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Symbols and abbreviations

Symbols
ω A set of parameters in neural network model to optimise
M Variational matrix
W Weight matrix, an element of parameter set ω
IK Identity matrix of size K ×K
x A training input vector
x∗ An input vector for prediction
ŷ An output from neural network model
y A training label/output
y∗ A predictive label/output
p A dropout rate
z A dropout mask vector
p A softmax probability vector; equivalent to y for classification tasks
D A set of training data, including inputs and labels/outputs
K Number of dimensions
L Number of network layers
T Number of Monte Carlo samples
N A Gaussian distribution
Ber A Bernoulli distribution
ε A sample from the standard normal distribution N (0, 1)

Operators
x ◦ u Element-wise multiplication between vector x and u
xW Matrix multiplication between vector x and matrix W
diag(·) A function to turn a vector into a diagonal matrix
σ(·) An activation function
log(·) Natural logarithm function
sigmoid(·) A sigmoid function; usually a logistic function
p(·) Probability distribution function
q(·) Approximated probability distribution function
∼ A sample from distribution function
Ep[·] An expectation over distribution p
V arp[·] A variance over distribution p∑
i sum over index i
H(·) An entropy function
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NN Neural Network
RNN Recurrent Neural Network
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Chapter 1

Introduction

Uncertainty quantification is desirable in critical decision making such as clinical
diagnosis and prediction. This thesis attempts to quantify predictive uncertainty
from recurrent neural network (RNN), specifically long-short-term-memory (LSTM)
network, by using Monte Carlo (MC) dropout, a novel technique proposed by Yarin
Gal [6]. This technique can be applied to other types of RNN, and non-RNN network,
such as feedforward, convolution, or attention networks (see appendix B).

MC dropout is built upon Bayesian statistics. Bayes’ theorem gives us the tool
to express belief at the presence of some condition, thus Bayesian inference adds two
(2) additional properties to a regular model: 1) belief of the parameters, or prior,
which usually results in weight regularizing terms in the objective function, and 2)
posterior uncertainty. Variational Bayesian (VB) is used to optimise an otherwise
intractable (difficult or impossible to express analytically in formulae) posterior;
the use of dropout (in both training an inference) is equivalent to approximating
posterior with a tractable neural network (NN) weight distribution 2.2, which we
will further explain.

The work presented in this thesis is compared against Multitask learning and
benchmarking with clinical time series data [9], a benchmark in clinical time series
data. The tasks in this benchmark includes: in-hospital-mortality (IHM), length-
of-stay (LOS), decompensation (DEC), phenotyping (PH), and a combination of
the four (4) (Multitask). These tasks are formulated as classification; application to
regression is cover in appendix C.

1.1 Uncertainty
Before we embark on quantifying uncertainty on neural network, lets understand
what uncertainty really signifies. In a restaurant, when presented with a menu of just
a few items, we do not have much difficulty in picking a dish. When we are presented
with a large menu with many items, spanning across multiple pages, it would take us
longer to pick a dish, and even after picking a dish, we are still uncertain if we picked
the one we would like the most, least without prior knowledge of this restaurant.
What we have just experienced is an effect of uncertainty, a judgement of how good
of a choice we make, or the level of confidence in our choice. In analogy, a menu is a
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random variable, and a sample from this random variable is a dish we pick. Note
that a sample does not have uncertainty. A random variable (under a distribution)
has uncertainty. Therefore, when we say we want to find uncertainty of a prediction
in NN, we treat NN outputs (or predictions) as random variables of a distribution.
Uncertainty manifests as many different possible outcomes under the same condition.

Like humans, NN models can make predictions. But like in the case for human
predictions, predictions by NN models always come with a level of uncertainty,
determined by knowledge, experience, and available data. In traditional NN models,
we mostly output prediction, but do not output uncertainty, or confidence level. In a
regression task, we do not produce uncertainty to quantify how reliable a prediction is.
In a classification task, we mistakenly treat the softmax probability output vector as
confidence level. Softmax outputs can be interpreted as parameters for a Categorical
distribution, but not its variance (which is p(1− p)). Softmax outputs can also be
understood as bringing pre-softmax output into a range that humans can interpret,
e.g. if a prediction that an image contains a cat is 6.43, can we determine if that is a
cat or not? Softmax gives us two anchor points, 0.0 and 1.0, to aid our interpretation
of the results. Another counter example that softmax output should not be treated as
confident level is, suppose we have a pre-softmax output of 100.00, for some input far
from training data inputs, softmax output is then very close to 1.0, indicating high
confidence for out-of-distribution input. This large discrepancy between pre-softmax
and softmax outputs prompts us that we need to introduce prediction uncertainty to
existing NN models.

How do we introduce uncertainty to NN? Recall that NN is a special form of
the linear regression model (See section 2.1). The linear model builds on/comes with
Bayesian probability techniques: Bayesian regression and Bayesian logistic regression.
Borrowing from the linear model, this work introduces Bayesian probabilistic to
NN, as a means to acquire uncertainty of prediction. Lets review basic Bayesian
regression.

p(ω|D) = p(D|ω)p(ω)
p(D)

p(ω|Y,X) = p(Y|ω,X)p(ω)
p(Y|X) ,

(1.1)

in which:

• ω represents the parameters we want to optimise

• D = X,Y represents training data, where X are inputs, and Y are outputs.

In linear models, ω represents linear weights and biases. In NN, ω represents network
weights and biases. The expression p(ω|D) is called posterior, or probability of ω
after we have observed training data; here we want to find ω that maximizes the
posterior given the observed data.
Traditionally, most NN maximize the likelihood term p(D|ω) (or, equivalently, mini-
mize the negative likelihood) because it is simpler1. This likelihood, however, does

1depending on the nature of training data
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not express variance in prediction, but rather only variance in training data. What if
training data is noisy? ω will try to capture noise as well, resulting in what we call
overfitting (noises become representatives for otherwise unseen cases). One approach
to avoid overfitting is to restrict parameters ω into a family (from a distribution).
This is expressed as p(ω), and describes a prior belief that parameters ω belong to
family p(ω).

If we pick a standard Gaussian prior, for example, it results in L2 (squared
magnitude of weight matrix) regularizing terms in the objective function. The
normalizing term p(Y|X) is not a function of ω, and can therefore be excluded from
the optimization objective. Notice that Bayesian approach does not automatically
guarantee good generalization. If we pick a suitable prior for ω, we can avoid both
overfitting and underfitting. If we pick a prior far from the unknown family of suitable
parameter distributions, we suffer overfitting, or underfitting2.

We are interested in predictive uncertainty. Naturally, we can find it from a
predictive distribution

p(y∗|x∗,D) =
∫
ω
p(y∗, ω|x∗,D)dω

=
∫
ω
p(y∗|ω,x∗)p(ω|D)dω,

(1.2)

with variance, or uncertainty expression, from definition as:

V arp(y∗|x∗,D)[y∗] = E[(y∗)T (y∗)]− E[y∗]TE[y∗]. (1.3)

Looking at the predictive distribution (1.2), we can get an idea of where the uncer-
tainties [1] come from:

• Noisy input data from p(y∗|ω,x∗), or aleatoric uncertainty

• Uncertainty from model parameters conditioned on training data p(ω|D), or
epistemic uncertainty

A challenge in determining uncertainty is that the posterior distribution is in-
tractable for neural network; thus we shall address this challenge by Variational
Bayesian3 approximation later on in section 3.1.

1.2 Proposal to quantify uncertainty in RNN
Uncertainty has been quantified in non-recurrent NN, specifically convolutional neural
network (CNN), by Yarin Gal et al. [15] using a stochastic process. Gal et al. also
proposed the same stochastic process as a regularising technique for RNN [4]. The
work in this thesis combines these two (2) major papers to quantify uncertainty in

2Note that overfitting can happen for other reasons, such as unbalanced, or biased training data,
in which case, cross-validation is also required

3Another Bayesian concept, not to be confused with Bayesian modeling
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RNN; the objective function, the uncertainty computation, and stochastic model
schema are derived.

Various works (see chapter 2) are utilised to customize uncertainty quantification
for regression and classification tasks. Some mathematical derivations, although
given from previous works, are provided in this paper in greater details and with
explanations in order to justify the mathematical expression of uncertainty.

The stochastic LSTM layer, one of the building blocks for stochastic NN models,
was implemented in both Keras and PyTorch (see appendix D and E).

The uncertainty quantification solution was implemented in both Keras and
PyTorch (see appendix F).

1.3 Potential applications
Uncertainty quantification is important when the cost of making a wrong prediction
is high, usually associated with human’s safety or investment.

Autonomous vehicles such as self-driving cars can defer control to other decision
making systems, including humans, if they are uncertain about their actions.

The benchmark in this work is clinical tasks using clinical time series data,
thus an obvious application where uncertainty is critical is in automated medical
diagnosis. We are interested in how reliable a diagnosis is, and in which factors are
corrupting diagnosis, in order to decide if personnel intervention is necessary.

More applications are mentioned by Yarin Gal in his PhD thesis [2].

1.4 Thesis structure
We begin by identifying uncertainty, which is the predictive variance, mathematically.
Then we find a way to approximate this uncertainty via a stochastic process. After
identifying how to calculate uncertainty, we apply the derived approach to RNN mod-
els in common regression and classification tasks. We focus mostly on classification
because the benchmark from Hrayr et al. [9] are classification tasks. Uncertainty
for regression tasks will also be presented, although no signification benchmarks are
provided.



Chapter 2

Related works

The following works, by other researchers, build the foundation for this thesis. Firstly,
deep learning is introduced to expose the parameters. Then, prior on the parameters
is proposed; the prior manifests as dropout. Finally, uncertainty is quantified as
variance; from which we find a mathematical estimator for.

2.1 Deep learning
We can consider linear regression a special case of deep learning neural network,
with multi-dimensional input, a single layer, and a single output. See figure 2.1.
Mathematically, this is expressed as:

y = Wx + b
where x ∈ RK , y ∈ R,W ∈ RK×1.

(2.1)

The goal of a linear regression problem is to find W and b such as it minimizes the
mean squared error (MSE) object function; a special case of negative log likelihood:

1
N

N∑
i=1
||yi − (Wxi + b)||. (2.2)

In order to extend this concept to deep learning, we can do two (2) things:

• Allow multi-dimensional output, i.e. y ∈ RD.

• Have more than one (1) linear transformation, i.e. there are many linear layers
such that the output of the previous layer becomes the input for the next layer.
See the following equations 2.3.

y = Wnxn + bn

xn = Wn−1xn−1 + bn−1

xn−1 = Wn−2xn−2 + bn−2

· · ·
x1 = W0x + b0.

(2.3)

5
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Figure 2.1: This is a linear regression model with an activation function at output. All
input features are multiplied by corresponding weights, and summed up to produce
an output.
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Figure 2.2: Feedforward Neural Network, Adapted from [Learn OpenCV, Under-
standing Feedforward Neural Networks]. A simple neural network can be constructed
as a collection of many linear regression models, where the outputs are fed to the
next model, so called feedforward.

However, if we only have a stack of linear transformations, then all these trans-
formations will collapse into a single transformation y = W∗x + b∗. This still
constitutes simple linear regression. By using activation functions (σ) at each linear
transformation we introduce non-linearity to the model. We want non-linearity to
capture non-linear relationships between inputs and outputs. There are different
types of activation functions, e.g. ReLU, tanh, sigmoid, linear, softmax, and so on.
The updated transformation is expressed in equation 2.4.

y = σn(Wnxn + bn)
xn = σn(Wn−1xn−1 + bn−1)

xn−1 = σn(Wn−2xn−2 + bn−2)
· · ·
x1 = σn(W0x + b0).

