
Harmonized network monitoring

Olli Kauppinen

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 31.7.2020

Thesis supervisor:

Prof. Jukka Manner

Thesis advisor:

D.Sc. (Tech.) Nuutti Varis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333888512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Olli Kauppinen

Title: Harmonized network monitoring

Date: 31.7.2020 Language: English Number of pages: 7+84

Department of Communications and Networking

Professorship: Networking technology

Supervisor: Prof. Jukka Manner

Advisor: D.Sc. (Tech.) Nuutti Varis

As the modern society is increasingly dependant on computer networks especially
as the Internet of Things is gaining popularity, a need for monitoring computer
networks along with associated devices increases. Additionally, the amount of
cyber attacks is increasing and certain malware such as Mirai target especially
network devices. In order to effectively monitor computer networks and devices,
advanced solutions are required for collecting and storing the information.

This thesis designs and implements a novel network monitoring system. The
presented system is capable of utilizing state-of-the-art network monitoring
protocols and harmonizing the collected information using a common data
model. This design allows effective queries and further processing on the collected
information.

The presented system is evaluated by comparing the system against the require-
ments imposed on the system, by assessing the amount of harmonized information
using several protocols and by assessing the suitability of the chosen data model.
Additionally, the protocol overheads of the used network monitoring protocols are
evaluated.

The presented system was found to fulfil the imposed requirements. Approximately
21% of the information provided by the chosen network monitoring protocols could
be harmonized into the chosen data model format. The result is sufficient for
effective querying and combining the information, as well as for processing the
information further. The result can be improved by extending the data model and
improving the information processing. Additionally, the chosen data model was
shown to be suitable for the use case presented in this thesis.

Keywords: Network monitoring, data model, data processing, protocol

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Olli Kauppinen

Työn nimi: Tietoverkkojen valvonnan yhdenmukaistaminen

Päivämäärä: 31.7.2020 Kieli: Englanti Sivumäärä: 7+84

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkkoteknologia

Työn valvoja: Prof. Jukka Manner

Työn ohjaaja: TkT Nuutti Varis

Yhteiskunnan ollessa jatkuvasti verkottuneempi, erityisesti Esineiden Internetin
kasvattaessa suosiotaan, tarve seurata sekä verkon että siihen liitettyjen laitteiden
tilaa ja mahdollisia poikkeustilanteita kasvaa. Lisäksi tietoverkkohyökkäysten
määrä on kasvamassa ja erinäiset haittaohjelmat, kuten Mirai, ovat suunnattu
erityisesti verkkolaitteita kohtaan. Jotta verkkoa ja sen laitteiden tilaa voidaan
seurata, tarvitaan tehokkaita ratkaisuja tiedon keräämiseen sekä säilöntään.

Tässä diplomityössä suunnitellaan ja toteutetaan verkonvalvontajärjestelmä, joka
mahdollistaa moninaisten verkonvalvontaprotokollien hyödyntämisen tiedonkeräyk-
seen. Lisäksi järjestelmä säilöö kerätyn tiedon käyttäen yhtenäistä tietomallia.
Yhtenäisen tietomallin käyttö mahdollistaa tiedon tehokkaan jatkojalostamisen
sekä haut tietosisältöihin.
Diplomityössä esiteltävän järjestelmän ominaisuuksia arvioidaan tarkastelemalla,
minkälaisia osuuksia eri verkonvalvontaprotokollien tarjoamasta informaatiosta
voidaan yhdenmukaistaa tietomalliin, onko valittu tietomalli soveltuva verkon-
valvontaan sekä varmistetaan esiteltävän järjestelmän täyttävän sille asetetut
vaatimukset. Lisäksi työssä arvioidaan käytettävien verkonvalvontaprotokollien
siirtämisen kiinteitä kustannuksia, kuten otsakkeita.

Työssä esitellyn järjestelmän todettiin täyttävän sille asetetut vaatimukset. Eri
verkonvalvontaprotokollien tarjoamasta informaatiosta keskimäärin 21% voitiin
harmonisoida tietomalliin. Saavutettu osuus on riittävä, jotta eri laitteista saa-
tavaa informaatiota voidaan yhdistellä ja hakea tehokkaasti. Lukemaa voidaan
jatkossa parantaa laajentamalla tietomallia sekä kehittämällä kerätyn informaation
prosessointia. Lisäksi valittu tietomalli todettiin soveltuvaksi tämän diplomityön
käyttötarkoitukseen.

Avainsanat: tietoliikenneverkot, valvonta, tietomalli, telemetria, protokolla

iv

Preface
This research was carried out in Aalto University’s Critical Infrastructure Research
unit and I would like to thank Jukka Manner, Marko Luoma and Nuutti Varis for
providing this excellent opportunity. Additionally, I would like to thank Jukka and
Nuutti for their guidance. Finally, I would like to thank my family and friends who
have been there for me throughout these past six years of studies, you made the
experience awesome. So Long, and Thanks for All the Fish.

Otaniemi, 31.7.2020

Olli Kauppinen

v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1

2 Data models 3
2.1 Introduction . 3
2.2 Apache Spot Open Data Model . 4
2.3 Splunk Common Information Model 5
2.4 Elastic Common Schema . 6
2.5 CRUSOE . 7
2.6 I2NSF NSF Monitoring YANG Data Model 11
2.7 Summary . 13

3 Network monitoring protocols 14
3.1 Network monitoring . 14
3.2 Simple Network Monitoring Protocol 14
3.3 Syslog . 21
3.4 NETCONF . 26
3.5 RESTCONF . 33
3.6 NetFlow and IPFIX . 36
3.7 Emerging protocols . 42
3.8 Summary . 45

4 Requirements and design 46
4.1 Requirements . 46
4.2 Technologies . 47
4.3 Data model . 48
4.4 Architecture and implementation . 49
4.5 Summary . 53

5 Evaluation 54
5.1 Protocol overhead . 54
5.2 Information value . 62
5.3 Comparison . 66
5.4 Summary . 68

6 Conclusions 71

vi

References 73

vii

Abbreviations
API Application Programming Interface
CIA Confidentiality, Integrity, Availability
CIM Common Information Model
CRUD Create, Read, Update, Delete
CTI Cyber Threat Intelligence
DMTF Distributed Management Task Force
DTLS Datagram Transport Layer Security
FQDN Fully Qualified Domain Name
gNMI gRPC Network Management Interface
GPB Google Protocol Buffer
gRPC gRPC Remote Procedure Call
HMAC Hash-based message authentication code
IETF Internet Engineering Task Force
IPFIX IP Flow Information Export
JSON JavaScript Object Notation
MDT Model-Driven Telemetry
MIB Management Information Base
NTP Network Time Protocol
ONF Open Networking Foundation
RPC Remote Procedure Call
SNMP Simple Network Monitoring Protocol
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
XML Extensible Markup Language
YAML Yet Another Markup Language
YANG Yet Another Next Generation

1 Introduction
In recent years, network monitoring has generated much interest due to the rapidly
growing number of cyber security incidents. In a survey conducted in the United
Kingdom in 2019, one-third of the companies participating had identified a data
breach [1]. Of these companies, nearly half had identified at least one breach or
attack per month. In 2019, the average time to detect a cyber security incident was
56 days [2]. This has led to a need for monitoring networks effectively in order to
detect and investigate cyber security incidents.

Currently, numerous solutions have been developed for network monitoring in
academia and industry, offering various monitoring capabilities [3]–[12]. However,
most of these solutions accept only a narrow set of data formats and protocols.
Therefore, a network comprised of heterogeneous devices is difficult to monitor, as
the devices are usually restricted to only a few possible data formats and protocols.
Vendor specific solutions might not even be able to accept data in a usable format
from other vendors’ devices.

Network monitoring is commonly divided into four categories: fault detection,
performance, accounting and security [13]. Fault detection collects information on
the operation of network devices, such as routers or switches, and the information is
used to detect outages or other error conditions. Performance monitoring focuses on
the operating conditions such as throughput and memory usage whereas accounting
data typically collect information regarding network flows and used capacity for
billing purposes for example. In security monitoring, the focus is on the data which
could reveal intrusions, such as unauthorized usage or data exfiltration. However,
these categories often overlap and are typically used to complement each other.
Although numerous studies have investigated different aspects of network monitoring,
no studies have focused on harmonizing the network data collection for monitoring
purposes. Moreover, little research has focused on storing heterogeneous monitoring
data.

The aim of this thesis is to develop a network monitoring system for monitoring
heterogeneous fleets of network appliances and storing the collected data into a
standardized format to allow additional processing and analytics. In order to develop
this solution, this thesis will evaluate state-of-the-art monitoring protocols and
data models for storing network monitoring data. The requirements for the system
will be defined, the architecture will be designed based on these requirements, and
implemented as a proof of concept. Finally, the implemented system will be evaluated
against the requirements and an analysis on the information value will be provided.
Additionally, the protocol overhead of the chosen network monitoring protocols will
be evaluated. The scope of this thesis is limited to developing the system using
existing protocols and data models, as development of either is a complex topic that
requires deep knowledge beyond the level of a master’s thesis. Furthermore, the
analytics of the collected monitoring data is beyond the scope of this thesis, as the
topic is broad enough for a thesis on its own. The system proposed in this thesis
was found to fulfil the imposed requirements as well as to provide additional value.
Approximately 21% of the information collected from the evaluated protocols could

2

be mapped to the chosen data model. However, the variance between the protocols is
significant, which resulted from the protocol design choices. The evaluated protocols
ranged from network flow to log collection protocols. Additionally, development
areas were identified in order to improve the amount of harmonized information.

The remainder of this thesis is organized as follows. Chapter 2 introduces state-
of-the-art data models for storing information regarding network devices and state.
Chapter 3 introduces state-of-the-art network monitoring protocols. Chapter 4
defines the requirements and presents the architecture of a harmonized network
monitoring system as well as describes the development and technical details of the
presented system. Chapter 5 evaluates the system against the defined requirements,
the protocol overhead of the used monitoring protocols, the suitability of the chosen
data model as well as evaluates the value added by the system. Finally, Chapter
6 summarizes the performed work as well as proposes possible improvements and
future research topics.

3

2 Data models
This chapter introduces state-of-the-art data models designed for storing network
monitoring information. These models are crucial for network monitoring systems as
normalizing the incoming data into a common format enables easier processing and
analytics. Additionally, in this context it is important to differentiate data models
from information models: Information models are used describe the modeled objects
and required functionality, whereas data models are meant for implementors and
thus contain lower level implementation- and protocol-specific details [14]. Therefore,
data models can be seen as subordinates to information models.

The results of this chapter will be used to choose the data model for the imple-
mentation of a harmonized network monitoring system.

2.1 Introduction
Computer networks often consist of heterogeneous devices, that may convey infor-
mation using different formats. For example, some devices use big-endian integers
whereas others use little-endian. Common data models are trying to solve this issue
by specifying the format of the data. Additionally, separation of the data models
from the protocols allows improved extensibility as the data models can be added or
updated without modifying the protocol specification. Therefore, organizations and
vendors may easily define and distribute their own models.

The Management information base (MIB) used by Simple Network Monitoring
Protocol (SNMP) was one of the first solutions trying to solve this issue. However, the
MIB modules are described using Structure of Management Information specification,
which introduces certain drawbacks such as being dependant to the Abstract Syntax
Notation One (ASN.1) specification and having multiple exceptions to the ASN.1
as well being strictly coupled to the SNMP [15]. Next Generation Structure of
Management Information (SMIng) was introduced in 1999 to address these issues,
however, it was never accepted as a standard and was released as an experimental
specification in order to preserve the information [15]. Yet Another Next Generation
(YANG) was created in 2010 to provide a data modeling language for NETCONF-
protocol [16]. YANG’s syntax resembles SMIng’s and C-programming language’s
syntax. However, in contrast to SMIng, YANG is dedicated to NETCONF protocol
whereas SMIng is protocol agnostic. To a some extent, YANG is compatible with
SMIv2 MIB modules in order to provide a migration path to newer protocols. The
details of MIB and YANG models are discussed in Sections 3.2 and 3.4.

The data models are constantly evolving and serving various purposes and every
solution has their own advantages and disadvantages. This thesis aims to find the
model suitable for the use case of storing network monitoring data from heterogeneous
sources.

4

2.2 Apache Spot Open Data Model
Apache Spot is an open-source cyber security project leveraging big-data and machine
learning for detecting cyber security incidents. The project includes an open data
model (ODM) in order to provide analytics in a common format and enable sharing
information between organizations. The included data model is designed for security
event log and alert data and is complemented by several context models. The context
models are network, endpoint, user and threat intelligence context models, which
are used to augment the security event and alert data model. Additionally, context
models are meant for more static data that changes rarely and the specification
recommends to fill the context models using user, identity or asset management
systems in order to ease the administration.[17]

The data model provides concise tables regarding data model categories, attributes
and attribute types with example values. Table 1 presents an example of the data
model. The data model is extendable by using additional_attrs-field, which can
contain custom key-value pairs in JSON-format. The additional_attrs-field may
only contain a JSON-string. The ODM recognizes several attribute types in order to
ensure compatibility between different implementations. The used data types are
long, int, string, float, bigint, boolean, double and binary data. [17]

Table 1: Example of Apache Spot Open Data Model [17]

Category Attribute Data
type

Description Sample values

Common event_time long Timestamp of event
(UTC)

1472653952

n_proto string Network protocol of event TCP, UDP, ICMP
additional_attrs map Custom event attributes "building":"729","cube":"401"

Device dvc_version string Version “3.2.2”
Network src_ip4 bigint Source ip address of event Integer representa-

tion of 10.1.1.1
src_domain string Domain name of source

address
companyA.com

src_port int Source port of event 1025

The data model can be used with various data formats and databases. However,
the data model recommends that Apache Avro, JSON or Apache Parquet is used as a
data format [17]. Apache Avro is a data serialization format utilizing JSON schemas
and binary encoding [18]. The JSON schemas are used for serializing the data to the
Avro binary format. By separating data and schema, the data can be stored in a more
compact format. Listing 1 presents an example of the JSON schema. Additionally,
Avro is compatible with many of the Apache Hadoop ecosystem projects.

Using plain JSON as the data format is straightforward as all attributes can be

5

used as JSON fields, and no additional structure is needed. Additionally, as the the
plain JSON is not binary encoded, the format is human readable.

Apache Parquet is a column-oriented compressed binary file format , which can
utilize multiple compression algorithms including GZIP and BZIP2 [18]. Being
column-oriented, Parquet stores all columns adjacently instead of storing by row
allowing more efficient query processing as redundant columns can be skipped [18].

1 { "type ": " record ",
2 "doc ": "This event records SSHD activity ",
3 "name ": "auth",
4 " fields ": [{
5 "name ": " event_time ",
6 "type ": "long",
7 "doc ": "Stop time of event "},
8 {
9 "name ": " net_src_ip4 ",

10 "type ": "long",
11 "doc ": " Source IP Address " },
12 {
13 "name ": " net_src_host ",
14 "type ": " string ",
15 "doc ": " Source hostname "},
16 {
17 "name ": " net_src_port ",
18 "type ": "int",
19 "doc ": " Source port "}]}

Listing 1: Example of Apache Avro Schema

The Apache Spot Open Data Model is still under development and subject to
change. Moreover, the data model contains some errors that seem to stem from the
work in progress nature of the data model. For example, field "user_dn" is missing
the data type definition. However, the data model can be easily implemented and
provides concise methods for extending it. Additionally, the work in progress state
can be seen as an opportunity to affect the development of the data model.

2.3 Splunk Common Information Model
Splunk common information model (CIM) is a shared semantic model consisting of
multiple data models in order to normalize incoming data. Splunk is a platform for
storing big data with effective search functions. It utilizes the CIM as search-time
schema where the data is formatted to the data model when search results are
returned. Utilizing a search-time schema has several benefits including that the data
can be stored in a raw format, which allows further utilization of the data with
ease. Additionally, changing the used data model is simple as data is not required
to be converted to an another model. However, using a search-time schema has a
processing overhead as the data has to be formatted to the data model at runtime.
Version 4.15.0 of the Splunk CIM contains twenty-two data models including web,

6

alerts, network traffic and authentication [19]. Splunk claims its CIM to be flat,
simple and flexible and attributes those qualities to using only the least common
denominator. [20]

Splunk CIM can be extended to support custom fields, however, this requires
cloning of the original data model and creating a new data model based on the clone
[21]. Splunk does not offer a possibility to contribute to the development of the data
model.

The data models in CIM consists of field names and tags. Tags are used to
partition log entries into categories and subcategories. For example, a web proxy
event could have tags "web" and "proxy" assigned to it. Tag "web" represents the
category and "proxy" subcategory of the event. As the CIM is primarily used with
Splunk, the data types for fields are presented as high-level concepts as the user
does not need to know the implementation details. The used data types are "string",
"boolean", "number", "integer", "time" and "timestamp". [19] Examples of the web
data model are presented in Tables 2 and 3.

Table 2: Splunk web data model tags [19]

Dataset Tag name
Web web

Proxy proxy

Table 3: Splunk web data model example fields [19]

Dataset Field name Data type Description Example values
Web cached bool Indication whether the

event is cached
true, false, 0, 1

Web http_method string The used HTTP
method

GET, PUT, POST

Web bytes number Total number of bytes
transferred

1123

Web http_user_agent string HTTP user agent used
for the request

Mozilla/5.0

2.4 Elastic Common Schema
Elastic has developed the Elastic Common Schema (ECS) for their Elasticsearch
product, which is a search and analytics engine for various types of data. ECS
is an open-source data model designed for event data such as metrics and logs.

7

Its development in managed in GitHub and contributions to its development are
welcomed. [22]

ECS has three different field definitions: core, extended and custom. Core fields
are fully defined fields used ECS top-level objects and should apply to most common
use cases. Extended fields are partially defined, apply to fewer use cases and can be
interpret more broadly than core fields. Custom fields are undefined and unnamed
fields that are user-supplied and are meant for extending ECS, if ECS does not have
a suitable field. ECS does not impose any requirements for custom fields besides
mandating that must not interface with core or extended fields. However, as ECS
is constantly being developed, a conflict between a custom field and a future ECS
field is possible. In addition to fields names, Elasticsearch data types are specified
for each field. Complete set of Elasticsearch data types are presented in [23]. ECS
utilizes nesting for fields and is indicated with dots in fields names. For example,
"log.syslog.facility.code=1" has three layers of nesting. Listing 2 presents the previous
example in JSON format. [24]

1 {
2 "log ": {
3 " syslog ": {
4 " facility ": {
5 "code ": 1
6 }}}}

Listing 2: Example of ECS nesting

Certain core event fields are classified as categorization fields. These fields are
"kind", "category", "type" and "outcome" and are used to partition events based on
the metadata of the event regardless of the source. For example, categorization
information could be used to find all events that are alerts related to authentication
and the authentication attempt succeeded. [25]

Table 4 and Listing 4 demonstrate how the Syslog message presented in Listing 3
is mapped to ECS fields:

1 <6>1 2020 -05 -20 T15 :09:22.567464+03:00 machine kernel - - -
[2925254.857211] usb 1 -10: New USB device strings : Mfr =0,
Product =1, SerialNumber =0

Listing 3: Example Syslog message

2.5 CRUSOE
CRUSOE was developed by researchers from Masaryk University in order to improve
cyber situational awareness for incident response. It is designed as an extendable
layered data model working as an information exchange point for various domains and
tools. The design allows obtaining data in an automated fashion. Furthermore, the
data model is designed to be extendable and can work as a backbone for additional
data by connecting the additional data to an element in the data model. The model

8

Table 4: Mapping of a Syslog message to ECS

Field Description Incoming value
log.original Original log message <6>1 2020-05-20T15:09:22.567464+03:00

machine kernel - - - [2925254.857211] usb
1-10: New USB device strings: Mfr=0,
Product=1, SerialNumber=0

@timestamp Time when the event
occurred

2020-05-20T15:09:22.567464+03:00

message Event message [2925254.857211] usb 1-10: New USB de-
vice strings: Mfr=0, Product=1, Serial-
Number=0

event.kind Information on what
kind of information the
event contains

event

event.category Categorization of the
event

driver

event.type Subcategory connection
event.outcome Indication whether the

event succeeded
success

host.hostname Device hostname machine
log.syslog.facility.code Syslog facility code 0
log.syslog.facility.name Facility name kernel
log.syslog.priority Syslog priority 6
log.syslog.severity.code Syslog severity 6
log.syslog.severity.name Severity name informational
log.level Log level informational

also makes a distinction between fixed and timed entities and relations. Fixed entities
are relatively static and old values should be discarded whereas timed entries are
tied to specific start and end times and old values should be stored as active security
incidents change often and historical data provides value for incident response. [26]

The requirements for CRUSOE were derived from selected North Atlantic Treaty
Organization (NATO) use cases and interviews with incident handlers from several
incident response teams. The following NATO use cases were chosen:

• Single authoritative data source, the system can be considered as the authori-
tative data source due to quantity and quality of the data.

