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Abstract 

Model-based design is a relatively new technique of developing software for embedded 

systems. It aims to reduce the cost of the software development process by generating the 

code from a simulation model. The code is generated automatically using a tool that is 

developed for this purpose. This way the errors in the system can be found and eliminated 

early in the development process compared to traditional software development project for 

embedded systems. As mentioned, the tools are at the time of this study still relatively 

new, and especially when considering code that has to comply with functional safety 

standards, the code has to fulfill certain requirements and it has to be clear enough so that 

it can be traced back to each function of the model. This study aims to determine how well 

these methods can be used with software development for embedded systems in mind. 

More precisely, this thesis focuses on MathWorks’ Simulink as the modelling software, 

and CODESYS as the coding language of the programmable logic controller and 

ultimately the compatibility of these with each other. The workflow of a model-based 

design software generation process is determined and presented as the result of this study. 

That process includes building, testing and verifying the model, preparing it for code 

generation, configuring and using the code generation tool and finally verifying the 

generated code. An example model of a battery cell balancing system for the code 

generation process is built, and thus that area is also studied. In the end of this study, some 

different possible uses of this technique are briefly discussed as well as further possible 

areas of study regarding this topic. 
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Tiivistelmä 

Mallipohjainen ohjelmistosuunnittelu on melko uusi tekniikka sulautettujen järjestelmien 

ohjelmistosuunnittelussa. Sillä tähdätään pienempiin kehityskustannuksiin luomalla 

järjestelmien koodi suoraan simulointiin tehdystä systeemin mallista. Koodi luodaan 

hyödyntäen automatisoituja työkaluja, jotka ovat kehitetty tähän tarkoitukseen. Näin 

toimien mahdolliset kehitysvaiheessa tulevat virheet voidaan huomata ja poistaa paljolti jo 

hyvin aikaisessa vaiheessa kehitystyötä verrattuna perinteiseen sulautettujen järjestelmien 

ohjelmistokehitykseen. Kuten mainittu, tähän tarvittavat työkalut ovat tämän työn 

kirjoittamisen aikaan vielä melko uusia, ja erityisesti turvallisuuskriittistä koodia ajatellen 

koodin on täytettävä tietyt vaatimukset ja sen on oltava riittävän selkeää, jotta tietyt osat 

koodista voidaan jäljittää vastaaviin osiin mallista. Tämän työn tarkoituksena on selvittää, 

onko nämä menetelmät käyttökelpoisia sulautettujen järjestelmien ohjelmistokehitystä 

varten. Erityisesti tämä työ keskittyy MathWorks:n simulointiohjelmistoon Simulink, sekä 

ohjelmoitavan logiikan yhteydessä käytettyyn ohjelmointikieleen CODESYS sekä näiden 

yhteensopivuutta tätä prosessia ajatellen. Mallipohjaisen ohjelmistosuunnitteluprosessin 

suositeltu työnkulku mainittuja työkaluja hyödyntäen määritellään ja esitetään työn 

tuloksena. Tähän prosessiin kuuluu mallin rakentaminen, sen testaaminen ja 

toiminnallisuuden todentaminen, sen valmistelu koodin luontia varten, koodin 

luontiohjelmiston määritys ja käyttö sekä lopulta luodun koodin testaaminen ja 

toiminnallisuuden todentaminen. Esimerkkinä rakennetaan malli, joka tasapainottaa 

akkukennojen jännitteitä, jonka vuoksi myös tätä aihetta tutkitaan hieman. Työn lopussa 

käsitellään lyhyesti mahdollisia erilaisia tätä tekniikkaa hyödyntäviä sovelluksia sekä 

pohditaan millä tavoin tätä aihetta voisi tutkia edelleen. 
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BMS    Battery management system 

DC    Direct current 

FB    Function block 

FBD    Function block diagram 

HIL    Hardware in loop 

IEC    International Electrotechnical Commission 

IL    Instruction list 

LD    Ladder diagram 

NRMM   Non-road moving machinery 

PLC    Programmable logic controller 

POU    Program organization unit 
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1 Introduction 

When developing software for commercial vehicles and non-road moving machinery (later 

referred to as NRMM) the programs can be quite complicated and include sophisticated 

algorithms, for example calculating the state of charge or balancing battery cell voltages. In 

this thesis, programming software like this for programmable logic controllers, or PLCs, is 

the final target. However, manually handwriting software can be relatively laborious.  

Today there are optional ways of creating software for PLCs, fortunately. One of these ways 

is to develop the software by using model-based design methods, which means to build the 

system as a simulation model and then generate the code based on that model using some 

tools. In this thesis, MathWorks’ Simulink is used as the modelling tool, and then use 

additional tools to generate IEC 61131 -compatible code from them. The ease of building 

models in Simulink is mainly thanks to the wide range of built-in algorithms of MATLAB 

and Simulink.  

1.1 Goal 

This paper studies the possibility and workflow of translating Simulink models into 

CODESYS 3.5 structured text coding language, that is one of the IEC 61131-3 standard 

based languages that are widely associated with PLCs. The translation is done with using 

MathWorks’ Simulink PLC Coder software. The workflow also takes into account the 

possible requirements of the functional safety (IEC 61508) standard. In this thesis, the things 

to consider regarding this code generation process while meeting the functional safety 

requirements are explained using only one model as an example, although in reality a battery 

cell balancing algorithm model like this would not need to meet the functional safety 

requirements. However, the discussion is more about if the code generated is sufficient for 

both scenarios since the safety standards are fulfilled more on the project level than within 

this process. It is still discussed that what kind of tools would be preferable to use when 

dealing with safety-related code. For demonstration purposes of the process, a Simulink 

model for determining the need for battery cell voltage balancing is created and then 

translated into CODESYS version 3.5 structured text.  

1.2 Scope 

In the next chapter, the software to be used is studied with this translation and testing process 

in mind. MathWorks’ Simulink and CODESYS are presented briefly, as well as the Simulink 

PLC Coder, along with their restrictions within this process. The IEC 61131 standard, 

especially the software part (part three) is studied more thoroughly, and the programming 

languages included in that are explained. Some general code building guidelines are 

discussed, as well as the IEC 61508 standard for safety critical code testing. Finally, in the 

last section of the second chapter the process of balancing the battery cell voltages inside the 

battery pack is studied for building the example model. 

After discussing the methods of the study, the third chapter presents the workflow of building 

the model for such translation, and to determine what has to be taken into account in each 

phase of the process. Those are presented as findings of this study, which are based on the 

information studied in chapter two as well as examination of the software while building the 

example model. Also, it is presented what kind of restrictions are there in that process and 

what are the preferred format and structure for the models. After building the model, all the 
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preparations required for the translation process are presented, as well as the workflow of 

translating the code. The phases of testing of the code are listed with this specific process in 

mind. The whole process is presented in general in the beginning of this chapter as a 

flowchart figure (figure 3.1). 

In the last chapter, the benefits, drawbacks, and problems related to using model-based 

design within this context in software development is concluded. In addition to this specific 

translation process, the diversity of this method of producing CODESYS structured text is 

shortly presented regarding other possible applications regarding this area. Also, the possible 

further objects of study regarding this topic are discussed, as well as the possible short 

comings or things to consider when reading the results of this study.  
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2 Methods 

Developing software for programmable logic controllers used in the commercial vehicle 

applications and NRMM is a very exhaustive and laborious process compared to some other 

software developing. To meet all the industry related standards, the software engineer must 

have a good knowledge in the standards and in system development in general. Especially 

the testing and verification processes require this knowledge, and those can be extensively 

laborious. In order to ease and speed-up the process where it can be done, some additional 

tools for the software development process can be used.  

In this chapter some possible tools to ease the development process are studied. This thesis 

focuses on the possibility to use MathWorks’ Simulink and Simulink PLC Coder to be able 

to develop some functions for the software as model-based design in Simulink environment, 

and then translate the models using the PLC Coder to CODESYS structured text format. 

Structured text is a coding language based strictly on IEC 61131-3 standard, that is widely 

used with programmable logic controllers. The focus is on what the tools are, what they 

offer, and especially how the tools affect the efficiency of the whole development and testing 

process. Since the testing and verification phase is such a big phase of the whole process, it 

is examined if the tools make the software more or less laborious to test and verify. Even if 

the code writing phase becomes easier to do, the tools can still make the whole process 

harder, if the code from the PLC Coder is difficult to test or verify compared to handwritten 

code for any reason. Also, the theory behind the battery balancing is studied briefly in the 

end of this chapter in order to create a model for demonstration purposes for the process. 

2.1 MathWorks’ Simulink and Model Based Design 

This section briefly describes MATLAB and Simulink and discusses the reasoning for using 

this software for programming software for logic controllers. 

Model-based design has become more and more attractive in designing software for 

programmable logic controllers. When combined with automated code generation tools, 

such as the Simulink PLC Coder used in this study, model-based design can offer excellent 

tools for designing complex event-driven software for logic controllers (Conrad, 2009). 

From verification aspect, which is more studied later on, model-based design can decrease 

the amount of errors caused by mistakes in hand-written software, or systematic errors. This, 

however, creates even more importance in making the models in Simulink to function 

correctly. (He, Oke and Allen, 2016) 

MathWorks’ software Simulink offers an intuitive way of producing models of dynamic 

systems for digital signal processing using block diagrams. Simulink is integrated with 

MATLAB environment, and thus with Simulink models all MATLAB’s built-in algorithms 

can be exploited. As Zamboni (2013) states in his book, Simulink is an excellent tool for 

“large companies manufacturing safety-critical products”. These kinds of products usually 

require a specific software development workflow, which includes specification phase, 

development phase and testing phase. (Zamboni, 2013) 

The functionality specification phase is common to all engineering: the better the 

requirements for the software is known, the easier the development phase usually is. While 

the documentation for requirements need to be highly specific and cover as much 

possibilities as possible, the testing of the requirements and the logic to fulfil the 
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requirements are usually laborious to do for single specifications before the development 

phase. Finding out an error in the specified logic during the development process, or worse 

still, during the testing process, can create excessive amounts of extra work compared to 

making the specifications right in the first place. (Zamboni, 2013) 

As mentioned in the introduction, an example of battery balancing program is used 

throughout this thesis. That topic is more thoroughly discussed in section 2.7.  

We can define a requirement, that states:  

Get the battery cell voltages (21 cells) in the module and the minimum required voltage to 

activate balancing as inputs. For each cell if the voltage is higher than the required minimum 

voltage and if the voltage is at least 0.1V higher than the lowest voltage in the module, then 

balancing should be set as ON. As an output the information for balancing for each cell is 

returned. 

It is easy to see someone writing a description for a function like above. A description like 

this makes it possible to implement the function in multiple different ways as long as it meets 

the requirements mentioned in the description regarding inputs, outputs and functionality. 

However, this unfortunately also makes it possible to implement the function with different 

functionality than what is intended. This specification does not for example specify in what 

format the input and outputs are to be expected and returned: should they be in a container 

or are they 21 different variables, and as what data type the balancing information is returned. 