(2.4)

With this construct, we have built a simple deep learning model, aka feed-forward
NN; see figure 2.2. The optimization objective is still the same, to minimize the
same loss function. In practice, we use tricks such as stochastic gradient descend
(SGD) to optimise parameters without flooding computer memory.

In classification tasks, we reformulate the model to have a softmax output,
or sigmoid output for binary classification. Additionally, we change the objective
function from MSE to cross-entropy 1

N

∑
i

∑
k pi,k log( 1

qi,k
), where p is true class, and

q is predicted class probability.
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Deep learning has evolved to be more complex than a simple feed-forward. In
this work, we explore RNN, and specifically LSTM.
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2.2 Binary dropout
Binary dropout is an act of randomly disabling some fraction of neurons in a NN
layer. Mathematically, it is equivalent to setting some input dimensions to zero. It is
commonly used to combat overfitting during training because it prevents models from
learning to rely on a subset of input features. Randomly setting those features to zeros
makes the models consider other otherwise less dominant features. Binary dropout is,
conventionally, not used in inference, thus making inference models deterministic. In
this work, we explore how binary dropout has a different implication; in addition to
simply preventing overfitting, binary dropout is equivalent to approximating the NN
weight posterior distribution as a Gaussian mixture model with one (1) component
fixed at zero mean (see [5]):

W ∼ pN (0, σ2IK) + (1− p)N (M, σ2IK). (2.5)

In equation 2.5, a sample W has p chance that it is sampled from the first zero-mean
Gaussian distribution; i.e. W is dropped out, and (1− p) chance that it is sampled
from the regular model weights M.

In training phase, deactivation is applied to inputs of a layer. Coincidentally,
applying random binary dropout has the same effect as randomly sampling NN kernel
weights from a weight distributions (see section 3.2.1). It is useful to think of the
NN not as collection of fixed weights, but as a collections of random variable weights.
With this reasoning, we want to apply dropout both at training and inference time.
Yarin Gal proposed Binary dropout for RNN [4], in which sampled weights are used
across for all time steps.

2.3 Gaussian dropout
Gaussian dropout, and a generalized version called Variational Dropout by Kingma
et al. [16], is an alternative to binary dropout, in which instead of deactivating
some neurons, we scale down some features and scale up some other features. It has
been shown that this dropout has the same performance but faster convergence than
binary dropout. Gaussian dropout also has the benefit of being continuous (Gaussian
distribution vs. Bernoulli distribution), thus making the mathematical optimization
process simpler and easier to reason about. Gaussian dropout is equivalent to
approximating NN weight posterior distribution as Gaussian with dropout variance

W ∼ N (M, αIK), (2.6)

where α = p
1−p is a dropout parameter. While Gaussian dropout seems more ideal, for

the reasons mentioned above, and some debate [12] claiming that Gaussian dropout
is Bayesian, this work uses binary dropout.
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2.4 Concrete dropout
Concrete dropout [7] is an approximation of Bernoulli/binary dropout. Concrete
dropout applies dropout masks sampled from a ConCrete distribution. A sample
from a Bernoulli distribution is either 0 or 1. A sample from a Concrete distribution
is either very close to 0, or very close to 1; within (0, 1). The difference between a
Concrete and a Bernoulli distribution is that in Concrete distribution, the dropout
parameter is part of the sample, and the sample is continuous, whereas a sample
from a Bernoulli distribution is discrete, hence the name Continuous-discrete. We
want to replace the conventional Bernoulli dropout with Concrete dropout because
we want to also optimise dropout parameters; dropout parameters have to be a direct
part of the output calculation, and continuity makes differentiation possible.

In a Bernoulli distribution, a sample is either 0 or 1, with probability p to be 1.
This sample, which is not a function of p, is used as dropout mask and the dropout
parameter p, is then forgotten in the output. A Concrete distribution is reformulated
to use standard uniform distribution to generate stochastic a sample z

u ∼ Uniform(0, 1)
p ∈ (0, 1)
t ≈ 0.1

z = sigmoid(1
t
(log(p)− log(1− p) + log(u)− log(1− u))).

(2.7)

Lets inspect this sample z closely. The first part is 1
t
(log(p) − log(1 − p)). This

expression varies w.r.t. p and can be seen in plot 2.3. With p = 0.5 this expression
is 0, and sigmoid produces 0.5. Increase p > 0.5, and we have a positive expression,
magnified 10 times by temperature t = 0.1 alongside sigmoid close to 1. Decrease
p < 0.5, and we have a negative expression, magnified negatively 10 times by
temperature t, and sigmoid close to 0.

The second part of z introduce randomness with a standard uniform distribution.
Higher p yields a higher chance of sampling −1, and vice versa, lower p yields a higher
chance of sampling 0+. In this form, z is continuous, and differentiable w.r.t. p (u
does not depend on p, and will disappear in derivative).

This reparameterization of z is known as the Gumbel-max trick to a softmax
function [14], where we pull parameter p out of Bernoulli (discrete) distribution.
Note that this is an approximation of Bernoulli distribution; there is no easy way to
reparameterize a discrete distribution.

If you are interested in Gaussian dropout, reparameterization is more intuitive;
we can get, not an approximate, but an exact sample. We reparameterize Gaussian
distribution to standard Gaussian distribution.

z ∼ N (1, α) ∼ 1 +
√
αN (0, 1). (2.8)
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Figure 2.3: Function 1
t
(log(p)− log(1− p)) with t = 0.1. Notice that this graph is

centered at p = 0.5. With larger p > 0.5, we have positive output, and sigmoid will
squash it to 1. With smaller p < 0.5, we have negative output, and sigmoid will
squash it to 0.
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2.5 Predictive uncertainty
The focus of this paper lies in predictive uncertainty, i.e. variance in a predictive
distribution

p(y∗|x∗,D) =
∫
ω
p(y∗|ω,x∗)p(ω|D)dω. (2.9)

We break down predictive uncertainty into aleatoric uncertainty (uncertainty from
noisy data), and epistemic uncertainty (uncertainty from model and parameters).
How we formulate the uncertainty depends on our assumption of the predictive
distribution. Alex et al. [15] proposed a Gaussian predictive distribution, a natural
choice for most regression tasks. We can view the traditional regression problem
as predicting the mean of Gaussian output (an output is a distribution), and we now
wish to find the output variance. Suppose that p(y∗|ω,x∗) = N (y∗|yω(x∗), σω(x∗)),
where [yω(x∗), σω(x∗)] = fω(x∗) is a NN output with parameters ω from posterior
p(ω|D). The variance is given by:

V ar[y∗] = Ep(ω|D)[σω(x∗)] + Ep(ω|D)[yω(x∗)2]− Ep(ω|D)[yω(x∗)]2. (2.10)

Similarly, in classification tasks, Kwon et al. [19] proposed a Categorical
predictive distribution, as a natural choice for most classification tasks. Suppose
that p(y∗|ω,x∗) = Cat(y∗|yω(x∗)) where [yω(x∗)] = softmax(fω(x∗)), a probability
vector output from NN with parameters ω. The variance is given by

V ar[y∗] = Ep(ω|D)[yω(x∗)− yω(x∗)2] + Ep(ω|D)[yω(x∗)2]− Ep(ω|D)[yω(x∗)]2. (2.11)

Justification, explanation, and approximation for both will also be derived in section
3.3.

2.6 Variational Inference
A common approach in probabilistic models is to find a simple distribution to
approximate an intractable, or difficult to optimise probability distribution, using
Kullback–Leibler divergence (KL-divergence) [18]. To recap, KL-divergence is an
approximate measure of distance, or similarity between 2 different distributions:

KL(q||p) =
∫
θ
q(θ) log(q(θ)

p(θ))dθ, (2.12)

or, for a discrete parameter θ:

KL(q||p) =
∑
θ

q(θ) log(q(θ)
p(θ)). (2.13)

We spoke of an intractable posterior distribution p(ω|D) = p(D|ω)p(ω)
p(D) , and an approx-

imated distribution q(ω), which for example can be a Gaussian mixture model for
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binary dropout. Translated to terms of KL divergence, the goal is then to find q(ω)
that is as close to p(ω|D) as possible.

KL(q(ω)||p(ω|D)) =
∫
ω
q(ω) log( q(ω)

p(ω|D))dω

=
∫
ω
q(ω) log(q(ω))dω −

∫
ω
q(ω) log(p(ω|D))dω

=
∫
ω
q(ω) log(q(ω))dω −

∫
ω
q(ω)(log(p(D|ω)) + log(p(ω))− log(p(D)))dω

=
∫
ω
q(ω) log(q(ω)

p(ω))dω −
∫
ω
q(ω) log(p(D|ω))dω + log(p(D))

∫
ω
q(ω)dω

=
∫
ω
q(ω) log(q(ω)

p(ω))dω −
∫
ω
q(ω) log(p(D|ω))dω + log(p(D))

= KL(q(ω)||p(ω))−
∫
ω
q(ω) log(p(D|ω))dω + log(p(D))

= KL(q(ω)||p(ω)) + Eq(ω)[− log(p(D|ω))] + log(p(D)).
(2.14)

Our objective to minimizeKL(q(ω)||p(ω|D)) is equivalent to minimizingKL(q(ω)||p(ω))+
Eq(ω)[− log(p(D|ω))], given that log(p(D)) is fixed. remainder of this work is con-
cerned with showing how to minimize the two (2) terms:

• KL(q(ω)||p(ω))

• Eq(ω)[− log(p(D|ω))] (the expectation of negative log likelihood that we are
used to optimising in NN)

and which result in an optimization objective of the form:

L = KL(q(ω)||p(ω)) + Eq(ω)[− log(p(D|ω))]. (2.15)

How we approximate these two (2) terms will also determine the way we approximate
the uncertainty from the general variance formulae presented in section 2.10 and
section 2.11. Notice that we are working with simpler distributions q(ω), p(ω), and
p(D|ω), as opposed to working with p(ω|D).

With the optimised parameter distribution, we can find the approximation for
the predictive distribution 2.9 (see section 3.1.1).



Chapter 3

Research material and methods

3.1 Introducing probability to neural network

3.1.1 Predictive posterior distribution as output
When we talk about probability, we are talking about random variables; a variable
that assumes values from a possible set of values, at some probability. For example,
a random variable of a Bernoulli distribution with parameter p = 0.6 is more likely
to be 1 than to be 0. In contrast, deterministic variables assume exact values. It is
usually impractical to express a random variable directly if a set of possible values is
large or infinite. Therefore, random variables are usually expressed with probability
density functions (or probability mass functions for discrete random variables). When
we want to introduce probability to NN, we want the outputs from a NN model to
be random variables, rather than deterministic values. In other words, a NN model
with probability is a random generator of a distribution that is conditioned on inputs
x∗, forming a predictive distribution p(y∗|x∗,D).

The question arises, why do we not consider an output distribution with regular
negative log likelihood optimization approach? This is because, whilst we normally
output prior predictive distribution p(y∗|ω,x∗), we only get aleatoric uncertainty,
which we often ignore, or consider constant; this is a side effect when we do not
approach NN model in a probabilistic fashion. During optimization, we only maximize
p(D|ω), in other words, we find a single ω in an unbound function space that best fits
the training data. Now a single set of parameters ω (we only take one sample) does
not constitute a distribution. We miss out on other parameters in the same function
space that also fit training data, making us overrate our confidence; or underestimate
our epistemic uncertainty.