• View connections of asset, a user can view asset dependencies to other compo-
nents using the system.

• Fuse data, the system should allow combining data from multiple sources to
create a more complete view.

9

1 {
2 " timestamp ":"2020 -05 -20 T15 :09:22.567464+03:00" ,
3 " message ":"[2925254.857211] usb 1 -10: New USB device strings : Mfr

=0, Product =1, SerialNumber =0",
4 "event ":{
5 "kind ":" event",
6 " category ":" driver ",
7 "type ":" connection ",
8 " outcome ":" success "
9 },

10 "host ":{
11 " hostname ":" machine "
12 },
13 "log ":{
14 "level ":" informational ",
15 " original ":" <6 >1 2020 -05 -20 T15 :09:22.567464+03:00 machine

kernel - - - [2925254.857211] usb 1 -10: New USB device strings :
Mfr =0, Product =1, SerialNumber =0",

16 " syslog ":{
17 " facility ":{
18 "code ":0,
19 "name ":" kernel "
20 },
21 " priority ":6,
22 " severity ":{
23 "code ":6,
24 "name ":" informational "
25 }
26 }
27 }
28 }

Listing 4: Syslog message mapped to ECS in JSON format

• Drill down / Roll up, a user can access lower- or higher-level data related to
an element.

• View asset dependencies, assets should be organized within a dependency
hierarchy, which would allow users to identify asset dependencies.

• View interconnectivity, a user can view both logical and physical connections
between network entities.

In addition to NATO use cases, three use cases were identified from the interviews
with incident handlers: criticality estimation of an attack target, finding persons
responsible for affected systems and vulnerability prioritisation and dissemination.
Criticality estimation of an attack target is crucial for incident response in order to
effectively prioritize work. Finding responsible persons rapidly improves incident
response coordination and the process of resolving the incident. Vulnerability pri-
oritisation and dissemination is required as numerous vulnerabilities are disclosed
continuously. Therefore, there should be an effective way to determine if a vulnera-

10

bility affects the organization and how critical the vulnerability is. These use cases
where formulated into the following requirements:

• All-embracing, the data model should be able to capture concepts and tech-
nologies commonly used, including clustering, virtualization and virtual private
networks.

• Comprehensive, the model should include information regarding all aspects of
cyber security and should combine collected information.

• Attainable, the data model must include essential cyber security related infor-
mation. However, too detailed or unobtainable parameters should be excluded.

• Sustainable, the model should be easy to maintain.

• Time-conscious, the data model must be able to handle time-series data

• Extensible, The model should be extensible with capabilities to tie additional
information to the model.

The data model is divided into seven layers, which can be seen as views on the
system from different perspectives. Figure 1 presents the layers with their inter-layer
relations. Overlapping in the diagram implies a relation between layers.

Figure 1: CRUSOE data model layers and relations [26]

CRUSOE data model does not discuss in depth how it should be implemented.
For example, data types and field names are not discussed. The examples provided
can be used as a guide, but contain little documentation [27]. This limits the usability
of the data model and also might render different implementations of the data model
incompatible. Moreover, one of the requirements was extensibility, but no details
regarding how it can be extended were provided.

The layered architecture of the data model provides a clear separation of duties
and allows fusing and storing data from multiple domains allowing the system to
support cyber security analytics beyond networks and network devices.

11

2.6 I2NSF NSF Monitoring YANG Data Model
I2NSF NSF Monitoring YANG Data Model is an Internet Engineering Task Force
(IETF) draft proposing an information model and a data model for monitoring
network security functions (NSF), such as firewalls, intrusion prevention systems
(IPS) and antivirus functions. [28]. It should be noted, that as it is a draft, it is a
work in progress and will expire on 8th of November 2020. Therefore, it might not
be accepted as an IETF Internet Standard, however, this model was included in this
thesis as it represents state-of-the-art.

The data model is intended to be used with IETF’s Framework for Interface
to Network Security Functions (I2NSF), which is a project aiming to standardize
interfaces and data models for network security functions in order to increase usability.
Having these common models allows a user to utilize a controller to manage network
security functions in a vendor agnostic manner. [29][30]

The data model lists several use cases stating the necessity of a such data model:

• Historical data can be built from NSF activity logs for operational or business
use.

• NSF activity and event logs can be used for root cause analysis of various
issues.

• Monitoring data can be utilized to achieve high availability as events can be
used to detect failures.

• Advanced analytics can be performed on NSF logs to detect and predict security
issues in deployments.

• Security information and event management systems can utilize NSF events to
detect suspicious activities.

• NSF events can be used to configure additional security measures based on
defined policies.

The I2NSF data model has a basic information model that all monitoring data
should adhere to, and an extended information model that contains additional
attributes related to e.g. logs, events and alarms. However, it should be noted that
this definition does not adhere to the IETF description of data and information
models presented in Section 2.1. The model is simple with no intra-model relations.
The extended model should only be used with structured data whereas unstructured
data is restricted to the basic model. The basic model contains seven attributes:

• message_version: Two-digit numeral indicating data format version starting
from 01.

• message_type: Message types are the same as extended information models.
Messages types include firewall events, virus alerts and alarm for example. For
complete list of message types see [28].

12

• time_stamp: Message creation time.

• vendor_name: Network security function vendor.

• NSF_name: The hostname or IP-address of the NSF sending the message.

• module_name: The module responsible for sending the message.

• Severity: Log level indicator with value from 0 to 7 with zero being the most
severe.

The use of Yet Another Next Generation (YANG) as the data modeling language
provides an easy way to represent information needed to implement the data model
including structure, field names and types as well as descriptions. Listing 5 presents
the YANG description of a botnet log notification. Definitions for the extended
models are presented in [28].

1 notification nsf -log - botnet {
2 description
3 "This notification is sent , if there is
4 a new botnet event log in the nsf log ";
5 leaf attack -type {
6 type identityref {
7 base botnet -attack -type;
8 }
9 description

10 "The botnet attack type for
11 nsf -log - botnet notification ";
12 }
13 leaf action {
14 type log - action ;
15 description
16 " Action type: allow , alert ,
17 block , discard , declare ,
18 block -ip , block - service ";
19 }
20 leaf botnet -pkt -num{
21 type uint8;
22 description
23 "The number of the packets sent to
24 or from the detected botnet ";
25 }
26 leaf os{
27 type string ;
28 description
29 " simple os information ";
30 }
31 uses characteristics ;
32 uses common -monitoring -data;
33 }

Listing 5: Example of I2NSF botnet log notification [17]

13

The I2NSF data model is designed towards storing processed events and logs
produced by network security functions, as most of the extended models are oriented
towards alerts such as intrusions or different attempted attacks. Moreover, the
data model’s capabilities storing raw logs from protocols such Simple Network
Management Protocol (SNMP) or Syslog, are limited as suitable extended models are
not implemented in the draft. Additionally, the documentation does not discuss the
extensibility of the data model. Therefore, this data model would be more suitable
for storing analytics produced from the information gathered by a system such as
the one presented in this thesis.

2.7 Summary
This chapter introduced state-of-the-art data models for network monitoring. The
introduced data models have varying use cases and range from general wide use
models to models with a narrow scope. Regarding the goal of this thesis, the general
models appear to be more feasible due to being able to store data from various sources
and having improved extensibility. Moreover, some of the introduced models did
not discuss the implementation details. For example, data types were not presented,
which may lead to incompatible implementations.

14

3 Network monitoring protocols
This chapter presents an overview of network monitoring and its use cases as well
as introduces state-of-the-art network monitoring protocols and their properties.
Additionally, certain emerging network monitoring protocols are introduced in order
to recognize the recent developments in the field. In order to design an effective
network monitoring system, it is important to understand the features, advantages
and limitations of various network monitoring protocols. The results of this chapter
are used to determine the minimum list of network monitoring protocols that the
presented system should support.

3.1 Network monitoring
Network monitoring is typically divided into four categories: First category being fault
detection, which aims to monitor the network devices in order to detect any hardware
or link failures for example. Second category is performance, where performance of
networks and network devices is monitored. This allows detecting bottlenecks in
networks and upgrading device capabilities and hardware before any problems arise.
Third category is accounting. For example, network flow data and interface counter
values can be used for billing purposes. The fourth category is security, which aims
to detect any security breaches and anomalies allowing organizations to effectively
respond to security incidents. [13] As these categories require different kinds of
information and networking protocols are typically designed for a certain use case,
multiple network monitoring protocols are needed to capture information relevant to
each particular use case, thus highlighting the need to harmonize collected data into
a common format and model.

Originally network devices did not offer any protocols for extracting monitoring
data. Instead command-line interfaces (CLI) were used either manually or with
scripts to scrape the data. This was highly ineffective as the interfaces varied between
vendors and updates might change the interfaces thus breaking any scripts. Network
monitoring protocols were introduced to combat these issues with Syslog and Simple
Network Management Protocol being among the first protocols. [13]

3.2 Simple Network Monitoring Protocol
Simple Network Monitoring Protocol (SNMP) was created by Internet Engineering
Task Force (IETF) in 1988 for managing and monitoring Internet Protocol (IP)
devices and it is currently in its third iteration (SNMPv3). However, versions 1
and 2 still see use in computer networks. SNMP allows managing network device
configurations and retrieving device configurations using device and vendor agnostic
interfaces. [31] This section focuses on the latest version of the protocol as it provides
the most recent features and is supported by modern network devices.

15

Structure of Management Information

Structure of Management Information is a data modeling language based on Abstract
Syntax Notation One (ASN.1). It is used to describe Management Information
Base (MIB) modules, which are used by SNMP to provide interfaces for accessing
configuration and state data. The Management Information Base is a virtual data
store that holds all the configuration and state data and the MIB modules are used
to describe the data elements. Latest version of the specification is version 2 (SMIv2),
which is used with SNMP versions 2 and 3. Version 1 (SMIv1) is only used with
SNMP version 1. However, with certain changes SMIv1 modules can be translated
to SMIv2 format. [32][33]

The SMI has three different sets of definitions: module, object and notification.
Module definitions are used to define information modules, their properties and
associated objects. ASN.1 macro MODULE-IDENTITY is used to convey the semantics
and the syntax of an information module. Currently three types of information
modules exist: MIB modules, compliance statements and capability statements. MIB
modules define inter-related managed objects. Compliance statements define the
conditions, which have to be met in order to be compliant with the associated MIB
module. Capability statements convey the information of capabilities present in
a device implementing SNMP. [34] Object definitions define the single managed
objects and their properties. For example, the number of present interfaces on a
device can be an object. Macro OBJECT-TYPE is used to describe the semantics and
the syntax of an object. Notification definitions define unsolicited notifications such
as SNMPv2-Trap or InformRequest messages, which are used to send management
information to a predetermined receiver. NOTIFICATION-TYPE macro describes the
semantics and the syntax of the notifications. [32]

Transport layer

SNMP’s modular design allows protocol messages to be sent over various transports.
Originally SNMPv3 supported only IPv4 for the internet layer, however, IPv6 support
was later included [35]. SNMP can be carried over the following transports: User
Datagram Protocol (UDP), Transmission Control Protocol (TCP), Datagram Delivery
Protocol (DDP), Internetwork Packet Exchange (IPX), Open Systems Interconnection
(OSI), Connectionless-mode Transport Service (CLTS), Institute of Electrical and
Electronics Engineers (IEEE) 802 (Ethernet), Secure Shell (SSH) and Transport
Layer Security (TLS). Of these transports only UDP is mandatory for SNMP
implementations while the rest are optional. Transports are required to support
messages over 484 octets with the exception of TCP, which is required to support
messages at least 8192 octets. [36]–[40]

SNMP over UDP is the preferred and mandatory transport mapping for SNMP
implementations. In addition to the requirement of support for messages up to 484
octets in length, it is recommended for implementations to support messages up to
1472 octets in length. UDP port 161 dedicated for SNMP listeners whereas UDP
port 162 is for SNMP trap listeners. [36]

SNMP over TCP transport mapping was defined to provide more efficient transfer

16

method for bulk data. SNMP engines are required to send all bytes of a single message
before sending bytes belonging to another message. Additionally, messages should
not be interleaved in the TCP connection. These measures are required as SNMP
requires the full message in one part in order to decode the message. TCP ports
161 and 162 are recommended for incoming connections and notification receivers
respectively. [37]

SNMP messages can be transmitted over IEEE 802 networks, however, the scope
is limited to a single logical, bridged or virtual local area network (LAN). Serialized
SNMP messages are sent in an IEEE 802.3 frame with an Ethernet type of 33100.
In addition to the aforementioned support for messages up to 484 octets, it is
recommended that messages up to 1472 octets are supported. [38]

SNMP over IPX is an optional transport mapping for sending messages over
Internetwork Packet Exchange (IPX) networks. SNMP datagrams are sent using
IPX packet type 4. SNMP engines should listen to socket 36879 and socket 36880 for
receiving inform and trap messages. SNMP entities using IPX transport mapping
are required to support messages up to 546 octets in length and support for longer
messages is recommended. [36]

SNMP over Datagram Delivery Protocol (DDP) is an optional transport mapping
for sending SNMP messages over an AppleTalk network. The SNMP messages are
sent using protocol type 8. Socket number 8 is used to listen for SNMP messages
and socket number 9 to receive inform and trap messages. [36]

SNMP over OSI is an optional transport mapping for transporting SNMP messages
using OSI’s Connectionless-mode Transport Service. [36]

SSH transport model was specified for SNMP due to a demand from network
administrators, as utilizing the user-based security model requires creating and
maintaining a new key-infrastructure, whereas multiple networks already utilize SSH
and associated key-infrastructure. SSH provides authentication, encryption and
integrity protection features for the SNMP connection. The SSH transport model
supports all SSH authentication methods defined in RFC4252. Additionally, SNMP
leaves the selection and use of security protocols to SSH and details of these are not
exposed to SNMP. Ports 5161 and 5162 have been assigned by IANA to be used
with SNMP and SNMP Traps over SSH. [39]

The TLS transport model for SNMP was defined to provide authentication
and privacy. The TLS transport model utilizes X.509 public-key infrastructure
for authenticating endpoints and even though other authentication methods are
supported by TLS and DTLS, they are not used with SNMP. Utilizing x.509 public-
key infrastructure provides easy integration with existing public-key infrastructures.
IANA has defined ports 10161 and 10162 for use with SNMP-DTLS and SNMP-TLS
respectively. [40]

Message format

SNMP version 3 message is formed by msgVersion, msgGlobalData, msgSecurityPa-
rameters and msgData. Table 5 presents the message format. [41]

Field msgVersion is an integer identifying the SNMP version, for example value 3

17

Table 5: SNMPv3 message format [41]

msgVersion
msgID

msgMaxSize
msgFlags

msgSecurityModel
msgSecurityModel

msgSecurityParameters
contextEngineID

contextName
data

indicates SNMPv3. The msgID is used to correlate requests and responses between
two SNMP entities as responses must use the same msgID as requests. Re-use of
outstanding values should be avoided in order to reduce the risk of replay attacks.
The msgMaxSize indicates the maximum length of a message supported by the
sender. It is typed as an integer. The msgFlags contains bit fields for indicating
the security level and reportability of the message. Currently SNMPv3 recognizes
three flags: authFlag, privFlag and reportableFlag. The bit flag ordering in the
byte-field is presented in Table 6. The combination of the first two determine the
security level of the message. If both are zero, then the level is noAuthNoPriv, if
authFlag is one and privFlag is zero, then the level is AuthNoPriv and finally if both
are one, then the level is AuthPriv. Having authFlag as zero, and privFlag as one is
not supported. Section 3.2 describes security levels in detail. The reportableFlag is
used to aid in determining whether a ReportPDU must be sent in cases where the
received protocol data unit (PDU) cannot be decoded. If the PDU is successfully
decoded, the decoded PDU-type determines whether a ReportPDU will be sent.
The msgSecurityModel indicates the used security model as an integer. Value 0

Table 6: msgFlags field structure in network byte order [41]

. 1 authFlag

. 1 . privFlag

. . . . 1 . . reportableFlag

means "any", value 1 refers to SNMPv1, value 2 to SNMPv2c, User Security Model
(USM) has value 3 and Transport Security Model (TSM) value 4 [42][43]. The msgID,
msgMaxSize and msgSecurityModel fields can be referred as MsgGlobalData header
containing administrative parameters. The msgSecurityParameters field is used by
different security models to provide additional information and its content depends
on the security model. However, the type is always an octet string. [41]

18

The data field contains a scoped protocol data unit (scopedPDU), which indicates
the used protocol operation along with the payload. Protocol operations are described
later in this section. The scopedPDU consists of contextEngineID, contextName
and PDU fields. The contextEngineID is used to uniquely identify an SNMP entity
within an administrative domain and contextName is used to name a context within
the SNMP entity. The contextName is required to be unique within the SNMP entity.
A PDU consists of request-id, error-status, error-index and variable-bindings fields.
PDU type indicates the used protocol operation as a 4 byte integer. Request-id is an
identifier for correlating requests and responses and is represented as an unsigned 4
byte integer. Error-status and error-index indicate the error message and the index
of the variable-binding causing the error, if applicable. Both fields are signed 4
byte integers. In BulkPDU operation, the error fields are replaced by non-repeaters
and max-repetitions fields, which are used to determine the processing of the bulk
request. Variable-bindings fields is a list of object identifiers (OIDs), which represent
entities in SNMP. Together, contextEngineID, contextName and PDU fields form a
scopedPDU, which is effectively the payload of a SNMP message. The scopedPDU
is encrypted if User Security Model is used along with authPriv flag set. [41]

Message encoding

SNMP messages are encoded using Basic Encoding Rules (BER). BER encoding
consists of four components: an identifier, length, content and an end of content
indicator. The BER encoding can be used to encode single or nested elements as
presented in Tables 7 and 8. Content is a series of octets encoded by rules presented
in [44]. End of content is indicated by two octets with value zero and is only used if
the length component is in indefinite format. For example, version field with version
number "3" could be encoded as 02 01 03, where byte 02 identifies the value as an
integer, 01 is the length of the value and 03 is the actual value. Listing 6 presents
an example of a BER encoded SNMPv2-Trap PDU. [41][44]

Table 7: BER example

Identifier Length Content

Table 8: BER nested field example

Identifier Length Identifier Length Content Identifier Length Content

19

1 30:7C SEQUENCE {
2 04:08:80:00:02: B8 :04:61:62:63 800002 b804616263
3 04:04:63:74:78:31 "ctx1"
4 A7:6A SNMPv2 -Trap -PDU{
5 02:03:6 D :08:67 INTEGER 7145575
6 02:01:00 INTEGER 0
7 02:01:00 INTEGER 0
8 30:5D SEQUENCE OF {
9 30:0F SEQUENCE {

10 06:08:2 B :06:01:02:01:01:03:00 sysUpTime .0
11 43:03:01:72:8 C 94860 }
12 30:17 SEQUENCE {
13 06:0A:2B :06:01:06:03:01:01:04:01:00 snmpTrapOID .0
14 06:09:2 B :06:01:06:03:01:01:05:04 linkUp }
15 30:0F SEQUENCE {
16 06:0A:2B :06:01:02:01:02:02:01:01:03 ifIndex .3
17 02:01:03 3 }
18 30:0F SEQUENCE {
19 06:0A:2B :06:01:02:01:02:02:01:07:03 ifAdminStatus .3
20 02:01:01 up (1) }
21 30:0F SEQUENCE {
22 06:0A:2B :06:01:02:01:02:02:01:08:03 ifOperStatus .3
23 02:01:01 up (1) } } }

Listing 6: BER encoding example[45]

Protocol operations

The protocol operations are divided into seven classes: read, write, response, notifi-
cation, internal, confirmed and unconfirmed. Read-class contains operations, that
are used to retrieve information from the management information base. Operations
Get, GetNext and GetBulk belong to read class. Write-class operations modify
the management information and only Set-operation has been defined for this class.
Response-class operations are used to respond to other protocol operations. The
response-class contains Response and Report operations. Notification-class operations
send unsolicited notifications to recipients. Examples of notification-class opera-
tions are SNMPv2-Trap and Inform. Internal-class operations are only exchanged
between SNMP engines and are not exposed to the user. Therefore, these operations
are considered as internal. Report is the only internal operation. Confirmed-class
contains all operations that require a response. Set, Get, GetNext, GetBulk and
Inform are confirmed operations. Unconfirmed-class operations are not responded to.
Unconfirmed operations are Report and SNMPv2-Trap. [46][47]

• Get is used to query information from SNMP entities. The GetPDU contains
queried OIDs as variable bindings and the queried entity responds with a
ResponsePDU.