This is always quite hazardous, since some other programmer doing some other system on 

the same project, could handle the information returned by this function in a way that it is 

not supposed to be handled.  

Creating requirements as Simulink models combined with written explanation leaves no 

room for errors like above, since these questions cannot be left open with the models. As 

seen from figure 2.1, all the logical requirements are unambiguously presented. Other 

developers can also easily and without the possibility of an error glance through the model 

and gather all the information from it that they need. In addition, as mentioned before, the 

Simulink model can be easily tested with for example Simulink’s built-in signal builders.  

 

Figure 2.1 Example requirement specification as a Simulink model. 
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2.2 Programmable Logic Controllers and IEC 61131-3 

This section presents programmable logic controllers in general and has a focus for the 

programming phase. The standard IEC 61131-3 that includes the standards for the software 

of the controllers is presented for the part that is relevant to this study. 

Programmable logic controllers, or PLCs, are basically used to control a machine or device 

that has some sort of electro-mechanical functionalities as a bridge between the different 

parts of the machine. It is microprocessor based, and it stores instructions for handling the 

inputs and outputs into its reprogrammable memory. The instructions are usually written 

using a computer that is connected to the PLC device. PLCs are intended to be used also by 

engineers who may not have extended knowledge of programming, but maybe still want to 

develop an automation system for their product. The ways of programming a PLC device 

somewhat varies between different PLC manufacturers, but usually the principles are the 

same regardless of the device. The reconfigurability of PLCs also gives the opportunity to 

use the same controller and wiring for different functionalities and applications: only the 

programming must be changed. (Bolton, 2009) 

Therefore, it could be said that PLCs are basically small computers dedicated into industrial 

use. They are usually built with their possibly rough working environment in mind, including 

varying and possibly extreme temperatures, increased vibration and high humidity. As the 

hardware of a PLC goes, it consists of a processor, that processes all the data, a memory to 

store the instructions written by the user, a memory to store internal data, a power supply, 

the input and output interfaces and also a communication interface for user communication 

(for example for saving the instructions to the PLC’s memory). (Bolton, 2009) 

As mentioned, programming of different PLCs can be done usually relatively similarly, 

thanks to IEC 61131-3 standard. The standard was published in 1993 after manufacturers 

started making PLC devices, and all of them building their own environments and 

programming languages that could differ quite a lot from one to another. As a result, today 

virtually all major PLC manufacturers comply with this standard with their products. After 

all, the IEC 61131-3 is not an absolute standard, but a guideline. Thus, the manufacturers 

are still able to do things that are not considered in the standard. (Hanssen, 2015) 

This standard defines various programming languages designed for PLC devices, and they 

are:  

- Structured Text (ST) 

- Function Block Diagram (FBD) 

- Ladder Diagram (LD) 

- Instruction List (IL) 

- Sequential Function Chart (SFC) 

These programming languages can be split into two categories: graphical and text based. 

FBD, LD and SFC are graphical while ST and IL are text-based. (Hanssen, 2015) 

Regarding the text-based languages, ST is a so called “high-level language”, and it is much 

more advanced and more complex language compared to instruction list. It is also the most 

comparable language to some common programming languages like C or Pascal amongst 

the IEC 61131. This way, compared to IL, ST code can usually be written in a smaller space 
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meaning that there can be more than one instruction per line of text. However, this also 

means that the translation to machine code is more complicated, and the final result can be 

less efficient when the code to be translated is complicated. A ST program consists of 

statements, which are separated from each other with a semicolon, like in C. Comments in 

code are framed by parentheses and asterixis, like following: (* comment *). They can be 

placed in wherever a space can be placed, which means that they can be placed within 

statements, and not only between them. Also, like in C, jump-statements are not used in ST, 

but instead IF structures are. The contents of a ST-program is explained in the next section, 

and an example of one can also be seen there. (John and Tiegelkamp, 2010) 

IL on the other hand is a simpler language with more similar approach to what the translated 

machine code in the end will look like (execution-wise). Every instruction, which is a single 

executable command, is written in one single line. Like for example in BASIC, all 

instructions can be optionally labelled in order to reach them with a jump-statement within 

the program. Should a label be used, it has to be followed by a colon. After the label, the 

operator or the function of the instruction is stated, after which the operand(s) is stated. 

Comments can be used the same way as in ST. The IL is not one of the supported languages 

by the Simulink PLC Coder. As far as developing software with IL goes, the code tends to 

be much longer in terms of lines of code, and writing and reading it can be a little unintuitive 

to someone who is used to develop software in more traditional coding languages. (John and 

Tiegelkamp, 2010) 

Regarding the graphical IEC 61131-3 languages, FBD and LD are relatively similar in the 

way they work. FBD is a traditional tool used with signal processing, but today it is also one 

of the most used languages amongst industrial controller devices. Basically, FBD and LD 

consist of the same parts as ST and IL, which are a leading and ending part of the program, 

the declaration part and the code part. Although FBD and LD are graphical languages, the 

declaration part can be either textual or graphical depending on the development software 

used. The code part, on the other hand, consist of networks, which include a label, a comment 

and a graphic. The label is an identifier for the network, and it can include both letters and 

numbers. The comment can then be inserted to explain the network before the graphical part 

again with the same delimiters as with ST and IL. The use of comments depends somewhat 

on the development software used, since comments for the graphical languages are actually 

not described by the IEC 61131-3, but this is the case most of the time amongst these 

languages. The network graphic then includes the graphical elements and connections 

between them, in which the information travels from one element to another. The 

combination between the information of different elements can be done with crossings in 

the connections. Whereas FBD is originally used mainly with integers and floating point 

numbers, LD is targeted to mainly being used with signals carrying Boolean values. The 

basic layout of an LD system is similar to the one in FBD, but the graphical part is different. 

In LD, the layout of the program is clearly based on logical conditions more than elements 

including values. LD is the other IEC 61131 -language supported by the Simulink PLC 

Coder, but the support is some what limited compared to ST. (John and Tiegelkamp, 2010) 

Finally, there is the SFC, which has been built for being able to break down complex 

programs into smaller pieces. The main parts of SFC are steps and transitions. SFC programs 

are able to run different processes either sequentially or parallelly. The processes in the SFC 

program can include other programs from different IEC 61131-3 languages. (John and 

Tiegelkamp, 2010) 
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In this thesis we focus on Structured Text, and the Simulink models are translated into 

CODESYS 3.5 ST specifically. From the two languages supported by the Simulink PLC 

Coder, ST is the one with more supported functionalities. As a programming language it also 

tends to be more intuitive to especially software engineers compared to LD. (Hanssen, 2015) 

In IEC 61131-3 a structure of a program is described to have a specific hierarchy (figure 

2.2). The upmost level is the configuration, which includes the description of the hardware, 

memory addresses for the input and output channels and system capabilities. In one 

configuration, there can exist one or more resources, which is described in the standard as 

“consisting of a signal processor unit with its user interface and functions for sensor and 

actuator interfaces.” So basically, a resource is a processing facility capable of running 

programs, and there are one or more of them in a configuration. Programs are built of 

function and function blocks. (Hanssen, 2015) 

Within resources there can also be tasks, which are used to control how the resource uses its 

programs basically. The tasks can determine the order of running the programs for example 

by ordering them by their importance or having them running in a chronological order. Also, 

tasks can interrupt the running programs if some other program is required to run instead. 

(Hanssen, 2015) 

Variables are data objects that can be accessed to read and write. They can be either 

associated with inputs or outputs, or they can be stored in the PLCs memory. All variables 

must be declared and the data type to be used with the variable defined. They can be global 

variables meaning that they can be accessed from every program and function within all the 

resources in a configuration, or variables can be declared within a program, function or 

function block and thus available only within that same level where they are declared to. 

(Hanssen, 2015) 

In IEC 61131-3 all the programs, functions and function blocks are considered as Program 

Organization Units, or POUs. Functions and function blocks differ mainly in memory 

handling. Functions can, too, have internal variables, but they are reset every time the 

function is called. Basically, a function takes an input vector, does some logical and 

mathematical operations, and outputs the result. With the same input vector, the output 

should be the same every time. In contrast, a function block can have variables that are stored 

to internal memory even while the function is not called, so it is possible to output different 

values with the same input vector when dealing with function blocks. (PLCopen, 2016b) 

In the next chapter, a language based on this standard called CODESYS, and more 

specifically its version 3.5 and structured text are presented. 
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Figure 2.2. An example of the structure of a program defined by the IEC 61131-3 standard. 

2.3 CODESYS and Structured Text 

CODESYS is a programming tool implemented for PLCs or other programmable hardware 

that is very closely based on the IEC 61131-3 standard. As mentioned in the previous section, 

structured text (later referred as ST) is one of the languages defined by that standard, and it 

is also the one to be used in this thesis. CODESYS is not developed by any hardware 

manufacturer, but it is developed by a company that is focused especially in software 

development tools. The company is called Smart Software Solutions GmbH. CODESYS is 

not only supported, but also the only tool for over 400 hardware manufacturers. The software 

includes a device simulator so that the programs can be tested without actual hardware 

during the development process. CODESYS as a software is free to download and use. 

(CODESYS, 2020b) 

CODESYS also offers a variety of tools that can be added in the basic programming 

environment to support the need of different companies and developers. For example, the 

Static Analysis and Test Manager tools can be used for the testing and verification process. 

As the name suggests, the Static Analysis tool is used for performing static analysis, or in 

other words, it is an automated tool to check that the code meets all the requirements set by 

certain rules. (CODESYS, 2020a) 

From the IEC 61131-3 based languages, in this thesis structured text is used, as described in 

the previous section. Structured text is, as the name suggests, one of the text-based languages 

within IEC 61131-3. Basically, it shares the same structure as any other of the IEC 61131-3 

languages (Hanssen, 2015). Since structured text is the language to be used in this thesis, the 

structure of a structured text -based program is explained briefly with an example. As an 

VAR = Variables 
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example, the cell voltage balancing algorithm is used, which was previously defined in 

Simulink in section 2.1. 

 

Figure 2.3. Example of a Structured Text Function Block shown in CODESYS development environment. 

Figure 2.3 represents a typical, short example of a structured text function block. At the 

beginning, the function block is defined and given a name, which in this case is 

balancingVolt. When talking of the structure of the programs, they begin with the line 

PROGRAM [program name] and end with the line END_PROGRAM likewise. The 

controller device runs the program in a loop written between these two commands. 

Compared to C (the programming language), the PROGRAM/END_PROGRAM works 

the same way as a infinite loop would work in that. The END-line is not visible in the 

CODESYS development environment although it is in the actual file, which is good to 

acknowledge. This is, however, a function block, and so it begins with 

FUNCTION_BLOCK [name], and it ends respectively with END_FUNCTION_BLOCK 

statement, although not visible in the CODESYS environment.  

After that, there are the definitions of the variables used in the function block. First, the input 

variables, then output variables and then local variables. As explained in the previous 

section, there can also be global variables that can be accessed from the function block 

without being declared separately. After defining the variables, the definition of the 

program/function starts. 

