workflow standpoint. The modification

to the investigated Wasm implementation is also presented and detailed in this

chapter.

The fifth chapter discusses the result of the experimentation. It presents

the analysis of the experiment result using a common reverse engineering tech-

nique, namely static and dynamic analysis, combined with white-box analysis to

the original JS engine implementation. It also proposes a proof-of-concept of the

identified differences from the experiment.

The sixth chapter concludes the thesis and describes the contribution of

the author that is made during the research. It also proposes brainstorming ideas

to follow-up the research presented in this thesis.

3
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1.5 Accompanying Source Code

This thesis is accompanied by the source code of the testing system. The source

code is accessible through the link:

https://github.com/gilanghamidy/DifferentialFuzzingWASM

The source code itself is self-contained and linked to all dependencies, includ-

ing the instrumented JS engines. The instrumented JS engine is forked from

the original code, and resides in a separate forked repository. The reader can

automatically update the dependency through git submodule update command.

This thesis discusses several implementations that can be found from the

source code. The code listing mentioned in this thesis, also information that is

cited from the code is indicated by the source code file name and line number.

Note that the cited line number from the JS engine source code may change over

the time of the development. Therefore, the reader is suggested to refer to the

accompanying forked JS engine source for the reference, which is pinpointed at

the specific commit level where the experiment is performed.

The testing system program is licensed under the MIT License. The depen-

dent source codes are licensed under their original licenses.

4
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Chapter 2

WebAssembly

"Of course, every new standard introduces new costs (maintenance,

attack surface, code size) that must be offset by the benefits. WebAssembly

minimizes costs by having a design that allows (though not requires) a

browser to implement WebAssembly inside its existing JavaScript engine

(thereby reusing the JavaScript engine’s existing compiler backend, ES6

module loading frontend, security sandboxing mechanisms and other

supporting VM components). Thus, in cost, WebAssembly should be

comparable to a big new JavaScript feature, not a fundamental extension

to the browser model."

"Why create a new standard when there is already asm.js?"

WebAssembly FAQ [1]

WebAssembly is a relatively young technology. Therefore, researching the ref-

erence for this technology can be quite challenging. Several resources discuss

the use-case of Wasm, especially to improve the web client experience. However,

academic references for Wasm internals are hard to find. This chapter aims to

cover the fundamental concepts behind Wasm and its internal mechanisms. The

topic covered in this chapter is necessary for the experiment discussed in this

thesis.

Section 2.1 introduces the WebAssembly from its historical, high-level, and

specification perspectives. The Wasm specification details and its essential ele-

ments are discussed in Section 2.2 . This second section also provides examples

that compare Wasm programs and their equivalent C programs. Section 2.3 covers

the compilation of high-level language to Wasm. Section 2.4 describes the details

to embed a Wasm program to a JavaScript program. This section also provides

several code examples to conceive the Wasm in action. The chapter concludes

with Section 2.5 and Section 2.6, which introduce the JS engines that implement

the Wasm, and compares them.
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2.1 WebAssembly Overview

2.1.1 History

In the past few decades, the major client-side scripting revolves around mostly

on JavaScript programming language. However, many workarounds have been

attempted to introduce different programming languages. For instance, Adobe

Flash introduces ActionScript for their interactive web platform [37]. Another

example is Java applets which embed Java application on the web page [11].

Microsoft DHTML allows a web browser to execute a compiled native library

[24]. It gained popularity due to the ubiquitous use of Microsoft Windows and

Internet Explorer. Although it mainly utilizes Microsoft ActiveX controls, it is

also possible to use other native libraries. The browser downloads and attaches

the native binaries from the server into the client page [12]. Still, this technology

suffers from severe security issues. Hence, it gained popularity as a backdoor for

web app [33].

Another issue with the development environment of the web client platform

is the fragmentation of the web browser itself. Before the ECMAScript stan-

dardization, every major browser implemented its own version of JavaScript.

Many of the implementations were browser-specific, thus created fragmentation

in the JavaScript ecosystem [12]. A JavaScript code that was running on Internet

Explorer was not guaranteed to run on Netscape Communicator and vice versa.

It created significant issues for web developers to handle every variant to support

multiple web browsers.

Mozilla introduced Emscripten around 2010. It is a compiler that uses LLVM

toolchain to compile code to JavaScript language. It allows the compilation

of existing programming languages compatible with LLVM to JavaScript [50].

Programming languages, such as C, C++, or Objective-C, can be directly compiled

into JavaScript by using Emscripten. Other programming languages can also

benefit from it by compiling their runtimes to JavaScript. In order to maintain

program semantics, Emscripten generates JavaScript codes that emulate the

source program execution.

Many web browsers can directly execute the Emscripten compiled programs.

It also allows the use of existing libraries and runtimes written in languages

other than JavaScript. Eventually, the Emscripten-generated JavaScript codes

evolved into a specialized Embedded Domain-Specific Language (EDSL). This

EDSL, which is called asm.js, is a strict subset of JavaScript. It employs several

language constructs to emulate the behavior of native-targeting languages. Mod-

ern JavaScript engines can identify an asm.js script and optimize it to achieve

higher performance. At the same time, it also allows the legacy JavaScript engine

to run the program without any modification in the program itself.

6
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Despite its usefulness, JavaScript faces several fundamental limitations to

express native-targetted programs. For instance, the JavaScript engine requires

the parsing and recompiling of the JavaScript representation. It creates more

overhead than the actual native execution. Another issue is that JavaScript

lacks a 64-bit integer representation. It raises issues for many native-targetted

programs that rely on this data type. Although major JavaScript engine optimizes

asm.js programs, further improvement remains a challenge without modifying

the infrastructure of the intermediate representation itself.

Principal web browser vendors announced the WebAssembly Project (Wasm)

around 2015. It marked the first step of standardizing bytecode that is suitable for

the web environment. Wasm project aims to address the limitations of JavaScript

as an intermediate representation of programs written in other programming

languages [23]. It is designed to be compact, portable, fast, and secure to address

the use case in the web environment that can outperform asm.js performance

[51].

Wasm specification defines a virtual Instruction Set Architecture (ISA). It

eliminates the overhead from using JavaScript as an intermediate representation.

The ISA abstracts the original program and enables JavaScript engines to compile

it to the target machine efficiently. The architecture emphasizes code simplicity by

only providing basic fundamental instructions. It is up to the JavaScript engine’s

implementation to perform necessary optimization to the Wasm program.

The WebAssembly Community Group (CG) released its first version of We-

bAssembly specification in March 2017. The first version of Wasm specification

consists of Minimum Viable Product (MVP) requirements, as defined in Wasm

high-level goals [23]. This release marked the end of Wasm preview and a point

where no further fundamental design changes in the future. As of late 2019,

major JavaScript engines have provided support for WebAssembly programs. The

community group is also actively discussing improvements to the standard to add

more functionality and features to Wasm.

As Wasm is an emerging technology, the adoption rate is still limited to

some extent. The majority of the use-cases, for example, revolve around high-

performance multimedia application, porting non-browser application into a

web-based application and reusing existing toolkits and libraries that do not

have a JavaScript counterpart [1]. Recently, Microsoft also introduced support

for integrating their .NET infrastructure with WebAssembly using the Blazor

framework [36]. Blazor enables the compilation of .NET program written in C#

to Wasm, then executing locally in the client browser. This kind of approach will

enable further adoption of new applications to utilize Wasm.

7
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2.1.2 High-level Workflow

All Wasm program originates in the source language. Currently, only C and

C++ that are officially supported by Wasm standard. The Wasm standard aims

to provide the minimum requirement to execute a C or C++ program without

modifying its original sources. Wasm adheres to standard ANSI C and ISO C++

specification. Therefore, the source does not need any supplementary framework-

specific syntaxes or markups.

The source program is compiled by the Wasm toolchain to produce a Wasm

binary. The resulting binary, which is called the Wasm module, works similarly to

a native shared library. It consists of the instruction codes and symbols, such as

function information global variables. External code can then load the compiled

binary and access it from its code. The user program can enumerate the available

functions to call or invoke an entry point, such as the main function, if it is

defined.

The host environment, typically the JavaScript engine, will load and compile

the Wasm instructions to the target machine language. The host environment

can either perform Just-in-Time (JIT) or Ahead-of-Time (AOT) compilation based

on the configuration. JIT compilation compiles the function when it is called for

the first time. On the other hand, the AOT compilation compiles the entire Wasm

module at the time of loading. The compiled code resides in the host process, and

it will execute the machine instruction when the host code calls it.

Figure 2.1. High-level workflow of Wasm program

When the host code wants to invoke a Wasm function, it needs to instantiate

the Wasm module. The instantiation process will validate the module require-

ments, from required functions or other elements. The host environment will also

perform necessary linking. Wasm module may require an external function to

work, for instance, the standard library functions. Wasm specification does not

specify any standard library, and a Wasm module may not include all the functions

8



WebAssembly

it requires. Therefore, it is up to the Wasm program and the host environment to

supply the required library. The WebAssembly CG, has a working group to stan-

dardize system API for Wasm. WebAssembly System Interface (WASI) provides a

Wasm port of the libc standard library, which a Wasm program can link.

2.1.3 Virtual Instruction Set Architecture (ISA)

Wasm models the program instruction by defining its own Instruction Set Archi-

tecture (ISA). ISA is an abstraction of a machine that executes a program [39].

ISA defines necessary components that a program requires to run. It includes

memory model, operations, instruction encoding, and so on.

Wasm specification defined a Virtual ISA. Virtual ISA does not have an actual

physical machine implementation. Moreover, Wasm also does not expect the host

environment to implement a virtual machine execution. Instead, it compiles the

Wasm instruction to target machine instructions. It makes Wasm an intermediate

representation rather than an interpreted instruction. Wasm uses this approach

to remain machine and implementation agnostic [22].

Wasm uses a stack machine architecture, which is is a machine model where

the instruction operates with the operands stored in the stack. A stack machine

instruction pops operands from the stack, computes, and pushes back the result

[40]. It is different from a register machine where the operands are stored in regis-

ters. Although the real hardware stack machine is relatively uncommon, modern

virtual machines, JIT compilers, and interpreters model their architecture with a

stack architecture. One advantage of stack architecture is it has a more compact

instruction code compared to a register-based machine. The stack architecture

also enables more efficient compilation and interpretation. It roughly models the

Abstract Syntax Tree (AST) representation of the original source [22]. It allows

the JIT compiler to perform more optimization, depending on the target machine.

Wasm defines a limited set of data types. Currently, Wasm only includes

32-bit and 64-bit integer and floating-point types [22]. It contrasts to x86 or ARM

architectures, which provides a wide range of integer sizes, from 8-bit to 64-bit.

Since C and C++ typically support various integer sizes, integer sizes lower than

32-bit, typically short and char type, needs to be promoted to 32-bit. However,

this limitation does not conflict with C and C++ language specification, where

the basic data types do not have a maximum size requirement. C and C++ only

require that the basic data types follow a specified ordering and minimum size

requirement.
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6.8.1 Fundamental types [basic.fundamental]

1. There are five standard signed integer types: "signed char",

"short int", "int", "long int", and "long long int". In this list,

each type provides at least as much storage as those preceding it

in the list. ...

4. ... Except as specified above, the width of a signed or unsigned

integer type is implementation-defined.

ISO Standard - Programming Languages — C++ (2020) [29]

Table 2.1 lists Wasm basic instructions types. Most instructions need to

specify the data types it operates on. The operands in the stack need to agree

with the instruction data type, which the Wasm engine validates the agreement

between the operand and the instructions. A well-formed Wasm program needs

to have a valid stack structure according to the type and instruction agreements.

Since most instructions also produce a result and push it to the stack, the data

type agreement chains from the entry point to the end of the function.

Table 2.1. Wasm basic intruction types

Types Description
Numeric Arithmetic or logical

operations on numerical
operands

Parametric Manipulation of operand
stack

Variable Load and store to local or
global variable

Memory Load and store to linear
memory

Control Manipulating control flow of
the program

In the function scope, Wasm allows defining local variables. A local variable

is stored independently from the operand stack. It enables persistent storage

during function execution without being influenced by operand stack changes. It

is analogous to a register in a register-based machine but with a larger limit of the

register count. Function arguments are also stored as local variables. Apart from

local variables, Wasm also provides global variables which have a module-level

scope. Global variables are accessible from every function in the same module,

similar to global or static variables in C and C++ programs. Wasm program

access variables through the index number, which is encoded as an immediate

value of instruction. Thus, it is not possible to dynamically address local or global

variables.

Other than local and global variables, Wasm provides dynamic storage in

10
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the form of linear memory. Linear memory is an addressable data storage that

analogous to random-access memory in typical computer architecture. Wasm pro-

gram access the linear memory using memory instructions. Memory instructions

accept memory address as the operand, allowing dynamic memory access based on

program logic. Each memory unit is addressable in a one-byte unit. And despite

the Wasm only support 32-bit and 64-bit operand, It is possible to manipulate

data in memory with bit-length lower than 32-bit. Wasm memory instructions

provide load and store instructions with a specific bit length.

Wasm, however, does not allow a raw code pointer in programs. In a typical ar-

chitecture, code and data reside in the same address space. Without conscientious

programming, a data pointer can access code area and vice versa. Many severe

security vulnerabilities originate from this problem. In an attempt to provide a

more secure environment, Wasm defines a separate location to store indirections

called a table. Wasm tables are similar to a jump table or virtual table but with a

strict type checking. A Wasm table entry is tagged with the function signature

of the target function. Wasm engine will perform indirect call validation before

jumping to the target function. Therefore, it can detect and prevent an invalid

indirect call due to error or malicious act.

Both memory and table addresses do not reflect the actual address space

where the Wasm is executed in the target machine. Wasm linear memory always

starts at address zero to the maximum available address. Wasm manages memory

similar to paging in an operating system environment. Each memory page has 64

KiB of space. Wasm program can dynamically increase or decrease the available

space in a way that is similar to sbrk system call in the POSIX system1. On the

other hand, Wasm tables are always static. The Wasm program has no ability

to manipulate table entries, which maintains the integrity of Wasm program

validation.

2.1.4 Interface with External Codes

Wasm provides several interface mechanisms to enable information exchange

to the host environment. The interface mechanism is analogous to Executable

and Linkable Format (ELF)2 file in typical operating system environments. It

provides symbol information that the host can read to link with the Wasm module.

Wasm symbol includes Exports, Imports, and Entry Point.

Export symbols are Wasm components that are accessible from the host envi-

ronment. Wasm module can export its function to make it invokable from the host

code. Unlike ELF format, Wasm function export is type-safe. The function export

1sbrk is an API function that performs a system call to the kernel. The call resizes the data segment
of a program address space and makes it usable by the program. It is typically used within a memory
management function, such as malloc. [13]
2Executable and Linkable Format (ELF) is an object file format which provides information about the
executable. It typically includes symbol information (e.g., function references), program entry point,
and external dependencies. [10]
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information consists of the function signature of the target function. Therefore,

the host environment can validate the function argument before the function

invocation. It eliminates invalid argument passing, hence improving the overall

program security.

Wasm module can also export global variables and memory. It enables

information exchange between the host and Wasm module without invoking a

Wasm function. Global variable export is also type-safe, but it only provides

Wasm basic types. For larger data, memory export is the better choice as it

allows efficient transfer of raw data between the Wasm module and the host.

However, memory export is untyped and unstructured. It is similar to accessing

and manipulating raw memory dump. The host code needs to make careful

consideration when manipulating data through memory export. It ensures the

access does not induce an error in the Wasm program.

Wasm table can also be exported. It enables the host environment to transfer

function references from and to the Wasm module. It enables the host program

to access reference information that is provided by the Wasm module. Similar

to Wasm memory, Wasm table uses index-based access. The host program may

obtain the element inside the Wasm table by supplying the index.

Apart from exporting symbols, Wasm module can also import symbols. Wasm

module may import a function, memory, or table. Importing symbols require

the host to supply the required element before instantiating the Wasm module.

The host environment ensures that the host code provides all required elements,

including correct memory allocation, table allocation, and function. The module

instantiation process is analogous to the linking process in a compilation, where

the code is linked to all required symbols before it can be executed.

Wasm module may define a data and element initializer within its module. It

is used to initialize Wasm memory content and Wasm table value. Wasm module

can also define a start function. The start function behaves similarly like an

executable entry point, which is executed at the start of the program. The host

environment automatically invokes the start function after module instantiation

completes. An example of a start function use-case is to perform runtime ini-

tialization of a Wasm program that a simple data and element initializer cannot

perform.

2.1.5 API and System Interface

Wasm specification does not provide a standard library or system interface. The

specification is purely an ISA without higher-level infrastructure such as system

call. However, many programs require this infrastructure to work properly. To

put it simply, every application which utilizes the standard library requires access

to the system call. For instance, a simple printf function requires a write system

call to the standard input stream.
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The current Wasm implementation emulates most of the low-level system

call through the JS program. It usually provided by the toolchain, such as

Emscripten, which will be discussed in the later chapter. Every toolchain and

host environment may provide its own emulation implementation. It creates a

possibility of fragmentation in the toolchain and host environment. This issue

leads to the initiation of WebAssembly System Interface (WASI) specification [9].

WASI aims to standardize the system interface API for the Wasm environ-

ment. This standard ensures every system call implementation in Wasm adheres

to the same specification. In a way, it is similar to the POSIX specification for a

UNIX-based operating system. Being an architecture for a close-to-native lan-

guage, Wasm requires low-level system API functionality. Nevertheless, Wasm

has a different architecture where a typical operating system functionality does

not exist. Wasm program also runs in a different execution environment. It

introduces an additional boundary for a low-level system call.

WASI ensures that Wasm programs remain portable across different oper-

ating systems. WASI introduces a layer that is implemented in the standard

library internals. Meaning that the libc implementation for Wasm calls the WASI

API instead of specific operating system API. WASI expects that toolchains and

compilers provides seamless interface with WASI interface when compiling to

Wasm.

Nevertheless, not every system call can be emulated. For example, Wasm

architecture does not recognize the notion of a multi-process environment. There-

fore, low-level functionality, such as fork, is not going to be available in Wasm.

Additionally, WASI must adhere to the sandboxed environment of Wasm. It

ensures malicious programs do not have direct open access to the underlying

system.

At the time of the writing, WASI specification is still in the drafting process.

However, some toolchains, including Emscripten, have provided support to the

current specification draft. Another implementation is Wasmtime, a Wasm run-

time which can run Wasm program outside of the JS engine. It is analogous to

running a Java program in a shell.

2.2 Wasm Semantics and Source Format

2.2.1 Wasm General Source Format

To provide human-readable text, Wasm specifies a text format to represent a

Wasm program. The text format is analogous to a human-readable assembly

text. Wasm text format uses a syntax based on s-expressions, a syntax style that

was popularized by Lisp. S-expression is a nested list notation that enables to

represent the abstract syntax tree closely. A line comment starts with double

semicolon (;;), and block comments in the source are enclosed between (; and ;)
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token.

The module is the root element in the Wasm source. A module contains

all Wasm elements: function definition; declaration of global variables, export,

import, table, memory, and value initializers. Also, Wasm source can declare

a function signature type separately. It identifies the signature of a function

definition, validates call instruction, and validate table elements. It is comparable

to the typedef in C programming language.

Listing 2.1. Wasm module elements
(module

(import ... ) (type ... ) (memory ... ) (table ... )
(func ... ) (global ... ) (export ... )
(elem ... ) (data ... ) (start ... ))

All declaration in Wasm source is indexed in the order of appearance. How-

ever, Wasm source can also define an identifier to refer to the declaration. An

identifier begins with a dollar (’$’) symbol. Wasm specification allows the identifier

to be any printable ASCII characters except whitespace, quotation mark, comma,

semicolon, or bracket.

Listing 2.2. Using identifier in Wasm source
(module

(global $glob_1 ... )
(func $addi32 ... ))

2.2.2 Wasm Function and Signature Type

A function signature is defined using the type keyword. The function signature

consists of parameter type lists and result type lists. The specification supports

multiple return values. However, no host environment supports this feature

at the moment. A function definition can either use type signature or define

the signature inline with the definition. But, a function needs to declare the

parameter inline to assign an identifier to it.

A single declaration can contain multiple anonymous declarations. However,

only a single declaration can be made when using an identifier. The following

declaration must be made in a separate expression. The order of the parameter

follows the order of the appearance on the list.

Listing 2.3. Function signature type and function definition
(module
;; Function type sig1 with 2 i32 parameter and return i32
(type $sig1 (func (param i32 i32) (result i32)))

;; Function addi32 uses type sig1
(func $addi32 (type $sig1) ... )

;; Function subi32 declares parameter with identifier
(func $subi32 (param $p1 i32) (param $p2 i32)

(result i32) ... ))

A function may declare local variables. Local variable declaration resembles

14



WebAssembly

parameter and return value declaration of the function signature. However, it

can only appear in the function definition. All local variable declaration must

appear before the first function instruction. It resembles old versions of the C

programming language, where every variable declaration must appear at the

beginning of the block.

Listing 2.4. Function local variables
(module

(func $compute (param $p1 i32) (param $p2 i32)
(result i32)
(local $val1 i32) ;; With identifier
(local i64 f32) ;; Anonymous , access using index number
... ))

2.2.3 Instructions in a Wasm Function

Wasm instruction can be written in a procedural sequence similar to a regular

assembly program. Wasm executes the program sequentially from the function

entry point. The validation also occurs following each instruction step according to

Wasm validation rules. This instruction writing is equivalent to writing expression

in Postfix Notation. In postfix notation, operands appear before the operator, and

the ordering of the operands follow the order in the stack.

Apart from regular writing conventions, Wasm also allows program writing in

folded form. It uses Prefix Notation and encloses an instruction and its operands

in parentheses. Prefix notation itself is an expression notation where the operator

appears at the beginning of the expression. The operand can also be a nested

instruction itself. Note that the nested operand must also be written in the folded

form if it contains a complex expression. It is similar to Lisp programming style.

Both writing conventions are equivalent. However, the folded form is considered

as syntactic sugar.

Listing 2.5. Writing Wasm instruction
(module

(func $add_regular (param i32 i32) (result i32)
local.get 0
local.get 1
i32.add)

(func $add_folded (param i32 i32) (result i32)
(i32.add (local.get 0) (local.get 1))))

Most Wasm instruction requires to specify the operand type which it operates

on. The operand that is stored in the stack must agree with the operand type

specified by the instruction. The operand type appears at the beginning of the

instruction keyword before the instruction keyword itself. For example in Listing

2.5, the add instruction operates on i32 type which is a 32-bit integer. Wasm

does not allow implicit conversion of values. Hence, the program needs to cast

the operand to the correct instruction type explicitly. Wasm provides conversion
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operators between value types that the program can use to cast the operand.

2.2.4 Wasm Control Structure

Unlike regular assembly programs, Wasm has a different control instruction logic.

Wasm does not allow an arbitrary jump to any instruction point. Instructions are

grouped into blocks, and control instructions navigate through the block. Wasm

program has three different blocks: regular block, conditional, and loop. A block

may specify the result value type after the block completes executing. Thus, a

block is analogous to a closure. A block begins with block keyword and terminates

at end instruction. end instruction is a pseudo-instruction that marks the end of

the block.

When the program enters a block, Wasm creates a new operand stack. An

inner block cannot access the operand in the outer block. The program needs to

spill the value via a local variable to transfer the value inside the block. The final

state of the operand stack must also agree with the result type defined in the

block. When the execution escapes a block, Wasm validates the stack state with

the result type of the block. Execution can exit from a block by reaching the end

instruction, or by executing branch instruction.

Wasm has three types of branches: unconditional branch (br), conditional

branch (br_if), and table branch (br_table). An unconditional branch is always

executed regardless of any external state. A conditional branch, on the other

hand, consumes one operand from the stack to determine whether a branch needs

to be taken or not. A conditional branch takes the branch if the operand value

is non-zero. It is usually paired with test or comparison instructions. The target

blocks are supplied as an array in the immediate value. The table branch then

consumes an integer operand as an index to select the target block.

Branch instruction behaves differently for every block type. However, all

branch instructions can only target their enclosing blocks. A branch instruction

cannot target other blocks that do not have parent-child relations. It is due to

Wasm treats block context also as a stack. When an execution enters a block,

Wasm pushes a block context to a stack. The context is popped from the stack

when the execution leaves the block.

A regular block combines multiple instructions into a single scope. The

keyword to define regular block is block-end. It is analogous to scope block in C

and C++ programming languages. In Wasm, however, block groups function as

an escape label. A branch to a regular block exits the block, effectively skipping

the rest of the block instructions. It is called a forward jump. The end pseudo-

instruction in a regular block is the actual label where the branch instruction

jumps. Listing 2.7 presents a simple example of Wasm code that is equivalent to

a goto instruction in Listing 2.6.
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Listing 2.6. C program with goto instruction

int simple_goto(int val) {
int res = 3;
if(val % 5 == 0) goto EXIT;
val *= 20;

EXIT:
res *= val;
return res;

}

Listing 2.7. Regular block from C code in Listing 2.6
(module

(func $simple_goto (param $val i32) (result i32)
block $EXIT

(i32.eqz (i32.rem_s (local.get $val) (i32.const 5)))
br_if $EXIT ;; if(val % 5 == 0) goto EXIT
(i32.mul (i32.const 20) (local.get $val))
local.set $val ;; val *= 20

end ;; EXIT:
(i32.mul (local.get $val) (i32.const 3)) ;; res *= val

))

A conditional block is similar to a regular block, but it consumes an i32

operand from the stack. The keyword sequences for a conditional block is if-else-

end. If the operand is non-zero, the execution enters the block. Otherwise, the

execution either enters an else block or skip the block altogether if an else block

is not defined. Listing 2.8 shows the use of conditional block that is equivalent

with Listing 2.7.

A loop block is used to define an iteration. The keyword sequence for the

loop block is loop-end. However, the Wasm loop block is not iterative by itself. It

requires a branch instruction targetting to the loop block to loop back. It is called a

backward jump. Without the backward jump, the loop block falls through the end

instruction and exit the block. Due to its semantic, a Wasm loop block is analogous

to a do-while-loop in the C and C++ programming language. Do-while-loop checks

the loop condition at the end of the loop. The backward jump is also analogous

to continue statement in C and C++ language. Listing 2.9 and Listing 2.10 show

equivalent loop instruction in C language and Wasm.

Listing 2.8. Equivalent code with Listing 2.7 using conditional block
(module

(func $simple_conditional (param $val i32) (result i32)
(i32.rem_s (local.get $val) (i32.const 5))
if ;; if(val % 5 != 0)

(i32.mul (i32.const 20) (local.get $val))
local.set $val ;; val *= 20

end
(i32.mul (local.get $val) (i32.const 3)) ;; res *= val

))
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Listing 2.9. Do-While loop in C

int do_while(int a, int b) {
int res = 3;
do {
a++;
res *= b;

} while(a <= 100);
return res * a;

}

Listing 2.10. Loop block code from C code in Listing 2.9
(module

(func $do_while (param $a i32) (param $b i32) (result i32)
(local $res i32) (local $cond i32) (local $temp_a i32)
i32.const 3
local.set $res ;; res = 3
loop $L0

(i32.mul (local.get $res) (local.get $b))
local.set $res ;; res *= b
(i32.lt_s (local.get $a) (i32.const 100))
local.set $cond ;; a < 100
(i32.add (local.get $a) (i32.const 1))
local.tee $temp_a
local.set $a ;; a++
local.get $cond
br_if $L0 ;; while(a <= 100)

end ;; POSTCONDITION: 101 <= temp_a <= (a + 1)
(i32.mul (local.get $res) (local.get $temp_a)) ;; res * a

))

Representing while-loop and for-loop statements in Wasm is more compli-

cated than do-while-loop. Do-while-loop checks the condition at the end of the

loop. Consequently, do-while-loop at least executes the loop instruction once. In

contrast, while-loop and for-loop condition is located in the prelude of the loop.

Thus, the equivalent Wasm program must check the condition before entering

the loop block. Loop block does not provide precondition checks before entering

the loop. Hence, the equivalent Wasm program must combine regular or condi-

tional block with the loop block. Listing 2.11 and Listing 2.12 show the C and its

equivalent Wasm program that contains a loop.

Listing 2.11. C program with while instruction

int while_loop(int a, int b) {
int res = 3;
while(a <= 100) {

a++;
res *= b;

}
return res * a;

}
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Listing 2.12. Wasm code from C code in Listing 2.11
(module

(func $while_loop (param $a i32) (param $b i32) (result i32)
(local $res i32) (local $temp_a i32) (local $cond i32)
i32.const 3
local.set $res
block $LOOP_END

block $LOOP_START
(i32.le_s (local.get $a) (i32.const 100))
br_if $LOOP_START ;; if a < 100 then enter loop
local.get $a
local.set $temp_a
br $LOOP_END ;; otherwise , skip the loop

end ;; LOOP_START:
loop $LOOP

(i32.mul (local.get $res) (local.get $b))
local.set $res ;; res *= b
(i32.lt_s (local.get $a) (i32.const 100))
local.set $cond ;; a < 100
(i32.add (local.get $a) (i32.const 1))
local.tee $temp_a ;; a++
local.set $a
local.get $cond
br_if $LOOP ;; while(a < 100)

end
end ;; LOOP_END:
(i32.mul (local.get $res) (local.get $temp_a)) ;; res * a

))

Enclosing a loop block with a regular block is also required to allow escaping

the loop block in an arbitrary location. A loop block on its own can only exit the

loop when the execution reaches the end instruction. By enclosing the loop with a

regular block, a branch instruction inside the loop can target the regular block. A

branch inside a loop block that targets a regular block effectively exits the loop. It

is equivalent to a break statement in C and C++ language. Listing 2.14 shows

Wasm code of C program in Listing 2.13 when compiled with Clang.

