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Reliable blood supply chains are critically important for modern medicine. How-
ever, blood inventories are perishable, which frames the issue as an inventory
management problem with separable supply and demand components. Inventory
management can be improved via multiple avenues, but reliable demand esti-
mation is among the most powerful ones, as it helps parties involved in blood
collection to scale the collection based on projected demand, thus reducing the
amount of outdating units and alleviating shortages.

The Finnish Red Cross Blood Service (FRCBS) is responsible for maintaining the
blood supply chain in Finland. Currently, operational level (donor mobilization)
estimates of demand are created weekly by using in-house expertise and planning
level (budgeting) estimates by machine-generated statistical forecasts.

This thesis aimed to examine the historical performance of the statistical forecasts
used for budgeting and to investigate if they could be improved and expanded
to monthly and weekly forecasts for different types of red blood cells. The ef-
forts consisted of reviewing the published literature on short-term and long-term
blood demand forecasting, examining the available data, establishing appropriate
metrics for evaluation, and trying out better models.

We find that that the mean absolute percentage error of the current forecasting
methods can be improved by 22.2% with an additional data preprocessing step
and by 50.1% by changing to a better model. The temporal resolution of fore-
casting was improved by changing the data source. Also, we discovered that the
nature of the blood demand signal changes significantly around 2017, underlining
the need to develop forecasting systems with the capability to adapt to changes.

Our final implementation is built into an R Markdown file to output an easily
accessible HTML for reporting. Further exploration is warranted, especially if
the aim is to use forecasting operationally someday.
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series analysis, autoregressive, adaptive
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Verihuoltoketjun luotettavuus on kriittisen tärkeä osa modernia lääketiedettä. Ve-
ri vanhenee muutamassa päivässä, mikä asettaa huoltoketjuongelman varaston-
hallinnan viitekehykseen erillisillä kysynnän ja tarjonnan osa-alueilla. Varaston-
hallintaa voi kehittää useilla eri menetelmillä, mutta kysynnän ennustaminen on
menetelmistä tehokkaimpien joukossa, sillä se mahdollistaa veren keräyksen ky-
synnän perusteella vähentäen erääntyvien veripussien määrää ja riittämättömien
varastojen riskiä.

Suomen Punaisen Ristin ylläpitämä Veripalvelu vastaa verihuoltoketjun
ylläpidosta Suomessa. Nykyisellään operationaalisen tason (luovuttajien kutsu-
minen) ennusteet tehdään viikoittaisissa kokouksissa asiantuntijoiden kokemus-
ta hyödyntäen. Pitemmän aikavälin suunnitelmalliset (budjetointi) ennusteet
tehdään laskennallisesti aikasarja-analyysillä.

Tämän opinnäytetyön tavoitteena oli arvioida käytössä olevien laskennallisten
ennusteiden historiallista tarkkuutta ja selvittää, voiko tarkkuutta parantaa tai
ovatko ennusteet laajennettavissa viikottaisiin ennusteisiin ja useampiin veri-
tyyppeihin. Tavoitetta edistettiin kirjallisuuskatsauksella verentarpeen lyhyen ja
pitkän aikavälin ennustamiseen, saatavilla olevan datan tarkastelulla, sopivien
tarkkuusmittareiden selvittämisellä ja muiden mallien testaamisella.

Työn aikana selvisi, että käytössä olevia ennusteita voidaan parantaa 22,2 pro-
sentilla lisäämällä prosessiin uusi datan esikäsittelyvaihe ja 50,1 prosentilla vaih-
tamalla käytettävää mallia parempaan. Ennusteen aikatarkkuutta saatiin paran-
nettua vaihtamalla datan lähdettä. Opinnäytetetyön päälöydös oli kuitenkin ve-
rentarpeen signaalin luonteen merkittävä muutos vuoden 2017 paikkeilla, mikä
alleviivaa muutoksiin sopeutuvien ennustejärjestelmien tarpeellisuutta.

Lopullinen järjestelmä rakennettiin R Markdown -skriptin sisälle helppolukuis-
ta HTML-raportointia varten. Tarpeen ennustamisen jatkotutkimusta tarvitaan,
varsinkin jos tavoitteena on ennusteiden käyttö operationaalisesti.

Asiasanat: verihuoltoketju, verentarve, operatiivinen mallinnus,
aikasarja-analyysi, autoregressiivinen, adaptiivinen

Kieli: Englanti

3



Acknowledgements

First and foremost I owe a great deal to my supervisor Prof. Jari Saramäki
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Abbreviations and Acronyms

ANN Artificial Neural Network
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average model
ARIMAX ARIMA with exogenous regressors
ARMA Autoregressive Moving Average
BJ Box-Jenkins method/protocol
CF Combination Forecast
cMAPE Operation critical MAPE
CSV Comma Separated Values file
ETS Exponential Smoothing Models
FRCBS The Finnish Red Cross Blood Service
FFP Fresh Frozen Plasma
HTML Hypertext Markup Language
LOESS Locally Estimated Scatterplot Smoothing
MA Moving average
MAPE Mean Absolute Percentage Error
MPE Mean Percentage Error
NNAR Autoregressive Neural Network model
PDF Portable Document Format
PLT Platelets
RBC Red Blood Cells
RMSE Root-Mean-Square Error
RSS Residual Sum of Squares
SARIMA Seasonal ARIMA
SMA Simple Moving Average
STL Seasonal and Trend decomposition model
TBATS Trigonometric, Box-Cox transform, ARMA errors,

Trend, and Seasonal components model
VARMA Vector ARMA
WHO World Health Organization

5



Contents

Abbreviations and Acronyms 5

1 Introduction 8
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature review 11
2.1 Modeling short-term demand . . . . . . . . . . . . . . . . . . 11
2.2 Estimating long-term behaviour . . . . . . . . . . . . . . . . . 14

3 Current forecasts 16
3.1 ETS modeler . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 STL modeler . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Mean absolute percentage error . . . . . . . . . . . . . 19
3.3.2 RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Operation critical MAPE . . . . . . . . . . . . . . . . . 20

3.4 Evaluation of old forecasts . . . . . . . . . . . . . . . . . . . . 21
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Chapter 1

Introduction

1.1 Background

Much of the world’s health care relies on the availability of fresh blood and
its derivatives. In Finland, some 215,000 transfusion events occurred be-
tween 2011-2016 in the Hospital District of Helsinki and Uusimaa alone,
even though the trend was decreasing [Laurén et al., 2019]. Roughly half
of all the transfused blood is required in surgeries, and the rest is used in
the treatment of other medical conditions, such as gastrointestinal and car-
diovascular diseases [Palo, 2013]. Thus, shortages in fresh blood translate
directly to potential loss of life, and the need for a reliable supply chain
is apparent. As blood is a perishable commodity, the supply chain reli-
ability is not fully guaranteed via storage solutions. Indeed, with whole
blood units expiring in 21/35 depending on the anticoagulant used and red
cells in 42 days [American Red Cross Blood Services, 2020], the ethical and
cost-related problems arising from wasting voluntary, non-remunerated dona-
tions demand the implementation of supply-demand analysis. Voluntary and
non-remunerated blood donation is the World Health Organization (WHO)
recommendation and the current policy in 28% of countries [World Health
Organization and International Federation of Red Cross and Red Crescent
Societies, 2009, 2010].

