
Tuuli Sarantola

Migrating a Modern Web Application to
the Cloud

School of Science

Thesis submitted for examination for the degree of
Master of Science in Technology.
Espoo 6.7.2020

Thesis supervisor and advisor:

Prof. Petri Vuorimaa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333888583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto university
school of science

abstract of the
master’s thesis

Author: Tuuli Sarantola

Title: Migrating a Modern Web Application to the Cloud

Date: 6.7.2020 Language: English Number of pages: 8+56

Master’s Programme in Computer, Communication and Information
Sciences
Major: Computer Science Code: SCI3042
Supervisor and advisor: Prof. Petri Vuorimaa

Web technologies have been evolving fast since the adaptation of the modern
web, and new tools and frameworks keep on coming into existence. With
rapidly evolving technologies, the risk of accumulating technical debt be-
comes more common and must be taken into account at various stages of a
software project. At the same time, new ways of working are generalising
throughout development teams to ensure the quality of these projects.

The purpose of this thesis is to explore modern web technologies, methodolo-
gies, as well as different categories of technical debt that these might bring.
It also takes a look into the public cloud and its most common cloud ser-
vice providers and their services. Based on these, it proposes a strategy for
bringing an existing web application onto a cloud environment.

Based on the case study project and literature evaluation, it is concluded
that any application undertaking any larger work would benefit from having
its technical debt at a manageable level and codebase in a good shape. It
is also seen that when dealing with modern technologies, said technical debt
might accumulate more rapidly than with projects implemented with more
established technologies. When it comes to hosting web applications on the
cloud, it is concluded that while a platform migration might bring some
benefits in itself, a larger restructuring and careful redesigning work might
be called for in order to fully reap the benefits of the public cloud.

Keywords: web, modern technologies, technical debt, public cloud, meteor,
migration, modernisation



aalto-yliopisto
perustieteiden korkeakoulu

diplomityön
tiivistelmä

Tekijä: Tuuli Sarantola

Työn nimi: Modernin Web-Sovelluksen Migraatio Pilviympäristöön

Päivämäärä: 6.7.2020 Kieli: Englanti Sivumäärä: 8+56

Master’s Programme in Computer, Communication and Information
Sciences
Professuuri: Tietotekniikka Koodi: SCI3042
Valvoja ja ohjaaja: Prof. Petri Vuorimaa

Web-teknologiat ovat kehittyneet nopeasti modernin nettiympäristön myötä,
ja uusia työkaluja sekä sovellusalustoja syntyy jatkuvasti. Nopeasti kehit-
tyvien teknologioiden kanssa työskennellessä teknisen velan kerryttämisen
riski yleistyy ja sitä pitää tarkkailla monessa eri sovelluksen elinkaaren os-
assa.

Tämän työn tarkoituksena on tutkia moderneja web-teknologioita sekä
metodologioita ja niiden mukana tulevan teknisen velan eri kategorioita. Työ
tutkii myös julkipilveä alustana sekä tämän yleisimpiä palveluntarjoajia ja
heidän tarjoamiaan palveluita. Näiden perustella ehdotetaan strategiaa, jolla
modernin web-sovelluksen saa tuotua pilviympäristöön.

Tapaustutkimuksen ja kirjallisuuskatsauksen perusteella todetaan, että mikä
tahansa sovellus, jolla on edessä isompi työkokonaisuus, hyötyy siitä, että sen
kerryttämä tekninen velka on hallittavalla tasolla sekä koodikanta hyvässä
kunnossa. Nähdään myös, että työskennellessä modernien teknologioiden
kanssa kyseinen tekninen velka saattaa syntyä nopeammin kuin projek-
teissa, joissa on käytetty pidempään olemassa olleita teknologioita. Web-
sovellusten tarjoamisesta pilviympäristöissä voidaan todeta, että vaikka
migratointityö voi tuoda itsessään joitain hyötyjä mukanaan, voi isompi
uudelleenjärjestämis- ja suunnittelutyö olla paikallaan, jotta voidaan saada
kaikki julkipilven hyödyt irti.

Avainsanat: web, modernit teknologiat, tekninen velka, julkinen pilvi, me-
teor, migraatio, modernisointi



iv

Preface
I’d like to thank my supervisor and advisor Petri Vuorimaa for his guidance
during this thesis.

I’d also like to thank aTalent Recruiting, for giving me the opportunity to
explore the cloud, as well as Nordcloud, for allowing me to continue on that
journey.

A lot of time has gone by since I first started studying at Aalto, but every
year brought something new. Thanks to all of the guilds, associations, and
committees that I found along the way, it’s been a blast. Also a special thanks
to Joutomiehet, for making sure I wouldn’t graduate too quickly.

Thanks to all of my family and friends for being there for me and helping
me finish this. It took some encouragement, threats, weird ultimatums, wine,
promises, and a quarantine for it to happen, but hey, here it is!

Otaniemi, 6.7.2020

Tuuli Sarantola



v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations viii

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Web Applications 4
2.1 Evolution of Web Applications . . . . . . . . . . . . . . . . . . . 4
2.2 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Monolithic Architecture . . . . . . . . . . . . . . . . . . 5
2.3.2 Service-Oriented Architecture . . . . . . . . . . . . . . . 6
2.3.3 Microservices Architecture . . . . . . . . . . . . . . . . . 7

2.4 Design Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Static Web Pages . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Single-Page Applications . . . . . . . . . . . . . . . . . . 8
2.4.3 Multi-Page Applications . . . . . . . . . . . . . . . . . . 9
2.4.4 Progressive Web Applications . . . . . . . . . . . . . . . 9

3 Modern Technologies 10
3.1 Modern Web Development Practices . . . . . . . . . . . . . . . 10

3.1.1 Non-Functional Requirements . . . . . . . . . . . . . . . 10
3.1.2 Test-Driven Development . . . . . . . . . . . . . . . . . 11
3.1.3 Continuous Integration and Deployment . . . . . . . . . 11

3.2 Modern Technology Properties . . . . . . . . . . . . . . . . . . . 12
3.2.1 Risks of Emerging Technologies . . . . . . . . . . . . . . 12

3.3 The Meteor Framework . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Development Speed . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Usage and Popularity . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Design Pattern . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Data Handling . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.5 File Structure . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.6 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.7 Hosting Options and Tools . . . . . . . . . . . . . . . . . 20



vi

4 Technical Debt in Software Development 22
4.1 Software Development Life Cycle . . . . . . . . . . . . . . . . . 22
4.2 Technical Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Code Quality Debt . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Architectural Debt . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Non-Functional Debt . . . . . . . . . . . . . . . . . . . . 24

4.3 Dealing with Technical Debt . . . . . . . . . . . . . . . . . . . . 25
4.3.1 Code Quality . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Architecture Quality and Migration . . . . . . . . . . . . 27

4.4 Special Considerations in Modern Technologies . . . . . . . . . . 28

5 The Cloud Environment 29
5.1 Web Hosting Evolution . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Hosting Services . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Private Data Centers . . . . . . . . . . . . . . . . . . . . 29

5.2 Virtualisation and Containers . . . . . . . . . . . . . . . . . . . 30
5.3 The Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Private Cloud . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Hybrid Cloud . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3 Public Cloud . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Cloud Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Benefits and Drawbacks of CSPs . . . . . . . . . . . . . . . . . . 34

6 Case: Project WorkTracker 37
6.1 Application Description . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.3 User Roles and Permissions . . . . . . . . . . . . . . . . 40

6.2 Technical Description . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.1 Technology Stack . . . . . . . . . . . . . . . . . . . . . . 41
6.2.2 Development Practices . . . . . . . . . . . . . . . . . . . 41
6.2.3 Architecture and Design . . . . . . . . . . . . . . . . . . 41
6.2.4 Hosting and Deployment . . . . . . . . . . . . . . . . . . 42

6.3 Technical Problems . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Migrating the Application 45
7.1 Codebase Update . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Database Migration . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



vii

7.3 Hosting Service Migration . . . . . . . . . . . . . . . . . . . . . 48
7.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 48
7.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4 Architecture Transformation . . . . . . . . . . . . . . . . . . . . 49
7.4.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 50
7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Conclusions 52
8.1 Prerequisites of Migration Projects . . . . . . . . . . . . . . . . 52
8.2 Modern Technology Considerations . . . . . . . . . . . . . . . . 52
8.3 Hosting on the Cloud . . . . . . . . . . . . . . . . . . . . . . . . 53



viii

Abbreviations
SOA Service-Oriented Architecture
ESB Enterprise Service Bus
API Application Programming Interface
SPA Single-Page Application
MPA Multi-Page Application
TDD Test-Driven Development
CI Continuous Integration
CD Continuous Deployment
MDG Meteor Development Group
MVC Model View Controller
MVVM Model View View-Model
NoSQL Not Only SQL
DDP Distributed Data Protocol
SDLC Software Development Life Cycle
CSP Cloud Service Provider
AWS Amazon Web Services
GCP Google Cloud Platform
GKE Google Kubernetes Engine
IaaS Infrastructure as a Service
PaaS Platform as a Service
FaaS Function as a Service
SaaS Software as a Service
DBaaS Database as a Service
npm Node Package Manager



1 Introduction
Web applications and technologies are constantly evolving, bringing with them
new opportunities as well as risks in terms of application development. In the
short age of web applications, the rise and fall of several technologies, as well
as development practices, have already been witnessed, and the evolution of
web science is still going strong, bringing innovations constantly.

Along with these rapidly evolving web technologies and increasing demand
in these services, the public cloud has risen to try and answer some of the
challenges web applications eventually face during their life cycle. Based on
virtualisation technology, cloud services and their service providers have de-
veloped a wide range of specified services, all applicable for different tailored
purposes, and meant to make the life of web application developers easier.

As web applications evolve, there might come a time when they surpass
their original purpose and design, and must find a way to adapt to changing
requirements. [1] This might mean changing anything from the technologies,
tools, or services used by the application. Often the application design and
architecture might become obsolete, and must be reassessed if the application
is to evolve.

In order to keep an existing web application alive, a modernisation process
might be undertaken. With the rising popularity of cloud services, different
migration strategies are often proposed as a means of modernisation. What
this thesis aims to discover is, is a migration to a cloud-based environment
the way to go when dealing with evolving web applications? And is it a
solution that might benefit most of the applications developed with modern
web technologies?

1.1 Research Questions

The goal of this thesis is to see if there are any special considerations to take
into account when planning a migration of a web application implemented in
a modern technology onto a cloud platform. It seeks to explore the concept of
modern web applications and practices, as well as cloud services, to see what
benefits might be gained when combining the two. It also considers what risks
and drawbacks might occur in such an undertaking.

In light of the aforementioned goals, this thesis revolves around the follow-
ing research questions:

• What are the prerequisites of migrating a web application to the cloud?

• What needs to be taken into account when dealing with modern tech-
nologies?

• What benefits and drawbacks are there in hosting a web application on
the cloud?



2

1.2 Research Methods

To fulfill the set goal and answer the research questions mentioned above, this
thesis will start with a literature review exploring the definitions of web appli-
cations, modern technologies, technical debt, and cloud environments. It will
continue by looking closely at a case study of a software project implemented
in a modern technology, exploring its current settings, key technical problems,
as well as what goals are hoped to be achieved with a modernisation and mi-
gration process. Based on the information gathered in the literature review,
it proposes and implements a migration strategy to a cloud-based environ-
ment, reflecting on what this process might entail and what steps are required
in order to successfully achieve the modernisation and migration of the case
application.

1.3 Limitations

This thesis will not explore the advantages and disadvantages of modernising
legacy applications written in any older technologies. It will also not go into de-
tail about the advantages of hosting applications on local premises. This thesis
will only explore the process and advantages and disadvantages of migrating
modern applications to a cloud-based environment, and what future actions
this might entail for the application in order to achieve its modernisation goals.

1.4 Structure

Chapter 1 gives an introduction to the motivation, goals, and research methods
of this thesis.

Chapter 2 begins by presenting the ecosystem surrounding web applica-
tions, their history, and tools. It continues by describing common architecture
choices as well as design solutions.

Chapter 3 examines modern technologies and their specifications, as well
as any special features they may have in the context of this thesis. It also
presents the framework Meteor and its technical implementation and design
solutions.

Chapter 4 continues by explaining the concept of technical debt in software
development. It divides technical debt into different categories, and presents
various strategies for dealing with them. It goes on to provide insight on what
considerations should be made when dealing with modern technologies.

Chapter 5 explores the evolution of web application hosting, as well as the
development of the technologies required for cloud services to rise. It then
presents the most common public cloud providers, their services, as well as
analyses their possible benefits and drawbacks.

Chapter 6 explores a case study of a modern time tracking web application
and its current state, as well as its implementation details and technical prob-
lems. It lays out the desired goals for the modernisation process proposed by
this thesis.