Listing 2.13. C program with break instruction

int break_loop(int a, int b) {
int res = 3;
while(a <= 100) {

a++;
if(a * b == 100) break;
res *= b;

}
return res * a;

}

19



WebAssembly

Listing 2.14. Wasm code from C code in Listing 2.13
(module

(func $break_loop (param $a i32) (param $b i32) (result i32)
(local $res i32) (local $a_inc i32) (local $a_temp i32)

i32.const 3
local.set $res
block $END_LOOP

(i32.gt_s (local.get $a) (i32.const 100))
br_if $END_LOOP ;; if a > 100 skip the loop
(i32.add (local.get $a) (i32.const -1))
local.set $a_inc
(i32.add (i32.mul (local.get $b) (local.get $a))

(i32.const -100))
local.set $a ;; a to store a * b value
block $BREAK_LOOP

loop $LOOP
(local.set $a_temp (local.get $a_inc))
(i32.add (local.get $a) (local.get $b))
local.tee $a ;; store a * b result
i32.eqz
br_if $BREAK_LOOP ;; if(a * b == 100) break
(i32.mul (local.get $res) (local.get $b))
local.set $res ;; res *= b
(i32.add (local.get $a_temp) (i32.const 1))
(i32.lt_s (local.tee $a_inc) (i32.const 100))
br_if $LOOP ;; while(a <= 100)

end
end ;; BREAK_LOOP:
(i32.add (local.get $a_temp) (i32.const 2))
local.set $a ;; reset a value to original

end ;; END_LOOP:
(i32.mul (local.get $a) (local.get $res)) ;; res * a

))

2.2.5 Memory, Table, and Initializer

Wasm module may contain a memory declaration. Memory declaration sets the

minimum memory capacity that a Wasm module can use. Optionally, a Wasm

module can also set the maximum memory size. If a Wasm module does not

specify the maximum memory size, the maximum memory size depends on the

host implementation. The syntax to declare memory is (memory [MIN] [MAX]).

The minimum and maximum values are in Wasm page units. One page unit is

64 KiB of space. In the current specification, only one memory declaration can

appear in a module.

Wasm table declaration is similar to memory declaration. Wasm module

must specify the minimum and optionaly specify the maximum number of table

elements. Wasm table declaration may also only appear once in a module. The

syntax to declare table is (table [MIN] [MAX] anyfunc). The keyword anyfunc

specifies the element type as a function reference of any type. Future Wasm

specification may extend the element type beyond function references.
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Listing 2.15. C program with some string

char const* get_text(int v) {
if(v % 2) return "it is an even number";
else if(v % 3) return "it is divisible by three";
else if(v % 5) return "it is divisible by five";
else return "it is some odd number";

}

Listing 2.16. Wasm code with data initializer from C code in Listing 2.15
(module

(memory 1)
(func $get_text (type $t0) (param $v i32) (result i32)

(local $ret i32)
(local.set $ret (i32.const 0))
block $END_IF

(i32.and (local.get $v) (i32.const 1))
br_if $END_IF ;; if (v % 2) ret = 0
(local.set $ret (i32.const 21))
(i32.rem_s (local.get $v) (i32.const 3))
br_if $END_IF ;; else if(v % 3) ret = 21
i32.const 46
i32.const 70
(i32.rem_s (local.get $v) (i32.const 5))
select ;; ret = v % 5 ? 46 : 70
local.set $ret

end ;; END_IF:
local.get $ret) ;; ret is address to the string

(data $d0 (i32.const 0) "it␣is␣an␣even␣number\00")
(data $d1 (i32.const 21) "it␣is␣divisible␣by␣three\00")
(data $d2 (i32.const 46) "it␣is␣divisible␣by␣five\00")
(data $d3 (i32.const 70) "it␣is␣some␣odd␣number\00"))

Wasm module can initialize memory and table elements. The memory ini-

tializer section specifies the data offset and the data content. The content of the

memory can be written in the UTF-8 string. The program can also specify a raw

hexadecimal value by using the escape sequence. A memory initializer is used to

initialize static data in Wasm memory. A typical use-case is a string table. Listing

2.15 and Listing 2.16 show the C program with string and the equivalent Wasm

program that is compiled using Clang.
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Listing 2.17. C program with function pointer

typedef int (*func_t)(int, int);
int compute(func fPtr, int a, int b) { return fPtr(a, b); }
int add(int a, int b) { return a + b; }
int sub(int a, int b) { return a - b; }
int mul(int a, int b) { return a * b; }
int div(int a, int b) { return a / b; }

func_t getfunc(int idx) {
if(idx % 2) return &add;
else if(idx % 3) return &sub;
else if(idx % 5) return &mul;
else return &div;

}

Listing 2.18. Wasm code with data initializer from C code in Listing 2.17
(module

(type $func_t (func (param i32 i32) (result i32)))
(table 4 funcref)
(func $f0

(param $fPtr i32) (param $a i32) (param $b i32) (result i32)
(call_indirect (type $func_t)

(local.get $a) (local.get $b) (local.get $fPtr)))
(func $add (type $func_t) (i32.add (local.get 0) (local.get 1)))
(func $sub (type $func_t) (i32.sub (local.get 0) (local.get 1)))
(func $mul (type $func_t) (i32.mul (local.get 0) (local.get 1)))
(func $div (type $func_t) (i32.div_s (local.get 0) (local.get 1)))
(func $getfunc (param $idx i32) (result i32)

(local $ret i32)
i32.const 1
local.set $ret
block $B0

(i32.and (local.get $idx) (i32.const 1))
br_if $B0 ;; if(idx % 2) return [1]
(local.set $ret (i32.const 2))
(i32.rem_s (local.get $idx) (i32.const 3))
br_if $B0 ;; if(idx % 3) return [2]
i32.const 3
i32.const 4
(i32.rem_s (local.get $idx) (i32.const 5))
select ;; if(idx % 5) return [3] else return [4]
local.set $ret

end
local.get $ret)

(elem (i32.const 1) $add $sub $mul $div))

As explained in Section 2.1.3, the main purpose of the Wasm table is to

exchange reference information. Wasm does not allow a raw pointer to an in-

struction address, i.e., a code pointer. Consequently, Wasm needs to represent a

function pointer with a different reference model. Wasm table stores a reference

to a function which Wasm program can use to perform a dynamic or indirect call.

Typically, the compiler populates the table as required. The compiler detects

dynamic function call using a function pointer as requiring a table. A different

case, such as using function pointer as a return value, also requires a table. The
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compiler populates the table statically and uses the table index as the reference

from the instruction. Currently, Wasm does not allow table manipulation from

within a Wasm program. Listing 2.17 and Listing 2.18 show the use of Wasm

table for dynamic dispatch and function pointer return.

2.2.6 Import and Export

Import and Export declaration is used to expose symbols from a module to the

host environment. An import is an element that a module requires before it can

run. The host code needs to supply all imported aspects before it can instantiate

a module. On the other hand, export exposes elements inside a module to be

accessible from the external domain. No necessary action by the host code before

the module can run. The host code uses export as the available API of the module.

A module may import or export functions, memory, table, or global variables.

Wasm provides two different flavors to export or import module elements. A

Wasm module may declare export or import in a separate instruction and use an

identifier to refer to the element. Another way is declaring export and import

inside the element declaration.

The import declaration has two string arguments. The first string is the

"module-name" part, while the second one is the actual identifier. Wasm groups

the identifier by its "module-name." Its primary purpose is to allow a logical

structure of import components. For example, a module import functions from

two different shared libraries. The compiler may group the function into two

"module-name," and the host code can link the shared libraries accordingly.
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Listing 2.19. Some import and export variations in Wasm
(module
;; Import with memory or table declaration
(import "env" "memory" (memory 1 2))
(import "env" "table" (table 10 20 funcref))

;; Exporting memory (Note: memory definition can only appear
;; once in Wasm module)
(memory $mem 1 2)
(export "memory" (memory $mem))

;; Import global
(import "env" "x" (global $x i32)) ;; Global declaration inside
(global $y (import "env" "y") i32) ;; Import inside

;; Export global using separate export declaration
(export "v1" (global $v1))
(global $v1 i32 (i32.const 5))

;; Export global inline
(global (export "v2") i32 (i32.const 0))

;; Import function
(import "env" "getfloat" (func $getfloat (param f32)))
(func $getint (import "env" "getint") (param i32))

;; Export function using separate declaration
(export "addone" (func $addone))
(func $addone (param i32) (result i32)

(i32.add (local.get 0) (i32.const 1)))

;; Export function inline
(func $subone (export "subone") (param i32) (result i32)

(i32.sub (local.get 0) (i32.const 1)))
)

2.3 Compiling to WebAssembly

2.3.1 LLVM

LLVM compiler toolchain supports compilation to Wasm. Programmers can specify

Wasm as the target architecture, and LLVM generates the Wasm binary file. We

can use the LLVM compiler frontend, Clang, to process the entire compilation

pipeline from C and C++ source to the Wasm binary. The pipeline is similar to

cross-compilation to a different target architecture.

However, LLVM does not provide the Wasm system environment required to

perform full compilation. The system environment, or sysroot, contains required

headers and their respective libraries [43]. Without sysroot, LLVM cannot compile

a program that uses standard libraries. Hence, it restricts the usability of the

compiler itself.

Developers can download Wasm sysroot separately. The WASI project pro-
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vides the sysroot that we can use to compile a program that requires system

libraries to Wasm. Developers can specify the sysroot to the compiler during

compilation. With this, the compiler can compile and link programs that use

standard libraries.

Another limitation of using LLVM directly is writing the JS binding manually.

Loading a Wasm module to a web page requires a JS code to load and launch

the module explicitly. Wasm program cannot run independently on a web page

without using a JS script. The complexity increases when the Wasm requires to

emulate standard library functions such as input and output. Therefore, LLVM

produced Wasm module is not directly usable in every case.

2.3.2 Emscripten

Emscripten was initially an LLVM-to-JavaScript compiler. Its primary purpose

was to compile C and C++ program to JavaScript. In 2015, Emscripten introduced

support compilation to Wasm. This early introduction is to expedite the adoption

process of the new standard. As of version 1.39.14, Emscripten provides solid

support in compiling C and C++ programs to Wasm. Emscipten handles end-to-

end compilation from the source to a runnable web page. Emscripten can also

link to the WASI, allowing the use of standard library functions.

Figure 2.2. High-level workflow of Emscripten

Emscripten is bundled with EMSDK. It uses Node.js and Python scripts

as its backend. The default installation also includes its own LLVM compilers,

eliminating local dependency. Developers can download the toolchain by checking

out the EMSDK git repository and run the configuration script.

Enscripten processes the input source by passing it to the LLVM compiler.

LLVM compiles and generates Wasm binaries from the input. Emscripten then

generates necessary JavaScript binding to glue the Wasm module and web environ-

ment. Emscripten also performs linking with the required libraries. Emscripten

provides the WASI library, which allows the program to use most of the standard

library functions. Emscripten automatically links the required library when
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compiling the source program.

Figure 2.3. The default page generated by Emscripten. It consists of a ’console’
which display the program standard output.

The JS script generated by Emscripten is a Wasm launcher. It encapsulates

the launching sequence from the module binary fetch to module instantiation.

Emscripten also generates a JS shell function that links to the Wasm function. It

allows user codes to utilize Wasm function from the JS program directly. It covers

the use case of utilizing C and C++ codes as an external library for a JS program.

2.4 Execution Environment

2.4.1 Embedding WebAssembly to JavaScript

Besides Wasm specification, W3C also standardizes the WebAssembly JavaScript

Interface. It specifies the JS API, which connects the JS and the Wasm environ-

ment. The API provides the infrastructure to load, compile, and execute Wasm

modules from JS programs. Wasm requires the host environment implementation

to implement this specification.

The specification defines a WebAssembly namespace in the JS environment.

This namespace consists of two main functions: compile and instantiate. The

compile function compiles Wasm binaries that are stored in a BufferSource object.

The compile function produces a Module object, which can then be instantiated.

The instantiate function itself comes with two flavors. JS code can provide

either the compiled Module object or the Wasm binaries. The latter simplifies

the compilation process without having a separate compile-instantiate pipeline.

The compile and instantiate function use the JS Promise framework. It allows

asynchronous operation and conforms to the asynchronous nature of JS language.

The Module object provides interfaces to import and export information. JS

code can use this information to reflect the content of a Wasm module. Apart
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Listing 2.20. Compiling and Instantiating Wasm from JS

fetch('thesis.wasm')
.then(response => response.arrayBuffer())
.then(bytes => WebAssembly.compile(bytes))
.then(module => WebAssembly.instantiate(module))
.then((result) => { /* do something with the instance*/ });

from the Module object, the WebAssembly namespace also provides several other

object types. The Instance object, which is produced by the instantiate function,

provides a list of exported functions. A JS program can use this API to invoke

Wasm function, similar to calling a regular JS function.

A Memory object represents a memory in Wasm environment. It allows a JS

program to initialize and supply the memory to a Wasm module. A JS program

can also manipulate the memory buffer without using a Wasm function. It is

necessary in case of transferring extensive data between the JS and the Wasm

realm. Table and Global objects also serve the same purpose for the Wasm table

and global variable.

Besides JS Interface, W3C also defines an additional specification for host-

ing Wasm in the web ecosystem. This separate specification extends the JS

Interface specification for the web environments. The separation lets a non-web

environment, such as Node.JS, to implement the JS Interface without the Web

API.

The Web API provides standardization for streaming the Wasm module

through the network. Streaming compilation enables Wasm compilation with-

out waiting for a complete module download. It improves the efficiency of the

pipelining between data transfer and program compilation. The additional Web

API requirement is the serializability of the Module object. It enables the Module

object to be stored or serialized to local storage. The specification mandates the

host to try reusing the compiled code by caching. The module caching avoids

recompilation and improving the entire efficiency of the Wasm ecosystem.

2.4.2 Accessing Wasm Exports

The Wasm instance object provides an interface to the export list. The export list

allows a JS program to access the Wasm module exported members. The export

element is directly callable by using its export names. For example, Listing 2.19

shows an exported function addone and subone. Listing 2.21 below shows the JS

code that invokes those exported functions.

Listing 2.21. Invoking exported functions

var thesisInstance; // consists of a Wasm instance object
var addOneRes = thesisInstance.exports.addone(5);
var subOneRes = thesisInstance.exports.subone(addOneRes);
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Exported memory, tables, and globals also appear in the export list. Their

respective JS objects reference these exports and provide access from JS code.

The JS Interface provides Memory, Table, and Global object to enable accessing

these Wasm elements from the JS program.

The Memory object provides access to the raw memory buffer. JS code can

manipulate Wasm memory, similar to use an array buffer. A JS program can

access the buffer by instantiating the Uint8Array object and supplying the array

buffer reference. A JS program can also use other unit sizes, such as Uint16 and

Uint32. However, since the memory is addressable in a one-byte unit, using larger

than the one-byte unit can be challenging to convey. Additionally, the JS code can

also grow the Wasm memory.

Listing 2.22. Wasm code with memory export
(module

(memory $mem 16 32)
(func $getandmul (param i32) (result i32)

local.get 0
i32.load offset=0
i32.const 3
i32.mul)

(export "mem" (memory $mem))
(export "getandmul" (func 0))

Listing 2.23. Accessing exported memory from Wasm in Listing 2.22

var thesisInstance; // consists of a Wasm instance object
var memoryBuffer = new Uint8Array(thesisInstance.exports.mem.buffer);
// Wasm memory always zero-initialized. Hence: buffer[0] * 3 = 0
var zero = thesisInstance.exports.getandmul(0);
// Modify the content of Wasm memory
memoryBuffer[0] = 25;
// No longer zero. buffer[0] * 3 = 75
var val = thesisInstance.exports.getandmul(0);

JS code can manipulate Wasm Table through the WebAssembly.Table object.

The object provides an accessor and mutator method to get and set table elements.

The accessor function accepts a table index and returns the function reference

pointed by the table element. The mutator function, on the other hand, accepts

the function reference to be set as the table element. The mutator may only accept

an exported WebAssembly function. Otherwise, it will raise an error.

WebAssembly.Global object provides access to Wasm global variables. The

object represents a global variable that a JS program can access. However, only

immutable globals can be exported from Wasm. If a JS code needs to access to

modifiable global values, the Wasm module needs to declare it through import

instead of export.

2.4.3 Supplying Import to Wasm Module

Instantiation of Wasm module requires the JS code to supply imported elements.

The import object is a regular JSON object organized with module and import
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name hierarchy. The key on the first-level of the import object is the module name,

as declared in the Wasm module. The second-level key is the import name. The

second-level contains the respective Wasm object that is supplied for the import.

The supplied Wasm object is the same with objects that are used in accessing

exports. However, the JS code is responsible for instantiating and providing that

object. In Wasm export, the JS engine handles the object instantiation.

The supplied import objects remain accessible and modifiable from the JS code.

Any change made to the object content from the JS code reflects automatically

in the Wasm realm. Moreover, imported global variables are mutable, unlike the

immutable export counterpart. In a sense, import and export only differ by its

requirement in the module instantiation.

Listing 2.24. Wasm code with imports
(module

(import "thesis" "mem" (memory $mem 16 32))
(import "thesis" "glob" (global $global1 (mut i32)))
(import "thesis" "tbl" (table 1 funcref))
(type $op (func (param i32 i32)(result i32)))
(func $add (type $op) (i32.add (local.get 0)(local.get 1)))
(func $sub (type $op) (i32.sub (local.get 0)(local.get 1)))
(func $compute (param i32) (result i32)

local.get 0 ;; Memory index 0
i32.load offset=0
global.get $global1
i32.const 0 ;; Table index 0
call_indirect (type $op))

(export "compute" (func $compute))
(export "add" (func $add))
(export "sub" (func $sub)))

Listing 2.25. Supplying import for Wasm module in Listing 2.24

var importObjects;
WebAssembly.compileStreaming(fetch("imports.wasm"))
.then((x) => {
importObjects = {
thesis:{
mem: new WebAssembly.Memory({initial: 16, maximum: 32}),
glob: new WebAssembly.Global({value:'i32', mutable: true}),
tbl: new WebAssembly.Table({initial: 1, element: "anyfunc"})

}};
return WebAssembly.instantiate(x, importObjects)

}).then((x) => {
// Set the table entry
importObjects.thesis.tbl.set(0, x.exports.add);
// Set global value
importObjects.thesis.glob.value = 25;
// Set memory content
var memoryBuffer =

new Uint8Array(importObjects.thesis.mem.buffer);
memoryBuffer[0] = 10;
// Prints 'Result: 35'
console.log("Result: " + x.exports.compute(0));

});

Also, a Wasm module can also require a function import. JS code can supply
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a function, including a JS function, to be imported. The JS engine automatic

marshal the function argument and return value between Wasm and JS realm.

Wasm program can call the imported function in the same way with the regular

Wasm function. In addition, the imported function can also be re-exported by the

module. This re-exported function can be used as a table element from the JS

program.

The primary use case for function import is to provide callback function from

Wasm module to its user. Many programs require a callback function in their

design. In Wasm, however, a callback function can only be supplied through the

explicitly declared import function. At the moment, Wasm does not provide a

mechanism to dynamically extend an existing Wasm module. Without the explicit

import declaration, JS program is unable to provide the callback function to the

Wasm module.

Listing 2.26. Extending Listing 2.24 with functions import
(module
;; Similar to previous Wasm
(import "thesis" "ext_mul" (func $ext_mul (type $op)))
(export "mul" (func $ext_mul)))

Listing 2.27. Supplying function import for Listing 2.26

var importObjects;
WebAssembly.compileStreaming(fetch("imports.wasm"))
.then((x) => {
importObjects = {
thesis:{
// Same with previous implementation
ext_mul: function(v1, v2) {

console.log("Imported function call");
return v1 * v2;

}
}};
return WebAssembly.instantiate(x, importObjects)

}).then((x) => {
// Same with previous implementation
// Prints 'Imported function call'
// 'Result: 250'
console.log("Result: " + x.exports.compute(0));

});

2.5 Host Environment Implementation

2.5.1 Mozilla SpiderMonkey

SpiderMonkey development began in late 1990 during the rise of the world

wide web. It was the original implementation of the JS engine that is used in

Netscape Navigator [17]. The engine is open-sourced in 1998, along with the

creation of the Mozilla Project by several Netscape members. It is the JS engine

used in Mozilla products, mainly Firefox browser. Throughout two decades of

30



WebAssembly

development, SpiderMonkey has gone through long and continuous evolution.

SpiderMonkey is a JS implementation in C that can be embedded in other

programs [18]. The web browser is one of several programs that integrate the JS

engine for web client scripting. SpiderMonkey provides a C-based API interface

to interact with the JS engine. The embedder invokes the engine, and the engine

prepares the necessary runtime for the JS environment. Every script will run on

a unique Context, which defines the internal stack size for the script execution.

The embedder instantiates and manages the Context manually and explicitly. It

is a low-level object that is considered as a resource. Therefore, the embedder

needs to ensure to release the Context after it is no longer used.

For higher-level objects, such as JS variables and objects, the JS engine

provides an automatic Garbage Collector (GC). The GC tracks the lifetime of

every JS object. The JS object lives in a different realm with the embedder object.

Although the embedder code, which is in C, can interact with an object created in

the JS realm, the embedder code needs to inform the GC when referencing it. It

is to ensure that the object is not released while being referenced in the GC code.

This different realm creates the requirement for an embedder code to marshal3

all data when interacting with the JS engine.

When asm.js became popular, Mozilla incorporated an optimizing AOT com-

piler for the asm.js program [5]. The compiler, which is named OdinMonkey,

precompiles the asm.js program to the machine instruction before the execution

[34]. It dramatically improves the performance of asm.js applications compared to

using the regular JS pipeline. This optimization is benefitting the characteristic of

asm.js as a strict subset of JS. Asm.js can be considered as a JS without dynamic

types, runtime features, and GC requirements. Ultimately, this optimization

preluded the Wasm development as a true intermediate code for the JS engine.

In the Wasm compilation, SpiderMonkey incorporates a tiered compilation

[8, 23]. It is a multi-level compilation process which allows a program to pass

through a different level of optimization. Program optimization takes time to

process, and it may delay the start-up of the program. By incorporating the

tiered-compilation, the JS engine can expedite the response time of the program

start-up. In the background, the engine recompiles the program with more

optimization processes and yields an optimized compiled program. The engine

can then hot-swap the optimized program to improve the overall performance of

the execution.

Mozilla is planning to incorporate a new code generator called Cranelift in

its future release. Cranelift is a new optimizing code generator that is written in

Rust. The JS engine compiles the Wasm to Cranelift’s intermediate representation

(IR). Then, Cranelift generates the target machine instruction based on the IR.

3Packaging data to be transmitted across application boundaries. It is typically used in Remote
Procedure Call (RPC), interprocess communication, or invoking a component that uses a specific data
format. [2]
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Cranelift is a part of the ongoing development of Wasmtime, an external runtime

for Wasm programs. It is sponsored by the Bytecode Alliance, which the Mozilla

Foundation is also a part of.

2.5.2 Chromium V8

The Chromium project was published in 2008 along with the release of Google

Chrome [19]. Chromium is the base code for the Google Chrome web browser

without proprietary features. Initially, the project started with a multi-process

web browser based on the WebKit engine. Along with the first release, Google

also published the V8 JavaScript engine, which is used in the entire Chromium

ecosystem.

The V8 engine has been incorporated since the very first version of Chromium

release. Google claimed V8 outperformed the contender of the JS engine, including

JScript from Microsoft, SpiderMonkey from Mozilla, and JavaScriptCore from

Apple. This performance gave significant benefits for the web browser in executing

web page scripts. The performance benefit became more necessary since the rise

of Web 2.0, where more web sites implement AJAX and interactive web client.

V8 addressed three major areas in their early releases [20]. V8 implemented

efficient property access. It improved the property access by eliminating dynamic

lookup using a dictionary data structure. Many prior JS engines used a dictio-

nary since JS is a dynamically-typed language, and internal members can be

introduced at any point. Instead, V8 generated a hidden class that is similar to

the inheritance model in an object-oriented language. It enabled the object to

be stored similar to a struct in the memory. It allowed the object member to be

accessed using an offset lookup.

The next significant improvement in V8 is the Dynamic Machine Code Gen-

eration. This capability enabled V8 to compile the JS code directly to the target

machine instruction. It equals to Just-in-Time compilation in major virtual ma-

chine architecture. V8 does not use intermediate byte codes, which improves the

overall performance of the execution. Previously many JS engine implementation

interpreted the JS code instead of compiling it. It created a performance hit

compared to the JIT-based engine. The final improvement in the V8 was the more

efficient garbage collection.

Along with other JS engines, the V8 engine introduced its first experimental

support in WebAssembly in March 2016 [48]. This experimental support used

existing infrastructures of the V8 engine. In addition to using the existing JIT

compiler, V8 added a Wasm decoder to read and validate Wasm modules. This

pipeline generates machine instruction from the Wasm program. In 2018, V8

developers replaced the existing JIT compiler with a specialized Wasm compiler

called Liftoff.

The Liftoff compiler simplified the machine code generation [25]. It bypasses
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the complex pipeline of the previous compiler. The last compiler, TurboFan, is

designed to process the JS program, which requires more complex intermediate

representation. Wasm, on the other hand, has a simpler architecture and in-

struction variants compared to the JavaScript. As discussed in previous sections,

Wasm itself acts similarly to an intermediate representation. By eliminating

the redundant intermediate representation, V8 performs more efficiently when

processing Wasm programs.

Apart from its use in the Chromium web browser, V8 is also used in the

Node.js environment [15]. Node.js is a JS environment outside of a web browser

that can be used for general purposes. Node.js expands the coverage of the JS

language in software development. A web application can be developed in a

single programming language instead of two different languages for frontend and

backend. With the development of Wasm, Node.js benefited the native Wasm

support from the V8 engine. It allows a Node.js program to depend on external

non-JS library without platform boundaries. Previously, Node.js uses the native

extension to integrate external native libraries to the Node.js environment [16].

2.6 Comparison of the Host Environment

This section discusses the relevant comparison between the V8 and SpiderMonkey

for the thesis. More details are also discussed in the later chapter about the

instrumentation of the JS engine for the fuzzing experiment. This comparison is

also relevant only to the time of the writing of this thesis. Since both JS engine is

very active projects, the information here may evolve throughout time.

2.6.1 Project Structure and Compilation

The SpiderMonkey JS engine is integrated with the source tree of the Gecko web

browser engine. The JS engine resides in the subfolder of the source. Developers

need to clone the entire source tree even if they are only interested in the JS engine.

The Mozilla developers no longer maintain a separate standalone download for

SpiderMonkey sources. Therefore, third-party developers have no choice other

than cloning the entire Gecko source tree.

Despite being integrated with the entire Gecko source tree, the SpiderMonkey

source is isolated in its subfolder. Although the source is mainly written in

C++, the recent development incorporates Rust sources, especially the Cranelift

instruction generator. The build script prepares the Rust dependency from a

separate third-party folder in the main source tree. Hence, the developers do not

need to handle the dependency manually.

On the other hand, the V8 engine is a completely independent and isolated

source. The source tree is maintained separately with the rest of the Chromium

web browser engine development. Thus, interested developers do not need to pull
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the entire Chromium source tree to play with the V8 engine. The V8 engine is

also written entirely in C++.

Yet, the V8 engine requires additional dependency to build properly. It

requires a custom build tools called depot_tools. The depot_tools is a collection

of custom build tools developed by Google for their projects. It consists of a build

generator, along with infrastructures that integrate with their source control

system. V8 requires this tool to generate the actual build script.

The SpiderMonkey build uses the Makefile build automation tool, while V8

uses Ninja. Since both projects use a customized build generator, it is impossible

to switch the build automation tool. Both projects use a C++ compiler to build

the project, and they use the system default compiler. Besides, SpiderMonkey

requires the Rust toolchain to compile the Rust dependencies. The SpiderMonkey

build script automatically calls the Rust toolchain to build the dependencies.

2.6.2 Embedding the Engine

Both engines compile into a shared library. An external program can embed

the engine to utilize the JS engine features by linking to the engine shared

library. Such external program is called an embedder. An embedder can access

the API exposed by the engines by including its public header file. Through the

available API, the embedder can call the necessary functions to utilize the JS

engine features.

The embedding workflow is relatively similar in both engines. The embedder

needs to initialize the JS engine before accessing the rest of the API. SpiderMon-

key has a more straightforward process compared to V8. In V8, the embedder

needs to invoke several functions before the engine is fully initialized.