Bayesian statistics provides us with the tools to bridge the predictive distribution
that we are interested in, with the data and model we have. First, Bayes’s theorem
expresses predictive distribution as:

p(y∗|x∗,D) =
∫
ω
p(y∗|ω,x∗)p(ω|D)dω. (3.1)

For our purposes, instead of picking the best ω, we consider all possible parameter

14



15

sets:
p(y∗|x∗,D) = Ep(ω|D)[p(y∗|ω,x∗)]. (3.2)

We cannot practically sample from p(ω|D) efficiently, so we use KL-divergence to
find q(ω) ≈ p(ω|D), giving us an approximated predictive distribution:

q(y∗|x∗) =
∫
ω
p(y∗|ω,x∗)q(ω)dω

= Eq(ω)[p(y∗|ω,x∗)].
(3.3)

Having access to q(ω), p(y∗|ω,x∗), the bridge to approximated predictive distribution
is made.

Note that one might argue that we could structure predictive distribution as
p(y∗|x∗,D) ∝

∫
ω p(y∗|ω,x∗)p(D|ω)p(ω)dω = Ep(ω)[p(y∗|ω,x∗)p(D|ω)]. While this

may be possible, it is highly inefficient because each time we want to make a
prediction, we have to go through training data, with a random parameter set not
conditioned on training data.

3.1.2 Approximated posterior q(ω)
It is up to us to pick an approximated distribution based on our experience. Some
distributions work better for specific cases and worse for other case; for example,
if we know that a parameter has value between 0 and 1, a Beta distribution is
more suitable than a Gaussian distribution. In the case of binary dropout, the
approximated distribution is in formula (2.5) where the variational parameter is M.
The reasoning behind this choice is that sometimes (about p ∗ 100% of the time), we
want the neuron weights to be zeros, and some other times (about (1− p) ∗ 100% of
the time), around M (that we will optimise), i.e.

q(ω|p∗ = 0) = N (0, σ2I)
q(ω|p∗ = 1) = N (M, σ2I)
p(p∗ = 0) = p

p(p∗ = 1) = 1− p
⇒ q(ω) = p(p∗ = 0)q(ω|p∗ = 0) + p(p∗ = 1)q(ω|p∗ = 1)

= pN (0, σ2I) + (1− p)N (M, σ2I).

(3.4)

We want the weights to be as such so that all weights have about the same level
of importance, in other words, weights should complement each other so that for
example, if some weights happen to be zeroed out, complementary/other weights
make up for the loss of information.
The same reasoning applies to an approximating Gaussian dropout distribution
q(ω) = N (M, αI), where variational parameters are M and α.
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3.1.3 Approximated Variance
The approximated posterior distribution with q(ω) gives us approximated predictive
variance, for Gaussian outputs:

V ar[y∗] = Eq(ω)[σω(x∗)2] + Eq(ω)[yω(x∗)2]− Eq(ω)[yω(x∗)]2, (3.5)

and for Categorical outputs:

V ar[y∗] = Eq(ω)[yω(x∗)− yω(x∗)2] + Eq(ω)[yω(x∗)2]− Eq(ω)[yω(x∗)]2. (3.6)

3.1.4 Optimising objective
We have established that ω samples come from posterior distribution p(ω|D), so it is
natural that we want to optimise this posterior. We also concluded that optimising
this posterior is challenging, so we approximate it with a simple form q(ω), using
KL-divergence. This results in a Variational Inference (VI) objective (derived from
section 2.6):

LV I = KL(q(ω)||p(ω)) + Eq(ω)[− log(p(D|ω))]. (3.7)

The first term generally represents L2 regularizers, and the second term is similar to
negative log likelihood, with the distinction that we are sampling ω this time.

3.2 Monte Carlo sampling as Variational Bayesian
In this section, Monte Carlo (MC) sampling is used to approximate the optimising
objective and the model outputs (means and variances).

3.2.1 Optimising objective
The optimising objective, in the form of VI loss LV I , hints that we should take several
samples from variational distribution to approximate the loss. However, it does not
make sense to sample ω (that have been materialized and are thus disconnected from
the original distribution), to optimise loss w.r.t. q(ω). We have to instead use a
reparameterization trick again to pull parameters of q(ω) out of its distribution, so
that we can optimise these parameters. To achieve this, Kingma et al. [17] suggested
derivative path-wise estimator and Yarin Gal [3], proposed a modification to this
estimator. The modification consists of marginalizing the variational distribution as
q(ω) =

∫
ε q(ω|ε)p(ε)dε, with q(ω|ε) = δ(ω− g(θ, ε)), where δ is a Dirac delta function,

and g(θ, ε) is a reparameterized transformation. See section 2.4 for examples of
reparameterized distributions. The loss, reparameterized by hyper-parameters θ is
then:

LV I = KL(q(ω)||p(ω)) + Eq(ω)[− log(p(D|ω))]

= KL(q(ω)||p(ω))−
∫
ω
q(ω) log(p(D|ω))dω

= KL(q(ω)||p(ω))−
∫
ε
p(ε) log(p(D|g(θ, ε)))dε.

(3.8)
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Note that we now have distribution of ε, which we do not need to optimise (because
it does not have the parameters we want to optimise), but from which we now only
need to take some samples during optimization.

According to stochastic non-convex optimisation by Rubin [21], optimising this loss
approximated by MC estimation will converge to the same optima as the variational
inference loss. We use MC estimation to sample ε once for every data pass, giving
the objective function:

LMC = KL(q(ω)||p(ω))− log(p(D|g(θ, ε))). (3.9)

Specifically in our case of binary dropout approximation, we have q(ω) = pN (0, σ2I)+
(1 − p)N (M, σ2I). We want to find the best M that such that this distribution
gives samples that yield the lowest loss. When we sample from this distribution,
we do not have M in the optimization objective function we seek to optimise. By
reparameterizing this as:

ω ∼ pN (0, σ2I) + (1− p)N (M, σ2I)
→ ω = zσξ + (1− z)(M + σξ)

z ∼ Bernoulli(p)
ξ ∼ N (0, 1).

(3.10)

We extract two (2) distributions for z and ξ, which do not depend on the variational
parameter M. Now we can plug this reparameterized ω into the loss function LV I ,
and take one sample of z and ε each time loss is evaluated to arrive at LMC . In other
words, g(θ, ε) = zσξ + (1− z)(M + σξ), where θ = M, and ε = {z, ξ}. In theory, we
should take multiple samples, but because we also run through LMC for multiple
iterations, it will converge to LV I .

Similarly, in the case of Gaussian dropout ω ∼ N (M, αI), we can reparameterize
ω = M +αε where ε ∼ N (0, 1). In the next section, we will derive the concrete form
(not to be confused with Concrete dropout) of the objective function, including the
KL term, and the negative log likelihood term for regression and classification tasks,
respectively.

The KL term

KL(q(ω)||p(ω)) =
∫
ω
q(ω) log(q(ω))dω −

∫
ω
q(ω) log(p(ω))dω

= Eq(ω)[log(q(ω))]− Eq(ω)[log(p(ω))].
(3.11)

We shall employ the same strategy here again; reparameterize sample ω from q(ω)
to have distributions free from optimising parameters, then take 1 sample to get an
approximated MC estimator, yielding

KL(q(ω)||p(ω))MC = log(q(g(θ, ε)))− log(p(g(θ, ε))), (3.12)

where θ is the optimising variables, and ε are random variables, that are also free from
optimising objective, making the term stochastic. We assume the prior distribution
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p(ω) to be Gaussian with zero mean and variance as precision parameter, which is
easy to calculate analytically. However, since the approximated distribution q(ω) is a
Gaussian mixture, it is not easy to calculate analytically. Because of this, Yarin Gal
[3] approximated the log (function) of the multivariate, high-dimensional Gaussian
mixture distribution. Gal’s method yields:

KL(q(ω)||p(ω))MC ≈
L∑
l=1

(1− pl)
1
2 ||Ml||22 +

L∑
l=1
H(pl) + constant, (3.13)

where:
H(p) = p log(p) + (1− p) log(1− p), (3.14)

and L is the number of stochastic layers of our NN model, for example q(ω) =∏L
l=1 q(ωl). It should be simpler to calculate this KL term when using Gaussian

dropout because it has only one (1) Gaussian term. Therefore, if you want to use
Gaussian dropout, this is where you should update the objective function. The
resulting MC loss is:

LMC ∝
L∑
l=1

(1− pl)
1
2 ||Ml||22 +

L∑
l=1
H(pl)− log(p(D|g(θ, ε))). (3.15)

Negative log likelihood for Regression

The predictive outputs have Gaussian distribution, thus:

p(D|g(θ, ε)) =
N∏
i=1

p(yi|g(θ, ε),xi) =
N∏
i=1

N(yi|ŷi, σ2
i )

s.t. [ŷi, σ2
i ] = f g(θ,ε)(xi).

(3.16)

To make this more numerically stable, we output the log scale of predicted variance
(see equation 3.17):

ŷi, si = f g(θ,ε)(xi)
si = log(σ2

i )

p(D|g(θ, ε)) =
N∏
i=1

N(yi|ŷi, esi)

log(p(D|g(θ, ε))) =
N∑
i=1

log N(yi|ŷi, esi)

=
N∑
i=1

1
2(− log(2π)− log(esi)− ||yi − ŷi||

2

esi
)

∝ −1
2

N∑
i=1

(si + exp(−si)||yi − ŷi||2).

(3.17)

Note that our NN model f g(θ,ε)(·) outputs both mean and variance, due to the fact
that we are interested in predicting variance instead of assuming a fixed variance
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for all training data. Also note that we do not have actual variance values in the
objective function. Instead, this objective function encourages small variance. This
suggests that a probabilistic model learns to predict outputs (as random variables)
with small variance. Putting everything together we get an objective function for
regression tasks with stochastic binary dropout as:

LMC =
L∑
l=1

(1− pl)
1
2 ||Ml||22 +

L∑
l=1
H(pl) + 1

2

N∑
i=1

(si + exp(−si)||yi − ŷi||2). (3.18)

In this objective function, no consideration is given to non-stochastic layers (the
usual layers in NN), but if regularizing those non-stochastic layers is necessary, you
can add their weight magnitudes to this objective function as well. Additionally, we
can put some ratio coefficients to control the importance of each term. As a general
practice, we usually divide the objective loss by the number of training instances.