The Finnish Red Cross Blood Service (FRCBS) is solely responsible for
the blood supply chain in Finland. Each working day hundreds of donors are
serviced; their donations are exhaustively screened to guarantee the safety
of the patient and then produced into several types of products, ranging
from red cell products for surgical patients to platelet products for cancer
patients, and then stored and delivered to hospitals per demand. Figure
1.1 presents a rough diagram of the blood supply chain as provided by the

8



CHAPTER 1. INTRODUCTION 9

FRCBS. In 2019, a total of 198,339 units of blood were drawn from donors,
of which 190,437 RBC product units and 31,621 platelet product units were
distributed to hospitals [Finnish Red Cross Blood Service, 2020]. This is
equivalent to the efficiency of roughly 97 percent, with less than 1 percent
expiring in storage. An operation efficiency this high is not given and re-
quires supply management strategies and cooperation between receiving and
supplying parties. During the early 2000s, the FRCBS aimed to identify
and fix some of the most significant shortcomings in the blood supply chain,
including storage management issues, forecasting related problems, and in-
sufficient cooperation with hospitals. While most of the storage management
issues could be alleviated with improved logistics and increased cooperation
between the blood service and the hospitals [Rautonen, 2007, Sihvola, 2016],
forecasting demand remains an issue.

Donor

Red cells

Plasma

Platelets

Process to
products

Process to
products

Process to
products

Storage,
advanced
processing,
distribution

Delivery back
to FRCBS,
distribution

Patient

Figure 1.1: The blood supply chain as provided by the FRCBS. The chain begins
with an eligible donor donating 0.5 liters of fresh blood. This blood is divided into
red cells, platelets, and plasma for further processing into different blood products.
RBC and platelet products require the removal of leukocytes, and plasma is frozen
and shipped to pharmaceutical laboratories to be processed into medicine. After
processing (and screening), the products are either stored, processed further, or
distributed to hospitals, in which the products are administered to patients.

Demand forecasts are typically divided into three different levels in the
context of supply chain management: operational level (short-term), tacti-
cal level (medium-term), and strategic level (long-term). On the operational
level, forecasting is usually done on a weekly basis to match supply with cur-
rent demand. Tactical forecasting is used to help to make budgeting decisions
and usually involves the use of monthly data, while the long-term strategic de-
mand estimates are used to facilitate responses to changes in demand trends
[Filho et al., 2013]. The FRCBS is currently using simple models to forecast
the sales of blood and its derivatives on a tactical level. The supply chain
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critical forecasts of demand for donor mobilization (operational level) are
still made entirely by FRCBS personnel, mainly based on experience. While
historically functional, this kind of arrangement can be vulnerable to loss
of personnel and inaccuracies introduced by unexpected shifts in trend, and
finding working complementary forecasting models could credibly decrease
these kinds of risks. With complete information about scheduled surgeries,
the number of patients requiring blood products regularly, and the incidence
of trauma patients, one can imagine being able to optimize the number of
donors mobilized any given day fully. Without this kind of precognition or
integrated systems between the FRCBS and the hospitals, the best option
currently is to try to find trends, seasonality, and cycles in the blood demand
time series.

1.2 Scope

The scope of this thesis is to review the current literature on blood demand
forecasting, determine metrics for evaluating operational and tactical level
forecasts, review the existing forecasting methods used at FRCBS, explore
the possible sources for demand data, study the nature of the demand time
series and attempt to improve the forecasting models and practices based on
the observations. Additionally, a user interface is developed for accessing the
forecasts.

1.3 Outline

This thesis begins with the literature review in Chapter 2. Research on both
operational and tactical level forecasts are considered. Chapter 3 contains
the analysis of current forecasts used at the FRCBS and explanation of the
metrics used throughout this thesis. We then choose our ultimate source
of demand data and explore the behavior of the demand signal in Chapter
4, including also some tangential findings for completeness’ sake. Finally,
Chapter 5 presents the complete final implementation of the developed fore-
casting pipeline, along with performance evaluations. Results and findings
are discussed in Chapter 6, which concludes with problems with the current
implementation and possible future directions for research.



Chapter 2

Literature review

The literature search was performed with Google Scholar and PubMed using
the search terms ”blood”, ”demand”, ”prediction”, ”forecast”, ”model”, and
”short-term” in various combinations and selecting papers from the last two
decades. Some older but relevant papers were identified in the citations of
the selected papers.

Most of the published literature deals with blood supply chain manage-
ment, mostly out of the scope of this thesis. Nevertheless, all papers men-
tioning demand estimation by some means were included in the selection.
We will review literature both on the operational and tactical levels.

2.1 Modeling short-term demand

The most often cited early blood demand forecast attempt employed an expo-
nential smoothing model (ETS) with a 10-day (”arbitrarily selected”) cyclical
weight component [Frankfurter et al., 1974]. Exponential smoothing meth-
ods approximate time series using a linear combination of past observations
with exponentially decaying weights (more detailed explanation in Section
3.1). The model is used as a part of a ”computerized” inventory manage-
ment system, and the authors do not discuss their reasons for opting for
an ETS model. They report that they attained savings using the system,
but do not discuss the accuracy of the demand forecasts. A bit later, Gard-
ner [1979] found that ETS models did not predict the monthly demand for
blood testing in a clinical laboratory very well, although they outperformed
some more complex models, such as autoregressive integrated moving aver-
age models (ARIMA) selected using the Box-Jenkins (BJ) method. Instead,
simpler multiple regression models with a dummy seasonal variable consis-
tently gave mean absolute percentage errors (MAPE) under 5.5% (9.4% for

11



CHAPTER 2. LITERATURE REVIEW 12

Figure 2.1: Data on transfusions performed in hospitals reveal a pattern: most
transfusions are performed in the middle of the week and almost solely on work
days.

the best ETS). The author also discusses how the use of complex BJ models
is discouraged for being too complicated to interpret and maintain without
hiring an analyst. For clarity, ARIMA models are generalizations of au-
toregressive moving average models (ARMA), which regress the target series
using its lagged values (AR polynomial) and take the moving average of the
error terms (MA polynomial) to generate a fit. ARMA models require sta-
tionarity of the target series, and ARIMA models overcome this limitation
by ensuring time series stationarity using differencing. The BJ method is an
often automated procedure for selecting the best ARIMA models. Multiple
regression, on the other hand, is linear regression with multiple regressors.
ARIMA modeling is covered in more detail in Section 5.4.3.

Pereira [2004] attempts to forecast short-term blood demand (12-month
and 24-month forecasts) with ARIMA, ETS, and artificial neural network
(ANN) models. The author cites Chatfield [2000] when explaining ETS
models should model low order moving average (MA) processes well, but
no other reasoning is given for the particular choice of models. The neural
network input layer consisted of past observations of the series at chosen
lags. Parameter selection for all of the models was made automatically using
different kinds of software. An ARIMA(0, 1, 1)(0, 1, 1)12 model resulted in
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the best accuracy for 1-year forecasts, and an ETS with a linear trend and
multiplicative seasonality performed the best with 2-year forecasts. Both
outperformed the neural network in both time windows and all metrics. The
performance was measured using the root of residual sum of squares (the root
of RSS) and monthly coverage and outdate percentages. Filho et al. [2013]
state that blood centers in Brazil are mainly using simple τ -order moving-
average models (SMA) to estimate future demand. SMA models are used
when the series is expected to follow a slowly changing (noisy) mean, and its
forecasts are averaged observations of the series inside a moving window of
pre-determined length (Section 5.4.1). They suggest using seasonal ARIMA
(SARIMA) models selected using the Box-Jenkins protocol. The authors
demonstrate the validity of the method but do not attempt to estimate its
performance.