Both engines also require the embedder to instantiate a Context object. This

object represents a JavaScript execution in the engine. A context encapsulates

every global value declared in the JS script. A script from a different context

Table 2.2. Comparison of the Host Environment Projects

Category SpiderMonkey V8
Source
Control

Mercurial and automatic
mirror in Git

Git

Project
Structure

Integrated with the web
engine parent project
(Gecko)

Independent and
self-contained

Build
Generator

Self-contained shell and
Python script with custom
build configuration file in
build.moz file

Third-party build
configuration tool
(depot_tools) with custom
build configuration file in
BUILD.gn file

Build Tool Makefile Ninja
Programming
Language

C++ with Rust Dependency C++
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Listing 2.28. Embedding the SpiderMonkey

#include "jsapi.h"
#include "js/Initialization.h"

// The class of the global object
static JSClass global_class = {

"global",
JSCLASS_GLOBAL_FLAGS,
&JS::DefaultGlobalClassOps

};

int main(int argc, const char *argv[])
{
int ret = 0;
JS_Init();
JSContext *cx = JS_NewContext(8L * 1024 * 1024);
if (!cx)

return 1; // Failed instantiating context
if (!JS::InitSelfHostedCode(cx))

return 1; // Failed initializing selfhosted code

{ // Scope for various stack objects
JS::RealmOptions options;
JS::RootedObject global(cx, JS_NewGlobalObject(cx,

&global_class, nullptr,
JS::FireOnNewGlobalHook, options));

if (!global)
return 1;

JS::RootedValue rval(cx);
{ // Scope for JSAutoRealm
JSAutoRealm ac(cx, global);
JS::InitRealmStandardClasses(cx);
// JS script operations starts here ...

}
}
JS_DestroyContext(cx);
JS_ShutDown();
return ret;

}

cannot access value from a script in another context. It effectively creates logical

isolation between scripts. V8 engine, however, added additional layer above

context called Isolate.

Isolate is a layer of isolation similar to a process in an operating system.

An Isolate has its own memory allocator, and it may not share resources with

another Isolate. An Isolate is considered thread-safe isolation. Thus, it can run in

a different thread. It is particularly vital in a multi-threading ecosystem, such as

web engine rendering.

After all necessary initialization and context instantiation, the embedder

can invoke the desired JS script. The embedder can supply the script, as well

as communicating with the JS realm by passing and receiving data. When the

embedder completes the execution, it needs to clean up the JS engine by releasing

all resources properly. The API provides all necessary clean-up functions for this

purpose.
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Listing 2.29. Embedding the V8

#include "libplatform/libplatform.h"
#include "v8.h"

int main(int argc, char const* argv[]) {
int ret = 0;

// Initialize V8.
v8::V8::InitializeICUDefaultLocation(argv[0]);
v8::V8::InitializeExternalStartupData(argv[0]);
std::unique_ptr<v8::Platform> platform =

v8::platform::NewDefaultPlatform();
v8::V8::InitializePlatform(platform.get());
v8::V8::Initialize();

// Create a new Isolate and make it the current one.
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator =

v8::ArrayBuffer::Allocator::NewDefaultAllocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);

{ // Scope for Isolate
v8::Isolate::Scope isolate_scope(isolate);
// Create a stack-allocated handle scope.
v8::HandleScope handle_scope(isolate);
// Create a new context.
v8::Local<v8::Context> context = v8::Context::New(isolate);

{ // Scope for context
v8::Context::Scope context_scope(context);
// JS script operations starts here ...

}
}
// Dispose the isolate and tear down V8.
isolate->Dispose();
v8::V8::Dispose();
v8::V8::ShutdownPlatform();
delete create_params.array_buffer_allocator;
return 0;

}

Apart from the embedder code implementation, the V8 embedder is also re-

quired to provide the snapshot_blob.bin file. snapshot_blob.bin is an additional

file generated by the V8 build that is required by the V8 engine. By default, the

V8 engine searches the file in the same directory as the embedder executable.

The embedder can supply the file by copying the snapshot_blob.bin file. The

embedder can also put a symlink to the file in the same directory with the ex-

ecutable. The embedder can also modify the argument that is passed to the

InitializeExternalStartupData function. The V8 engine refuses to work if it

does not find the snapshot_blob.bin file.

2.6.3 Internal Data Structure

The JavaScript and C++ programming language have different data representa-

tions. The fundamental difference in both languages is the type-safeness. C++ is
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a strongly-typed language, meaning that every variable has a known type during

the compile time [44]. JavaScript, on the other hand, is a dynamically-typed

language [14]. The value type stored in a variable may be unknown until the

execution evaluates the variable.

Another difference is the primitive types of the two languages, in which both

languages have a different concept of primitive types. C++ types are naturally

closer to low-level binary types. In C++, primitive values are backed by simple

integral values stored in memory. The primitive types vary by their storage size.

For example, an int value is an integral type that is stored precisely 4 bytes in an

x86 machine4.

JavaScript primitive types are more high-level and abstract. JavaScript only

has a single universal Number type, which is backed by 64-bit floating-point value

[14]. String value is also considered a primitive type in JavaScript, unlike in

C++. This differing typing discipline requires a bridge between the C++ and the

JS representation. The dynamic nature of the JavaScript language implies that

every value is polymorphic. Therefore, a single root representation of value needs

to exist. Both SpiderMonkey and V8 defines a root Value object to represent this

dynamic value. SpiderMonkey defines it as the JS::Value class, while V8 defines

it as v8::Value.

These value classes provide the necessary functions to interchange between

JS and C++ primitives. Those functions include accessor and mutator from and

to C++ primitives. The main difference between the two implementations is the

way to store the value in the object. A SpiderMonkey value object is mutable. The

value stored inside the value object can be modified using the available mutator

function. V8 does not provide API to manipulate a primitive value after it has

been instantiated.

This difference in value object mutability is due to its internal implementation

of storing the value in the memory. V8 stores all value directly in its internal

heap. V8 API provides interfaces to instantiate the v8::Value object based on the

desired type. The object must be stored inside a specialized container called Local.

Local acts as a reference container for heap-allocated objects. The GC tracks the

liveness of an object through the Local object. It is unsafe to track a raw pointer

to a heap-allocated object since the GC can move the object at any moment. The

reference container acts as a safe reference in which the GC can inform the new

location of an object that has been moved.

In contrast, SpiderMonkey does not always store every value in the heap.

SpiderMonkey allows a value to live outside the heap, i.e., in the stack. Spider-

Monkey differentiates the reference using Root and Handle. In principle, it is

similar to the GC management in V8. However, SpiderMonkey specialized the

4C++ does not specify the exact storage size for the primitive data types. Therefore, primitive types
in a different architecture and system may have different storage size. For example, long is stored
as 4 bytes in a 64-bit x86-64 Windows system, while it is 8 bytes in Linux/POSIX family. See 6.8.1
Fundamental types [basic.fundamental][29, 4]
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case for a RootedValue, which does not involve any heap allocation.

2.6.4 Internal Wasm API

Both implementations encapsulate the Wasm infrastructure in a separate names-

pace. It is relatively easy to isolate Wasm-related codes as most of the codes are

isolated and decoupled from the rest of the JS engine. The main components are

the Wasm parser, validator, compiler, code representation, and element represen-

tations. The element representation includes the Wasm memory, table, and global

variable objects.

The compile function accepts a binary Wasm module. It handles all compi-

lation steps in a single call, from parsing to the machine instruction generation.

The returned instruction bytes is encapsulated in a module object, which includes

the entry point accessible from the JS realm. However, only exported functions

that are included in the entry point lists. The unexported function is invisible

from the external observer. Nevertheless, the Wasm internal keep tracks of every

declared function in the module.

The module needs to be instantiated before the JS engine can execute it. The

workflow equals to the Wasm JS API that is discussed in the previous section. The

instantiation function requires the import object that is required by the Wasm

module. If the caller does not supply complete import elements, the instantiation

function fails. Both engines have a different mechanism in supplying the import

elements. V8 uses a JS object to supply the import, analogous to constructing the

object from a JS script. While SpiderMonkey provides a specialized C structure

named js::wasm::ImportValues to encapsulate the import elements.

The instantiation produces an instance object. At this point, the Wasm

module is prepared and ready to be executed. Wasm function can be invoked

from the entry point provided by the instance object. SpiderMonkey has more

direct access to the invocation function. SpiderMonkey’s wasm::Instance object

provides a callExport function, which can be called by supplying the exported

function index and arguments. V8 uses a JS function handle to invoke the Wasm

function. Hence, every Wasm function is invoked through the regular JS function

invocation pipeline.

Both engines accept a vector of Value object as an argument. For SpiderMon-

key, however, the call argument vector also provides a slot to store the return

value of the function. This is different from V8, where the return value of the

called function is returned by the invoker function.
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Software Testing

"Human errors can cause a defect or fault to be introduced at any stage

within the software development life cycle and, depending upon the

consequences of the mistake, the results can be trivial or catastrophic.

Rigorous testing is necessary during development and maintenance to

identify defects, in order to reduce failures in the operational environment

and increase the quality of the operational system."

"Foundation of Software Testing: ISTBQ Certification"

Dorothy Graham, Erik van Veenendaal, Isabel Evans, Rex Black [21]

This chapter presents the foundational knowledge related to software testing.

This knowledge is essential in building the argument and basis of the experiment

presented in this thesis. This chapter summarizes the essential key points around

software testing (Section 3.1), fuzz testing (Section 3.2), and differential testing

(Section 3.3). This chapter concludes by presenting the analysis of the experiment

background by applying the knowledge provided in this chapter.

3.1 Testing in General

3.1.1 Overview

We can describe testing as a process to evaluate expectations. The process begins

by defining the expectation of the subject. Then, the expectation is evaluated to

conclude whether the subject meets the expectation or not. From the conclusion,

we can decide on the next action to take against the subject.

We can take a simple example of purchasing a car. The car dealer provides

the potential buyer to test drive the car they sell. The buyers have certain

expectations of the car, which affects their consideration to make the purchase.

The buyers then test the car by driving it directly and decide whether the car

meets their expectations. If the car does not meet the expectations of the buyers,

the buyer can then reiterate the process of searching for a new car model and
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perform the test drive again.

Testing is an integral part of human activities that involve expectations. Soft-

ware engineering deals greatly with expectations. Even, software development

lifecycle always starts with defining the expectation, in the form of requirements

[41]. Intuitively, the lifecycle must also involve testing to validate if the expecta-

tion has been satisfied. All software development process methodology, from the

waterfall model to agile, incorporates testing in the process. With this fact, it is

irrefutable that testing is an inseparable part of software development.

Figure 3.1. A simple software development lifecycle [41]

Dorothy Graham et al. describe that testing is performed to evaluate the

requirement and specification of a product is satisfied [21]. From the evaluation,

we can measure the quality of the product and perform improvement if necessary.

Through testing, we can also identify a missing requirement, and more impor-

tantly, a defect. It is crucial to prevent a defect before a product is released so

that it can be addressed before the product deployment.

Testing also requires proper planning to achieve an accurate result. The

planning enables a proper understanding of the context of the testing, and define

the strategy of the testing [21]. The strategy itself covers the technique, scope,

and tools. The test plan also defines the exit criteria, which determine the success

of the test activity.

From the test activity, we can obtain the result that we can use for analysis.

The result enables us to develop the defect report for fixing and mitigation. We can

also obtain metrics and statistics of the software quality, which can indicate the

quality of the software and the development process. This information becomes

feedback about the development cycle to improve the overall software development

process [41].

3.1.2 Types of Testing

Software testing can be classified based on its scope and target [21]. The scope

classification adheres to the V-model in the software engineering practices, which

illustrates the relationship between software development phases and the respec-

tive testing [30]. Each level of design has specific testing to validate that the

design is satisfied by the implementation. Figure 3.2 shows the illustration of the

V-model.

Component testing, or commonly known as unit testing, is typically conducted

at the lowest level of implementation. The test is targetted to the smallest unit of

the program, typically a function. A unit test validates the implementation of the

40



Software Testing

Figure 3.2. V-model according to ISTQB Standard [21]

detailed design to work according to its specification. For example, it validates a

function is producing a correct output by the given input.

The integration test validates the interconnectivity between component units.

It ensures every component works correctly together, and the integration is

implemented correctly. A system test is conducted after the integration test. It

validates the system requirement and checks the entire system implementation.

Finally, the high-level user requirement is validated through the user acceptance

test. It ensures the high-level use case is implemented correctly according to

the user demand. After completing the user acceptance test, the software can be

considered fit for purpose and ready for deployment.

Dorothy Graham et al. also classifies the testing target in several aspects [21].

Functional testing focuses on system functionality based on the requirements and

business processes, in which defines the system specification. Typically, the test

cases are derived from the user processes and high-level logical operation.

However, not every system functionality is documented as use cases. A system

also consists of non-functional attributes, which are carried by the software itself.

These attributes, such as performance and reliability, also affect the usability of

the system. Therefore, these attributes are also tested through non-functional

testing.

We can consider both functional and non-functional testing as black-box

testing. In black-box testing, we do not consider the details of the implementation.

We only focus on the behavior of the System Under Test (SUT) from any given test

cases and expect that the SUT produces valid and accurate behavior. However,

we are more interested to consider on how-it-works rather than the final result

only. For this purpose, we use the white-box testing technique.
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The white-box testing considers the implementation of the SUT. It evaluates

the architecture of software implementation. The main purpose of white-box

testing is to cover the entire implementation of a system. It includes every

control flow, every exit criteria, and every part of the program. It prevents the

implementation from being unchecked via testing. Also, it prevents software

defect that may not be visible from regular black-box testing.

Finally, the confirmation and regression testing target the changes in a

system. It is typically conducted in highly active system development. A new

code introduced to a system can affect other parts of the system. Therefore, it

is crucial to test not only the newly introduced code but also the entire system

itself. Confirmation testing is conducted by reevaluating the existing test cases to

validate if the outcome is unaffected by the new component.

3.1.3 Automated Testing

Software testing is a continuous and repetitive process. Relying on human solely

to perform this task can be daunting and inefficient. The automated testing tool

provides the solution by allowing the engineer to design test specifications and let

the tool to execute the test specification against the SUT. An automated testing

system can execute tests more accurately compared to humans. It is important

in a test-driven development, which typically involves a unit-testing for every

component units in the system [21].

Various tools are available to support automated testing in software develop-

ment [30]. Typically the tool is tied to a specific development environment and

programming language. For example, Google Test is a testing framework which is

targetting the C and C++ software development. Similar unit testing frameworks

for other programming languages are also available, for example, JUnit for Java

and Mocha for JavaScript. The unit testing framework can be integrated into the

software build script. It enables the test to be performed automatically during

the software build through Continuous Integration (CI) tools.

However, we must also consider the side effect of the automated testing

tools on the software [21]. It is apparent, especially for testing non-functional

requirements such as system performance. The automated testing tools may

present additional overhead, which we need to take into account when interpreting

the result. Also, a code that is specifically instrumented for the testing purpose

may have a different behavior compared to the original behavior. This different

behavior may impact the outcome of the test and yields a diverging conclusion

that may not present in the original program path.

3.1.4 Test Cases

Test cases define the elements to be evaluated in the testing process. It describes

the precondition of the SUT, the input, and the expected output and postcondition.
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We must develop test cases along with the system design process since the test

case itself must reflect the system specification and requirement.

A single test case may have multiple input cases. The input case adheres to

the input specification defined in the test case, which defines the boundaries and

scope of the input. The input case can be generated through this specification,

creating multiple input cases for a single test case specification.

The output of the test case is also an essential element in the testing activity.

It provides us an insight of system behavior against specific input. An input may

have multiple correct results, however, it may not be the most optimum one. By

evaluating the result, we can also improve the quality of the system in order to

achieve the most optimal result.

A test case is a vital part of software testing. Paul Jorgensen noted in his

book that it is as valuable as the source code itself [30]. Hence, it is important

to develop test cases thoroughly, as well as keeping it maintained and checked

throughout the software development processes.

3.2 Fuzz Testing

3.2.1 Overview

Fuzz testing, or also known as fuzzing, is a form of testing a system by supplying

irregular data with the intention to fail and crash the system [46]. It is commonly

used to identify corner cases that typically affect system reliability and security.

Fuzzing is considered black-box testing. In a typical fuzzing process, the sys-

tem is put under stress by receiving unexpected input. Fuzzing is also considered

as negative testing. Because, in fuzzing, we are not interested in whether the

system is well-behaved. Instead, we are looking for the case where the system

behaves unintentionally.

This unexpected behavior is a symptom of a fault within an implemented

system. Fuzzing aims to trigger this unexpected behavior to arise, which a typical

usual test case and regular input fail to detect. Fuzzing is also considered as a

low-cost system evaluation because it does not involve a thorough system analysis

to evaluate a system.

Fuzzing can simply utilize a random test case generator to generate the input

test case. The fuzzer performs the test automatically without human intervention

by repeating the same process all over again until a system failure is detected.

Therefore, it is typically common to see system evaluation that tests a system

under a fuzzer for an amount of time.
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3.2.2 Type of Fuzzer

Ari Takanen et al. categorizes fuzzer based on two criteria [46]. The first criterion

is the injection vector, which differentiates fuzzer by its entry point to the system.

Every system has different interfaces that yield different fuzzer types to be used.

Since fuzz testing is black-box testing, we need to adjust our fuzzer type according

to the black-box input.

The other criterion is the complexity of the test case. An appropriately crafted

fuzz test case can target a specific part of the system. It is important with the

previous injection vector criteria because the specific internal part of the system is

not directly exposed to the external domain. We need to penetrate several layers

before our test can reach the target vector we aim. A simple random input fuzzer

is not going to work well with this case.

Let us take an example of an image processing library that accepts a binary

image file. A random fuzzer can generate a random binary image file and supply

it to the library interface. Typically, the library interface checks for the basic

binary structure before proceeding to the image processing steps. For example,

the library may check a magic value at the beginning of the file. A simple random

fuzzer may never pass beyond this point as the library automatically rejects the

input file altogether. This type of fuzzer may not be efficient enough to expose the

hidden defect inside the system. Therefore, a crafted fuzzer can generate a more

valid structure that can be accepted by several layers of the system and reach the

target component we desired.

Figure 3.3. Illustration for crafting test case to target a specific internal func-
tionality

A fuzzer can also craft its test case dynamically. This type of fuzzer learns

the behavior of the system during the testing sequence, and craft the subsequent

input based on this information. A more sophisticated fuzzer also involves a
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full protocol of a system to target a system that has a complex internal state.

This type of fuzzer is used in testing a protocol-based system, such as a network

protocol stack.

3.2.3 Fuzzing Process

Fuzzing process is similar to a regular testing procedure. The SUT receives the

input test case, in which the observer collects the information of the SUT. The test

result can be either valid, error, anomalous, or system failure. The result must be

completely recorded for further investigation.

The examination of the result is often be done manually by analyzing the

detected fail cases. The fail cases are reproduced by supplying the exact test

case input to the SUT. Generally, this process involves a debugging and dynamic

analysis of the program. These fail cases form a corpus of test cases that can be

reused for future testing to validate the defect is no longer present in the system.

Several fuzzing frameworks are available on the market. It can be used

to incorporate fuzz testing into a software development project. However, Ari

Takanen et al. reported that the on-the-market framework does not usually

provide a ready-to-use input for every system [46]. Significant development time

is also required in order to implement a fuzz testing that covers the entire SUT,

since it requires the knowledge of the SUT itself in order to develop a test case

that can possibly trigger corner cases.

3.3 Differential Testing

3.3.1 Purpose of Differential Testing

Differential testing is testing against multiple comparable systems to find the

difference between implementation. According to William McKeeman, differential

testing originates in search of an oracle in testing [35]. An oracle, or a gold

standard, is used to evaluate a test result.

For a simple unit testing, a test result can be trivially evaluated. However,

for a more complex integration testing, the complexity of the test result rises and

introduces difficulty in interpreting the test result. It is even more impractical

when random test cases are involved. It is unlikely to derive high-level reasoning

to be applied to a random test case.

Differential testing alleviates the problems of test result evaluation [35]. It

involves multiple systems which have the same functionality, and compare the

result and behavior from those systems by providing them the same input. A

small set of test cases may not adequate enough to produce a visible difference.

Nevertheless, through a large number of automatically generated test cases,

differences can be exposed, which can be a sign of a software defect in any of the
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SUT involved.

3.3.2 Real-Case Examples

Differential testing is possible for a system that has multiple different implemen-

tations. A notable example is testing multiple implementations of compilers [35].

C and C++ language enjoy the public adoption of its standard, where several dif-

ferent implementations are available, such as GCC and LLVM. Many differential

fuzzing experiments on C-family compilers, and proposes different methods of

test case generations. A compiler is a mission-critical tool that requires thorough

testing and examination. Through differential testing, compiler implementations

can benefit the check-and-balance mechanism to identify possible bugs in one

another.

The Csmith differential testing tool for C compilers proposes a heuristic voting

technique to identify possible bugs [49]. The tool generates a test case, which is

a randomly crafted C source code, and send the source to multiple compilers to

produce executable programs. The tool then executes the resulting executables

and compares their output. From the collected result, the tool analyzes and

identifies a possible bug by detecting differences in the output. The compiler that

produces different output from the majority of the other compilers is considered to

be the faulty compiler. Hence, the majority of the compilers which produce equal

output become the oracle.

Figure 3.4. Differential testing against two different implementation, adapted
from [49]

Differential testing can also detect differences in hardware behavior. A

research proposed by Roberto Paleari et al. suggested that differential testing

can be used to identify possible differences in hardware behavior that can be
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exploited for malicious purposes [38]. The research uses the differences found in

machine behavior to detect the environment where the executable runs. From

this behavior, the executable can use it to identify the environment it runs, e.g.,

virtualized or bare-metal. This technique, which is called red-pills as a reference

to The Matrix movie, is used by malware to protect itself from dynamic analysis.

Roberto Paleari et al. research uses randomized machine instruction and

executes the instruction in separate execution environments [38]. The red-pill

candidate is detected when the same instruction yields different behaviors, such

as different exception state, register value, or memory value. Those different

behaviors are possible to be distinguishable from the perspective of the running

program. For such cases, the red-pills are found, and an executable can use them

to distinguish its execution environment.

3.4 Analyzing Wasm with Fuzzer

This section discusses the experiment this thesis aims by incorporating testing

techniques presented in this chapter. It provides the grounds and reasoning of

selecting techniques and experiment model, which influenced the design decision

of the experiment implementation discussed in the later chapter.

Possible Fuzzing Technique
Wasm specification is implemented in the JS engine, which is a mission-critical

system. Therefore, the JS engine itself must have been undergone thorough

testing, including fuzzing. However, we can explore the differential testing against

multiple JS engine implementations. Similar to the C programming language

that has multiple compilers, the JavaScript language is implemented by multiple

different JS engines. With this situation, it is possible to perform differential

testing against JS engines that implements the Wasm specification.

Targeting Specific Component
JS engine is a massive and monolithic system. Wasm implementation resides

within the JS engine itself, mixed with the rest of JavaScript infrastructure.

Therefore, it is essential to target the specific component related to Wasm for our

experiment. We need to isolate the component we are interested in minimizing the

convolution on the experiment process. The testing can be appropriately mapped

to an integration testing, in which we aim to target a specific functionality that

connects multiple components in the system.

We are interested in the full pipeline of Wasm program, from the compilation

stage to the execution stage. We want to observe the behavior of the compiled

Wasm program during the execution. Therefore, the experiment must include all

Wasm components related to this pipeline.

Building Test Cases
As discussed in Section 3.2.2, the random test case must be adequately designed

to target the desired component. Wasm program itself is in the binary format.
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Although we can throw random binary to the Wasm interface, it is not going to

yield any meaningful result to observe. Therefore, we need to craft the test case

to follow a proper Wasm semantics so that the test case can produce a desirable

result to analyze.

Since we aim to test the full Wasm pipeline, particularly the execution stage,

the crafted test case must be at least pass the compilation stage. Therefore, the

test case generator must be able to produce a valid compilable Wasm program.

Result Analysis and the Oracle
We are interested in observing the behavior of the JS engine for any random

Wasm program. From each test case, we observe the behavior of the Wasm engine

and collect the information. We then compare the observation between multiple

implementations to search for any possible different behavior.

At this point, only two major JS engine that can be involved in the differential

testing. Therefore, it is impossible to use voting heuristic as an oracle, as discussed

in the Csmith research [49]. For any difference found, we consider this as an

anomaly that we must investigate from both engine perspective. We must assume

that both engines have an equal probability of containing the defect.

The investigation includes reproducing the identified anomalous test case,

static analysis of the produced machine instruction, and dynamic analysis of the

JS engine execution.

48



Chapter 4

Fuzzing the WebAssembly

"Different browsers handle compiling WebAssembly differently. Some

browsers do a baseline compilation of WebAssembly before starting to

execute it, and others use a JIT. Either way, the WebAssembly starts off

much closer to machine code."

"What makes WebAssembly fast?"

Lin Clark - Mozilla [7]

It is necessary to design the testing system properly. A proper test system enables

to test to be performed accurately, which yields a valid and reasonable result.

This chapter aims to explain the developed test bench system to execute the

differential fuzz-testing on the WebAssembly implementation. It provides a

thorough design explanation and analysis, which becomes the basis of the testing

system development.

This chapter also presents various code examples necessary to explain the

internal of the test system, particularly for the JS engine instrumentation. The

JS engine instrumentation requires an in-depth inspection of the original source

code, as the engine in many parts is not documented. Hence, this chapter can

guides readers who are interested in performing a similar experiment to the JS

engine discussed in this thesis.

Section 4.1 preludes the system development by introducing the approach

used in the development. Section 4.2 discusses the general architecture design,

following a good software development practice. Section 4.3 presents the de-

velopment environment for system development, mainly to automate the build

process. Section 4.4 and Section 4.5 discusses the instrumentation of the Spider-

Monkey and the V8 JS engine for the experiment purposes thoroughly. Section

4.6 discusses the random Wasm program generator, which borrows the V8 imple-

mentation. Finally, Section 4.7 and Section 4.8 discusses the embedder program

and the control program which perform the actual experiment.
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4.1 Approach

The experiment aims to find a different behavior of Wasm implementations. The

SUTs of this experiment are the JS engine that implements the Wasm specifica-

tion. Every SUT needs to execute the same input in a controlled environment

to ensure the validity of the experiment. Accordingly, the experiment requires a

well-prepared infrastructure to conduct.

The testing expects the Wasm engine to accept a valid binary Wasm module.

The engine performs the compilation of the Wasm module and executes it using a

specified argument. The test is iterated over several times, and the testing tools

collect the observable behavior of the Wasm engine.

In order to maximize the efficiency of the testing process, the testing system

needs to craft a proper input binary Wasm. The main focus of the testing itself is

the behavior of the Wasm execution engine. Therefore, the test system needs to

ensure that every test case is a valid compilable Wasm module. Without a proper

module generator, the testing will be counterproductive as the randomized test

case will most - if not all - of the time produces an invalid Wasm module.

The test system also needs to isolate the component of the testing. Other

elements in the JS engine, such as JS parser and compiler, is out of the scope of

the experiment. The test system needs to minimize its interaction with the rest of

the JS component to get a more isolated and reproducible result. Hence, the test

system needs to bypass several JS pipeline to access and communicate with the

Wasm components directly.

Finally, the test needs to collect the behavior of the SUT. The experiment aims

to observe all observable behaviors of a Wasm program from the Wasm module

standpoint. Since Wasm itself is a limited and isolated architecture, Wasm pro-

gram can only observe limited information. At the moment, only memory, global

variables, and tables that can be observed internally. The Wasm Table, however, is

not modifiable from inside the Wasm program. Therefore, the experiment can as-

sume that no Wasm function can modify a Wasm Table entry. Another observable

side effect is the execution timing and the return value of the execution.

The test system must store the collected behavior for further analysis. It

needs to provide a structured database system to ease the analysis process.

Considering that the test involves a large number of tests, it is essential to

employ a relational database approach for the result storage.

4.2 Designing Fuzzer

4.2.1 Requirement Specification

The requirement specification for the fuzzer infrastructure can be derived from

the approach described in the previous section:
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§1 Develop a random test case generator to generate the input Wasm module

for fuzz-testing the Wasm engine

§1.1 Generates a consistent random test case for any configuration

§1.2 Always generates a valid Wasm module

§1.3 Isolated from the SUT

§2 Instrument the JS engine to execute Wasm program with minimal overhead

§2.1 Allow bypassing the JS script compiler to access Wasm infrastructure

§2.2 Allow behavior observation of the JS engine during the execution of

the Wasm module

§2.3 Enable access to the generated machine instruction for inspecting the

generated code

§3 Develop a shell program to embed the JS engine

§3.1 Embed and isolate the JS engine

§3.2 Provide a communication channel with the external program to inform

the result

§3.3 Enable an interactive session to support inspection and reproducing

test cases

§3.4 Single and unified interface for every tested JS engine

§4 Develop a program to control the testing pipeline

§4.1 Perform automatic test case generation and execution

§4.2 Collect and store the result of every test cases

§4.3 Isolate every test case execution

The subsequent sections in this chapter refer to a requirement item by its

requirement number.

4.2.2 Architecture Design

According to the requirement, the system requires three main components: a

Test Case Generator (§1), Shell Programs (§3), and a Control Program (§4). Each

component needs to be isolated from each other to minimize the side effect caused

by every component. The side effect may reduce the precision of the test. Conse-

quently, it needs to be minimized to produce an accurate observation of the SUT.

Figure 4.1 presents the overall architecture stack for the fuzzing test system.