2.4 Simulink PLC Coder 

MathWorks also offers a software called Simulink PLC Coder (later referred to as PLC 

Coder) for generating “hardware-independent IEC 61131-3 Structured Text and Ladder 

Diagrams” from these models. This allows, according to MathWorks, the possibility to 

deploy the Simulink models to be used in different programmable logic controller (later 

referred to as PLC) and programmable automation controller (PAC) devices. (MathWorks, 

2010) 
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MathWorks offers a complete, nearly 300-page long User’s Guide for the PLC Coder, which 

is also widely referenced in this study. The PLC Coder has support for various IEC 61131 

IDEs, including 3S CODESYS, B&R Automation Studio, Siemens SIMATIC and Open 

PLC (Yoon, 2013). However, the motivation for this chapter is to focus more on the specific 

data conversions from Simulink models to CODESYS 3.5 Structured Text (later referred to 

as ST) format.  

The Simulink PLC Coder is a relatively new tool for Simulink, but it has gained a lot of 

interest in the business. In 2010, according to various magazines of this business area, the 

PLC Coder was actually approved by the TÜV SÜD to be used as a software developing 

tool for IEC 61508 applications. (Gomez, 2010).  

2.5 Code testing and verification 

Software development has become increasingly important in the commercial vehicle 

applications and NRMM in the last couple of decades. Regarding engineering within these 

industries, completely mechanically operating parts and functions are usually more reliable 

and less prone to unwanted functionality when they can function as designed. On the other 

hand, they usually are much less accurate, and they usually are worse in taking factors like 

wear or changing environment into account during operations without manual adjustment. 

While at the same time computers are getting cheaper and cheaper and simultaneously more 

and more powerful, it is easy to see why almost everything is controlled by a computer of 

some sort if by any means possible. (Conrad and Sandmann, 2009) 

Increasing usage of software also means that software testing is in more and more critical 

part of commercial vehicle and NRMM engineering. Since software operates many safety 

critical functions, it is extremely important that the development process eliminates the 

possibility for bugs by following proper code building guidelines and testing standards. For 

this purpose, there has been developed standards to define the methods and workflow for 

software building for safety related systems, and when talking about commercial vehicle 

applications and NRMM engineering, IEC 61508-3 is the one to typically follow. However, 

in addition to the requirements in IEC 61508, it is good practice, and also required by the 

IEC 61508 standard itself, to have some predefined coding guidelines within the software 

development project. Regarding the context of IEC 61131, those coding guidelines can be 

based on for example on PLCopen Coding Guidelines that are made specifically for 

industrial environments (PLCopen, 2016a). (Conrad and Sandmann, 2009) 

Generally speaking, we can mention a few particular targets of software testing. It has to 

fulfil the functionalities and requirements that were set for it during the design phase. An 

example of setting requirements for a certain program was given in chapter 2.1. The software 

should also be able to run and answer correctly regardless of the inputs. In practice this 

means that all functions should be tested with a sufficient amount of different input vectors, 

most importantly including the boundary values as well as some unexpected values. The 

software also needs to be able to run in its desired environment within a sufficient time range.  

(Hambling et al., 2010) 

Then again it needs to be remembered that it is nearly impossible to always cover every 

possible situation with tests. In reality, time is a limited factor with software projects as much 

as in any other project, and even relatively simple software testing implementation can take 

a bunch of time. When performing some initial dynamic testing for the software, the software 
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engineer might easily think that “this seems to work well enough” or “I know what I’m 

doing, my software always works”, and move on to the next project that is still to be done. 

This is why it is important to always have some kind of guidelines for software testing and 

verification so that all software is guaranteed to be at least tested at the same level of detail. 

On the other hand, following the guideline software testing comes much more straight 

forward for the software engineer to do, and at the same time avoid extensive workload. 

(Hambling et al., 2010) 

Before talking more about software testing, a few terms should be defined. Testing and 

debugging should not be confused. Whilst testing in this context is something to be done 

ideally for an already finalized software, debugging is for testing a single function or other 

part of a program to identify what causes possible (obvious) issues with the software during 

development process. After the development process is finalized, the software has to be 

thoroughly tested in order to eliminate as many possible issues with the software as possible 

and it is a completely different phase from the development process. (Hambling et al., 2010) 

Testing can be divided into static testing and dynamic testing. The main difference between 

these two is that dynamic testing is done by running the program, whereas static testing is 

done without running it. Usually static testing, or static analysis is done by using some kind 

of automated tool. For example in CODESYS, the Static Analysis can be used in the code 

verification process.   

In the next chapter, safety critical code is explained as well as the IEC 61508 standard and 

how and which parts of it are applied in this thesis. 

2.6 IEC 61508 and Safety Related or Critical Code 

IEC 61508 is a complete standard for safety related systems and their development, 

deployment and maintenance. Overall safety can be defined as being able to avoid directly 

or in-directly the risks of physical injury or of damage to the health of people or to the 

environment. Thus, safety related means something that has the ability to affect the safety 

of the system in-directly, or in other words not on its own. Safety critical is, on the other 

hand something that has direct effect on safety and can cause injuries or an accident should 

it fail. IEC 61508 has a general approach for safety related operations for electrical, 

electronic and programmable electronic (later referred to as E/E/PE) systems to perform 

safety related functionalities. Usually safety is achieved by applying many different 

technologies for the system so that if one technology fails, there is another technology to still 

prevent major accidents. For example, it is very common that all safety related hydraulic 

systems have some kind of mechanical safety function to prevent injuries or accidents in 

case of a hydraulic failure. (Smith and Simpson, 2016) 

In this section we focus on chapter three of IEC 61508, which defines the “software 

requirements” for the “functional safety of electrical/electronic/programmable electronic 

safety-related systems”, as described in the international standard. Addressing safety related 

code on its own is a slightly difficult subject, because usually the safety of the systems is 

designed with the whole system in mind. For example, fatalities caused by errors in the code 

can be prevented with making an electrical design for the safety feature, for example a fuse. 

This thesis is not going to study the complete development process of a IEC 61508 compliant 

system, but in order to understand the requirements for a safety critical and non-safety 

critical code it is necessary to understand the whole concept at least to some extent. On the 
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other hand, IEC 61508 only describes the requirements on a generic level and the 

requirements for each individual system are always different from one another, it might also 

be difficult to determine the requirements for any code in general. This is one of the reasons 

the example program of the battery balancing algorithm is useful in this study. (Conrad and 

Sandmann, 2009) 

The targeted safety level can vary depending on the system to be assessed. Thus Safety 

Integrity Levels, or SILs have been developed within the standard. The safety level have to 

be addressed quantitatively and qualitatively. Summed up, quantitatively refers to hardware 

failures, which can be usually predicted using the history of experiences of the hardware to 

be used. Qualitatively refers to systematic failures, or in other words, software failures. 

Qualitative safety is the part of the assessment that this thesis focuses on regarding this 

standard. (Smith and Simpson, 2016) 

Quantitative failure rate targets can be divided into two categories: high and low demand 

failure rates. In this, the demand refers to the predicted usage rate of the system. For example, 

in a passenger vehicle, headlights can be considered as a high demand safety related system 

since should they fail during use, the failure is prone to cause a fatality immediately after the 

failure occurs. On the other hand, airbags may not be used during the whole lifetime of a car, 

and if a fault occurs to the system, it does not necessarily mean that a fatality is followed. 

(Smith and Simpson, 2016) 

Table 2.1. Safety Integrity Levels. (Smith and Simpson, 2016) 

Safety integrity level 

Continuous and high 

demand rate (dangerous 

failures/hr) 

Low demand rate 

(probability of failure on 

demand) 

4 ≥ 10−9𝑡𝑜 < 10−8 ≥ 10−5𝑡𝑜 < 10−4 

3 ≥ 10−8𝑡𝑜 < 10−7 ≥ 10−4𝑡𝑜 < 10−3 

2 ≥ 10−7𝑡𝑜 < 10−6 ≥ 10−3𝑡𝑜 < 10−2 

1 ≥ 10−6𝑡𝑜 < 10−5 ≥ 10−2𝑡𝑜 < 10−1 

 

The quantitative failure rates are presented in table 2.1. As mentioned before, quantitative 

failures are quite different to the qualitative ones, and meeting these numbers with the 

quantitative failure rates does not mean that the qualitative requirements are met, but they 

have to be assessed separately with different requirements. Whereas quantitative failure rates 

can be calculated and analysed assessing the rate of random hardware failures and their 

combinations, qualitative failures cannot be predicted with numbers, but they are to be 

limited with a variety of design disciplines that are according to the risk target profile.  

(Smith and Simpson, 2016) 
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There are a number of steps to be taken in the assessment process of IEC 61508 standard, 

and a brief presentation of those is following. 

The 1st step is to establish functional safety capability. This especially refers to the party that 

is responsible for the design of the safety related system that is being assessed. For this step 

it is important to be able to present the capability and competence for designing, producing, 

operating and maintaining the system that is functional safety related. This means the 

assessment of management procedures using the given check lists by the standard and of 

course the implementation of these procedures. (Smith and Simpson, 2016) 

The 2nd step is to establish a risk target. This step involves performing a full failure and 

hazard analysis for the system to come up with an outcome of all the possible hazardous 

events that can lead to serious injuries or worse. After that the maximum tolerable failure 

rates has to be set by performing a quantified risk assessment with the maximum tolerable 

fatality rates in mind. (Smith and Simpson, 2016) 

The 3rd step is to identify the safety related functions, which means to identify all the 

possible events leading to fatalities and furthermore, to identify the safety protection system 

for which a SIL is required. (Smith and Simpson, 2016) 

The 4th step is to establish the safety integrity targets for the safety-related elements. There 

are multiple ways to carry out this step, but basically it is a structured risk analysis. The 

possible ways of performing this include the quantitative approach, the layer of protection 

analysis and the risk graph method. Again, this thesis does not focus on this part of the 

standard and thus these methods are not discussed any further. The outcome however should 

be the target SIL. (Smith and Simpson, 2016) 

The 5th step is the quantitative assessment of the safety-related system. This step targets to 

determine the probability or rate of failure of the safety-related elements in the system, which 

is then to be compared with the target values. (Smith and Simpson, 2016) 

The 6th step is the qualitative assessment compared to the target safety integrity levels. This 

is one of the more relevant step within the area of study in this thesis in mind. This step 

targets to set the actions and requirements for limiting the systematic failures to comply with 

the target SIL. This step is discussed more later on in this chapter. (Smith and Simpson, 

2016) 

The 7th step is to establish the principle “as low as reasonably possible”, or as often referred, 

ALARP. Establishing merely the maximum tolerable risk target is not sufficient according to 

the standard, but it is necessary to examine possible further improvements and discuss 

whether they are reasonable to carry out or not. (Smith and Simpson, 2016) 
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Figure 2.4. The main parts of IEC 61508. (Smith and Simpson, 2016) 

There are three main parts in IEC 61508 (1-3) and four supplementary parts (4-7). The main 

parts are presented in figure 2.4 with the assessment process in mind.  