Negative log likelihood for Classification

This time, the outputs have Categorical distribution, thus:

p(D|g(θ, ε)) =
N∏
i=1

p(yi|g(θ, ε),xi)

=
N∏
i=1

Cat(yi|f g(θ,ε)(xi))

log(p(D|g(θ, ε))) =
N∑
i=1

log(Cat(yi|f g(θ,ε)(xi)))

=
N∑
i=1

log(
M∏
j=1

f g(θ,ε)(xi)yi,j

j )

=
N∑
i=1

M∑
j=1

yi,j log(f g(θ,ε)(xi)j),

(3.19)

where N is the number of training instances, and M is the number of categories. In
the case of binary classification, we can output just a sigmoid output, and infer the
negative category by the complement. This loss happens to be exactly the same as
cross-entropy loss that we usually use in classification tasks. The reason why we
have extra variance output in a regression case is we no longer assume variance to be
static; if variance were to be static, the negative log likelihood in regression would be
similar to mean-squared-error (MSE). Putting everything together, we arrive at an
objective function for classification task with stochastic binary dropout as follows:

LMC =
L∑
l=1

(1− pl)
1
2 ||Ml||22 +

L∑
l=1
H(pl)−

M∑
j=1

yi,j log(f g(θ,ε)(xi)j), (3.20)

where yi is a one-hot probability vector.
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3.2.2 Concrete Dropout
Initially, we perform dropout with predefined dropout rates. Dropout rate is a
stochastic parameter, thus it influences model uncertainty, or epistemic uncertainty.
We notice that the dropout rate is also part of the parameters to generate a weight
sample, thus we can treat dropout rate as a variational parameter for optimization,
so that in the approximation distribution:

q(ω) = pN (0, σ2IK) + (1− p)N (M, σ2IK), (3.21)

where we have p as variational parameter to optimise, in addition to M.
Inspecting our MC objective function 3.18, we already have the parameter p

(shaded in the following equation), which would have been discarded during differen-
tiation because it would have been considered as predefined and constant.

LMC =
L∑
l=1

(1− pl)
1
2 ||Ml||22 +

L∑
l=1
H(pl) − log(p(D|g(θ, ε))). (3.22)

It is tempting to just blindly consider dropout parameters as network parameters that
can be optimised during training. But, by doing so, we would ignore the relationship
between predictions and dropout parameters in the negative log likelihood term,
the output ŷi would then consist of input xi, and network weights generated by
variational parameters. Gal et al. [7] used reparameterization trick to pull dropout
parameters out of their distributions in order to become part of outputs. Binary
dropout, sampled from Bernoulli distribution, is transformed into Concrete dropout
by following the steps described in section 2.4. The Concrete dropout approach uses
a discrete quantised Gaussian prior for p(ω) instead of standard Gaussian, to make
the KL-term KL(qθ(ω)||p(ω)) tractable. In conclusion, we arrive at the following
objective function 3.23 that incorporates dropout parameters:

LMC =
L∑
l=1

(1− pl)
1
2 ||Ml||22 +

L∑
l=1

KlH(pl) − log(p(D|g(θ, ε))), (3.23)

where Ki is the number of input dimensions of layer i. Dropout masks are then
sampled from a Concrete distribution using equation 2.7.

3.2.3 Output and uncertainty
From formula 3.3, we are interested in the mean and the variance of the approximated
predictive distribution. See equation block below.

q(y∗|x∗) = Eq(ω)[p(y∗|ω,x∗)]. (3.24)

Parameters for approximated distribution q(ω) (from which the NN model weights
are stochastically sampled), should be optimised after training. One way of doing
this is by solving the integral to find the true predictive posterior distribution.
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Alternatively, we can estimate this predictive posterior by sampling the means and
variances T times using T ω samples from q(ω), for example, we can use q(y∗|x∗) ≈
1
T

∑T
t=1 p(y∗|ωt,x∗), ωt ∼ q(ω), an average of several approximated distributions.
Equality happens when T → ∞. Further, p(y∗|ω,x∗) should take on the form

of your output (usually Gaussian for regression, or Categorical for classification).
Our NN model f outputs the parameters for these distributions1. We arrive at
the approximated predictive mean by averaging the sampled means, and predictive
variance by the definition of variance. See derivations below.

Regression output and uncertainty

For regression tasks, the standard forms for predictive mean and variance, found in
equation block (3.5), take the following form:

ωt ∼ q(ω)
[y∗t , st] = fωt(x∗)

σ2
t = exp(st)

yout = Eq(y∗|x∗)[y∗] = 1
T

T∑
t=1

y∗t

uncertainty = V arq(y∗|x∗)[y∗] = E[σ2
t ] + E[(y∗t )2]− E[y∗t ]2

= 1
T

T∑
t=1

exp(st) + 1
T

T∑
t=1

(y∗t )2 − y2
out

= 1
T

T∑
t=1

exp(st) + V arq(y∗|ω,x∗)[y∗t ].

(3.25)

Classification output and uncertainty

For classification tasks, the standard forms for predictive mean probability vector
and variance, found in equation block (3.6), take the following form:

ωt ∼ q(ω)
p∗t = fωt(x∗)

pout = Eq(p∗|x∗)[p∗] = 1
T

T∑
t=1

p∗t

uncertainty = V arq(p∗|x∗)[p∗] = E[p∗t − (p∗t )2] + E[(p∗t )2]− E[p∗t ]2

= 1
T

T∑
t=1

(p∗t − (p∗t )2) + 1
T

T∑
t=1

(p∗t )2 − p2
out

= 1
T

T∑
t=1

p∗t (1− p∗t ) + V arq(p∗|ω,x∗)[p∗t ].

(3.26)

1We could argue that we have to marginalize over model space for predictive distributions, which
means we will end up with an ensemble model (a collection of several NN models), but for practical
reasons, we only condition on 1 model f at a time.
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Observe that we denote output probability vector as p instead of y here, to signify
that this is a softmax output.

In both regression and classification cases, the proof and full derivation for
predictive mean and variance can be found in section 3.3.

3.3 Why the VB-MC process gives approximated
predictive uncertainty

First, we should acknowledge that VB renders an estimate for the predictive poste-
rior, q(y∗|x∗) =

∫
ω p(y∗|ω,x∗)q(ω)dω. MC then, rather than evaluate the predictive

posterior analytically, helps approximate it, q(y∗|x∗) ≈ 1
T

∑T
t=1 p(y∗|ωt,x∗). Because

we evaluate predictions at all ω samples from q(ω), (what we term a dropout approx-
imation) it should be obvious that dropout is performed at inference as well. Next,
we shall derive the approximated predictive mean and predictive variance that we
have mentioned in equation 3.25 and 3.26.

3.3.1 Regression
Recall from equation 3.25, we have NN outputs Gaussian random variable parameters:

[ŷ∗t , σ2
t ] =

[
Ep(y∗|ω,x∗)[y∗t ], V arp(y∗|ω,x∗)[y∗t ]

]
= fωt(x∗). (3.27)

Given these characteristics, predictive mean and predictive variance are ex-
pressed as:

Predictive mean

Eq(y∗|x∗)[y∗] =
∫
y∗
y∗q(y∗|x∗)dy∗

=
∫
y∗

∫
ω
y∗p(y∗|ω,x∗)q(ω)dωdy∗

=
∫
ω

∫
y∗
y∗p(y∗|ω,x∗)dy∗q(ω)dω

=
∫
ω
Ep(y∗|ω,x∗)[y∗t ]q(ω)dω

=
∫
ω
ŷ∗t q(ω)dω

= Eq(ω)[ŷ∗t ] ≈
1
T

T∑
t=1

ŷ∗t

(3.28)
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Predictive variance
V arq(y∗|x∗)[y∗] = Eq(y∗|x∗)[(y∗)2]− Eq(y∗|x∗)[y∗]2

Eq(y∗|x∗)[(y∗)2] =
∫
y∗

(y∗)2q(y∗|x∗)dy∗

=
∫
y∗

(y∗)2
∫
ω
p(y∗|ω,x∗)q(ω)dωdy∗

=
∫
ω

∫
y∗

(y∗)2p(y∗|ω,x∗)dy∗q(ω)dω

=
∫
ω
Ep(y∗|ω,x∗)[(y∗t )2]q(ω)dω

=
∫
ω
(V arp(y∗|ω,x∗)[y∗t ] + Ep(y∗|ω,x∗)[y∗t ]2)q(ω)dω

=
∫
ω
V arp(y∗|ω,x∗)[y∗t ]q(ω)dω +

∫
ω
Ep(y∗|ω,x∗)[y∗t ]2q(ω)dω

=
∫
ω
σ2
t q(ω)dω +

∫
ω
(ŷ∗t )2q(ω)dω

= Eq(ω)[σ2
t ] + Eq(ω)[(ŷ∗t )2]

≈ 1
T

T∑
t=1

σ2
t + 1

T

T∑
t=1

(ŷ∗t )2

Eq(y∗|x∗)[y∗]2 ≈ ( 1
T

T∑
t=1

ŷ∗t )2

⇒ V arq(y∗|x∗)[y∗] ≈
1
T

T∑
t=1

σ2
t + 1

T

T∑
t=1

(ŷ∗t )2 − ( 1
T

T∑
t=1

ŷ∗t )2

(3.29)

3.3.2 Classification
Recall from equation 3.26, we have NN outputs Categorical random variable param-
eters:

p̂∗t = Ep(p∗|ω,x∗)[p∗t ] = fωt(x∗). (3.30)

Given these characteristics, predictive mean and predictive variance are ex-
pressed as:
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Predictive mean

Eq(p∗|x∗)[p∗] =
∫

p∗
p∗q(p∗|x∗)dp∗

=
∫

p∗
p∗
∫
ω
p(p∗|ω,x∗)q(ω)dωdp∗

=
∫
ω

∫
p∗

p∗p(p∗|ω,x∗)dp∗q(ω)dω

=
∫
ω
Ep(p∗|ω,x∗)[p∗t ]q(ω)dω

=
∫
ω

p̂∗t q(ω)dω

= Eq(ω)[p̂∗t ] ≈
1
T

T∑
t=1

p̂∗t

(3.31)

Predictive variance
V arq(p∗|x∗)[p∗] = Eq(p∗|x∗)[(p∗)2]− Eq(p∗|x∗)[p∗]2

Eq(p∗|x∗)[(p∗)2] =
∫

p∗
(p∗)2q(p∗|x∗)dp∗

=
∫

p∗
(p∗)2

∫
ω
p(p∗|ω,x∗)q(ω)dωdp∗

=
∫
ω

∫
p∗

(p∗)2p(p∗|ω,x∗)dp∗q(ω)dω

=
∫
ω
Ep(p∗|ω,x∗)[(p∗t )2]q(ω)dω

=
∫
ω
(V arp(p∗|ω,x∗)[(p∗t )] + Ep(p∗|ω,x∗)[(p∗t )]2)q(ω)dω

=
∫
ω
V arp(p∗|ω,x∗)[(p∗t )]q(ω)dω +

∫
ω
Ep(p∗|ω,x∗)[(p∗t )]2q(ω)dω

=
∫
ω

p̂∗t (1− p̂∗t )q(ω)dω +
∫
ω
(p̂∗t )2q(ω)dω

= Eq(ω)[p̂∗t (1− p̂∗t )] + Eq(ω)[(p̂∗t )2]

≈ 1
T

T∑
t=1

p̂∗t (1− p̂∗t ) + 1
T

T∑
t=1

(p̂∗t )2

Eq(p∗|x∗)[p∗]2 ≈ ( 1
T

T∑
t=1

p̂∗t )2

⇒ V arq(p∗|x∗)[p∗] ≈
1
T

T∑
t=1

p̂∗t (1− p̂∗t ) + 1
T

T∑
t=1

(p̂∗t )2 − ( 1
T

T∑
t=1

p̂∗t )2

(3.32)
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3.3.3 Uncertainty types
Earlier we mention aleatoric uncertainty and epistemic uncertainty (see section 1.1).
From our derivation of predictive variance, we notice that it has a general form:

V arq(y∗|x∗)[y∗] =Eq(ω)[V arp(y∗|ω,x∗)[y∗]] + Eq(ω)[Ep(y∗|ω,x∗)[y∗]2]
− Eq(ω)[Ep(y∗|ω,x∗)[y∗]]2

=Eq(ω)[V arp(y∗|ω,x∗)[y∗]] + V arq(ω)[Ep(y∗|ω,x∗)[y∗]].
(3.33)

The first term is an average of NN output variance, or aleatoric uncertainty.
The second term is variance of model prediction, in other words, how predictions
vary under changes of parameters, or epistemic uncertainty. It is a good idea to
separate aleatoric and epistemic uncertainty in calculations, to narrow down sources
of uncertainty and prepare appropriate plans to improve the model. For example,
high aleatoric uncertainty means the input is noisy. Appropriate remedies may
include better preprocessing of data, using different data sources/replacing the input.
The input may also be simply wrong or irrelevant for the task of a model (input is
out of distribution). If the epistemic uncertainty is high, perhaps more data should
be used to train the model.
An analogy to help understand aleatoric and epistemic uncertainty better is, suppose
you have an upcoming examination, and you have a list of materials to study from.
If you study thoroughly, and the questions on the test are related to your study
materials, then you can complete the exam with high confidence, and with good result.
If you study half of the materials, you feel more uncertain during the exam in general,
you are not certain about your answers, you as a learner are expressing some amount
of epistemic uncertainty. If you study the material thoroughly, and yet there is a
strange question unlike anything you have seen before, you feel less confident about
your answer to that question compared to other questions. What you experience
is aleatoric uncertainty, an uncertainty when encountering an out-of-distribution
question.