The Control Program governs the entire testing infrastructure. It commu-

nicates with the Shell Programs and the Test Case Generator via a prepared

communication channel. The Control Program also relies on an IPC Support

Library to assist the interprocess communication. This component uses a JSON

library, which allows a structured text-based communication. Additionally, the

Control Program also uses a Database Library to store the test result data.
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Figure 4.1. Architecture stack for the fuzzing test system

The Shell Program embeds the instrumented JS engine libraries. The shell

isolates the JS engine and only accepts basic input commands to perform its

tasks. Since the experiment evaluates two different engines, the JS engine is

embedded into two different shell programs. The Shell Program also uses IPC

Support Libary to communicate the test result to the Control Program.

The JS engine libraries are instrumented to access the internal Wasm infras-

tructure from the Shell Program. The instrumentation, as defined in §2, becomes

an integral part of the JS engine library. The modification to the JS engine needs

to be as minimal as possible to minimize the impact of the instrumentation on the

entire JS engine. It is vital since the experiment demands the original behavior

of the engine instead of the modified one.

Finally, the Test Case Generator is built on top of the instrumented V8 Engine

Library. It will be explained further in Section 4.6.

4.2.3 Workflow

The test needs to be repeated to maximize the coverage of the test. Hence, the

system requires a well-designed workflow cycle to describe the testing process.

This cycle also describes the interconnection between testing system components.

This description provides a better high-level picture of the communication require-

ments. Figure 4.2 shows the workflow of the fuzzing test cycle.

The test cycle begins in the control program to trigger a new test case gen-

eration. The control program, as specified in §4, invokes the test case generator

to generate a new test case (1). The random program generator, specified in §1,

generates a new test case (2).

The control program starts a new shell program to perform the testing (3).

The shell program then consumes the generated test case, which consists of a

Wasm module and an initial state of memory content (4). The shell program

processes the test case and generates the output report containing the observed

behavior. Finally, the control program collects the output (5), and the cycle repeats.
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Figure 4.2. Workflow for the fuzzing process

This testing workflow creates a test circuit which performs the test auto-

matically without the test operator intervention. The test operator can start the

control program and begins the test cycle. After several test attempts, the test

operator can collect and analyze the result.

4.3 General Development Environment

4.3.1 Code Organization

A well-defined code organization is mandatory for a smooth software development

project. Its main principle is to separate different codes by their domain and

functionality to avoid convolution. Although organizing code can be done merely

through managing source code directory, a source control tool plays an essential

role in managing a large codebase. This test system uses the Git source control tool.

Moreover, this thesis, particularly this section, heavily uses Git terminologies.

However, it does not limit the reader to use other source control solutions to

implement the design presented here.

The importance of code organization became visible when dealing with a large

number of source codes involved in the project. The test system discussed in this

thesis incorporates two JS engines, which are major open-source projects. These

engines require customizations, and the test system depends on the customization.

Consequently, the engine source codes became an inseparable part of the entire

test system.

In order to reduce the complexity of managing the source code, the test system

incorporates the dependent JS engine source codes as the project submodule. The

JS engine source code is forked and maintained separately from each other. This

forked source code contains the modification made to the JS engine specifically for

the test system and the experiment. By maintaining the modified JS engine in the

forked repository, it can keep track of the original project and apply the update

through rebasing the modification to the newer version of the main project.

As described in Section 2.6.1, the V8 project requires an external dependency,
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called depot_tools, to build the project. This dependency is also added as a sub-

module. It avoids unnecessary decoupling and separate downloads, particularly

when the test system integrates the entire compilation process. Other dependen-

cies in the form of source codes are also included as subprojects. For this thesis

implementation, all subprojects are stored in the third-party folder of the main

project.

4.3.2 Build Automation

Build automation is necessary to reduce the time spent on configuring and com-

piling the program. A software project may contain a large number of source

files. Without build automation, the developers need to compile every file man-

ually. Moreover, an active development typically needs to recompile for every

change made to the code. It is particularly crucial in C and C++ development

where typically each source file compiles into separate object files before finally

linked into a final executable. By using build automation tools, the modified code

can be automatically identified and recompiled instead of recompiling the entire

source file. It saves much time compared to a non-automated build. Some notable

examples of build automation tools are Make and Ninja.

Table 4.1. Code organization for the test system project

Source
Folder

Content Description

third-party/v8 V8 Source Root source tree for V8 engine. Only
contains the JavaScript engine and its
dependencies.

third-party/
depot_tools

Google Depot
Tools

Google tools required to compile V8 engine.
Consists of Python scripts to generate build
script for Google project, in this case, V8.

third-party/
gecko-dev

Mozilla
Firefox Source

Root source tree for SpiderMonkey engine.
The project is integrated with the entire
Firefox browser code, but can be compiled
separately.

third-party/
wabt

WASM Binary
Tools

Collection of tools to assemble/dissamble
WASM using command line, as well as
other additional interesting tools.

third-party/
rapidjson

RapidJSON Header-only library to generate and parse
JSON text format. It is used to aid
interprocess communication between
components.

third-party/
quince &
third-party/
quince-sqlite

Quince ORM
Library

Object-Relational Library to simplify
database development. It is used to aid
storing the result information from each
test run.

src Fuzz Testing
Component
Sources

Source folder for tools that will be
developed for fuzzing.

wasm WASM Codes Hand-crafted or permanent WASM code
that will be used for testing.
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On top of build automation tools, there is a build generator tools. A build

generator does not perform the actual build. Instead, it generates a build script

to be processed by the build automation tools. Although one can build a build

automation script manually, a full-fledged build generator tool offers a rich set of

features to improve the software development process without the complexity of

writing a build script manually. For example, a build automation tool simplifies

the steps to add a new source code file in a project. The tool automatically

updates its build script when a new source file is introduced. Some popular build

generators include Autotools and CMake.

The test system developed for this experiment uses CMake. CMake allows

a build-script agnostic development, instead of sticking to a specific build au-

tomation system. CMake can generate several popular build automation script,

including Make, Ninja, Visual Studio Project, and XCode. It is also fairly popular

for C and C++ software development and cross-platform projects. CMake also

enables a build folder to be isolated from the source folder. It allows multiple

builds to exist on the same project without conflicting.

Since the test system also includes several dependent projects, the test system

build needs to include these projects in the build process. As mentioned in Section

2.6.1, V8 and SpiderMonkey have their own build script generator. Consequently,

the test system build generator must invoke their build generator to generates

the build script correctly. CMake provides a mechanism to invoke an external

command during the script generation process.

4.3.3 Building the JS Engine Projects

It is necessary to examine each JS engines build step before integrating it into

the entire test system build. Since both engines have their own build generator,

both of them have different sets of commands to trigger the build script gener-

ation. Moreover, the engines have configurable parameters that need to be set

accordingly to suit the experiment system.

The SpiderMonkey build generator uses a combination of shell and Python

script, which is located in the js/src/configure.in. As stated in Section 2.6.1,

although the SpiderMonkey project resides within the entire Gecko project, it

can be built independently without building the entire Gecko project. Hence,

this build generator script specifically generates the SpiderMonkey build and its

required dependency.

Several configurations need to be passed to the build generator. The configu-

ration can be supplied through the command-line argument when invoking the

build generator. The build needs to be configured to disable automated testing

to save build time. The jemalloc memory allocator also needs to be disabled as

it breaks the embedding from external programs. Without disabling the jemal-

loc, the embedder always crashes with Segmentation Fault signal during the
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embedding initialization. Finally, the debugging is enabled to allow inspecting

the internals through a debugger. Listing 4.1 presents the command to invoke

the SpiderMonkey build generator.

Listing 4.1. SpiderMonkey build generation script

cd gecko-dev/js/src
mkdir build_OPT.OBJ
cd build_OPT.OBJ
/bin/sh ../configure.in --enable-debug --disable-tests

--disable-gtest-in-build JS_STANDALONE --disable-jemalloc↪→

The V8 build generator employs a generator provided in the depot_tools

named gn. The command to invoke the generator is similar to the SpiderMonkey

generator. The build needs to disable the custom libc++ implementation. V8 uses

a non-default C++ Standard Library implementation, and it can cause a conflict

with the embedder, which usually compiles using the system default standard

library. Disabling this feature forces the V8 to use the system provided standard

library. Some features, such as disassembler and testing features are enabled.

The testing features itself is essential as it orders the build generator to include

the fuzzer components in the V8, which is used in the test system. More details

about these fuzzer components are discussed in Section 4.6.

Listing 4.2. V8 build generation script

cd v8/
V8_BUILD_PATH=out/build.x86
gn gen $V8_BUILD_PATH --args='target_cpu="x64" v8_target_cpu="x64"

v8_enable_disassembler=true v8_enable_v8_checks=true
v8_expose_symbols=true v8_optimized_debug=true is_component_build=true
use_custom_libcxx=false v8_enable_test_features=true'

↪→

↪→

↪→

The main difference between both build generators is the target build direc-

tory. SpiderMonkey generates the build script in the current working directory

where the generator is invoked. The generated build script automatically specify

the source folder relative to the working directory. On the other hand, V8 gener-

ates the build script relative to where the project is located. The gn tool requires a

target directory to be supplied, and this target directory is relative to the project

directory. This provision must be taken into account to ensure the build script is

correctly generated when building V8 outside of its project directory.

4.3.4 Integrating the Build

Integrating the JS engine build is essentially executing the build generator

command in the test system build generator. The previous section describes the

command to invoke the build generator for each JS engine. The test system

generator script must call these commands using execute_process command in

CMake script.
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The execute_process command in CMake starts an external process on

behalf of the generator script. The build script can use this functionality to trigger

external tools during the build script generation. It includes generating a build

script for an external project. The build script can also configure the working

directory and output channel of the command. Setting the working directory is

important since both build generator behaves according to the working directory

where they are executed.

After invoking the external build generator, the test system build generator

specifies the target object to build for each JS engine. Both engines use different

build tools, which also have to be invoked differently and separately. CMake

provides add_custom_target command to add a custom build step. This custom

target can invoke external command during the actual build. Through this

functionality, the JS engine build can be automatically started via the test system

build script.

To isolate the build, all build artifacts, including generated object files, in-

termediary files, and executables, must reside under the same location. Intu-

itively, the JS engines build artifacts must be stored in the subfolder under

the build folder. Consequently, the working directory for execute_process and

add_custom_target must be specified correctly to the respective JS engine build

folder. It is relatively simple for SpiderMonkey since the build generator generates

the build script in the working directory. Listing 4.3 shows the CMake script for

SpiderMonkey build integration.

Listing 4.3. SpiderMonkey build integration (CMakeLists.txt)

# Make new directory for the build artifact
file(MAKE_DIRECTORY ${CMAKE_BINARY_DIR}/third-party/spidermonkey)

# Generate the build script in the build directory
execute_process(COMMAND /bin/sh

${CMAKE_SOURCE_DIR}/third-party/gecko-dev/js/src/configure.in
--enable-debug --disable-tests --disable-gtest-in-build JS_STANDALONE
--disable-jemalloc

↪→

↪→

↪→

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/third-party/spidermonkey
RESULT_VARIABLE RES_MOZ_GEN
OUTPUT_FILE "/proc/self/fd/0")

# Add target to SpiderMonkey: run the make inside the SM's build dir
add_custom_target(build-moz make -j$$(nproc)

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/third-party/spidermonkey
USES_TERMINAL)

One particular behavior of SpiderMonkey build is that it generates a shared

library with a version numbering in its file name. In order to ensure the test

system can link appropriately to the library, the build script must also capture the

correct shared library name. SpiderMonkey build generator generates additional

metadata, which provides the file name for this purpose. Listing 4.4 shows the

CMake script to obtain this information.
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Listing 4.4. Getting SpiderMonkey version (CMakeLists.txt)

# Read SpiderMonkey version
file(READ ${CMAKE_BINARY_DIR}/third-party/spidermonkey/binaries.json

MOZ_BINARIES_JSON)↪→

string(REGEX MATCHALL "libmozjs-([A-Za-z0-9]+)\\.so" MOZ_VERSIONS
${MOZ_BINARIES_JSON})↪→

list(GET MOZ_VERSIONS 0 MOZ_VERSION)
string(REGEX REPLACE "libmozjs-([A-Za-z0-9]+)\\.so" "\\1" MOZ_VERSION

${MOZ_VERSION})↪→

message(INFO "Moz Version: ${MOZ_VERSION}")

While for the V8 build integration, the build generator must compute the

relative path of the build directory. The address is relative to the V8 project

directory. The build generator script is aided by a simple Python command to

produce a relative path from a given absolute path. The computed path is then

passed to the V8 build generator to generate the build script. Listing 4.5 shows

the V8 build integration in the test system CMake script.

Listing 4.5. V8 build integration (CMakeLists.txt)

# Compute the target build directory
execute_process(COMMAND python -c "import os.path; print

os.path.relpath(\"${CMAKE_BINARY_DIR}/third-party/v8\",
\"${CMAKE_SOURCE_DIR}/third-party/v8\")"

↪→

↪→

OUTPUT_VARIABLE V8_BUILD_PATH
COMMAND_ECHO STDOUT
OUTPUT_STRIP_TRAILING_WHITESPACE

)

# Generate the build script in the source directory
execute_process(COMMAND ${CMAKE_SOURCE_DIR}/third-party/depot_tools/gn gen

${V8_BUILD_PATH} --args=${V8_GEN_ARGS}↪→

WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}/third-party/v8
COMMAND_ECHO STDOUT
RESULT_VARIABLE RES_MOZ_GEN
OUTPUT_FILE "/proc/self/fd/0")

# Add target to V8: run the ninja inside the V8's build dir
add_custom_target(build-v8 ninja

WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/third-party/v8
DEPENDS build-moz # Ordering the build
USES_TERMINAL)

Other than the JS engines, the build script also needs to build the dependen-

cies. The WABT project already uses CMake, which can be included directly in

the test system CMake script. The original Quince library does not use a proper

build system. Hence, the project is forked to provide a CMake build script, which

then can be integrated with the rest of the project.
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4.4 Instrumenting the SpiderMonkey

4.4.1 General Analysis

Before the engine can be instrumented for the experiment, we need to perform a

thorough analysis of the engine itself. The engine does not provide direct access

to Wasm infrastructure from its embedding API. Therefore, we need to search

and expose the internal API so that it can be accessible from the embedder side.

SpiderMonkey declares Wasm related functions under the js::wasm names-

pace. The source code for the namespace also resides under the js/wasm directory.

The first functionality that needs to be identified is the module compilation func-

tion.

It is reasonably apparent that the compilation functionality is declared in

WasmCompile.h header file. It declares the CompileBuffer function

[WasmCompile.h:103], which processes a Wasm binary to produce a Module repre-

sentation. As already discussed in Section 2.6.4, the Wasm compilation process

begins by compiling the module binary and stored in the internal representation

for further operation. This CompileBuffer function performs precisely the first

step in Wasm compilation, which became our first entry point for analyzing the

internal engine operation.

The second step we need to perform is searching for the user of this function.

Through the use of an Integrated Development Environment (IDE), we can find

all references to this function. We identified several references to this function:

the native function that is exposed through JS API; and the fuzzing component in

SpiderMonkey. The particularly interesting one is the js::wasm::Eval function

[WasmJS.cpp:619]. This function is marked as testing and fuzzing support function

and process the entire workflow from the compilation to the instantiation of a

Wasm module. Hence, this entire function definition satisfies the requirement

§2.1 for the test system.

Another aspect to consider is to instantiate the Wasm module properly. The

instantiation process requires the imported element to be supplied. As discussed

in Section 2.6.4, SpiderMonkey uses the ImportValues object to pass the imported

elements. It is defined in the WasmModule.h header [WasmModule.h:42]. It encapsu-

lates all import types as the member field of the object. Imported functions, tables,

and global variables are stored in the vector of pointers. The imported elements

must be ordered according to its index in the Wasm module. The memory import,

on the other hand, is pointed using a single pointer instead. It is adhering to the

current Wasm specification, where only one memory declaration can appear in a

Wasm module.

For the global variables, the import can be either supplied through a

WasmGlobalObject object, which is stored in the globalObjs vector, or via a Val
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object, which is stored in the globalValues vector. The latter is a simplification of

initializing global import using a value constant. The Wasm internal API auto-

matically populates the respective WasmGlobalObject during the instantiation if

it is not supplied by the caller [WasmModule.cpp:905].

The test system also needs access to the Wasm module metadata, such as

function names. It is required to develop a reflection-like API to inspect the

content of a Wasm module as required by requirement §2.3. The Module object

returned by the CompileBuffer function5 contains a reference to a metadata object

[WasmModule.h:174]. This metadata object, called MetadataTier [WasmCode.h:420],

contains information about exported functions and the location of the functions

in a module. The function location information is stored in a vector of CodeRange

and stores important information about the compiled instruction, including the

function entry point.

The funcNormalEntry accessor function of the CodeRange object provides the

information of the function entry point [WasmTypes.h:2463]. Moreover, the end

accessor function of the same object provides the end position of the function

[WasmTypes.h:2405]. These locations are relative locations, which is an offset of

the code section store in the memory. The actual address of this code section can

be obtained from the ModuleSegment object, which can also be obtained from the

Module object [WasmModule.h:172]. The ModuleSegment object, which inherits the

CodeSegment class, stores the base address of the instruction address [WasmCode.

h:142]. By computing the base address and the entry point obtained previously,

we can obtain the actual memory location of the compiled instruction. This

mechanism is essential to allow dumping and inspecting the compiled Wasm

program for the experiment result analysis.

4.4.2 Introducing a New API Header

The instrumentation requires a public API header to allow the embedder to access

the customized functions. The SpiderMonkey provides jsapi.h, which is the main

header file to embed the engine. It is possible to extend the existing header with

the new customized functions. However, it may introduce a complexity, especially

during the update of the code from the original repository. It is a good practice to

separate the instrumented and customized function into a separate header and

source file. Therefore, the customization remains isolated and separately tracked.

The test system introduces a new header file and a source file to contain the

customized function. The file is located in the source root of the SpiderMonkey

project, the same location as the original jsapi.h file. Then, the new header and

source must be specified in the build generator script, the moz.build file. The

header file is added to the array of EXPORTS variable, while the source file is added

5The CompileBuffer returns the reference to the Module object inside a shared pointer object
(RefPtr/SharedModule). The object members can be accessed through dereference operator, similar to
dereferencing a pointer.
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to the array of UNIFIED_SOURCES. We give the header and source file name as

jsapi-ext.h and jsapi-ext.cc, respectively.

4.4.3 Designing API for the Instrumented Function

Exposing the internal data structure to the embedder needs to be avoided at all

costs since the definition is not visible from the embedder side. Therefore, it is

necessary to define a new custom data structure to maintain the information

between the JS engine side and the embedder side. It abstracts the information

and the operation that is introduced by the customized function developed for this

experiment.

The test system embedder requires an abstraction of a Wasm module. It

can be implemented by encapsulating the Module object inside an opaque data

structure that is only defined from the JS engine internal code. In C++, it is

achieved through Pointer to Implementation (pImpl) idiom [45]. This idiom breaks

the compile-time dependency between different compilation units. Through this

idiom, the public header does not require the definition of internal data structures

to compile correctly.

Listing 4.6. CompiledInstruction definition (jsapi-ext.h)

class CompiledInstructions {
private:
class Internal;
std::unique_ptr<Internal> internal;
std::list<Function> functions_;
std::map<std::string, WasmType> globals_;
std::map<std::string, std::reference_wrapper<Function>> functionsByName;

public:
CompiledInstructions(JSContext*);
~CompiledInstructions();

std::list<Function> const& Functions() {
return functions_;

}

std::map<std::string, WasmType> const& Globals() {
return globals_;

}

bool InstantiateWasm(JSContext* cx);
void NewMemoryImport(JSContext* cx);
void NewGlobalImport(JSContext* cx);

void SetGlobalImport(JSContext* cx, std::string const& name,
WasmGlobalArg value);

auto GetGlobalImport(JSContext* cx, std::string const& name)
-> std::pair<WasmType, WasmGlobalArg>;

WasmMemoryRef GetWasmMemory();
};
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Listing 4.6 shows the definition for CompiledInstructions. This class en-

capsulates the compiled Wasm module returned from the compilation function.

It provides mechanisms to inspect the compiled Wasm module, specifically the

exported functions and global variables. The CompiledInstruction object also

provides the function to instantiate the module. Since the instrumentation is

designed only for the testing purpose, it does not support multiple instantiations

of a Wasm module. The module can only be instantiated once to simplify the

instrumentation code complexity.

In addition to the instantiation function, the CompiledInstruction object

also tracks and maintains the imported memory and global variables. As specified

in requirement §2.2, the embedder needs a mechanism to observe the behavior

of the JS engine from the perspective of a Wasm program. Hence, the embedder

needs direct access to observe the Wasm memory and global variables to monitor

changes in each testing sequence.

Listing 4.7. Supporting data types definition (jsapi-ext.h)

enum class WasmType {
Void,
I32,
I64,
F32,
F64

};

struct WasmMemoryRef {
uint8_t* buffer;
size_t length;

};

union WasmGlobalArg {
uint32_t i32;
uint64_t i64;
float f32;
double f64;

};

The instrumentation also defines several support data types to represent

Wasm types, Wasm memory, and Wasm values. Listing 4.7 shows the definition of

the support data types. An enum class type is defined to represent a Wasm type.

By default, the SpiderMonkey public header does not expose the definition for

Wasm types. Consequently, a new data type needs to be defined to transfer the

information to the embedder side.

The Wasm memory is also encapsulated in a POD6 type. Wasm memory

reference is generally a regular pointer to a memory location. In order to ensure

safe memory access, the API must retain and enforce the length information. This

encapsulation also simplifies the accessor function for Wasm memory. Finally,

the WasmGlobalArg union handles the value transmission from and to global

6Plain Old Data, which is a data type which only consists of fields without member function.
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variables. This type uses a union type to minimize the memory footprint for

a simple polymorphic object definition. Since the SpiderMonkey uses C++14

standards, a discriminated union type such as std::variant is not yet available

to be used in the code.

The module representation also contains module function representation.

The Function object encapsulates a Wasm function. It contains the metadata,

cached instruction binary, and a function to invoke the Wasm function. Listing

4.8 shows the definition of the Function object. A vector of WasmType stores the

function parameters. The test system uses this information to prepare a crafted

argument for the fuzzing process. The return type is also stored as WasmType for

the same purpose.

Listing 4.8. Function object definition (jsapi-ext.h)

struct Function {
std::string name;
std::vector<uint8_t> instructions;
bool exported;
uint32_t index;
CompiledInstructions* parent;
std::vector<WasmType> parameters;
WasmType returnType;

std::tuple<bool, uint64_t> Invoke(JSContext* cs, std::vector<JS::Value>&
argsStack);↪→

};

Another function to expose is the Wasm compile function, which produces

the CompiledInstruction object. Additionally, the instrumented API also needs

to expose a function to create and obtain a BigInteger value. For some reason,

the SpiderMonkey embedder API does not provide a function to set and get

BigInteger value. Hence, it is necessary to expose this function to allow utilizing

64-bit integers with the Wasm function.

Listing 4.9. Static function declarations (jsapi-ext.h)

extern std::unique_ptr<CompiledInstructions> CompileWasmBytes(JSContext* cs,
uint8_t const* arr, size_t size);↪→

extern JS::Value CreateBigIntValue(JSContext* cs, uint64_t val);

extern uint64_t GetBigIntValue(JS::Value val);

The Internal object used in the pImpl idiom is defined in jsapi-ext.cc source

file. The definition consists of references to every Wasm internal objects. It

includes the instance object, module object, Wasm memory object, and Wasm

global objects. This Internal object is used in every instrumented functionality

developed for the experiment. Listing 4.10 shows the definition of the Internal

object.
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Listing 4.10. Internal object declarations (jsapi-ext.cc)

struct GlobalEntry {
js::ext::WasmType type;
js::WasmGlobalObject* global_object;

};

class CompiledInstructions::Internal {
js::RootedWasmInstanceObject instance;
js::wasm::SharedModule module;
js::WasmMemoryObject* wasm_memory { nullptr };
std::map<std::string, GlobalEntry> wasm_global_list;
js::WasmGlobalObjectVector global_vector;
bool global_import_processed { false };

public:
Internal(JSContext* cx) : instance(cx) { }

};

4.4.4 Wasm Module Compilation Function

As outlined in Section 4.4.1, the compilation function copies the implementation

of the Eval function. In addition to that, the function also collects the metadata

information from the compiled module to provide it to the embedder. The metadata

information is cached in the public data structure, as described in Section 4.4.3.

Collecting the metadata information, as explained in Section 4.4.1, uses

the information provided by the MetadataTier object. It contains the collection

of CodeRange object, which can be iterated to obtain every declared function in

the Wasm module. Listing 4.11 shows the snippet of the iteration to obtain the

compiled function data.

Listing 4.11. Code snippet to iterate Wasm functions (jsapi-ext.cc)

// Returned CompiledInstruction object
auto retObj = std::make_unique<js::ext::CompiledInstructions>(cx);

// Get all required internal data structures
auto& wasmCode = module->code();
auto& codeTierMeta = wasmCode.metadata(js::wasm::Tier::Optimized);
auto& codesegment = wasmCode.segment(js::wasm::Tier::Optimized);
auto& moduleExports = module->exports();
auto baseaddress = codesegment.base();
auto& funcExports = codeTierMeta.funcExports;

for(auto& codeRange : codeTierMeta.codeRanges) {
if(codeRange.isFunction()) {
auto& dumpedFunction = retObj->functions_.emplace_back();
dumpedFunction.parent = retObj.get();
dumpedFunction.index = codeRange.funcIndex();
// Get instruction bytes
// Get function names
// Get function signatures

}
}

From the iteration, the function can obtain the actual machine instruction

bytes by accessing the information inside the CodeRange. After getting the memory
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address where the instruction is located, the function can perform a simple buffer

copy to the cached instruction bytes in the CompiledInstruction object. Listing

4.12 shows the snippet to copy the instruction bytes.

Listing 4.12. Getting the compiled instruction bytes (jsapi-ext.cc)

auto codeBegin = baseaddress + codeRange.funcNormalEntry();
auto codeEnd = baseaddress + codeRange.end();
dumpedFunction.instructions.insert(dumpedFunction.instructions.end(),

codeBegin, codeEnd);↪→

Function names are stored in a different location from the metadata infor-

mation. It is stored in the Export object, which is managed on a different list.

The function needs to search the list of exported elements and match them by its

function index. The matched Export object contains the function name, which

can be copied to the instrumentation cache. Listing 4.13 shows the sinppet for

obtaining the function name.

Listing 4.13. Code snippet to obtain function name (jsapi-ext.cc)

auto funcExport =
std::find_if(moduleExports.begin(), moduleExports.end(),

[idx = codeRange.funcIndex()] (Export const& a) { return
a.kind() == DefinitionKind::Function && a.funcIndex() ==
idx; });

↪→

↪→

if(funcExport != moduleExports.end()) {
dumpedFunction.exported = true;
dumpedFunction.name = funcExport->fieldName();
retObj->functionsByName.emplace(dumpedFunction.name,

std::ref(dumpedFunction));↪→

}

The function signature, which consists of parameter types and return type, is

stored inside the FuncExport list. Similar to obtaining the function names, the

FuncExport list must be searched manually by matching its function index. The

found object contains the parameter and return type information, which can be

stored in the instrumentation data structure. Listing 4.14 shows the snippet of

getting the function signature.

4.4.5 Wasm Memory and Global Variable Accessors

SpiderMonkey encapsulates memory and global variable in internal objects. It is

possible to track these objects to allow behavior observation of Wasm execution

towards the memory and global variable. Although it is possible to obtain memory

and global variable objects for every Wasm module, it is easier to use the Wasm

import feature.

Wasm import provides a complete set of API to supply memory and global vari-

able object explicitly to a Wasm instance. Through this API, the instrumentation

does not have to modify the internal Wasm data structure to expose the memory
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Listing 4.14. Code snippet to obtain function signature (jsapi-ext.cc)

auto funcExportMeta =
std::find_if(funcExports.begin(), funcExports.end(),

[idx = codeRange.funcIndex()] (FuncExport const& a) { return
a.funcIndex() == idx; });↪→

if(funcExportMeta != funcExports.end()) {
FuncType const& funcType = funcExportMeta->funcType();
// Get Return Type information
decltype(auto) resultTypes = funcType.results();
if(resultTypes.empty()) {
dumpedFunction.returnType = WasmType::Void;

} else {
// Only take the first one
dumpedFunction.returnType = ValTypeToExtType(resultTypes[0].kind());

}

// Get parameters
for(decltype(auto) kind : funcType.args()) {
dumpedFunction.parameters

.push_back(ValTypeToExtType(kind.kind()));
}

}

and global variable object. Moreover, it enables the test system to initialize the

environment and observe the change accordingly.

The first instrumentation required is memory and global variable object

instantiation. We can find some code example inside the engine which describe

the process of instantiating the memory object. We previously identified the class

name for the memory object as WasmMemoryObject. This class provides a static

method create, which instantiates the object by supplying a memory buffer.

Intuitively, we look for any reference that uses this function to understand

the proper way to use it. We identified that the instantiateMemory function in

Module class uses the function to prepare the memory object if it is absent during

the module instantiation process. From this code, we can craft the instrumented

function to instantiate a memory object explicitly. Listing 4.15 shows the function

that implements this mechanism.

The raw buffer of the memory is accessible by using the accessor func-

tion provided by WasmMemoryObject. Listing 4.16 shows the implementation of

GetWasmMemory function, which returns the raw memory pointer and its length.

The raw buffer can be modified directly, and the changes automatically reflected

in the Wasm realm.