The first part is called “General Requirements”. It covers general functional safety 

management definition that covers the required actions and skills to perform the risk 

assessment and design to meet the standard. Also, it covers the life-cycle definition and 

requirements for each phase, and it explains what are SILs and the necessary procedures in 

order to determine the safety integrity target level. In addition, the requirements for people 

working with safety-related systems are presented, and the independence requirements for 

each SIL. Finally, the first part includes an example model for the document structure for 

such an assessment. (Smith and Simpson, 2016) 

The second part is called “Requirements for E/E/PES safety-related systems”, which means 

in practice to define all the requirements for the hardware and hardware related work in 

relation to functional safety. More precisely this means the life-cycle activities with the 

hardware, the quantitative reliability requirement as per the SIL level in question, the 

definition of systematic hardware failures and means to defend the system against them and 

finally architectural constraints, which mean the further safety measures to the safety-related 

hardware systems in addition to the required as per the SIL. 

The third part is called “Software requirements”, and as the title suggests, it consists the 

requirements and information required for the software design and assessment. As 

mentioned before, it is not relevant to think of any quantitative failure rates with software, 

so this part of the standard only focuses on minimizing the systematic failures with the 
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safety-related software within the system. Again, various techniques and requirements are 

presented for each SIL. 

The other four parts include further definitions for the terms used within the standard, some 

examples for the determination of the SILs, some informative annexes about calculating 

failure rates for the hardware, common cause failure, diagnostic coverage and applying the 

software requirements tables, and finally a reference guide to the techniques and measures 

of the standard. (Smith and Simpson, 2016) 

In the next section, part 3 of IEC 61508 is studied more thoroughly in order to determine 

what is required from the source code gathered from Simulink PLC Coder software to be 

able to be used within the standard. 

2.6.1 IEC 61508 Part 3 – The Software Requirements 

The development of a software for a safety-related system includes first of all the 

requirement for organizing and managing the life cycle. This is relevant to all parts of IEC 

61508, but is not relevant regarding the code converting and verification process as such, 

and thus it is not described more deeply. There is, however, a certain number of mandatory 

requirements for the standard regarding the organizing and management of the party 

responsible of the product to be certified. Some of the disciplines might be familiar from 

ISO 9001 standard that usually is applied before even thinking of producing a product that 

complies with the functional safety standard. While most of the requirements of this area 

apply to the whole standard, some of them apply only when a certain SIL is exceeded. (Smith 

and Simpson, 2016) 

Most important single requirement is documentation. Without it proving the compliancy 

with the standard is impossible. Also, a project management structure to divide the 

responsibilities of the project to different people is important, as is to be sure of their 

competency. A quality and safety plan is also mandatory. That is a document that is supposed 

to determine the whole structure for documentation as well as the overall functional safety 

targets and plans. Also, a V-model should be used with the software design. An example of 

what could be such graphical figure of a V-model for a software design process is presented 

in figure 2.5. The process, according to that model, starts from the up-left corner of the 

model, which includes the safety requirements specification. After completing the 

specification and design steps, the actual coding can be done. For each step in the design 

phase, a testing phase should occur after the coding in reverse order. For example, the 

completion of module design should be verified with module tests, the software system 

design should be verified with module integration testing (that tests how the software works 

with the system) and so on. However, the life cycle should, as mentioned before, be 

documented as writing in detail. The graphical figure is mostly for presenting and clarity 

purposes. (Smith and Simpson, 2016) 

Whatever the chosen method(s) for the design, the standard lists a set of requirements that 

they need to fulfil. For the system software it states that a diagnostic software is required for 

diagnosing faults in the system hardware and communication links as well as live testing of 

the application software modules. Also, should a fault occur, the system should be able to 

continue working if it is possible with the faulty part of the system disabled and isolated. For 

SIL1/2 and SIL3/4 there are different requirements for fault detection. In a system, where 

there are someway or other linked together non-safety and safety functions, the standard lists 
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things to consider regarding possible faults. The list includes mostly remarks for using 

shared hardware for example memory, processors, and the communication interfaces. (Smith 

and Simpson, 2016) 

Regarding the code itself, the standard states that it should be completed in small and 

manageable software modules. Software development process for all SILs should include 

design and coding standards as well as semiformal methods. Systems with SIL 2 or above 

should always, when possible, use trusted software modules only that has previously been 

in similar use. Dynamic objects that depend on the current state of the system when allocated 

should not be used with any of the SILs. For SIL 2 and up dynamic objects should not be 

used at all. For SIL 3 and 4 there are a few more requirements for the coding that make the 

code more “robust”, including defensive programming and avoiding pointers and recursion 

in the code. (Smith and Simpson, 2016) 

 

Figure 2.5. Development process for software within IEC 61508 presented in a V model. (Smith and Simpson, 2016) 

The coding language used should be completely defined with no indistinction for all SILs. 

The support tools, like code compliers and static analysis software, should be at least proven 

in use or certified. With SIL3/4, the standard strongly recommends using certified tools only. 

(Smith and Simpson, 2016) 

The IEC 61508 standard states the verification and validation of the software as follows. All 

of the software modules should be reviewed individually, and tests should be made to prove 

that they do not have any unwanted or unnecessary functionality as well as having the 

previously specified functionality. For this operation, a limited set of test data has to be 

chosen with the SIL in mind so that the higher the SIL is, the larger the test dataset should 

be. For SIL 1 and 2, tests with boundary values and partitioning testing should be sufficient, 
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whereas with higher SILs additional tests should also be performed. (Smith and Simpson, 

2016) 

As figure 2.5 suggests, after testing the operation and functionality, the module integration 

should be verified according to the cases defined in the software system design phase. These 

tests should determine aspects like functionality within the system as well as performance in 

the system. All of the tests must be documented chronologically. Should faults occur during 

verification, they should be documented with the suggested corrective actions. The modules 

and test instructions should have version numbers that are included in the documentation. 

Also, the effects of any modifications made during the development process to the software 

should be analysed to determine the required tests to be done to the system. (Smith and 

Simpson, 2016) 

After verifying the software integration, the software can finally be validated. This means 

that at this stage the software can be fully accepted to work as a whole meeting all the 

requirements and design procedures set for it. The validation plan must prove that all of the 

safety requirements have been fulfilled with a pass/fail checklist. From SIL 2, the validation 

should also include the test coverage metric, and from SIL 3 even more details from the 

coding process relevant to meeting the standard are required. (Smith and Simpson, 2016) 

2.6.2 Model Based Design with IEC 61508 

As this thesis focuses on the process of designing software with Simulink, and then 

translating that to structured text, it needs to be discussed how the IEC 61508 standard can 

be applied to this process. Fortunately, some research of this topic has been done. In this 

section, previous research of this topic is studied, and the most relevant findings for this 

thesis are presented. 

Theoretically all code produced by the Simulink PLC Coder could be validated as any other 

code as if it were originally coded by hand. This process is presented in the previous section. 

However, performing the code as model-based design means performing part of the 

verification and validation for the model built for the translation. MathWorks offers a 

verification software for Simulink called IEC Certification Kit for ISO 26262 and IEC 

61508, which makes the process of code verification quite efficient, and allows most of the 

errors to be determined early in the design phase. 

Generally speaking of the process, two basic questions regarding Model-Based Design 

according to IEC 61508-3 are: 

- Does the model correctly implement its (textual) requirements? 

- Does the object code that will be deployed in the ECU correctly implement the model’s 

behaviour? (Conrad and Sandmann, 2009) 

This means that in order to complete the verification and validation activities necessary for 

IEC 61508-3 compliance, it has to be proved that the model is correct and meets all the 

requirements set for it, and to be shown that the generated code functionally matches the 

model’s operation. (Conrad and Sandmann, 2009) 
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The goal for the design verification is to have a “golden model”, which means it has all the 

required functions, and on the other hand does not have any unwanted functionality. The 

workflow for this verification includes reviews, static analyses, and diverse functional 

testing, and it is all done for the model before generating the code. After the modules 

(subsystems) have been tested thoroughly, the module integration should be validated as 

well. This means that all modules should interact with each other as intended with a variety 

of predefined input parameters (test vectors), and once again, nothing unintended should 

occur. (Conrad and Sandmann, 2009) 

The model subsystems are to be reviewed in Simulink with model testing. Also, in the 

process of developing this software, some modelling guidelines should be made and 

exploited to make the reviewing process more efficient. In addition to the guidelines, the 

models should be constructed following the rules and restrictions set by the code generation 

tool, which is Simulink PLC Coder in this case. (Boulanger, 2012) 

The test cases for the model should be created according to the software requirements 

specification. As mentioned before, module testing should be able to determine that the 

software has its specified functionality but does not have any unintended functionalities. 

After the modules have been thoroughly tested individually for correct functionality, the 

integration of the modules must be tested. The result from that should be again that no 

unwanted functionality occurs, and the software performs as specified in the requirements. 

(Boulanger, 2012) 

Firstly, the code verification includes numerical equivalence testing, the comparison being 

the model of which the code is generated from. The exact same test vectors must be used to 

test the generated code and compare its outputs with the model results. The environment for 

the code testing should correspond to the environment that the code is intended to run on, or 

alternatively the differences between the testing environment and the target environment 

should be analysed sufficiently. Exact or even close equality is difficult to achieve for 

example due to “limited precision of floating-point numbers, quantization effects when using 

fixed-point math and compiler differences”. After the equivalence testing, the code must be 

tested for unintended function. This can be for example by comparing the coverage of the 

model and the generated code, or alternatively by performing a complete traceability review. 

(Conrad and Sandmann, 2009) 

2.7 Battery Module Cell Voltage Balancing 

As an example in building a Simulink model following the guidelines, translating it to 

CODESYS structured text and testing it’s functionality as per IEC 61508 standard, a model 

of battery module cell voltage balancing is designed and developed for this thesis. This topic 

has been widely researched before, and battery balancing is not within the main research 

questions in this thesis. Thus, the chosen method for battery balancing is relatively simple, 

well known and widely used with large Lithium based battery packs so that the code 

building, conversion and testing process itself can be relatively easily examined and 

presented without requiring too much knowledge on the principles of the example program 

functionality. That being said, this battery balancing program built for this thesis is 

ultimately supposed to be a part of a final working battery management system, and for this 

reason this field is also studied to some extent in this thesis. 
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This chapter discusses the reasons for battery inconsistencies, the effects of batteries not 

being in balance when being in the same configuration and also some possible solutions for 

making keeping the batteries in as much balance as possible regardless of the 

inconsistencies, and how to avoid further inconsistency.  

2.7.1 Battery Inconsistencies 

Even batteries from the same manufacturing batch can be inconsistent. The inconsistencies 

in the manufacturing process are mostly caused due to reproduce the same product exactly. 