More recently, Fortsch and Khapalova [2016] compared the performances
of näıve, SMA, ETS, decomposition, and BJ-ARMA models in predicting
blood demand by type and vector autoregressive moving average (VARMA)
models in categorical prediction of demand (all types simultaneously). Mod-
els were selected by studying the characteristics of the demand series. A
näıve model is often used when the modeled series is considered to behave
similarly to a random walk, and its forecasts are simply the last observation
in the series, as explained in Section 3.4.1. Time series decomposition mod-
els attempt to extract the cyclical, seasonal, and trend components of the
series and using them in forecasting. The authors do not detail how their
decomposition was achieved, but refer to Hanke et al. [2001] for implementa-
tion using Excel. The decomposition approach taken in this thesis is covered
in Section 3.2. VARMA models are multivariate generalizations of univari-
ate ARMA models. The authors find that ETS models predict the demand
for positive blood types better than STL models and that STL models pre-
dict the demand for negative types better than ETS models. However, both
BJ-ARMA and VARMA outperform them measured by root means squared
error (RMSE) and MAPE.

Tanyavutti and Tanlamai [2018] explore forecasting blood demand in
Thailand using ETS models and ARIMA models with exogenous covariates
(ARIMAX). Thailand can be considered a special case in the context of this
review because supply rarely ever meets demand, and that high regional
prevalence of dengue fever is a significant driver for RBC demand. The au-
thors try using both the regional platelet demand series and regional dengue
fever morbidity as exogenous covariates in their ARIMA models. They find
that the ETS models outperform the ARIMAX models on the national level,
but the best performance varies between regions. The authors suggest that
this is an effect of the high regional variance in dengue fever morbidity.
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Most recently, Fanoodi et al. [2019] compare the performance of ARIMA
and ANN models in predicting the demand for different blood types. The
ANN used lagged observations from the time series as inputs, and the net-
work structure was chosen using a procedure established by Kaastra and
Boyd [1996]. Both perform almost equally well against the baseline of aver-
aging, improving RMSE 27% to 66% depending on the model and blood type.

Demand has also been estimated by modeling it as a Poisson process [Bar-
Lev et al., 2017], or by drawing from a normal distribution when the average
and standard deviation are known and from a negative binomial distribution
when they are unknown [Dillon et al., 2017]. Dillon et al. comment on
the validity of the chosen distributions by referring to recommendations by
Nahmias [2011]. In forecasting terms, these methods are roughly equivalent
to averaging with a noise parameter, as we are assuming a constant demand
with some variance.

Finally, Wilding et al. [2006] examine the overall forecastability of the
blood demand signal in the United Kingdom under the chaos theory do-
main. The authors find that the demand signal fulfills all the requirements
for a truly chaotic system, and only short-term forecasts can be convincingly
made. Chaos theory falls outside the scope of this thesis, and no evaluation
of the overall forecastability is attempted here.

It is important to note that the demand for blood and its derivatives is likely
very different from country to country and possibly from decade to decade,
making the majority of the published literature incomparable and explaining
some of the conflicts in results in these selected studies.

2.2 Estimating long-term behaviour

The academic discussion concerning the long-term behavior of blood demand
has long revolved around the rapid growth of the world’s older population
[He et al., 2016]. The connection between age and increased demand for
blood transfusions has been established in many countries [Wells et al., 2002,
Anderson et al., 2007, Beguin et al., 2007], which has led to researchers
estimating here in Finland [Ali et al., 2010] and elsewhere [Currie et al.,
2004, Seifried et al., 2011, Benjamin and Whitaker, 2011, Drackley et al.,
2012, Akita et al., 2016, Roh et al., 2020] that an aging demographic leads
to increased blood demand on a national level.

The literature is, however, far from unanimous. Borkent-Raven et al.
[2010] challenge the worst estimates of increased demand in the Netherlands
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Figure 2.2: Observing the RBC demand on a national level in Finland between
2004 and 2019, we can see a significant decrease in the series level, most likely
attributable to hospitals beginning to use 1 unit transfusion schemes more widely.
We can also estimate a slight increase in variance towards the end of the series.

by using the current trends in patient blood management (PBM) in their
model, thereby ending up estimating a decrease in demand instead of an
increase. Volken et al. [2018] follow suit and suggest that based on their
models, PBM schemes may entirely counteract the increase in demand caused
by the aging Swiss demographic. Moreover, Laurén et al. [2019] note that
the RBC demand trend in Finland from 2011 to 2016 is a decreasing one,
despite the lack of coordinated PBM programs and an aging population. The
authors suggest that this might be the result of improved surgical techniques,
decreasing birth-rate, and increasing adherence to single-unit transfusions.

The convoluted nature of the long-term trend estimation is underscored
by a qualitative review by Sasongko et al. [2019], in which they enumerate
(often conflicting) expert opinions and multiple possible factors affecting the
long-term trend. The authors end up concluding that the most prominent
trend seems to be the decline of RBC demand.



Chapter 3

Current forecasts

The current forecast setup at FRCBS was implemented in 2013. The pipeline
(Figure 3.1) consists of a manually amended monthly sales text document
and an R script that runs on the same machine. The text document has three
tab-separated columns: red cell products, platelet products (PLT), and fresh
frozen plasma (FFP). The script fetches this document by name, extracts
the data, removes missing values and feeds it into ets() and stl() modelers
from the forecast package [Hyndman and Koehler, 2006, Hyndman and
Khandakar, 2008] with a 6-month time window, which then output a 12-
month forecast. A third 12-month forecast is also created by repeating the
last six months of the series twice. The script then produces bar plots from
the sums of the forecasts by blood product (RBC, PLT, FFP) and line plots
by joining the history of the series and the forecast year for each product and
forecast type. These figures are compiled into a bare-bones report in Portable
Document Format (PDF) and uploaded to a destination folder. This report
is used in financial year budgeting, but not operatively in donor mobilization
or storage management efforts.

This thesis proceeds with explaining the functionalities of the used mod-
elers, establishing metrics for performance evaluation, and finally evaluating
the performance of the current forecasts. The third forecasting method (twice
repeated 6-month history) is omitted as uninteresting and trivially inaccu-
rate.

3.1 ETS modeler

The ets() modeler from the forecast package finds the best model (by
minimizing Akaike Information Criterion [Akaike, 1973]) from the family of
exponential smoothing models [Holt, 1957, Winters, 1960]. Forecasts made

16
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monthlysales.txt

ets() rep(-6, 2)stl()

forecast

PDF

Figure 3.1: Diagram of the current forecasting pipeline at FRCBS.

using exponential smoothing methods are linear combinations of past ob-
servations so that the weights of the observations decay exponentially as
we move further back in time. The simplest ETS model (without trend or
seasonality parameters) is defined as

ŷi+1 = αyi + α(1− α)yi−1 + α(1− α)2yi−2 + · · · ,

where 0 ≤ α ≤ 1 is the smoothing parameter. The greater α, the less
important distant observations become.