Global variable object instantiation is more complex than the memory object

since it involves multiple items. The instantiation function needs to iterate the

import list and instantiate a global variable object for each global import. The

module metadata also provides the import list, similar to the export list used

to obtain exported function information. Listing 4.17 displays the main loop for

instantiating global import.
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Listing 4.15. Code snippet to obtain function signature (jsapi-ext.cc)

void CompiledInstructions::NewMemoryImport(JSContext* cx) {
// Get the memory size requirement from metadata
const wasm::Metadata& metadata = this->internal->module->metadata();
uint32_t declaredMin = metadata.minMemoryLength;
mozilla::Maybe<uint32_t> declaredMax = metadata.maxMemoryLength;

// Define te memory limit and instantiate the buffer object
RootedArrayBufferObjectMaybeShared buffer(cx);
wasm::Limits l(declaredMin, declaredMax, wasm::Shareable::False);
if (!CreateWasmBuffer(cx, l, &buffer)) {
std::cerr << "Error CreateWasmBuffer\n";
return;

}

// Build the WasmMemoryObject
RootedObject proto(cx,

&cx->global()->getPrototype(JSProto_WasmMemory).toObject());↪→

this->internal->wasm_memory = WasmMemoryObject::create(cx, buffer, proto);
}

Listing 4.16. Code snippet to get memory buffer (jsapi-ext.cc)

WasmMemoryRef CompiledInstructions::GetWasmMemory() {
if(this->internal->wasm_memory == nullptr ) {
return { nullptr };

}
auto data = this->internal->wasm_memory->buffer().dataPointerEither();
return { data.unwrap(), this->internal->wasm_memory->volatileMemoryLength()

};↪→

}

Listing 4.17. Iterating the global variable import list (jsapi-ext.cc)

void CompiledInstructions::NewGlobalImport(JSContext* cx) {
// Process only once
if(this->internal->global_import_processed)
return;

this->internal->global_import_processed = true;

// Obtain the metadata
auto& moduleImports = this->internal->module->imports();
const wasm::Metadata& metadata = this->internal->module->metadata();
const wasm::GlobalDescVector& globals = metadata.globals;

uint32_t globalIndex = 0;
for(js::wasm::Import const& importEntry : moduleImports) {
if(importEntry.kind == js::wasm::DefinitionKind::Global) {
// Instantiate global variable object

}
}

}

For each global variable import, a new global variable instance must be

instantiated. The global variable instance must be stored in a vector, ordered

by its index. It is necessary because SpiderMonkey enforces the strict ordering

of the items during the instantiation of the module. Besides, the instrumented

function also stores the instantiated global object in a key-based collection for
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easy retrieval by the embedder. Listing 4.18 presents the instantiation of a global

variable object for each iteration in Listing 4.17.

Listing 4.18. Instantiating the global variable object for import (jsapi-ext.cc)

// The iteration of import orders the index value
uint32_t this_index = globalIndex++;

// Get global description
wasm::GlobalDesc const& this_desc = globals[this_index];
wasm::ValType this_type = this_desc.type();

// Create initial value based on type(source: WasmJS.cpp:550-557)
wasm::RootedVal val(cx);
val.set(wasm::Val(this_type));

// Create WasmGlobalObject with the specified global type
RootedObject proto(cx);
proto = GlobalObject::getOrCreatePrototype(cx, JSProto_WasmGlobal);
WasmGlobalObject* this_global = WasmGlobalObject::create(cx, val,

this_desc.isMutable(), proto);↪→

// Store in WasmGlobalObjectVector based on its index
if (this->internal->global_vector.length() <= this_index &&

!this->internal->global_vector.resize(this_index + 1)) {↪→

ReportOutOfMemory(cx);
return;

}

// Store internally
this->internal->global_vector[this_index] = this_global;
this->internal->wasm_global_list.emplace(

std::string{importEntry.field.get()},
GlobalEntry {ValTypeToExtType(this_type.kind()), this_global});

this->globals_.emplace(std::string{importEntry.field.get()},
ValTypeToExtType(this_type.kind()));↪→

The global variable object stores its value in a Val object. The object is

polymorphic internally, and stores all types of Wasm value. It provides accessor

and mutator for every Wasm type and must be called according to the actual value

type it stores. Since our internal data also stores the Wasm type, the function can

use a switch structure to pick the correct value to obtain or supply. Listing 4.19

and 4.20 shows the implementation of global value setter and getter.

The setter function accepts the GlobalWasmArg union declared in the instru-

mented API. The function assumes the union is storing the value according to the

global type. It discriminates the union value by the global type information stored

in the internal data structure. If the caller supplies a mismatched value, the

behavior is undefined according to the C++ standard. The Val object constructor

is called according to the argument type passed to its constructor, which finally is

passed to the global object via setVal function.

The instrumented getter function selects the appropriate getter function

of the Val object based on the global types. It then stores the value to the

GlobalWasmArg union, which then passed to the function return value. Since the
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Listing 4.19. Global value setter implementation (jsapi-ext.cc)

void CompiledInstructions::SetGlobalImport(JSContext* cx, std::string const&
name, WasmGlobalArg value) {↪→

auto& global_list = this->internal->wasm_global_list;
auto global_iter = global_list.find(name);
if(global_iter != global_list.end()) {
using E = js::ext::WasmType;
GlobalEntry& global_ = global_iter->second;
wasm::RootedVal val(cx);

switch(global_.type) {
case E::I32: val.set(wasm::Val(value.i32)); break;
case E::I64: val.set(wasm::Val(value.i64)); break;
case E::F32: val.set(wasm::Val(value.f32)); break;
case E::F64: val.set(wasm::Val(value.f64)); break;
case E::Void: MOZ_CRASH();

}
global_.global_object->setVal(cx, val);

}
}

Val object may be tracked by the GC, accessing the Val object stored inside the

global variable object must use the Rooted container. RootedVal, the specialization

of Rooted container for Val object, holds the reference to the Val object owned by

the global variable object. The value then can be safely accessed from our getter

function.

Listing 4.20. Global value getter implementation (jsapi-ext.cc)

auto CompiledInstructions::GetGlobalImport(JSContext* cx, std::string const&
name)↪→

-> std::pair<WasmType, WasmGlobalArg> {
auto& global_list = this->internal->wasm_global_list;
auto global_iter = global_list.find(name);
if(global_iter != global_list.end()) {
GlobalEntry& global_ = global_iter->second;
wasm::RootedVal val(cx);
global_.global_object->val(&val);

WasmGlobalArg value;
switch(global_.type) {
case WasmType::I32: value.i32 = val.get().i32(); break;
case WasmType::I64: value.i64 = val.get().i64(); break;
case WasmType::F32: value.f32 = val.get().f32(); break;
case WasmType::F64: value.f64 = val.get().f64(); break;
case WasmType::Void: MOZ_CRASH();

}
return {global_.type, value};

} else {
return {WasmType::Void, {}};

}
}
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4.4.6 Wasm Function Invoker

As mentioned in Section 2.6.4, SpiderMonkey provides access to call exported

functions through its instance object. The function, which is named callExport

, accepts the function index and the array of the arguments encapsulated in

CallArgs object. SpiderMonkey defines a specific convention on the calling argu-

ment to be passed via the CallArgs object.

The CallArgs object originates from an array of Value objects. The CallArgs

object does not specify the kind of allocation types for the array. Therefore, a

heap-based array, such as std::vector, can be used to store the array. It is

also preferable to use dynamically allocated and managed array because the

argument count for every function call may be different. The CallArgsFromVp

function encapsulates the raw array of Value pointer to the CallArgs object, which

can then be passed to the callExport function. Listing 4.21 shows the complete

implementation of the Invoke function. Note that the function also tracks the

elapsed time of the function execution, which is one of the behavior observed by

the experiment.

Listing 4.21. Implementation of the Invoke function (jsapi-ext.cc)

auto CompiledInstructions::Function::Invoke(JSContext* cs,
std::vector<JS::Value>& argsStack)↪→

-> std::tuple<bool, uint64_t> {
// Uninstantiated module
if(parent->internal->instance.get() == nullptr)
return {false, 0};

auto& moduleInstance = parent->internal->instance;
js::wasm::Instance& instance = moduleInstance->instance();

// Build CallArgs
auto callargs = JS::CallArgsFromVp(argsStack.size(), argsStack.data());

// Call
std::chrono::steady_clock::time_point start_time =

std::chrono::steady_clock::now();↪→

bool res = instance.callExport(cs, this->index, callargs);
std::chrono::steady_clock::time_point end_time =

std::chrono::steady_clock::now();↪→

uint64_t elapsed =
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time -
start_time).count();

↪→

↪→

// true if call is successful, false otherwise
return {res, elapsed};

}

Naturally, the array contains the function argument according to the function

parameter order. However, the array also needs to contain a space for the function

return value. The first element of the array is reserved for this purpose and must

be initialized with an empty Value object. The second element of the array is a

reserved space and must also be initialized with an empty Value. SpiderMonkey

uses this second element to indicate several internal JS functions, such as the
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constructor function of a JS object. The actual function arguments begin at the

third element onwards. Listing 4.22 shows the proper steps to prepare the vector

of Value objects before it is passed to the Invoke function.

Listing 4.22. Using the Invoke function (runner-spidermonkey.cpp)

std::vector<JS::Value> callStack;
callStack.emplace_back(); // Return value
callStack.emplace_back(); // MAGIC (empty)
// This function puts the arguments to the callStack vector
// It will be explained in later section
MarshallArgs(callStack, args);
auto [invokeRes, elapsed] = (*compiled_wasm)[name]->Invoke(context,

callStack);↪→

4.5 Instrumenting the V8

4.5.1 General Analysis

Similar to the SpiderMonkey, we need to analyze the engine to identify the

internal Wasm infrastructure. V8 also isolates all Wasm infrastructure under a

single directory, which makes code examination easier. V8 also groups the Wasm

infrastructure under the same v8::internal::wasm namespace.

The examination begins by searching the compilation function. V8 provides

a module-compiler.h header, which the CompileToNativeModule function resides

[module-compiler.h:42]. This function has complex parameters, which suggests

that this function is not intended to be directly called to compile a binary Wasm

module. The search continues by finding the references to this function. We

finally reach the WasmEngine class, which has SyncCompile function [wasm-engine

.cc:464].

The SyncCompile function uses the CompileToNativeModule function in its

process. The SyncCompile function itself accepts more simple parameters com-

pared to the CompileToNativeModule function. These parameters are are the

Isolate object, a Wasm feature configuration, error notifier, and the module bytes.

The function returns a WasmModuleObject, which obviously, a representation of

a compiled Wasm module. Therefore, we can conclude that this function is the

endpoint for other codes to compile a binary Wasm module.

From the SyncCompile function, we continue the search to find an example of

its uses. The function is referred to in the wasm-js.cc file. It contains the native

implementation of the constructor for WebAssembly.Module JS object [wasm-js.cc

:637]. This function is specifically designed to accept invocation from the JS realm,

as indicated by its parameter. It is more difficult to attach to this function as

the embedder must craft the proper arguments for this function. The argument

structure is specified according to the JS to Native calling convention defined in

the V8 engine. Therefore, it is more reasonable to take some portion of its code
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that is essential for the Wasm module compilation.

From the code in wasm-js.cc file, it is apparent that the Isolate object provides

the WasmEngine object [wasm-js.cc:668]. It implies that any part of the program

that has access to an Isolate object can also access the SyncCompile function. We

also identified the proper steps to prepare the raw binary data to be passed to the

SyncCompile function. It only involves a simple raw buffer copy, which suggests

that a simple heap-based array can also be used for this purpose.

We also identified the instantiate steps in the wasm-js.cc file. The instantia-

tion process also involves the WasmEngine object, which provides the

SyncInstantiate function [wasm-js.cc:757]. WasmEngine object provides syn-

chronous and asynchronous functions for the module instantiation. For the

testing system, we must use the synchronous function because the test workflow

itself is executed in a single-threaded environment.

The next element to search is the memory and global variable represen-

tation. The wasm-object.h header contains all related header to Wasm ele-

ment representation. It includes WasmMemoryObject [wasm-objects.h:282] and

WasmGlobalObject [wasm-objects.h:320], which is the internal representation of

the JS WebAssembly.Memory and WebAssembly.Global object, respectively. Both

classes provide a factory function to instantiate the object that can be used in the

instrumented function.

Unlike in SpiderMonkey, the module metadata information is stored directly

in the module object. The metadata is available directly in the WasmModule object

returned by the compilation function. The WasmModule object stores the export and

import list in its export_table and import_table members [wasm-module.h:333].

WasmModule object also stores the function information, including its signature.

The signature is accessible by accessing the FunctionSig object through the

WasmFunction object [wasm-objects.h:54]. The WasmFunction object is stored in

the WasmModule in its functions field, which is ordered by the function index.

Accessing the machine instruction in V8 is also more straightforward than

in SpiderMonkey. The machine instruction is accessible through the WasmCode

object [wasm-code-manager.h:114]. This object can be obtained from NativeModule

object, which the Wasm module object provides [wasm-objects.h:135]. WasmCode

object is unique per Wasm function and can be retrieved by function index from

the NativeModule’s GetCode function [wasm-code-manager.h:497].

4.5.2 Introducing a New API Header

Similar to the SpiderMonkey, it is a better approach to separate the instrumented

source from the original code. Hence, we need to introduce a new public header

file and a new source file to contain the implementation.

The public header must be stored in the include folder, along with the origi-

nal v8.h header. This include folder contains all publicly accessible header files
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required by embedders. In order to add the new source file to the compilation

chain, we need to add the new source file in the sources list in the BUILD.gn file.

Introducing a new source file is straightforward. However, since the instrumenta-

tion also requires the fuzzer component from V8 to be exposed, it requires more

complicated build script modification. Therefore, this build script configuration is

covered later in Section 4.6.3.

4.5.3 Designing API for the Instrumented Function

The API design for the V8 instrumentation is similar to the SpiderMonkey coun-

terpart. We use the pImpl idiom to break compile-time dependency between

internal and external code. We create the CompiledWasm class to encapsulate the

compiled Wasm module. The instance of this class stores the function and global

variables information. Internally, the CompiledWasm object stores the reference

to the respective Wasm objects, which are used for all Wasm operations. Listing

4.23 presents the designed CompiledWasm class.

Listing 4.23. The CompiledWasm definition (v8-ext.h)

class CompiledWasm {
struct Internal;
std::unique_ptr<Internal> internal;
std::vector<CompiledWasmFunction> functions;
std::map<std::string, size_t> function_names;
std::map<std::string, WasmType> globals;

public:
CompiledWasm();
~CompiledWasm()

std::vector<CompiledWasmFunction> const& Functions() {
return functions;

}
std::map<std::string, WasmType> const& Globals() {
return globals;

}

bool InstantiateWasm(Isolate* i);
void NewMemoryImport(v8::Isolate* i);
void NewGlobalImport(v8::Isolate* i);

void SetGlobalImport(std::string const& name, WasmGlobalArg value);
auto GetGlobalImport(std::string const& name)

-> std::pair<WasmType, WasmGlobalArg>;

WasmMemoryRef GetWasmMemory();
size_t GetWasmMemorySize();

};

Maybe<CompiledWasm> CompileBinaryWasm(Isolate* i, const uint8_t* arr, size_t
len);↪→

The instrumentation also defines the same supporting data types as in Spider-

Monkey. Basically, the V8 instrumented header also contains the same definition
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Listing 4.24. The Internal definition (ext-api.cc)

struct CompiledWasm::Internal {
Handle<WasmModuleObject> module_object { Handle<WasmModuleObject>::null()

};↪→

Handle<WasmInstanceObject> module_instance {
Handle<WasmInstanceObject>::null() };↪→

Handle<WasmMemoryObject> wasm_memory_object {
Handle<WasmMemoryObject>::null() };↪→

std::map<std::string, GlobalEntry> wasm_global_list;
bool global_import_available { false };

};

as in Listing 4.7. Since it is more difficult to unify the instrumentation code into

a single source and definition, duplicating the definition for every JS engine is the

more viable option.

Also similar to the SpiderMonkey instrumentation design, the V8 instrumen-

tation also encapsulates Wasm functions in its own object. The Function object

provides access to function information, including function name and its signature.

Unlike the SpiderMonkey instrumentation, however, the signature information is

not cached in the Function object. It is because the V8 engine provides a relatively

more trivial way to obtain the function signature. Also, V8 provides direct access

to the instruction bytes without complex computation. Therefore, the machine

instruction byte does not need to be cached manually as in the SpiderMonkey

instrumentation. Listing 4.25 shows the Function class definition.

Listing 4.25. The Function definition (v8-ext.h)

class CompiledWasmFunction {
struct Internal;
std::unique_ptr<Internal> internal;
uint32_t func_index;
std::reference_wrapper<CompiledWasm> parent;
std::string name;

public:
CompiledWasmFunction(CompiledWasm& parent);
~CompiledWasmFunction();

WasmType ReturnType() const;
std::vector<WasmType> Parameters() const;
std::string const& Name() const { return name; }

auto Invoke(Isolate* i, std::vector<Local<Value>>& args) const
-> std::tuple<MaybeLocal<Value>, uint64_t>;

std::vector<uint8_t> Instructions() const;
};

4.5.4 Wasm Module Compilation Function

Section 1 discusses the SyncCompile function that is used in the Wasm JS API

implementation. The instrumented compilation function uses the portion of this
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implementation, which we copy the code to our instrumented function. Listing 1

shows the implementation of our compilation function.

As mentioned before, the WasmEngine object is available from the Isolate

object. Hence, the caller must pass the Isolate object to the compilation function.

Externally, the Isolate object is stored in an opaque pointer. This opaque pointer,

v8::Isolate, does not have a definition, meaning that the compiler does not

recognize the content of the object7. Therefore, the internal function must cast

the external Isolate object to the internal Isolate object. The internal Isolate,

v8::internal::Isolate, has a complete definition that is accessible from internal

codes. Casting the pointer to this type is done through reinterpret_cast, which

"change" the pointer type8. It effectively allows the pointer to access its content

and operation.

Listing 4.26. The compilation function implementation (api-ext.cc)

namespace i = v8::internal;
v8::Maybe<CompiledWasm> CompileBinaryWasm(v8::Isolate* i, const uint8_t* arr,

size_t len) {↪→

i::Isolate* isolate = reinterpret_cast<i::Isolate*>(i);
i::WasmJs::Install(isolate, true);
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(isolate);
i::wasm::ErrorThrower interpreter_thrower(isolate, "Interpreter");
i::wasm::ModuleWireBytes wire_bytes(arr, arr + len);

// Force enable the Liftoff compiler
bool prev = i::FLAG_liftoff;
i::FLAG_liftoff = true;
auto wasm_engine = isolate->wasm_engine();

// Compile the binary WASM
i::MaybeHandle<i::WasmModuleObject> compiled_module_res =

wasm_engine->SyncCompile(isolate, enabled_features,
&interpreter_thrower, wire_bytes);

i::FLAG_liftoff = prev;

if(compiled_module_res.is_null()) {
return v8::Nothing<v8::ext::CompiledWasm>();

}
auto compiled_module = compiled_module_res.ToHandleChecked();
v8::ext::CompiledWasm ret;
ret.internal->module_object = compiled_module;
// Get function names ...
return v8::Just<v8::ext::CompiledWasm>(ret);

}

Before the code can use the Wasm API, the code must initialize the Wasm

infrastructure through its Install function. The Install function initializes all

required Wasm infrastructure for a given Isolate object. It only needs to be

called once per Isolate object, as the V8 implements an on-demand approach for

7The opaque pointer means that the type is declared, but it does not have a definition. Declaring
a pointer type to a declared-but-undefined type is allowed in C++. However, it does not allow any
operation, including pointer dereference. It is the same principle as in pImpl idiom, which breaks the
compilation dependency.
8reinterpret_cast does not translate into any actual instruction. It is an instruction to the compiler
to treat the value as if it is another type.
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enabling the Wasm feature to the engine.

The instrumented compilation function calls the SyncCompile function by

passing the required arguments. The function also forces enabling the Liftoff

compiler by setting the flag manually. It may not be necessary if the compilation

flag enables the Liftoff compiler by default. The SyncCompile function returns

a MaybeHandle object, which may contain the WasmModuleObject value. If the

MaybeHandle object is empty, the compilation fails, and the error message can be

obtained via the ErrorThrower object.

From the module object, we can obtain the exported function to collect its

information. For getting string value from the Wasm module, V8 has a more

complicated step compared to SpiderMonkey. It seems that V8 does not cache the

string value declared in a Wasm module. Instead, it directly all string in a single

allocation, which can be referred to by offset and length. The string allocation in

a module is accessible through the ModuleWireBytes, while referring to a single

string value uses the WireByteRef. Listing 4.27 shows the procedure to access the

name of the function, which can be copied to a std::string object.

Listing 4.27. Getting exported function names (api-ext.cc)

i::wasm::ModuleWireBytes
module_bytes(compiled_module->native_module()->wire_bytes());↪→

auto& export_table = compiled_module->module()->export_table;

for(auto& exported : export_table) {
auto name = module_bytes.GetNameOrNull(exported.name);
ret.function_names.emplace(std::string { name.data(), name.length() },

exported.index);↪→

CompiledWasmFunction& func = ret.AddOneFunction();
func.name = std::string { name.data(), name.length() };
func.func_index = exported.index;
func.internal->function_handle =

decltype(func.internal->function_handle)::null(); //the_function;↪→

}

4.5.5 Wasm Memory and Global Variable Accessor

The implementation for memory and global variable accessor in V8 is equivalent

to the SpiderMonkey. Memory and global variable have their object representation

internally, which can be supplied as import arguments.

Listing 4.28 shows the implementation to initialize a memory object. Similar

to SpiderMonkey, a buffer object is backing the memory object. This buffer

object is passed to the factory function for WasmMemoryObject. The buffer must be

initialized according to the memory size as specified by the module.

Getting the memory buffer from the WasmMemoryObject is straightforward.

The function needs to access the backing store of the memory object via its accessor

function. The accessor function returns a managed pointer in a std::shared_ptr

object. The std::shared_ptr object is a reference-counted managed pointer, which
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Listing 4.28. Initializing Wasm memory in V8 (api-ext.cc)

namespace i = v8::internal;
void CompiledWasm::NewMemoryImport(v8::Isolate* i) {

i::wasm::WasmModule const* wasm_module =
this->internal->module_object->module();↪→

i::Isolate* isolate = reinterpret_cast<i::Isolate*>(i);

// Initialize backing store
auto initial_pages = wasm_module->initial_pages;
auto maximum_pages = wasm_module->has_maximum_pages ?

wasm_module->maximum_pages : initial_pages * 10;↪→

auto shared_flags = wasm_module->has_shared_memory ? i::SharedFlag::kShared
: i::SharedFlag::kNotShared;↪→

auto backing_store = i::BackingStore::AllocateWasmMemory(isolate,
initial_pages, maximum_pages, shared_flags);↪→

// Allocate JSArrayBuffer
auto array_buffer_mem =

isolate->factory()->NewJSArrayBuffer(std::move(backing_store));↪→

// New WasmMemoryObject
auto wasm_memory_object = i::WasmMemoryObject::New(isolate,

array_buffer_mem, maximum_pages);↪→

this->internal->wasm_memory_object = wasm_memory_object;
}

tracks the number of reference to the object. Therefore, it is crucial to transfer

the reference counting to the returned buffer address.

To maintain this property, the V8 instrumentation does not return a naked

pointer. Instead, it encapsulates the buffer pointer inside a std::shared_ptr

, referring to the counter managed by the BackingStore object. Listing 4.29

presents the implementation of accessing the Wasm memory buffer.

Listing 4.29. Initializing Wasm memory in V8 (api-ext.cc)

struct WasmMemoryRef {
std::shared_ptr<uint8_t> buffer;
size_t length;

};

WasmMemoryRef CompiledWasm::GetWasmMemory() {
if(this->internal->wasm_memory_object.is_null()) {
return { nullptr, 0 };

}
auto array_buffer = this->internal->wasm_memory_object->array_buffer();
std::shared_ptr<v8::BackingStore> backing_store_ptr =

array_buffer.GetBackingStore();↪→

return { { backing_store_ptr, (uint8_t*)backing_store_ptr->buffer_start()
}, backing_store_ptr->byte_length() };↪→

}

The global variable initialization process in V8 is also equivalent to Spi-

derMonkey. The implementation iterates the list of imports and initializes the

global variable object for every global variable import. Listing 4.30 shows the
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implementation of initializing the global variable object.

Listing 4.30. Initializing Wasm global variable in V8 (api-ext.cc)

void CompiledWasm::NewGlobalImport(v8::Isolate* i) {
if(this->internal->global_import_available)
return; // Already imported

i::wasm::WasmModule const* wasm_module =
this->internal->module_object->module();↪→

i::Isolate* isolate = reinterpret_cast<i::Isolate*>(i);
auto native_module = this->internal->module_object->native_module()
i::wasm::ModuleWireBytes module_bytes(native_module->wire_bytes());

// Iterate all global imports
for(auto& import : wasm_module->import_table) {
if(import.kind == i::wasm::kExternalGlobal) {
auto name_b = module_bytes.GetNameOrNull(import.field_name);
std::string global_name { name_b.begin(), name_b.end() };

auto global =
std::find_if(wasm_module->globals.begin(),

wasm_module->globals.end(),↪→

[idx = import.index] (auto& global)
{ return global.index == idx; } );

if(global == wasm_module->globals.end()) {
std::cerr << "Null: " << global_name << std::endl;

}

auto global_type = ExtTyFromInternalTy(global->type.kind());
auto global_object = i::WasmGlobalObject::New(isolate, {}, {},

global->type, 0, global->mutability).ToHandleChecked();↪→

this->globals.emplace(global_name, global_type);
this->internal->wasm_global_list.emplace(

std::move(global_name),
GlobalEntry { global_type, global_object });

}
}
this->internal->global_import_available = true;

}

The global variable accessor and mutator implementation are also more

straightforward than in SpiderMonkey. The global variable object provides a

simple accessor and mutator function without any proxy object. Hence, the global

variable can be read and modified directly using a simple function call. Listing

4.31 displays the implementation of the accessor and mutator function for the

global variable.

4.5.6 Wasm Function Invoker

As mentioned in Section 2.6.4, Wasm function is invoked through a regular JS

function pipeline. The caller must obtain the function handle to the target Wasm

function, and invoke it through the static Call function from the JS execution

component. The V8 engine does not differentiate regular JS function and Wasm

function from the perspective of the embedder, although internally, V8 handles
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Listing 4.31. Accessor and mutator of Wasm global variable in V8 (api-ext.cc)

void v8::ext::CompiledWasm::SetGlobalImport(std::string const& name,
WasmGlobalArg value) {↪→

auto& global_list = this->internal->wasm_global_list;
auto global_iter = global_list.find(name);
if(global_iter != global_list.end()) {
auto& global_ = global_iter->second;
switch(global_.type) {
case WasmType::I32: global_.global_object->SetI32(value.i32); break;
case WasmType::I64: global_.global_object->SetI64(value.i64); break;
case WasmType::F32: global_.global_object->SetF32(value.f32); break;
case WasmType::F64: global_.global_object->SetF64(value.f64); break;
case WasmType::Void: UNREACHABLE();

}
}

}

auto v8::ext::CompiledWasm::GetGlobalImport(std::string const& name)
-> std::pair<WasmType, WasmGlobalArg> {

WasmGlobalArg value;
auto& global_list = this->internal->wasm_global_list;
auto global_iter = global_list.find(name);
if(global_iter != global_list.end()) {

auto& global_ = global_iter->second;
switch(global_.type) {
case WasmType::I32: value.i32 = global_.global_object->GetI32(); break;
case WasmType::I64: value.i64 = global_.global_object->GetI64(); break;
case WasmType::F32: value.f32 = global_.global_object->GetF32(); break;
case WasmType::F64: value.f64 = global_.global_object->GetF64(); break;
case WasmType::Void: UNREACHABLE();

}
return std::make_pair(global_.type, value);

}
return std::make_pair(E::Void, value);

}

both differently.

Listing 4.32 shows the procedure to obtain the Wasm function handle. V8

prepares the handle on-demand. It means that the V8 does not create the JS

function handle during the Wasm module compilation. The caller obtains the

function handle through the GetOrCreateWasmExternalFunction, which accepts

the Wasm module object and the desired function index. This function internally

caches the function handle. Hence, it is safe to be called directly multiple times.

However, our implementation also caches the function handle internally to save

several function calls.

The invocation of the function handle uses the Call function provided by the

Execution class. The Call function accepts the Isolate object, the function handle,

and the pointer to the argument array. The third parameter of the function

is a receiver object and must be supplied with an undefined value. A receiver

object is an instance to a JS object that is analogous to a this object in an object-

oriented language. It is only relevant in the JS context. The caller can supply the

argument array through a heap-based array, including from std::vector object.
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Listing 4.32. Obtaining the function handle (api-ext.cc)

namespace i = v8::internal;
auto CompiledWasmFunction::Invoke(v8::Isolate* i, std::vector<Local<Value>>&

args) const↪→

-> std::tuple<MaybeLocal<Value>, uint64_t> {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(i);

// Check if the function handle is already obtained
if(this->internal->function_handle.is_null()) {
auto module_instance = this->parent.get().internal->module_instance;
if(!module_instance.is_null()) {
i::Handle<i::WasmExternalFunction> the_function =

i::WasmInstanceObject::
GetOrCreateWasmExternalFunction(isolate, module_instance,

this->func_index);↪→

this->internal->function_handle = the_function;
} else {
// Module is not instantiated yet
return { MaybeLocal<Value>{}, 0 };

}
}

// Invoke the actual function
}

The argument array element type must be a Value object. Listing 4.33 presents

the procedure to invoke the Wasm function handle.