• GetNext can be utilized to traverse the MIB-tree by requesting next item for
the last received OID.

20

• GetBulk operation requests, that multiple GetNext-operation results are re-
turned in a single packet.

• Response operation returns the requested information to the client.

• Set assigns values to variables and therefore configures network devices. If one
of value assignments fails, then all assignments will be rolled back and and a
ResponsePDU is sent with "CommitFailed" message in the error-status field.

• SNMPv2-Trap is used to send notifications when an event has occurred. Traps
do not have any confirmation messages associated, therefore the delivery of
traps is not guaranteed and lost messages cannot be detected. A SNMPv2-
TrapPDU always contains sysUpTime.0 and snmpTrapOID.0 variable-bindings
indicating how long the sender system has been running and which is the MIB
responsible for the event [48].

• InformRequest operation is similar to the SNMPv2-Trap operation. However,
the receiver of an InformRequest should acknowledge the message by sending
a ResponsePDU with same values as in the InformRequest and error fields set
as zero.

• Report operation is used for SNMP’s internal communications and its use and
semantics are defined by frameworks utilizing it.

Security

SNMP framework version 3 recognizes three levels of security:

• No authentication and no privacy (noAuthNoPriv)

• Authentication and no privacy (AuthNoPriv)

• Authentication and privacy (AuthPriv)

In this context privacy means that the message is encrypted and thus protects the
message from eavesdropping. Additionally, if a hash-based message authentication
code (HMAC) is used, then the integrity of the message is protected as well. Au-
thentication ensures that the user carrying out actions is legitimate and is not being
impersonated. [41]

The modularity of SNMP framework allows the development of multiple secu-
rity models independently. Currently SNMP version 3 has two security models
defined: user-based (USM) and transport security model (TSM). The USM must be
implemented by SNMP entities whereas TSM is optional. [42][49]

The user-based security model utilizes a user as a security concept where security
information is tied to the username. The USM fills the msgSecurityParameters field
with the following sub-fields: msgAuthoritativeEngineID, msgAuthoritativeEngine-
Boots, msgAuthoritativeEngineTime, msgUserName, msgAuthenticationParameters
and msgPrivacyParameters. The msgAuthoritativeEngineID is used to specify the

21

engineID of the SNMP engine that is considered as authoritative in this context. The
msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime fields contain the
number of times the authoritative engine has been started and the current time of the
authoritative engine. This information can be used as a replay protection as the mes-
sage is discarded if the engine boots value differs from local value or the engine time
differs from local time more than 150 seconds. The msgUserName identifies the user
that is used to authenticate the message. The msgAuthenticationParameters and ms-
gPrivacyParameters fields contain information depending on the used authentication
and privacy protocols. For example, they may contain salts used by authentication
and privacy protocols. [42] Originally HMAC-MD5-96 and HMAC-SHA-96 hash
functions were defined for SNMP version 3 authentication. Later HMAC-SHA-2
hash functions were added to the specification with 224-, 256-, 384- and 512-bit
lengths [50]. USM utilizes symmetric encryption for the messages. Data Encryption
Standard (DES) and Advanced Encryption Standard (AES) encryption protocols are
specified to be used with SNMP version 3 USM. AES is only specified for 128-bit
key length, however, some vendors have implemented 192- and 256-bit key lengths
to their products [51]. Additionally, DES is considered to be insecure and should not
be used if possible [52][53].

Transport security model (TSM) was defined to provide interfaces to secure
transport models such as SSH and TLS. The transport security model does not use
the msgSecurityParameters field, which is set as an empty string. Instead, TSM
utilizes securityStateReference and tmStateReference caches for storing fields such as
transportDomain, transportAddress, securityName, and securityLevel. These fields
are filled by the used secure transport model and provide information regarding the
authentication details of the connection to the SNMP engine. [49][40][39]

In addition to authentication and encryption, SNMPv3 provides authorization
through View-based Access Control Model (VACM). The VACM allows controlling
the users and their permissions to access or modify information elements. Users are
managed using groups, which contain information regarding the security levels and
access rights to views The access rights can be read, write and notify. Read-rights
allow accessing information elements where as write-rights allow modifying them.
Notify-rights allow sending notifications on changes to a group member. Views are
simple configuration elements containing a MIB or an MIB-subtree which is related
to the view. [54]

3.3 Syslog
Syslog protocol is used to transport log messages over networks utilizing a textual
format. The protocol is described in two major specifications, which are RFC3164
and RFC5424. Syslog protocol was first defined in RFC3164 - The BSD Syslog
Protocol in 2001. However, as the BSD Syslog protocol was already in widespread
usage, it only described the observed formats. Additionally, the BSD Syslog format
has a major issue as the various implementations currently in use have incompatible
formats as typically only the priority value is a shared property. RFC5424 was the
first attempt to standardize Syslog protocol. [55][56]

22

Transport layer

Syslog protocol defined in RFC3164 uses User datagram Protocol (UDP) as a
transport layer protocol with port 514 as the source and destination. Reliably
transport by using Transmission Control Protocol (TCP) over Blocks Extensible
Exchange Protocol (BEEP) is also supported. Port 601 should be used with reliable
transport. [55][57]

RFC5424 is designed in a protocol agnostic manner, and can utilize any trans-
mission protocol. However, RFC5424 requires that all implementations support
Transmission Layer Security (TLS) -based transports and should support UDP as a
transport layer protocol. In addition, Datagram Transport Layer Security (DTLS)
can be used. Port 514 is used with UDP and 6514 with DTLS or TLS. [56][58][59][60]

Message format

There are two commonly used message formats regarding Syslog: RFC3164 and
RFC5424. Both are plain-text formats with main differences regarding field types
and ordering.

RFC3164 was used to describe a transport for Syslog messages with a recom-
mended message format. As the message format is only a recommendation, the
payload of packets destined to UDP port 514 should be considered as a Syslog
message regardless of the content. The message format recommended by RFC3164
is defined as following:

<PRI>HEADER MSG

The PRI is defined to have three to five characters starting and ending with angle
brackets. The numeric priority value is constrained with the angle brackets. The
priority is calculated by multiplying facility number with 8 and adding the severity
value. Facilities with corresponding codes are presented in Table 9 and severities
with codes in Table 10.

The HEADER contains two fields: timestamp and hostname. Timestamp format
is Mmm dd hh:mm:ss and is in local time instead of Coordinated Universal Time
(UTC). The hostname is device’s hostname and if it is not known, device’s IPv4-
or IPv6-address. The MSG field of the message is divided into two parts: TAG
and CONTENT. TAG contains the name of the program or the process responsible
for generating the message. The length of TAG is restricted to 32 alphanumeric
characters with non-alphanumeric characters terminating the field. CONTENT is a
free-form field describing the event. Listing 7 presents a valid message.

1 <34>Oct 11 22:14:15 mymachine su: ’su root ’ failed for lonvick on /
dev/pts /8

Listing 7: RFC3164 compliant Syslog message [55]

RFC3164 requires that a single Syslog packet must be less than 1024 bytes
in length, whereas RFC5424 does not impose any hard limits for message length.

23

Table 9: Syslog Message Facilities [55][56]

Numerical Code Facility
0 kernel messages
1 user-level messages
2 mail system
3 system daemons
4 security/authorization messages
5 messages generated internally by syslogd
6 line printer subsystem
7 network news subsystem
8 UUCP subsystem
9 clock daemon
10 security/authorization messages
11 FTP daemon
12 NTP subsystem
13 log audit
14 log alert
15 clock daemon
16 local use 0 (local0)
17 local use 1 (local1)
18 local use 2 (local2)
19 local use 3 (local3)
20 local use 4 (local4)
21 local use 5 (local5)
22 local use 6 (local6)
23 local use 7 (local7)

Instead, implementations are required to support messages up to 480 octets in length
and recommended to support messages up to 2048 octets. Larger messages may be
used if both sender and receiver supports them. In a case where a too long message is
received, the receiver may choose between discarding and truncating the message. If
the message is truncated, it occurs at the end of the message. Additionally, one has
to note that after truncation the message may contain invalid data and the receiver
can either discard the message or try to process it. [55][56]

The RFC5424 message format consist of a header, structured data and a message:

HEADER STRUCTURED-DATA MSG

Where HEADER format is:

<PRI>VERSION TIMESTAMP HOSTNAME APP-NAME PROCID MSGID

The priority value in PRI is calculated in the same manner as in message format
described in RFC3164 by multiplying facility number with eight and adding the

24

Table 10: Syslog Message Severities [55][56]

Numerical Code Severity
0 Emergency: System is unusable
1 Alert: Action must be taken immediately
2 Critical: Critical condition
3 Error: Error condition
4 Warning: Warning condition
5 Notice: Normal, but significant condition
6 Informational: Informational message
7 Debug: Debug-level message

severity value. Facilities and severities with their corresponding codes are presented
in Tables 9 and 10. VERSION is the version of the Syslog protocol. For RFC5424
the value is "1". The VERSION is incremented whenever changes are introduced
to HEADER format. TIMESTAMP is formatted according to RFC3339, which
defines the time and date format to be used with Internet protocols [61]. Additional
restrictions for timestamp are introduced in RFC5424:

• Leap second shall not be used.

• Character "T" must be used.

• Characters "T" and "Z" must be in upper case.

If the system time could not be obtained, then NILVALUE must be used as a
TIMESTAMP. In RFC5424, dash is used as NILVALUE. HOSTNAME defines the
machine, which sent the Syslog message. Following values are accepted in their order
of preference:

1. Fully qualified domain name (FQDN)

2. Static IP-address

3. Hostname

4. Dynamic IP-address

5. NILVALUE

NILVALUE is a fallback, and should be only used in the rare case where the machine
cannot obtain a hostname or an IP-address. APP-NAME defines the application that
generated the Syslog message. NILVALUE can be used, if the machine cannot provide
this information. PROCID is typically used to provide the process name or the
process ID of the Syslog process. However, it does not have any interoperable meaning
besides that if the value changes, there has been discontinuity in reporting. MSGID

25

describes the type of the message and is used for filtering messages. STRUCTURED-
DATA is used to provide data in a well defined format. It can contain multiple
structured data elements or "SD-ELEMENTS" as referred in RFC5424. However, if
no structured data elements have been defined, it has to contain the NILVALUE. A
single SD-ELEMENT is formed from a SD-ID and one or multiple SD-PARAMS.
SD-IDs are identifiers for type and purpose of the SD-ELEMENT. Currently the are
two types of SD-IDs: Internet Assigned Numbers Authority (IANA) registered IDs
and additional IDs.

• IANA registered names cannot contain the following symbols: ’@’,’=’,’"’,’]’,
whitespace or control characters. Certain IANA defined names are presented
in [56] Section 7.

• Additional names can be defined by entities that have a registered IANA enter-
prise ID. The format for these names is name@<private enterprise number>,
where name does not have any specific requirements besides restricting the use
of the following symbols: ’@’,’=’,’"’,’]’, whitespace or control characters. The
private enterprise number must be registered with IANA before taking it into
use.

SD-PARAMS consist of a PARAM-NAME and a PARAM-VALUE. PARAM-NAMEs
are case sensitive and scoped to their parent SD-ID. Therefore, same PARAN-NAMEs
in different SD-IDs are distinct. PARAM-VALUEs must be UTF-8 encoded and
characters ’"’, ’{ }’ and ’]’ must be escaped with a backslash. Listing 8 presents
a valid STRUCTURED DATA field. MSG is an optional field, which is used for

1 [exampleSDID@32473 iut ="3" eventSource =" Application " eventID
="1011"][examplePriority@32473 class =" high "]

Listing 8: STRUCTURED DATA with multiple elements [56]

free-form messages and should be UTF-8 encoded.
Examples of RFC5424 compliant messages with and without structured data are

presented in Listings 9 and 10.

1 <34>1 2003 -10 -11 T22 :14:15.003 Z mymachine . example .com su - ID47 -
BOM

2 ’su root ’ failed for lonvick on /dev/pts /8

Listing 9: RFC5424 compliant message without structured data [56]

1 <165>1 2003 -10 -11 T22 :14:15.003 Z mymachine . example .com evntslog -
ID47 [exampleSDID@32473 iut ="3" eventSource =" Application "
eventID ="1011"] BOMAn application event log entry

Listing 10: RFC5424 compliant message with structured data [56]

26

Security

RFC3164 has many security concerns regarding the confidentiality, integrity and
availability of the Syslog protocol. These concerns yield from use of UDP for transport,
as the channel is not authenticated nor encrypted. Additionally, UDP is not a reliable
protocol as delivery is not guaranteed. In the absence of these attributes it is possible
for an attacker to modify messages during transport and/or spoof messages. In
addition, as the maximum length of a packet is 1024 bytes, problems could be caused
in some older versions of Syslog by sending large packets. To combat aforementioned
issues RFC3195 was defined [57]. TLS and DTLS may be used as the transport
with the RFC5424 specification, which solves the aforementioned issues as both
offer protection for confidentiality and integrity. Additionally, TLS and DTLS allow
mutual authentication with X.509 certificates. However, if UDP is used as the
transport protocol, the same considerations apply as for RFC3164. [55][56][60]

3.4 NETCONF
NETCONF protocol was created to provide a simple way of configuring, managing
and retrieving data from network devices through application programming interfaces
(APIs). It utilizes the remote procedure call (RPC) paradigm and the Extensible
Markup Language (XML) encoding for the messages. Some of the key aspects of
NETCONF are allowing clients to discover capabilities supported by the server and
easy mirroring of device native functionalities, which reduces implementation costs.
Additionally, NETCONF can be used to automate the entire configuration process
of network devices. [62]

NETCONF separates configuration and state data to make configuration and
management easier. Configuration data can be modified in order to configure device
settings, whereas state data is read-only and is used to query device status and other
information regarding device’s working conditions. Benefits yielding from this design
include smaller datasets when saving device configurations, configurations do not try
to write to read-only fields and easier comparison of configurations as there is no
interfering state data. The configuration and state data are acquired using different
RPC operations: <get-config> and <get>. Details on these operations are presented
later in this section. [62]

The protocol is divided into four layers: content, operation, messages and secure
transport [62]. Figure 2 presents the layers.

1. Secure transport layer provides the transport layer protocol with required
properties for NETCONF. The requirements are discussed later in this section.

2. The messages layer supports two kinds of messages: RPCs and notifications
sent by the device.

3. The operations layer describes the operations carried out by RPC, such as
setting an attribute or retrieving configuration.

27

4. The content of the messages are defined using data models written in YANG,
which was created for NETCONF [16].

Figure 2: NETCONF protocol layers [62]

Transport layer

NETCONF is protocol independent and ca be used with any transport layer protocol
that has the required functionalities. The required functionalities are connection-
oriented operation, authentication, integrity and confidentiality. Additionally, all
NETCONF implementations are required to support Secure Shell (SSH) transport
protocol. Currently IETF specifications exist for SSH, Simple Object Access Protocol
(SOAP), Blocks Extensible Exchange Protocol (BEEP) and Transport Layer Security
(TLS) [63]–[66]. As NETCONF is connection-oriented, the connection has to be
persistent. Additionally, due to the long-lived nature of the connection, clients are
allowed to make changes to the connection which persist for the duration of the
connection. An essential part of the connection-oriented operation is that the all
resources requested from a server, have to be released when that particular connection
is terminated. This ensures simple and robust failure recovery. The authentication
requirement states that all NETCONF connections have to be authenticated and the
authentication is to be done by the transport protocol. AS NETCONF provides an
interface that closely mimics device’s native interface, device’s existing authentication
mechanisms should be utilized by the underlying protocol. For example RADIUS
[67] could be used for authentication. As a result of the authentication process, a
user’s identity and permissions are known to the device and have to be enforced
during the NETCONF session. The integrity and confidentiality requirements are
also handled by the transport layer protocol. [62]

28

Messages layer

Using Extensible Markup Language (XML) as the message encoding format allows
human-readable representation of hierarchical data, that can be manipulated either
with traditional text-editors or XML specific tools. NETCONF have several consid-
erations that implementations should follow. NETCONF does not utilize document
type declarations and those are forbidden in NETCONF. Used protocol elements
are defined in urn:ietf:params:xml:ns:netconf:base:1.0 -namespace. <rpc>
and <rpc-reply> elements are used to distinguish requests and responses between
a client and a server. Those elements contain a message-id attribute that is used
to link responses to requests and it is a string chosen by the client. Commonly a
monotonically increased integer is used. <rpc-error>, <data> and <ok> elements
are used to represent the content of a response. These elements do not exist in a
response simultaneously. The <rpc-error> element is used to signal error in pro-
cessing a request. Multiple <rpc-error> elements are allowed if multiple errors were
encountered during the message processing. The <rpc-error> element contains the
following fields:

• error-type, defines the layer where the error occurred. Has one of the following
values:

– transport: secure transport layer
– rpc: messages layer
– protocol: operation layer
– application: content layer

• error-tag, string identifying the error

• error-severity, the severity of the error. Can be either warning or error.

• error-app-tag contains a data model or implementation-specific error condition
and is only included if an applicable error-app-tag can be set.

• error-path has the XPath expression identifying the node causing the error
condition. This element will not be included if an applicable XPath error
cannot be found.

• error-message contains a human-readable error message.

• error-info contains protocol or implementation-specific error content and is only
included if an applicable error content can be set.

Standard NETCONF errors are detailed in Appendix A of [62]. Listing 11 presents
an rpc-reply message containing an rpc-error. The ok element is sent when no data
is returned by the operation and no errors or warnings occurred. Listing 12 presents
an rpc-reply message with an ok element.