3

Based on the research, chapter 7 presents a strategy for the application’s
migration onto a cloud-based environment. It explores these steps in detail, as
well as analyses their achieved benefits in respect to the application’s migration
goals.

Lastly, chapter 8 reflects on the modernisation process and summarises
what can be generalised from it to answer the research questions.



4

2 Web Applications
This chapter presents an overview of web applications, their history, as well as
different approaches to their development. A few common architectural styles
are presented, as well as the most common design methods and tools used in
web development.

2.1 Evolution of Web Applications

At its beginning, the web consisted mostly of text documents, static pages
that might have contained hyperlinks to other documents. [2] These types of
pages cover most of all early traditional web pages, whose sole purpose was to
display information on a page and not much more.

The introduction of client-side web technologies, such as Flash and JavaScript,
made way for the possibility of user interaction on web pages. This led to the
birth of more complex web applications, where instead of just serving data,
the application could respond to user input. Today, web applications can do
much more than just display information to the user, and they are used for
a wide and complex array of services, such as online stores, or personalised
content sites.

Nowadays, the most popular client-side technology remains by far JavaScript.
Multiple new libraries and frameworks written in JavaScript keep emerging fre-
quently, expanding its original functionality and making it easier for developers
to create complex web applications.

2.2 Frameworks

As the use of web applications started growing exponentially, tools such as
libraries and frameworks, later referred to as frameworks in this thesis, were
introduced to facilitate faster development cycles. These web frameworks, or
web application frameworks, often come with a lot of advantages, making them
popular among developers. Some advantages that have led developers to rely
heavily on frameworks for web application development include having the use
of readily available and standardised libraries, enhanced security through an
active user base, and a clearer structure of code due to framework design and
restraints.

Although they have many advantages, frameworks can also impact and
application negatively, e.g. by complicating the codebase if used carelessly or
in the wrong use cases, or if there are simply too many of them in a single
project. Some frameworks have a lot of readily available code that might not
be needed for certain applications, and they end up making the end product
codebase messier and larger than it needs to be. Another thing that might
suffer is code reusability between or in parts of projects, if the chosen tools
vary considerably.



5

As all tools and technologies, frameworks have a limited life span, and not
all frameworks are maintained long enough or updated often enough to meet
their user’s requirements. If a chosen framework’s support is discontinued
suddenly, it might lead to a massive project rewrite, or even contribute to
a project’s discontinuation. This is why when choosing technologies for a
project, it is generally recommended to use well-established frameworks with
a solid user base and maintainers, instead of opting for freshly released ones
that might not yet be stable.

2.3 Architecture

There are different approaches to building web applications, which are rep-
resented by different architectural styles. A web application’s architecture
represents how the data is handled in a single application. Each architec-
ture style has its own benefits and drawbacks, especially when it comes to the
development, scaling, deployment, and maintenance of an application.

2.3.1 Monolithic Architecture

A monolithic approach to an application’s architecture tends to bundle to-
gether all of an application’s functionalities, as they are developed and de-
ployed as a single unit. This is the most straightforward and simple form of
architecture, and usually the starting choice of architecture for new applica-
tions.

This approach works well for relatively small or non-complex applications,
but as the application size and complexity start to rise, the development and
maintenance of a monolithic application become more complex. Adding just
a single feature or making a change in the application becomes much slower,
as the changes affect the whole application instead of just a single, separate
functionality within. This leads to reduced speed for development, testing, as
well as deployment, and increases the chance of introducing breaking changes
in the functionality of the application. [3]

Another aspect to take into account with monolithic applications is the
difficulty of scaling, which eventually becomes relevant as an application starts
to grow in size or user base. As the application scales up or down as a single
entity, it’s impossible to target only the needed functionality for scaling. This
leads to scaling up parts of the application which wouldn’t need additional
resources, but are given them anyway. Usually, these applications are scaled
vertically, meaning more processing power or memory is added to the machine
hosting the application. This type of scaling becomes expensive quite quickly
and isn’t a sustainable choice if continued at length. [3]

Monolithic applications are perhaps the oldest and most traditional form of
application architecture and can be encountered in many older, legacy systems.
These monoliths are usually the product of many years of work by different de-
velopers and include outdated code mixed with newer services, which result in



6

increased complexity. This in part explains the general reluctance of updating
legacy application technologies or making any changes to their functionality.

Figure 1: Monolithic architecture. [4]

2.3.2 Service-Oriented Architecture

A Service-Oriented Architecture (SOA) breaks down the application function-
ality into components, which provide services to each other via a communica-
tions protocol over a network. Each service is in charge of a single, smaller
functionality, such as logging in a user. These services can then communicate,
e.g., by passing data between correspondent services, or by orchestrating a
bigger joined functionality. [5]

SOA components assume one of two main roles: service providers and ser-
vice consumers. The consumer layer is the point where consumers, such as
users or other services, interact with the SOA application. The provider layer
consists of all the services defined within the SOA application. To commu-
nicate, SOA applications make use of an Enterprise Service Bus (ESB). The
ESB is a middleware tool used to distribute work among the application com-
ponents, connecting and activating the needed components of the application
as needed. [5]

Although the SOA approach is less centralised than that of a monolithic
application, some risk areas still exist as the application grows in complexity
and size. As a sort of monolithic service of its own, the ESB can become a
vulnerability. Since every service is communicating through it, any problems



7

with any one service may cause the ESB to get clogged up with requests for
that service, slowing down and affecting the entire application.

The drawbacks of scaling a monolithic application are not present in an
SOA application, as the different services can be individually scaled up or
down, depending on their usage, thus reducing the unnecessary allocation of
computing power or memory. The deployment process, however, is still depen-
dent on the whole application. Even though individual services may be devel-
oped independently, the deployment of a new version must be done throughout
the whole application. [5]

2.3.3 Microservices Architecture

The microservices architecture style is an approach to developing an applica-
tion as a suite of small services, each running in its own process and com-
municating with lightweight mechanisms, often a Hypertext Transfer Protocol
(HTTP) resource Application Programming Interface (API). These services
are focused on a single business capability and are independently deployable
and scalable. This allows developers to focus on only specific parts of the ap-
plication, without having to worry about affecting other services. They may
even be developed in different technologies and maintained by different teams.
[6]

The microservices architecture style is often considered a subset of SOA,
both of them having many overlapping qualities and principles, such as cen-
tralising services around business capabilities and having a distributed system
of services. [7] Although they have many similarities, a key difference is that
the microservices architecture model focuses more on achieving agility and
simplicity at the business level, avoiding the complexity of centralised ESBs.
[1]

While both SOA and microservices architecture applications achieve agility
for the development process of an application, the microservices model man-
ages to bring that agility to the deployment and maintenance aspects as well.
While SOA applications have to be deployed as a whole, a service of a microser-
vices architecture application can be updated or shut down without having any
impact on the other services. [5]

2.4 Design Approaches

Apart from architectural design decisions, there are other aspects to take into
account when developing web applications. A few of these design approaches
are explored below.

2.4.1 Static Web Pages

Static web pages date back to the beginning of web pages and are mostly used
only to display information, not to be responsive to user input. These are used
solely to show content to users, e.g., in the information of blog pages.



8

Figure 2: Microservices architecture. [4]

Static web pages as such don’t contain any additional application logic,
which makes them fast to load, but unresponsive to user input. In practice,
static web pages are often mixed within a broader web application, where other
parts might make use of some client-side logic to handle user input.

There exist a number of tools for generating static sites, which make the
development experience closer to that of Single-Page Applications (SPAs) or
Multi-Page Applications (MPAs), but result in a number of static web pages,
ready to be deployed as such. Such tools include, e.g., documentation and blog
generators.

2.4.2 Single-Page Applications

SPAs are applications that load application logic into the client-side and work
inside the browser. Unlike MPAs, instead of sending whole web pages as
responses to updated data or user input, the application can update just parts
of itself, making the whole application seem to live on a single page, increasing
interactivity and responsiveness greatly. [8]

The development of client-side JavaScript and its advanced frameworks,
such as Angular or React, was a prerequisite to the SPA design approach.
This approach makes the client-side heavier in terms of application logic than
traditional MPA design did, but is usually considered a decent trade-off for
the improved user experience of the application. [9]

Having all the content loaded only after the initial web page has its draw-
backs, especially regarding Search Engine Optimisation (SEO) or slow internet
connections. This leaves site crawlers and low-end internet users with an empty
shell of a web application before any meaningful content is loaded. However,



9

some technologies have been created to address these problems, such as server-
side rendering, which prerenders some of the application content before sending
it to the client. [10]

2.4.3 Multi-Page Applications

MPA design is the traditional approach to web applications. Every change,
such as input from a user or displaying changed data, requires sending data
to the server and rendering a new page, thus refreshing the client-side. MPAs
are often quite large and complex, dealing with a lot of information, meaning
that there is heavy traffic of information between the client and the server.

The introduction of Asynchronous JavaScript and XML (AJAX) led to
a hybrid design of MPA and SPA. Instead of having to refresh the whole
application on user input, AJAX made it possible to refresh only a part of the
application in the style of SPAs. This approach makes the application more
user-friendly, as page refreshes are less frequent and the interaction is more
responsive. However, adding an AJAX interface makes an MPA more complex
and difficult to develop. [9]

Nowadays, MPAs are still partly in use, although they tend to be part
of a hybrid application. Many applications might also seem to be MPAs at
first sight, but are actually SPAs making use of different routing libraries to
simulate the flow of MPAs.

2.4.4 Progressive Web Applications

A slightly different approach to web applications is the progressive web ap-
plication approach, which is meant to offer a native-like experience using web
applications. The idea is to have some native functionalities, such as offline
usage and push notifications, available from a traditional web application. [11]

Progressive web applications are meant to be used cross-platform, and as
such reduce the amount of work developers would otherwise have to put into
developing separate web and mobile applications. As the application requires
no installation, it is a lightweight approach to mobile applications. [11]

Nowadays, the popularity of progressive web applications has somewhat
diminished, as different tools have risen up to make web applications portable
to mobile devices, and different frameworks offer the tools to deploy an appli-
cation for multiple platforms at once.



10

3 Modern Technologies
This chapter explores modern web development practices, as well as modern
technology properties and their entailed risks. It also explores in detail the
modern web application framework Meteor, especially its architectural and
design approaches, in order to give context to the practical section of this
thesis.

3.1 Modern Web Development Practices

As technologies evolve and new ones emerge, so do different development prac-
tices. A lot of different practices have become quite common in the modern
web development world, and quite often software development teams have
some sort of modern practices in use, or at least in consideration.

3.1.1 Non-Functional Requirements

Non-functional requirements define system attributes that have no function-
ality in themselves, such as security, as opposed to functional requirements,
which are the main functional components of an application. While not a prac-
tice in themselves, non-functional requirements have become quite central to
any modern web development projects. As such, taking various non-functional
requirements into consideration while developing applications can be consid-
ered a modern practice in itself. [12]

Scalability. The capability of a system to handle a growing amount of re-
quests or work is known more commonly as scalability. While not nec-
essarily relevant at the beginning of a software project, the concept of
scalability should be taken into account while designing any system that
might grow in demand or users. Also taking into account the possible
decrease or fluctuation in user amounts is a part of scalability considera-
tions.

Availability. The degree to which a system is functioning and accessible to
its users is known as availability. With the rise of almost always available
services and service providers, users have grown used to a higher availabil-
ity rate than previously. This means striving for an almost zero downtime
in a service.

Performance. The amount of work achieved by a system, or its speed in doing
so, is known as performance. In a world of faster connections than before,
users are expecting a certain level of performance in terms of response
time or successful transactions.

Data Integrity. The accuracy and consistency assurance of data during its
life cycle can be described with the term data integrity. As opposed to
having potentially corrupt data, an application should make sure that the



11

data it stores is correct, without any erroneous writes or transactions that
might affect the data negatively. Ensuring that the data is altogether
available also falls into the domain of data integrity.

Maintainability. The ease of making changes or adding new sections to the
codebase is known as maintainability. It is closely related to code quality
and the minimising of technical debt, but can also cover the general ease
of fixing faulty parts, or just ensuring the longevity of a system.

Security. The protection of a system and its data is commonly known as
security. Security can cover a lot of different aspects, such as physical
and digital security, where theft or damage to a part of the system or
its data should be prevented. Security can be taken into account both
in infrastructure and code design, and is often something that should be
regularly checked, and if needed, updated accordingly.

Backups and Disaster Recovery. While ensuring that the system and its
data are available and their integrity unbreached, backups and disaster
recovery plans should be taken into account in case of sudden unforeseen
changes in, e.g., the hosting server. While holding no value in themselves,
backups and disaster recovery plans contribute to other non-functional
requirements, such as data integrity, security, and overall availability of
the system.