Listing 4.33. Invoke the function (api-ext.cc)

i::Handle<i::Object> undefined = isolate->factory()->undefined_value();

std::chrono::steady_clock::time_point start_time =
std::chrono::steady_clock::now();↪→

i::MaybeHandle<i::Object> retval =
i::Execution::Call(isolate, this->internal->function_handle, undefined,

(int) args.size(),
reinterpret_cast<i::Handle<i::Object>*>(args.data()));

↪→

↪→

std::chrono::steady_clock::time_point end_time =
std::chrono::steady_clock::now();↪→

uint64_t elapsed =
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time -
start_time).count();

↪→

↪→

// Null return value means an error
if (retval.is_null()) {
isolate->clear_pending_exception();
return { MaybeLocal<Value> {}, elapsed };

}

v8::Local<v8::Value> result;
if(!v8::ToLocal(retval, &result))
return { MaybeLocal<Value> {}, elapsed };

else
return { result, elapsed };
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4.5.7 Wasm Function Metadata and Instruction Bytes

As discussed in Section 4.5.1, obtaining a function signature in V8 is more straight-

forward. The function signature is stored in a FunctionSig object that is directly

accessible from the WasmFunction object. The Wasm module stores all Wasm-

Function objects in a vector ordered by its function index. After obtaining the

pointer to the respective FunctionSig, the accessor function can access the return

type and parameter type of the function. Listing 4.34 presents the implementation

for getting the function return type and parameter list.

Listing 4.34. Getting function paremeters and return type (api-ext.cc)

WasmType CompiledWasmFunction::ReturnType() {
auto wasm_func_sig = this->parent.get().internal

->module_object->module()
->functions[this->func_index].sig;

if(wasm_func_sig->return_count() == 0)
return ext::WasmType::Void;

return ExtTyFromInternalTy(wasm_func_sig->GetReturn().kind());
}

std::vector<WasmType> CompiledWasmFunction::Parameters() {
auto wasm_func_sig = this->parent.get().internal

->module_object->module()
->functions[this->func_index].sig;

std::vector<v8::ext::WasmType> ret;
for(auto& kind_obj : wasm_func_sig->parameters()) {
ret.push_back(ExtTyFromInternalTy(kind_obj.kind()));

}
return ret;

}

Getting the instruction bytes in Wasm is also straightforward. The program

needs to obtain the WasmCode object from the NativeModule object. The WasmCode

object contains the pointer to the actual location of the machine instruction, which

then can be copied trivially through a memcpy function. Listing 4.35 presents the

operation to obtain the machine instruction of a Wasm function.

In fact, V8 provides a mechanism to dump a Wasm instruction to the standard

output. The WasmCode class provides a Print function, which can disassemble and

print the machine instruction. However, this functionality is absent in Spider-

Monkey. It is preferable to obtain the actual instruction bytes and disassemble it

using a uniformed mechanism, which will be discussed in the later chapter.

4.6 Test Case Generator

4.6.1 V8 Fuzzer Suite

The V8 projects already incorporate fuzz testing to its software development. The

V8 engine is equipped with several fuzzing toolkits that are integrated to the V8
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Listing 4.35. Getting machine instruction of a function (api-ext.cc)

std::vector<uint8_t> CompiledWasmFunction::Instructions() const {
i::wasm::WasmCodeRefScope ref_scope;
auto wasm_code = this->parent.get().internal

->module_object->native_module()
->GetCode(this->func_index);

// Marshall out the data
std::vector<uint8_t> ret;
size_t len = wasm_code->instructions().length();
ret.resize(len);
std::memcpy(ret.data(), wasm_code->instructions().data(), len);
return ret;

}

engine. The particular exciting toolkits are the Wasm fuzzing tools, which we can

find in the test/fuzzer folder of the source.

V8 uses the LLVM fuzz testing framework, the libFuzzer. The V8 fuzzer

is developed using the libFuzzer programming standards, which can integrate

smoothly with the entire libFuzzer pipeline. Although our experiment uses a

customized fuzzing pipeline, the libFuzzer pattern simplifies the investigation of

the fuzz testing library.

libFuzzer uses a very simplistic approach to code a fuzz tester for a program.

libFuzzer produces a fuzzer program that links to a predefined C-based function

called LLVMFuzzerTestOneInput. The fuzz tester program must define this func-

tion, which becomes the entry point for the fuzz tester. This function has only two

parameters: a pointer to a random data bytes, and the length of the random data.

libFuzzer automatically generates the random bytes and calls the fuzz function.

The fuzz test function must handle the test sequence accordingly. For example,

pass the random bytes as an input to the SUT.

The investigation starts from the folder that stores the fuzzer toolkit. The

fuzzer toolkit for Wasm is clearly named, which makes it easily distinguishable.

The particular interesting code is in the wasm-compile.cc. This fuzzer toolkit

contains an extensive code that generates a Wasm program from input bytes. The

user of this code can call GenerateModule function to create a valid Wasm module

binary for any given input bytes [wasm-compile.cc:1605]. It is directly apparent

that the experiment can use this code to generate a random Wasm program. It

simplifies many development processes for the entire experiment.

By examining the entire fuzzer code, V8 performs fuzz testing to its Wasm

compiler component. The wasm-compile.cc fuzzer contains the test sequence to

generate a random Wasm module and pass it to the compile function

[wasm-fuzzer-common.cc:264]. If the compiler successfully compiles the module,

the test sequence instantiates the module. Then, the test executes the main func-

tion that the Wasm generator always generates [wasm-compile.cc:1655]. Overall,

the test evaluates a full Wasm workflow, from the compilation, instantiation, and
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execution. However, we can conclude that the test does not check for any behavior

monitoring, and more to validate that the Wasm workflow does not fail or crash.

It becomes one of the motivations for the experiment presented in this thesis.

4.6.2 Modifying the Wasm Generator

The V8 Wasm generator is not directly applicable to the experiment. The generator

is being progressively developed along with the Wasm component development.

The generator utilizes and generates several novel Wasm instruction that is yet

to be implemented in the JS engines. Therefore, we need to modify the random

generator to satisfy our experiment requirement.

The GenerateModule function uses the WasmModuleBuilder class for writing

the module binary. This class provides functions to write Wasm module elements,

which include global variables, memories, and functions. Firstly, the function

generates the number of functions for the module and their signatures. Then the

function generates the global variables for that module. The number of functions

and global variables depends on the random bytes provided by the caller.

Listing 4.36 shows the GenerateModule function and its prologue procedures.

The important parameters to consider are zone, data, and buffer. Zone is a spe-

cialized allocator that the generator uses for its operation. Zone performs memory

allocation management, separate from the system-default memory allocation

function. It aims to save resource-consuming memory allocation for allocating

small-but-many memory space, and perform a faster memory reclaiming when

the memory is no longer required. Zone itself does not provide a deallocator or

delete function. It can only allocate memory. The deallocation occurs when the

Zone object is destroyed, which also destroys all memory allocated inside the Zone.

The ZoneBuffer object stored in the buffer parameter is the location to store

the binary module. The caller of the GenerateModule function can expect the

module bytes to be written in the buffer. Finally, the data parameter contains

the random bytes for generating the Wasm module. The data is encapsulated in

the DataRange object. DataRange object performs an internal accounting to supply

random bytes as requested. It provides a get function that can obtain a random

byte according to the requested bit sizes. Listing 4.36 also shows the uses of

obtaining bytes from the DataRange object that is used to compute the number

of generated functions. This instruction is used throughout the Wasm module

generation process that involves a randomized decision-making process.

Nevertheless, the original generator does not generate an imported or ex-

ported global variable. In order to satisfy requirement §2.2, the generated module

must have a visible global variable. Therefore, we need to modify the generator to

produce an imported global variable declaration. Instead of using AddGlobal func-

tion from WasmModuleBuilder, we use the AddGlobalImport function to declare an

imported global variable. Listing 4.37 shows the modified snippet to add this
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Listing 4.36. The GenerateModule function and its prologue snippets (wasm-
compile.cc)

bool WasmCompileFuzzer::GenerateModule(
Isolate* isolate, Zone* zone, Vector<const uint8_t> data,
ZoneBuffer* buffer, int32_t* num_args,
std::unique_ptr<WasmValue[]>* interpreter_args,
std::unique_ptr<Handle<Object>[]>* compiler_args) {

// Make WasmModuleBuilder object
WasmModuleBuilder builder(zone);

// Randomized bytes
DataRange range(data);
std::vector<FunctionSig*> function_signatures;

// Setting memory configuration
uint8_t min_memory = 10;
uint8_t max_memory = 20;
builder.SetMinMemorySize(min_memory);
builder.SetMaxMemorySize(max_memory);
builder.SetHasMemoryImport();

// Generates functions
static_assert(kMaxFunctions >= 1, "need min. 1 function");
int num_functions = 1 + (range.get<uint8_t>() % kMaxFunctions);

for (int i = 0; i < num_functions; ++i) {
function_signatures.push_back(GenerateSig(zone, &range));

}
// ...

}

functionality.

The WasmModuleBuilder class does not generate the random instruction bytes.

Instead, the WasmGenerator class is responsible for generating random Wasm in-

struction. The random generated random instruction is then passed to the module

builder for writing. For every function signature generated, the GenerateModule

calls the WasmGenerator to generate the instruction for the function. Listing 4.38

presents the snippet to generate the random Wasm function.

We modify the WasmGenerator class constructor to include the maximum

memory size information. It is used to create safe memory access bound, which

in turn generates a valid memory access instruction. The iteration also adds all

generated functions to the export list. In the original implementation, only the

first function is added to the export list as the main function. In our experiment,

we try to invoke the function randomly multiple times to increase the probability

of yielding a different behavior.

The random generator uses random bytes value to direct the random gen-

eration process. The generator takes some bytes value and uses it to select the

alternative instruction to generate. The process continues until it consumes the

entire random bytes or reaches a specific complexity limit. The generation process

exploits Wasm ISA that resembles a tree structure, which allows the generation
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Listing 4.37. Generating imported global variables (wasm-compile.cc)

// Get how many globals to generate
int num_globals = range.get<uint8_t>() % (kMaxGlobals + 1);
std::vector<ValueType> globals;
std::vector<uint8_t> mutable_globals;
globals.reserve(num_globals);
mutable_globals.reserve(num_globals);

// Important to maintain the allocated string that is passed to the
// WasmModuleBuilder. WasmModuleBuilder does not take the ownership
// of the passed string, nor make any copy of it. Therefore, the
// string passed to the builder must be retained until the module
// bytes are written.
std::list<std::string> globalNames;

for (int i = 0; i < num_globals; ++i) {
// Get a new random value type
ValueType type = GetValueType(&range);

// Generate new global variable name
std::string newGlobalName { "global" };
newGlobalName += std::to_string(i);
globalNames.emplace_back(std::move(newGlobalName));

// Add the actual global import
builder.AddGlobalImport(CStrVector(globalNames.back().c_str()), type,

mutability, CStrVector(""));↪→

globals.push_back(type); // Push the type of the global

// All imported globals are mutable
mutable_globals.push_back(static_cast<uint8_t>(i));

}

process to use a Depth-First Search (DFS) based algorithm.

The generation begins by calling the WasmGenerator’s Generate function. The

GenerateModule function calls the Generate function overload with a Vector ar-

gument. This Vector consists of the expected return type of the function. In our

experiment, the return type is limited to one only, as the multiple return type is

not yet implemented in all JS engines. Limiting the return type size is done by

setting the constant kMaxReturns to 1, which is located in the beginning of the

source file. Accordingly, this Generate function then invokes another Generate

function overload by providing the expected return type.

This overloaded Generate function selects the appropriate Generate function

for the expected return type. The implementation has several variants of spe-

cialized Generate function according to the Wasm types. For every variant, the

function selects a new instruction by taking a random value and produce the

required argument by recursively calling Generate function again. The recursive

call terminates when the Generate function choose a constant operand or reaches

the recursion limit.

This recursive process ensures the generator produces a valid Wasm mod-

ule according to the specification. The Generate function only generates a valid
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Listing 4.38. Generating Wasm functions (wasm-compile.cc)

// Cache function names
std::list<std::string> funcNames;
for (int i = 0; i < num_functions; ++i) {
std::string newFuncName { "func" };
newFuncName += std::to_string(i);
funcNames.emplace_back(std::move(newFuncName));
auto& funcName = funcNames.back();

DataRange function_range = i == num_functions - 1 ? std::move(range) :
range.split();↪→

FunctionSig* sig = function_signatures[i];
WasmFunctionBuilder* f = builder.AddFunction(sig);

WasmGenerator gen(f, function_signatures, globals, mutable_globals,
&function_range, max_memory);↪→

Vector<const ValueType> return_types(sig->returns().begin(),
sig->return_count());↪→

gen.Generate(return_types, &function_range);

f->Emit(kExprEnd);

// Add function to the export list
builder.AddExport(CStrVector(funcName.c_str()), f);

}
// Write all Wasm module to buffer
builder.WriteTo(buffer);

instruction sequence, which eventually produces a specified stack state. Each

Generate function specialization also specifies every instruction alternatives that

can be taken by the chosen random path. Considering the alternatives may

contain an unimplemented Wasm instruction, we disabled several instruction

alternatives. Those instructions include atomic instructions, SMID instructions,

and floating-point saturation instruction. This procedure satisfies our require-

ment §1.2 for the random test case generator.

The final modification made to the Wasm generator is the memory operation.

The original Wasm generator always generates a random operand for the memory

operation. This behavior generates invalid memory access for almost every

generated Wasm program. Since the experiment expects the module to behave

correctly most of the time, the generator must produce a correct runtime behavior

of the program. The original generator only ensures the valid static properties of

the program, i.e., a well-formed Wasm program adhering to the validation rules.

To achieve this behavior, we modify the memory operation generator to gener-

ate a bounded offset value for the memory index operand. It is achieved by adding

a modulo operation to the maximum memory size for every memory index operand.

It ensures the memory index always within the valid memory range, thus, allow-

ing the generator to produce a program that terminates correctly. Listing 4.39

shows the modification introduced to the memory instruction generator.
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Listing 4.39. Generating bounded memory instructions (wasm-compile.cc)

// Recursive template, generate index also with the trailing extra
// arguments, e.g., some value to be stored to the memory
template<typename ValueType::Kind kind, typename ValueType::Kind...

arg_types>↪→

void WasmGenerator::GenerateWithBound(DataRange* data) {
GenerateWithBound<ValueType::kI32>(data);
Generate<arg_types...>(data);

}

// Base template, generate index without trailing extra arguments
template<>
void WasmGenerator::GenerateWithBound<ValueType::kI32>(DataRange* data) {

Generate<ValueType::kI32>(data);
builder_->EmitI32Const((int32_t)max_memory_);
builder_->Emit(kExprI32RemU); // Emit modulo operation

}

template <WasmOpcode memory_op, ValueType::Kind... arg_types>
void memop(DataRange* data) {
const uint8_t align = data->get<uint8_t>() % (max_alignment(memory_op) +

1);↪→

const uint32_t offset = data->get<uint32_t>() % max_memory_;

// Generate the index and the arguments, if any.
GenerateWithBound<ValueType::kI32, arg_types...>(data);

if (WasmOpcodes::IsPrefixOpcode(static_cast<WasmOpcode>(memory_op >> 8)))
{↪→

builder_->EmitWithPrefix(memory_op);
} else {
builder_->Emit(memory_op);

}
builder_->EmitU32V(align);
builder_->EmitU32V(offset);

}

Since the generated memory address is bounded to the maximum declared

memory in the module, there are still 50% chances the instruction yields invalid

memory access. It is due to the initial memory is set as half of the maximum

memory. Therefore, the remaining half of the memory address space is invalid

unless the memory is expanded through a memory_grow instruction inside the

Wasm program. Through this property, the generated program also covers the

cases of programs with invalid memory access.

4.6.3 Exposing the Fuzzer Library

The V8 fuzzer library is not intended to be accessible through any part of the

JS engine. Although it utilizes V8 engine components, its code is isolated on its

own compilation unit. The V8 build script also generates the fuzzer executable

separately. Therefore, we must refactor the fuzzer library to allow external code

accessing its API.

The first required step is exposing the GenerateModule function in
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WasmCompileFuzzer class. V8 defines the WasmCompileFuzzer class in the source

file, meaning that it is inaccessible from any other part of the engine. We need to

introduce the WasmCompileFuzzer class in an accessible header file, allowing our

instrumentation code to access the class. By moving the WasmCompileFuzzer class

definition to the wasm-fuzzer-common.h header file, the class is accessible from

other source files.

The second important step is introducing the fuzzer library compilation unit

to the rest of V8 engine library. Since we want to introduce the random generator

function in the instrumented API, the engine must be able to link to the fuzzer

library. It is done by modifying the build script by combining the V8 compilation

unit and the fuzzer compilation unit. Without this modification, the compilation

breaks as the compiler is unable to link the instrumented API to the fuzzer library.

The build script modification is done by introducing a new V8 build artifact.

The build script uses v8_component macro to introduce a new build artifact. In this

artifact, we include our instrumentation API sources and the dependencies, which

are the V8 base library and the fuzzer components. This build script produces

a new shared library artifact in the build directory. The embedder must link to

this separate artifact in order to utilize the instrumentation API. Listing 4.40

presents the new build script section.

Listing 4.40. New build script for the V8 instrumentation (BUILD.gn)

v8_component("v8_ext_diff_fuzz") {
sources = [
"src/api/ext-api.cc",
"src/api/ext-api.h",

]

deps = [
":v8_base_without_compiler",
":v8_compiler",
":v8_snapshot",
":lib_wasm_fuzzer_common",
":wasm_module_runner",
":wasm_compile_fuzzer",
":fuzzer_support"

]

configs = [ ":internal_config" ]
}

Similar to other API, we introduce a function in our instrumented API.

The function accepts a random byte array and produces a valid Wasm binary

stored in an array. The function simply calls the GenerateModule function of

the WasmCompileFuzzer class with the proper arguments. The resulting module

binary is copied to the output array. Listing 4.41 shows the implementation of the

API.
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Listing 4.41. GenerateRandomWasm function (ext-api.cc)

namespace i = v8::internal;
std::tuple<bool, size_t> GenerateRandomWasm(v8::Isolate* i,

std::vector<uint8_t> const& input, std::vector<uint8_t>& output) {↪→

i::Isolate* isolate = reinterpret_cast<i::Isolate*>(i);

// Wrap the vector to V8 Vector
i::Vector<const uint8_t> data { input.data(), input.size() };

// Zone objects
i::AccountingAllocator allocator;
i::Zone zone(&allocator, ZONE_NAME);
i::wasm::ZoneBuffer buffer(&zone);
int32_t num_args = 0;

// Placeholders out variable
std::unique_ptr<i::wasm::WasmValue[]> interpreter_args;
std::unique_ptr<i::Handle<i::Object>[]> compiler_args;

i::wasm::fuzzer::WasmCompileFuzzer compilerFuzzer;
if (!compilerFuzzer.GenerateModule(isolate, &zone, data, &buffer,

&num_args, &interpreter_args, &compiler_args)) {↪→

return {false, 0}; // Failed
}

// Fast marshall to output
auto generatedSize = buffer.size();
output.resize(generatedSize);
std::memcpy(output.data(), buffer.data(), generatedSize);

// The compiler_args is "instrumented" to carry the memory size
decltype(auto) mem_size_ret = compiler_args[0];
decltype(auto) mem_size = i::Handle<i::Smi>::cast(mem_size_ret);
auto mem = mem_size->value();

return {true, mem};
}

4.6.4 Embedding the Generator

For simplifying the development, we do not develop the generator program within

the V8 engine. Instead, we use the fuzzer generator component as if we use the

V8 engine itself. Therefore, we step through the similar V8 engine embedding

steps to build the Wasm generator.

In order to satisfy requirement §1.1 for test case consistency, the generator

must use a stable random number generator to generate the input random bytes.

A stable random number generator ensures the test case can be reproducible after

the test has been performed. With this capability, the experiment does not need

to store the entire test case data. Reproducing a test case requires only a valid

configuration, i.e., the seed to regenerate the random test case.

The generator uses the C++ standard library for the pseudo-random generator

(PRG). The standard library provides a PRG based on the Mersenne Twister

algorithm, which a program can directly utilize without an additional library.
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The PRG API is very straightforward and accepts a user-defined seed. Therefore,

reproducing a state of the PRG to regenerate the test case is trivial. Listing 4.42

shows the implementation of a single test case generator.

Listing 4.42. Generator function in the embedder (ext-api.cc)

size_t GenerateRandomWASM(CommandLineArgument& args, std::vector<uint8_t>&
randomizedData, std::mt19937& re, v8::Isolate* isolate) {↪→

// PRECONDITION: randomizedData is already pre-initialized with the
// correct total bytes requested

// Cast to uint32_t* pointer, to access it as uint32_t array
auto dataBeginAsInt32 = (uint32_t*) randomizedData.data();

// The array length is 1/4 the original size
auto dataEndAsInt32 = dataBeginAsInt32 + randomizedData.size() /

sizeof(uint32_t);↪→

// Generate the random bytes
std::for_each(dataBeginAsInt32, dataEndAsInt32, [&] (uint32_t& val) { val =

re(); });↪→

// Call random instrumented random Wasm generator
std::vector<uint8_t> generatedWasm;
auto [success, mem_size_ret] = v8::ext::GenerateRandomWasm(isolate,

randomizedData, generatedWasm);↪→

if(!success)
std::abort();

// Write the Wasm bytes to output file
std::ofstream output(args.outfile, std::ios::out);
output.write((char const*)generatedWasm.data(), generatedWasm.size());
output.flush();

return mem_size_ret;
}

We can take several design considerations to minimize the wasted random

bytes and seed. The PRG API generates a random 32-bit that is returned as an

unsigned integer. The generator maximizes the utilization of all random bits

by storing the entire 32-bit value to the random byte buffer. Since the buffer is

managed in an 8-bit value vector, the generator must cast the vector to a 32-bit

vector to simplify the assignment instruction.

Additional efficiency can be achieved by using the seed to generate multiple

random Wasm module. The random generator program is designed to continue

running during the entire test sequence. Therefore, the random program can keep

using the seed to generate the subsequent random case. In order to reproduce the

specific test case, the generator skips the bytes of the previous test case. Listing

4.43 shows the implementation of the generator program.

The generator program accepts a command from the standard input. The

command triggers the test case generation to the output file. Therefore, the

generator program can run independently across multiple test sequences and be
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Listing 4.43. Generator function in the embedder (ext-api.cc)

std::mt19937 re(args.randomSeed);
size_t mem_size;

// Go to specific test case point
if(args.skipCount != 0) {
int skippedByteCount = args.skipCount * args.randomSize /

sizeof(uint32_t);↪→

for(int i = 0; i < skippedByteCount; ++i)
re();

}

std::vector<uint8_t> randomizedData;
randomizedData.resize(args.randomSize);

std::string input;
if(!args.repro) {
while(true) {
// Accept command
std::getline(std::cin, input);
if(input == "q")
break;

else if(input == "w")
mem_size = GenerateRandomWASM(args, randomizedData, re, isolate);

}
} else {
// Only reproduce a single test case
mem_size = GenerateRandomWASM(args, randomizedData, re, isolate);

}

isolated from the SUT as specified by requirement §1.3.

In order to improve the efficiency and the speed of test case generation,

the output file for the testing should be stored in the /dev/shm folder in Linux.

/dev/shm folder is a temporary file system that is stored in the memory. It

dramatically reduces the disk latency of test case generation. It also simplifies the

communication between the generator and the SUT because it behaves similarly

to a regular file.

4.7 Shell Program

4.7.1 Common Interface

Two SUTs involved in the experiment have different instrumentation and embed-

ding mechanism. To minimizing the development complexity, the test environment

is designed with a common interface in mind. The common interface serves as the

unification of the test sequence logic, which defines the general infrastructure to

execute the test procedure. This common interface also satisfies requirement §3.

The main interface developed for the experiment is the shell program for

the JS engine embedder. The shell program provides the functionality to execute

test sequences, also to reproduce the experiment interactively. The shell program

provides an concept class specification that needs to be implemented by each JS
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engine embedder. Listing 4.44 shows the definition of the concept class, and Table

4.2 presents the details of the specification.

Listing 4.44. Concept class for shell program (runner-common.h)

class FuzzerRunnerImplementation {
public:
bool InitializeModule(dfw::FuzzerRunnerCLArgs const&);
bool InitializeExecution();
std::vector<FunctionInfo> const& Functions();
std::optional<std::vector<uint8_t>> DumpFunction(std::string const&);
std::tuple<std::optional<dfw::JSValue>, uint64_t>

InvokeFunction(std::string const&, std::vector<JSValue> const&);↪→

bool MarshallMemoryImport(uint8_t*, size_t);
std::vector<MemoryDiff> CompareInternalMemory(std::vector<uint8_t>&

buffer);↪→

std::vector<GlobalInfo> Globals();
void SetGlobal(std::string const& arg, JSValue value);
JSValue GetGlobal(std::string const& arg);

};

Table 4.2. Specification details of the concept class

Interface Action Returns

InitializeModule Compile the module bytes
supplied in the file specified in
the command line argument

Success status of the
compilation

InitializeExecution Instantiate the Wasm module to
start receiving invoke function
command

Success status of the
instantiation

Functions Obtain the list of exported
functions in the module

Exported function
list

DumpFunction Get the function bytes for the
specified function name

Instruction bytes of
the requested
function

InvokeFunction Call a function by its function
name with the specified function
arguments

The called function
return value, which
is null in case of
error, and the
elapsed time of the
function execution.

MarshallMemory
Import

Copy the specified byte array to
the Wasm memory

Success status of the
memory copying
process

CompareInternal
Memory

Compare the internal memory
supplied by the caller and
update the memory cache with
the updated state in the Wasm
memory

The difference found
between the memory
values

Globals Obtain the list of visible global
variables through the Wasm
import

List of global
variables

SetGlobal Set global variable n/a
GetGlobal Get global variable The global variable

value from the Wasm

The interface also standardizes the data structure used in the test system.
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Listing 4.45 presents the important data structure definition used in the shell

program. The interface redefines the enum class type to represent a Wasm

type. The enum class is defined to be equal to the defined type in the JS engine

instrumentation to allow easy conversion between the types. The interface also

defines a polymorphic value type. This type is implemented using a discriminated

union pattern to simplify the implementation without involving intricate object-

oriented design. The interface also defines additional data types to encapsulate

the information used in the testing process. It includes the function information,

global variable information, and memory differences.

Listing 4.45. Standard data structure for the shell interface (runner-common.h)

enum class WasmType {
Void,
I32,
I64,
F32,
F64

};

struct JSValue {
WasmType type;
union {
uint32_t i32;
uint64_t i64;
float f32;
double f64;

};
};

struct FunctionInfo {
std::string function_name;
WasmType return_type;
std::vector<WasmType> parameters;

};

struct GlobalInfo {
std::string global_name;
WasmType type;

};

struct MemoryDiff {
uint32_t index;
uint8_t old_byte;
uint8_t new_byte;

};

The JS embedder program that implements the interface can start the shell by

calling the Run function. The Run function is the entry point to the shell program,

which processes the command line arguments and executes the user command.

Note that the Run function must be called after the embedding procedure has been

done, and the JS engine is ready to accept the command.

93



Fuzzing the WebAssembly

4.7.2 Interactive Shell

The test system implements an interactive shell to allow experimenting with

Wasm module independently without following the test sequence. It helps the

user to experiment with Wasm module compilation, function invocation, and

machine instruction inspection. It is inspired by the interactive JS shell provided

by JS engine implementation. However, this shell is more specialized and only

accepts a limited set of commands to interact with Wasm modules. This interactive

shell satisfies requirement §3.3 to support interactive experiment and test case

reproduction.

The interactive shell uses a main-loop design pattern. The main loop waits

for user command from the standard input and executes it accordingly. Table

4.3 presents the command that is implemented in the interactive shell. The

shell implements the command by utilizing the instrumented JS engine via the

standardized interface. In this way, both JS engines have the same interactive

shell functionality, providing the embedder implements the standard interface

correctly.

Table 4.3. Commands for the interactive shell

Command Action

dump Dump the disassembled machine instruction of the
specified function

list List the exported function in the module and its
signature

instantiate Instantiate the module for execution
invoke Invoke the specified function and the provided

arguments. The module must be instantiated first
through instantiate command

memimport Load a binary file and import it into the Wasm
memory

listglobal List the global variables available to access
setglobal Set the value of global variables
getglobal Get the value of global variables

For commands that accept value arguments, such as invoke and setglobal

commands, the shell parses and box the value before it is passed to the JS

engine via the standard interface. The shell also validates the argument type,

particularly for the arguments provided for a function invocation. The shell rejects

the invalid argument, such as supplying a floating-point string number to an

integer argument or supplying a non-numerical character altogether.

4.7.3 Single Test Sequence

The test system uses the single test sequence workflow to execute the fuzz ex-

periment. The workflow consumes a Wasm module binary, compiles the module,

initializes the execution environment, and invokes exported function randomly
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multiple times. The process produces the observation result, which can be stored

and processed by the test coordinator.