The ETS family is expanded by including components for trend and sea-
sonality. These components can be applied either multiplicatively or addi-
tively, which in practice means that their effect either changes with the level
(of the series) or it does not. Also, all of these models can be applied with
either multiplicative or additive errors. The ETS family models can be spec-
ified by writing ETS(·, ·, ·), using A, Ad, M, or N (additive, additive damped,
multiplicative, and none) for Trend, Seasonality, and Errors like so: ETS(A,
N, N) [Pegels, 1969, Hyndman et al., 2008]. An ETS model with no trend or
seasonality corresponds to the simplest ETS model defined earlier. An ex-
ample of applying ETS models to an RBC sales series is presented in Figure
3.2.

3.2 STL modeler

The stl() modeler in the forecast package decomposes the series into a
trend, a season, and an error component using locally estimated scatterplot
smoothing (LOESS, known more commonly as a the Savitzky-Golay filter
[Schafer, 2011]), removes the seasonal component from the series and feeds
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Figure 3.2: Result for running ets() piecewise (12 month forecast batches) on
the entire red cell sales history. Original series marked in black, forecast and its
85% and 90% confidence intervals (CI) in shades of blue. At the beginning of the
series, the modeler does not have enough data to find the seasonal component of
the series, so it chooses an ETS(N,N) model for the first three years.

the seasonally adjusted series into the ets() modeler. For illustration pur-
poses, Figure 3.3 presents a decomposed red cell sales history.
The way the STL modeler works means that it often agrees with the ETS
modeler. The STL modeler should only ever disagree with the ETS modeler
when it has a hard time finding the seasonal component or when there is not
enough data to find it. This relationship is apparent comparing the entire
forecasting histories: the STL modeler can take advantage of the seasonality
in the series earlier than the ETS modeler (Figure 3.4).

3.3 Metrics

The most widely used performance metrics in the literature were MAPE and
RMSE. We will settle for using mainly the same metrics throughout this
thesis, but we also wanted to consider a metric that was more suitable for
an operation critical context.
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Figure 3.3: An STL decomposition. Original series up top, then trend, sea-
sonal and remainder terms descending. The grey bar measures the ”effect size” of
the component: the more considerable the bar, the smaller the significance when
summing back up to the original series.

3.3.1 Mean absolute percentage error

MAPE is defined as

MAPE =
1

n

n∑︂
i=1

|ŷi − yi|
yi

· 100, (3.1)

where ŷ represents the forecast, y represents the actual observation, and n is
the number of forecasts made. Percentage errors are unit-free, which means
they can be used between different data sets and magnitudes. MAPE suffers
from instability caused by division by zero: when yi is zero, MAPE results
in undefined or infinity depending on the implementation. Additionally, if y
is a continuous variable, values close to zero result in extreme error values.
Finally, MAPE requires that the data exist on a ratio scale (units have a
meaningful zero; data does not reach beyond zero). However, we avoid all
of these problems: our series can only have discrete, positive integer values
(units of blood), and the demand is virtually never zero.
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Figure 3.4: Result for running stl() piecewise (12 month batches) on the entire
red cell sales history. Original series marked in black, forecast and its 85% and 90%
confidence intervals (CI) in shades of blue. This modeler ”finds” the seasonality
much earlier than the ETS modeler.

3.3.2 RMSE

RMSE is defined as

RMSE =

√︃∑︁
n
i=1(ŷi − yi)2

n
. (3.2)

RMSE is robust near zero and does not assume a ratio scale for the data. It
is a scale-dependent error metric, meaning that the errors are on the same
scale as data. However, comparing errors between different scales or units
becomes very difficult with RMSE, and as such, the forecast errors from the
total RBC series will not be comparable with the RMSE for the O+ demand
series, for example.

3.3.3 Operation critical MAPE

Operation critical MAPE, or cMAPE for short, is a crude ad hoc metric
for selecting models that overestimate rather than underestimate the blood
demand by much discouraging underestimating demand. We accomplish this
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by doubling the error every time the demand is underestimated:

cMAPE =
1

n

n∑︂
i=1

e∗

yi
· 100, e∗ =

{︄
2e if e = |ŷi − yi| < 0

e if e = |ŷi − yi| ≥ 0.
(3.3)

3.4 Evaluation of old forecasts

To properly evaluate the accuracy of the current forecasting models, we also
evaluate the performance of a selection of the simplest known forecasting
models. Assuming that the demand series is not merely a random walk
and that it exhibits complex seasonality, these simple models should not
outperform the ETS or the STL modeler.

3.4.1 Näıve model

A näıve forecast expects the next observation in the series to be the same as
the previous one:

ŷi+1 = yi. (3.4)

Näıve models work the best when the modeled series approximates a random
walk: in the presence of true randomness, the best forecast is the previous ob-
servation. The forecast package contains two functions for näıve modeling:
naive(y, h) and rwf(y, h).

3.4.2 Näıve model with a drift parameter

It is possible to allow for drift in the random walk by adding the average
change in the series to the previous observation:

ŷi+h = yi + h(
yi − y1
i− 1

). (3.5)

Näıve with drift can be called with rwf(y, h, drift = TRUE).

3.4.3 Seasonal näıve model

The näıve model can also be adapted to incorporate seasonality:

ŷi+h = yi+h−m(k+1), (3.6)

where m is the seasonal period (for example, 12 months), and k counts
the number of full seasons in the forecast period. In practice, seasonal näıve
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Model performance
Method cMAPE MAPE RMSE
ETS 7.636 4.826 1066.584
STL 8.238 5.204 1102.804
RWF 11.942 11.337 1891.135
NAIVE 12.296 11.760 1970.817
SNAIVE 6.785 4.141 755.046
MEANF 20.899 20.899 3427.415

Table 3.1: Comparison of accuracy metrics (cMAPE, MAPE, RMSE) be-
tween different models. Top down, ets(), stl(), rwf(), naive(), snaive(),

meanf(). Best performing model in bold.

rewinds series time by the length of the season and gives that value as the
forecast. This model works best when the series has strong seasonality with
minimal variance. The seasonal näıve model can be called with snaive(y,

h).

3.4.4 Averaging model

Another take on the ideas behind näıve models is the averaging method,
where the forecast is achieved by averaging all previous observations:

ŷi+1 =
y1 + · · ·+ yi

n
. (3.7)

The averaging forecast is called with meanf(y, h).

3.4.5 Results

The current forecasting practice is to use stl() and ets() to forecast the
next 12 months of demand for all of the red cell products combined, so we
test them in the same setup. History from 2004 to 2018 was used in creating a
12-month forecast. Model performance was recorded using cMAPE, MAPE,
and RMSE. Results are presented in Table 3.1.

The clear winner seems to be the seasonal näıve with the smallest errors
in all categories. The ETS and STL models come quite close with näıve,
näıve with drift, and averaging method being far behind in performance. In-
terpreting the RMSEs and cMAPEs, the current models misestimate around
1100 units of blood for 12 months, with somewhat equal distribution between
over- and underestimating demand.
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Studying the demand series

4.1 Data

The literature recognizes two kinds of time series that can be seen as de-
mand data: data on actual transfusions performed in hospitals and data on
sold/shipped blood units from collection centers. The FRCBS has full access
to the latter and partial access to the former through the Ketju program
[Rautonen, 2007]. Using the transfusion data is preferable to sales data, as
it is the most direct measure of blood demand. The most beneficial scenario
would be one where the transfusions are logged immediately as orders for the
blood service, and the blood service could then scale collections accurately
in real-time. Currently, we do not have such a system in place, so we will
have to resort to demand forecasting. Unfortunately, only a part of all of
the shipped blood goes to Ketju hospitals, and because hospitals differ in pa-
tient blood management schemes [Laurén et al., 2019], storage management
procedures and ordering schedules, it is difficult to create any meaningful
forecasts for the operational level using this data.