3.1.2 Test-Driven Development

Test-Driven Development (TDD) is a software development practice where
tests are written incrementally prior to code implementation. This forces the
developer to focus on the functionality of the code before actually implementing
it. [13]

As TDD forces the development team to spend a lot of time writing tests
and implementing code to pass them, it concentrates the focus of the team on
important core functionalities, and away from not so critical features. This
mentality complements an agile way of thinking, where functionality can be
incrementally added and deployed, instead of trying to implement a whole
system at once.

Although TDD can hardly be considered a new development practice, it
has gained some new popularity during the last few years. A lot of the benefits
that ensue from TDD, such as higher code quality, a smaller amount of bugs,
and a more consistent codebase [13], are held in high esteem among modern
web developers. As such, TDD can often be integrated into a development
team’s consistent development practices.

3.1.3 Continuous Integration and Deployment

Continuous Integration (CI) is a software development practice where devel-
opers integrate their code early and often, to reduce the work and errors of



12

making larger and fewer integrations. This approach allows for faster feedback
about the newly integrated code and its effects on the whole program. [14]

Continuous Deployment (CD) is a practice that goes a step further than
CI. On top of testing and integrating the codebase in a development environ-
ment, it builds executables and pushes them to increasingly production-like
environments to make sure the software will work in production. Often the
actual deployment itself is part of the process as well, and most of the opera-
tional tasks involved in publishing software are automated as well. Processes
that leave the deployment out of these pipelines are referred to as continuous
delivery. [15]

Continuous integration and deployment (CI/CD) in themselves bring no
additional value to development teams and software projects unless compre-
hensive test suites have been built as part of the pipeline. Once these are in
place, a lot of bugs and breaking changes in functionality can be caught before
they ever reach a production environment. [16]

While both the concepts of CI and CD have been around for a while,
they have been widely adopted since as a crucial part of modern software
development. A lot of tools specific to CI/CD have emerged, and many of the
more popular version revision tools come with readily available CI/CD pipeline
tools. Such tools can nowadays also be found in all of the biggest cloud service
providers as part of their automation pipelines.

3.2 Modern Technology Properties

Web technologies have been evolving fast, and new modern technologies, frame-
works, and features seem to pop up constantly. When talking about the fast
evolution of these technologies, usually one of two things is meant:

1. New frameworks, libraries, or technologies are born

2. Existing ones have a fast release cycle of new versions or features

When talking about modern technologies, we can generalise that they en-
compass both of these qualities: they are relatively young and have a fast
release cycle of new versions. Once a technology has already been around for
a while and its development pace has slowed down and stabilised, we can con-
sider it an established technology. Once established, a technology loses some
of the risks commonly attributed to modern technologies.

3.2.1 Risks of Emerging Technologies

Since new technologies are born faster than they can become established, a
certain amount of these eventually doesn’t make the cut into well-established
technologies. Once established, a technology is considered more stable to work
with and carries fewer risks to bigger software projects.



13

End of Life. One of the biggest risks of working with emerging technolo-
gies is a sudden end of life, as their future development and maintenance
are discontinued. Of course, nothing guarantees that even technologies
that have been around for a while and in heavy use will continue to be
maintained forever, but as a technology gains popularity, the amount of
willing and capable maintainers grows as well, making it less likely to be
deprecated completely.

Deprecated Versions. Less severe than discontinuing a technology com-
pletely, a risk with modern technologies is quickly deprecating earlier ver-
sions of said technologies. While it is not a requirement that old versions
of any technology be maintained forever, it is good to take into account
when starting a project that will most likely take some time to finish. If
the release cycle of the chosen framework is a lot less than its lifespan so
far, the project might suffer delays due to constant necessary updates to
the existing codebase to keep up with the newer versions.

A good example of risks related to keeping up with version updates is the
release of the Angular 2 framework. What was supposed to be a version update
to the original Angular framework, nowadays known as AngularJS, turned out
to be incompatible with its earlier version. This led the version update to be
released as an entirely new framework. AngularJS is now in a controlled end
of life process. [17]

When it comes to making technology choices at the beginning of a new
software project, often older and thus seemingly more reliable technologies are
preferred to younger ones. However, as technologies keep on evolving fast,
it is a good practice to keep an eye on more modern technologies, as smarter
design and new ways of implementing things are born that might surpass older
technologies. It is up to the decision-maker of every new project to weigh the
benefits and risks of choosing a modern technology.

3.3 The Meteor Framework

The Meteor framework was created in 2012 by the Meteor Development Group
(MDG). It is a framework meant to facilitate the whole of web application
development, encompassing the frontend, backend, as well as the database.
As such, it can be considered a full-stack web application framework. [18]

Meteor is written in JavaScript and is based on Node.js. One of its key
advantages is to be able to use the same language, JavaScript in this case, in
any part of the application. It can also use the same application code in the
back- and frontend, making it highly reusable. Due to its project and code
structure, it also means that an application built with the framework is often
monolithic by design.

Even though Meteor was designed to handle the full stack of a web ap-
plication, it was later integrated with more popular frontend frameworks due
to community demand. Instead of using Meteor’s native frontend templating



14

system, Blaze, developers could now also choose to use more familiar frontend
libraries, such as Angular or React, and make use of the Meteor framework as
more of a backend solution.

By default, Meteor ships with MongoDB as its database, and communicates
with it through a JSON interface. Although Meteor still recommends using
MongoDB in its applications, the usage of other document-oriented databases
was also made possible. However, the use of traditional relational databases is
still not supported in Meteor.

3.3.1 Development Speed

Although Meteor was started in 2012, its first public release, or version 1.0,
was published in 2014 [19]. It is currently at version 1.10, having undergone
many breaking changes, rewrites, and guide updates in the last 6 years.

From Figure 3, we can see that the first 4 years of development were the
busiest, with a frequency of up to 200 commits at times. This indicates a lot of
ongoing changes from the early stages of the framework, as it was still finding
its final format and structure, especially leading up to its first major release.
If we compare this to Figure 4, we see that the busiest time period ends up
around Meteor’s release 1.1, but development continues actively until around
version 1.3. After this, the development speed seems to stabilise.

Figure 3: Meteor commit frequency. [20]

As we can see in Figure 4, Meteor’s version release speed has stayed quite
constant over the years, resulting in a major release around every 6 months or
so. Only in the past year has the development speed seemed to decrease a little,
resulting in only one major release per year. Since Meteor’s developers MDG
have been actively developing other projects as well, it seems only natural that
the release curve would slow down eventually.

While the development speed itself might not give us much clue about
the ongoing developments of the framework, another property that can be
examined is the frequency of the breaking changes these releases have brought.
During these 10 major releases, there have been such dramatic changes as
a major version update to the underlying Node.js, a renewed file structure
for applications, a new module import mechanism, as well as the possibility



15

Time

R
el

ea
se

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Q4/2
01

4

Q1/2
01

5

Q2/2
01

5

Q3/2
01

5

Q4/2
01

5

Q1/2
01

6

Q2/2
01

6

Q3/2
01

6

Q4/2
01

6

Q1/2
01

7

Q2/2
01

7

Q3/2
01

7

Q4/2
01

7

Q1/2
01

8

Q2/2
01

8

Q3/2
01

8

Q4/2
01

8

Q1/2
01

9

Q2/2
01

9

Q3/2
01

9

Q4/2
01

9

Q1/2
02

0

Major Releases over Time

Figure 4: Meteor development speed.

to use npm packages instead of relying solely on Meteor’s package system,
Atmosphere. [21]

3.3.2 Usage and Popularity

As with all new and upcoming JavaScript frameworks, Meteor started with a
few select users, but found a growing popularity after a few releases. There is
an active community and forum of developers dedicated to using the frame-
work, and occasionally contributing to it. This led to its growing popularity
especially in the early stages of the framework.

Since Meteor allows for the use of any frontend framework, it is often
compared to solely backend frameworks. As applications made with Meteor
started to expand and grow, more issues with production environment related
problems started to rise. This led to a switch in the choice of backend frame-
works in applications originally started with Meteor. As we can see in Figure
5, community interest has had a steady decline over the last couple of years.
When we compare this to, e.g., the Express framework, we see that as Meteor’s
popularity declines, the newer Express framework’s popularity seems to grow.
[22] Whether this is due to the appeal of a more modern framework, or just
differences in technical implementation, is hard to say.

3.3.3 Design Pattern

Meteor applications are built on what they call a Model View View-Model
(MVVM) architecture pattern. MVVM expands the concept of the nested



16

10.9 6.9 4.7 3.6

7.3 8.3 7.8 9.5

27.5
22.8

18.2 16.8

43 47.4
49.4

46.5

11.2 14.7 20 23.5

year

0%

25%

50%

75%

100%

2016 2017 2018 2019

Never heard of it Heard of it, not interested Heard of it, would like to learn
Used before, would not again Used before, would again

Meteor Experience Over Time

Figure 5: Meteor framework user experience over time. [22]

Model View Controller (MVC) pattern, where the view of the server-side ap-
plication is used as the model of the client-side application, as seen in Figure
6. Meteor takes this a step further, as it brings the nested MVC concept to
the frontend of the application, resulting in multiple separate MVCs.

The Model. Meteor has a model of cached and synchronised data, which is
the same on the client and the server. When a change happens in the
client data model, the change is first cached locally, after which it tries
to synchronise with the server. The client also listens for changes coming
from the server, which allows it to store a local copy of the data model.
In this pattern, the results of any changes can be passed to the screen
quickly, without having to wait for a server response. [18]

The View. The Meteor client renders HTML through the use of templates, or
view data bindings. These are essentially a shared piece of data that will
be displayed differently should the data change. Meteor uses Handlebars
template expressions in its HTML. [18]

The View-Model. Meteor’s client-side code is responsible for tracking changes
to the model and presenting them in a way that the view can pick them
up. The view-model is also responsible for listening to changes coming
from the view, such as changes to a template value. This means that the
client controller has its model (i.e., the data from the server) and the view
has its model (i.e., a template) and both are responsible for knowing what
to do with their respective models. [18]



17

Figure 6: Nested Model View Controller pattern. [18]

3.3.4 Data Handling

The default database included in Meteor is the document-oriented NoSQL
database MongoDB, and the data stored is referred to as collections. As men-
tioned in the design pattern section, Meteor stores a local version of the ap-
plication models on the client. To do this, it uses a lightweight version of
MongoDB called MiniMongo, stored on the client.

To listen for changes in its collections, Meteor uses a publish/subscribe
model. When changes are made, a change event is published, while callback
functions are subscribed to these published events. All code in such callback
functions is activated when the specific event they are subscribed to is pub-
lished. The developer is in charge of controlling when and where data is pub-
lished or subscribed to, thus controlling the extent to which data is available
to end-users.

Some of Meteor’s built-in functions and variables listen automatically to
these change events, making the whole application update in real-time, instead
of polling for changes. This is the basis for Meteor’s reactivity principle, where
real-time data is centrally updated to all application clients, thus preventing
different states of the same application to exist at the same time.

Meteor uses its Distributed Data Protocol (DDP) to communicate data
changes throughout the application. This protocol keeps the databases in
sync between the central database on the server, and every connected client.
[19]



18

3.3.5 File Structure

As Meteor is a full-stack framework, any application made with it contains
code that runs on the client as well as on the server. On top of this, they
contain common code that can be run on both. However, all code isn’t meant
to be run on both the client and the server. For this purpose, Meteor proposes
an application file structure model to control when and where code can be
accessed, depicted in Figure 7. Following this structure, the developer can
control what code is used and eventually bundled into the application itself.

As of version 1.3, Meteor has had full support for ES2015 modules, which
have quickly become the industry standard. This module system supports
making variables available outside a file using the export keyword, as well
as using them somewhere else by using the import keyword respectively. In
Meteor, files that are placed in the imports-folder must follow the ES2015
module structure to be made available to the rest of the application. [23]

Since prior to version 1.3 ES2015 module imports weren’t supported, code
was made generally available throughout the application. In turn, there weren’t
any best practices when it came to project file structure, and it wasn’t exactly
strict. Still, Meteor introduced some rules that are still present in later versions
of the framework. These include a few specially named folders that Meteor
treats differently. Any files outside of these folders are generally available
throughout the application, both on the client and server sides. [23]

imports. Any file inside of this directory won’t be loaded anywhere unless
specifically imported into another file elsewhere in the application.

node_modules. As with the imports-folder, any Node.js packages installed
into node_modules won’t be loaded into the application unless imported.

client. Any files within this directory will only be loaded onto the client-side
of the application, making them unavailable to the server.

server. As with the client-directory, any files within this directory will only be
loaded onto the server-side of the application, making them unavailable
to the client. Any sensitive code that the developer wants to keep out of
reach of the client should be placed in this directory.

public. Any files within the public-directory are served as they are to the
client. For example, favicons or other static assets should be stored in the
public-folder.

private. Any files within the private-directory are only accessible to the
server-side, and only through Meteor’s special Assets API. This can be
used for private data files, or files containing sensitive information.

tests. This directory is meant for test files, and any files within it won’t be
loaded anywhere in the application. Instead, Meteor’s built-in test tools
make use of this directory to run any tests that might reside there.