3.4 Challenges in Bayesian dropout in LSTM
So far we have not discussed the stochastic process in NN weights, and yet we have
derived mathematical expressions for the objective function, predictive mean, and
predictive variance (uncertainty). This means that we have a lot of freedom in
designing our stochastic NN layer; e.g. deciding that only a subset of weights be
dropped out, to dropping out all weights. We are still limited to using binary dropout,
dictated by our approximated posterior q(ω) to be Gaussian mixture with zero mean
at one cluster and normal weights at another. Should you decide to use another
stochastic process, you should first reevaluate the KL-divergence loss first with a
corresponding approximated distribution.

Dropout in a non-recurrent layer is straightforward, every neuron2 is deactivated
at probability p. In the case of RNN, neurons are not deactivated during recurrent

2A neuron should interact with all features in input, thus deactivating that neuron is equivalent
to zeroing output of that neuron. Dropout is then performed at neuron output.
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steps; if we apply dropout at layer output, the neurons are deactivated only in the
last recurrent step. And, if all weights can be dropped, we should also apply dropout
to the hidden state. Another way to perform dropout, that still conforms with our
Gaussian mixture posterior approximation, is by deactivating weights individually.

3.4.1 How to properly perform dropout
In a simple feedforward layer, dropout is performed at neuron level, so that output
from that neuron is zero. A layer is represented mathematically as a matrix, where a
neuron is equivalent to a column. If a neuron is deactivated, we set a corresponding
column to zero. A forward pass has expression y = xA. This is an example where
we deactivate the first column and third column as illustrated in figure 3.1:

A1,1 A1,2 A1,3 A1,4
A2,1 A2,2 A2,3 A2,4
A3,1 A3,2 A3,3 A3,4

 ·

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 =

0 A1,2 0 A1,4
0 A2,2 0 A2,4
0 A3,2 0 A3,4

 . (3.34)

The mask matrix is similar to an identity matrix, except that at the row where
we want to deactivate, we set all entries to zeros. The feedforward expression with
dropout is then y = x ·A ·Mdropout.

Building on these concepts, we can now proceed to any RNN. In RNN, every
weight matrix (both input weight matrix and hidden weight matrix), is multiplied
with a dropout mask, where the dropout mask has been sampled once for each
forward pass, meaning one dropout mask sample for all timesteps. A mask can
be generated by sampling from a multivariate3 Bernoulli distribution with (1− p)
probability, where the resulting binary vector is transformed into a diagonal matrix:

0
1
0
1

 ∼ Ber(1− p)4

diag(


0
1
0
1

) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 .
(3.35)

The presented approach approach is good because, when a neuron is deactivated,
other neurons still consider all input features. Further, if there is only one (1) input
feature, we do not run the risk of ignoring input. The drawback of this approach is
that neurons may still learn to favour some input features over others. Extending this
dropout strategy to built-in RNN layers in Deep learning libraries remains difficult;
likely, we will have to reimplement such RNN layers from the beginning.

3dimension as number of hidden units
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Figure 3.1: Feedforward dropout. In this illustration, a layer is a vertical slice of
neurons.
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Figure 3.2: A simple architecture of an unrolled RNN. Adapted from [Towards Data
Science, Understanding RNN and LSTM ]. Suppose we have input as a sequence of t
samples, the first sample is assumed to have hidden state zero, the output from the
first sample becomes the hidden state of the second sample, and so on.

RNN dropout in practice

Yarin Gal [4] proposed applying dropout to the inputs instead, or mathematically,
y = x ◦ zdropout ·A. The drawback of this strategy presents when there is only a
single input dimension; for this case, we may lose the only available input information.
We must handle this case programmatically, to prevent such dropout. An advantage
of the method is, it is easy to extend from built-in RNN layers in Keras, since it
comes with a naive dropout-on-input implementation. Another advantage of Yarin’s
approach is that neurons, eventually learn to consider all input features. Some
neurons might learn to have less impact (very small weight values compared to other
neurons), which should be interpreted as having more neurons than necessary, not a
problem per se. Because the advantages of applying dropout at input outweight the
drawbacks (we are after all, not working with a single input dimension), we chose to
use this dropout implementation in this work.

3.4.2 Long-short-term-memory (LSTM)
LSTM is a form of RNN [13] adapted to handle temporal data, i.e. data with a
sequential structure, such as audio samples, where a single sample does not mean
anything, but a sequence of audio samples can make up a song, or a conversation.
Note that the time order is important in this kind of data. An RNN has a hidden
state that retains some characteristic of previous input; the idea is to make use of
this property to capture temporal relationship between samples in a sequence.

h0 = σ(0Wh + x0Wx + b)
h1 = σ(h0Wh + x1Wx + b)
· · ·
ht = σ(ht−1Wh + xtWx + b)

output = hT.

(3.36)

While simple RNN seems ideal to capture temporal relationships, it does not
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perform well with long sequences. This is because the derivative during optimization
diminishes the gradient, due to multiplications between many small values, or many
large values. This phenomenon is known as Vanishing gradient problem [10]. LSTM
[11] is one solution to address this problem; by selectively choosing which hidden
features to remember, and which hidden features to forget. A typical mathematical
representation of LSTM is found in equation 3.37 (note that there are many variants
of LSTM):

ft = sigmoid(xtWf + ht−1Uf + bf )
it = sigmoid(xtWi + ht−1Ui + bi)
ot = sigmoid(xtWo + ht−1Uo + bo)
gt = tanh(xtWg + ht−1Ug + bg)
ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct).

(3.37)

These operations form a computation for one (1) timestep, illustrated in figure 3.3.
The initial values for cell state and hidden state are zeros. In equation 3.37, ft
computes which features to forget (notice the use of sigmoid to squash the values
between 0 and 1) in ct−1. it projects new input to the cell state. gt selects which
features to forget, or retain from projected input. With these ideas, the cell state ct
is updated accordingly, with selected values from previous cell state and new input.
ot selects feature from updated cell state as output and new hidden state. By being
selective in which features to retain in cell state and hidden state, LSTM is suited to
handle longer sequences.

3.4.3 Dropout in LSTM
Additionally, we also use the approach from the work of Gal et al. [4] to perform
dropout for LSTM. At every timestep, illustrated in equation 3.37, we apply dropout
to input and hidden state, for every weight matrix. We have 8 such weight matrices,
thus we need to sample 8 dropout masks (4 for input, and 4 for hidden state). During
implementation, we should also account for batched input. If we do not want all
inputs in a batch to have the same dropout masks, we must sample dropout masks
for every input in a batch as well. A timestep in LSTM is then updated as:

ft = sigmoid(xt ◦ zW,fWf + ht−1 ◦ zU,fUf + bf )
it = sigmoid(xt ◦ zW,iWi + ht−1 ◦ zU,iUi + bi)
ot = sigmoid(xt ◦ zW,oWo + ht−1 ◦ zU,oUo + bo)
gt = tanh(xt ◦ zW,gWg + ht−1 ◦ zU,gUg + bg)
ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct),

(3.38)
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Figure 3.3: A typical LSTM diagram with forget gate [11]. Adapted from [Wikipedia,
Long short-term memory]. The 4 orange squares correspond to the first 4 operations
from equation group 3.37. Dropout is applied to xt and ht−1 at every orange box.
Dropout masks can be different in each box. We keep the same dropout masks at all
timesteps in a single forward pass. This is further explained in chapter 3.4.
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or equivalently from [4]:
i
f
o
g

 =


sigmoid
sigmoid
sigmoid
tanh


((

xt ◦ zx
ht−1 ◦ zh

)
·W

)
. (3.39)

There are other variants mentioned in the same paper, but we choose this approach
because it performs dropout on all LSTM weights.

Extend to other RNN and non-RNN network types

From the dropout scheme with LSTM above, we see a general rule: whenever there
is an interaction between a weight matrix, and an input or hidden state vector, we
sample a mask for that input or hidden state vector, and that mask is tied to a weight
matrix. In RNN, we have to remember to use the same mask at every timestep.
Conversely, in non-RNN, we can drop and forget.

3.5 Implementation of stochastic LSTM layer
In our implementation, we choose to use Concrete distribution, described in section
3.2.2 to sample dropout masks for both a) optimising dropout rates, and b) specifying
dropout rates. This should unify the mask sampling implementation. In general,
whenever we apply dropout, we scale results by a factor 1

1−p to boost the remaining
features. We reparameterize this scaling factor as part of weight variational parameter,
that is, M→ M

1−p . Our loss function becomes:

LMC =
L∑
l=1

(1− pl)
1
2 ||

Ml

(1− pl)
||22 +

L∑
l=1

KlH(pl)− log(p(D|g(θ, ε)))

=
L∑
l=1

(1− pl)
1
2

1
(1− pl)2 ||Ml||22 +

L∑
l=1

KlH(pl)− log(p(D|g(θ, ε)))

=
L∑
l=1

1
2

1
(1− pl)

||Ml||22 +
L∑
l=1

KlH(pl)− log(p(D|g(θ, ε))).

(3.40)

3.5.1 Pytorch
We concluded that we needed to apply the same dropout masks to input and hidden
state at every timestep. Current LSTM and LSTMCell implementations in Pytorch
do not support dropout at input and hidden state at every timestep; the LSTM layer
was therefore reimplemented for this thesis (while maintaining the same API).

We also concluded that our stochastic LSTM layer should expose its weight
and dropout regularizing terms so that these can be added to loss value during
optimization. The code implementation can be found in appendix D. As of this
thesis, the version of Pytorch is 1.5.0.
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One of our implementation goals was to follow the original LSTM API from Keras
and Pytorch as much as possible, so that our stochastic LSTM layer can be used as
a drop-in replacement for the built-in LSTM layer4. The dropout argument accepts
a float between 0 and 1 exclusively, or can be None, to activate Concrete dropout.
This means that dropout is always active.

There is no mechanism to constrain parameter value to a certain range in Pytorch,
so we model the logit of dropout rate instead with an unconstrained range, and use
sigmoid on that logit value to acquire the dropout rate.