29

1 <rpc -reply xmlns=" urn:ietf:params:xml:ns:netconf:base:1 .0">
2 <rpc -error >
3 <error -type >rpc </error -type >
4 <error -tag >missing - attribute </error -tag >
5 <error - severity >error </error - severity >
6 <error -info >
7 <bad - attribute >message -id</bad - attribute >
8 <bad - element >rpc </bad - element >
9 </error -info >

10 </rpc -error >
11 </rpc -reply >

Listing 11: Example of <rpc-reply> with <rpc-error> [62]

1 <rpc -reply message -id="101"
2 xmlns=" urn:ietf:params:xml:ns:netconf:base:1 .0">
3 <ok/>
4 </rpc -reply >

Listing 12: Example of <rpc-reply> with <ok> [62]

The contents of a data element and its format depend on the used YANG data model.
An example of a data element is presented in Listing 13. [62]

1 <rpc -reply message -id="101" xmlns="
urn:ietf:params:xml:ns:netconf:base:1 .0">

2 <data >
3 <top xmlns="http: // example .com/ schema /1.2/ config ">
4 <users >
5 <user >
6 <name >root </name >
7 </user >
8 <user >
9 <name >fred </name >

10 </user >
11 <user >
12 <name >barney </name >
13 </user >
14 </users >
15 </top >
16 </data >
17 </rpc -reply >

Listing 13: Example of <data> element [62]

YANG

Yet Another Next Generation (YANG) is a data model designed for modeling state
and configuration data for the NETCONF protocol. The latest revision of the
specification is 1.1, which is a maintenance release addressing defects and ambiguities

30

present in the original specification. The data models defined using YANG define the
data hierarchy for NETCONF configuration, state, remote procedure call (RPC) and
notification operations. Although YANG is specified to be used with NETCONF,
it may be used with other protocols, however, that is not discussed by YANG
documentation and is considered to be out of scope. [68]

YANG is a structural language and uses modules and submodules to structure
data. Additionally, the modules can be augmented by other modules allowing
additions to existing modules without modifying the original modules. Furthermore,
the augmentations can be conditional. YANG organizes data hierarchically where
every node contains either a value or child nodes. The YANG syntax resembles
SMIng’s and C-programming language’s syntax, which is both human- and machine-
readable. Listing 14 presents the YANG syntax. The YANG models can be translated
to XML format called YANG Independent Notation (YIN), which can be converted
back to YANG if necessary. YANG provides a set of data types for modeling data
and a mechanism for defining new data types. As mentioned in Section 2.1, YANG
is compatible with Simple Network Management Protocol’s (SNMP’s) Structure
of Management Information version 2 (SMIv2) and any SMIv2 modules can be
translated into YANG models in order to provide a way to migrate from SNMP
to NETCONF for network management. However, converting YANG models into
SMIv2 format is not supported. [68]

1 import acme - system {
2 prefix "acme ";
3 }
4 container http - server {
5 leaf name {
6 type string ;
7 }
8 uses acme: endpoint ;
9 }

Listing 14: Example of a YANG data model [68]

Protocol operations

NETCONF has currently 18 protocol operations defined that are used to perform
low-level operations [62][69]–[72]:

• get is used to retrieve running configuration and state information.

• get-config is used to retrieve entire or parts of a configuration datastore.

• edit-config modifies the target datastore by loading all or part of a specified
configuration. The configuration can be loaded from a local file, from a remote
file, or inline.

• copy-config can be used to create or replace a configuration datastore with
other datastore’s content.

31

• delete-config clears a configuration datastore entirely.

• lock can be used to lock a datastore from modifications for a short period to
ensure that other users’ actions do not interfere with intended configuration
changes.

• unlock releases a configuration lock acquired with the lock command.

• close-session is used to gracefully close the current session by releasing any
locks and closing all connections.

• kill-session terminates the current session by aborting all current actions,
releasing any locks and closing all related connections. Additionally, if this
command is used while processing a confirmed commit, the configuration state
is restored to the pre-commit state.

• commit operation sets the current candidate configuration as the running
configuration.

• discard-changes discards the candidate configuration by reverting it to the
previous state.

• partial-lock allows a user to lock parts of a datastore from modification,
whereas the original lock command locks the entire datastore.

• partial-unlock is used to release the partial locks set with "partial-lock".

• notifications are sent by the server to the initiator of the subscription until
the subscription is terminated.

• create-subscription creates the subscription for receiving notifications from
a server on subscribed events until the subscription is terminated.

• establish-subscription is used to subscribe to notifications from a server
on subscribed events. This operation differs from the create-subscription
operation by allowing modification or deletion of the established subscription.

• modify-subscription allows modifying subscriptions created with the establish-
subscription operation. However, subscriptions created with create-subscription
cannot be modified.

• delete-subscription removes a subscription created by the same user and
connection.

• kill-subscription allows a user to terminate any subscription present.

• resync-subscription is used only with on-change subscriptions and requests
the server to send a push update on receiving the resync request.

• get-data retrieves configuration data from a specific datastore.

32

• edit-data edits the configuration in a specific datastore. Difference to edit-
config operation is that the datastore can be chosen.

• get-schema allows a client to retrieve a data model from the server.

Notifications

NETCONF allows a client to subscribe to notifications, which can be either on-change
or periodic. However, not all configuration items support on-change notifications.
NETCONF notifications utilize the existing NETCONF connections and are termi-
nated either along with the associated connection or by deleting or killing the sub-
scription. Additionally, the subscriptions are either dynamic or configured. Dynamic
subscriptions are always tied to a related connection and are removed when the connec-
tion is terminated, whereas configured subscriptions are preserved if the connection is
terminated. Dynamic subscriptions are created using either create-subscriptions
or establish-subscriptions protocol operation. Configured subscriptions are cre-
ated by any means which allow editing a device’s configuration and do not require
initiating a connection in order to create the subscription. Additionally, supporting
dynamic subscriptions is mandatory whereas for configured subscriptions its optional.
[73][70][71].

Datastores

NETCONF utilizes datastores for storing and accessing configuration and state
information. Originally configuration and state data were separated and thus had to
be modeled twice in the data models. The configuration data was marked with "config
true" attribute whereas state data was identified with "config false". This led to
complicated data models and hindered their readability. To combat these issues, a new
datastore architectural model was designed. The original datastore model had three
datastores: candidate, startup and running. Additionally, operational state data was
available, however, it was not defined as its own datastore. The datastores provided
configurable information and could be written to and read from. Operational data was
read only and contained only state data. However, support for candidate and startup
datastores was optional and running datastore could be set as read only. Running
datastore contains the configuration that is currently in use. However, it may include
inactive configuration items or template-expansion configurations requiring further
expansion. Candidate datastore contains a device’s current configuration, which
can be modified without affecting the running configuration. Candidate datastore
can be written into running configuration by using the commit protocol operation.
Startup datastore holds the configuration, which is loaded when a device starts.
Figure 3 presents the original datastore architecture. The new datastore architecture
presented in Figure 4 added a new intended datastore and defined operational data
as a datastore. The intended data contains the read-only configuration of the startup
datastore after all configuration transformations are applied to the startup datastore.
[74]

33

Figure 3: Original NETCONF datastore architecture [74]

Figure 4: Revised NETCONF datastore architecture [74]

3.5 RESTCONF
RESTCONF was created to fulfil a need to access configuration, state and other
network device data using web applications. It is based on the Hypertext Transfer
Protocol (HTTP) and it utilizes concepts introduced in NETCONF. However,
RESTCONF was not intended to replace NETCONF, but to provide a way to utilize
NETCONF functionalities using a HTTP interface following Representational State
Transfer (REST) principles. RESTCONF is compatible with NETCONF, however,
it does not provide all the capabilities that NETCONF has. [75]

34

Transport protocol

As RESTCONF is built on HTTP, it may use any transport layer protocol that
provides reliable transport. This has typically been Transmission Control Protocol
(TCP) as HTTP has native support for TLS, which provides data integrity and
confidentiality protection required by RESTCONF. Additionally, all RESTCONF
implementations are required to support TLS.

RESTCONF utilizes X.509v3 certificates to authenticate servers and clients. The
use of X.509v3 certificates is compatible with NETCONF over TLS specification. The
server has to present a certificate, which the client validates using X.509 certificate
path validation or by matching the server’s certificate with a certificate acquired
from a trusted source. The trusted source can be a pinned certificate, for example.
The client is required to check that the server’s hostname matches the certificate in
order to verify server identity and to detect any man-in-the-middle attacks.

RESTCONF requires that all clients trying to access any information must be
identified. Recommended method is to require an X.509v3 certificate from the
client, however, HTTP basic authentication can be used if implementing certificate
authentication is not feasible. Additionally, HTTP and certificate authentication can
be used in conjunction, however, implementation details left out of the specification.
[75]

Message format

Message content is encoded using JSON or XML and a server is required to support
either of these with supporting both being optional. Additionally, clients need to
support both in order to operate with different RESTCONF servers. The XML
message format is similar to NETCONF’s format and the YANG data models are
shared between NETCONF and RESTCONF. An example of the JSON format is
presented in Listing 15. [75]

1 {
2 " example : interface " : [
3 {
4 "name" : "eth1",
5 "mtu" : 1500 ,
6 "@mtu" : {
7 "ietf -netconf -with - defaults : default " : true
8 },
9 " status " : "up"

10 }
11]
12 }

Listing 15: RESTCONF JSON format [75]

35

Methods

RESTCONF utilizes HTTP methods to distinguish CRUD (create, read, update and
delete) operations. Table 11 presents the RESTCONF methods and the corresponding
NETCONF operations. However, the listing is not complete as RESTCONF does
not support all NETCONF features nor operations. As shown in Table 11, a single
method may have multiple purposes depending on the payload of the protocol
message.

Table 11: RESTCONF methods [75]

RESTCONF NETCONF
OPTIONS none

HEAD <get-config>, <get>
GET <get-config>, <get>
POST <edit-config> (nc:operation="create")
POST Initiating an RPC operation
PUT <copy-config>
PUT <edit-config> (nc:operation="create/replace")

PATCH <edit-config> (nc:operation depends on PATCH content)
DELETE <edit-config> (nc:operation="delete")

Resources

RESTCONF resources are accessed using Universal Resource Identifiers (URIs) and
the root resource is /restconf. However, the server may specify leading parts for
the root resource. For example, /config/top/restconf is a valid RESTCONF
root location. The location of the root resource is queried from the server by is-
suing a HTTP GET request to /.well-known/host-meta resource. The server
provides a response presented in Listing 16. As RESTCONF utilizes XML and

1 HTTP /1.1 200 OK
2 Content -Type: application /xrd+xml
3 Content - Length : <length >
4 <XRD xmlns=’http :// docs.oasis -open.org/ns/xri/xrd -1.0’>
5 <Link rel=’restconf ’ href =’/ restconf ’/>
6 </XRD >

Listing 16: Root resource discovery response [75]

JSON encoding, the used type is indicated in the Content-Type HTTP Header. Al-
lowed values are application/yang-data+xml and application/yang-data+json.
The structure of the RESTCONF Application Programming Interface (API) is
defined in ietf-restconf YANG data model. The root /restconf resource con-
tains three subresources: data, operations and yang-library-version. Data

36

contains all configuration and state data resources defined by the YANG data models
present on the system. RESTCONF implementations may support all the datas-
tores defined by NETCONF, however, it is not mandatory [76]. Operations is an
optional resource, which contains the RPC-operations defined in YANG data models.
Yang-library-version is a mandatory resource, which contains the revision date
of the ietf-yang-library data model present on the system. Listing 17 presents
an HTTP request that invokes the system-restart RPC. Listing 18 presents an

1 POST / restconf / operations /ietf - system :system - restart HTTP /1.1
2 Host: example . invalid
3 Accept : application /yang -data+xml

Listing 17: HTTP Request for invoking system-restart RPC

HTTP request that queries information regarding interfaces present on the system
using ietf-interfaces YANG data model. [75]

1 GET / restconf /data/ietf - interfaces : interfaces HTTP /1.1
2 Host: example . invalid
3 Accept : application /yang -data+xml

Listing 18: HTTP Request for querying present interfaces

Notifications

RESTCONF has notifications similar to the NETCONF protocol, however, REST-
CONF servers are not required to support them. Clients can determine whether server
supports notifications by querying the stream list using HTTP GET, OPTIONS or
HEAD method. RESTCONF utilizes HTML5 Server-Sent Events for sending the
notifications. HTML5 Server-Sent Events specification offers an API for sending push
messages from a server to a client over persistent connection using HTTP or other
dedicated server-push protocols [77]. Event data is structured in the NETCONF
<notification> format. [75]

3.6 NetFlow and IPFIX
NetFlow was created by Cisco in 1996 to collect network flow information from
network devices. This information is intended to be used for IP accounting, traffic
analysis, network telemetry and security monitoring [78]. Currently 10 versions
of NetFlow exist, of which version 5 is the most widely adopted by manufacturers
[78][79]. Version 9 introduced support for IPv6 and templates, which allows improved
flexibility and extensibility for data records [80]. IP Flow Information Export (IPFIX)
was developed from NetFlow version 9 by the IETF IPFIX Working Group and is
regarded as NetFlow version 10 [81][82] NetFlow and IPFIX define a network flow as
an unidirectional sequence of packets with common properties [80][81].

37

NetFlow and IPFIX systems consist of two separate components: The collector
and the exporter. The exporter’s duties are creating the flows from observed traffic
and forwarding the flows to the collector. Typically exporters are routers or switches.
The collector is only responsible for receiving and storing the flows sent by one or
multiple exporters. Additionally, the collector may aggregate the flows before storage.
[80][81]

NetFlow version 9 and IPFIX utilize a template-based approach as it provides
extensibility, modularity and compatibility. Templates are sent by the NetFlow
exporter before sending the flow data. Data records corresponding to a particular
template can appear in the same in subsequent export packet as the template. To
reduce the amount of transmitted data, templates are not send in every packets.
Therefore, the collectors are required to cache the templates in order to parse data
records. This allows adding new fields to the flow records easily as changes to the
record format are not required. As templates contain structural information regarding
fields, the collectors can parse the flows even if they do not understand semantics
of a new field. Being modular, NetFlow version 9 and IPFIX allow exporting only
required fields and thus reducing data volume and computing requirements. [80][81]

Transport layer

NetFlow version 9 utilizes the user datagram protocol (UDP) as its transport layer
protocol. However, it has been designed in a transport protocol independent manner.
As UDP is not a congestion aware protocol, deploying NetFlow version 9 in a
congestion sensitive environment may lead to decreased quality of service as the
traffic volumes generated by NetFlow can be voluminous. RFC3954 recommends
that in congestion sensitive environments, there should be a dedicated link between
collectors and exporters. [80]

As IPFIX is based on NetFlow v9, it is designed in a transport protocol inde-
pendent manner and all implementations are required to support Stream Control
Transmission Protocol (SCTP) with Partially Reliable SCTP (PR-SCTP) exten-
sion whereas UDP and Transmission Control Protocol (TCP) support is defined as
optional. IANA has assigned ports 4739 and 4740 to be used with IPFIX. Port
4739 is used with SCTP, UDP or TCP and port 4740 with Transport Layer Security
(TLS) or Datagram Transport Layer Security (DTLS) over aforementioned protocols.
Different ports may be used if deemed necessary. As IPFIX uses a 16-bit field for
describing the length of a message, maximum length of a message is 65535 octets,
which includes the header. [81]

Message format

NetFlow and IPFIX packets consist of a packet header and at least one FlowSet.
There are three different FlowSet types: Data, Template and Options Template. A
single packet can contain any combination of these FlowSets. A FlowSet contains one
or multiple records, which have been grouped together. A Data Flowset can contain
either Data records or Options records whereas Template and Options Template
FlowSets can only contain their respective Template or Options Template records.

38

FlowSets are distinguished by their FlowSet IDs. Template FlowSet has an ID of "0"
and Options Template ID is "1". Additionally, IDs lower than 256 are restricted for
special FlowSets such as aforementioned Template and Options Template. Figure 5
presents an example of a NetFlow packet consisting of a packet header, a Template
FlowSet, a Data FlowSet and an Options Template FlowSet. [80][81]

Figure 5: Example of a NetFlow version 9 packet

NetFlow v9 and IPFIX headers are similar for the most part, however, there
are some slight differences. The NetFlow v9 header contains six fields whereas the
IPFIX header has only five. NetFlow v9 has a sysUpTime-field for describing the
time elapsed since the device was last rebooted. IPFIX has decided to drop this field
from the specification. NetFlow’s UNIX Secs and IPFIX’s Export time fields both
express the time when the packet leaves the exporter and difference being only the
field name. The format of the field being seconds since 00:00 UTC 1.1.1970 as a
32-bit unsigned integer. Both protocols utilize incremental Sequence number field to
detect missed packets at the collector. The sequence number is observation domain
specific and thus packets originating from the same domain should have continuous
values. Additionally, IPFIX has specified that when utilizing SCTP, the sequence
numbers are counted per stream basis, whereas the packets are considered to be
part of the same stream for a TCP connection or an UDP session. Observation
domain ID is a 4 byte integer that identifies the observation domain. The IDs are
unique per exporting process and the specification recommends that the IDs are
unique per IPFIX device. The ID should be zero when an ID relevant to the entire
message cannot be assigned. Sending exporting process statistics is an example of a
case where ID should be zero. Observation domain is a set of observation points of
which flow information can be aggregated. For example, a line card consisting of
multiple interfaces can be an observation domain. Exporting process is responsible
for sending protocol messages to collecting processes. Header formats of NetFlow v9
and IPFIX are presented in Tables 12 and 13 respectively. The numbers in the first
row represent bytes in the header. [80][81]

IPFIX has recognized a need for vendors to define proprietary fields. Therefore,
IPFIX uses Field Specifiers to describe the used information elements in templates.
In contrast, NetFlow v9 does not offer this capability and vendors are restricted
to Cisco defined field types. The information elements describe the information
and the data type of the carried information. The first bit of a field specifier is
an Enterprise bit, which describes whether the information element is defined by
IANA or by another authority. Value zero represents IANA and value one the other
authorities. If the bit is zero, then the enterprise number field is omitted from the
field specifier. Otherwise the enterprise number must be provided. Information

39

Table 12: NetFlow version 9 header [80]

0 1 2 3 4
Version number Count

sysUpTime
UNIX Secs

Sequence number
Source ID

Table 13: IPFIX header [81]

0 1 2 3 4
Version number Length

Export time
Sequence number

Observation domain ID

element identifier is a numeric value that determines the element type. IANA defined
information elements are listed in [83]. Enterprise-specific information elements must
be known by the collector in order to decode them. Length describes the length of the
information element and the value 65535 is reserved to indicate varying information
element length. The field specifier format is presented in Table 14 [81]

Table 14: Field Specifier Format [81]

0 1 2 3 4
E Information element identifier Length

Enterprise number

A FlowSet consists of a set header, one or multiple records and optional padding.
The set header has two fields and is shared by NetFlow v9 and IPFIX. FlowSet ID
identifies the used set and can have values from 0 to 65535. However, IPFIX has
renamed the field as Set ID. NetFlow v9 uses values 0 and 1 to identify Template
and Options Template Sets respectively whereas for IPFIX 0 and 1 are not used.
Furthermore, IPFIX uses values 2 and 3 identify Template and Options Template
Sets. Values from 4 to 255 are reserved for future use and values over 255 are used
with Data Sets. The Length field contains the FlowSet length and it includes the
header, all records and the optional padding. Its purpose is to identify the boundaries
of different FlowSets. [80][81]

Template FlowSets informs the collector on which fields the exporter will send
in Data FlowSets. The Template FlowSet may contain one or multiple Template

40

records. Table 15 presents an example of a Template FlowSet. Numbers in the
first column represent bytes in the datagram. FlowSet ID of zero defines that the
FlowSet is a Template FlowSet. Length specifies the total length of the FlowSet.
Template ID distinguishes the particular template and Templates are matched to
Data FlowSets using this ID. The value of Template ID can vary from 256 to 65535.
Field Count specifies the number of fields in the particular Template. NetFlow v9
and IPFIX define the payload of the record differently. NetFlow v9 utilizes type
and length fields, whereas IPFIX utilizes field specifiers presented in Table 14. Field
Type contain a number identifying the particular field and Field Length describes
the length of the field. [80][81]

Table 15: NetFlow v9 Template FlowSet [80]

0 1 2 3 4
FlowSet ID = 0 Length

Template ID Count
Field Type 1 Field Length 1

... ...
Field Type N Field Length N

Template ID M Count
Field Type 1 Field Length 1

... ...
Field Type N Field Length N

Table 16: IPFIX Template FlowSet [81]

0 1 2 3 4
FlowSet ID = 0 Length

Template ID Count
Field Specifier

...
Field Specifier

Data FlowSets may contain either data or options data records. However, IPFIX
does not specify options data records as it utilizes data records to provide similar
information. Regardless of the record type, Data FlowSets begin with a FlowSet
header. A Data record consists of field values in the order described by the used
template. Options data records are formed in a similar manner. However, they
contain a scope value before the option values. Both record types may contain
padding. Examples of data and options data records are presented in Tables 17 and
18. Contrary to the examples, field lengths are not restricted to two or four bytes as
presented, instead the field length is determined by the template. [80][81]

41

Table 17: Data FlowSet with a single Data record [80][81]

0 1 2 3 4
FlowSet ID Length

Field 1
Field 2

...
Field N Padding

Table 18: Data FlowSet with multiple Options Data records [80][81]

0 1 2 3 4
FlowSet ID Length

Record 1 Scope 1 Record 1 Option Field 1
Record 1 Option Field 2 ...