As such, we are left with blood sales data. To facilitate automatic fore-
casting, we pull the sales data directly from a business intelligence platform
used by the FRCBS. Blood product sales data is automatically updated daily
on the platform, which removes the problem with manually amending text
documents, and we can perform our modeling with finer temporal resolution.

These daily sales data contains product codes for all sold products, which
we filter to obtain the series for all types of RBCs and PLT. We decided
not to implement forecasts for FFP products as their ordering and shipping
policy is entirely different from RBC and PLT products.

Finally, we considered accessing national morbidity and traffic accident
statistics and weather data as exogenous regressors for some of our models for

23
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a while. However, we did not have enough time to explore this data, so the
use of exogenous regressors was ultimately abandoned. All of the modeling
done in this thesis can be considered autoregressive.

4.2 Demand behaviour

Having access to the daily sales data lets us aggregate it as a weekly time
series. The RBC series (all types combined) then reveals a striking trans-
formation: the entire nature of the series appears to change around 2017.

Figure 4.1: Weekly series of sold RBC turns from a decreasing ”random walk”
into a slightly increasing signal with stronger seasonality and a more significant
variance.

This finding primes a critical question for a data science practitioner: how
does one consider the possibility that the best model for the current state
of the series might not be the best in a year or two? To drive this home,
Figures 4.2 and 4.3 show how an STLF modeler (covered in Section 5.4.4.1)
arrives at entirely different models based on the length of history shown to
it.
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Figure 4.2: 2 year STLF forecast. Modeler was given data from 2014 to 2019.

Figure 4.3: 2 year STLF forecast. Modeler was given data from 2017 to 2019.

The found literature on blood demand forecasts so far does not comment on
the issue of adaptability, although some authors do remark on the need to
review the forecasts periodically [Wilding et al., 2006]. However, the data
makes it evident that if one aims to deploy a semi-autonomous forecasting
script without constant supervision by an analyst, the system needs to be
able to choose from a more extensive library of models than just, for example,
a family of ETS functions. This adaptability is the main idea behind our final
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implementation.
Finally, we present some tangential findings uncovered while doing ex-

ploratory analysis on alternative data sets for the sake of completeness.

4.2.1 The need for monthly adjustments

The current forecast pipeline contains very little data preprocessing. After
missing values are removed from the data, it is transformed directly into a
time series object. However, it is advised and customary to adjust for possible
variability caused by calendar months, especially if the data is a monthly
series to remove the correlation with the number of days in any given month
[Hyndman and Athanasopoulos, 2018]. It is easy to show how this creates
artifacts into our series by plotting a seasonal subseries plot (Figure 4.4).

Figure 4.4: Red cells monthly series as a subseries plot. Each of the subseries
depicts values for the indicated month throughout the entire history. The blue line
indicates the mean, clearly going lockstep with month duration in some parts.

We can immediately remove some of this noise by adjusting for days in a
month (Figure 4.5). The perfect adjustment counts only operational days,
excluding, for example, all holidays. Such a function is not readily available
for the Finnish calendar, so we have to rely on the number of market days in
Zürich, the closest approximation offered by the bizdays() function in the
forecast package.
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Figure 4.5: Red cells monthly series as a subseries plot. Each of the subseries
depicts values for the indicated month throughout the entire history. The blue line
indicates the mean, now revealing more real variation between months.

This small additional preprocessing step already improved the current
forecasts by a significant margin, as shown in Table 4.1. The RMSE here is
not comparable with the previous RMSE due to the adjustment, but cMAPE
and MAPE indicate that the adjustment improved all models’ performance,
except for seasonal näıve. The systemic monthly variance may have given
seasonal naive an unsubstantiated edge over other models. With one ad-
ditional preprocessing step, we can improve model performance by 9-50%
across the board.

4.2.2 Transfusions by weekday, expiration cycles

Transfusion data from Ketju hospitals reveal a couple of curiosities. Figure
4.6 reveals that transfusions are given mainly on business days, indicating
possibly that fewer operations are performed and fewer treatments are given
on weekends.
It is also interesting how blood freshness is managed in hospitals. The Ketju
data contains information about the freshness of the transfused blood in the
form of ”days till expiration.” Plotting these in the form of a histogram (by
the hospital or by blood type), a pattern of use is revealed (Figures 4.7 and
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Model performance after adjustment
Method cMAPE MAPE (∆%) RMSE
ETS 7.657 4.400 (-8.8) 44.436
STL 6.857 4.050 (-22.2) 41.640
RWF 10.477 5.938 (-47.6) 60.322
NAIVE 10.020 5.917 (-49.7) 57.375
SNAIVE 6.785 4.141 (+0.0) 36.951
MEANF 17.557 17.557 (-16.0) 143.651

Table 4.1: Comparison of accuracy metrics (cMAPE, MAPE, RMSE) between
different models after adjusting for the approximate number of business days
in a given month. Top down, ets(), stl(), rwf(), naive(), snaive(),

meanf(). Best performing model in bold.

Figure 4.6: Transfusion data from Ketju hospitals.

4.8).
It would seem that hospitals manage their blood inventory in such a manner
that results in units 21, 14, and 7 days from expiration being administered the
most. This phenomenon suggests the use of a weekly rearranging scheme.
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Figure 4.7: Blood unit expiration data from Ketju hospitals by the hospital.
Hospital names changed arbitrarily to numbers to as it may be sensitive data.
X-axis indicates the number of days the administered unit would have expired in.

Figure 4.8: Blood unit expiration data from Ketju hospitals by blood type.
X-axis indicates the number of days the administered unit would have expired in.
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Implementation

The existing literature on forecasting operational blood demand reveals that
there is not yet a singular model or approach that works the best for this
kind of demand data, as the factors driving demand in different countries
might be entirely different (as is the case with Tanyavutti and Tanlamai
[2018]). Furthermore, it is crucial to note that the nature (trend, seasonality,
total variance) of the blood demand series might change with a surprising
rate [Benjamin and Whitaker, 2011], unexpectedly [Ali et al., 2010] and in
ways that are difficult to anticipate [Wilding et al., 2006, Sasongko et al.,
2019]. These are all pressing reasons for avoiding selecting a singular best
performing model and opting for a semi-autonomously adapting forecasting
system instead.

Designing an adaptive (univariate, autoregressive) forecasting system re-
quires several choices from the analyst:

1. Should we be able to allow for optional data processing steps?
For example, it could be that during a period of low signal-to-noise
ratio, some low pass filtering might improve the forecast accuracy by a
significant margin.

2. By what metric should we choose our forecasting models? If
we aim to forecast on an operational and tactical level, the metrics
should be easily interpretable and lead to a useful model selection.

3. What is the library of models we want the modeler to choose
from? This is mostly a question of available computing resources be-
cause we can not have the run times for any given forecast to get out
of hand. However, properly justifying a model choice may be difficult
when the pretext is that we want to prepare for unforeseen changes in
the demand signal.