19

Figure 7: Example application structure. [23]

3.3.6 Architecture

Due to the data model, design, and application structure of the Meteor frame-
work, applications often end up having a lot of shared code throughout their
files and different parts of the application. This leads to ambiguous code, of
which some is executed on the client, some on the server, and some on both.
Since the framework is especially meant to make it easy for new developers to
start making new applications, it can end up blurring the traditional lines of
client and server code, and making it harder to distinguish which parts of the
applications belong to which.

As mentioned earlier, this approach to application development leads to
a monolithic architecture in applications developed with Meteor. Since code
is meant to be shared, there is no need for dividing parts of the application
according to functionality or purpose. When an application starts growing in
complexity, however, there comes a time where splitting the application into
multiple parts would make development and maintenance easier.

While the Meteor guide does propose a few approaches for splitting a sys-
tem into multiple applications, they don’t really compare to what is usually
considered a microservices architecture. For instance, the Meteor guide sug-
gests deploying the same application onto multiple servers, differentiating be-



20

tween them with the use of settings. When it comes to sharing common code
between two different applications, it is suggested either to copy the code as
is to both or to publish the functionality as a package to be imported by both
applications. [23]

The one thing that the guide does explain in detail is how to share a com-
mon database between multiple applications, be they the same application
deployed onto different servers, or completely different applications. [23] As
this is possible, the concept of having a proper microservices architecture using
multiple Meteor applications should be possible in theory. While there exist
a few open-source proof of concept projects around the subject, it seems mi-
croservices architecture applications with Meteor have yet to gain popularity.

3.3.7 Hosting Options and Tools

As Meteor is based on Node.js, any application developed with it can be hosted
anywhere, just as Node.js applications. However, there are a few main options
that are popular in the Meteor community.

Galaxy. Galaxy is a service built by MDG, created specifically to run Meteor
applications. Is it a distributed system based on Amazon Web Services
(AWS), and as such offers services such as automatic scaling, produc-
tion debugging tools, application analytics, and Meteor-specific help. [24]
Galaxy pricing is based on the size of the application and its container,
starting from 7$ per month for a 256MB instance of 0.3 EC2 Compute
Units (ECU) [25]. As Galaxy provides the hosting server, the user only
has to set up their database hosting server or service.

Meteor Up. Meteor Up, commonly known as "mup", is a third-party open-
source tool for deploying Meteor applications to any server over SSH. It
automates the manual steps otherwise involved in using Meteor’s build
tools and handles moving the application bundle to the hosting server.
[24] It requires the user to handle obtaining the hosting server, as well
as the database hosting server or service. Additionally, the user has to
take care of scaling, load balancing, application analytics, and other such
services on their own. In essence, Meteor Up creates a number of Docker
containers necessary to run a Meteor application.

Docker. Meteor applications can also make use of container-based deploy-
ments. While Meteor Up provides some Docker images automatically for
the user, these can also be picked manually, or custom-created for more
control over the instances. There exist several ready-made Docker images
that can be freely used. [24]

Custom Deployment. Meteor applications can also be deployed and hosted
completely from scratch, making use of Meteor’s build tools. The build



21

tools provide the user with a plain Node.js application bundle, which can
then be set up wherever the user might want. [24] This type of deployment
requires the most manual work and configuration, which in turn gives the
user more freedom to choose their hosting service provider and customise
their production pipeline.



22

4 Technical Debt in Software Development
This chapter explains the concept of technical debt in software development,
what it means in terms of application development, as well as what special
considerations come from dealing with modern technologies. It also explores
different strategies for getting rid of and preventing technical debt in a software
project.

4.1 Software Development Life Cycle

The Software Development Life Cycle (SDLC) is a term used to describe the
process of building and maintaining software systems. It often comprises vari-
ous phases, from preliminary design and development to testing and evaluation.
There are two main SDLC methodologies used by developers: traditional and
agile development. [26]

Traditional SDLC. Traditional software life cycle methodologies, such as the
Waterfall methodology, are based on a sequential series of steps. As we
can see from Figure 8, these steps often include mapping the requirements,
planning and designing the architecture, developing the software, testing,
and deploying it to production. The main idea of such a methodology is
to approach each step one at a time, and finishing it before moving on to
the next. This means all project requirements should be well-known from
the beginning, and shouldn’t change during the lifespan of the project.
Done with such an approach, the software is usually delivered only once
completely ready, often leaving a long gap between the beginning and the
delivery of the project.

Agile SDLC. Agile software life cycle methodologies, such as SCRUM, are
based on the idea of incremental and iterative development. In this ap-
proach, instead of going linearly, each step in the life cycle is revisited
during each iteration, as showed in Figure 8. This enables the delivery
of frequent features, or increments, to the software, as well as rapid feed-
back from customers. This approach is well-suited to projects where the
desired end result is unclear, requirements are likely to change, or where
the software can already be used even in a partially finished state.

Technical debt is a common occurrence in any software development project,
and it can be introduced in different stages of the SDLC, regardless of the se-
lected methodology [27]. In traditional SDLC, a common cause of technical
debt might come from outdated project requirements. In agile SDLC, the pres-
sure to deploy a new software increment might cause the development team to
make poor code design decisions, trading longer-lasting high-quality code for
a faster implementation time.



23

Analysis

Design

Development

Testing

Deployment

Maintenance

Planning

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Figure 8: Traditional and agile SDLC.

4.2 Technical Debt

Technical debt is when long-term code quality is traded for short-term gain.
Often it is attributed to shortcuts and workarounds in the source code of the
software, where developers choose quick and messy implementations instead
of spending time on code quality and maintainability. Whereas this approach
is good for quickly pushing out new features, it generates more future work on
bug fixes and rewrites.

The term technical debt used to be something strictly technical, closely
related to code quality, and often something only the developers see and care
about. Since its introduction, the term has evolved to encompass much more
than its original meaning. Nowadays, it is often used to describe also a lack of
documentation or specifications, a lack of tests, poor architectural decisions,
or a messily structured codebase, as seen in Figure 9. [27]

4.2.1 Code Quality Debt

As one of the most often referenced types of debt, technical debt in code quality
is one of the most commonly occurring types of debt. As mentioned earlier,
developers might make the conscious or unconscious choice of sacrificing code
quality for faster implementation of features or to get a faster time to market
with their software.

Code quality is not only about making poor code design decisions. The
lack of systematic testing for catching breaks in functionality, be it manual
tests or automatic test suites, is one of the main reasons code quality might
suffer. In addition to contributing to poorer code quality, the lack of existing



24

Figure 9: Technical debt landscape. [28]

tests, or with a high enough coverage, can be seen as a lack in software quality
in itself as well. [28]

4.2.2 Architectural Debt

Architectural debt is often encountered in software projects that have had
a longer life span, including many changes or additions in requirements or
user base. When the initial architectural design, or lack thereof, doesn’t keep
up with the changing software and its requirements, some new architectural
decisions and plans should be made [28].

For example, a development team might start developing a small monolithic
application for a select group of users, and later on, new requirements come
along that require the application to be scalable in certain parts and not others.
To make the application meet the new requirements, some restructuring of the
application and its architecture is required if the development team wants to
avoid complex development decisions and implementations.

4.2.3 Non-Functional Debt

Non-functional qualities are often incorporated in the concept of code or ar-
chitectural quality, but as far as analysing debt goes, it might be beneficial
to look for debt from a non-functional point of view. As the term covers so
many different attributes over different categories of debt, it might as well be
considered its own category.

Often non-functional requirements should be taken into account already
in the beginning stages of a software project, as they are harder to add in
after development has already been underway. For example, if things such as
application security or integrity are not designed, they might be close to im-
possible to implement at a later stage, at least without a considerable amount
of additional work and refactoring.

The lack of some non-functional attributes can more easily be remedied in
a software project than others, and can thus be dealt with as well as any other



25

type of debt. Often the answer to bridging non-functional debt can be found
within the answers for dealing with other categories of technical debt. When it
comes to dealing with issues in scalability or availability, the solution often has
to do with architectural actions. On the other hand, in terms of performance
or maintainability, the necessary measures can be closely affiliated with code
quality actions.

4.3 Dealing with Technical Debt

As stated earlier in this section, technical debt can cover a lot of different areas,
from lack of documentation to architectural design flaws. For the purposes of
this thesis, dealing with technical debt will focus on two main types of technical
debt: traditional, or code quality, debt, and architectural debt.

4.3.1 Code Quality

While technical debt is practically unavoidable, there are different approaches
and practices that can be employed to prevent or substantially diminish it.
These approaches can be roughly divided into two categories:

1. Clean up

2. Prevention

While the first category focuses on dealing with the damage after it has already
been done (i.e., cleaning up the codebase) the second one deals more with
continuous efforts to prevent it from coming to life in the first place.

Dealing with existing technical debt in any software project requires an
active approach and conscious decision to do so. If the technical debt in ques-
tion has more to do with the code quality than anything else, code refactoring
may be used, either incrementally or during a longer period of time. For ex-
ample, some agile teams may employ refactoring sprints, focusing solely on
improving the code quality instead of writing new features. More often than
not, it is difficult to justify using a longer period of time on something that
brings no immediate visible value to shareholders. In these cases, it is easier
to integrate some refactoring tasks with the implementation of new features,
thus improving the existing codebase at the same time as new features are
developed.

There are a few different approaches that can be used when cleaning up a
messy codebase.

Parallel Rewrite. In this approach, the whole application is redeveloped in
parallel to the original one, making sure that the application structure
and code are up to the required standards. This is a time-consuming and
laborious process, and is rarely worth the effort and time it would take to
rewrite the whole application.



26

Partial Rewrite. Instead of rewriting the whole application, only selected
parts are chosen to be rewritten. These might just be updates and refac-
toring done to the code itself, or an effort to completely separate these
parts from the original application, e.g., when separating business logic
parts of a monolith into microservices.

Phaseout. If technical debt is not dealt with actively during the software
development life cycle, it may eventually lead to unmaintainable code,
and to having to abandon developing the project altogether in favor of
starting or switching to a new one. In these cases, some changes might
be required to guide the users to the new service while waiting to finally
discontinue the existing one.

A more sustainable approach to dealing with technical debt is to try to ac-
tively prevent it from accumulating. There are many different ways to achieve
this, mostly having to do with the habits and practices of the development
team itself.

Code Reviews. By increasing the amount of people involved in evaluating
any new code submitted to the project, the quality of the code itself should
be higher than if only the developer in charge of writing it were involved.
Not only is there a pressure on the developer to submit only high-quality
code, the other developers may also have higher standards of the quality
required, or just be able to catch some segments of low-quality code that
might have gone unnoticed otherwise.

Acceptance Criteria. By having some collectively agreed-upon guidelines
and criteria of what is required of any code submitted to a project, the
overall quality of the project should stay at the same level of standards.
The criteria should be set at a level the team can commit to; if the bar
is set too high, it is likely that one or more members or the team will
abandon the criteria, rendering it useless. If it is set too low, however, it
will do nothing to help the quality of the project.

Workflow. Having a standardised workflow can greatly improve the quality
of a software project. While a workflow in itself isn’t a guarantee of
high quality code, the elements integrated in the workflow are what can
make a difference. These can be any good standard practices, such as the
code reviews and acceptance criteria mentioned above, or something more
technical, such as git branching techniques, or test writing practices. The
main idea is again to standardise the code coming from different developers
in the team, in order to standardise the codebase itself.

Automatic Tests. There might not always be the resources to manually go
through every code change, and even if there were, it would not be ideal
or sustainable in the long run. This is where automatic tests come in,
with the intent of moving the responsibility of checking the code quality



27

from the developers to machines. Of course, written tests can only do so
much, and are usually used to check for functionality breaks, or linting
errors. Anything more complicated or opinionated should still be checked
by developers, if there are the resources to do so. Still, any automated
tests are better than none at all, and they work best when integrated into
the work or deployment flow, such as in continuous integration pipelines.

While any one of these approaches may help in keeping the codebase at
a high quality and preventing the accumulation of technical debt, usually a
number of these techniques are used in unison. A high quality workflow usually
comprises the automation of code quality checks, making it as easy as possible
for developers to focus on generating content instead of doing manual code
reviews.

4.3.2 Architecture Quality and Migration

While code quality is something that can be worked on incrementally, a big-
ger task to take on is refactoring or redesigning architecture choices, or re-
engineering a whole application. As the software architecture covers the whole
application, any changes may have an impact on any part of the application.
Some reasons for refactoring the architecture are, e.g., simplification, modu-
larisation, or improvement of the program structure. Another driving factor
might be the preparation of the program for transformational activities, such
as moving the system into a new environment without introducing changes to
the functionality of the program. [29]

There are a few different approaches when it comes to dealing with archi-
tectural debt.