These kinds of inconsistencies would be the initial capacity, DC resistance, charging 

efficiency and self-discharge. Also, accepting only batteries within a tiny consistency margin 

increases the price of the batteries since fewer battery cells can be accepted from production 

into use. (Jiang and Zhang, 2015) 

Basically a Li-Ion battery contains positive and negative electrode, a separator, an 

electrolyte, positive and negative terminals, an insulator, a safety valve, positive temperature 

coefficient, metal lid, gasket and a container of some sort (Wu, 2015). The packaging is 

usually one of the following three types: cylindrical, pouch and prismatic (Wu, 2015). When 

talking of automotive industry, all kinds of cells are being used. Tesla, for example, is 

famous for using cylindrical cells (Lambert, 2019), whereas Nissan used pouch cells for the 

1st generation Leaf (Qnovo, 2015). Volkswagen, on the other hand, has made a decision to 

use both pouch and prismatic cells in their battery modules (Halvorson, 2018).  

There are a number of benefits and drawbacks for each type of cells. Cylindrical cells are 

quite straightforward to produce, but temperature management and packaging requires a lot 

of careful design and consideration in automotive (large) battery pack applications. For these 

reasons the size of the cylindrical cell is always a bit of a trade-off: for larger cells the 

temperature issues become more apparent due to inconsistent temperature distribution (the 

core is always warmer than the shell) and also the wasted space in packaging gets larger due 

to the cylindrical shape. Then again, with thinner cells the problem will be the larger total 

amount of the cells: the volume per kWh gets larger when the cell gets thinner, and also the 

increased number of cells creates the need for more management electronics. Prismatic cells 

can be wound or stacked type. The casing is the strong point of prismatic cells: it is usually 

made of aluminium or relatively hard plastics, which makes it possible to package the cells 

very densely. This, however, can create a thermal management problem if they are put into 

a space that is too tight. Prismatic cells do have much better thermal distribution compared 

to cylindrical cell. Also, the packaging is also beneficial due to the terminals being on the 

same side opposed to being on different sides with the cylindrical cells. Pouch cells are in 

many ways like prismatic cells, but with soft packaging, usually polymer-laminated 

aluminium foil. The electrodes inside are usually stacked or Z-folded. The thermal 

distribution is much like with prismatic cell: quite an even distribution, but cooling is 

obviously still required. Needless to say, with soft packaging also becomes the requirement 

for much more robust supporting in the module compared to prismatic cells. These qualities 

are very general, and the do vary with different manufacturers. (Berg, 2015) 

The cells used in the automotive industry are getting larger and larger. Producing larger cells, 

however, is not just a question of scaling everything up. It brings a set of completely new 

requirements with issues that might be neglectable with smaller cells. The production of the 

cells can be divided into electrode manufacturing, cell production and formation. (Berg, 

2015). Regarding the causes of the manufacturing process for battery cell inconsistency is 
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mainly due to the electrode manufacturing process. More precisely, it can be said that it is 

inevitable that there are inconsistencies in the thickness, porosity and composition in the 

electrodes which leads to difference in internal resistance and the capacity of the cell. (Lebel 

et al., 2019) 

 

 

 

Figure 2.6. The manufacturing process of battery cells.(Berg, 2015) 

These inconsistencies, while usually small initially, are gradually getting larger when used. 

The charging and discharging rates have to be adjusted for the worst performing cell. The 

fact, that the charging and discharging currents are the same for all of the cells means that 

those cells with worst initial capacities, largest internal resistances and high self-discharge 

rates are all the time on more stress than the ones with better qualities. This becomes a 

positive feedback loop, which means in this case the worse the initial condition is, the faster 

it will deteriorate compared to cells in better condition. Therefore, it is especially important 

to use as consistent cells in a battery pack as possible. Also, the heat distribution and uneven 

cooling of the battery pack also effects on both the short term and long-term performance 

differences between the cells. (Jiang and Zhang, 2015) 

The consequences that the inconsistencies have in practice are shown in capacity, power 

output and estimation of battery state. As mentioned, the battery pack can only be charged 

or discharged as much as the worst cell allows, which means that the capacity of the battery 

pack is limited to whatever the worst cell has as its maximum capacity. This capacity is 

obviously smaller than what the theoretical combined capacity would be, if the maximum 

capacity of each individual cell could be used. Regarding the power output, the charging or 

discharging current is decreased towards both ends of any given cells state of charge (later 
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referred to as SOC). Hence the available power band in relation to SOC is only as wide as it 

is for the cell with the smallest capacity. Also, the estimation of the battery state becomes 

increasingly difficult to determine when there are large inconsistencies between individual 

cells. (Jiang and Zhang, 2015) 

2.7.2  Battery Pack Equalization 

This study will not examine all the possibilities of balancing the battery pack, since that is 

not the are of study in this thesis. Instead, the most commonly used technics are presented 

and examined in order to build the model for battery voltage balancing. 

The problems described above results in inefficient operation of the battery and reduced 

capacity. There are basically two ways of doing the balancing: passive and active balancing. 

The difference between the two can be described shortly as follows: passive balancing is 

easier, and usually cheaper, to build, but it is less efficient, since with passive balancing the 

overcharging of the cells reaching their full SOC first is just permitted with discharging 

them, which means the extra energy goes into heat. In active balancing, the excess charge is 

moved between battery cells so that a cell with a lower SOC receives charge from one with 

higher SOC. This way the loss of energy with active balancing is close to none, and thus 

much smaller than with passive balancing, especially when the cells get more and more out 

of balance over time, as explained above. Usually, however, the benefits of active balancing 

do not offer enough savings for it to be economically better choice. This division between 

passive and active balancing, although not maybe the most intuitive way, seems to have 

become somewhat standard way of speaking. (Warner, 2015) 

Passive balancing is usually implemented with a shunt resistor. This is a cheap and reliable 

balancing method, and the balancing control algorithm is easy to implement. As mentioned, 

no energy from the balancing process is recovered, but all goes to waste via the resistor. This 

also means that the balancing should only be done during charging. According to Cao et. Al. 

(2008), passive balancing should not be applied to Lithium based batteries, since passive 

balancing increases cell temperatures, which should be kept as stable as possible with 

Lithium based batteries. In this article Cao et. al. clearly refers with passive balancing only 

to the fixed shunt resistor setup, where the resistors are connected all the time parallel to the 

battery cell, and nothing regarding the balancing is controlled. Balancing with a shunt 

resistor can, however, be done in a way that they are actively controlled, and that usually is 

the case, especially when there are more than just a few cells, the voltages are high and when 

the battery chemistry limits the safe SOC area. (Daowd et al., 2011; Xiong and Shen, 2019) 

As with fixed shunt balancing, active shunt balancing also removes the excess energy with 

a shunt resistor, and that energy goes to waste, but the resistors are activated using switches 

by the balancing algorithm. Thus, the discharging of the higher energy cells can be done 

before the cell reaches overcharge or near overcharge state while still allowing the cells to 

eventually reach maximum SOC. This is the simplest form of active balancing. This setup 

can operate in two different modes: the switches can be controlled with the same on/off 

signal, or the switches can be operated individually. With the individual operation, the 

algorithm detects when the batteries go out of balance and chooses the correct shunt or shunts 

to turn on. This method can be used with Lithium based batteries, too. (Jiang and Zhang, 

2015) 
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The judgement criteria of a battery cell’s SOC used in this study’s model for balancing is 

the external voltage of single battery cells. In practice, every battery cell’s voltage should be 

within a certain threshold of the average voltage in the battery pack. Also, the balancing is 

limited to be done only in voltage area, where SOC is about 70% or more. In practice, this 

means that balancing is done during the end of charging. This is quite a common way to do 

cell balancing with Lithium based batteries.   



 

30 

 

3 Workflow of Converting Simulink Models to Structured 
Text 

 

Figure 3.1. The development process flowchart. 

In this chapter, the workflow of the structured text code development process based on the 

research done in the previous chapter is presented. As an example, a program for balancing 

battery cell voltages in a battery pack is developed and tested, and the phases of that process 

are shown.  

The code generation process ended up being a relatively quick and straight forward process, 

but there are things to consider. For example, variable data types are not usually necessary 

to consider in Simulink since they are determined automatically in the models. However, the 

choice of correct data types become a big part of the model building process when building 

the model for code generation purposes. Also, things to consider when generating safety-

related code are discussed shortly. 
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3.1 Building the Simulink Model 

It is assumed in this thesis that the reader has some basic knowledge of using Simulink. With 

this assumption, this chapter only discusses the process in general, and presents the results 

of building the model with the methods in chapter 2 taken into account. 

The example program that is expected as an outcome from this process is a battery balancing 

algorithm. This was briefly presented and used as an example throughout the second chapter 

as well. However, for clarity of the whole process it is now presented in this chapter, too.  

First, the requirements for the system are needed to be defined. As an input, it is supposed 

to take the current voltages of the battery cells connected in series in a battery module, and 

the minimum voltage for balancing. As an output, the algorithm gives a list of balancing 

requirements for each cell as Boolean values. True as in balancing is required and false as in 

balancing is not required. The basis and reasoning for the algorithm is explained more 

thoroughly in chapter 2.7, but basically balancing is required if two conditions are met. 

Firstly, the voltage is exceeding the lowest voltage in the module by more than a pre-

determined margin, which for example could be 0.1 volts, like in this case. That, however, 

much depends on the battery type and application where it is used. Also, the voltage has to 

be higher than the lowest voltage, where balancing can be activated, which the program gets 

as an input parameter.  

After knowing the requirements, they can be simply implemented in Simulink as a model. 

When building complex algorithms as software with model-based design, it is usually 

recommended to define the algorithm as a mathematical model first, and then implement it 

into a graphical simulation model, like Simulink. However, in this case the algorithm is 

simple enough to skip that phase, since it is basically just checking fulfilment of two 

conditions and outputting a simple Boolean value instead of a numerical result. 

When building the model, it is important to name every block according to the guidelines 

defined for the software project. Even if most of the names are not used in the generated 

code, they are visible in the code as comments for traceability purposes if the properties of 

the coder are set to include comments in the code, as shown later on.  

The Simulink model presented in figure 3.2 is the whole Simulink model with the model 

testing and verification parts. On the left, there is a testingSystem-subsystem, that includes 

the voltages for all the cells in the battery module, and a voltage figure, which represents the 

value of about 70% of state of charge (SOC), which is used as a minimum voltage for 

balancing in this case. There is a total of 21 battery cells in this model. The voltages are sent 

as a vector to the balancing subsystem, the minimum voltage is just a constant (that would 

vary over a longer period of time on a real system) and the output is a vector of Boolean 

values. This is what the balancing function would get in the real device as inputs and outputs 

as well, so it is a ready function to be translated to structured text and used in the logic 

controller in that regard.  
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Figure 3.2. The Simulink model with testing. 

 

Figure 3.3. The Simulink subsystem to be converted to structured text. 

When building the subsystem to be translated using the PLC Coder, it is important to 

remember the limitations that the coder requires, as well as CODESYS itself. First of all, the 

blocks used in the model need to be compatible with the coder. These blocks can be checked 

by typing plclib into the Matlab command window. Simulink then opens a library that 

includes all of the blocks that are compatible with the coder, as seen in figure 3.4. Generally 

speaking, this doesn’t limit the model building too much, but it is always good practice to 

keep the list of compatible blocks open when designing the model and check for 

compatibility when adding some block that hasn’t been checked to be in the list before.  
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Figure 3.4. The plclib-library for checking block compatibility. 