Record 2 Scope 1 Record 2 Option Field 1
Record 2 Option Field 2 ...

Record N Scope 1 Record N Option Field 1
Record N Option Field 2 ...
Record N Option Field M Padding

Options Template FlowSets have a FlowSet ID of 1. Options Template Records
provide a capability for delivering additional information to the collectors that could
not be sent in Flow records. IPFIX options template format differs from the NetFlow
v9 format by utilizing the field specifiers instead of type and length. The record header
fields format is shared, however the header fields have slightly different definitions. For
NetFlow v9 fields option scope length and option length describe the number
of scope and option fields respectively. Whereas IPFIX utilizes field count and
scope field count fields to describe the total number of fields and the number of
scope fields in the record. Format are presented in Tables 19 and 20. [80][81]

Table 19: NetFlow v9 Options Template record format [80]

0 1 2 3 4
Template ID Option Scope Length

Option Length Scope 1 Field Type
Scope 1 Field Length ...
Scope N Field Length Option 1 Field Type
Option 1 Field Length ...
Option M Field Length Padding

42

Table 20: IPFIX Options template record format [81]

0 1 2 3 4
Template ID Field count

Scope field count Field specifier 1
Field specifier 1 continued Field specifier 2
Field specifier 2 continued
Field specifier N continued Padding

Security

From a security perspective, NetFlow version 9 does not have any mechanisms to
ensure the confidentiality, authenticity nor availability of the information. Therefore,
an attacker positioned in the network path between exporter and collector can
examine, modify and spoof flow contents. These security concerns originate from the
design, as it was believed that NetFlow would be only used in trusted networks with
exporters and collectors closely located within the network. [80] IPFIX combat these
issues by introducing DTLS over SCTP transport mode, which provides reliable
transport and integrity protection and authentication services. However, DTLS has
a man-in-the-middle vulnerability that allows an attacker to remove messages from
the stream unnoticed. [81]

3.7 Emerging protocols
Network monitoring protocols are constantly evolving and new protocols are being
developed. Therefore, it is essential to introduce these emerging protocols. The
protocols presented here are relatively new and implement by certain vendors. How-
ever, they do not yet have the same status as more established protocols such as
NETCONF or SNMP.

gRPC Remote Procedure Call

gRPC Remote Procedure Call (gRPC) is an open-source remote procedure call
framework created by Google in 2015 and is currently being incubated by Cloud
Native Computing Foundation (CNCF) [84][85]. While gRPC is used for network
management and monitoring by some vendors, it is a generic RPC framework that
can be used for various purposes. Thus the information available using gRPC depends
on the vendor implementation. However, common models such as MIB or YANG
may be used.

gRPC services and message formats are described in a programming language ag-
nostic manner and the client and server interfaces are generated from this description.
The gRPC services may be either synchronous or asynchronous depending on the
use case. Additionally, gRPC supports message streaming, where one or both parties

43

of the connection send multiple messages on a single RPC call. This feature allows
streaming telemetry data for network monitoring purposes. Typically the services
and message formats are defined using protocol buffers, which is Google’s language-
and platform-agnostic mechanism for serializing structural data [86]. However, other
Interface Definition Languages (IDLs) may be used. [85]

gRPC uses Hypertext Transfer Protocol Version 2 (HTTP/2) as the main transport
protocol. Additionally, the network operations can be handled using Chromium
Network Stack (Cronet) or in-process. HTTP/2 is an optimized evolution of the
Hypertext Transfer Protocol version 1.1 (HTTP/1.1). However, they are only
compatible on a high-level and only the semantics such as status codes and methods
are shared by HTTP/1.1 and HTTP/2 whereas message format and encoding are
different, for example. HTTP/2 is a binary protocol and supports multiple requests
using a single connection whereas HTTP/1.1 is a textual protocol requiring a unique
connection for every request. Therefore, HTTP/2 has better performance and smaller
overhead than HTTP/1.1. [87] Chromium Network Stack is Google’s networking
stack used in mobile devices and the Chrome browser [88]. It supports HTTP/1.1,
HTTP/2 and QUICK protocols. In-process transport allows connecting to the gRPC
service from the same process, thus enabling local development of a gRPC service
without network interactions. [85]

gRPC Network Management Interface

gRPC Network Management Interface (gNMI) is network management protocol
capable of configuring network devices as well as retrieving telemetry data from
the devices. It is based on the gRPC framework by introducing services providing
network management capabilities. The protocol development is overseen by Google
and OpenConfig. gNMI can utilize the YANG-models used with NETCONF and
RESTCONF protocols, however, other interface describing languages (IDLs) may be
used with gNMI. [13]

gNMI has four services specified: capabilities, get, set and subscribe.
Capabilities-service is used as a similar handshake as NETCONF’s hello mes-
sage to exchange capabilities. The client and the target exchange information
regarding gNMI version and supported data models as well as supported data type
options. Currently gNMI supports JSON, JSON_IETF, bytes, ASCII and protobuf
encoding options. JSON_IETF differs from the JSON by requiring conformance to
serialization rules defined in RFC7159 whereas JSON only requires the content have
a valid JSON structure. Bytes encoding utilizes a raw byte sequence and its format
depends on the implementation. ASCII indicates that the content is ASCII encoded
text. However, the message format is not defined by gNMI and has to be defined
by the implementation. Protobuf encoding indicates that the content is formatted
according to Google’s protocol buffer specification. Get-operation provides means to
retrieve parts of the target configuration by sending a GetRequest-message contain-
ing information regarding the part of interest. The target sends the configuration
items in a GetResponse-message, which terminates the RPC-operation. However,
the get-service is only designed for retrieving small parts of the configuration and

44

if larger sets are required, subscribe-service should be used. Set-operation allows
altering the target configuration by sending a SetRequest-message. The target
configuration can be either replaced, updated or removed. The target responds with
a SetResponse-message, which fields indicate success of each individual operation.
Additionally, if a single operation fails, the target must rollback other changes made
with the same SetRequest. Subscribe-operation is used to subscribe to telemetry
updates sent by the target using a SubscribeRequest-message. Subscriptions can
be one of the following types: one-off, poll or stream. One-off is used to query data
just once. Polling retrieves data periodically and stream send notifications to the
client based defined trigger conditions.

As gNMI is built on top of gRPC, HTTP/2 is used as a main transport, which
provides the authentication and encryption services. gNMI requires that all con-
nections utilize TLS and in any conditions the connection must not fallback to
plain-text communications. Mutual authentication is provided by X.509 certificates
in a similar manner as in RESTCONF. In addition to authentication, authorization
is required in order to perform any actions. However, telemetry messages are not
authorized. Actions are authorized using username and password, which are carried
in RPC-messages. [89]

sFlow

Inmon Corporation developed sFlow for monitoring network traffic passing routers
and switches. It is designed to monitor network traffic at gigabit and higher speeds
and can handle tens of thousands of sFlow agents using a single collector. Additionally,
the cost of implementation is claimed to be low. sFlow utilizes a similar exporter-
collector design as NetFlow and IPFIX with the exception of calling exporter an
Agent. The recorded network flows are sampled before sending the samples to
the collector. sFlow supports two sampling methods: statistical packed-based and
time-based. However, the sampling can be disabled and thus accounting all observed
packets. Statistical packet based sampling obtains every Nth packet to be sampled,
where the maximum value of N depends on the hardware capabilities. If N is one,
then all packets are sampled and if N is zero, sampling is disabled. When using
time-based sampling, a sample of interface counters is taken at a configured interval.
[90]

Simple Network Management Protocol (SNMP) is used to control sFlow Agents
and a MIB module is provided to describe the control interfaces. The provided
module is compliant to SMIv2 and can be translated to SMIv1, if SNMP version 1 is
required. [90]

Collected flow datagrams are sent to collectors using User Datagram Protocol
(UDP), which offers multiple benefits such as lower memory footprint and robustness
in the event of network overload. UDP port 6343 is defined by the sFlow MIB
to be used for sending and receiving sFlow datagrams. As UDP is an unreliable
transport protocol, lost packets are not detected. However, this does only affect
marginally the accuracy of the obtained measurements and the most severe effect
is that the effective sampling rate is slightly reduced. sFlow utilizes External Data

45

Representation (XDR) format as its message encoding, which provides more compact
messages and simplified encoding and decoding when compared to Abstract Syntax
Notation One (ASN.1) [90]

3.8 Summary
This chapter discussed the importance of network monitoring and introduced state-
of-the-art network monitoring protocols as well as certain emerging protocols. The
information provided by the presented network monitoring protocols varies from
flow information to configuration options. Additionally, certain protocols depend on
external data models for defining capabilities and available information. Therefore,
these protocols may require more processing in order to extract information from the
data provided by the protocol. By understanding the capabilities of the presented
protocols, the protocols to be used with the system presented in this thesis may be
chosen to complement each other.

46

4 Requirements and design
This chapter defines the requirements for a harmonized network monitoring system,
introduces the architecture of the system and describes the development of the
presented system as well as introduces the software components of the presented
system.

4.1 Requirements
The main requirement for this system is monitoring heterogeneous fleet of network
devices and storing received data into a format that is suitable for advanced processing.
This main goal has been divided into the following requirements:

1. The system should be able to ingest data from state-of-the-art network moni-
toring protocols

2. Store the ingested data in an efficient database, that supports a large number
of simultaneous write-operations

3. Process the stored data into the chosen data model format

4. The system should be extendable and modular in order to add support for
additional protocols and devices in the future

5. Support additional processing of the stored data

The amount of network telemetry data can be enormous, therefore the database
should be efficient in order to handle large data sets. Having the ingested data stored
in a common data model eases further processing and analytics as the data can be
accessed using common and well-know characteristics. Modularity allows the system
to support heterogeneous fleet of devices, and can be extended as new devices or
vendors are introduced to the network. Additionally, it allows keeping the system
lightweight, as redundant components can be disabled or removed. The modularity
also supports the additional processing of the stored data, as data processing pipelines
can be integrated to the system introduced in this thesis.

Based on the literature review conducted in Chapter 3, the following protocols
were chosen for the proof of concept implementation:

• SNMP version 3

• NetFlow version 9

• IPFIX

• NETCONF

• Syslog

These protocols provide means to monitor network traffic, device conditions and
software running on the network devices.

47

4.2 Technologies
The system presented in this thesis builds on various technologies and software
components. Therefore, in order to understand the architecture, it is important
to introduce the used technologies. The technologies and components used are
open-source software. This along with suitable licensing allows contributing to the
development of the technologies. Additionally, the technologies are available for free.

Telegraf

Telegraf is a server agent capable of collecting and sending metrics from various
sources such as databases, network devices and Internet of things (IoT) sensors.
Telegraf has a plugin based architecture and therefore can be easily expanded. This
thesis updated Telegraf’s SNMP Trap plugin to support SNMPv3 and has been sent
to be included into future releases of Telegraf [91]. The plugins are divided into
four categories: input, output, aggregator and processor. Input plugins are used to
collect measurements from various sources such as SNMP, Syslog, HTTP or CPU
statistics. Output plugins are used to write data to message pipelines or databases,
for example. In addition to the output plugins, Telegraf supports multiple data
formats such as Carbon2, Graphite, InfluxDB Line Protocol, JSON, ServiceNow
Metrics and SplunkMetric [92]–[97]. Aggregator plugins create new metrics based on
collected metrics. For example, Aggregator plugins can merge metrics and create
histograms. Processor plugins modify the metrics as they are collected by converting
field types, processing values using regular expressions or renaming tags, for example.
[94]

InfluxDB

InfluDB is a time-series database designed for high performance write and query
operations and can handle millions of writes per second. It provides an SQL-like
query language, InfluxQL, which supports regular expressions, arithmetic operations
and functions specific to time-series data. Use cases for InfluxDB include DevOps
monitoring, real-time analytics and internet-of-things (IOT) sensor data. InfluxDB
stores data as points, where a single point contains a timestamp, a measurement,
tags and fields. Measurement is a name describing the stored data and SQL database
equivalent would be a table. Fields store the actual data and may contain strings,
floats, integers or booleans. Tags are used to store metadata and are always stored as
strings regardless of the actual value. Tags are indexed and therefore recommended
as using tags makes database queries faster. InfluxDB accepts data in various formats
with the InfluxDB line protocol being the preferred one. The other supported formats
are collectd, Graphite, OpenTSDB and Prometheus [98][93][99][100]. Supported
protocols are HTTP or UDP depending on the format. [94]

48

Kapacitor

Kapacitor is a real-time stream processing engine created by InfluxData and it is a
part of InfluxData’s TICK-stack (Telegraf, InfluxDB, Chronograf, Kapacitor). It can
process stream data in real-time, provide alerting services and its interfaces allow
integrating additional data processing engines. Kapacitor uses its own TICKscript
to control processing of incoming data and can be augmented with user-defined
functions (UDFs). Documentation and examples for writing UDFs in Golang and
Python are provided, however UDFs can be written in any programming language.
[94]

Docker

Docker is a virtualization solution that leverages containers. Containers share the
kernel with the host operating system, thus having less overhead thank virtual
machines. Docker utilizes several kernel-level features wrapping them in a simple
interface. These features include Linux Containers (LXC), control groups (cgroups)
and namespaces. This allows Docker to isolate Containers from each other and the
host machine. [101]

Apache Kafka

Apache Kafka is a distributed streaming platform, that allows publishing and sub-
scribing to message streams. The message streams are categorized as topics allowing
clients to subscribe only to relevant information. Kafka brokers require one or more
Apache Zookeeper instances to coordinate the brokers. Zookeeper also stores meta-
data for the Kafka instances, however, it does not contribute to message processing.
[102]

vFlow

Verizon’s vFlow is a flow collector supporting IPFIX, sFlow, NetFlow v5 and v9
protocols. It can produce messages based on decoded flow packets to multiple outputs
including Kafka, NATS and NSQ using JSON format. However, it does not decode
NetFlow v9 nor IPFIX fields to field names. It can be scaled horizontally and has
good performance as it is able to process up to thousand IPFIX packets per second
on a computer with two processor cores and 64 megabytes of memory. [103]

4.3 Data model
Based on the literature review conducted in Chapter 2, Apache Spot Open Data
Model (ODM) was chosen. The model has a simple flat structure that is suitable for
time-series databases as they are not designed for hierarchical data. Additionally,
the model provides concise implementation details and has fields suitable for storing
network state data. The data model fields were analyzed in order to identify which
fields are likely used to query data and thus should be indexed in the database. This

49

step was crucial as InfluxDB separates indexed tags and non-indexed values. The
identified field were marked to be processed as tags by the processing component.

Device identification

An important aspect in network monitoring is the ability to identify the origins of
the events and log messages. In relatively static networks, IP-addresses can be used
to distinguish devices. However, not all protocols send IP-address as part of the
protocol message. For example, Syslog prefers hostname over IP-address as described
in Section 3.3. Therefore, device configurations should be carefully reviewed. The
presented system uses IP-addresses as the primary identification and hostnames are
used to complement the address information if available.

Deviations

The implemented data model has few deviations from the data model specification. If
a field that is not known to the data model is encountered, it is stored in the database
as is instead of utilizing the additional_attrs field. Using this field would require
parsing the unknown fields into a JSON format string, which cannot be indexed by
InfluxDB. This decision allows more effective queries for the database and requires
less parsing. Additionally, InfluxDB only supports four data types, whereas ODM
supports eight. For most part, this does not cause any issues as bigintegers and
longs can be stored as InfluxDB integers, for example. However, InfluxDB does not
support binary data or Maps, these data types could be stored as strings by base64
encoding the binary data and dumping Maps to JSON-strings. However, the data
model only uses binary type for user profile pictures and thus it does not affect the
use case presented in this thesis. Additionally, IP-addresses are stored as strings
instead of integers, as having the addresses in a human readable format increases
usability.

4.4 Architecture and implementation
The architecture of this system is divided to data ingestion, storage and processing.
An additional component can be utilized for visualizing data, but it is not a mandatory
part of the system. The system architecture is visualized in Figure 6. On a networking
perspective, the system is divided into two domains: internal and external. Internal
network consists of storage and processing and external contains only ingestion. The
rationale behind this division is to protect the collected data, while exposing the
endpoints used to collect the data.

InfluxData’s TICK-stack (Telegraf, InfluxDB, Chronograf, Kapacitor) was chosen
as a base for the system as it has many suitable properties such as being open source,
actively developed and extensible [94].

The proposed system utilizes Docker as the virtualization solution and every soft-
ware component is run in a separate container. Containers responsible for ingesting
data utilize Docker’s host networking in contrast to the database and processing

50

Figure 6: System architecture

components utilizing Docker’s bridge-networking. Docker’s bridge-networking em-
ploys network address translation (NAT), which translates source and destination
addresses in order to host multiple containers behind a single IP-address. As some of
the network monitoring protocols utilize UDP as a transport layer protocol and its
source IP header to identify host, NAT introduces issues as this header value points
to the Docker host and not to the actual client.

Figure 7 presents the sequence diagram of the system. A network device sends
data to the system by using either a supported flow protocol, Apache Kafka message
stream or a supported monitoring protocol. Supported flow protocols are IPFIX
and NetFlow v9 and of monitoring protocols Syslog, SNMPv3 and NETCONF are
supported. If a flow protocol is used, then vFlow ingest the flow data, which is then
forwarded to Telegraf through the Apache Kafka message broker. If the network
device supports Kafka message streams with JSON format, data can be send through
Kafka to Telegraf. However, the preferable method is to use a supported monitoring
protocol and send data directly to Telegraf. Telegraf writes the raw data to the
database, from which Kapacitor reads the raw data and processes it before writing
it back to the database. The protocols used to transmit data within the system
are presented in Figure 6. Most interactions between components are carried over

51

Figure 7: System sequence diagram

HTTP, however, all interactions with the Apache Kafka component use the Kafka’s
own binary protocol.

Docker volumes are used to provide persistent storage to containers requiring
stateful operation such as the database. The volumes persist even if the associated
containers are removed.