Program Restructuring. The removal of anomalous, redundant or dead
code, as well as the separation of business logic from data, are considered
in program restructuring. In addition, the source code could be checked
against new quality standards, and changes made accordingly. [29] While
this is closely related to code refactoring, program restructuring focuses
on the overall code structure of the application, thus directly affecting the
architectural quality of the software.

Architecture Transformation. In a complete architectural redesign, the
current architecture is extracted, and a new target architecture designed.
The transition from the current architecture should then be planned and
implemented. Transformation is usually a much bigger task than restruc-
turing but might lead to more long-term benefits. [29]

Lift and Shift Migration. The shifting of application language, platform,
or data migration without any functional changes is considered a lift and
shift migration. For example, migrating a monolithic application to a dis-
tributed platform, or moving an on-premise application to a cloud provider



28

can be regarded as lift and shift migrations. Such a type of migration is
rarely a standalone process and is often combined with the aforementioned
program restructuring or architectural transformation, either before, dur-
ing, or after the migration process. [29]

All of these architectural refactoring processes are usually quite extensive,
and take a lot of resources and time to plan and implement correctly. These
types of processes are usually applied only after careful consideration and eval-
uation of the value entailed.

4.4 Special Considerations in Modern Technologies

As modern technologies tend to have faster development rates than already es-
tablished technologies, technical debt tends to accumulate more rapidly than
in other projects. For example, a technology in its first versions might intro-
duce breaking changes more often than older technologies, who already have
an extensive user base that they need to take into account. This means that to
keep up with the new versions, the application must go through many refac-
toring stages, or risk being left to continue development with a technology that
is no longer supported or even safe to use.

In some cases, a promising modern technology might meet with a surprising
end of life, in case the technology is acquired by another party and discontin-
ued, or given up in favor of a complete rewrite or other strategic decisions. In
these cases, the developer is left with the decision to either keep the current
application in the condition it is in, with no more than maintenance tasks
possible, or to shift the whole application onto a new technology, if possible.

On the other hand, choosing a modern technology instead of one that
has already been around for a while might have its own benefits in regard to
technical debt. Often the technology itself, or the tools associated with it,
might have accumulated their own share of technical debt. In these cases,
the technologies and tools used might suffer from delays in delivering newer
features due to time spent on dealing with technical debt accumulated over
the years.



29

5 The Cloud Environment
This chapter gives an overview of the cloud environment, how it has developed
over time, as well as of the technologies required for the modern cloud to be
born. It also presents the most popular public cloud providers and analyses
what they have to offer in terms of services for web applications.

5.1 Web Hosting Evolution

Before the generalisation of cloud computing, web application hosting and
servers were much less sophisticated than they are today. As more work and
costs were spent on operations and maintenance tasks, any updates, fixes, or
new applications required a lot of joint effort from different teams to be made
possible.

5.1.1 Hosting Services

Along with web technologies, different hosting options have come a long way
since the beginning of the modern web era. Web hosting as a concept became
popular around the time of the launch of Geocities in 1994. Before that,
hosting a web application usually meant having your own computer or server
for hosting the application. Geocities was among the first to offer commercial
server space for hosting applications. [30]

Little by little, shared hosting service providers started generalising. These
early-day providers were selling a very limited amount of storage space, along
with data transfer packages, from their servers.

Along with shared hosting services, the need arose for dedicated hosting
services, especially for bigger businesses with busier websites. Dedicated host-
ing services offered the option for their users to have partial to full control over
the offered servers, depending on the needs of the business in question and the
service provided. This gave business users the control they needed to grow
their services and their user base along with them.

5.1.2 Private Data Centers

Often, the control offered by these service providers was deemed insufficient,
especially by bigger and stricter organisations and businesses. Even with mul-
tiple rising service providers, as well as an expanding choice of hosting services,
these enterprises would still choose to build and maintain their own data cen-
ters instead of paying for a hosting service.

Most early hosting services simply didn’t have the capacity to offer enough
servers for larger businesses, and eventually, they didn’t need to. Large enter-
prises would invest and build their own computer centers, dedicated to hosting
and running all their services. By choosing to have their own data centers, how-
ever, businesses accumulated growing costs surrounding acquiring, upgrading,
and maintaining infrastructure.



30

5.2 Virtualisation and Containers

Virtualisation is the concept of making a virtual image or version of a server,
operating system, storage device, or network resource, so that they can be
used on multiple machines at the same time, or use many instances of different
machines on one physical machine. [31]

The development of virtualisation and containerisation technologies played
a crucial part in contributing to what we know as cloud computing today. As
different levels of virtualisation exist, so can multiple services based on what
they can offer.

Virtual Machines. Virtual Machines (VMs) are an application of server,
or hardware system, emulation, based on hypervisor virtualisation [32].
Each VM comes with its own operating system, with respective binaries,
libraries, and applications as needed. Virtual machines are what make
it possible for a single physical server to act as if it was split into many
servers while sharing its physical resources between them.

Containers. As virtual machines cover the hardware aspects of computing,
containers are the application of virtualising the operating system level.
This type of virtualisation is usually called containerisation, as it uses so-
called containers to emulate operating systems. [32] As containers don’t
have to worry about emulating the hardware level, they are much smaller
in terms of size, and generally a more lightweight approach to virtualisa-
tion, as we can see in Figure 10.

Figure 10: Container-based and hypervisor-based virtualisation. [32]

Virtualisation can be thought of as a prerequisite of the modern cloud as
we know it. While some hosting providers can deliver dedicated machines as a



31

service, cloud providers usually rent out a part of their cluster of machines. In
this server model, it means that, e.g., many different operating systems can co-
exist on the same physical instance at any given time. Therefore, virtualisation
is a must if all resources are to be utilised to their full potential.

Operating system virtualisation is not the only prerequisite of the modern
cloud. Since cloud providers are renting out memory, processing power, or
anything the customer requires, at a highly scalable level, hardware resources
must also be shared efficiently between the machines of the data center. As it
is, the cloud is essentially a pool of computers sharing their resources thanks
to virtualisation technology.

5.3 The Cloud

The concept of cloud computing, as well as cloud hosting and other various
services, introduced a change in how infrastructure was conceived. Instead
of owning physical servers and infrastructure, organisations could now lease
shared or dedicated resources from server clusters, or cloud providers, on-
demand.

5.3.1 Private Cloud

Although the advantages of the cloud have been emphasized since their gen-
eralisation, the shift of enterprise-level services from self-hosted servers to the
cloud has been relatively slow. This is mostly due to security concerns, as the
physical layer of isolation isn’t handled by the server users themselves anymore,
but instead left to the responsibility of the cloud provider.

These security concerns, among other things, gave way to the concept of
private cloud. This meant that the same concepts of cloud computing were
implemented, only on privately owned hardware. These private clouds are
essentially the continuation of early data centers, but with the added benefit
of cloud computing technology, such as hardware virtualisation. Despite these
efforts on behalf of private owners, most of the existing private clouds can’t
measure up with the competing public cloud providers in terms of scalability,
stability, coverage, and sheer size.

5.3.2 Hybrid Cloud

As cloud services continued evolving, even private cloud users started to shift
towards the public cloud, at least in part. Due to migration difficulties, existing
concerns, or just the reluctance of moving their services, a lot of private cloud
users ended up with a mix of private and public clouds.

A big factor in this shift, besides receding security concerns, was the af-
fordable pricing of the public cloud. On top of enterprises not having to pay
for their own dedicated infrastructure, cloud service providers could offer bulk
prices, allowing enterprises to scale at a previously unprecedented rate with
much lower costs. [33]



32

As services were now in both private and public clouds, there was a need
to bridge the gap between them to allow services to communicate with each
other. This gave birth to a merged implementation of both private and public
clouds, also called hybrid cloud. Essentially a tailored service from public
cloud providers, a hybrid cloud allows organisations to keep their services in
both private and public clouds, but still work and communicate as if they were
in the same environment.

The term hybrid cloud is also used to describe a multi-cloud environment,
even if no private cloud is involved. In these cases, the services live on multiple
public cloud provider environments, instead of sharing both private and public
clouds.

5.3.3 Public Cloud

Perhaps the most commonly thought of cloud, the public cloud is what is
usually meant when the term cloud is mentioned. Public clouds are managed
cloud services and components that are for sale, either in large quantities or
as single services.

There are currently three main large public Cloud Service Providers (CSPs)
with smaller ones being born every now and then.

Amazon Web Services. Amazon Web Services (AWS) is a subsidiary of
Amazon that provides a large range of cloud services. Launched in 2006,
it is the oldest of the CSPs mentioned here, and with the widest selection
of services. Due to this, it is currently the most popular CSP in use. [34]

Google Cloud Platform. Google Cloud Platform (GCP) is Google’s set of
cloud services that run on the same platform as Google’s own services,
such as YouTube or Google Search. GCP services have been generally
available since 2011, but have gained more popularity only in the last few
years. [34]

Microsoft Azure. Microsoft’s Azure Cloud, commonly known as Azure, is
Microsoft’s cloud service provider. It has been around since 2010, when
it started out as Windows Azure, later changing its name to Microsoft
Azure in 2014. [34]

All of these, as well as smaller CSPs, offer a wide range of services, some
more tailored than others, but many overlapping in their essence. To differ-
entiate between different CSPs, a closer look should be taken at their offered
services, implementation, pricing, geographical locations, and security imple-
mentations, to name a few.

5.4 Cloud Services

In contrast to traditional hosting service providers, CSPs offer a wider range of
options to choose from when it comes to hosting web applications. While the



33

traditional server space leasing still exists as infrastructure as a service, more
tailored solutions have risen up beside it as well. Instead of simply offering
virtualised infrastructure space, cloud providers can offer a platform for hosting
web applications, space for running containers, or even just functions.

As mentioned earlier, virtual machines and containers are the building
blocks of the main computing services offered by public CSPs. With this
existing shared resources model, users can freely choose to customise what
they buy according to their needs, be it memory size, efficiency, performance,
or anything else the cloud provider might have offered to be customised.

There are a few common types of cloud services that are offered by most
CSPs that differ in terms of how much responsibility and access is given to the
users, and how much is kept in the CSPs realm of liability. The differences
between management responsibilities can be seen in Figure 11.

Infrastructure as a Service. One of the earliest forms of cloud services,
Infrastructure as a Service (IaaS) offers the equivalent of running virtual
machines or servers on the cloud. Users may choose from the technical
resources needed, such as memory size and storage space, and are respon-
sible for the infrastructure, as well as anything they might want running
on it. [35]

Platform as a Service. One step further in the chain of managed services,
Platform as a Service (PaaS) offers a managed infrastructure for their
users, letting them focus on the application itself. Here the users don’t
have any access to the infrastructure but are responsible for the applica-
tion hosted on it [35]. Such a service is often used for web applications,
where the infrastructure needed is abstracted behind a platform service,
making it easier for the user to focus on the actual implementation instead
of operational tasks.

Function as a Service. A rising trend in the cloud computing world is to di-
vide application logic into smaller and smaller pieces, similar to the idea
behind the microservices architecture. This has led to another popular
service of CSPs, which is using machine resources for just the length of
running a single piece of code or function, known as Function as a Service
(FaaS). FaaS can be seen as a subcategory of PaaS, but as it has gained
popularity especially in serverless applications, it is mentioned here sepa-
rately. Popular examples of FaaS include AWS’s Lambdas, GCP’s Cloud
Functions, and Microsoft Azure’s Functions.

Software as a Service. Software as a Service (SaaS) is a term used to
describe applications that run on cloud infrastructure and are accessed
through a client, such as a browser. Users of SaaS don’t usually have
any kind of access to the infrastructure itself, or any means to manage
it. Such applications include, e.g., email service providers, or social media
platforms. [35]



34

Database as a Service. Managed databases, sometimes referred to as
Database as a Service (DBaaS), is software that enables users to set up a
database on cloud infrastructure without having to worry about its tech-
nical implementation or requirements. [36] The technical implementation
is often abstracted behind a simple interface. DBaaS can be considered a
subcategory of SaaS.

Kubernetes as a Service. Many CSPs offer containers as a service as well
as virtual machines, and often containers are managed using a container
orchestration system, such as Kubernetes. This has led CSPs to go one
step further to facilitate container orchestration and provide Kubernetes
as a managed service. This allows users to easily manage, scale, and cus-
tomise a cluster of containers on a CSP. Examples include GCP’s Google
Kubernetes Engine (GKE), AWS’s Elastic Container Service for Kuber-
netes (EKS), and Azure’s Kubernetes Service (AKS).

Figure 11: Management responsibility differences between traditional IT, IaaS,
PaaS and SaaS. [35]

There exist many more tailored and specialised services provided by CSPs,
but for the purposes of this thesis, we will limit them to the ones presented in
this section.