3.5.2 Keras
Keras provided LSTM and LSTMCell layer with dropout masking for input and
hidden state at every timestep. Therefore, for our implementation, we only need
to override the default LSTM behaviour from optionally applying dropout during
training, to always applying dropout given dropout masks that we sampled and
maintain throughout all timesteps. Our implementation also allows for weight and
dropout regularizers to be added to the loss value at layer level. The default Keras
implementation of LSTM has separate dropout rates for inputs and hidden states,
so in our Keras implementation, we also added two (2) different dropout rate Keras
parameters. The code implementation can be found in appendix E. As of this thesis,
the current version of Keras is 2.3.1. All arguments should behave similarly to built-in
LSTM layer, except for dropout rates for input and recurrent data, where, for the
case of dropout rate being specified as 1.0, it activates Concrete dropout. Otherwise,
it should function as a regular dropout rate. The standard implementation features
a mechanism to constrain parameter value to a certain range, so we model the
dropout parameter directly. The internal structure of our solution was kept intact
with regards to the built-in LSTM, so that our stochastic LSTM layer can be used
in Bidirectional and TimeDistributed wrappers as well.

4In our implementation, we do not implement bidirectional feature.
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Results

4.1 Data and evaluation goals
To evaluate the performance of our stochastic LSTM scheme, we use several sequential
datasets and build models with stochastic LSTM layers. The models will be assessed
to determine a) whether the optimising objective function yields lower loss and better
metrics, b) whether test metrics are good, and c) whether the dropout parameters
are updated sensibly.

• Occupancy Detection Data Set (https://archive.ics.uci.edu/ml/datasets/
Occupancy+Detection+): Experimental data used for binary classification
(room occupancy) from Temperature, Humidity, Light and CO2 readings.
Ground-truth occupancy was obtained from time stamped pictures that were
taken every minute.

• Hill-Valley Data Set (http://archive.ics.uci.edu/ml/datasets/hill-valley):
Each record represents 100 points on a two-dimensional graph. When plotted
in order (from 1 through 100) as the Y co-ordinate, the points will create either
a Hill (a “bump” in the terrain) or a Valley (a “dip” in the terrain).

• Apple Stock data (2012/01/01 - 2019/12/17) from Yahoo Finance1: Used for
regression (closing price), from a sequence of previous closing prices.

• MIMIC-III clinical time series data: the main data for full implementation
evaluation.

The scientific benchmark MIMIC-III [9] includes Clinical time-series data of anony-
mous patients, and a suite of NN models to perform different tasks, mostly clas-
sification. We use this benchmark as a standard, against which we compare our
approach. There are many different benchmark tasks, but we limit our scope to
In-hospital-mortality binary classification task, and we collect only training and test
data related to this task. The train-test split of the data was prepared by the MIMIC

1Acquired using Pandas Data Reader https://pydata.github.io/pandas-datareader/
stable/index.html
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https://pydata.github.io/pandas-datareader/stable/index.html
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team; we use the same train-test dataset to recreate the benchmark for the original
provided models. With the described scope, we have the following statistics on our
data:

training samples validation samples test samples
14681 3222 3236

train test
Negative 15480 2862
Positive 2423 374

The provided data have been preprocessed; as suitable vector inputs for NN
models. Although there is a class imbalance, where we have significantly more
negative samples than we do positive samples, no class imbalance remedies are
utilized. An input unit is a sequence of input vectors spanning over a 48-hour period,
where each vector has 17 features. From training dataset, we created 9 other subsets,
with fractions of samples from the original training set, ranging from 10% to 90%.
We trained our stochastic models from the beginning with each of these subsets, to
monitor the behaviour of epistemic uncertainty. Then, we augmented our test data
values to create out-of-distribution test data and thus see how the augmentation
affected aleatoric uncertainty. Test data were augmented as follows:

• Glascow coma scale total were randomly assigned an integer value from 3 to 15.

• Heart Rate were all set to a flat value of 400.

• Diastolic blood pressure, Temperature, pH were transformed according to
function f(x) = 0.2x3+0.2x2+0.2x+0.2

(1+exp(−x)) .

• Glucose, Systolic blood pressure were transformed according to function f(x) =
0.3arctan(x) + 0.3arcsinh(x) + 0.4

4.2 Experiments

Occupancy detection
This task detects if a room is occupied based on environment readings over a period
of five (5) minutes. We shall use this simple dataset to validate the implementation of
Dropout LSTM in a classification task with multi-dimensional inputs. Our objective
is to check if using MC dropout can yield better accuracy, precision, or receiver
operating characteristic (ROC). The model for this classification task has a single
LSTM layer, and two (2) fully-connected layers, with softmax in the output layer.
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Hill-Valley detection
This task detects if a terrain is a hill or valley, based on 100 sequential terrain
positions. We shall use this simple dataset to validate the implementation of Dropout
LSTM in a classification task. Our objective is to check if using MC dropout can yield
better accuracy, precision, or receiver operating characteristic (ROC), and relatively
interpretable uncertainty. The model for this classification task has a single LSTM
layer, and a single fully-connected layers, with softmax in the output layer.

Stock prediction
This task predicts the closing stock price, given closing prices from the previous
50 days. We shall use this to validate the implementation of Dropout LSTM in
a regression task. Our objective here is to see if using MC dropout can remedy
overfitting. The model for this regression task has a single LSTM layer, and two (2)
fully connected layers.

MIMIC-III clinical time series benchmark
This is a good set of benchmark tasks to evaluate the solution in this paper in a
real medical application context. The benchmark (implemented in Keras) as been
provided at https://github.com/YerevaNN/mimic3-benchmarks. We only focus
on the NN model benchmark, and replace the original LSTM layers with our custom
MC dropout version.
There are 4 main predictive tasks using clinical time-series data in this benchmark:

• In hospital mortality - binary classification

• Length of stay - reformulated as multiclass classification

• Decompensation2 - binary classification

• Phenotyping - multilabel classification

In the scope of this paper, our objective is to replicate the In hospital mortality
benchmark using our stochastic RNN model, and compare its performance against
the existing standard RNN solution. The other benchmarks are also classification
tasks, and thus provide little gain to the justification of the uncertainty quantification
solution in this paper.

Stochastic dropout models enable us to get prediction calibration (as suggested
by Chuan Guo et al. [8], and Yaniv Ovadia, Emily Fertig et al. [20]).

We have the following models for this task:
2https://en.wikipedia.org/wiki/Decompensation

https://github.com/YerevaNN/mimic3-benchmarks
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LSTM original model provided by benchmark suite
using LSTM layers

Channel-wise LSTM a channel-wise variant where each input fea-
tures are processed separately in different
LSTM layers. There are 17 parallel LSTM
layers for 17 input features

LSTM with dropout
rate 0.3
Channel-wise LSTM
with dropout rate 0.3
LSTM with dropout
rate 0.5
Channel-wise LSTM
with dropout rate 0.5
LSTM with dropout
rate concrete
Channel-wise LSTM
with dropout rate con-
crete

Models with a dropout rate replace built-in LSTM layers with custom stochastic
LSTM, and outputs are stochastically sampled 10 times to approximate a predictive
posterior. In Keras, we use TimeDistributed wrapper to parallelize the sampling
step, resulting in the same inference runtime. Each model is trained for 100 epochs,
and parameters from iterations with the lowest validation crossentropy loss, are
selected for testing. LSTM models with dropout, and the Channel-wise LSTM model
with dropout 0.5 are also subjected to training with varying training set sizes. All
stochastic models are tested against augmented test data (see section 4.1).

To quantify performance, we use the following metrics to compare our models
with the provided standard models:

• Binary cross entropy loss (excluding weight regularizers)

• Accuracy

• Precision for class 0 (patient survives)

• Precision for class 1 (patient dies)

• Recall for class 0

• Recall for class 1

• AUC of ROC (Area under Receiver operating characteristic curve)

• AUC of PRC (Area under Precision - Recall curve)

And finally, we evaluate the predictive uncertainty in two (2) fashions:
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• We observe how epistemic uncertainty behaves with different training set sizes
(see section 4.1). We expect to see greater epistemic uncertainty when the
models are trained with less training data.

• We observe how epistemic and aleatoric uncertainty changes when the models
are trained under the same original training set, and later tested with the
augmented test data. We expect greater epistemic and aleatoric uncertainty
for these augmented test data because the models have not seen these data
before.

Objective function

We use the following weighted objective function:

Loss =− 1
N

N∑
n=1

(pn log(qn) + (1− pn) log(1− qn))

+ λ1

2

L∑
l=1

1
1− pl

||Ml||2

+ λ2

L∑
l=1

Kl(pl log(pl) + (1− pl) log(1− pl)),

(4.1)

where λ1 = 1
14681 and λ2 = 2

14681 . Note that in our derived loss function, we did
not divide the total loss by the number of training instances N . It is in general a
good practice to normalize loss by N , and we do this in our implementation. The
regularizing coefficients should also be adapted to different training sizes in the
varying-training-size experiment, but for simplicity, we keep these coefficients fixed.
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4.3 Results on auxiliary experiments for imple-
mentation validation

Occupancy detection

Model AUC-ROC Accuracy Precision
Deterministic 0.98687782921 0.96061185468 0.93796791443
0.5 dropout 0.98350162570 0.96654135338 0.92292870905

Concrete dropout 0.98718489845 0.96804511278 0.92403846153

Table 4.1: Metrics for different models in Occupancy detection task.

The Concrete dropout model gives the best performance in AUC-ROC and
accuracy. The deterministic model gives best precision. All metrics are very similar
across all models. In the Concrete model, the learned dropout rate is 0.33.

The takeaway from this preliminary result is that, too much stochastic dropout
can hurt performance, but an adequate dropout rate can improve performance.
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Hill-Valley detection

Model AUC-ROC Accuracy Precision
Deterministic 1.0 1.0 1.0
0.5 dropout 1.0 1.0 1.0

Concrete dropout 1.0 1.0 1.0

Table 4.2: Metrics for different models in Hill-Valley detection task.

All the metrics are maximized, and thus it is not possible to compare these
different models on such a simple dataset. In the Concrete model, the learned
dropout rate is 0.24. Uncertainty is inspected, instead, in this experiment.

Figure 4.1: Synthetic input for Hill-Valley detection task for stochastic models. This
terrain was generated in the experiment to observe how prediction and uncertainty
behave with an unclassifiable input; neither a hill, nor a valley.

Figure 4.1 is a sample generated on purpose to not look like a hill or a valley.
In stochastic model with dropout rate 0.5, the predicted probability that this is a
hill is 0.5574, and the uncertainty is 0.2467; very uncertain about the prediction. In
stochastic model with Concrete dropout, the predicted probability that this is a hill
is 0.9804, and the uncertainty is 0.0192; almost very certain that this is a hill. In the
stochastic model with 0.5 dropout, the uncertainty is almost at maximum (maximum
variance for a Bernoulli distribution is 0.25). This is justified because it is almost
impossible to classified this terrain as a hill or a valley. In the stochastic model with
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Concrete dropout, however, the uncertainty is very low, hinting that uncertainty is
unreliable in models with Concrete dropout.
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Stock price prediction

Model Mean square error
Deterministic 5.893952
0.5 dropout 6.474945

Concrete dropout 7.818875

Table 4.3: Mean square error for stock price prediction task in different models

Stochastic dropout seems to hurt performance. This is not enough evidence to
conclude that stochastic models are not good for regression tasks, however. The
uncertainty for all stochastic models are very small (in the order of 10−3). The
predictions are shown in the following figures:

Figure 4.2: Stock price prediction using deterministic LSTM model. MSE = 5.893952



42

Figure 4.3: Stock price prediction using stochastic LSTM model with dropout 0.5.
MSE = 6.474945

Figure 4.4: Stock price prediction using stochastic LSTM model with Concrete
dropout. MSE = 7.818875
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4.4 MIMIC-III benchmark results

4.4.1 Training
The training progresses for regular models are shown in figures 4.5, 4.6, 4.7, and 4.8.
The training progresses for channel-wise models are in figures 4.9, 4.10, 4.11, and
4.12. Commentary on the training progress for each model is provided in the caption
of each corresponding figure. Channel-wise models take about 3 days to train on
a full training dataset, and regular models takes about 7 hours to train on a full
training dataset. Training is carried out on NVIDIA Tesla V100 GPU.