30
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4. How long is our training period? How long is our validation
period? How far ahead are we aiming to forecast? The recom-
mended size of the validation set usually varies between 10% and 25%,
but it should cover at least the forecasting period.

5.1 Code

All development was performed on Ubuntu 18 OS. All scripts during devel-
opment were written with R version 3.6 [R Core Team, 2020] using Rstudio
development environment version 1.2 [RStudio Team, 2020]. Session info
(sessionInfo()), containing also loaded packages and their versions is in-
cluded in Appendix A. All development code will be publicly available at
https://github.com/FRCBS/production_forecasts at some point.

5.2 Data preprocessing

Data selection and product filtering are explained in Section 4.1. To further
process the data for forecasting, we replace all missing values with zeroes
to avoid issues with NaNs. We do this instead of imputing with averages
because we estimated that a missing value in the business intelligence data is
much more likely to be an unreported zero value than an actual missing data
point. We aggregate all of our daily series into weekly and monthly variants
to forecast on both an operational and a tactical level. After aggregation, no
zero-valued weeks or months are left in any of our series, ensuring that we
can safely use percentage error metrics, such as MAPE. Finally, we adjust
the monthly series by workdays, as described in Section 4.2.1.

5.2.1 Additional preprocessing options

To account for worsening signal quality (increasing signal-to-noise ratio S
N
),

we can allow for the application of low pass filters on our series. Fig-
ure 5.1 shows the effect of low-pass filters with cutoff frequency settings
of 0.25 and 0.10. For smoothing we use the package istmr and the function
smooth.fft(x, f) within.

5.3 Final choice of metric

Gardner [1979] remarked the disadvantages of deploying a modeler that
would require constant or at least regular expert supervision. An autonomous

https://github.com/FRCBS/production_forecasts
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Figure 5.1: Low-pass filtering the monthly RBC sales series. The lower the cutoff
frequency, the smoother the resulting series.

and adaptive modeler solves this particular issue, but only if the forecast tar-
get audience trusts its judgment. In the context of blood demand forecasts,
good judgment can be interpreted, for example, as the preference to over-
estimate demand at the cost of most accuracy metrics. Pereira [2004] used
coverage rate as a metric for model goodness and Fortsch and Khapalova
[2016] used mean percent error (MPE) to find if the model was biased to a
specific direction, although deciding that 0 bias was the optimum. In this
thesis, we have used the operation critical MAPE , which conveys the same
information as MPE, if in a less interpretable form. The upside is that it can
be used as-is as a model selection metric, unlike MPE.

Currently, this development project is exploratory, and the forecasting
system developed will not be used operationally in the near foreseeable fu-
ture, but as a complement to budget planning. This shifts the weight from
operational criticality to metric legibility, meaning that models should be
selected strictly by forecast accuracy. Thus, our final modeler will select
models based on MAPE and not cMAPE. RMSE is another strictly accu-
racy focused metric, but as the final implementation will be used to forecast
ten different blood products (RBC, ±A, ±B, ±O, ±AB, PLT) on two differ-
ent time scales (monthly and weekly), RMSE does not allow us to compare
inter-series accuracies.
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5.4 Model selection

Now that we have established the appropriate model selection metric and
the data for our forecasting system, we can run performance analysis on a
handful of the most widely used models. We will test out most of the models
tested in the literature and see if they exhibit any properties that warrant
the inclusion into the model library used by the modeler. We use monthly
aggregate data for model selection, as monthly forecasting is our primary
goal for our implementation. Our training set extends from February 2014
to June 2018, and our validation set comprises the following 12 months to
June 2019.

5.4.1 Simple moving averages

A simple moving average model (SMA) of qth order is defined as:

ŷi+1 =
1

q

i∑︂
j=i−q

yj. (5.1)

SMA models are an extension on the averaging method, where we select a
time window inside which we average all observations to generate a forecast.
The idea is to smooth out the most erratic parts of the series to find its
trend-cycle [Hyndman and Athanasopoulos, 2018, chapter 6.2].

5.4.2 Dynamic regression

Linear regression means fitting a line through the existing observations.

yt = xtb+ a+ εt, (5.2)

where b is the slope of the line, a is the intercept (the level) and ε captures
”everything outside a linear relationship” between the variables x and y,
often taken as white noise. Forecasting with linear regression means that we
follow that fitted line into the future:

ŷt = xtb+ a, (5.3)

and we can generalize univariate linear regression into multivariate linear
regression by adding dimensions:

ŷt =
n∑︂

i=1

xi,tbi + a. (5.4)
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However, we are not interested in evaluating the performance of sim-
ple linear regression, as it can only find linear relationships [Hyndman and
Athanasopoulos, 2018, chapter 5.1], and we already know by having taken
a look at our series that the relationship between demand and time is most
certainly not linear. There are various ways to transform linear models into
nonlinear models, as explained in Hyndman and Athanasopoulos [2018, chap-
ter 5.8], but we will instead approach the problem via dynamic regression by
assuming that the noise term ε contains enough auto-correlation to be rele-
vant for forecasting. We can efficiently model the auto-correlation contained
in ϵ using ARIMA modeling (Section 5.4.3 below). If we combine the linear
regression model and the ARIMA error model, we can model nonlinear re-
lationships between the dependent and independent variables. In practice,
we run a linear regression modeler using tslm() from the forecast package
and then run auto.arima() on its residuals.

5.4.3 ARIMAX

As stated in Section 2, ARIMA models are generalisations of ARMA models,
which can be defined with two polynomials: the autoregressive polynomial
and the moving-average polynomial. An AR-polynomial of order p is defined
as:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt, (5.5)

which can be interpreted as multivariate linear regression using p lagged
values of the series as regressors. A q-order MA-polynomial is given by:

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q, (5.6)

which can be thought as a regression formula with moving-averages of the
past forecast errors. A full ARMA model can then be written as:

y′t = c+ ϕ1y
′
t−1 + · · ·+ ϕpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt. (5.7)

ARIMA models take an additional differencing step to ensure series sta-
tionarity. ARIMA models can be identified using the following notation:
ARIMA(p, d, q), where p and q signify the orders of the AR and MA-
polynomials, respectively, and d indicates the differencing degree. ARIMA
models can be further expanded by introducing exogenous regressors:

yi = βxi +

p∑︂
j=1

ϕjyi−j + εi +

q∑︂
j=1

θjεi−j. (5.8)
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As discussed in Section 4.1, we also considered using various other time
series (weather, accident statistics) as exogenous regressors but ended up
deciding against this on the grounds of schedule. However, we can bestow
a sense of time to an ARIMA model by using a one-hot encoded monthly
calendar as an exogenous variable, effectively creating an ARIMAX model.
An example of a one-hot encoded monthly calendar is shown in the Figure
5.2. The auto.arima() function also has the capability to take in exogenous
regressors, and thus it functions as our ARIMAX modeler.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 5.2: One year in one-hot encoded months. Each row and column repre-
sents a specific month starting from January. The rows extend to December while
the columns extend only to November. This is because we want December to be
captured by the intercept, so as to avoid the dummy variable trap detailed, for
example, in [Hyndman and Athanasopoulos, 2018, chapter 5.4].