Figure 4.3. Workflow for single test sequence

Figure 4.3 shows the process workflow of the test sequence. The implemen-

tation can be seen on SingleRun function in runner-common.cc source file. The

test starts by compiling the Wasm module through the instrumented API. If the

compilation succeeds, the test system initializes the test environment. The envi-

ronment is prepared by loading the Wasm memory from a pre-provided memory

file. The test system also prepares a PRG using a pre-provided seed value, which

is used to generate random values for the environment. The system uses this

PRG to generate random global variable values, to select a function randomly to

invoke during the test sequence, and to generate random function argument for

the function invocation.

In each test iteration, the test system observes the post-invoke state of the

Wasm. The observation involves memory and global variable comparison. The

memory is scanned for each byte to observe the change, while the global variable

is scanned per item. The system records the change and updates its internal

cache to perform the subsequent observation. At the end of the test sequence, the

system prepares the observation report, which is detailed by the test iteration. It

allows the experiment to observe the progressive behavior caused by sequences of

operations.

One crucial factor to consider for the test is the floating-point value used in

the testing. The PRG generates a random 64-bit unsigned integer value, which

does not always map accurately to the 64-bit floating-point value, especially the
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Not-a-Number (NaN) value. The floating-point value system specifies a range of

values that indicates a NaN value.

This particular property is exploited by JS engines to encode extra data within

the NaN space. It allows the JS engine to save space for allocating primitive value.

However, it raises an issue when an embedder tries to pass a NaN value with this

bit combination. Therefore, the test system must flatten the NaN value to a "safe"

value that is portable between system and environment. C++ library provides a

standardized mechanism to detect a NaN value and supply a portable NaN value.

In this way, all randomly generated floating-point value that falls into the NaN

region is properly encoded an supplied to the JS engine. Listing 4.46 shows the

snippet of this functionality.

Listing 4.46. Flattening NaN random value (runner-common.h)

template<>
inline double RandomGenerator::get<double>() {
// Try getting value first
uint64_t temp = get<uint64_t>();

// This is undefined behavior, but works in many cases
// double val = *reinterpret_cast<double*>(&temp);

// Until C++20 standard is released with std::bit_cast,
// this is the defined-behavior way to copy bitwise value
// see: https://en.cppreference.com/w/cpp/language/reinterpret_cast
double val;
std::memcpy(&val, &temp, sizeof(val));

// Check NaN value, and flatten the NaN if it is.
if(std::isnan(val))
return std::numeric_limits<double>::quiet_NaN();

else
return val;

}

Besides, the system also uses a bitwise value comparison when comparing

the pre and post Wasm states. It is crucial since the comparison involves a

floating-point value, which may involve imprecision if the system uses a regular

comparison instruction.

4.8 Control Program

4.8.1 Integration Specification

The experiment runs the test independently and isolated from each other. It

implies that it requires an integration which handles the coordination between

independent test components to perform the entire test workflow. The integration

standardizes the communication specification between components, particularly

to transmit command and obtain the test result.

The test system provides a controller program that integrates all test compo-
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nents, adhering to requirement §4. The controller program uses a basic interpro-

cess communication and process management technique to control multiple test

components. The controller program uses command-line arguments to transmit

the test command to the shell program and retrieve the result.

For simplifying the development, the output transmission uses a

file-descriptor based pipe. The file-descriptor based pipe allows programs to

read and write data between process boundaries using simple stream-based oper-

ations. It also benefits the condition that the shell program is the child process of

the controller program. This attribute allows the controller program to control

the file descriptor of the child program directly.

Since the file-descriptor pipe is a regular text-based transmission, the trans-

mitted data has no structure. Hence, the system needs to create a structured

data format to simplify the communication process. The test system uses a JSON

format to transmit the result data from the shell program to the controller pro-

gram. By using a JSON format, the system can utilize a readily available JSON

library to generate and process JSON data. It cuts the development time and

significantly reduces the complexity of the program.

Listing 4.47. JSON structure for the result data

[ /* Array of test iteration */
{
"FunctionName": "func0", /* Invoked function*/
"Args": [ /* Arguments in int64 value */
"2203442879026261627",
"2785472889303938557"

],
"Elapsed": "98759", /* Elapsed time */
"Success": false, /* Successful function call (no trap) */
"MemoryDiff": { /* Difference in memory */
/* "memory_index" : [bytes_before, bytes_after] */
"512294": [159, 171],
/* ... */

}
"GlobalDiff": { /* Difference in global */
/* "global_name" : ["int64_before", "int64_after"] */
"global1": ["159", "171"],
/* ... */

}
}, /* ... */

]

Listing 4.47 presents the JSON schema for the result data. The root of

the data is an array of test iteration. For every iteration, it specifies the called

function, the specified argument, elapsed time, success state, and the difference

of memory and global. The function argument is specified as an array of 64-bit

integer, to maintain the argument bit state. It is to avoid rounding errors from

floating-point representation. The memory difference is specified in key-value

pairs. The key is the memory index, and the value is the byte value before and

after the execution. The global variable difference is also specified similarly.
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However, the value uses a 64-bit integer instead of a byte value.

4.8.2 Shell Spawner

The control program is responsible for launching the shell program for every test

iteration. The procedure follows the basic POSIX system to launch a child process.

The controller program forks itself to create a new process, then calls the exec

function to launch the shell executable. The control program also passes the test

commands through the exec function.

Before the exec function is called, the control program must configure the

file descriptor (FD) for the communication between the control program and the

shell program. The control program prepares a new FD instead of using STDOUT

descriptor. It is to avoid conflicting with the JS engine that uses STDOUT to print

error messages. The control program calls pipe function to prepare a new FD.

The new FD from the pipe function is copied to the agreed FD value in the child

process. Listing 4.48 shows the listing for spawning the child shell process, and

Listing 4.49 shows the implementation to access the FD pipe in the shell program.

The spawn function returns the process ID (PID) and the FD. The PID is

crucial as it allows the control program to track and finalize the child process

accordingly. We must avoid spawning zombie processes while executing the

experiment. Therefore, the process must be closed accordingly after each iteration

completes. It also allows the control program to kill a shell process that does not

terminate.

The generated Wasm program is not guaranteed to terminate. It is possible for

the random program to enter an infinite loop, which the control program must take

over and terminate manually. The control program waits for a specific duration

before forcefully terminates the Wasm program. In this way, the experiment is

guaranteed to always terminate for any test case input.

The control program implements this logic by incorporating a two-level thread.

The first level thread is to parallelize multiple SUT implementation. Each JS

engine has its separate shell program. The control program must parallelize the

test sequence at this level to allow the test to execute parallelly. The first-level

thread is responsible for spawning the child process and the second-level thread,

which handles interprocess communication.

The second-level thread performs the interprocess communication by reading

the output from the child process. The I/O operation is handled in a separate

thread to allow non-blocking I/O operation and allow the first-level thread to

monitor the state of the child process. The control program uses this programming

design due to the unavailability of asynchronous I/O operation in the C++ standard

library.

Figure 4.4 presents the swimlane diagram for the positive logic of a terminat-

ing test case. Figure 4.5, on the other hand, shows the logic of a non-terminating
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Listing 4.48. Spawning the child shell process (runner-coordinator.cpp)

auto SpawnTester(std::string const& path, std::string const& input_wasm,
std::string const& mem_path, std::string const& arg_seed) ->
std::tuple<pid_t, int> {

↪→

↪→

pid_t pid;

// Prepare pipe
int fd[2];
pipe(fd);

// Split
pid = fork();

if(pid == 0) {
// Child process
close(fd[0]); // Close STDIN

// Copy to the common file descriptor
dup2(fd[1], COMMON_FILE_DESCRIPTOR);

// Redirect stdout and stderr to /dev/null so it is not
// going to be printed in the controller program
int stdnull = open("/dev/null", O_RDONLY);
dup2(stdnull, STDOUT_FILENO);
dup2(stdnull, STDERR_FILENO);

// Close unused file descriptor
close(fd[1]);
close(stdnull);

// Execute the shell program and supply the argument
execl(path.c_str(), path.c_str(),

"-mode", "single",
"-input", input_wasm.c_str(),
"-memory", mem_path.c_str(),
"-arg-seed", arg_seed.c_str(),
(char*)0);

std::abort(); // Error, not going to reach here if execl succeed
} else {
// Parent process
close(fd[1]); // Close write
return { pid, fd[0] }; // Return process id and pipe fileno

}
}

test case, in which the control thread must take over the control and forcefully

terminate the child process. The process is repeated for every test iteration.

4.8.3 Database Design

The control program handles the persistence of the result data. The program

stores the result data from every test iteration in non-volatile storage to allow

result analysis. The persistence uses a Relational Database, which provides a

well-established framework to store and operate structured data.

In order to minimize the system requirement, the test system uses an in-

process database management system (DBMS) with the SQLite library. The
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Listing 4.49. Using the file descriptor in the shell program (runner-common.cpp)

std::ostream* output = &std::cout; // Default fallback to STDOUT

// Check if the FD is opened by the parent process
auto flag = fcntl(COMMON_FILE_DESCRIPTOR, F_GETFD);

// Wrap in C++ STL stream
__gnu_cxx::stdio_filebuf<char> filebuf_out(COMMON_FILE_DESCRIPTOR,

std::ios::out);↪→

std::ostream os(&filebuf_out);

// Use the specific FD if it is available
if(flag >= 0) {
output = &os;

}

Figure 4.4. Swimlane diagram for control thread logic

SQLite allows a lightweight DBMS to be embedded into a program without

requiring a standalone process to manage the database. It also provides an

extensive SQL processing that is satisfactory for this experiment. The system

also uses a C++ Object-Relational Mapping (ORM) library to support the database

programming. This experiment uses a Quince-Lib library, which provides an

adequate and intuitive API to operate an SQLite database in C++ programs.

The database is designed to persist the result data obtained from the test

procedure. It stores the configuration of the test, which includes the seed used to

generate the test case. The database design is normalized into separate entities

to minimize the redundancy and duplication of the data. This approach reduces

the disk space required to store the result data, which can grow to hundreds of

megabytes after executing the test multiple times. Figure 4.6 shows the database

design used in the testing system.

From the database design, we can create a SQL query to search the memory
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Figure 4.5. Swimlane diagram for control thread logic in case of non-terminating
test

difference between two implementations that occurs in the experiment. Listing

4.50 shows the query to create the intermediate view to obtain this information.

The memorydiff_with_impl view joins the memory differences in the experiment

with the information of the SUT, i.e., the JS engine. The memorydiff_flat_match

joins the result for each JS engine into a single table. Finally, the memorydiff_search

view obtains the differences between both implementations. This same query

is also used to obtain the global variable difference since it has the same entity

structure.

Listing 4.50. SQL to query the memory difference

CREATE VIEW "memorydiff_with_impl" AS
SELECT m1.id AS id, functioncall_id, implementation_id, m1.'index', 'before',

'after'↪→

FROM testcases t, function_call fc, testcase_call tc, memorydiff_call m1
WHERE t.id = tc.testcase_id
AND fc.id = tc.functioncall_id
AND tc.id = m1.testcasecall_id;

CREATE VIEW "memorydiff_flat_match" AS
SELECT m1.functioncall_id, m1.'index', m1.'before' AS v8_before, m1.'after'

AS v8_after, m2.'before' AS sm_before, m2.'after' AS sm_after, m1.id,
m2.id

↪→

↪→

FROM memorydiff_with_impl m1, memorydiff_with_impl m2
WHERE m1.implementation_id = 1 AND m2.implementation_id = 2
AND (m1.functioncall_id = m2.functioncall_id AND m1.'index' = m2.'index');

CREATE VIEW "memorydiff_search" AS
SELECT * FROM memorydiff_flat_match
WHERE v8_before != sm_before OR v8_after != sm_after;
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Figure 4.6. Database design used in the experiment
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Chapter 5

Analysis

"In testing terms, the exploratory tester learns about the system under

test, and uses this new knowledge to explore the system more deeply with

more focused tests. Because exploratory testing is also highly creative,

it is difficult to describe the process precisely. It clearly depends on the

attitude and motivation of the tester, but it also depends on the nature of

the system under test and on the priorities of the system stakeholders."

"Exploratory Testing from Software Testing: A Craftman’s Approach"

Paul C. Jorgensen [30]

This section describes the result of conducting the experiment using the

developed test system. Section 5.1 briefly describes the execution environment

and the test result. Section 5.2 presents the analysis of prepared test cases

in order to understand the differences between both JS engine in generating

the machine instruction. This analysis gives a background knowledge before

analyzing the identified cases from the differential testing via static and dynamic

analysis process. Finally, Section 5.3 presents the identified difference between

the JS engines and how to reproduce it in the actual browser execution.

5.1 Running the Experiment

5.1.1 Experiment Environment

The experiment is conducted in a Intel-based x64 system. The machine uses six

cores and 12 threads Intel Core i7-5820K processor, with stock speed 3.30 GHz

overclocked to 4.40 GHz. The experiment sources, including the JS engines, are

compiled with Clang/LLVM version 10, running on OpenSuse Linux with kernel

version 5.7.

It is important to understand that due to the use of the random generator in

this experiment, the test case presented in this experiment may not be regenerated

in different machines. The generator program described in Section 4.6 relies on
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several mechanisms which may be optimized by compilers, such as inlining

function call and template instantiation. These optimizations may change the

code path of the program generation, which ultimately affects the final generated

program. For addressing this limitation, the source code repository for this thesis

includes every identified test case that is discussed in this thesis.

5.1.2 Experiment Result

The experiment generates over 400.000 random Wasm program. The program size

ranges from 1KB to 6KB. The program consists of one to four different functions,

which produces around 1KB to 2KB machine instruction per function. From

these 400.000 random programs, seven cases are identified that produce different

behavior in both JS engines.

5.2 Differentiating Wasm Instruction

This section presents the differences between JS engine implementation by using

a crafted test case. This experiment aims to identify the fundamental behavior

of the JS engine in compiling the Wasm program. It is more difficult to identify

these basic behaviors by directly using a randomly generated Wasm program.

Therefore, these experiments use specifically crafted test cases that trigger the

basic behavior, such as calling convention, register scheduling, and instruction

selection.

This experiment also aims to provide a clear picture of the JS engines’ internal

implementation, which is mostly lacking in documentation. The disassembly

program shown in this section is manually analyzed and properly labeled to help

the reader understands the assembly program easily. However, only selected

Wasm instructions presented here, which only to give a rough picture of how the

JS engine generates the machine instruction.

5.2.1 Calling Convetion

This comparison is to differentiate the calling convention used in the Wasm

implementation. We are interested in the JS engine mechanism in Wasm function

compilation. As the engine generates new machine instruction based on the

loaded program by its JIT or AOT compiler, it must follow a specific convention

for the engine to execute the generated instruction.

The comparison uses a predefined Wasm module program, where we obtain

the resulting machine instruction through our instrumented API. We can then

compare the generated machine instruction to spot the basic differences between

the engine implementation. Both engines lack of complete documentation of the

internal calling convention. Hence, we can use this experiment to identify the

internal mechanism of the JS engine.

104



Analysis

The first experiment is identifying the convention for supplying simple inte-

gral arguments. We prepared Wasm functions, which accepts one to seven integer

arguments, assuming that at some point, the compiler spills arguments on the

stack. Listing 5.1 shows an example of the Wasm program.

Listing 5.1. Example of Wasm program to examine the calling convention
(calling-convention.wat)
(module

(func (export "parami1")
(param i32) (result i32)

local.get 0
local.get 0
i32.add)

(func (export "parami7")
(param i32 i32 i32 i32 i32 i32 i32) (result i32)

local.get 0
local.get 1
local.get 2
local.get 3
local.get 4
local.get 5
local.get 6
i32.add
i32.add
i32.add
i32.add
i32.add
i32.add))

By inspecting the compiled machine instruction, we can obtain the subroutine

structure of the compiled function. We can also infer the calling convention used

by the engine for the compiled Wasm program. Table 5.1 compares the subroutine

structure between the SpiderMonkey and V8 engines. SpiderMonkey generates

a function prologue that stores the r14 and rbp register. On the other hand, V8

only stores the rbp register in its prologue.

Table 5.1. Comparison of the compiled Wasm subroutine for each engines

SpiderMonkey V8
push r14
push rbp
mov rbp,rsp
...
pop rbp
pop r14
ret

push rbp
mov rbp,rsp
push 0xa
push rsi
...
mov rsp,rbp
pop rbp
ret 0x10

By examining the differences between functions that have different parameter

counts, we can obtain the calling convention used by the JS engine. Figure 5.1

shows the calling convention comparison between the engines. SpiderMonkey

uses the System V AMD64 ABI calling convention that Linux/POSIX environment

uses. Instead of using a well-known calling convention, V8 uses its own calling

convention specification.
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Figure 5.1. Argument order in the register for the function call

In addition, the V8 subroutine call is using the callee clean-up convention.

It is shown in the generated instruction for a function that takes more than five

parameters. The function epilogue uses a return instruction with the offset value

to move the stack pointer, which equals to the number of spilled argument on the

stack. Since the SpiderMonkey adheres to the AMD64 ABI calling convention, the

generated instruction uses the caller clean-up convention. For the return value,

both uses rax register.

Figure 5.2 shows the stack layout of the compiled Wasm subroutine used in

both engines. From the stack examination, we found that despite the SpiderMon-

key subroutine prolog stores the previous rbp register. The caller of the Wasm

instruction from the JS engine realm does not use a base pointer, at least on the

point when the execution enters the Wasm realm. On the other hand, V8 engine

utilizes the base pointer so that it is possible to trace the trail of the stack frame.

Figure 5.2. Stack frame of the called Wasm function

Based on this inspection, both engines do not seem to implement a stack
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guard for the compiled program. It is possible since the Wasm architecture does

not allow direct operation with the stack, such as allocating a buffer. Therefore,

the risk of corrupting the main call stack from the Wasm program is minimal.

5.2.2 Arithmetic Instructions

This comparison is to differentiate the instruction choice between JS engines for

arithmetic operations. Although it might seem trivial, the JS engines may have

their own instruction selection to generate the final machine instruction.

Table 5.2 presents the comparison of the addition, subtraction, and multi-

plication operation between two engines. The arithmetic instruction is enclosed

in a simple Wasm function with two integer parameters. Therefore, the register

selection refers to the calling convention described in Section 5.2.1. The resulting

arithmetic instruction is the same for both 32-bit and 64-bit integers, which differs

in the choice of the operand size. For the 64-bit counterpart, it results in a slightly

larger code since it has to specify the 64-bit integer name, e.g., rax instead of eax.

The SpiderMonkey seems to generate unnecessary register copy, which makes

it looks inefficient compared to V8. Although the copy instruction is necessary to

store the value in the designated return value register (eax), it can be simplified

without an intermediate register (ecx). The operand should be copied directly

from edi, which is the first parameter, to eax.

Table 5.2. Comparison of integer arithmetic instruction in Wasm

SpiderMonkey V8
(i32.add (local.get 0)(local.get 1))

mov ecx,edi
mov eax,ecx
add eax,esi

add eax,edx

(i32.sub (local.get 0)(local.get 1))

mov ecx,edi
mov eax,ecx
sub eax,esi

sub eax,edx

(i32.mul (local.get 0)(local.get 1))

mov ecx,edi
mov eax,ecx
mul eax,esi

mul eax,edx

Table 5.3 shows the division instruction in Wasm. Wasm provides two divi-

sion instruction flavors: unsigned and signed. It is expected as the majority of

hardware differentiates these two instructions. Both implementations perform

divisor checking prior to executing the instruction. It needs to raise the exception

trap for the divide-by-zero condition. In a native program, this exception is raised

trough the operating system exception, which is propagated via an interrupt.

Typically, unhandled exception in a native program results in a program crash.

Since Wasm emulates the machine inside the JS engine, this exception control flow
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must not happen, and the engine must handle the condition properly. Without this

mechanism, the divide-by-zero exception passes through the interrupt channel,

which eventually crashes the entire JS engine process.

Table 5.3. Comparison of integer division instruction in Wasm

SpiderMonkey V8
(i32.div_u (local.get 0)(local.get 1))

mov rax,rdi
test esi,esi
jne not_zero
ud2

not_zero:
xor edx,edx
div esi

mov rbx,rdx
cmp ebx,0x0
je div_by_zero
xor edx,edx
div ebx
...

div_by_zero:
call TrapDivByZero

(i32.div_s (local.get 0)(local.get 1))

mov rax,rdi
test esi,esi
jne not_zero
ud2

not_zero:
cmp edi,0x80000000
jne divide
cmp esi,0xffffffff
jne divide
ud2

divide:
mov rax,rdi
cdq
idiv esi

mov rbx,rdx
cmp ebx,0x0
je div_by_zero
cmp ebx,0xffffffff
je negative

divide:
cdq
idiv ebx
...

negative:
cmp eax,0x80000000
je overflow
jmp divide

div_by_zero:
call TrapDivByZero

overflow:
call TrapDivUnrepresentable

Both engines have a different mechanism to raise a trap. In SpiderMonkey, it

relies on ud2 instruction. It is an "undefined instruction," provided explicitly by the

x86 architecture, to trigger the undefined opcode exception. The operating system,

in this case, POSIX, raises SIGILL illegal for the instruction. SpiderMonkey

catches this signal and transfer the control to the WasmTrapHandler function to

handle the trap [WasmSignalHandler.cpp:926].

The V8 engine handles this trap condition by calling the respective subroutine

for the trap type. The subroutine itself does not return to the caller and return

the control back to the JS realm. Since V8 differentiates every trap type, it

can provide the trap information to the engine with appropriate error code and

message. It is not the case for the SpiderMonkey since the hardware exception

erases the semantic of the cause of the trap.

For the signed division instruction, both engines perform an additional check

of dividing maximum negative value (−232 in 32-bit) with −1. Since this division

overflows, it yields a trap since the division result is not representable in 32-bit

signed integer, which has a maximum value of 232 − 1.
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For the unsigned remainder instruction, both engines implement the same

instruction as in unsigned division instruction. The only addition is to copy the

remainder result to the target return value register. We can assume that this copy

operation is elided by the JS engine when the result of the operation is chained to

other instructions.

Table 5.4. Comparison of integer remainder instruction in Wasm

SpiderMonkey V8
(i32.rem_u (local.get 0)(local.get 1))

mov rax,rdi
test esi,esi
jne not_zero
ud2

not_zero:
xor edx,edx
div esi
mov eax,edx

mov rbx,rdx
cmp ebx,0x0
je TrapDivByZero
xor edx,edx
div ebx
mov rax,rdx
...

div_by_zero:
call TrapDivByZero

(i32.rem_s (local.get 0)(local.get 1))

mov rax,rdi
test esi,esi
jne not_zero
ud2

not_zero:
test edi,edi
js check_signed
mov rdx,rsi
sub edx,0x1
test esi,edx
jne divide_unsigned
and edx,edi
jmp return

divide_unsigned:
xor edx,edx
idiv esi
jmp return

check_signed:
cmp edi,0x80000000
je is_signed

divide_signed:
cdq
idiv esi

return:
mov eax,edx
...

is_signed:
cmp esi,0xffffffff
jne divide_signed
xor edx,edx
jmp return

mov rbx,rdx
cmp ebx,0x0
je div_by_zero
cmp ebx,0xffffffff
je zero_rem
cdq
idiv ebx

return:
mov rax,rdx
...

zero_rem:
xor edx,edx
jmp return

div_by_zero:
call TrapDivByZero

The situation differs in the signed remainder instruction. SpiderMonkey

implements a highly optimized operation to avoid unnecessary use of the division

instruction. It checks if the divisor is 1 or −1, which directly returns zero without

executing the division. V8 also performs a similar check, but it only works for −1
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value. The comparison is shown in Table 5.4.

Table 5.5 shows the comparison of floating-point operation for the 32-bit

floating-point type. The 64-bit variants only differ on the selected instruction,

which uses the double-precision variants instead of the single-precision one. V8

and SpiderMonkey use different instruction encoding for floating-point instruction.

V8 uses a three-operands floating-point instruction, while SpiderMonkey uses the

two-operands variants. The slight difference appears in the floating-point division

operator, in which the V8 emits a copy instruction from the result register to itself.

Table 5.5. Comparison of floating-point instruction in Wasm

SpiderMonkey V8
(f32.add (local.get 0)(local.get 1))

addss xmm0,xmm1 vaddss xmm1,xmm1,xmm2

(f32.sub (local.get 0)(local.get 1))

subss xmm0,xmm1 vsubss xmm1,xmm1,xmm2

(f32.mul (local.get 0)(local.get 1))

mulss xmm0,xmm1 vmulss xmm1,xmm1,xmm2

(f32.div (local.get 0)(local.get 1))

divss xmm0,xmm1 vdivss xmm1,xmm1,xmm2
vmovaps xmm1,xmm1

5.2.3 Control Structure Instructions

This experiment compares the basic control structure in Wasm. This experiment

uses the example program previously described in section 2.2.4. This section

presents four examples, which include basic block, conditional block, do-while

equivalent block, and while with break instruction.

Basic Block
This test case uses the example code presented in Listing 2.7. This test case

should demonstrate the behavior of the simplest control flow block, which involves

a conditional and a jump. Table 5.6 presents the comparison of the resulting

machine instruction between the engines.

From the comparison, it is apparent that the SpiderMonkey engine uses a very

rigorous optimization mechanism. It avoids the division instruction altogether to

compute the remainder value for the conditional logic. Instead of using division

instruction, which tends to be costly, it uses a combination of multiplication,

bit-shift, and addition.

The resulting instruction from the V8 also tries to do optimization, similar

to the remainder instruction presented in Table 5.4. However, this optimization

leads to a dead code path, because the divisor, which is stored in ecx, is a constant.

Therefore, the control never takes the jump instruction to the label. The V8,

nevertheless, optimizes the multiplication by 3 with a lea instruction, which
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Table 5.6. Comparison of basic control structure in Wasm

SpiderMonkey V8
mov ebx,edi
mov ecx,ebx
mov eax,0x66666667
imul ecx
sar edx,1
mov eax,ecx
sar eax,0x1f
sub edx,eax
imul eax,edx,0xfffffffb
add eax,ecx
test eax,eax
je exit
mov eax,ebx
imul eax,eax,0x14
mov ebx,eax

exit:
mov eax,ebx
imul eax,eax,0x3

mov rbx,rax
mov ecx,0x5
cmp ecx,0xffffffff
je zero
mov rax,rbx
cdq
idiv ecx

cond:
cmp edx,0x0
je exit
imul ebx,ebx,0x14

exit:
lea eax,[rbx+rbx*2]
...

zero:
xor edx,edx
jmp cond

works perfectly for this case.

Apart from the optimization of the remainder instruction, both engines im-

plement the basic jump instruction in a similar fashion. We can expect this as the

test case program has an elementary control structure without complex control

flow.

Simple Conditional
This test case uses the simple conditional example from Listing 2.8. Despite using

a different control structure instruction, the resulting instruction is equivalent to

the instruction with basic jump instruction presented in Table 5.6. Therefore, we

can assume that internally, the simple conditional instruction translates similarly

to the basic block, which results in the same final instruction.

Do While
This test case uses the do-while example from Listing 2.10. As explained before,

this type of loop checks the condition at the end of the block. Hence, this loop is

the simplest form of an iteration in an assembly program, which only requires a

single backward jump to form the loop. Table 5.7 compares the resulting machine

instruction.

We can observe that V8 puts a stack-guard mechanism in each of the loop iter-

ations. The stack-guard mechanism calls the internal V8 engine implementation

named Runtime_WasmStackGuard [runtime-wasm.cc:173]. This function resides in

the JS engine runtime, and the Wasm code uses a trampoline to transfer the

control from Wasm realm to the runtime.

The SpiderMonkey compiled instruction also seems to perform a similar

action. It performs some checking at the beginning of the loop. In case the

check fails, the execution triggers a trap. The conditional instruction checks

the data pointed by r14 register. Based on the SpiderMonkey source for the
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Table 5.7. Comparison of do-while structure in Wasm

SpiderMonkey V8
mov eax,0x3

loop_block_check:
cmp DWORD PTR [r14+0x38],0x0
je loop_block
ud2

loop_block:
imul eax,esi
mov ecx,edi
add ecx,0x1
cmp edi,0x64
jge loop_exit
mov edi,ecx
jmp loop_block_check

loop_exit:
imul eax,ecx

mov ebx,0x3
jmp check_stack_guard
nop WORD PTR [rax+rax*1+0x0]
xchg ax,ax

loop_block:
mov rbx,rdi
mov rax,rcx

check_stack_guard:
mov rcx,QWORD PTR [rsi+0x23]
cmp rsp,QWORD PTR [rcx]
jbe do_stack_guard

loop_code_start:
lea ecx,[rax+0x1]
mov rdi,rdx
imul edi,ebx
cmp eax,0x64
jl loop_block
imul edi,ecx
...

do_stack_guard:
mov QWORD PTR [rbp-0x18],rax
mov QWORD PTR [rbp-0x20],rdx
mov QWORD PTR [rbp-0x28],rbx
call WasmStackGuard
mov rax,QWORD PTR [rbp-0x18]
mov rdx,QWORD PTR [rbp-0x20]
mov rbx,QWORD PTR [rbp-0x28]
mov rsi,QWORD PTR [rbp-0x10]
jmp loop_code_start

x64 assembler, SpiderMonkey reserves r14 to store TLS data for Wasm function

[Assembler-x64.h:223].