The baseline regular model and the baseline channel-wise model show signs of
overfitting as validation loss increases. However, they yield the lowest validation loss.

Stochastic models with dropout 0.3 and 0.5 show slightly worse validation loss
(excluding weight regularizers), but they do not show signs of overfitting, hinting
that more epochs may improve these models. However, the loss value oscillates
aggressively, hinting that these models may benefit from using a smaller learning
rate.

Regular and channel-wise models with Concrete dropout overfit very quickly.
While yielding better validation loss than fixed dropout models, they still perform
slightly worse in terms of validation loss when compared to the baseline models.
These Concrete dropout models reach the lowest validation loss values very quickly.

Figure 4.5: Baseline training progress, best validation loss = 0.279520 at epoch 57.
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Figure 4.6: Training progress with dropout = 0.3, best validation loss = 0.292824 at
epoch 57.

Figure 4.7: Training progress with dropout = 0.5, best validation loss = 0.311563 at
epoch 74.

Figure 4.8: Training progress with Concrete dropout, best validation loss = 0.288171
at epoch 11.



45

Figure 4.9: Channel-wise Baseline training progress, best validation loss = 0.278306
at epoch 18.

Figure 4.10: Channel-wise training progress with dropout = 0.3, best validation loss
= 0.290423 at epoch 73.

Figure 4.11: Channel-wise training progress with dropout = 0.5, best validation loss
= 0.313742 at epoch 62.
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Figure 4.12: Channel-wise training progress with Concrete dropout, best validation
loss = 0.282398 at epoch 18.

Figure 4.13: Training epochs to lowest validation loss. Lower is better.

Figure 4.14: Comparison of crossentropy validation loss among models. Lower is
better.
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Figure 4.15: Metrics collected on training and validation data. With loss, lower is
better. With accuracy, AUC_ROC, and AUC_PRC, higher is better. Concrete
dropout models yield the best accuracy. Although the difference in metrics among
models are very small.
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4.4.2 Benchmark results
Benchmark metrics are shown in figure 4.16. We evaluate cross entropy again during
test with true labels to see if we see similar rankings. The two (2) baseline models
show the lowest cross entropy loss. Models with higher dropout rates have higher
loss.

The stochastic regular models have better accuracy than their baselines. The
channel-wise baseline model has the best accuracy, but stochastic channel-wise models
are not far behind; the difference is in the order of magnitude of 10−3.

Precision for negative samples is similar across models, with stochastic regular with
Concrete dropout coming out on top. Stochastic models show obvious advantages
in precision for positive samples, with difference of up to 0.2, compared to baseline
models. Regular stochastic models also outperform channel-wise baseline models.
Although this is not the most important medical metric, it can be useful in other
scenarios where we want to reach many positive predictions.

Recalls for negative samples show the advantage of stochastic models over baseline
models. It is interesting to see that Concrete models do not perform as well as other
dropout models for recalling negative samples. In recalling positive samples, Concrete
dropout models outperform other dropout models. In regular (non-multi-channel)
models, Concrete dropout model gives the same metric as the baseline model. This
indicates that too much dropout can hurt recall for positive class, which is the most
important metric in medical context.
AUC-ROC for all models is similar, with baseline models coming out on top. AUC-
PRC is also similar across models. We can take a closer look at AUC-ROC in figure
4.17, and AUC-PRC in figure 4.18. Stochastic models with dropout 0.5 perform worst
in most metrics (by a small margin), but they also exhibit the highest uncertainty in
figure 4.19.

The models perform similarly for most metrics but advantages of the stochastic
models emerge for precision for positive class metric and recall for positive
class metric (See Figure 4.16).



49

Figure 4.16: Test metrics for 8 models

Figure 4.17: Test AUC-ROC for 8 models

Figure 4.18: Test AUC-PRC for 8 models
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Figure 4.19: Test uncertainties for stochastic models. The uncertainties are averaged
over all predictions. Well-trained models exhibit little epistemic. As expected, higher
dropout rates exhibit higher uncertainty as expected.



51

4.4.3 Uncertainty evaluation
We evaluate how uncertainty shifts with changes in data.

Under different training dataset sizes

Figure 4.20 shows a decreasing epistemic trending associated for an increasing
training dataset size, on four (4) stochastic models. This shows that we can judge
how well training data span over possible cases. In the same figure, we see that the
epistemic uncertainty for Concrete dropout model is almost a flat line at zero, with
learned dropout rates around 0.25 to 0.35 for selected models. There seems to be
no correlation between training size and epistemic uncertainty for Concrete dropout
models.
We repeat the same comparison, this time looking at aleatoric uncertainty. Figure
4.21 shows that there is no clear trending here. The uncertainties vary up and down
not irrespective of training size.

Figure 4.20: Epistemic uncertainty trending of different models over training datasets
with different sizes (in percentage).
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Figure 4.21: Aleatoric uncertainty trending of different models over training datasets
with different sizes.
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Under augmented test data

Finally, we test fully trained models against augmented test data (see the end of
section 4.1 for test data augmentation); the uncertainties are compared in figure
4.22. In regular models, we see some unexpected results; augmented test data yield
lower aleatoric uncertainty, yet higher epistemic uncertainty, except for the stochastic
model with dropout 0.5, which behaves as expected. Channel-wise models show
expected results, where augmented test data result in a massive aleatoric uncertainty
increase. It is worth to point out that channel-wise models have a lot of stochastic
layers compared to deterministic layers (17 stochastic LSTM layers for each features,
and 1 more to combined the intermediate outputs), while there are only two (2), or
even one (1) stochastic LSTM layers in regular models.
Epistemic uncertainty increases dramatically for augmented test data, except for
Concrete dropout models, where epistemic uncertainty is almost zero.
These results reinforce that aleatoric uncertainty increases for out-of-distribution
data.

Figure 4.22: Uncertainty comparison between original test dataset and augmented
test dataset of different models. Models with "c-" prefix are channel-wise models.



Chapter 5

Summary

We have laid the ground work for acquiring predictive uncertainty from stochastic
Bayesian NN, specifically on RNN with a specific example on LSTM. Although
we have not seen major improvement in metrics of Bayesian NN models over tradi-
tional models, the presented approach allows us to quantify epistemic and aleatoric
uncertainty in predictions.

The concept can also be extended to other types of NN (see appendix B), such
as fully-connected layer, because our proposal is not tied to the recurrent nature of
our custom layer.

Our stochastic variational approach is able to quantify uncertainty and distinguish
between epistemic and aleatoric uncertainties, by producing expected behaviours; the
lack of training data leads to higher epistemic uncertainty, and out-of-distribution
leads to higher epistemic and aleatoric uncertainty. However, we could see that
Concrete dropout models tend to have no epistemic uncertainty at all; a side effect
of learning dropout parameters is that the models learn to minimize epistemic
uncertainty with more training data. It may therefore be best to avoid Concrete
dropout, if we have an interest in epistemic uncertainty. If epistemic uncertainty
is not our concern, Concrete dropout models presented here offer the advantage of
training fast with competitive benchmark metrics compared to baseline models.

This work also informs that it is a good idea to make a stochastic model fully
stochastic; this means that, excluding dropout parameters in Concrete dropout,
all weight parameters should be stochastic. Further, the models being tested use
LSTM and fully-connected layers. Therefore, we need to turn fully-connected layers
stochastic. This can be done using the same technique presented in this paper, by
applying dropout to inputs without concern about timestep.

A further contribution from this work is, we can boost the importance of positive
samples because positive data (with outcome as death), are much fewer than negative
data.

Using cross entropy loss is not always the best metric to select models. In the
case of binary classification in general, AUC-ROC or AUC-PRC are better choices.
In particular, AUC-PRC is a good choice for imbalanced data like our clinical data.
Recall for positive class is also a good choice in case where we want to save as many
people as we can.
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In this work, we mentioned Gaussian dropout, but did not derive the equivalent
objective function. A comparison between Gaussian dropout and our approach is a
natural area of exploration; the predictive mean and variance should be the same,
but objective function and our LSTM implementation should be adapted accordingly.

Finally, we did not perform any extensive analysis of uncertainty in regression
task. The next appropriate step is to find a time series data benchmark on the scale
of MIMIC-III for regression tasks to evaluate how well this solution can quantify
uncertainty.
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Appendix A

Reparameterized distribution
sampling

In this work, we use a lot of Gaussian distribution reparameterization. The original
distribution cannot be transformed, but we can instead transform the way we sample.
Given a distribution N(x|µ, σ2), if we sample x directly, we do not have any µ or
σ variable in the samples. We want to have µ and σ because we want to optimise
them. If instead, we sample from a standard Gaussian distribution ε ∼ N (0, 1), and
transform these samples as:

µ+ σε. (A.01)

The samples now have µ and σ that we are interested in optimising. Similarly, a
Bernoulli distribution can be approximately reparameterized as Concrete distribution,
as presented by Kingma et al. [16].

58



Appendix B

Apply VB-MC to other types of
NN

The general technique to MC dropout is to apply dropout to the input vector before
it engages with a weight matrix for a single forward pass. The approximated posterior
distribution determines a dropout technique that manifests as a dropout mask. In
the case of fully-connected layer, it is just a simple matrix multiplication:

out = (x ◦maski)Wi. (B.01)

In the case of CNN, dropout can simply be performed on input image before passing
that dropped image to a regular CNN module.
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Appendix C

VB-MC for regression tasks

Unlike in classification, where we use the same cross entropy loss, we cannot use the
same MSE loss like normal regression problem. From the objective function equation
3.18, for regression, we have this negative log likelihood term.