5.4.4 Complex decompositions

The existing literature does not contain any attempts to forecast blood de-
mand with models designed to detect complex seasonalities, even though the
blood demand signal is likely to have weekly, monthly and yearly seasonali-
ties. The seasonality detecting models tried so far (STL, ETS) are designed
for finding a unique seasonality in the series, which warrants exploration of
models designed to detect multiple seasonalities.
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5.4.4.1 STLF

One way to detect multiple seasonalities in a series is to detect them recur-
sively one at a time. This is what the stlf() from the forecast package
tries to accomplish. It calls the forecasting function using a fit derived with
the mstl() function, which works by calling stl() recursively multiple times,
stripping away seasonalities layer by layer [Hyndman and Athanasopoulos,
2018, chapter 11.1].

5.4.4.2 TBATS

TBATS (Trigonometric, Box-Cox transform, ARMA errors, Trend, and Sea-
sonal components) models build ARIMAX models by using Fourier terms
derived using dynamic harmonic regression as exogenous regressors, as a
representation for series seasonalities. As neither Fourier analysis nor dy-
namic harmonic regression is in this thesis’s scope, we will sidestep here the
theoretical background of the model by referring to De Livera et al. [2011].
Nevertheless, TBATS allows for multiple changing seasonalities in the mod-
eled series, and we will thus analyze its performance alongside STLF.

5.4.5 Neural network autoregression

Fanoodi et al. [2019] found that artificial neural networks outperformed
ARIMA models in all blood type categories, which is a good reason to try
autoregressive neural networks for ourselves. NNAR models feed lagged ob-
servations of the series into the network input layer and try to find the optimal
weights for forecasting the future [Hyndman and Athanasopoulos, 2018]. The
forecast package offers the nnetar() function for automatic NN fitting.

5.4.6 Combination forecast

Bates and Granger [1969] showed already some decades ago that combining
the forecasts from different models, for example, by averaging, often result
in improved accuracy. We will thus include a combined mean forecast from
all of the chosen models in our evaluations.

5.4.6.1 Results

Table 5.2 presents the combined results of the performance evaluation of
näıve, näıve with drift, seasonal näıve, averaging, SMA, STL, ETS, STLF,
TBATS, dynamic regression, ARIMAX, NNAR, and combination forecast
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models on the RBC demand series with three possible levels of data pro-
cessing: as-is and low-pass filters with cutoffs at 0.25 and 0.10. The same
validation process is applied to all our smaller blood product series, and Table
5.1 presents the best model for each with the associated error scores.

The ARIMAX and combination forecast (CF) models outperform all
other models by a hefty margin when forecasting the RBC series. Other
better contenders are a TBATS model, an ETS model, and somewhat sur-
prisingly also the seasonal näıve model. When forecasting by blood type
(series with smaller volume), simple moving-average models tend to outper-
form more complex models. ARIMAX and seasonal näıve models achieved
the highest accuracy among the best performing models. B minus proved to
be the most challenging series to forecast.

Furthermore, it appears that currently, the low pass filters provide virtu-
ally no improvement to any of the forecasts and that we can probably safely
omit the most simple baseline models from the final pool of models since only
seasonal näıve appears competitive. Our final pool of models thus comprises

1. a seasonal näıve modeler, snaive()

2. an STL modeler, stl()

3. an ETS modeler, ets()

4. Simple moving averages, ma(order = {5, 7, 9, 12})

5. a dynamic regression modeler, tslm() + auto.arima()

6. an ARIMAX modeler, auto.arima(xreg = one-hot-calendar)

7. an STLF modeler, stlf()

8. a TBATS modeler, tbats()

9. a NNAR modeler, nnetar()

10. a combination forecast model (by averaging)
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Best model or modeler for each series
Series Model cMAPE MAPE RMSE
RBC ARIMAX 3.531 2.068 22.387
A- 12-MA 7.21 3.706 2.484
A+ ARIMAX 5.026 2.624 9.345
B- STLF 11.587 6.765 2.015
B+ 9-MA 8.09 4.649 5.536
AB- 12-MA 7.848 4.724 0.468
AB+ 5-MA 5.024 4.151 1.701
O- ARIMAX 4.347 3.542 2.751
O+ SNAIVE 3.638 2.133 6.888
PLT STL 4.684 3.288 5.259

Table 5.1: A table of best models measured in cMAPE, MAPE and RMSE when
forecasting the each of the product subseries.
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Model performance

Method cMAPE MAPE RMSE

RWF 11.838 11.623 92.611
RWF .25 6.233 4.123 42.862
RWF .10 6.756 4.196 43.84
NAIVE 11.474 11.177 88.622
NAIVE .25 6.136 4.195 42.55
NAIVE .10 6.474 4.197 42.838
SNAIVE 4.066 2.327 22.707
SNAIVE .25 6.832 4.243 42.951
SNAIVE .10 6.834 4.338 43.464
MEANF 6.005 4.596 43.993
MEANF .25 6.003 4.585 43.940
MEANF .10 6.002 4.581 43.917
STL 4.836 2.575 26.660
STL .25 11.3 5.816 63.039
STL .10 6.942 4.182 44.844
ETS 3.719 2.268 23.960
ETS .25 6.095 5.002 46.653
ETS .10 6.762 4.196 43.87
5-MA 5.286 3.347 35.894
7-MA 5.286 3.236 35.853
9-MA 5.248 2.975 34.721
12-MA 4.582 2.745 31.746
ARIMAX 3.531 2.068 22.387
ARIMAX .25 6.681 3.877 44.206
ARIMAX .10 6.867 4.208 44.187
DynR 8.334 4.167 38.909
DynR .25 6.504 3.992 41.54
DynR .10 9.805 4.929 58.027
STLF 4.648 2.472 26.159
STLF .25 7.568 4.192 47.776
STLF .10 6.571 4.159 43.044
TBATS 3.896 2.333 23.302
TBATS .25 3.896 2.333 23.302
TBATS .10 3.896 2.333 23.302
NN 6.940 3.882 33.906
NN .25 4.910 2.828 26.026
NN .10 5.738 3.253 29.55
CF 4.785 2.685 29.678
CF .25 6.002 3.575 38.573
CF .10 6.378 3.767 40.416

Table 5.2: A table of model performance measured in cMAPE, MAPE and RMSE
when forecasting the entire RBC series. Best performing models in bold.
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5.5 Rolling window size

We chose the size of the rolling window for our adaptive modeler by examining
the speed at which the most recent significant behavioral change happened
in the series and how long the new behavior has persisted so far. Based on
these metrics alone, a rolling window size of two years is likely to be the
most suitable option, as the new behavior has persisted now for some two
years. However, we decided to make the modeler a bit more conservative, to
be more robust under short, fleeting changes in the behavior of the signal.
A validation period of one year further assures that each time a model is
selected, it has been consistently the best throughout an entire year.

3-year rolling window

Ignored history

6-month forecast

1-year validation

Figure 5.3: Diagram of the model selection process.

The purpose is to run the modeling script at pre-determined times each
month or each week, depending on the desired forecasting resolution.

5.6 Reporting

The current forecasting implementation at FRCBS outputs a small collection
of graphs as a Portable Document Format file and uploads it into the FRCBS
intranet, where it is viewable by downloading it. When an employee needs to
record the forecasts to file, they need to input the forecast values by reading
the PDF file manually.

To provide more accessibility to the forecasts, we integrated the new mod-
eler into an R Markdown script that is converted (”knit”) into a Hypertext
Markup Language (HTML) file immediately displayable on the intranet. Us-
ing HTML, we can provide the users with means to interact with the reported
forecasts, for example, by downloading a Comma Separated Values (CSV)
file of a table of forecasts. HTML allows us also to present figures in tabs.