Data collection

Influxdata’s Telegraf was chosen as the component for receiving data from network
monitoring protocols and other sources. To complement Telegraf’s capabilities,
Apache Kafka was introduced to the system to ingest data from sources that are
not supported by Telegraf, but support Kafka. Currently Telegraf does not support
any flow protocols and therefore Verizon’s vFlow was introduced to the system. It
is configured to capture NetFlow version 9 and IPFIX messages and forward them
to the Kafka broker in JSON format. Telegraf then ingests these protocol messages
from the corresponding Kafka topics. The system described in this thesis outputs
the ingested data using InfluxDB Line Protocol as InfluxDB was chosen as the data
storage. Before inserting collected data into the database, Telegraf converts all fields
into lowercase as processing the data in to the data model becomes easier.

Processing

Kapacitor utilizes several user-defined functions in order to parse NetFlow and IPFIX
messages into a human-readable format and to map the incoming data to the data
model. The user-defined function responsible for mapping the data into the data
model reads the incoming data sets, translates fields to data model fields and converts
data to a correct type, such as an integer. Any fields that cannot be mapped to
the data model, are stored with the original field names in order to provide better
usability for the data. The relations between the data model and incoming data are
defined in a YAML file (Yet Another Markup Language). At runtime the YAML file

52

is read by the processing component and imported as a Python dictionary. Data
model field names are used as keys in the dictionary and key-related values are also
dictionaries. The sub-dictionaries contain four attributes: is_tag, type, fields and
values. Attribute type determines the data type as which the field is saved to the
database. The types used in this thesis deviate from the Apache Spot Open Data
Model, as Python does not make distinction between integers and longs, for example.
However, this does not affect the system, as Python internally handles large integers
as longs. values is a list of field values that should be translated. For example, if
a fields "protocol" is observed with a value of zero, then the value inserted to the
database would be "HOPOPT" as presented in Listing 19. Attribute fields lists the
incoming fields that should be mapped to the data model field in question. Listing
19 presents an excerpt from the data model YAML file. The data model format data
is stored in a different database than the raw data. This allows utilizing the raw
data for other purposes if necessary. Even though processed and raw data reside
in different databases, both databases are located in the same database instance.
However, the system architecture allows adding an additional InfluxDB instance to
separate raw and parsed data sets or to provide redundancy.

1 msg:
2 is_tag : false
3 type: int
4 fields :
5 - INFO_MSG
6 - message
7 n_proto :
8 is_tag : false
9 type: str

10 fields :
11 - protocol
12 - protocolIdentifier
13 values :
14 "0": HOPOPT
15 "1": ICMP
16 "2": IGMP
17 "3": GGP
18 "4": IPv4
19 "5": ST
20 "6": TCP

Listing 19: Excerpt from the data model YAML file

Storage

The system uses two databases located in a single instance of InfluxDB. One
database is used to store the raw data from Telegraf and another is used to store the
data model formatted data. InfluxDB runs on a default configuration and therefore
performance optimizations and security improvements could be achieved by reviewing
the configuration. For example, the Time-Series Index (TSI) could be reviewed as

53

InfluxData states that it should be a better option for a large number of unique
time-series measurements than the default Time-Structure Merge Tree [94].

4.5 Summary
This chapter discussed the requirements and the implementation details of the
presented system as well as presented the used software components. The presented
system supports various modern network monitoring protocols with the option of
extending the system. Additionally, the system stores the collected data in a common
data model format. However, certain alterations to the data model had to be made
in order to use it in a more effective manner.

54

5 Evaluation
This chapter focuses on three aspects: protocol overhead, value provided by use of a
common data model and the effectiveness of the chosen data model. Additionally,
possible improvements are discussed as well as the fulfillment of requirements.

5.1 Protocol overhead
Network protocols typically transport information other than application data, which
is used to carry session information or metadata, for example. This non-payload
data is referred as protocol overhead as it does not contribute to the actual carried
information. This section focuses on the overhead of the application layer. Therefore,
overhead caused by other layers of the networking stack is not reviewed as many
of the protocols support multiple transports. More specifically, this section focuses
on the overheads of a single protocol operation. Depending on the protocol, a
single protocol operation may require multiple messages to be exchanged in order to
complete the operation. As the amount of fields transported in a single message can
vary significantly, this thesis evaluates only the absolute overhead instead of relative.

Understanding the overhead of various network monitoring protocols is important
as network devices may locate in constricted networks were bandwidth is scarce. In
such networks, protocols with less overhead are preferable as they do not waste the
limited network capacity.

NetFlow v9 & IPFIX

NetFlow v9 and IPFIX are one-way protocols and therefore only the exporter sends
messages. Thus a single protocol operation can be completed in a single message.
In order to a transmit a single field of information using either of these protocols,
a template has to be sent in addition to the payload. Therefore, as a minimum a
protocol header, a template FlowSet and a Data FlowSet are required to form an
initial message.

NetFlow v9 header has two fields with the length of two bytes and four fields
of four bytes. Therefore, the header introduces an overhead of 20 bytes. As IPFIX
dropped the sysUpTime field, the header is smaller with the length of 16 bytes.

Data FlowSet headers contain SetID and Length fields contributing two bytes
each towards overhead, thus resulting in a 4 byte overhead. Additionally, the data
FlowSet and record formats are similar for NetFlow v9 and IPFIX and thus the
overhead caused by them is equivalent for both protocols. Besides the header, data
FlowSets only contain actual payload data. Template FlowSets are required to be
sent before data FlowSets in order for the collector to decode the data FlowSets.
Therefore, the template FlowSets are counted as overhead. NetFlow v9 and IPFIX
share the eight byte template FlowSet header. However, the template format differs
for both protocols. NetFlow v9 utilizes field type and length fields to describe the
incoming data fields. Both the type and length fields are two bytes. IPFIX uses its
own field specifier format, which can be either 4 or 8 bytes in length, depending on

55

whether generic or vendor proprietary fields are described. Vendor proprietary being
eight bytes in length. Therefore, the overhead caused by template FlowSets is at least
12 bytes for both NetFlow v9 and IPFIX, when a single generic field is described in
the template FlowSet. When combining packet header, data FlowSet header and
template FlowSet overheads, an overhead of 36 bytes is required for NetFlow v9 and
32 byte overhead for IPFIX in order to transmit a single field from the exporter
to the collector. However, this overhead applies only for the initial message as the
collector caches the template and thus the template can be omitted from the future
messages. Therefore, the overhead for the subsequent messages utilizing the same
template is 24 bytes for NetFlow v9 and 20 bytes for IPFIX. Additionally, the field
length can vary from a single byte to a large number, thus affecting the overhead to
payload ratio.

SNMP

SNMP supports both solicited and unsolicited messages. For unsolicited messages
such as SNMPv2-Traps, no state information is required and thus the overhead comes
from the message headers. As for solicited messages, the message format is the same
as for unsolicited, therefore, the overhead is effectively twice the of the unsolicited
case.

SNMP version 3 packet format presented in Section 3.2 consists of a ten field header
and a payload. SNMP uses basic encoding rules (BER) to encode the values into a
packet. A SNMPv3 packet has byte 30 as the first byte indicating a SEQUENCE
followed by bytes indicating SEQUENCE length. As SNMP implementations are
required to support messages at least 484 octets in length and seven bits can only
represent values up to 128, at least two bytes are required to represent the length of
a SNMP message. Due BER, only seven bits of a byte are available for indicating
the length as the last bit is used to indicate whether multiple bytes are required to
represent the length value.

The version field requires three bytes, due to first two bytes being the BER
type and length and the actual value being a single byte integer. HeaderData is
a SEQUENCE containing msgID, msgMaxSize, msgFlags and msgSecurityModel
fields. The encoding of a SEQUENCE requires two bytes, the BER type and length.
The msgID field may contain integer values from 0 to 2147483647, and thus can
be represented with four bytes or less, depending on the value. Therefore, the
space requirement varies from three to six bytes, when including the BER type and
length. The msgMaxSize value varies from 484 to 2147483647 and thus requires
minimum of two bytes and maximum of four bytes for the value itself. Including
the type and length bytes, the space requirement and thus the overhead is four to
six bytes. The msgFlags field utilizes a single byte to indicate several flags, and
the space requirement is three bytes when including the BER type and length.
Even though msgSecurityModel may contain values from 1 to 2147483647, current
specifications only reference values that could be presented using a single byte as
described in Section 3.2. Therefore, the msgSecurityModel field requires three bytes.
The msgSecurityParameters is an octet string and the length depends on the used

56

security model.
The user-based security model defines the msgSecurityParameters octet string as

a SEQUENCE. Therefore, the msgSecurityParameters field starts with a octet string
type and length followed by a SEQUENCE type and length resulting in at least
four byte overhead. However, this depends on the length of the security parameters.
The msgAuthoritativeEngineID field has the type of an octet string and as the
snmpEngineID is defined to be an octet string with the length ranging from 5 to 32
bytes [46], the overhead caused by msgAuthoritativeEngineID field is 7 to 34 bytes
when accounting the BER type and length. The msgAuthoritativeEngineBoots and
msgAuthoritativeEngineTime are specified to contain integer values within range
from 0 to 2147483647. This range can be represented using a four byte or smaller
integer value. Along with the BER type and length indicators, these fields cause
an overhead of 3 to 6 bytes each. The msgUserName field is an octet string that
is defined to contain up to 32 characters therefore causing overhead of 3 to 34
bytes. Even though the specification allows the msgUserName field to be empty,
some implementations do not allow empty values. One example of such software
is the open source net-snmp. If the security setting is no authentication and no
privacy, msgAuthenticationParameters and msgPrivacyParameters are empty. Thus
the overhead caused by these two fields is 4 bytes as the type and length of these
fields have to be specified. If authentication or privacy is used, then the lengths of
these fields depend on the used encryption and authentication protocols. In total
the overhead caused by the user-based security model is at least 23 bytes.

The scopedPDU is typed as a SEQUENCE and consists of ContextEngineId,
ContextName and PDU fields. In order to describe the scopedPDU length, at least
two bytes are required. Additionally, the upper limit depends on the maximum
number of variable-bindings. Therefore, in addition to its fields, the scopedPDU
contributes at least three bytes towards the protocol overhead. The ContextEngineId
and ContextName fields are typed as octet strings and their values depend on the
implementation [46]. However, these parameters can be blank and therefore both
only affecting the overhead by two bytes due to the BER type and value indicators.

The PDU identifier is an implicit identifier [47], which is encoded to the first
byte of the PDU. This yields an overhead of two bytes as determined by the
BER. Request-id, error-index and error-status fields are typed as integers. Of these
fields, the error-status field may have values ranging from 1 to 18 and thus can be
represented with a single byte. However, request-id and error-index may contain
values up to 214783647. Therefore, the space requirement ranges from one to four
bytes. After taking the BER type and length bytes into account, these three field
yield an overhead of nine to fifteen bytes. The variable-bindings field contains the
actual payload and therefore does not affect the overhead. Adding the two bytes
from the beginning of the PDU, the actual overhead of the PDU is 11 to 17 bytes.

The different fields and their overheads are presented in Table 21. The minimum
overhead for a non-acknowledged message such as a trap is at least 60 bytes. If
a protocol operation requiring a response is used, then the overhead is effectively
doubled as the message format is similar for different protocol operations. Therefore,
for a get operation the overhead is at least 120 bytes.

57

Table 21: SNMPv3 message encoding and overhead

BER
Type

Length
(octets)

Container Field Overhead
(bytes)

30 <length> SNMPv3Message SEQUENCE > 3
02 01 msgVersion 3
30 <length> HeaderData SEQUENCE > 2
02 01-04 msgID 3-6
02 02-04 msgMaxSize 4-6
04 01 msgFlags 3
02 01 msgSecurityModel 3
04 <length> msgSecurityParameters OCTET STRING > 2
30 <length> UsmSecurityParameters SEQUENCE > 2
04 05-32 msgAuthoritativeEngineID 7-34
02 01-04 msgAuthoritativeEngineBoots 3-6
02 01-04 msgAuthoritativeEngineTime 3-6
04 00-32 msgUserName > 2
04 <length> msgAuthenticationParameters > 2
04 <length> msgPrivacyParameters > 2
30 <length> scopedPDU SEQUENCE > 2
04 <length> ContextEngineId > 2
04 <length> ContextName > 2
04 >01 PDU identifier > 2
02 <length> request-id > 3
02 <length> error-index > 3
02 01 error-status > 2

Sum > 60

Syslog

Syslog does not utilize any application level protocol headers and thus the payload
contains only the message format presented in Section 3.3. Furthermore, Syslog
does not require any state information and only unsolicited messages are supported.
Therefore, Syslog does not have any application layer protocol overhead and the
only overhead affecting Syslog results from transport, network and data link layer
protocols. Additionally, Syslog messages are unsolicited, which reduces the lower
layer overhead as the information is not requested nor acknowledged. However, it
should be noted that if TCP is used, then the message is acknowledged on the
transport layer, but not on the application layer.

As the Syslog protocol is a textual protocol, the protocol message itself could be
optimized further by utilizing binary encoding. For example, the priority indicator
requires three to five characters depending on the actual priority value and thus
requires three to five bytes. The priority value can vary from 0 to 999, which can

58

be represented using a two byte integer. Therefore, depending on the priority value,
one or multiple bytes could be saved. Additionally, this applies to other fields that
could be represented as integers. However, varying string fields such as hostname and
message would require additional information to be transmitted in order to detect
boundaries of these fields.

NETCONF

Regarding NETCONF, this thesis considers the protocol operations along with
their attributes to be part of the payload, whereas everything else is considered as
overhead.

NETCONF requires both parties of a connection to send a hello message in
order to exchange capabilities before any protocol operations can be carried out.
This ensures the compatibility between a client and a server. The hello message is
similar for both parties, however, the server sends an additional session-id parameter
in the message. As a minimum, NETCONF requires that the base capability is
advertised and thus the minimum overhead can be acquired by evaluating a message
with only the base capability. Listings 20 and 21 present minimal hello messages.
Assuming the session-id is a one digit integer and only the base capability is advertised,

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <hello xmlns =" urn:ietf: params :xml:ns: netconf :base :1.0" >
3 <capabilities >
4 <capability >urn:ietf: params : netconf :base :1.1 </ capability >
5 </ capabilities >
6 <session -id >2</ session -id >
7 </hello >

Listing 20: Minimal server hello

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <hello xmlns =" urn:ietf: params :xml:ns: netconf :base :1.0" >
3 <capabilities >
4 <capability >urn:ietf: params : netconf :base :1.1 </ capability >
5 </ capabilities >
6 </hello >

Listing 21: Minimal client hello

the minimum hello message length for the server is 175 bytes and 149 bytes for
the client, which results in a minimum of 324 byte overhead for the connection.
This evaluating assumes that the XML content is minified by removing redundant
whitespace characters. Describing additional capabilities increases the overhead.

The client protocol operation consists of xml and rpc tags and the protocol
operation along with optional parameters. Of these elements, the xml and rpc tags
are considered as overhead. Furthermore, the minimal message-id parameter would
a single digit integer as described in Section 3.4. Therefore, the overhead is for the

59

client initiated protocol operation is 112 bytes. Listing 22 presents an example of
the get-config protocol operation, which queries the running config.

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <rpc
3 xmlns =" urn:ietf: params :xml:ns: netconf :base :1.0" message -id ="1" >
4 <get -config >
5 <source >
6 <running />
7 </source >
8 </get -config >
9 </rpc >

Listing 22: Get-config example

The server reply operation resembles the client operation, as the main difference
being an rpc-reply tag instead of an rpc tag. Therefore, the overhead is similar to
the client operation and the actual overhead is 124 bytes. Listing 23 presents a
server-reply message. The contents of the data tag are redacted in order to improve
readability as they are not relevant for the overhead analysis due to being part of
the payload.

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <rpc -reply
3 xmlns =" urn:ietf: params :xml:ns: netconf :base :1.0" message -id ="1" >
4 <data >
5 ... response data ...
6 </data >
7 </rpc -reply >

Listing 23: Server response to get-config protocol operation

Combining the overhead caused by the hello messages, the client protocol operation
and the server response, an overhead of 560 bytes is acquired. Additionally, the
connection teardown requires an additional protocol operation, which can be counted
entirely as overhead as it does not contribute to the payload. Listing 24 presents
the messages sent by the client and the server in order to close the connection. The
lengths of these messages are 128 and 129 bytes respectively, thus resulting in a 257
byte overhead. When taking this into account, the overall overhead accumulates to
817 bytes. However, the hello and close-connection messages have to be only sent
once per connection and if only the actual protocol operation and its response are
examined, the overhead is 236 bytes. Therefore, the longevity of the connection
affects the overhead-to-payload ratio. However, the protocol operations and responses
still contain a significant amount of overhead.

NETCONF supports unsolicited notification from the server to the client after
the connection has been initiated. An example of such notification is presented
in Listing 25. As the rpc and xml tags were considered as overhead for the RPC
operations, the xml and notification tags are considered as overhead for notifications.

60

All tags contained within the notification-tags are considered to be part of the message
payload. After minimizing the message content, the parts considered as overhead are
125 bytes in length thus yielding an overhead less than half that of a get operation,
if counting both request and response.

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <rpc
3 xmlns =" urn:ietf: params :xml:ns: netconf :base :1.0" message -id ="2" >
4 <close - session />
5 </rpc >
6

7 <?xml version ="1.0" encoding ="UTF -8"? >
8 <rpc -reply
9 xmlns =" urn:ietf: params :xml:ns: netconf :base :1.0" message -id ="2" >

10 <ok/>
11 </rpc -reply >

Listing 24: Close session message exchange

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <notification xmlns =" urn:ietf: params :xml:ns: netconf : notification

:1.0" >
3 <eventTime >2007 -07 -08 T00 :10:00Z</ eventTime >
4 <event xmlns =" http :// example .com/event /1.0" >
5 <eventClass >state </ eventClass >
6 <reportingEntity >
7 <card >Ethernet0 </card >
8 </ reportingEntity >
9 <operState >enabled </ operState >

10 </event >
11 </ notification >

Listing 25: Notification example [73]

Summary

Of the evaluated protocols, NETCONF and Syslog are textual protocol whereas
IPFIX, NetFlow v9 and SNMPv3 use binary encoding. The large overhead for
NETCONF points out the main caveat of textual protocols; it is ineffective to use
textual conventions to represent data. However, the protocol messages are human-
readable without additional tools whereas binary protocols require additional tooling
in order to decode protocol messages into a human readable format. As this thesis
defined overhead as data contributing to the actual carried information, the Syslog
protocol does not have any overhead due to not having any headers. However, the
non-existent overhead does not imply that the protocol is effective as Syslog requires
a large number of bytes to represent timestamps or other information that could be
encoded into a small number of bytes. The summarized results of this section are
presented in Table 22.

61

Syslog, IPFIX and NetFlow v9 protocols utilize unsolicited messages, therefore
requiring only one protocol message to be sent to the receiver. Furthermore, this one
message often fits into a single network packet, thus minimizing overhead. NETCONF
requires multiple messages in order to initialize the connection, perform the required
operations and close the connection. This increases the overhead as many of these
messages do not contribute to the payload. SNMPv3 and NETCONF have protocol
operations for both solicited and unsolicited messages and thus the overhead depends
on the used operation. Additionally, based on the performed analysis, unsolicited
messages are recommended they typically reduce the overhead by a significant amount.
Of the used protocols, NETCONF and SNMPv3 are much more complex than Syslog,
IPFIX and NetFlow v9 as they can be also used to configure network devices in
addition to providing state information.

Table 22: Protocol overheads

Protocol Overhead for
a complete so-
licited message
exchange (bytes)

Solicited mes-
sage overhead
after initializing
the connection
(bytes)

Unsolicited mes-
sage overhead
after initializing
the connection
(bytes)

Syslog 0 N/A 0
IPFIX 32 N/A 16

NetFlow v9 36 N/A 20
SNMPv3 120 120 60

NETCONF 817 257 125

Little research has focused on the protocol overheads of the Syslog, IPFIX
and NetFlow v9 protocols. Regarding NetFlow v9, processing overhead has been
researched, however, the research did not consider the network protocol itself [104].
SNMP’s efficiency and features have been evaluated in multiple studies [105]–[109].
However, the overhead of the SNMP protocol itself was not discussed in these studies
and most of the studies utilized either SNMP version 2 or did not specify the used
version. However, the results obtained by this thesis can be compared to message
lengths presented in several studies [107][106].