1
2

N∑
i=1

(si + exp(−si)||yi − ŷi||2). (C.01)

We have the extra si = log(σ2
i ) output that we cannot ignore. In a regular regression

context, we assume outputs to have a fixed noise, and more specifically, we assume
output noise is 1.0.However, since we also want to predict output noise, we cannot
fixed these. Hence, we are seeing a full Gaussian log likelihood:

log(N(x|µ, σ2) = − log(σ)− 1
2 log(2π)− 1

2
1
σ2 (x− µ)2

∝ − log(σ)− 1
2

1
σ2 (x− µ)2,

(C.02)

where x is equivalent to our ŷi, and µ is equivalent to yi.
We mentioned that it is more numerically stable to output log of variance than

to output variance (because variance cannot have non-positive value). This means
we have to exponentiate predicted log variance first, before attempting to calculate
uncertainty.
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Appendix D

Pytorch implementation

1 """ Dropout variant of RNN layers
2 Binary dropout is applied in training and in inference
3 User can specify dropout rate , or
4 dropout rate can be learned during training
5 """
6 from typing import Optional , Tuple
7 import torch
8 from torch import nn , Tensor
9

10

11 class StochasticLSTMCell (nn. Module ):
12 def __init__ (self , input_size : int , hidden_size : int , dropout :

Optional [float ]= None):
13 """
14 Args:
15 - dropout : should be between 0 and 1
16 """
17 super( StochasticLSTMCell , self). __init__ ()
18

19 self. input_size = input_size
20 self. hidden_size = hidden_size
21

22 if dropout is None:
23 self. p_logit = nn. Parameter (torch . empty (1). normal_ ())
24 elif not 0 < dropout < 1:
25 raise Exception (" Dropout rate should be between in (0,

1)")
26 else:
27 self. p_logit = dropout
28

29 self.Wi = nn. Linear (self. input_size , self. hidden_size )
30 self.Wf = nn. Linear (self. input_size , self. hidden_size )
31 self.Wo = nn. Linear (self. input_size , self. hidden_size )
32 self.Wg = nn. Linear (self. input_size , self. hidden_size )
33

34 self.Ui = nn. Linear (self. hidden_size , self. hidden_size )
35 self.Uf = nn. Linear (self. hidden_size , self. hidden_size )
36 self.Uo = nn. Linear (self. hidden_size , self. hidden_size )
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37 self.Ug = nn. Linear (self. hidden_size , self. hidden_size )
38

39 self. init_weights ()
40

41 def init_weights (self):
42 k = torch . tensor (self. hidden_size , dtype= torch . float32 ).

reciprocal ().sqrt ()
43

44 self.Wi. weight .data. uniform_ (-k,k)
45 self.Wi.bias.data. uniform_ (-k,k)
46

47 self.Wf. weight .data. uniform_ (-k,k)
48 self.Wf.bias.data. uniform_ (-k,k)
49

50 self.Wo. weight .data. uniform_ (-k,k)
51 self.Wo.bias.data. uniform_ (-k,k)
52

53 self.Wg. weight .data. uniform_ (-k,k)
54 self.Wg.bias.data. uniform_ (-k,k)
55

56 self.Ui. weight .data. uniform_ (-k,k)
57 self.Ui.bias.data. uniform_ (-k,k)
58

59 self.Uf. weight .data. uniform_ (-k,k)
60 self.Uf.bias.data. uniform_ (-k,k)
61

62 self.Uo. weight .data. uniform_ (-k,k)
63 self.Uo.bias.data. uniform_ (-k,k)
64

65 self.Ug. weight .data. uniform_ (-k,k)
66 self.Ug.bias.data. uniform_ (-k,k)
67

68 # Note: value p_logit at infinity can cause numerical
instability

69 def _sample_mask (self , B):
70 """ Dropout masks for 4 gates , scale input by 1 / (1 - p)"""
71 if isinstance (self.p_logit , float):
72 p = self. p_logit
73 else:
74 p = torch . sigmoid (self. p_logit )
75 GATES = 4
76 eps = torch . tensor (1e -7)
77 t = 1e -1
78

79 ux = torch .rand(GATES , B, self. input_size )
80 uh = torch .rand(GATES , B, self. hidden_size )
81

82 if self. input_size == 1:
83 zx = (1- torch. sigmoid (( torch.log(eps) - torch .log (1+ eps

)
84 + torch .log(ux+eps) - torch .log

(1-ux+eps))
85 / t))
86 else:
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87 zx = (1- torch. sigmoid (( torch.log(p+eps) - torch.log (1-p
+eps)

88 + torch .log(ux+eps) - torch .log
(1-ux+eps))

89 / t)) / (1-p)
90 zh = (1- torch. sigmoid (( torch.log(p+eps) - torch.log (1-p+eps

)
91 + torch .log(uh+eps) - torch .log (1-uh

+eps))
92 / t)) / (1-p)
93 return zx , zh
94

95 def regularizer (self):
96 if isinstance (self.p_logit , float):
97 p = torch . tensor (self. p_logit )
98 else:
99 p = torch . sigmoid (self. p_logit )

100

101 # Weight
102 weight_sum = torch . tensor ([
103 torch .sum( params **2) for name , params in self.

named_parameters () if name. endswith (" weight ")
104 ]).sum () / (1.-p)
105

106 # Bias
107 bias_sum = torch. tensor ([
108 torch .sum( params **2) for name , params in self.

named_parameters () if name. endswith ("bias")
109 ]).sum ()
110

111 if isinstance (self.p_logit , float):
112 dropout_reg = torch .zeros (1)
113 else:
114 # Dropout
115 dropout_reg = self. input_size * (p * torch .log(p) + (1-

p)*torch .log (1-p))
116 return weight_sum , bias_sum , dropout_reg
117

118 def forward (self , input: Tensor , hx: Optional [ Tuple[Tensor ,
Tensor ]]= None) -> Tuple [Tensor , Tuple [Tensor , Tensor ]]:

119 """
120 input shape (sequence , batch , input dimension )
121 output shape (sequence , batch , output dimension )
122 return output , ( hidden_state , cell_state )
123 """
124

125 T, B = input. shape [0:2]
126

127 if hx is None:
128 h_t = torch . zeros (B, self. hidden_size , dtype =input.

dtype )
129 c_t = torch . zeros (B, self. hidden_size , dtype =input.

dtype )
130 else:
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131 h_t , c_t = hx
132

133 hn = torch . empty(T, B, self. hidden_size , dtype=input. dtype)
134

135 # Masks
136 zx , zh = self. _sample_mask (B)
137

138 for t in range(T):
139 x_i , x_f , x_o , x_g = (input[t] * zx_ for zx_ in zx)
140 h_i , h_f , h_o , h_g = (h_t * zh_ for zh_ in zh)
141

142 i = torch . sigmoid (self.Ui(h_i) + self.Wi(x_i))
143 f = torch . sigmoid (self.Uf(h_f) + self.Wf(x_f))
144 o = torch . sigmoid (self.Uo(h_o) + self.Wo(x_o))
145 g = torch .tanh(self.Ug(h_g) + self.Wg(x_g))
146

147 c_t = f * c_t + i * g
148 h_t = o * torch.tanh(c_t)
149 hn[t] = h_t
150

151 return hn , (h_t , c_t)
152

153

154 class StochasticLSTM (nn. Module ):
155 """ LSTM stacked layers with dropout and MCMC """
156

157 def __init__ (self , input_size : int , hidden_size : int , dropout :
Optional [float ]=None , num_layers : int =1):

158 super( StochasticLSTM , self). __init__ ()
159 self. num_layers = num_layers
160 self. first_layer = StochasticLSTMCell ( input_size ,

hidden_size , dropout )
161 self. hidden_layers = nn. ModuleList ([ StochasticLSTMCell (

hidden_size , hidden_size , dropout ) for i in range( num_layers -1)
])

162

163 def regularizer (self):
164 total_weight_reg , total_bias_reg , total_dropout_reg = self.

first_layer . regularizer ()
165 for l in self. hidden_layers :
166 weight , bias , dropout = l. regularizer ()
167 total_weight_reg += weight
168 total_bias_reg += bias
169 total_dropout_reg += dropout
170 return total_weight_reg , total_bias_reg , total_dropout_reg
171

172 def forward (self , input: Tensor , hx: Optional [ Tuple[Tensor ,
Tensor ]]= None) -> Tuple [Tensor , Tuple [Tensor , Tensor ]]:

173 B = input. shape [1]
174 h_n = torch . empty (self. num_layers , B, self. first_layer .

hidden_size )
175 c_n = torch . empty (self. num_layers , B, self. first_layer .

hidden_size )
176
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177 outputs , (h, c) = self. first_layer (input , hx)
178 h_n [0] = h
179 c_n [0] = c
180

181 for i, layer in enumerate (self. hidden_layers ):
182 outputs , (h, c) = layer(outputs , (h, c))
183 h_n[i+1] = h
184 c_n[i+1] = c
185

186 return outputs , (h_n , c_n)



Appendix E

Keras implementation

1 from keras. layers import LSTM
2 from keras import initializers
3 from tensorflow . keras import backend as K
4

5

6 def get_mask ( batch_size , dim , p):
7 """ Sample bernoulli mask from concrete distribution
8 p: dropout rate """
9 t = 1e -1

10 eps = K. epsilon ()
11

12 u = K. random_uniform ( shape =(4 , batch_size , dim))
13 z = (1-K. sigmoid ((K.log(p+eps) - K.log (1-p+eps) + K.log(u+eps)

- K.log (1-u+eps)) / t))/(1 -p)
14

15 return z
16

17

18 class StochasticLSTM (LSTM):
19 """ StochasticLSTM that apply dropout to input and hidden state
20 Note 1: do not set regularizers because dropout regularizers

will be applied
21 Note 2: there are 2 dropout rates : dropout for input , and

recurrent_dropout for hidden state
22 Note 3: to enable learning dropout rates , set dropout rates to

1.0 """
23

24 def build (self , input_shape ):
25 super (). build ( input_shape )
26

27 reg = 1/14681
28 dropout_reg = 2/14681
29 def dropout_constraint (p):
30 """ Constraint probability between 0.0 and 1.0 """
31 return K.clip(p, K. epsilon () , 1. - K. epsilon ())
32

33 if self. dropout == 1.0:
34 self.p = self.cell. add_weight (name=’p’,
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35 shape =() ,
36 initializer = initializers .

uniform ( minval =0.3 , maxval =0.7) ,
37 constraint =

dropout_constraint ,
38 trainable =True)
39 self. add_loss ( dropout_reg * input_shape [ -1] *
40 (self.p * K.log(self.p) +
41 (1- self.p) * K.log (1- self.p)))
42 else:
43 self.p = self. dropout
44

45 if self. recurrent_dropout == 1.0:
46 self.p_r = self.cell. add_weight (name=’p_recurrent ’,
47 shape =() ,
48 initializer = initializers .

uniform ( minval =0.3 , maxval =0.7) ,
49 constraint =

dropout_constraint ,
50 trainable =True)
51 self. add_loss ( dropout_reg *self. units *
52 (self.p_r * K.log(self.p_r) +
53 (1- self.p_r) * K.log (1- self.p_r)))
54 else:
55 self.p_r = self. recurrent_dropout
56

57 # weight loss
58 self. add_loss (reg / (1.- self.p) * K.sum(K. square (self.cell.

kernel )))
59 self. add_loss (reg / (1.- self.p_r) * K.sum(K. square (self.

cell. recurrent_kernel )))
60 self. add_loss (reg * K.sum(K. square (self.cell.bias)))
61

62 self. built = True
63

64 def call(self , inputs , mask=None , training =None , initial_state =
None):

65 input_shape = K.shape( inputs )
66 B = input_shape [0]
67 D = input_shape [2]
68 self.cell. _dropout_mask = get_mask (B, D, self.p)
69 self.cell. _recurrent_dropout_mask = get_mask (B, self.units ,

self.p_r)
70 return super(LSTM , self).call(inputs ,
71 mask=mask ,
72 training =training ,
73 initial_state = initial_state )



Appendix F

Code repository

There are two (2) code repositories in this thesis:

• The first one contains PyTorch implementation for the stochastic dropout
LSTM layer, and the Jupyter notebooks for the three (3) small experiments
(Occupancy detection, Hill-Valley detection, Stock price prediction): https:
//github.com/nlhkh/dropout-in-rnn

• The second one is a fork from the official MIMIC-III benchmark, with Keras
implementation for the stochastic dropout LSTM layer, along with code
to generate custom training and test dataset: https://github.com/nlhkh/
mimic3-benchmarks
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