Our report begins with figures of 6-month forecasts for each of the product
types (and RBC total). Each figure has a subtitle that tells the type of the
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daily sales data

separate by type

monthly aggregate weekly aggregate

preprocess

select model

forecast

HTMLsave

Figure 5.4: Diagram of the pipeline for the new modeler to be used at FRCBS.

model or modeler used for this six-month forecast. A development mock-
up is shown in Figure 5.5. The shaded portions are the 80 and 95 percent
confidence intervals for this forecast. Below each figure is highlighted the
exact forecast for the next month. A tabled version follows the monthly
forecast figures, easily saved by copying to the clipboard. The figures and
tables cover the primary function for the modeler and the reporting, but
they are followed by figures for four-week forecasts for exploratory purposes
(Figure 5.6).

Finally, the report contains forecasting histories, both as figures and ta-
bles, for the monthly and weekly forecasts. Forecast histories are accumu-
lated as new forecasts are saved each week. Histories are included to give
insight into the behavior of the demand signals and the modeler and help
users assess its reliability, hopefully facilitating trust in the system. Figure
5.7 shows simulated monthly forecast histories for the past 17 months and
the corresponding history table detailing which models get selected the most
and what are their respective historical accuracies.
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Figure 5.5: Screenshot of the generated HTML report. A 6-month forecast for
the O+ type demand series is shown here, as indicated by the figure and the
highlighted tab. The plot subtitle reports the best performing model or modeler
of the previous year.
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Figure 5.6: A 4-week forecast for the O+ type demand series. The previous year’s
best performing model is different between monthly and weekly series (seasonal
näıve and stlf, respectfully).
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Figure 5.7: Monthly forecast history for the O+ demand series, simulated using
the adaptive modeler. The forecaster has opted for a seasonal näıve model 2

3 of
the times, and the remaining 1

3 of the forecasts employ the stl() modeler. The
MAPE for this forecast history is 4.62%, as indicated in the plot subtitle.



Chapter 6

Discussion

6.1 What we learned

This thesis aimed to evaluate the performance of the current demand fore-
casts at FRCBS and explore ways to improve them. We were able to improve
the forecast accuracy of the original pipeline immediately by 22.2% by ad-
justing the data for monthly workdays. We reviewed the existing literature
on blood demand forecasting and found that they are often incomparable in
their results as the blood demand signal behavior varies from locale to locale.
We also found that while there is a growing interest in the future trends of
blood demand globally and nationally, few studies advise on the approaches
to be taken when forecasting a subtly or suddenly changing series.

After taking a look at the data and the nature of the demand signal in
Finland, we noticed a marked change in the demand signal’s behavior. This
observed change and the incommensurability of the results in the existing
literature suggested that searching for one single best performing model for
tactical or operational level forecasting is inadvisable, and we should instead
focus on developing an adaptive forecasting system that would be able to
choose the best model from a pool of models automatically. We decided to
use mean absolute percentage error for its interpretability in and between all
data scales. However, we also explored using an operation critical version
of MAPE with the idea that we would prefer demand overestimation in our
forecasts if they were ever used on an operational level.

Evaluation of model performance on monthly data revealed that whenever
a sales series was large enough in magnitude, ARIMAX models with a one-
hot encoded calendar of months as external regressors provided the best
fit, indicating that there is real and predictable variability in blood demand
between months in a year. As the magnitude of the series decrease, simple

45
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moving average models with different period lengths seem to work the best,
possibly due to increased noise in the signal. The ARIMAX models offer a
significant 50.1% improvement against the old forecasts.

6.2 Challenges, caveats, and future directions

It is necessary to keep in mind that while we were able to significantly reduce
forecasting errors in the tactical level forecasts used at the FRCBS, the sys-
tem can not be used standalone for operational level forecasts. The primary
reason for this is that the FRCBS currently incorrectly estimates operational
blood demand only by sub-1%, which is even more accurate than what our
system achieves on a tactical level. This is partly because the FRCBS can
mobilize donors effectively whenever the blood storage levels approach de-
pletion. However, donor mobilization is costly, which might motivate the use
of this kind of forecasting system as a complementary tool.

Another issue and target for future research is the size of the rolling
window. Our choice of three years is inclined towards the conservative end,
and we are probably sacrificing some accuracy because of it. A smaller rolling
window might help some models detect patterns that are otherwise muddled
by ongoing changes. It might be worth to check in the future, what kind of
rolling windows find the best compromise between accuracy and robustness
and possibly even identify the best window for each subseries.

On the practical side, we ran into problems when attempting to deploy
our script onto the server where it was supposed to be running. First, the
server refused to draw any of our plots in the report. We fixed this issue
by forgoing the colorblind palette, with which the plots were initially drawn.
Second, when the script runs the first time, some history is ”simulated” and
by running the forecast blind on past observations, and sometimes the server
kills the script in the middle of this. The history generation is robust to
abrupt kill commands, but continually restarting the script requires some
supervision, which is a problem that needs to be addressed at some point.

Also, the current running time of the script is rather long. This is only
expected when we select from 13 different models using a rolling window
validation for ten different time series, first on a monthly level and then
on a weekly level. This should not be a concern if the script can be run
automatically and without interruptions once a week or once a month, but
it might be worth checking if there are any possibilities for optimization, or
if a smaller window would suffice for the weekly forecasts.

In terms of academic interest, the overall forecastability of the blood
demand series is still very relevant. This thesis’s findings emphasize the need
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to analyze the blood demand time series in the context of change. An analysis
of the factors driving short-term and long-term demand in different countries
could probably help blood supply chain operators to better understand the
blood demand series, which is so critical to the modern medicine.
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Appendix A

First appendix

> sessionInfo()

>>

R version 3.6.3 (2020-02-29)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.4 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] DT_0.8 R.utils_2.9.0 R.oo_1.22.0 R.methodsS3_1.7.1

[5] data.table_1.12.2 numbers_0.7-1 lubridate_1.7.4 plyr_1.8.4

[9] knitr_1.23 gridExtra_2.3 ggplot2_3.1.1 forecast_8.7

loaded via a namespace (and not attached):

[1] Rcpp_1.0.1 urca_1.3-0 pillar_1.4.1 compiler_3.6.3

[5] tseries_0.10-46 tools_3.6.3 xts_0.11-2 digest_0.6.19

[9] nlme_3.1-140 tibble_2.1.2 gtable_0.3.0 lattice_0.20-38

[13] pkgconfig_2.0.2 rlang_0.3.4 rstudioapi_0.10 curl_3.3

[17] parallel_3.6.3 xfun_0.7 stringr_1.4.0 withr_2.1.2

[21] dplyr_0.8.1 htmlwidgets_1.3 lmtest_0.9-37 grid_3.6.3

[25] nnet_7.3-12 tidyselect_0.2.5 glue_1.3.1 R6_2.4.0

[29] purrr_0.3.2 TTR_0.23-4 magrittr_1.5 htmltools_0.3.6

[33] scales_1.0.0 assertthat_0.2.1 quantmod_0.4-14 timeDate_3043.102
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[37] colorspace_1.4-1 fracdiff_1.4-2 quadprog_1.5-7 stringi_1.4.3

[41] lazyeval_0.2.2 munsell_0.5.0 crayon_1.3.4 zoo_1.8-6
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