5.5 Benefits and Drawbacks of CSPs

There are a lot of reasons why services and organisations are moving towards
the public cloud, while there still exist some causes for rethinking a move
to CSPs. Generally, the benefits of cloud computing seem to outweigh its
drawbacks. Nonetheless, every use case should be analysed separately to see
if a cloud environment is the best approach.



35

Out of the claimed benefits of a cloud environment, here are some of the
most commonly mentioned ones.

Price. Since large CSPs have a well-established base, it makes it easy for them
to have low prices on their services, without having to add any additional
costs to users. Users will only pay for what resources they use, and the
payment model is often pay-as-you-go, meaning no long-term commitment
is needed. [31]

Services on Demand. Through CSPs, users can quickly and effortlessly set
up new virtual machines or services in practically no time at all, without
having to contact a vendor or go through a lengthy process to get them set
up. The same goes for shutting down services, as users have full control
over the management of their allocated services. [31]

Location. As large CSPs have data centers set up all around the world, users
may set up their services wherever they wish, or to multiple locations at
once [31]. This is a great advantage when compared to a private cloud, for
instance, as the cost of maintaining just one data center is already high,
but the cost of having multiple ones set up would be even higher.

Security. Although security is a debatable matter, CSPs have a long history
of scaling up their security requirements when it comes to cloud infras-
tructure. While application security is still left in the hands of the user,
things such as network security and physical security are handled by the
CSP, who is accountable to certain standards, which in many cases are
much higher than the ones users might have.

While a cloud environment does have many advantages, there are a few
risks to take into account when moving towards a CSP.

Access. While restricting management access is one of the services provided
by CSPs, there are some cases where a user might want to have full man-
agement rights to the resources their services are running on. Often the
offered management services are sufficient, but full access, e.g., physically,
is not something that CSPs can offer.

Security. While CSP’s security standards are generally high, some organ-
isations’ standards might be even stricter, leading them to have higher
standards than what CSPs generally have to offer.

Location. Some regulations and laws, such as the General Data Protection
Regulation (GDPR), require certain information to be kept within a cer-
tain geological location. Some cloud services might not be able to provide
all of their services in such locations, or might not even have data centers
available there, meaning that sensitive information might go outside of
these bounds. In these cases, these cloud services are not usable.



36

Vendor lock. Not a risk of cloud environments in itself, vendor lock is a
situation where it becomes nearly impossible or extremely difficult to move
away from a current CSP. Nowadays, a lot of cloud services are ambiguous
in terms of CSPs and can be shifted more easily than before between them.
Still, some services only exist on certain CSPs and must either continue
to do so or find different solutions if it is no longer the desired situation.

Learning curve. As a constantly evolving environment, new services are
developed and published by CSPs at a rapid rate. For an inexperienced
developer, getting to know the public cloud ecosystem might present a
time-consuming challenge. As services might vary from one vendor to
another, mastering one ecosystem might not guarantee that the rest will
also be mastered as quickly.



37

6 Case: Project WorkTracker
This chapter presents an hour-tracking application, its main functionalities,
as well as its technical stack and implementation. It also takes a look at its
known technical problems, as well as at the goals hoped to achieve during the
migration process.

6.1 Application Description

The goal of the application was to create an internal work time tracking soft-
ware for the employees of the company to facilitate payroll events. The min-
imum requirements were that internal employees would be able to mark and
submit their work hours to payroll. The main goal was to also have all external
employees using the same time tracking system.

6.1.1 Features

The application was designed and implemented based on the following features.

User information. Basic user information, such as name, email, supervisor
email, organisation, team, and password, had to be saved into the ap-
plication. These would only be visible to the users themselves and the
administrators.

Invitation-only login. The user base of the application had to be lim-
ited since it was a company-internal software, and outsiders shouldn’t
be allowed into the application for security reasons. Registration by an
invitation-only protocol was decided upon, which would allow the admin-
istrators to send out invitations for the target users.

Work hour tracking. Probably the main functionality of the application,
the ability to add, edit, and remove daily work hours was required. Apart
from tracking normal work hours, special payroll significant information,
such as sick leave and vacation days, should also be possible to add.

Tags. The ability to create and use tags for different work hours was a re-
quirement. This was mostly meant for payroll administrators to be able
to analyse and create meaningful reports based on the employees’ work
hours.

Roles. Different user roles, representing different levels of rights and access,
had to be included in the application. These included roles for employees,
supervisors, and administrators. Also, limiting information based on the
role of a user was a requirement.

Filtering tools. All users should be able to have basic filtering tools for their
own work hours. On top of this, supervisors and administrators should



38

have the possibility to filter more than one employee’s work hours, as well
as to generate reports based on the filtered results.

Time reports. Automatically generated time reports to be sent out monthly
were to be possible within the application. These time reports would be
sent out to and accessed by the corresponding supervisors only. There
should also be a way to approve or reject them.

Approval and locking hours. Once a certain time report had been ap-
proved, the employee shouldn’t be able to edit or modify their working
hours for that period of time, unless the report had been rejected by the
supervisor.

Teams and organisations. As the software was to be used for external em-
ployees as well, additional information about the organisations, or compa-
nies, and teams was required, as well as a way to manage this information.

Company limitations. As different work hours and tags for different com-
panies were to be in use, it was required that the tags used to mark work
hours should be company-specific, as they could potentially include sen-
sitive information.

Assignment tags. To differentiate the use of regular work hour tags and
billable projects, the concept of assignment tags was introduced. This
would be a separate tag visible to internal employees only and would
contain information about billable projects.

Employment details. The software would be used to ask for and store crit-
ical employment details of internal and external employees. These would
include details needed for employment contracts, as well as information
about past and current projects if the employee had been in multiple
assignments.

6.1.2 Views

The application consisted of a few main pages, or views, that each held their
own functionality. Here is an overview of the different pages of the application,
as well as of the functionalities they offered.

Time entry. The main page of the application, this was the page where all
users would submit their work hours, as shown in Figure 12. It consisted of
the time entry form, some basic filtering tools, as well as a table of previous
time entries made by the user. The table provided the functionality for
editing or deleting a single entry, each on its own row.

Basic info. This was a user’s personal information page. Here was a form
where they could see information about their team, organisation, and
supervisor. It also provided the functionality for updating a user’s name
or email address.



39

Figure 12: Time entry page.

Team info. If a registered user was also the supervisor of a team, a page
containing their team’s information was available to them. It contained
their basic information, as well as their time entries for the ongoing month.

Invite and register. The main tool for adding users to the application,
this page consisted of an invitation form requiring some basic information
about the upcoming user, such as their email address, as seen in Figure
13. The same page provided the functionality for invited users to register
into the system, provided their invitation link was valid.

Tag management. This page provided a tool for managing the tags that
users could create using the time entry form. As there would eventually
be tags that needed to be removed, or some duplicate tags that should be
merged, this was where the tool for that functionality resided.

Teams and organisations. This page provided an overview of all the differ-
ent teams and organisations registered in the application. It also provided
the tools for adding, editing, and deleting them, as well as managing their
corresponding supervisors.

All users. This page showed all of the users registered in the application,
as well as their basic information, team, and organisation. It also had
the tool for showing their employment information, as well as their saved
contract information. Different roles and permissions were administered
through this page, as well as deleting a user from the system.

All times. This page contained all of the time entry info for all of the users
registered in the application. It also contained extensive filtering tools, as
well as the possibility to extract the time information into a csv-file.



40

Figure 13: User invitation page.

All time reports. This page had a collection of all sent time reports for each
user in the application. This page allowed the administrators to have an
overview of which time reports were accepted, and which were yet to be
acceptable, i.e., in a problematic state.

Single time report. A page containing a single time report was sent at
the end of the month to each user’s corresponding supervisor. If a team
contained more than one person, the report held time information for the
whole team.

6.1.3 User Roles and Permissions

The different user roles implemented in the application were crucial in limiting
the information conveyed and the tools available to each user. Here is a short
summary of the different roles, as well as their respective rights and views.

User. The most common user role, a plain user had the right to submit and
edit their own work hours, create work hour tags and change their basic
information.

Team admin. A team administrator had the same rights as a basic user, on
top of which they could see their team members’ information, as well as
their work times.

Admin. An administrator had the right to every user’s information and work
hours, as well as the right to invite and remove users, add teams and
organisations, and manage employment information as well as time tags.



41

Supervisor. A supervisor only had the right to see their respective team’s
work hour report at the end of each month, as well as approve or reject
it.

6.2 Technical Description

At the beginning of the development of the application, the technology choices,
as well as the architecture of the application, were decided with the develop-
ment team. Apart from a few minor libraries, no major changes had been
made to these during the life cycle of the application so far.

6.2.1 Technology Stack

The modern web framework Meteor was chosen as the technical platform for
the project implementation, due to its making use of only one programming
language (i.e., JavaScript) throughout the stack. At the beginning of the
project, in 2014, Meteor was at version 0.9, one version away from its first
major release. At the end of its active development, the project had updated
the version of Meteor to 1.4.

As for the project database, the non-relational database MongoDB was
chosen, due to its close pairing with the Meteor framework. It was the only
viable option at the time, since using any other database would have required
a lot of manual work, and wasn’t deemed worth it.

The codebase was hosted on GitHub’s Enterprise plan repository, which
allowed for the codebase to be private within the enterprise that owned it.
Having the codebase available publicly would have been a security risk, espe-
cially during early development days.

6.2.2 Development Practices

The development team was quite small, consisting of three people. Due to the
small size of the team, not many development practices were enforced, as they
would have slowed the development of new features down considerably. The
methodology used in development was an agile one.

In this case, the team chose a faster delivery of features over high-quality
code. This meant the project had practically no implemented tests or any
automated pipelines for integration or delivery. There were, however, some
code reviews, especially when introducing a new member to the project team.
This lowered the number of bugs accidentally introduced into the codebase
somewhat.

6.2.3 Architecture and Design

The application was written following a monolithic architecture approach. The
codebase was unified and hosted on a single repository, and a lot of the appli-
cation code was reused throughout the project. Especially in the frontend, a



42

lot of templates were used to provide a basic view for any application users.
These templates were then reused with administrator additions, to provide
more information and tools where needed.

The application itself relied heavily on reactive data, expecting near real-
time updates to application data throughout the clients. While this was not a
requirement in the daily use of an average user, the tools that the framework
provided made it simple to build the application on top of this principle.

The application followed the design approach of the Meteor framework,
following mostly an SPA design. While the application seemingly fosters many
pages and views, it actually uses a routing library to simulate different pages,
making it seem like an MPA.

6.2.4 Hosting and Deployment

The project was deployed with the package Meteor Up (mup) and hosted on a
dedicated server instance in UpCloud [37]. Meteor Up was an automated build
tool that used Docker containers for building and running Meteor applications.
In this case, Meteor Up created four Docker containers upon deployment:

1. application-container. The main container for the application, it held
the JavaScript code bundle containing all application logic.

2. application-container-reverse-proxy. The reverse proxy front for
the application, all traffic to the application was routed from here.

3. ssl-certificate-container. Since we wanted the application to use https,
a separate container was brought up to automatically renew the appli-
cation’s SSL certificate every three months.

4. mongodb-container. The container for the database, this was the
automatically generated local container for the MongoDB database.

6.3 Technical Problems

At the beginning of this project, the application hadn’t been updated or de-
veloped in a few years, outside of a few minor bug fixes. However, there was
an extensive list of more general technical problems that were waiting to be
tackled and would be beneficial to be taken into consideration prior to or in
parallel with any modernisation or migration attempt.

Outdated codebase. As the project was started in the early phases of Me-
teor, a lot of the code quickly became outdated, either in conflict with the
proposed approaches of newer Meteor versions or just plainly harboring
known security risks. Even with gradual updates to some parts of the ap-
plication, this meant that the codebase included code that was supported
in versions as early as Meteor 1.3, whereas at the time of this project
Meteor had just released its version 1.9, with many breaking changes in
between.



43

Updating the application. During each new code update, the application
had to be manually updated using Meteor Up’s tools. The updates each
lasted up to 5 minutes, and the application was unavailable during that
time. The deployment process also required that the deployment machine
had access to the hosting server, usually through SSH keys.

Uneven server load. Most of the time, the application was at quite a low
level of usage, as users would report their work hours maybe once a day
or once a week. However, once a month, when the time reports were to be
sent, the server load grew considerably, as there were many calculations
and processes involved in sending these reports. Since the application
was hosted on only one server and could only be scaled vertically, this
resulted in the application server being widely oversized in regard to the
application usage, except for those once a month occurrences.

Adding new features. As the application architecture was monolithic, a lot
of code was entwined, and dependencies were hard to follow. This meant
that developers needed to have a good understanding of the application
as a whole before being able to add or remove a separate feature.

Slow application. Due to Meteor’s built-in reactivity, users with more com-
plicated work hours needed to have more data on the client, which led to
the application slowing down considerably. Similar problems were notice-
able on the backend, where the logic for one simple task was found within
a function responsible for many more things than just the task itself.