3.1.1 Data Types in Simulink 

All variables – inputs, outputs and local variables – has to be individually modified to have 

the correct data type, as seen in figure 3.5. These datatypes are specified in the requirements 

of the model. Otherwise Simulink will use automatically the “largest” data type. For 

example, if a constant is created, Simulink will automatically create it as a double, which 

translates to LREAL in structured text. Keeping in mind that these programs are meant to run 

on PLC devices, the memory consumption should be kept at minimum. For this reason, it is 

not optimal to use data types that consume a lot of memory and choosing data types manually 

should be done when building the model just like when writing regular code. Even more 

importantly, choosing the data types for each input and output variable is crucial in order to 

avoid data type conflicts. This, on the other hand, gives yet another reason for also choosing 

data types for local variables manually. Even if an input variable is a single-data type, if 

there is a local variable that is set to inherit data type, and then they are compared with each 

other, Simulink will keep the local variable as double and convert the input variable as 

double. This obviously is not only consuming excess memory, but also prolongs the running 

time unnecessarily. 
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Figure 3.5. Choosing the data type in Simulink. 

 

Table 3.1 shows how different datatypes translate from Simulink to structured text. 

Table 3.1. Data Ttypes from Simulink to Structured Text 

Simulink Structured Text 

double LREAL 

single REAL 

int8 SINT 

uint8 USINT 

int16 INT 

uint16 UINT 

int32 DINT 

uint32 UDINT 

boolean  BOOL 
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When handling logic signals, it is important to tick the “Implement logic signals as Boolean 

data” setting from the model configuration parameters in Simulink. The option in question 

can be found under Math and Data Types -> Advanced parameters, as seen in figure 3.6. 

 

Figure 3.6 Logic signals as Boolean option. 

Global variables or constants can also be defined in the process. Parameters that are in the 

MATLAB workspace can be set as “tunable parameters” in the PLC Coder properties, as 

seen in figure 3.7. 

 

Figure 3.7. Set parameters as tunable to be defined as global parameters in the generated code. 

In CODESYS, Boolean values are actually 8-bit data types, and therefore when trying to 

save memory of the logic controller, it would be better to use the BIT-type, which is only 

1-bit. It is not, however, a data type of the IEC 61131 -standard, although it is a standard 

data type in CODESYS, nor is it a data-type in Simulink. For these reasons, it is not 

surprising that the BIT-type is not supported by the PLC Coder. It is possible to use always 

user-specified fixed data type in Simulink with logical values and define that data type to 

be a 1-bit value. Unfortunately, this is handled by Simulink as an unsigned short integer, 

and that is how the PLC Coder translates it to CODESYS structured text as well.  

That being said, it is always possible to modify the code, and change the generated short 

integers to BIT-values. After that the code cannot be anymore verified as automatically 

generated but has to be verified and validated as any other hand-written code, since 
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changing data types of any variable in the code creates a significant difference compared to 

the model, and the code might not be able to work as it is supposed to. 

3.1.2 Other PLC Coder Properties 

Before generating the code, it is good practice to go through the PLC Coder properties. In 

general options the correct target IDE should be chosen. In this case it is 3S CoDeSys 3.5. 

Also, the file path for accessing the target IDE software must be specified. The name of the 

folder where the PLC Coder places the generated code can be chosen by the user. The folder 

is placed in whatever is the current folder in MATLAB. In the general options it is also 

chosen whether the testbench is created for the generated code. The testbench-function was 

not used in this case, since the code generated for testing was not sufficient for the code 

verification process. 

In the comments-section of the properties the user can specify if the PLC Coder generates 

comments in the code as well. This has proven to be quite useful, as it generates comments 

that provide clear links between the generated code and the Simulink model for traceability 

purposes. This has been presented more thoroughly in section 3.3.2. 

In the optimization options default parameter behaviour should be set as “Inlined”. Should 

there be some global parameters, they have to be configured separately as explained in the 

previous section. Also, the “Generate reusable code” option should be checked when there 

are multiple identical subsystems in the model so that only one function block is generated 

instead of multiple identical ones. In the identifiers-section there are options about the names 

of the function block and variables for the generated code. These are mostly project-specific 

options for example to avoid some certain variable names or to determine the maximum 

length for an identifier. In the report-section the user can choose whether the traceability 

report is generated and if it is opened automatically after a successful code generation. 

Generating the traceability report is usually recommended, since it provides useful 

information that can be used in the code validation process. 

3.2 Design Verification 

As discussed in chapter 2, developing the code with model-based design technique eases the 

process of verifying the code. It also creates the need of verifying the model that is created.  

For verifying the design of the model, a separate model for testing should be implemented. 

As explained in chapter 2.6, the model must be verified in Simulink, and the results must be 

documented. The model for the testing should be made so that the functionality of the 

program can be verified, but also so that the same exact input for the program can be used 

in the code verification phase to fulfil the testing requirements for IEC 61508. The PLC 

Coder testbench -tool can be used to create the testing for the code, but there are still a few 

remarks on using that wisely.  

The values for the test vectors need to be chosen so that they provide sufficient range of 

different combination of input values regarding the operating range of the function. A table 

of different operating conditions can be created, after which it is easy to determine the input 

vectors. In addition, since there are multiple cells to be checked and operated, different 

variations of these conditions have to be created which then can be reproduced while testing 

the code in the coding environment as well as later on in the actual hardware in the 
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integration phase of validation. The correct functionality of the program is always checked 

using the conditions for the balancing information of each cell in the module provided in the 

requirements, or more clearly for testing purposes in table 3.2.  

 

Table 3.2. Operation of cell balancing.  

 Voltage below the 

minimum voltage 

Voltage above the 

minimum voltage 

Voltage less than 0.1V 

higher than the lowest 

voltage in module 

No balancing No balancing 

Voltage more than 0.1V 

higher than the lowest 

voltage in module 

No balancing Balancing 

 

There are multiple ways of performing the tests itself. When working with a larger software 

development project, it is advisable to use tools that are made for testing purposes. As 

mentioned before, with the code testing part in CODESYS, there is add-ons like Test 

Manager to use in that. There is a similar tool in Simulink called Simulink Test, and 

combined with the IEC Certification kit, all of the testing can be performed for the model 

and the code to come out with IEC 61508 certified software. However, in this case the 

program is relatively simple, so the tests are made using default tools provided in MATLAB 

and Simulink, since all the testing and certification tools can get expensive. Doing the 

verification process this way can be a viable option when not every part of the software is 

made using Simulink, but some of the code is written manually straight to CODESYS. As 

mentioned several times in chapter 2, Simulink is a great tool for building models that 

include algorithm like this that can be laborious to manually develop as hand written code, 

and so model-based design as presented in this thesis can be used only for those parts of the 

software.  

The testing vectors are easy enough to make in MATLAB, from which they can be sent to 

the Simulink model, and all the tests can be run automatically with the model. The results 

are sent back to MATLAB where they are stored. In this case, five different input vectors 

are made:  

1st test) No variation in voltages and no voltage is above the minimum balancing voltage 

2nd test) No variation in voltages and all voltages are above the minimum balancing voltage 

3rd test) Some voltages are high enough to exceed the tolerance limit, some are higher but 

within the tolerance, but none are above the minimum balancing voltage 
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4th test) Some voltages are high enough to exceed the tolerance limit, some are higher but 

within the tolerance, all voltages are above the minimum balancing voltage 

5th test) Some voltages are high enough to exceed the tolerance limit, some are higher but 

within the tolerance, some of the voltages are above the minimum balancing voltage 

 

Figure 3.8. Example of test input definition written in MATLAB (the 5th test). 

The results can be seen in figure 3.9, which is a snapshot of the testing results printed in 

MATLAB. The code for the tests as well as the results can be seen completely in appendix 

1. In addition, some dynamic testing would usually be required that would show the 

transition phase from one state to another. In this thesis only the static part of the testing is 

presented since as mentioned before, the testing of the code can vary a lot depending on the 

project in question, and the testing principles are an area of study of its own. This thesis 

rather focuses on the automatic code generation process, and hence mainly the idea of model-

based design testing is presented using this as an example.  
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Figure 3.9. Snapshot of the design verification results done in MATLAB and Simulink. 

3.3 Translated Model as Structured Text 

Even before importing the structured text to the CODESYS environment, it is always good 

practice to do certain checks for the code after a successful code generation already in 

Simulink. This way it is much easier to correct any mistakes that are obvious in the code 

without having to delete the function blocks and possible global variables from the 

CODESYS environment and then importing them again. Simulink also provides some 

static analysis data for the documentation of the code validation process. 

3.3.1 Verifying the Variables and Data Types 

Immediately after a successful translation process, it is necessary to review the code 

manually. First, it is to be checked that the variable names are what they are supposed to be. 

This is especially the case with input and output variables to ensure compatibility with other 

parts of the software. All variable data types need to be checked as well to correspond with 

the requirements defined for the program. If some of the data types are wrong, the Simulink 

model needs to be rechecked to have correct data types.  
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In addition, the translated code needs to be checked for unnecessary data type conversions. 

Some of the blocks in Simulink, while compatible with the PLC Coder, do not work properly 

with some low-level data types. For example, if a simple math operation, like add, with two 

variables is done with an int8 (or SINT in structured text, 8-bit integer) and a constant, PLC 

Coder for some reason first converts the variable to int32 (or DINT accordingly), does the 

calculation with that data-type, and then converts it back to int8. That is even if the constant 

is defined as int8 in Simulink. The parameters for the blocks can be seen in figure 3.10. This 

is obviously unnecessarily consuming valuable resources of the logic controller. The 

unnecessary conversion can be manually deleted from the structured text code, after which 

the functionality of that part of the code must be checked. The situation must be documented 

with the development and validation process. 

 

Figure 3.10. The unnecessary data-type conversion by PLC Coder. 

3.3.2 Code Generation Report 

As mentioned in section 3.1, it is important with PLC programming to optimize the resources 

since they can be somewhat limited in use, and so it is necessary to verify the generated code 

in this regard after it has been generated. When the code generation report is opened in 

Simulink it is important to check that all variables are as expected by previewing the code 

as seen in figure 3.12. The code generation report also offers a traceability report and a code 

metrics report.  

The traceability report, as seen in figure 3.11 helps to understand the links between the code 

and the model. The traceability report is only created when “Generate traceability report” is 

checked in the PLC Coder parameters under “Report”. From the traceability report it is easy 

to navigate to the block or line of code where that block is used by clicking the links in the 

report. Besides of the traceability report, the lines are also linked in the code preview itself, 

and by clicking them in the report, the corresponding block in the Simulink model is 
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highlighted. It also works the other way around: in the Simulink model, by right-clicking a 

block and then choosing PLC Code -> Navigate to Code, Simulink opens the Code 

Generation Report and highlights the line(s) of code where it is used. (MathWorks, 2019) 

 

Figure 3.11. Traceability Report in Simulink’s Code Generation Report. 
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Figure 3.12. The generated structured text in Simulink's Code Generation Report. 