The TLS data, which is represented by js::wasm::TlsData struct

[WasmTypes.h:2832], contains several important data for the current Wasm thread.

The check refers to the offset 0x38, which is the interrupt field. Therefore, we can

assume that the SpiderMonkey changes this interrupt flag in case of a detected

fault, and halt the Wasm execution by trigerring a trap.

While-Loop with Break
This test case uses a more advanced construct of the loop, as presented in Listing

2.14. This type of loop checks the condition at the beginning of the loop. It also has

a condition that breaks the loop in the middle. Table 5.8 presents the comparison

from both engines.

Similar to the do-while loop construct, both engines install integrity checking

code in each loop iteration. However, the compiled function in the V8 has a more

complex control flow graph compared to the SpiderMonkey. This characteristic

may indicate that SpiderMonkey generates a more efficient and compact machine

instruction compared to V8.

SpiderMonkey control flow is more faithful to the Wasm program counterpart.
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Table 5.8. Comparison of do-while with break in Wasm

SpiderMonkey V8
mov ebx,edi
cmp edi,0x64
jle loop_init
mov ecx,0x3
mov ebx,edi
jmp loop_exit

loop_init:
mov eax,edi
add edi,0xffffffff
mov edx,esi
mov ebx,edi
imul edx,eax
add edx,0xffffff9c
mov ecx,0x3

loop_block_check:
cmp DWORD PTR [r14+0x38],0x0
je loop_entry
ud2

loop_block:
add edx,esi
test edx,edx
je loop_end
imul ecx,esi
mov eax,ebx
add eax,0x1
cmp eax,0x64
jge loop_end
mov ebx,eax
jmp loop_block_check

loop_end:
mov eax,ebx
add eax,0x2
mov ebx,eax

loop_exit:
mov eax,ebx
imul eax,ecx

sub rsp,0x20
cmp eax,0x64
jg skip_loop
mov rbx,rdx
imul ebx,eax
sub ebx,0x64
lea ecx,[rax-0x1]
mov edi,0x3
jmp check_stack_guard
nop WORD PTR [rax+rax*1+0x0]

loop_reenter:
mov rcx,rdi
mov rdi,r8

check_stack_guard:
mov r8,QWORD PTR [rsi+0x23]
cmp rsp,QWORD PTR [r8]
jbe do_stack_guard

loop_code_start:
add ebx,edx
je breaking_loop
mov r8,rdx
imul r8d,edi
lea edi,[rcx+0x1]
cmp edi,0x64
jl loop_block
mov rdi,r8

breaking_loop:
lea eax,[rcx+0x2]
jmp loop_exit

skip_loop:
mov edi,0x3

loop_exit:
imul edi,eax
mov rax,rdi
...

do_stack_guard:
mov QWORD PTR [rbp-0x18],rcx
mov QWORD PTR [rbp-0x20],rdi
mov QWORD PTR [rbp-0x28],rdx
mov QWORD PTR [rbp-0x30],rbx
call WasmStackGuard
mov rcx,QWORD PTR [rbp-0x18]
mov rdi,QWORD PTR [rbp-0x20]
mov rdx,QWORD PTR [rbp-0x28]
mov rbx,QWORD PTR [rbp-0x30]
mov rsi,QWORD PTR [rbp-0x10]
jmp loop_code_start

The original Wasm program has seven basic blocks, which is exactly equivalent

with the SpiderMonkey generated program. The V8 compiled instruction uses

more branching, thus creating more basic blocks. Although the control flow is

equivalent, the additional basic block seems to be introduced due to the register

scheduling in the generated instruction.
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5.2.4 Memory Instruction

This test case compares the memory operation in the Wasm program. The test

program includes a single memory load, store, and a combination of both. The

test program also experiments with the offset specifier in the Wasm instruction.

Table 5.11 presents a comparison of the resulting memory load operation.

Table 5.9. Comparison of memory load operation in Wasm

SpiderMonkey V8
((i64.load offset=0 (local.get 0))

mov eax,DWORD PTR [r15+rdi*1] mov rbx,QWORD PTR [rsi+0xb]
mov rdx,QWORD PTR [rsi+0x13]
sub rdx,0x3
mov ecx,eax
cmp rcx,rdx
jae out_of_bound
mov eax,DWORD PTR [rbx+rcx*1]
...

out_of_bound:
call WasmTrapMemOutOfBounds

((i64.load offset=1024 (local.get 0))

mov rax,QWORD PTR [r15+rdi
*1+0x400]

mov rbx,QWORD PTR [rsi+0xb]
mov rdx,QWORD PTR [rsi+0x13]
sub rdx,0x407
mov ecx,eax
cmp rcx,rdx
jae out_of_bound
mov rax,QWORD PTR [rcx+rbx

*1+0x400]
...

out_of_bound:
call WasmTrapMemOutOfBounds

V8 accesses Wasm linear memory from a pointer that is stored in the rsi

register. rsi register itself contains a pointer to the Context object. V8 sets the

register in the trampoline function before jumping to the Wasm realm, as indi-

cated in the Generate_JSEntryTrampolineHelper function. The offset itself points

to the memory_start and memory_size field in WasmInstanceObject field. The

memory_start pointer stores the address to the linear memory, while memory_size

is used to perform access bound checking.

From the listing, it is apparent that V8 generates a bound-checking instruc-

tion in the compiled instruction. SpiderMonkey, however, relies on the hardware

interrupt again to detect the invalid memory access. SpiderMonkey mapped a

memory region that is used for Wasm linear memory region. The size of the region

is equal to the current size of the Wasm memory. SpiderMonkey stores the start

address of the Wasm memory in r15 register.

SpiderMonkey takes advantage of 64-bit address space to seal the border

between Wasm memory and the rest of memory. Since Wasm address space is

limited to 32-bit, a Wasm program cannot access the process memory beyond
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the 32-bit limit. The actual address of the Wasm memory also cannot underflow

because the negative value in the index is not sign-extended in the final address

computation. With these properties, SpiderMonkey can rely on the segmentation

fault signal from the operating system to identify invalid memory access and

handle the error accordingly.

Table 5.10. Comparison of memory store operation in Wasm

SpiderMonkey V8
((i64.store offset=0 (local.get 0)(local.get 1))

mov QWORD PTR [r15+rdi*1],
rsi

mov rbx,QWORD PTR [rsi+0xb]
mov rcx,QWORD PTR [rsi+0x13]
sub rcx,0x7
mov eax,eax
cmp rax,rcx
jae WasmTrapMemOutOfBounds
mov QWORD PTR [rbx+rax*1],rdx
...

out_of_bound:
call WasmTrapMemOutOfBounds

((i64.store offset=0 (local.get 0)(i64.add (i64.load offset=0 (
local.get 0))(local.get 1)))

mov rax,QWORD PTR [r15+rdi*1]
add rax,rsi
mov QWORD PTR [r15+rdi*1],rax

mov rbx,QWORD PTR [rsi+0xb]
mov rcx,QWORD PTR [rsi+0x13]
sub rcx,0x7
mov eax,eax
cmp rax,rcx
setb cl
movzx ecx,cl
cmp ecx,0x0
je out_of_bound
mov rsi,QWORD PTR [rbx+rax*1]
cmp ecx,0x0
je out_of_bound
add rdx,rsi
mov QWORD PTR [rbx+rax*1],rdx
...

out_of_bound:
call WasmTrapMemOutOfBounds

Table 5.11 presents the comparison of memory store operation and chaining

memory load and store operation. Both engines use a separate memory load and

store operation independently. Instead of emitting add instruction with a memory

operand, both engines load the memory and store it in the intermediate register

before performing the addition.

5.2.5 Global Variable Instruction

This test case examines the JS engine compilation for the global variable storage.

The test uses the Wasm program in Listing 5.2. It examines basic get and set

operation on global variables. Table 1 presents the result of the compilation.
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Listing 5.2. Example of Wasm program to examine the global variable (calling
-convention.wat)
(module

(import "" "g_i32" (global $g_i32 (mut i32)))
(import "" "g_i32_2" (global $g_i32_2 (mut i32)))
(import "" "g_i32_3" (global $g_i32_3 (mut i32)))
(import "" "g_i64" (global $g_i64 (mut i64)))
...

)

Table 5.11. Comparison of global variable operation in Wasm

SpiderMonkey V8
(global.set $g_i32 (local.get 0))

mov rax,QWORD PTR [r14+0x60]
mov DWORD PTR [rax],edi

mov rbx,QWORD PTR [rsi+0x57]
mov rbx,QWORD PTR [rbx]
mov DWORD PTR [rbx],eax

(global.set $g_i32 (i32.add (global.get $g_i32_2)(global.get
$g_i32_3)))

mov rax,QWORD PTR [r14+0x68]
mov eax,DWORD PTR [rax]
mov rcx,QWORD PTR [r14+0x70]
mov ecx,DWORD PTR [rcx]
add eax,ecx
mov rcx,QWORD PTR [r14+0x60]
mov DWORD PTR [rcx],eax

mov rax,QWORD PTR [rsi+0x57]
mov rbx,QWORD PTR [rax+0x8]
mov ebx,DWORD PTR [rbx]
mov rdx,QWORD PTR [rax+0x10]
mov edx,DWORD PTR [rdx]
mov rax,QWORD PTR [rax]
add ebx,edx
mov DWORD PTR [rax],ebx

Both engines use the same approach for implementing Wasm global variables.

The global variable is stored in some memory location, which is accessible through

a pointer table. The table entry is ordered based on the index of the global variable.

The JS engine computes the offset to the table to retrieve the address of the global

variable storage and uses basic mov instruction to retrieve or store values.

Since the implementation uses a pointer table, accessing global variables,

require two indirections: resolving the pointer table, and access the actual global

variable storage. The only difference between the engines is the location to store

the pointer table. In V8, it is stored in the WasmInstanceObject that is pointed at

rsi register. While in SpiderMonkey, it uses a dedicated r14 register.

5.3 Investigating Differences Found

5.3.1 Sample Description

The experiment observed a different behavior in the experiment with the con-

figuration, as described in Table 5.12. The module has three different functions,

where the function 0 triggers the difference. The differences occurred five times

in the same memory index, in which the difference can be observed in the very
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first iteration of the fuzzing loop.

Table 5.12. Sample description for Sample Case #1

Seed Step Block Size Arg Seed Memory
227760203 4719 8192 2883752934 rand3.mem
Signature
(func $func0 (param $p0 f64)(param $p1 i32)(result i32))

(func $func1 (param $p0 f32 f32 i32 i32 f64 f32 f64 f64
i64 i64 f64 i64 i64 f32 f64))

(func $func2 (param f64, f32, f32, i32, i64, f32, f32, f32,
f32, f64, i32, i32)(result f64))

5.3.2 Dynamic Analysis of the Module

We used dynamic analysis to identify the point in which the Wasm program

modifies the memory value. We put a watchpoint on the Wasm memory address,

which stops after the program modifies a specific location. From this watchpoint,

we identified the instruction that changes the memory value, as presented in

Table 5.13.

Table 5.13. The problematic instruction for Case #1

SpiderMonkey V8
movss dword ptr[r15+rax+16A38h

],xmm1
vmovssdword ptr[rbx+rdi+16A38h

],xmm7

The instruction stores a value in a floating-point register to the memory.

The instruction itself uses an offset value, which can give a hint of the Wasm

instruction that triggers the difference. The offset is 0x16A38, which is 92728.

Therefore, we need to find the floating-point store instruction with that offset on

the original Wasm program. Listing 5.3 presents the snippet of the function that

leads to the said instruction. Fortunately, the identified instruction is not far from

the function entry point, which can help to trace the instruction evaluation.
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Listing 5.3. Snippet of the Wasm that reach to the differing behavior
(module

(import "" "global10" (global $.global10 (mut f32)))
(func $func0 (param $p0 f64) (param $p1 i32) (result i32)

global.get $.global10
f64.promote_f32
i32.trunc_f64_u
i32.const 1310720
i32.rem_u
f32.const 0x1.68p-144 (;=6.30584e-44;)
i32.const 0
i32.const 0
br_if 0 (;@0;)
drop
f32.const 0x0p+0 (;=0;)
i32.const 0
i32.const 1310720
i32.rem_u
i64.const 0
i64.store8 offset=235
f32.sub
i32.const 0
i32.const 0
i32.eq
memory.grow
i32.const 1310720
i32.rem_u
i32.load8_s offset=645820
f32.reinterpret_i32
f32.trunc
f32.max
f32.store offset=92728 align=2
...

))

5.3.3 Static Analysis of the Module

From the identified instruction, we can perform static analysis on the Wasm

program. The static analysis allows us to trace the logical structure of the

program to reach the remarked instruction. Wasm semantic structure, which

resembles an expression tree, also enables the static analysis to describe the code

path easily. Figure 5.3 presents the expression tree of the Wasm program that

reaches to the memory write instruction that triggers the difference.

From the expression tree, we can observe that the value stored in the store

instruction originates from the floating-point max instruction. The max instruc-

tion itself selects the maximum value between a constant and a value loaded from

memory. The program loads 8-bit value from memory, and bit-cast the value to

the floating-point type.

On a side note, the remainder operation that produces the index for the store

operation is the instruction generated by our modified fuzzer generator. This

instruction is used to set the upper bound of the memory access, which prevents
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Figure 5.3. Expression tree to the store instruction

Figure 5.4. Other terminating expression that does not affect the store instruc-
tion

the Wasm program from unnecessarily terminates due to invalid memory access

for every generated program. The other expressions presented in Figure 2 do not

participate in forming the final value for the floating-point store instruction.

By revisiting the dynamic analysis, we found that the load 8-byte value

produces 0xe3 value. Since the load instruction uses the signed variant, the final

32-bit value is 0xffffffe3, because of the sign-extension operation. This value is

reinterpreted directly as a single-precision floating-point value. The 0xffffffe3

is translated to a Not-a-Number (NaN) value in floating-point. Therefore, the

subsequent max instruction also yields a NaN value.

The differences occur in how both engines treat NaN value in the f32.max

instruction. While SpiderMonkey directly uses the NaN value from the previous

instruction, V8 generates a canonical Quiet-NaN value, which is 0xffc00000.

Therefore, we can observe the difference between SpiderMonkey and V8 on the

final value that is written to memory.
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Listing 5.14 compares the generated machine instruction that performs

this operation. Both engine checks whether the comparison is valid through

the ucomiss instruction. In V8, when the comparison detects an unordered

comparison, which is indicated by the positive flag9, the control jumps to an

instruction that overwrites the floating-point register to the canonical NaN value.

V8 uses divide-by-zero to generate its canonical NaN value. This behavior is not

present in the SpiderMonkey, where the program uses the NaN value obtained

from the memory load.

Table 5.14. Handling of NaN value in the f32.max instruction (Note: Some V8
codes are redacted since it is related to the memory bound checking)

SpiderMonkey V8
movsx eax,byte ptr[r15+rax

+9DABCh]
movd xmm0,eax
roundss xmm0,xmm0,3
movss xmm1,[rsp+24h]
subss xmm1,[rsp+1Ch]
subss xmm0,[rsp+1Ch]
ucomiss xmm1, xmm0
jnz compute_max
jp max_is_unordered
andps xmm1,xmm0
jmp end_max_inst

max_is_unordered:
ucomiss xmm1,xmm1
jp end_max_inst

compute_max:
maxss xmm1,xmm0

end_max_inst:
mov eax,[rsp+18h+var_8]
movss dword ptr[r15+rax+16

A38h],xmm1

movsx r12d,byte ptr[r12+rdi
+9DABCh]

...
vmovd xmm0,r12d
...
vroundss xmm0,xmm0,xmm0,0Bh
...
vucomiss xmm7, xmm0
jp gen_canoncal_nan
ja short xmm7_above
jb short xmm7_below
vmovmskps r10d, xmm7
test r10b, 1
jz short xmm7_above

xmm7_below:
vmovss xmm7,xmm7,xmm0

xmm7_above:
...
vmovss dword ptr [rbx+rdi+16

A38h], xmm7
...

gen_canoncal_nan:
vxorps xmm7,xmm7,xmm7
vdivss xmm7,xmm7,xmm7
jmp xmm7_above

5.3.4 Other Sample Cases

the experiment found six other test cases. All those cases are similar in nature

with the sample case presented in this section. The floating-point memory write

causes all differences in those cases. The value written by the instruction orig-

inates from invalid NaN values loaded either from random parameter value or

random memory value.

Since the root-cause is equals, this thesis is not going to discuss further the

rest of the identified cases.
9The ucomiss instruction sets the positive, zero, and carry flags in the flag register if the floating-point
operands is incomparable, i.e., unordered [27]. Therefore, the subsequent jp instruction is taken when
any of the operand is NaN.
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5.3.5 Demonstrating the Difference in Actual Browser

From this behavior, we can craft a simple Wasm program to trigger the difference.

We can use this differing characteristic to identify the environment that is exe-

cuting the Wasm module. Therefore, the Wasm module can become aware of its

execution environment without requiring any JavaScript API.

We only need to follow the expression tree previously presented. We create

a function that accepts a 32-bit integer value and also returns a 32-bit integer

value. The function performs the floating-point reinterpretation that leads to

differing NaN behavior. The function then reinterprets back the floating-point to

the integer type and returns to the caller.

The caller of the function supplies an integer value that leads to non-canonical

NaN when it is reinterpreted to a floating-point type. It then compares the result

of the function, in which a differing value indicates that the V8 engine executes

the module. Listing 5.4 presents the Wasm code, and Listing 5.5 presents the

JavaScript binding for the Wasm program.

Listing 5.4. Wasm code that is aware of its executing environment
(module

(memory 1)
(func (export "am_i_spidermonkey") (result i32)

i32.const 100
i32.const 0
i32.const -29
call $i_am_different
i32.const -29
i32.eq
select

)
(func $i_am_different (export "i_am_different") (param $input i32)

(result i32)
local.get $input
f32.reinterpret_i32
f32.const 0x1.68p-144
f32.max
i32.reinterpret_f32

)
(export "string" (memory 0))
(data $d0 (i32.const 0)

"Boo!␣The␣SpiderMonkey␣is␣not␣here.␣Poor␣you!\00")
(data $d1 (i32.const 100)

"Yes!!␣I␣am␣a␣proud␣SpiderMonkey!\00"))

This differing behavior can be demonstrated in Google Chrome version 83

and Firefox version 77. Figure 5.5 presents the result when we execute the Wasm

program from the web browser.
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Listing 5.5. JS code binding for the Wasm program in Listing 5.4

WebAssembly.compileStreaming(fetch("different.wasm"))
.then((x) => {

return WebAssembly.instantiate(x)
}).then((x) => {
var text = "";
var c_str_ptr = x.exports.am_i_spidermonkey();

// Print the C string
const buffer = new Uint8Array(x.exports.string.buffer)
while(buffer[c_str_ptr] != 0) {

text += String.fromCharCode(buffer[c_str_ptr++]);
}

var h1 = document.createElement("h1");
var node = document.createTextNode(text);
h1.appendChild(node);
document.body.appendChild(h1);

});

Figure 5.5. Demonstrating the difference in the recent browser version
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Chapter 6

Conclusion

"Program testing can be a very effective way to show the presence of bugs,

but is hopelessly inadequate for showing their absence."

Edsger Dijkstra, 1976 [47]

This chapter concludes the thesis by presenting the conclusion from the experi-

ment. Section 6.1 presents the finding from the experiment, as well as the issues

encountered during the experiment. Section 6.2 describes the author’s contri-

bution to the open-source project during the experiment development. Finally,

Section 6.3 proposes ideas to follow-up beyond this thesis research.

6.1 Experiment Result

6.1.1 Findings

After conducting the differential fuzzing experiment on the Wasm and the JS

engines, we came into several conclusions concerning the Wasm implementation.

1. Wasm is a strict specification that includes a structure validation of its

program. The Wasm validation rules verify the Wasm module to ensures

it is well-formed [22]. The JS engine strictly enforces this validation rule,

which in turn leaves no room for invalid Wasm program.

2. Wasm specification also clearly defines the program instruction semantics

[22]. The specification explicitly defines the behavior of every Wasm instruc-

tion, which the JS engines follow. Therefore, we can expect that a proper

implementor of Wasm specification must adhere to this semantic behavior.

In other words, a Wasm program must be executed equally between different

Wasm host environment.

3. However, Wasm specification also stated that several numerical instructions

are non-deterministic, for example, different NaN values [22]. This non-

deterministic behavior is demonstrated through the experiment in this
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thesis. Both JS engines discussed in this thesis employs a different approach

to determine the outcome of those non-deterministic numerical instructions.

4. The non-deterministic nature of NaN representation is specified in the IEEE

754-2019 Standard for Floating-Point Arithmetic [3]. This standard defines

a NaN representation to not only a single value constant, but a range of

values. Both JS engine deals this case differently and triggers the differences

in the execution result.

5. This experiment confirms that both JS engines produce equal semantic

behavior, which we can safely assume that they adhere to the Wasm specifi-

cation. This experiment can be a mechanism to verify the regression of the

Wasm development to ensure conformity to the Wasm specification.

6.1.2 Experiment Issues and Possible Solution

During the experiment, we encountered several issues and challenges that can be

addressed to improve the experiment. This section presents several issues and

the possible solution to address it.

Reducing Collected Data
The experiment system collected the complete result of the test case execution

because the comparison is performed at the end of the test. It created a massive

unnecessary data that became garbage because only a few relevant information

that can be gathered from the data.

We can reduce the collected data by performing the comparison right after

the test case is executed. By using this approach, we can only collect and store

relevant data, which is a test case result that is different between the two engines.

Meaningless Test Case
The test case generator selects the generated instruction through a random

process similar to rolling a dice. It selects the next instruction without considering

any context. It includes when the generator tries to generate control flow blocks.

The generator in most of the observed cases fails to generate a program

with complex control flows. Many randomly generated program with loop block

does not actually perform a loop due to no proper backward jump in the loop

block (See section 2.2.4). It can be either no branch instruction or a branch

instruction without an appropriate control loop variable. In some cases, the

randomly generated program produces infinite loop or, worse, infinite recursion.

Another problem with the test case is that it produces multiple zero constants

in the generated program. The generator terminates the generation process

when it runs out of random values to obtain. The termination is marked by

generating a constant zero instruction to complete the generation production.

Since the generation algorithm uses a tree-based recursion process, the constant

zero instruction is used as the base case of the recursion, which also ensures the

124



Conclusion

generated Wasm program remains valid.

This limitation can be addressed by improving the test case generation.

Section 6.3.1 proposes some improvements to the test case generation to produce

a more meaningful test case for the fuzz-testing.

Inconclusive Result on Comparing the Elapsed Time
The test case system tries to measure the elapsed time during the Wasm execution.

However, the result indicates a difference in the order of a hundred milliseconds,

which yields an inconclusive result. Other overheads may be present within the

invocation function that is used to call the Wasm function.

Although it is interesting to measure the performance of the generated pro-

gram between the two engines, the instrumentation proposed in this thesis cannot

produce an accurate result to observe their performance. A more thorough in-

vestigation of its internal code is required in order to perform an apple-to-apple

comparison of the generated code performance. Due to this issue, the elapsed

time result is excluded from this final thesis report.

6.2 Contribution to Open Source Project

6.2.1 V8 Commit: a40f30a

During the experiment, the writer found a bug in the random Wasm generator

in the V8 fuzzer components. The bug is caused by a boolean specialization of

a templated function. The template function calls memcpy function from random

bytes to the target return value. In the case of the boolean return value, it is

effectively similar to assigning bool variable via reinterpret_cast to unsigned

char. It is an undefined behavior in C++, which triggers various runtime errors.

It occurs especially when the compiler compiles the code in full optimization.

One of the errors is inconsistent randomization in two different randomization

executions.

6.9.1 Fundamental types [basic.fundamental]

Footnote:

50) Using a bool value in ways described by this document as "unde-

fined", such as by examining the value of an uninitialized automatic

object, might cause it to behave as if it is neither true nor false.

ISO Standard - Programming Languages — C++ (2017) [28]

The code is fixed by adding template specialization for boolean. By specializ-

ing it, the compiler is forced to explicitly convert the expression into a boolean

value. It eliminates the error caused by the undefined behavior.

The fix is subsequently removed when the boolean specialization is no longer
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Listing 6.1. Original program that causes undefined behavior

class DataRange {
template <typename T, size_t max_bytes = sizeof(T)>
T get() {
STATIC_ASSERT(max_bytes <= sizeof(T));
const size_t num_bytes = std::min(max_bytes, data_.size());
T result = T();
memcpy(&result, data_.begin(), num_bytes);
data_ += num_bytes;
return result;

}
};

Listing 6.2. Fix for bool data type

template <>
bool DataRange::get<bool>() {
return get<uint8_t>() % 2 == 0;

}

required. As of May 2020, the fuzzer generator is extended to also support

multiple return values. This enhancement erased the random boolean generation,

which was used to determine the function return. However, a static assertion is

added to ensure the function is not called with a boolean type argument.

6.2.2 V8 Commit: 2d9313e

The test case generator for the V8 fuzz testing is actively developed. In the recent

update, there was a small bug in the test case generator which prevents the

test case to be correctly generated. The bug was due to a redundant call to the

generator function. This unnecessary call does not write to the output Wasm

module, but it consumes the random data. The fix is simply by removing the

redundant function call.

6.3 Further Works and Improvement

6.3.1 Improving the Test System

This section proposes some improvements to the test system after evaluating the

experiment process conducted for this thesis work.

Improving Test Case Generator
As described in Section 6.1.2, the experiment suffers the limitation from the test

case generator that produces meaningless or simplistic test cases. This issue can

be addressed by improving the test case generator.

The first aspect that can be improved is to generate a more balanced test

case using breadth-first based algorithm. Instead of recursive depth-first based

algorithm, breadth-first based algorithm allows the expression tree to be more bal-

anced between its neighboring sub-expression. It may prevent excessive constant-
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zero instruction that terminates the expression caused by running out of random

sequences.

The challenge with this approach is that designing a breadth-first based

algorithm is more difficult compared to depth-first based one. The recursion

model used in the depth-first based simplifies the generation logic since the Wasm

instruction itself is formed as a tree-like structure. It may require a complete

rewrite of the Wasm generator to employ this approach.

Another improvement in the test case generation is to generate more contex-

tual control-flow instructions. The generator needs to be able to generate a proper

loop-control variable and use it to produce loop-variant value. This mechanism

can emulate several common control structures, such as buffer writing, iterative

computation, and complex branching.

Introducing Oracle
The test system can be improved for more general-purpose testing, such as vali-

dating the correctness of the JS engine implementation of the Wasm specification.

The test system can introduce an oracle to verify the correctness of the executed

Wasm program.

Several Wasm simulator exists that can be used to execute Wasm outside of

the JS engine. The WebAssembly Binary Tools (WABT) provides several toolkits,

including a Wasm Interpreter. This tool can execute the Wasm module and produce

the trace result of the execution. The feasibility of using this tool out-of-the-box,

however, requires further investigation.

Use High-level Languages
The test system can also benefit by using a randomly generated Wasm that is

produced from a high-level language. The random generator generates a high-

level language program, such as in C, C++, or Rust, which then compiled to Wasm

using the toolchain.

This approach has been used to test compiler correctness [49]. The JS engine

is no different from a regular high-level language compiler, so it is possible to

employ this approach on the testing. It may also introduce program idioms specific

to a high-level language, which may increase the complexity of the test case—for

example, pointers, static data, and internal data structure generated by the

compiler.

However, this approach relies on the correctness of the high-level language

compiler to produce a correct Wasm program. Also, generating a test case in a high-

level language can be more difficult compared to generating Wasm instructions.

High-level languages have more complex semantics and language constructs

compared to Wasm, which only has a simple expression tree structure.
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6.3.2 Investigating Wasm Security Claims

Wasm is designed with security in mind to ensure the safety of its use in the

web environment. It exercises various security measures, such as sandboxing

and code-pointer abstraction [22]. This security claim is a potential area for

further research to verify its effectiveness in preventing malicious intent via

Wasm technology.

Currently, only a few research covers in this particular area. A recent paper

authored by Daniel Lehmann et al. presented a possible vulnerability in the

Wasm linear memory model when used through a memory-unsafe language such

as C and C++ [32]. The paper argued that the linear memory model does not

protect the program against certain types of buffer-overflow attacks. Although

the attacker cannot maliciously directly modify the program control flow by,

for example, overwriting function return address, an attacker can take several

options to modify the program control flow. One of the options is hijacking control

variables that are spilled on the linear memory.

6.3.3 Exploiting CPU Bugs

Another interesting subject to explore in Wasm technology is its feasibility to

induce hardware CPU bugs. Recent CPU vulnerability in speculative execution,

Spectre, allows a malicious program to observe the side effect of branch prediction

that can leak private information [31]. Although this vulnerability is considered

challenging to exploit, it is also difficult to address.

The original Spectre paper presented the vulnerability proof-of-concept by

crafting a JavaScript program that maliciously trains the CPU branch predictor

to make a wrong path [31]. It demonstrated that a high-level language used in

the web environment is also vulnerable to this attack. Unlike JavaScript, Wasm

is closer to a machine instruction has a more direct translation to the target

machine. Therefore, Wasm is a more efficient and predictable approach to craft

a Spectre gadget where the attacker can selectively craft a machine instruction

through the respective Wasm instruction.
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