Database instability. The fact that the production database was hosted in
a local Docker container with no replicas or backups was a huge risk, as
it meant that if the application server were to crash into a state where
it couldn’t be repaired, the whole application data would potentially be
lost.

6.4 Goals

The main goal of this modernisation project was to tackle sufficient technical
debt as to make future development easier. This included dealing with the
technical problems mentioned in the previous section. The secondary goal was
to ensure the integrity, scalability, and availability of the application, as well as
to make life easier for its future maintainers. These goals can be summarised
below.

Maintenance and updates. A new update strategy was strongly desirable,
as the current one included a lot of manual work, as well as application
downtime. The goal was to simplify the updating process, as well as
reduce the application downtime to near-zero, improving the application
availability in the process.



44

Infrastructure optimisation. Since the current infrastructure, as well as the
application architecture, limited the scaling options to vertical scaling, the
cost of having a hosting server used at minimum capacity most of the time
was something to be improved. The goal was to have an infrastructure
solution that would be optimal in normal use times, as well as be able to
serve during high load times, such as the end of the month.

Flatten the learning curve. Due to the state of the codebase, introducing
new members to the development team was a difficult task, as a thorough
knowledge of the development history of the application was required in
order to make sense of the application. At the same time, introducing
new features to the project was also hindered by the same reasons. The
goal was to make it easier for future developers to learn and contribute to
the project, and make the codebase similar to the suggested application
structure of the newer versions of Meteor.

Technical optimisation. Since not all code introduced to the project had
been peer-reviewed, there were a lot of pieces of code that were perform-
ing suboptimally. The goal was to make the application run faster by
optimising low-quality code, including anything from unnecessary data
subscriptions to simple bad implementation choices that could be rewrit-
ten more efficiently.

Data integrity. As the current database was in danger of going down with the
application at any moment, its integrity, as well as a safe backup strategy,
were chief concerns in this project. On top of technical requirements, an
easier way of handling and updating the database with sufficient privileges
was considered a goal.



45

7 Migrating the Application
This chapter presents the steps of modernisation and migration plans based
on the information gathered in the previous sections. It offers some suggested
guidelines and implementation steps as to how to proceed in tackling the known
technical problems while making the transition to a cloud environment smooth
and useful. It then analyses the results compared to the goals set in the
previous section to see what was achieved.

7.1 Codebase Update

As mentioned in the previous section, the project hadn’t been updated in a
while and was lagging behind in terms of code quality and framework compat-
ibility. Before undertaking any major structural changes, the codebase would
have to be updated and unified to make any further changes easier and more
straightforward.

7.1.1 Goals

By undertaking a codebase update, the technical problems of the outdated
codebase, the difficulty of adding new features, and the inferior performance
of parts of the application would be targeted.

The goals of this step would be to flatten the learning curve, by having
a better starting point into the application, as well as technically optimise
the codebase, by removing low-quality code during the update. In addition,
this step would increase such non-functional attributes as application security,
by deleting unsafe code, performance, by optimising technical solutions, and
maintainability, by having a uniform codebase.

7.1.2 Implementation

In the case of this project, updating the codebase meant a few main things.

Refactor the file structure. Since the application structure had fallen be-
hind compared to the one recommended in the official guide, it was an
important step to rearrange the project files into their intended folders.
This would ensure their behaviour was consistent with that of the docu-
mentation, and make further development easier.

Structure file imports. Due to the functionality presented by the Meteor
framework in its earlier versions, code was available everywhere in the
project, whether this was intended or not. By restructuring the applica-
tion file structure, all file and module imports would have to be checked
as well to see that they were imported where needed, and ignored where
not.



46

Take care of technical debt. As the framework had undergone some major
changes, the code itself was also lagging behind in technical quality and
implementation. Having consistent and high-quality code would benefit
any further changes made to the application greatly, as well as optimise
the current functionality and performance.

Enforce good development practices. Although having no effect on the
application code written so far, enforcing good development practices
would ensure that any further development done on the application would
not add to the existing technical debt. By enforcing code reviews or mak-
ing tests mandatory, the future quality of the codebase would be less likely
to end up in a state such as it was at the beginning of this project.

7.1.3 Results

In practice, updating the codebase was a slow and laborious process, that took
around two months to complete in a satisfactory manner. The result was a
greatly improved codebase, which was valuable in itself, as well as a good
prerequisite for any further development.

Refactoring the file structure and file imports was quite straightforward, as
there were a clear guide and documentation to follow on Meteor’s part. Both
updates to structure and imports were implemented per file, as moving a file
inside the project meant having to update and check the file imports as well.
This step greatly improved the overall structure of the application and made
it easier to go through the application code.

Taking care of technical debt was slightly trickier, as a few different things
were involved. In this case, technical debt meant the quality of the code
rather than other shortcomings, as well as the debt left by using old tools for
development. In the end, the version of the Meteor framework was updated to
1.9 in the project, and while the code was made compatible with it, it didn’t
yet make use of the newer features introduced by this later version. This
did, however, enforce having to delete no longer supported unsafe code from
the application, which was one of the targeted goals. Most of the problems
with the application speed were also explained by discovered bad technical
implementations in the code, which were then remedied during this step.

While none of these changes were mandatory in regards to the migration,
choosing not to implement them would have resulted in difficulties and longer
throughput time later on in any modernisation step, as discussed in the sec-
tion about code quality debt. Thus, updating the codebase was a crucial
step of this project, and addressed many of the technical problems found in
the application, such as the outdated codebase, and the difficulty of adding
new features to the existing code. Also, some slower parts of the application
benefited greatly from diminishing the overall technical debt. The results of
enforcing good development practices will only be seen after the development
of the application continues, and as such is not analysed here further.



47

7.2 Database Migration

One of the main problems and risks of the application was its database, and
especially its location inside the application Docker container. To ensure the
stability and maintainability of the application database, it would have to be
migrated from its current location to a better alternative.

7.2.1 Goals

The main technical problem the database migration meant to solve was the
instability of the current database implementation.

By successfully migrating the database to a safer environment, the goal of
the application’s data integrity would be reached. In terms of non-functional
enhancements, this would mean better data integrity, as well as a strategy for
backups and disaster recovery, which hadn’t yet been implemented.

7.2.2 Implementation

In order to do ensure the database’s stability, two things were required.

Database update. Since Meteor version 1.4, the default MongoDB ver-
sion had been MongoDB 3.2, compared to the previous supported default
version of 2.6 [21]. Some major updates were required between those ver-
sions, after which upgrading would be trivial. Although all MongoDB
versions from 2.4 are still supported in Meteor, leaving the database to a
deprecated version with little support elsewhere would hardly be a smart
choice.

Database migration. As the current platform of the database was on un-
stable ground, the migration of its hosting platform was required. At the
same time, setting up backups and database replicas would ensure data
integrity and stability. For these purposes, the solution would be to move
the database to a managed cloud database service, which would take care
of the necessary additional requirements. Most managed database ser-
vices only support relatively new versions of databases, so an update of
the database would be a prerequisite of this step.

7.2.3 Results

The database migration was a surprisingly low-effort step, as there were many
existing tools present to help with the migration. The update and migration
work took around two weeks in total to implement, and the proposed benefits
were immediately reached.

Updating the database was quite straightforward in this case, as the appli-
cation hadn’t been making use of any deprecated features of MongoDB in its



48

database. MongoDB and Meteor both provided the necessary tools for run-
ning the update, as well as making a copy of the updated database for the
upcoming migration.

The managed service MongoDB Atlas was chosen for hosting the applica-
tion database. In addition to being a more stable environment than what was
in use before, it offered additional services in terms of database replicas and
automatic backups, which were a secondary goal of improving the overall data
integrity. Pointing the existing application to the new database was then a
simple matter of updating the application settings.

Updating and migrating the database addressed the problem of an unstable
and unreliable database, as well as separated the responsibility of managing it
to a separate service, leaving less work for the developers. It also added the
beginning of a backup and disaster recovery strategy for the application.

7.3 Hosting Service Migration

As the application struggled with an uneven application load and difficulty in
scaling, migrating the hosting platform and service seemed logical. This would
comprise migrating the application onto a new hosting service provider, and
finding a suitable managed service on top of which the application could safely
run and scale as needed.

7.3.1 Goals

The main problems in focus during this step were the uneven server load, as
well as the difficulty of applying updates to the application.

By changing the application hosting service, the goal of optimising the
application infrastructure would be started. In addition, making it easier for
maintainers to maintain and update the application would be achieved. All in
all, better application availability, as well as improved scalability, would ensue.

7.3.2 Implementation

In order to change the hosting service of the application, a new environment
was to be found, as well as a suitable service. After analysing the options, the
following services were settled upon.

Google Cloud Platform. As the public cloud offered many services that
would help with the goals of this optimisation, it was a logical choice
to migrate the application hosting server onto a CSP. Since some of the
services of Google Cloud Platform were already familiar, there would be a
low learning curve for the platform itself, as well as the services it provided.
Because of this, GCP was a logical choice for the application destination.

Google Kubernetes Engine. Since the application was already shipped
in Docker containers, it seemed logical to use a container orchestration



49

program such as Kubernetes to help with managing the operations part
of hosting the application. Since GCP offers its Kubernetes as a Service
GKE as part of its services, it was suitable as the target destination for
the application containers.

7.3.3 Results

Migrating the application onto the public cloud was a lengthy process, and took
the better part of three months. While small improvements to availability and
maintainability were seen quite fast, the targeted goals required considerable
additional effort in terms of getting to know and use the tools required for
achieving the desired end result.

A lot of time was spent on learning about new services, as the chosen target
destination platform, GKE, was not familiar beforehand. Changing the hosting
platform also meant having to change the deployment tools used so far, as the
previously used Meteor Up didn’t have support for the kind of deployment
strategy that would make use of GKE’s desired benefits. This meant having
to learn about Meteor’s manual deployment tools, as well as getting them to
work with GKE’s update strategies.

In the end, GKE offered solutions to some of the technical problems related
to updating and scaling the application. Automatically scaling the number of
containers up or down and balancing traffic between them, depending on server
load, served to reduce hosting costs and service shortages. A new update
strategy, in this case rolling updates, ensured that the application wouldn’t
be completely unavailable at any time, but instead updated gradually, thus
keeping its services online for its users, and increasing its overall availability.

7.4 Architecture Transformation

Since the application had grown considerably after its initial requirements, the
designed architecture wasn’t the best in terms of further development, or main-
tainability, and as such could be seen as having gathered some architectural
debt. To be able to reach all of the proposed goals of the migration project,
as well as achieve additional benefits, a redesigning and restructuring of the
application architecture should be undertaken.

7.4.1 Goals

By rearchitecting the application, the technical problems of an uneven server
load inside of the application, as well as the difficulty of adding new features,
would be addressed.

This step would focus on the goal of optimising the underlying infrastruc-
ture, by dividing the main application into smaller pieces. This would also
help in flattening the learning curve, since developers could focus on a smaller
part of the application instead of having to familiarise themselves with it all.



50

This measure would further benefit the application’s scalability, as well as its
maintainability.

7.4.2 Implementation

In order to make the application architecture more suitable to its current use,
as well as optimise it for adaptation to a cloud environment, the following
steps are proposed.

Microservices architecture. To make full use of the benefits of the cloud, a
microservices architecture would make the most sense. Separating appli-
cation functionality into multiple services would make them more manage-
able and customisable, in terms of development, availability, and scaling.
Having an automatically scaling container structure doesn’t benefit the
application greatly if the application load is uneven inside of the con-
tainer.

Managed services. Besides separating the application into microservices,
some parts of the application could be migrated away from the core appli-
cation, and make use of separately managed cloud services, e.g., for user
authentication. Not all parts of the application are migratable to such
services, however, or if they are, the migration work might end up being
significantly higher than the benefits it would bring.

7.4.3 Results

Redesigning and transforming the application architecture was seen as such a
major undertaking that it was decided to be implemented as a partial rewrite
at a later date. Instead of designing and transforming the whole application
structure at this time, it would be implemented little by little, in parallel
to developing and detaching possible new features. As it stood, the current
application architecture was so entwined that it was impossible to separate any
functionality from it into a separate service without undertaking a considerable
amount of work.

Moving the monolithic application to the cloud, as was implemented in
the previous step, was not enough to make it as cost-effective and scalable as
was targeted. Optimising the infrastructure through rearchitecting the appli-
cation would tackle problems with the application load and related costs. As
mentioned earlier, scaling the whole application up and down is little better
than the previous vertical scaling tactic. Instead, scaling only parts of the
application under varying traffic would be much more efficient, cost-wise and
in regard to availability.

Having a well-structured microservices architecture would also tackle the
difficulty of adding new features to the project. Since only the application
associated with the wanted new feature would need to be familiarised with



51

before taking on the development process, developers would have a much lower
threshold when undertaking such a task.