The Static Code Metrics Report generated by the Simulink PLC Coder provides statistical 

information of the code generated. It is also created when the traceability report is generated. 

The report is shown below in figure 3.13. It helps to estimate the memory allocation of the 

program. These metrics are also required to be documented within IEC 61508, but it is also 

good practice in any larger programming project. It also gives a list of any global variables 

or constants created when generating the code, should there be any.  
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Figure 3.13. Code Metrics Report in Simulink's Code Generation Report. 

. 

 

3.4 Verifying the Structured Text Code 

After verifying the model and successfully generating the code in Simulink, it is time to open 

CODESYS development environment. As with Simulink, it is assumed that the reader has 

basic know-how of how to use CODESYS, and thus only the code importing and integrating 

process is shown, as well as verifying it in CODESYS. It has to be noted that this verification, 

although done so that it can be part of a IEC 61508 validation process, is not sufficient on 

its own, but needs more verification. This is, however, very project dependent. This chapter 

tries to explain the things to be done and things to consider that are normally not part of the 

verification process when developing all the code manually.  
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First the generated code has to be imported to a CODESYS project. This is done by 

importing the generated .xml -file as shown in figure 3.14 below.   

 

 

Figure 3.14. Importing the generated code in CODESYS environment. 

After choosing the correct .xml -file, it has to be checked that it includes the correct files. At 

this point it has to be chosen whether the global constant and variables generated by the PLC 

Coder are imported to the project or not, as seen in figure 3.15. It has to be noted that files 

with the same name (the global variable lists) cannot be merged with the imported ones, but 

they have to be named differently. The importer in CODESYS will give an error when 

attempting the import, and gives a choice of either renaming the files, replacing the existing 

with the imported ones or to not import the files with the name conflict.  
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Figure 3.15. The XML-file contains the ST-file as well as the global constants and variables. 

 

 

Figure 3.16. Imported function block in CODESYS environment. 

After the import has been successful, the imported files become visible under the Application 

in CODESYS. At this point the imported files has to be checked to have the correct code. In 

this example, the commenting in the PLC Coder has been turned on, and the comments 

created by the coder are visible (the green text).  
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From this point on, the verification process can vary. In this case the imported code is 

verified using the same input vectors as when testing the model. If there are no testing tools 

to be used, the tests can be made manually with CODESYS like they were done in Simulink. 

In this case code verification is done by writing test code for the generated code using the 

exact same test vectors as input as was used when verifying the model. The results from the 

design verification were copied to CODESYS as arrays, and they were compared to the 

results from the generated function block with the test vectors and verified to be the same. 

Part of the code written for testing can be seen in figure 3.17, and the code is visible 

completely in appendix 3.  

 

Figure 3.17. Snapshot of code verification with tests written in CODESYS. 
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4 Conclusions and Discussion 

In this chapter, the results of this study are discussed. The benefits and drawbacks of using 

model-based design when developing software for programmable logic controllers are 

considered as well as different possible ways to use this method. It has to be remembered 

that this thesis is written based on a very specific way of using this method in mind. 

However, throughout the study, alternative uses for the method came up, and some of them 

are discussed here.  

Furthermore, other related topics outside of the scope of this study are discussed briefly.  

4.1 Benefits, Drawbacks and Problems of Model Based Software 
Design and Simulink PLC Coder 

This thesis had a specific target to study: what are the possibilities of using partly or 

completely model-based design when developing software for programmable logic 

controllers, and more specifically those used on commercial vehicles and NRMM. The IEC 

61131 -compatible language used for these controllers is CODESYS 3.5 structured text. 

Some of the software used in the controllers has to be IEC 61508 certified, but some parts 

of the code can be made without that requirement and thus only has to be made according to 

pre-determined project-specific quality requirements. That being said, in any case extensive 

testing is required, and the difference between testing code that has to be certified and code 

that has not, is mainly in documentation of the testing.  

In this case, using model-based design only partly in the software development process 

means that model-based design is only used in parts of the software that does not require 

IEC 61508 certification. However, the differences and requirements for using model-based 

design in the whole software development process are also studied throughout the thesis. 

The idea is that with some functionalities, that include an algorithm of some sort, would be 

easier and less time consuming to develop using model-based design. As mentioned in 

chapter 2.1, Simulink has an extensive number of built-in algorithms, and using those is 

basically just a matter of adding blocks within a graphical model one after another following 

the functional requirements set for the function in question. The functionality is also easy to 

dynamically test throughout the development process since building a testing environment 

is quite a simple process compared to having to write manual tests for hand-written code.  

Regarding the verification part in the case when software is only partly being developed with 

model-based design there are a couple of viable options. One option is just to use Simulink 

for creating the model and generating the code with the PLC Coder, and then just verify and 

validate the code manually or/and using automated tools just like if it was hand-written code. 

With this method there are still the benefits of using model-based design, but with minimal 

extra costs software-wise. In that case only the tools are required that would be used anyways 

throughout the software development process. It would not either interfere with the strict 

requirements of IEC 61508 certification since only functions without the need of 

certification would be done using this method. There would still be the cost of the PLC Coder 

that would not be otherwise required. Having Simulink, on the other hand, has much more 

benefits besides model-based software design. Usually these kinds of systems are simulated 

during the development process, and Simulink is a widely used tool for that purpose either 

in software in the loop (SIL) or hardware in the loop (HIL) testing. This also means that 
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there is a high possibility that the software would in any case be largely modelled for the 

simulations in Simulink. With this in mind, model-based design makes even more sense in 

a process like this.  

On the other hand, it can be said that with some additional tools for automated code 

certification with model-based design, as in this case the IEC Certification kit for Simulink 

would be, the software development process can be simplified (from the engineer’s 

perspective) quite significantly. Engineers that are used to do software development by 

traditionally writing the code by hand most certainly would not have problems in developing 

software with Simulink and PLC Coder. Also, engineers with maybe little knowledge in 

coding, but that are familiar with the system, could then be part of the software development 

process, too. That is one of the main benefits of this method in addition to the time savings. 

That being said, as mentioned before, it is crucial in any case to have at least some one in 

the software development process who also understands the code-part well, and all engineers 

should be able to have some idea what the code means and how it works. As a conclusion, 

model-based design could definitely be used as the main software development method in a 

project that involves programmable logic controllers and the IEC 61508 safety standard. 

4.2 Further Possible Areas of Study in Using the Simulink PLC Coder 

As this thesis had a quite specific area of study, it is now discussed what could be studied 

next regarding this field. First of all, the usage of the automated tools mentioned throughout 

the thesis could be studied and presented more thoroughly. For example, regarding the IEC 

61508 Certification kit for Simulink is not specifically designed for PLC Coder. Although it 

is claimed to produce automatically IEC 61508 certified code with the PLC Coder, it could 

be studied whether there are in reality some problems using that.  

Regarding the software developed as an example for this thesis it could be argued that it was 

a relatively simple model, and a more complex model with more blocks and multi-level 

subsystems would have caused more problems in the code generation process. There is, 

however, a couple of reasons why a model like this was used for this thesis. First of all, a 

model that is too complex would have made reading this thesis and thus understanding the 

process significantly more difficult, especially if the reader is somewhat unknowledgeable 

of the tools used. Secondly, especially in projects like this, but in coding in general, it is 

usually good practice to keep the functions simple enough. Should there come problems with 

a model that is more complex, it might be good idea to rethink the layout of the program or 

function in question. That is not, however, always the case, and sometimes ending up with a 

more complex model or function is just inevitable, and that is why it could be a good idea to 

extend this research to some more complex programs, maybe with more than one function. 

This would also make a good ground for the extended automated verification tool research. 
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Appendix I   The MATLAB/Simulink Test Code 

% INPUT VECTORS FOR BATTERY CELL BALANCING TESTING 

% Cells in array numbered 1...21 

 

% No variation in voltages, no voltage above min 

% -> No cells to be balanced 

voltages = [3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6,... 

    3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6]; 

minVolt = 3.65; 

balancing01 = sim('balancing_system5.slx'); 

 

% No variation in voltages, all voltages above min 

% -> No cells to be balanced 

voltages = [3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7,... 

    3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7]; 

balancing02 = sim('balancing_system5.slx'); 

 

% Enough variation in voltages for balancing, but none above min 

% -> No cells to be balanced 

voltages = [3.54, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65,... 

    3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65, 3.65]; 

balancing03 = sim('balancing_system5.slx'); 

 

% Enough variation in voltages for balancing, all above min 

% -> Cells 12 - 18 should be balanced, others not 

voltages = [3.66, 3.67, 3.68, 3.69, 3.7, 3.71, 3.72, 3.73, 3.74,... 

    3.75, 3.76, 3.77, 3.78, 3.79, 3.8, 3.81, 3.82, 3.83, 3.67, 3.7, 3.75]; 

balancing04 = sim('balancing_system5.slx'); 

 

% Enough variation in voltages for balancing, some above min 

% -> Cells 3, 7, 8, 9, 14, 15, 16, 17, 18 should be balanced 

voltages = [3.65, 3.61, 3.66, 3.62, 3.58, 3.5, 3.69, 3.7, 3.71,... 

    3.51, 3.63, 3.64, 3.65, 3.73, 3.67, 3.7, 3.72, 3.71, 3.62, 3.57, 3.52]; 

balancing05 = sim('balancing_system5.slx'); 

 

% Print out the results 

 

% 1st test 

fprintf('Balancing required in cells nr. (1st test): \n'); 

fprintf('%i ', find(balancing01.balRequired)); 

fprintf('\n'); 

fprintf('Balancing NOT required in cells nr. (1st test): \n'); 

fprintf('%i ', find(~(balancing01.balRequired))); 

fprintf('\n'); 

fprintf('No cells should be balanced'); 

fprintf('\n\n'); 

 

% 2nd test 

fprintf('Balancing required in cells nr. (2nd test): \n'); 

fprintf('%i ', find(balancing02.balRequired)); 

fprintf('\n'); 

fprintf('Balancing NOT required in cells nr. (2nd test): \n'); 

fprintf('%i ', find(~(balancing02.balRequired))); 

fprintf('\n'); 
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fprintf('No cells should be balanced'); 

fprintf('\n\n'); 

 

% 3rd test 

fprintf('Balancing required in cells nr. (3rd test): \n'); 

fprintf('%i ', find(balancing03.balRequired)); 

fprintf('\n'); 

fprintf('Balancing NOT required in cells nr. (3rd test): \n'); 

fprintf('%i ', find(~(balancing03.balRequired))); 

fprintf('\n'); 

fprintf('No cells should be balanced'); 

fprintf('\n\n'); 

 

% 4th test 

fprintf('Balancing required in cells nr. (4th test): \n'); 

fprintf('%i ', find(balancing04.balRequired)); 

fprintf('\n'); 

fprintf('Balancing NOT required in cells nr. (4th test): \n'); 

fprintf('%i ', find(~(balancing04.balRequired))); 

fprintf('\n'); 

fprintf('Cells 12 - 18 should be balanced, others not'); 

fprintf('\n\n'); 

 