In the 2006 study by Marinov and Schönwälder [107], SNMPv3 was used with
user-based security model and context engineID discovery requiring four packets and
a total of 668 bytes in order to carry out a single protocol operation. This leads to
approximately 167 bytes per message and when taking into account the 42 bytes of
Ethernet, IP and UDP headers and the 60 byte overhead evaluated by this thesis, the
amount of data is 66 bytes. However, the actual data amount in the study might be
less, as the user-based security model parameters affect the overhead. Nonetheless,
the figures obtained by this thesis are consistent with the study and thus are reliable.

In another study conducted in 2010 by Yu, Shayman and Rozenblit [106], SNMP
and NETCONF were compared . The version of the SNMP was not stated, however,

62

based on the bytes transferred the probable version is 2c. The study found out that
in order to obtain a single data object, NETCONF requires three packets and 1460
bytes. This thesis reviewed NETCONF to have an overhead 817 of bytes and thus
the payload would be 643 bytes. This number seems to be a reasonable size for a
large configuration element when taking the XML encoding into account.

Overall, the results obtained by this thesis appear to be dependable when com-
paring to related previous research. Additionally, this thesis found out that little
research has been carried out on network monitoring protocol overheads. Therefore,
additional research could be dedicated to evaluating these protocols on the aspect of
protocol overhead.

5.2 Information value
The value provided by having data mapped to a common data model, is evaluated by
assessing the quantity of fields per protocol that can be mapped to the data model.
This section only evaluates the quantity of the fields that can be mapped as the
presented system is designed for generic network monitoring and the information of
interest may vary between users of the system.

As flow-protocols have structured and predefined fields, it is relatively simple
to evaluate which fields can be mapped to the data model. However, not all of
these fields will be filled in every case. Therefore, packets from network devices are
evaluated in order to identify how the fields are used in real world scenarios.

Protocols such as NETCONF and SNMP rely on external data models for the
message fields, and thus it is not feasible or even possible to evaluate all fields.
Therefore, this thesis selects few definitions relevant to network monitoring and
evaluates those in order to obtain an estimate.

In addition to payload data, protocol headers are evaluated if they provide
additional information regarding the protocol and its operation. For example, SNMP’s
msgVersion header can be mapped to ODM’s snmp_version-field.

IPFIX & NetFlow v9

NetFlow v9 has 127 fields of which 24 are reserved fields, 8 are vendor proprietary and
2 deprecated. These 34 fields are excluded from the evaluation as they do not provide
any useful information. In addition to the data fields, the six NetFlow v9 header fields
should be also considered. Therefore, 99 fields contain usable information. Of these
fields, 19.19% could be mapped to the ODM. However, if additional fields introduced
with IPFIX are taken into account, the number of fields increases to 461 and the
percentage of mapped fields drops to 8.03%. IPFIX has 492 fields defined, of which
one is reserved, two are deprecated and 29 reserved for NetFlow v9 compatibility.
Additionally, the header contains five fields in contrasts to NetFlow’s six. Therefore,
465 fields contain useful information. As many of the fields are shared with NetFlow
v9, the percentage of mapped fields resembles that of NetFlow v9. For IPFIX, 7.74%
of the fields could be mapped to the ODM. However, not every field is sent with
every NetFlow message, therefore real world examples must be examined in order to

63

evaluate the practical value of usable fields. This thesis uses Ubiquiti’s EdgeRouter
X and Cisco’s CSR1000V routers as NetFlow v9 exporters in order to obtain protocol
messages. However, due to high variance in possible router configurations, this
thesis evaluates only simple use cases in order to obtain a baseline. Both routers
were configured as a simple routers with only simple static routes. Therefore, use
cases with Open Shortest Path First (OSPF), Border Gateway Protocol (BGP) or
Routing Information Protocol (RIP) protocols, for example, might yield different
results. Protocol packets were captured and decoded using the system presented
in this thesis and the fields included in these packets were evaluated against the
protocol mappings. For CSR1000v, the "original-input" record scheme was used.
The used record scheme determines the exported fields. Furthermore, the router
allows user defined record schemes, therefore only fields of interest can be exported
in order to reduce the amount of data. Thus the number of fields which could be
mapped to the ODM depends on the used record scheme. Edgerouter X sent 29
and 26 fields for NetFlow v9 and IPFIX respectively and this number includes the
protocol header fields. Of these fields, 41.38% for NetFlow v9 and 42.31% for IPFIX
could be mapped to the ODM. With CSR1000V using "original-input", 52.00% of
the incoming 26 fields could be mapped to the ODM. Furthermore, 50.00% of the 24
IPFIX fields could be mapped. When taking all the presented cases into account, the
average percentage of fields that could be mapped to the ODM was 31.52%. Table
23 presents the acquired results.

Table 23: Percentage of mapped fields in different scenarios

Case Percentage of mapped fields
NetFlow v9 19.19

NetFlow v9 with IPFIX extensions 8.03
IPFIX 7.74

Edgerouter NetFlow v9 41.38
Edgerouter IPFIX 42.31
CSR1000V IPFIX 50.00

CSR1000V NetFlow v9 52.00
Average 31.52

SNMP

SNMP uses MIBs to represent information, therefore the information value provided
by this system depends on the used MIBs. This section evaluates several MIBs in
order to evaluate SNMP’s information value. The following MIBs are evaluated:
BGP4-MIB, IF-MIB, IP-MIB, OSPF-MIB, RIPv2-MIB and SNMPv2-MIB. These MIBs
provide information regarding interfaces, common routing protocols and SNMP
itself. However, in contrast to NETCONF, SNMP does not differentiate state
and configuration data. Therefore, as this analysis takes all fields into account,

64

configuration fields are also evaluated. In addition to the MIBs, the information
transmitted in the SNMPv3 header is evaluated and the used security model is user-
based security model. Thus the following header fields are evaluated: msgVersion,
msgID, msgMaxSize, msgFlags, msgSecurityModel, msgAuthoritativeEngineID,
msgAuthoritativeEngineBoots, msgAuthoritativeEngineTime, msgUserName,
msgAuthenticationParameters and msgPrivacyParameters.

Of the 692 reviewed fields, 42 could be mapped to the Apache Spot Open Data
Model, which is 6.36 %. The evaluated MIBs provide very explicit information on
routing protocols and interfaces, which is difficult to map to a broad and generic
data model. Additionally, the MIBs contain fields dedicated for configuration data
in addition to state data.

Syslog

Syslog contains only a few fields, which are well documented, therefore mapping
values to the data model is simple and most fields could be mapped. However, the
structured-data field may contain vendor specific fields and thus the mapping of the
structured-data depends on the information source. Only the facility-field could not
be mapped to the ODM, if structured-data is excluded. Table 24 presents the Syslog
fields and their ODM counterparts.

Table 24: Syslog ODM mapping

Syslog field ODM field
version version

timestamp event_time
hostname dvc_host
app-name app

procid proc
msgid type

severity severity
facility –

structured-data –
msg msg

If structured-data is ignored then 88.89% of the incoming fields could be mapped
to the ODM. If structured-data is included as a field that cannot be mapped,
then the amount is reduced to 80.00%. As structured data may contain vendor-
specific information, this thesis evaluates only IANA assigned items defined in
[56][45][110][111][112] in order to obtain an estimate of the number of fields that
could be mapped to the ODM. When including IANA structured data items, the
percentage of fields which could be mapped to the ODM reduces to 26%. The main
cause is the information type, as ODM is not designed to contain information such
as pre-congestion notifications. Moreover, SNMP structured data contain only raw

65

information, which requires additional parsing in order to map it to the ODM.
As Syslog relies on the free form msg-field, more accurate information could be

gathered by parsing the field. However, this requires knowledge on the incoming
messages as otherwise false information could be obtained by improperly parsing
messages. Listing 26 presents a Syslog message ingested by Telegraf, that could be
parsed for additional information. From the example, field "service" could be filled

1 syslog , appname =systemd , facility =daemon , hostname = machine . testlab .
invalid , severity = warning version =1i, severity_code =4i,
facility_code =3i, timestamp =1591608708661616000i, procid ="1" ,
message =" nginx. service : Failed with result ’exit -code ’."
1591608708661756994

Listing 26: Telegram ingested Syslog message

with "nginx", "state" with "Failed" and "code" with "exit-code", thus increasing the
information extracted from the Syslog message. As more fields of the data model
are filled, the information value is also increased as categorization and searching
becomes quicker and easier.

Table 25: Percentage of mapped fields using Syslog

Case Percentage of mapped fields
Without structured-data 89%

With structured-data as non-mappable 80%
IANA structured-data 26%

Average 65%

NETCONF

In order to evaluate the information value provided by NETCONF, YANG data
models must be evaluated as NETCONF utilizes these models to provide state and
configuration information. Due to the large number of YANG models defined by
various organizations and vendors, only a limited sample is reviewed in this thesis.
Furthermore, as the scope of this thesis is network monitoring, only YANG elements
with the "config false" attribute are evaluated. These elements provides data regarding
the state of the network device, whereas "config true" elements contain configuration
data. Additionally, deprecated fields are excluded from the evaluation. As REST-
CONF utilizes same data models as NETCONF, analysis performed in this section
applies to RESTCONF also. IETF and OpenConfig models were chosen as both pro-
vide generic models that device vendors can implemented and enable vendor agnostic
operation. However, vendor specific models may provide more detailed information
than generic models. This thesis evaluates the following YANG-models: ietf-ip,
ietf-interfaces, ietf-routing, ietf-system, ietf-network, ietf-hardware,

66

openconfig-interfaces, openconfig-network-instance-l3, openconfig-if-ip
and openconfig-system. These models were chosen on the basis that they provide
core information regarding network device operation and network state.

Table 26 presents the results obtained by evaluating the YANG-models and
mapping the fields to the ODM. Of the evaluated fields, 20.81% could be mapped
to the ODM. For the IETF models combined, 30.88% of the field could be mapped
whereas for OpenConfig models only 15.50%. When comparing IETF and OpenConfig
models, OpenConfig models contained more detailed information whereas IETF
models are more generic and contained higher-level information.

Table 26: Percentage of mapped fields for NETCONF

Case Percentage of mapped fields Number of fields
IETF 30.88% 68

OpenConfig 15.50% 129
Combined 20.81 % 197

Summary

The common data model provides more value as it allows retrieval of all events
related to a single network element using simple queries. If all protocols were stored
using separate data models, either complex queries has to be used or it might not
even be possible to retrieve all events related to a single network element. Table 27
presents the summary of the evaluated protocols in different cases. From the results
it can be deduced that when the granularity of the protocol increases, decreases
the number of fields that can be mapped to the data model. When comparing the
results between protocols, the variance is significant as the highest percentage being
65.00% and the lowest being 6.36%. However, the Syslog results can be seen as an
outlier, as it provides significantly less detailed information than the other protocols.
Also, the flow protocols had seemingly low numbers, however, when looking at the
real world examples of simple cases, the number grew significantly. The difference
between NETCONF and SNMP is quite large, when taking into account that both
were evaluated using IETF models. However, this difference might be explained by
the fact that only fields containing state data were evaluated for NETCONF whereas
for SNMP all fields were evaluated. SNMP does not separate configuration data
from state data in MIB definitions and therefore all fields had to be evaluated.

5.3 Comparison
This section compares the chosen Apache Spot Open Data Model (ODM) against
Elasticsearch’s Elastic Common Schema (ECS) in order to verify the suitability of
the data model as well as to detect caveats and possible improvements. The data

67

Table 27: Percentage of mapped fields using different protocols

Case Percentage of mapped fields
NetFlow v9 19.19

NetFlow v9 with IPFIX extensions 8.03
IPFIX 7.74

SNMPv3 6.36
NETCONF 20.81

Syslog 65.00
Mean 20.81

Median 13.28

models are compared using the following criteria: structure, suitability for network
monitoring, extensibility, data format and state of the project.

As the ODM has a flat data model without any hierarchy within entries, it is
more suitable for time-series databases, which typically do not support hierarchical
data. Furthermore, the ECS is designed as a hierarchical model and thus imposes
requirements on the used database. However, the hierarchical structure can be
represented with dots implying the levels of hierarchy in field names as it is done in
ECS’ documentation. As the presented system is built on a time-series database, a
flat data model is more suitable than a hierarchical model.

The ODM has nine data types: long, int, string, float, bigint, boolean, map,
double and binary. The ECS has five different types: string, long, float, boolean and
object. However, the InfluxDB database chosen for the proposed system stores values
using four different types: double, integer, boolean and string. Of the types used by
the data models, binary data is the only type that cannot be casted directly to any
of the types. However, the only field using binary data is ODM’s user profile picture,
which is not relevant for this thesis. Additionally, the database does not support
maps nor objects, however, these types can be stored as strings, which hand prevents
effective indexing of those fields. Overall, both of the models utilize similar data
types that are for the most part compatible with the database. As the differences
are minimal, the result for the data format criterion is a tie.

The suitability for network monitoring was evaluated by assessing the number
of fields suitable for storing network data. The Elastic Common Schema has 199
fields suitable for this purpose and the Apache Spot Open Data Model has 227.
However, the quality of stored data is similar between these data models. Both can
store information regarding network flows, their origins and destinations, events,
protocols and generic host information. However, the ODM has fields for certain
networks protocols such as SNMP, FTP, SMTP and SSH, which the ECS does not
have. Therefore, the Apache Spot ODM can be regarded as a better solution for
network monitoring than the ECS.

Both data models provide a mechanism for extending the models beyond the
initially defined fields. The ODM utilizes the additional_attrs field to contain

68

fields that cannot be mapped to the data model whereas the ECS stores additional
data with custom field names. Therefore, the ECS provides better extensibility as the
data model provides an easy and accessible way of extending the model. Additionally,
in the context of a flat time-series database, custom fields can be indexed more easily
than a JSON object used in the ODM. Both data models provide guidelines on
contributing to the development of the model and accept third-party contributions.

The Elastic Common Schema and the Apache Spot Open Data Model are open
source projects and therefore anyone can contribute to the development. However,
the Elastic Common Schema is also maintained by Elastic whereas Apache Spot
Open Data Model is supported by Apache but not directly maintained by it. GitHub
branch SPOT-181_ODM on GitHub was last updated on 11.9.2019 [17]. This
branch contains the development of the Apache Spot Open Data Model. The Elastic
Common Schema GitHub repository was last updated on 29.7.2020 and latest release
was made on 7.3.2020 [22]. Therefore, the Elastic Common Schema is more actively
maintained and its documentation is more mature than Apache Spot Open Data
Model’s as the ODM is missing some fields definitions. On these grounds, the Elastic
Common Schema is a better option of these two alternatives.

Table 28 presents the summary of the performed analysis. It was found that
Apache Spot Open Data Model is suitable for network monitoring and the better
alternative of the reviewed models. However, the Elastic Common Schema is a
capable alternative and in some cases a better solution. The most weight was
given on suitability to network monitoring and structure as these factors affected
the development of the presented system more than extensibility or other assessed
factors.

Table 28: Summary of data model analysis

Criteria Better option
Structure ODM

Data format Tie
Suitability for network monitoring ODM

Extensibility ECS
State of the project ECS

Overall ODM

5.4 Summary
This chapter reviewed the overheads of network monitoring protocols, evaluated the
information value provided by the presented system and the suitability of the used
data model as well as verified the system to fulfil the requirements imposed on to it.
The overhead of network monitoring protocols and the information value provided
by the protocols were found to vary significantly between protocols. However, the
information value provided by the system was significant enough to justify the system.

69

The system was found to fulfil the imposed requirements and development areas
were identified. The requirements set for the system proposed in this thesis were:

1. The system should be able to ingest data from state-of-the-art network moni-
toring protocols

2. Store the ingested data in an efficient database, that supports a large number
of simultaneous write-operations

3. Process the stored data into chosen data model format

4. The system should be extendable and modular in order to add support for
additional protocols and devices in the future

5. Support additional processing of the stored data

The proposed system can ingest data from SNMP, NETCONF, IPFIX, NetFlow v9
and Syslog. Additional protocols are supported by the data ingestion components,
however, they were not implemented as a part of this thesis. Thus the requirement
number 1 is fulfilled. The chosen time-series database can store vast amounts of
data points and provides effective means to index and retrieve data thus fulfilling the
second requirement. The proposed system and the proof-of-concept implementation
can process the incoming data using Kapacitor into the chosen data model and can
be modified with ease to support additional models and databases. The architecture
and structure of the system is modular, allowing changes to single components and
also extensions to the system. Additionally, Telegraf utilizes a plugin based design,
allowing users to develop their own plugins for additional protocols. The chosen
Kapacitor data processing component allows additional processing and forwarding
the data to third-party data processing engines. Therefore, requirement number five
is fulfilled.

By identifying what information is required and what can be provided by var-
ious devices, an end user may extend the data model, either by utilizing the
additional_attrs -field and parsing the incoming data into a common field or
by extending the data model itself. Additionally, free form fields could parsed using
dedicated parsers in order to acquire more detailed information. Furthermore, some
protocol message fields cannot be mapped to the ODM without parsing the field.
Listing 27 presents an example, where a field contains information regarding bytes
transferred during connection along with source and destination hosts. However, this
information is stored in the field name besides the byte count and therefore cannot
be mapped to the ODM easily. This field could be parsed to format presented in
Table 29. However, parsing these messages requires knowledge on the incoming fields
and thus implementing these dedicated parsers is a time consuming task.

70

1 snmp_trap ,mib=CISCOTRAP -MIB ,name= tcpConnectionClose ,oid
=.1.3.6.1.4.1.9.0.1 , source =192.168.122.121 , version =2c
loctcpconnoutbytes .192.168.122.121.22.192.168.122.1.33828=31067i
, tslineuser .2=" cisco", sysuptimeinstance =29886i, tslinesestype
.2.1=6i, tcpconnstate .192.168.122.121.22.192.168.122.1.33828=5i,
loctcpconnelapsed .192.168.122.121.22.192.168.122.1.33828=22702i,
loctcpconninbytes .192.168.122.121.22.192.168.122.1.33828=18393 i
1591609191956165531

Listing 27: TcpConnectionClose SNMP Trap message

Table 29: Example of a parsed SNMP field

ODM field Value
dst_ip4 192.168.122.121
dst_port 22
src_ip4 192.168.122.1
src_port 33828
in_bytes 18393i

71

6 Conclusions
This thesis has designed and developed a novel network monitoring system, which
harmonizes incoming data into a common data model. The proposed system consists
of three main components: a data ingestion, a processing and a time-series database.
The architecture of the system is modular allowing changes to only one of the
components without affecting the others. The system accepts data from multiple
network monitoring protocols and stores it to the database using a common data
model. The data ingestion component accepts data from several protocols and
formats the data to InfluxDB line protocol in order to insert it to the database. The
raw data is read from the database by the processing component, which processes it
into the chosen data model before inserting it back to the database.

The presented system was developed by first outlining the requirements for the
system, then a literature review was conducted regarding state-of-the-art networking
monitoring protocols and data models. The defined requirements along with the
knowledge attained from the literature review were used to design the architecture
of the system. Additionally, various database, data processing and data ingestion
solutions were researched in order to choose suitable components for the system.