All in all, even though a microservices architecture would make the most
sense in a cloud-based environment, some benefits were reaped even without a
lengthy and laborious rearchitecting process, but not nearly all that the new
cloud environment could bring. The compromise of the implemented approach
was to make the migration work with the current application as it was, and
gradually work to separate some functionality into separate services, slowly
collecting the benefits of its new environment.



52

8 Conclusions
This chapter presents the findings of this thesis and reflects on their applica-
bility to other modernisation and migration projects. It answers the research
questions presented at the beginning of this thesis based on the knowledge
gained throughout this process.

8.1 Prerequisites of Migration Projects

The first research question was: "What are the prerequisites of migrating a
web application to the cloud?". In the research on technical debt, we saw
the effect that badly maintained and low-quality code had on any project,
regardless of its development methodology or current state in its life cycle. In
the case study project, it was concluded that before undertaking any larger
work, it would be greatly beneficial to have a codebase in good shape and up
to date with its tools, such as its framework, as well as free of any outstanding
technical debt that might hinder further development. The use of modern
application development approaches, such as TDD and CI/CD, would be a
great help in ensuring a low level of technical debt from the start of any
software development project.

Another factor that was seen to impact the success of migration projects
is the suitability of the current application architecture to its planned destina-
tion platform. If a monolithic application was to be migrated to a single VM
instance, no additional measures would be required in order to successfully
complete said migration. If a microservices application or a part of it would
be migrated onto a cloud platform, the migration should be quite straightfor-
ward, assuming that corresponding services are available. In the case study
application, we saw that while the migration of a larger monolithic application
to a cloud environment is possible, the outcome and achieved results might
vary from those that were hoped, depending on what the desired benefits of
the migration were in the first place.

8.2 Modern Technology Considerations

The second research question was: "What needs to be taken into account when
dealing with modern technologies?". Here again, we find that technical debt
has an important part to play in the answer. In the research on modern tech-
nologies, we concluded that projects implemented with modern technologies
have a higher risk of accumulating technical debt than ones done with more
established technologies, although the technologies themselves might then har-
bour more debt. As we concluded in our research on technical debt, special
attention should always be paid to ensure that debt is kept at a manageable
level, as it hinders all future development.

Another thing to consider, when working with modern technologies, is that
they might encounter a sudden end of life. This needs to be taken into account



53

at the very beginning of a project and accounted for in its life cycle plan. In
the case of a sudden end of life, a modernisation process of migrating the
technology, rather than the platform, might be undertaken.

8.3 Hosting on the Cloud

The third and final research question was: "What benefits and drawbacks are
there in hosting a web application on the cloud?". In the research on the
public cloud and CSPs, we saw that among others, the public cloud offered a
variety of benefits, especially when it came to non-functional qualities, such as
availability, security, and scalability. While some of the risks and drawbacks,
including access limitations and strict security concerns, are still present in the
public cloud, in the scale of this case study, the concerns weren’t great enough
to outweigh the possible benefits.

One major drawback that was encountered during the case study was the
amount of time spent on learning new services, as the learning curve turned out
to be quite steep. When planning a timeline for a migration project, the time to
learn must be taken into account to avoid surprising delays in implementation.
However, if the services happen to be familiar to the developers beforehand,
no such learning time is needed.

While a public cloud environment does offer various benefits, they are not
automatically attained once an application has been migrated to a public cloud
environment. On the contrary, if done hastily and on the wrong services, a
faulty migration might cause more drawbacks than benefits, e.g., by accu-
mulating costs on services that haven’t been optimised or tailored to fit the
application.

In this case, despite the workload and risks involved in migrating a web
application to the public cloud, the case study showed that some advantages
might be gained from a migration to the cloud, despite not having tailored the
application to the targeted destination. However, as such a task still requires
a considerable amount of work, it should be undertaken only after careful
consideration, e.g., as a step before further optimising an application to fit a
cloud environment.



54

References
[1] Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casal-

las, R., & Gil, S. Evaluating the Monolithic and the Microservice Archi-
tecture Pattern to Deploy Web Applications in the Cloud. In 2015 10th
Computing Colombian Conference (10CCC) (pp. 583-590). IEEE.

[2] Hall W., Tiropanis, T. Web Evolution and Web Science. Computer Net-
works. 2012

[3] Ravula, S. Achieving Continuous Delivery of Immutable Containerized
Microservices with Mesos/Marathon. 2017

[4] Microservices Decoded: Best Practices and Stacks. DZone.
https://dzone.com/articles/scalable-cloud-computing-with-
microservices. Accessed 16.5.2020.

[5] Miri, I. Microservices vs. SOA. 2017 https://dzone.com/articles/
microservices-vs-soa-2. Accessed 29.2.2020.

[6] Fowler, M. Microservices - a definition of this new architectural term.
2014. https://martinfowler.com/articles/microservices.html. Ac-
cessed 29.2.2020.

[7] Bogner, J., Zimmermann, A., & Wagner, S. Analyzing the Relevance of
SOA Patterns for Microservice-Based Systems. ZEUS, 9, 9-16. 2018.

[8] Mesbah, A., van Deursen, A. Migrating Multi-page Web Applications to
Single-page Ajax Interfaces. 2006

[9] Neoteric. Single-page application vs. multiple-page application. 2016
https://medium.com/@NeotericEU/single-page-application-vs-
multiple-page-application-2591588efe58. Accessed 1.3.2020.

[10] Yan, K. Modern web application frameworks. Accessible at https:
//bravoka.io/articles/modern-web-application-frameworks/. Ac-
cessed 28.1.2020.

[11] Majchrzak, T. A., Biørn-Hansen, A., & Grønli, T. M. Progressive web
apps: the definite approach to cross-platform development?. 2018.

[12] Offutt, J. Quality attributes of web software applications. IEEE software,
19(2), 25-32. 2002.

[13] George, B., & Williams, L. A structured experiment of test-driven devel-
opment. Information and software Technology, 46(5), 337-342. 2004.

[14] Fowler, M. Continuous integration. 2006. http://martinfowler.com/
articles/continuousIntegration.html. Accessed 27.2.2020.

https://dzone.com/articles/scalable-cloud-computing-with-microservices
https://dzone.com/articles/scalable-cloud-computing-with-microservices
https://dzone.com/articles/microservices-vs-soa-2
https://dzone.com/articles/microservices-vs-soa-2
https://martinfowler.com/articles/microservices.html
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://bravoka.io/articles/modern-web-application-frameworks/
https://bravoka.io/articles/modern-web-application-frameworks/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html


55

[15] Fowler, M. Continuous delivery. 2013. https://martinfowler.com/
bliki/ContinuousDelivery.html. Accessed 27.2.2020.

[16] Hukkanen, L. Adopting Continuous Integration – A Case Study. 2015.

[17] GitHub - angular/angularjs: AngularJS - HTML enhanced for web
apps!. GitHub. https://github.com/angular/angular.js. Accessed
16.5.2020.

[18] Strack, I. Getting Started with Meteor.js JavaScript Framework. Packt
Publishing Ltd. 2015.

[19] Rust, S., Schelling, J., & Schipper, D. Building Real-Time Web Applica-
tions with Meteor. 2015.

[20] Contributors to meteor/meteor. GitHub. https://github.com/meteor/
meteor/graphs/contributors. Accessed 16.5.2020.

[21] Meteor Changelog. Meteor API Docs. https://docs.meteor.com/
changelog.html. Accessed 11.5.2020.

[22] The State of JavaScript 2019: Meteor. The State of JavaScript 2019.
https://2019.stateofjs.com/back-end/meteor/. Accessed 16.5.2020.

[23] Application Structure. Meteor Guide. https://guide.meteor.com/
structure.html. Accessed 9.5.2020.

[24] Deployment and Monitoring. Meteor Guide. https://guide.meteor.
com/deployment.html. Accessed 1.4.2020.

[25] Scalable Hosting with Galaxy for Meteor Applications. Meteor. https:
//www.meteor.com/hosting#pricing. Accessed 1.4.2020.

[26] Leau, Y. B., Loo, W. K., Tham, W. Y., & Tan, S. F. Software development
life cycle AGILE vs traditional approaches. In International Conference
on Information and Network Technology (Vol. 37, No. 1, pp. 162-167).
Product-Focused Software Process Improvement, 26. 2012.

[27] Yli-Huumo, J., Maglyas, A., & Smolander, K. Evaluating and managing
technical debt in software development lifecycle. Product-Focused Software
Process Improvement, 26. 2014.

[28] Kruchten, P., Nord, R. L., & Ozkaya, I. Technical debt: From metaphor
to theory and practice. Ieee software, 29(6), 18-21. 2012.

[29] Raksi, M. Modernizing web application: case study. 2017.

[30] Tibus. The history of web hosting: how things have changed since
Tibus started in 1996. https://www.tibus.com/blog/the-history-
of-web-hosting-how-things-have-changed-since-tibus-started-
in-1996/. Accessed: 1.2.2020

https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://github.com/angular/angular.js
https://github.com/meteor/meteor/graphs/contributors
https://github.com/meteor/meteor/graphs/contributors
https://docs.meteor.com/changelog.html
https://docs.meteor.com/changelog.html
https://2019.stateofjs.com/back-end/meteor/
https://guide.meteor.com/structure.html
https://guide.meteor.com/structure.html
https://guide.meteor.com/deployment.html
https://guide.meteor.com/deployment.html
https://www.meteor.com/hosting#pricing
https://www.meteor.com/hosting#pricing
https://www.tibus.com/blog/the-history-of-web-hosting-how-things-have-changed-since-tibus-started-in-1996/
https://www.tibus.com/blog/the-history-of-web-hosting-how-things-have-changed-since-tibus-started-in-1996/
https://www.tibus.com/blog/the-history-of-web-hosting-how-things-have-changed-since-tibus-started-in-1996/


56

[31] Malhotra L, Agarwal D, Jaiswal A. Virtualization in cloud computing. J.
Inform. Tech. Softw. Eng. 2014 Jun;4(2):1-3.

[32] Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose CA. Per-
formance evaluation of container-based virtualization for high performance
computing environments.. In2013 21st Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing 2013 Feb 27
(pp. 233-240). IEEE.

[33] Molnar, D., Schechter, S. Self Hosting vs. Cloud Hosting: Accounting for
the security impact of hosting in the cloud. WEIS, 2010.

[34] Kamal, M. A., Raza, H. W., Alam, M. M., & Su’ud, M. M. Highlight
the Features of AWS, GCP and Microsoft Azure that Have an Impact
when Choosing a Cloud Service Provider. International Journal of Recent
Technology and Engineering (IJRTE). 2020.

[35] Brandao, P. R. Computer Forensics in Cloud Computing Systems. Bu-
dapest International Research in Exact Sciences, 1(1), 02. 2019.

[36] Youseff, L., Butrico, M., & Da Silva, D. Toward a unified ontology of cloud
computing. In 2008 Grid Computing Environments Workshop (pp. 1-10).
IEEE. 2008.

[37] UpCloud - High Performance Cloud Hosting. https://upcloud.com/.
Accessed 6.4.2020.

https://upcloud.com/

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Research Questions
	Research Methods
	Limitations
	Structure

	Web Applications
	Evolution of Web Applications
	Frameworks
	Architecture
	Monolithic Architecture
	Service-Oriented Architecture
	Microservices Architecture

	Design Approaches
	Static Web Pages
	Single-Page Applications
	Multi-Page Applications
	Progressive Web Applications


	Modern Technologies
	Modern Web Development Practices
	Non-Functional Requirements
	Test-Driven Development
	Continuous Integration and Deployment

	Modern Technology Properties
	Risks of Emerging Technologies

	The Meteor Framework
	Development Speed
	Usage and Popularity
	Design Pattern
	Data Handling
	File Structure
	Architecture
	Hosting Options and Tools


	Technical Debt in Software Development
	Software Development Life Cycle
	Technical Debt
	Code Quality Debt
	Architectural Debt
	Non-Functional Debt

	Dealing with Technical Debt
	Code Quality
	Architecture Quality and Migration

	Special Considerations in Modern Technologies

	The Cloud Environment
	Web Hosting Evolution
	Hosting Services
	Private Data Centers

	Virtualisation and Containers
	The Cloud
	Private Cloud
	Hybrid Cloud
	Public Cloud

	Cloud Services
	Benefits and Drawbacks of CSPs

	Case: Project WorkTracker
	Application Description
	Features
	Views
	User Roles and Permissions

	Technical Description
	Technology Stack
	Development Practices
	Architecture and Design
	Hosting and Deployment

	Technical Problems
	Goals

	Migrating the Application
	Codebase Update
	Goals
	Implementation
	Results

	Database Migration
	Goals
	Implementation
	Results

	Hosting Service Migration
	Goals
	Implementation
	Results

	Architecture Transformation
	Goals
	Implementation
	Results


	Conclusions
	Prerequisites of Migration Projects
	Modern Technology Considerations
	Hosting on the Cloud