% 5th test 

fprintf('Balancing required in cells nr. (5th test): \n'); 

fprintf('%i ', find(balancing05.balRequired)); 

fprintf('\n'); 

fprintf('Balancing NOT required in cells nr. (5th test): \n'); 

fprintf('%i ', find(~(balancing05.balRequired))); 

fprintf('\n'); 

fprintf('Cells 3, 7, 8, 9, 14, 15, 16, 17, 18 should be balanced'); 

fprintf('\n\n'); 

Balancing required in cells nr. (1st test):  

  

Balancing NOT required in cells nr. (1st test):  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

No cells should be balanced 

 

Balancing required in cells nr. (2nd test):  

  

Balancing NOT required in cells nr. (2nd test):  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

No cells should be balanced 

 

Balancing required in cells nr. (3rd test):  

  

Balancing NOT required in cells nr. (3rd test):  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

No cells should be balanced 

 

Balancing required in cells nr. (4th test):  

12 13 14 15 16 17 18  

Balancing NOT required in cells nr. (4th test):  

1 2 3 4 5 6 7 8 9 10 11 19 20 21  

Cells 12 - 18 should be balanced, others not 
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Balancing required in cells nr. (5th test):  

3 7 8 9 14 15 16 17 18  

Balancing NOT required in cells nr. (5th test):  

1 2 4 5 6 10 11 12 13 19 20 21  

Cells 3, 7, 8, 9, 14, 15, 16, 17, 18 should be balanced 

 

Published with MATLAB® R2019b 

https://www.mathworks.com/products/matlab
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Appendix II   The Generated Structured Text Code 
(* 

 * 

 * File: balancing_system5.st 

 * 

 * IEC 61131-3 Structured Text (ST) code generated for subsystem 

"balancing_system5/balancingVolt" 

 * 

 * Model name                      : balancing_system5 

 * Model version                   : 1.9 

 * Model creator                   : Kaarle Patomäki 

 * Model last modified by          : Kaarle Patomäki 

 * Model last modified on          : Thu Jun 11 14:20:43 2020 

 * Model sample time               : 1s 

 * Subsystem name                  : balancing_system5/balancingVolt 

 * Subsystem sample time           : 1s 

 * Simulink PLC Coder version      : 3.1 (R2019b) 18-Jul-2019 

 * ST code generated on            : Sun Jun 14 18:41:38 2020 

 * 

 * Target IDE selection            : 3S CoDeSys 3.5 

 * Test Bench included             : No 

 * 

 *) 

FUNCTION_BLOCK balancingVolt 

VAR_INPUT 

    vInVector: ARRAY [0..20] OF REAL; 

    minVolt: REAL; 

END_VAR 

VAR_OUTPUT 

    balRequired: ARRAY [0..20] OF BOOL; 

END_VAR 

VAR_TEMP 

    rtb_minLevel: REAL; 

    i: DINT; 

END_VAR 

(* MinMax: '<S1>/lowestVoltage' *) 

rtb_minLevel := vInVector[0]; 

FOR i := 0 TO 19 DO  

    rtb_minLevel := MIN(rtb_minLevel, vInVector[i + 1]); 

END_FOR; 

(* Sum: '<S1>/minLevel' incorporates: 

 *  Constant: '<S1>/balancingTolerance' 

 *  MinMax: '<S1>/lowestVoltage' *) 

rtb_minLevel := rtb_minLevel + 0.1; 

(* Outport: '<Root>/balRequired' incorporates: 

 *  Logic: '<S1>/ifAboveMinAndLowest' 

 *  RelationalOperator: '<S1>/cmprToLowestVolt' 

 *  RelationalOperator: '<S1>/compareToMinVolt' *) 

FOR i := 0 TO 20 DO  

    balRequired[i] := (vInVector[i] > rtb_minLevel) AND 

(vInVector[i] > minVolt); 

END_FOR; 

(* End of Outport: '<Root>/balRequired' *) 

END_FUNCTION_BLOCK  
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Appendix III   The CODESYS Test Code 
 

1  PROGRAM PLC_PRG 

2  VAR 

3  Balancing : balancingVolt ; 

4  voltages01Vector : ARRAY [ 0 .. 20 ] OF REAL 

5  := [ 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 

3.6 , 3.6, 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 3.6 , 

3.6 , 3.6 ] ; 

6 

7  voltages02Vector : ARRAY [ 0 .. 20 ] OF REAL 

8  := [ 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 

3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 3.7 , 

3.7 , 3.7 ] ; 

9 

10  voltages03Vector : ARRAY [ 0 .. 20 ] OF REAL 

11  := [ 3.54 , 3.65 , 3.65 , 3.65 , 3.65 , 3.65 , 3.65 , 3.65 , 

3.65 , 3.65 , 3.65 , 3.65 , 3.65 , 3.65 , 3.65 , 3.65 , 3.65 

, 3.65 , 3.65 , 3.65 , 3.65 ] ; 

12 

13  voltages04Vector : ARRAY [ 0 .. 20 ] OF REAL 

14  := [ 3.66 , 3.67 , 3.68 , 3.69 , 3.7 , 3.71 , 3.72 , 3.73 , 

3.74 , 3.75 , 3.76 , 3.77 , 3.78 , 3.79 , 3.8 , 3.81 , 3.82 , 

3.83 , 3.67 , 3.7 , 3.75 ] ; 

15 

16  voltages05Vector : ARRAY [ 0 .. 20 ] OF REAL 

17  := [ 3.65 , 3.61 , 3.66 , 3.62 , 3.58 , 3.5 , 3.69 , 3.7 , 

3.71 , 3.51 , 3.63 , 3.64 , 3.65 , 3.73 , 3.67 , 3.7 , 3.72 , 

3.71 , 3.62 , 3.57 , 3.52 ] ; 

18 

19  minVolt : REAL := 3.65 ; 

20 

21  balancing01Vector : ARRAY [ 0 .. 20 ] OF BOOL ; 

22  balancing02Vector : ARRAY [ 0 .. 20 ] OF BOOL ; 

23  balancing03Vector : ARRAY [ 0 .. 20 ] OF BOOL ; 

24  balancing04Vector : ARRAY [ 0 .. 20 ] OF BOOL ; 

25  balancing05Vector : ARRAY [ 0 .. 20 ] OF BOOL ; 

26 

27  balancing01ExpectedVector : ARRAY [ 0 .. 20 ] OF BOOL 

28  := [ FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , 

FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE 

, FALSE , FALSE , FALSE , FALSE , FALSE , FALSE ] ; 

29 

30  balancing02ExpectedVector : ARRAY [ 0 .. 20 ] OF BOOL 

31  := [ FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , 

FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE 

, FALSE , FALSE , FALSE , FALSE , FALSE , FALSE ] ; 

32 

33  balancing03ExpectedVector : ARRAY [ 0 .. 20 ] OF BOOL 

34  := [ FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , 

FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE 

, FALSE , FALSE , FALSE , FALSE , FALSE , FALSE ] ; 

35 

36  balancing04ExpectedVector : ARRAY [ 0 .. 20 ] OF BOOL 
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37  := [ FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE , 

FALSE , FALSE , FALSE , FALSE , TRUE , TRUE , TRUE , TRUE , 

TRUE , TRUE , TRUE , FALSE , FALSE , FALSE ] ; 

38 

39  balancing05ExpectedVector : ARRAY [ 0 .. 20 ] OF BOOL 

40  := [ TRUE , FALSE , TRUE , FALSE , FALSE , FALSE , TRUE , 

TRUE , TRUE , FALSE , FALSE , FALSE , FALSE , TRUE , TRUE , 

TRUE , TRUE , TRUE , FALSE , FALSE , FALSE ] ; 

41 

42  test1 : BOOL ; 

43  test2 : BOOL ; 

44  test3 : BOOL ; 

45  test4 : BOOL ; 

46  test5 : BOOL ; 

47 

48  i : SINT ; 

49  j : SINT ; 

50 

51  END_VAR 

52 

 

1  (*Running the tests*) 

2 

3  (*1st test*) 

4  Balancing ( vInVector := voltages01Vector , minVolt := 

minVolt ) ; 

5  balancing01Vector := Balancing . balRequired ; 

6  (*Test counter reset*) 

7  j := 0 ; 

8  (*For each boolean value same as expected add 1 to test 

counter (j)*) 

9  FOR i := 0 TO 20 DO 

10  IF balancing01Vector [ i ] = balancing01ExpectedVector 

[ i ] THEN 

11    j := j + 1 ; 

12   END_IF 

13  END_FOR 

14 

15  (*If all 21 cells have correct boolean value, set test as 

TRUE (=pass)*) 

16  IF j = 21 THEN 

17   test1 := TRUE ; 

18  ELSE 

19   test1 := FALSE ; 

20  END_IF 

21 

22  (*2nd test*) 

23  Balancing ( vInVector := voltages02Vector , minVolt := 

minVolt ) ; 

24  balancing02Vector := Balancing . balRequired ; 

25 

26  j := 0 ; 

27  FOR i := 0 TO 20 DO 

28  IF balancing02Vector [ i ] = balancing02ExpectedVector 

[ i ] THEN 
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29    j := j + 1 ; 

30   END_IF 

31  END_FOR 

32 

33  IF j = 21 THEN 

34   test2 := TRUE ; 

35  ELSE 

36   test2 := FALSE ; 

37  END_IF 

38 

39 

40  (*3rd test*) 

41  Balancing ( vInVector := voltages03Vector , minVolt := 

minVolt ) ; 

42  balancing03Vector := Balancing . balRequired ; 

43 

44  j := 0 ; 

45  FOR i := 0 TO 20 DO 

46  IF balancing03Vector [ i ] = balancing03ExpectedVector 

[ i ] THEN 

47    j := j + 1 ; 

48   END_IF 

49  END_FOR 

50 

51  IF j = 21 THEN 

52   test3 := TRUE ; 

53  ELSE 

54   test3 := FALSE ; 

55  END_IF 

56 

57 

58  (*4th test*) 

59  Balancing ( vInVector := voltages04Vector , minVolt := 

minVolt ) ; 

60  balancing04Vector := Balancing . balRequired ; 

61 

62  j := 0 ; 

63  FOR i := 0 TO 20 DO 

64  IF balancing04Vector [ i ] = balancing04ExpectedVector 

[ i ] THEN 

65    j := j + 1 ; 

66   END_IF 

67  END_FOR 

68 

69  IF j = 21 THEN 

70   test4 := TRUE ; 

71  ELSE 

72   test4 := FALSE ; 

73  END_IF 

74 

75 

76  (*5th test*) 

77  Balancing ( vInVector := voltages05Vector , minVolt := 

minVolt ) ; 

78  balancing05Vector := Balancing . balRequired ; 
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79 

80  j := 0 ; 

81  FOR i := 0 TO 20 DO 

82  IF balancing05Vector [ i ] = balancing05ExpectedVector 

[ i ] THEN 

83    j := j + 1 ; 

84   END_IF 

85  END_FOR 

86 

87  IF j = 21 THEN 

88   test5 := TRUE ; 

89  ELSE 

90   test5 := FALSE ; 

91  END_IF 