The proposed system was found to fulfil the set requirements. The results indicate
that the chosen data model is suitable for network monitoring and provides additional
value when used with state of the art network monitoring protocols. Approximately
21% of the collected information could be harmonizing to the chosen data model.
Additionally, the median of the results was 13.28%. However, the variance of the
results was significant as the lowest value was 6.36% and the highest was 65.00%.
The variance originates from the different design perspectives of the protocols and
the evaluated MIB and YANG data models as only a subset of these models could be
evaluated in the context of this thesis. The protocol overheads also had significant
variance as the results ranged from 0 to 817 bytes. The cause for these results was
the research setting, where the entire message exchange was evaluated. Some of
the protocols require capability exchanges and other stateful messages in order to
transmit monitoring information and such messages were considered as overhead.
When comparing only the actual protocol operations, binary protocols and protocols
requiring no state information were found as the most effective. However, the Syslog
protocol was found to be an outlier as it is a textual protocol and had the least
overhead.

The system presented in this thesis only collects and stores the monitoring data
and it does not process or utilize the data further, thus only acting as a data lake.
Therefore, a data analytics component could be added to the system in order to detect
error conditions and other anomalies in the network. This would increase the value
provided by the system as the manual work of analyzing the data would be reduced.
The data processing component responsible for mapping incoming data into the
data model is written in Python. However, Python is not an efficient programming
language and thus the system might not be able to handle high loads. Therefore,
the component could be written in Golang in order to increase the component’s
performance. Additionally, even though the system is designed for monitoring network

72

state and network conditions, the modular structure allows altering the use case. For
example, by substituting or extending the data model, the system could be used to
monitor cyber security incidents or device configuration changes.

73

References
[1] K. Finnerty, S. Fullick, H. Motha, M. Button, V. Wang, and N. S. Jayesh,

“Cyber security breaches survey 2019: Statistical release”, p. 66, 4th Mar.
2019. [Online]. Available: https://researchportal.port.ac.uk/portal/
en/publications/cyber-security-breaches-survey-2019(293aa2ac-
0a83-4a2e-a6e8-d2f2252810a2).html (visited on 14. 03. 2020).

[2] FireEye. (3rd Mar. 2020). M-trends cyber security trends, FireEye. Library
Catalog: www.fireeye.com, [Online]. Available: https://www.fireeye.
com/current-threats/annual-threat-report/mtrends.html (visited on
05. 05. 2020).

[3] F. Attila, “Monitoring Modern Networks with Network Telemetry”, Bachelor’s
thesis, Budapest University of Technology and Economics, Budapest, 2019,
76 pp. [Online]. Available: https://www.hte.hu/documents/11801/
4608612/Attila_FABIAN_BSc.pdf (visited on 15. 03. 2020).

[4] C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi: Monitoring
and Detecting Nefarious Behavior in Real Time, 1st edition. Apress, 2018,
193 pp., isbn: 978-1-4842-3699-4.

[5] R. Olups, Zabbix Network Monitoring - Second Edition, 2nd edition. Packt
Publishing, 2016, 754 pp., isbn: 978-1-78216-128-8. [Online]. Available:
https://www.safaribooksonline.com/library/view/-/9781782161288/.

[6] Z. Chen, G. Xu, V. Mahalingam, L. Ge, J. Nguyen, W. Yu, and C. Lu,
“A cloud computing based network monitoring and threat detection system
for critical infrastructures”, Big Data Research, Special Issue on Big Data
from Networking Perspective, vol. 3, pp. 10–23, 1st Apr. 2016, issn: 2214-
5796. doi: 10.1016/j.bdr.2015.11.002. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S2214579615000520
(visited on 24. 02. 2020).

[7] H. Hui and L. Bai, “Research and development of centrlized log management
system based on syslog protocol”, in Proceedings of the 2012 International
Conference on Cybernetics and Informatics, S. Zhong, Ed., vol. 163, Series
Title: Lecture Notes in Electrical Engineering, New York, NY: Springer New
York, 2014, pp. 1949–1956, isbn: 978-1-4614-3872-4. doi: 10.1007/978-1-
4614-3872-4_249. [Online]. Available: http://link.springer.com/10.
1007/978-1-4614-3872-4_249 (visited on 14. 05. 2020).

[8] V. Mehta, Icinga Network Monitoring, 1st edition. Packt Publishing, 21st Nov.
2013, 118 pp., isbn: 978-1-78328-229-6.

[9] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detec-
tion system: A comprehensive review”, Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, Jan. 2013, issn: 10848045. doi:
10.1016/j.jnca.2012.09.004. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1084804512001944 (visited on 24. 02. 2020).

https://researchportal.port.ac.uk/portal/en/publications/cyber-security-breaches-survey-2019(293aa2ac-0a83-4a2e-a6e8-d2f2252810a2).html
https://researchportal.port.ac.uk/portal/en/publications/cyber-security-breaches-survey-2019(293aa2ac-0a83-4a2e-a6e8-d2f2252810a2).html
https://researchportal.port.ac.uk/portal/en/publications/cyber-security-breaches-survey-2019(293aa2ac-0a83-4a2e-a6e8-d2f2252810a2).html
https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html
https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html
https://www.hte.hu/documents/11801/4608612/Attila_FABIAN_BSc.pdf
https://www.hte.hu/documents/11801/4608612/Attila_FABIAN_BSc.pdf
https://www.safaribooksonline.com/library/view/-/9781782161288/
https://doi.org/10.1016/j.bdr.2015.11.002
http://www.sciencedirect.com/science/article/pii/S2214579615000520
http://www.sciencedirect.com/science/article/pii/S2214579615000520
https://doi.org/10.1007/978-1-4614-3872-4_249
https://doi.org/10.1007/978-1-4614-3872-4_249
http://link.springer.com/10.1007/978-1-4614-3872-4_249
http://link.springer.com/10.1007/978-1-4614-3872-4_249
https://doi.org/10.1016/j.jnca.2012.09.004
https://linkinghub.elsevier.com/retrieve/pii/S1084804512001944
https://linkinghub.elsevier.com/retrieve/pii/S1084804512001944

74

[10] G. Halleen, Security Monitoring with Cisco Security MARS, 1st edition. Cisco
Press, 2007, 336 pp., isbn: 978-1-58705-270-5.

[11] D. Zobel, “Monitoring applications and services with network monitoring”,
Paessler, Dec. 2013, p. 8. [Online]. Available: https://hlassets.paessler.
com/common/files/pdf/whitepaper/application-monitoring_en.pdf
(visited on 16. 04. 2020).

[12] T. Dondich, Network Monitoring with Nagios, 1st edition. O’Reilly Media, Inc,
2006, 62 pp., isbn: 0-596-52819-1. [Online]. Available: https://learning.
oreilly.com/library/view/network-monitoring-with/0596528191/.

[13] J. Clarke, Network Programmability with YANG: The Structure of Network
Automation with YANG, NETCONF, RESTCONF, and gNMI, 1st edition.
Addison-Wesley Professional, 2019, 512 pp., isbn: 978-0-13-518039-6. [On-
line]. Available: https://www.safaribooksonline.com/library/view/-
/9780135180471/.

[14] A. Pras and J. Schoenwaelder, “On the difference between information models
and data models”, Internet Engineering Task Force, RFC3444, Jan. 2003,
RFC3444. doi: 10.17487/rfc3444. [Online]. Available: https://www.rfc-
editor.org/info/rfc3444 (visited on 14. 05. 2020).

[15] F. Strauss and J. Schoenwaelder, “SMIng - next generation structure of
management information”, Internet Engineering Task Force, RFC3780, May
2004, RFC3780. doi: 10.17487/rfc3780. [Online]. Available: https:
//www.rfc-editor.org/info/rfc3780 (visited on 15. 07. 2020).

[16] M. Bjorklund, “YANG - a data modeling language for the network configu-
ration protocol (NETCONF)”, Internet Engineering Task Force, RFC6020,
Oct. 2010, RFC6020. doi: 10.17487/rfc6020. [Online]. Available: https:
//www.rfc-editor.org/info/rfc6020 (visited on 08. 05. 2020).

[17] Apache, Apache/incubator-spot, 11th Sep. 2019. [Online]. Available: https:
//github.com/apache/incubator-spot/tree/SPOT-181_ODM (visited on
06. 03. 2020).

[18] D. Vohra, Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related
Frameworks and Tools, 1st edition. Apress, 2016, 444 pp., isbn: 978-1-
4842-2198-3. [Online]. Available: https://www.safaribooksonline.com/
library/view/-/9781484221990/.

[19] Splunk. (28th Jun. 2019). How to use the CIM data model reference tables
- splunk documentation, splunk.com, [Online]. Available: https://docs.
splunk.com/Documentation/CIM/4.15.0/User/Howtousethesereferencetables
(visited on 20. 05. 2020).

[20] ——, (14th May 2020). Overview of metrics - splunk documentation, [Online].
Available: https://docs.splunk.com/Documentation/Splunk/8.0.5/
Metrics/Overview (visited on 27. 07. 2020).

https://hlassets.paessler.com/common/files/pdf/whitepaper/application-monitoring_en.pdf
https://hlassets.paessler.com/common/files/pdf/whitepaper/application-monitoring_en.pdf
https://learning.oreilly.com/library/view/network-monitoring-with/0596528191/
https://learning.oreilly.com/library/view/network-monitoring-with/0596528191/
https://www.safaribooksonline.com/library/view/-/9780135180471/
https://www.safaribooksonline.com/library/view/-/9780135180471/
https://doi.org/10.17487/rfc3444
https://www.rfc-editor.org/info/rfc3444
https://www.rfc-editor.org/info/rfc3444
https://doi.org/10.17487/rfc3780
https://www.rfc-editor.org/info/rfc3780
https://www.rfc-editor.org/info/rfc3780
https://doi.org/10.17487/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://github.com/apache/incubator-spot/tree/SPOT-181_ODM
https://github.com/apache/incubator-spot/tree/SPOT-181_ODM
https://www.safaribooksonline.com/library/view/-/9781484221990/
https://www.safaribooksonline.com/library/view/-/9781484221990/
https://docs.splunk.com/Documentation/CIM/4.15.0/User/Howtousethesereferencetables
https://docs.splunk.com/Documentation/CIM/4.15.0/User/Howtousethesereferencetables
https://docs.splunk.com/Documentation/Splunk/8.0.5/Metrics/Overview
https://docs.splunk.com/Documentation/Splunk/8.0.5/Metrics/Overview

75

[21] ——, (18th Oct. 2019). Use the CIM to normalize data at search time - splunk
documentation, splunk.com, [Online]. Available: https://docs.splunk.
com/Documentation/CIM/4.15.0/User/UsetheCIMtonormalizedataatsearchtime#
7._.28Optional.29_Extend_the_CIM_definition_with_custom_fields
(visited on 26. 06. 2020).

[22] Elastic, Elastic/ecs, original-date: 2018-05-24, 18th May 2020. [Online].
Available: https://github.com/elastic/ecs (visited on 20. 05. 2020).

[23] ——, (2020). Field datatypes | elasticsearch reference | elastic. Library
Catalog: www.elastic.co, [Online]. Available: https://www.elastic.co/
guide / en / elasticsearch / reference / current / mapping - types . html
(visited on 20. 05. 2020).

[24] M. Settle and M. Martin. (13th Feb. 2019). Elastic common schema (ECS):
The common event model for elasticsearch, Elastic Blog. Library Catalog:
www.elastic.co, [Online]. Available: https : / / www . elastic . co / blog /
introducing-the-elastic-common-schema (visited on 20. 05. 2020).

[25] Elastic. (5th Mar. 2020). Elastic common schema (ECS) reference [1.5]
| elastic, Elastic. Library Catalog: www.elastic.co, [Online]. Available:
https : / / www . elastic . co / guide / en / ecs / 1 . 5 / index . html (visited
on 20. 05. 2020).

[26] J. Komárková, M. Husák, M. Laštovička, and D. Tovarňák, “CRUSOE:
Data model for cyber situational awareness”, in Proceedings of the 13th
International Conference on Availability, Reliability and Security - ARES
2018, Hamburg, Germany: ACM Press, 2018, pp. 1–10, isbn: 978-1-4503-
6448-5. doi: 10.1145/3230833.3232798. [Online]. Available: http://dl.
acm.org/citation.cfm?doid=3230833.3232798 (visited on 06. 03. 2020).

[27] CSIRT-MU, CSIRT-MU/CRUSOE-data-model, original-date: 2018-06-28T06:49:06Z,
18th Sep. 2018. [Online]. Available: https://github.com/CSIRT-MU/
CRUSOE-Data-Model (visited on 18. 05. 2020).

[28] J. P. Jeong, C. Chung, S. Hares, L. Xia, and H. Birkholz, “I2nsf NSF moni-
toring YANG data model”, Internet Engineering Task Force, Internet-Draft
draft-ietf-i2nsf-nsf-monitoring-data-model-03, 2020, p. 78. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft- ietf- i2nsf- nsf-
monitoring-data-model-03 (visited on 14. 05. 2020).

[29] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for interface to network security functions”, Internet Engineering Task Force,
RFC8329, Feb. 2018, RFC8329. doi: 10.17487/RFC8329. [Online]. Available:
https://www.rfc-editor.org/info/rfc8329 (visited on 28. 05. 2020).

[30] S. Hares, D. Lopez, M. Zarny, C. Jacquenet, R. Kumar, and J. Jeong,
“Interface to network security functions (i2nsf): Problem statement and use
cases”, Internet Engineering Task Force, RFC8192, Jul. 2017, RFC8192. doi:
10.17487/RFC8192. [Online]. Available: https://www.rfc-editor.org/
info/rfc8192 (visited on 28. 05. 2020).

https://docs.splunk.com/Documentation/CIM/4.15.0/User/UsetheCIMtonormalizedataatsearchtime#7._.28Optional.29_Extend_the_CIM_definition_with_custom_fields
https://docs.splunk.com/Documentation/CIM/4.15.0/User/UsetheCIMtonormalizedataatsearchtime#7._.28Optional.29_Extend_the_CIM_definition_with_custom_fields
https://docs.splunk.com/Documentation/CIM/4.15.0/User/UsetheCIMtonormalizedataatsearchtime#7._.28Optional.29_Extend_the_CIM_definition_with_custom_fields
https://github.com/elastic/ecs
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html
https://www.elastic.co/blog/introducing-the-elastic-common-schema
https://www.elastic.co/blog/introducing-the-elastic-common-schema
https://www.elastic.co/guide/en/ecs/1.5/index.html
https://doi.org/10.1145/3230833.3232798
http://dl.acm.org/citation.cfm?doid=3230833.3232798
http://dl.acm.org/citation.cfm?doid=3230833.3232798
https://github.com/CSIRT-MU/CRUSOE-Data-Model
https://github.com/CSIRT-MU/CRUSOE-Data-Model
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-nsf-monitoring-data-model-03
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-nsf-monitoring-data-model-03
https://doi.org/10.17487/RFC8329
https://www.rfc-editor.org/info/rfc8329
https://doi.org/10.17487/RFC8192
https://www.rfc-editor.org/info/rfc8192
https://www.rfc-editor.org/info/rfc8192

76

[31] D. R. Mauro, Essential SNMP, 2nd ed, D. R. Mauro and K. J. Schmidt, Eds.
Sebastopol (CA): O’Reilly, 2005, Publication Title: Help for System and
Network Administrators, isbn: 0-596-00840-6.

[32] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Structure of management
information version 2 (SMIv2)”, Internet Engineering Task Force, RFC2578,
Apr. 1999, RFC2578. doi: 10.17487/rfc2578. [Online]. Available: https:
//www.rfc-editor.org/info/rfc2578 (visited on 17. 04. 2020).

[33] R. Frye, D. Levi, S. Routhier, and B. Wijnen, “Coexistence between version
1, version 2, and version 3 of the internet-standard network management
framework”, Internet Engineering Task Force, RFC3584, Aug. 2003, RFC3584.
doi: 10.17487/rfc3584. [Online]. Available: https://www.rfc-editor.
org/info/rfc3584 (visited on 17. 04. 2020).

[34] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Conformance statements
for SMIv2”, Internet Engineering Task Force, RFC2580, Apr. 1999, RFC2580.
doi: 10.17487/rfc2580. [Online]. Available: https://www.rfc-editor.
org/info/rfc2580 (visited on 17. 07. 2020).

[35] M. Daniele and J. Schoenwaelder, “Textual conventions for transport ad-
dresses”, Internet Engineering Task Force, RFC3419, Dec. 2002, RFC3419.
doi: 10.17487/rfc3419. [Online]. Available: https://www.rfc-editor.
org/info/rfc3419 (visited on 03. 06. 2020).

[36] R. Presuhn, “Transport mappings for the simple network management protocol
(SNMP)”, Internet Engineering Task Force, RFC3417, Dec. 2002, RFC3417.
doi: 10.17487/rfc3417. [Online]. Available: https://www.rfc-editor.
org/info/rfc3417 (visited on 03. 06. 2020).

[37] J. Schoenwaelder, “Simple network management protocol over transmis-
sion control protocol transport mapping”, Internet Engineering Task Force,
RFC3430, Dec. 2002, RFC3430. doi: 10 . 17487 / rfc3430. [Online].
Available: https : / / www . rfc - editor . org / info / rfc3430 (visited on
03. 06. 2020).

[38] J. Schoenwaelder and T. Jeffree, “Simple network management protocol
(SNMP) over IEEE 802 networks”, Internet Engineering Task Force, RFC4789,
Nov. 2006, RFC4789. doi: 10.17487/rfc4789. [Online]. Available: https:
//www.rfc-editor.org/info/rfc4789 (visited on 03. 06. 2020).

[39] J. Salowey, D. Harrington, and W. Hardaker, “Secure shell transport model
for the simple network management protocol (SNMP)”, Internet Engineering
Task Force, RFC5592, Jun. 2009, RFC5592. doi: 10.17487/rfc5592.
[Online]. Available: https://www.rfc-editor.org/info/rfc5592 (visited
on 03. 06. 2020).

[40] W. Hardaker, “Transport layer security (TLS) transport model for the simple
network management protocol (SNMP)”, Internet Engineering Task Force,
RFC6353, Jul. 2011, RFC6353. doi: 10.17487/rfc6353. [Online]. Available:
https://www.rfc-editor.org/info/rfc6353 (visited on 25. 05. 2020).

https://doi.org/10.17487/rfc2578
https://www.rfc-editor.org/info/rfc2578
https://www.rfc-editor.org/info/rfc2578
https://doi.org/10.17487/rfc3584
https://www.rfc-editor.org/info/rfc3584
https://www.rfc-editor.org/info/rfc3584
https://doi.org/10.17487/rfc2580
https://www.rfc-editor.org/info/rfc2580
https://www.rfc-editor.org/info/rfc2580
https://doi.org/10.17487/rfc3419
https://www.rfc-editor.org/info/rfc3419
https://www.rfc-editor.org/info/rfc3419
https://doi.org/10.17487/rfc3417
https://www.rfc-editor.org/info/rfc3417
https://www.rfc-editor.org/info/rfc3417
https://doi.org/10.17487/rfc3430
https://www.rfc-editor.org/info/rfc3430
https://doi.org/10.17487/rfc4789
https://www.rfc-editor.org/info/rfc4789
https://www.rfc-editor.org/info/rfc4789
https://doi.org/10.17487/rfc5592
https://www.rfc-editor.org/info/rfc5592
https://doi.org/10.17487/rfc6353
https://www.rfc-editor.org/info/rfc6353

77

[41] J. Case, D. Harrington, R. Presuhn, and B. Wijnen, “Message processing and
dispatching for the simple network management protocol (SNMP)”, Internet
Engineering Task Force, RFC3412, Dec. 2002, RFC3412. doi: 10.17487/
rfc3412. [Online]. Available: https : / / www . rfc - editor . org / info /
rfc3412 (visited on 02. 06. 2020).

[42] U. Blumenthal and B. Wijnen, “User-based security model (USM) for version 3
of the simple network management protocol (SNMPv3)”, Internet Engineering
Task Force, RFC3414, Dec. 2002, RFC3414. doi: 10.17487/rfc3414.
[Online]. Available: https://www.rfc-editor.org/info/rfc3414 (visited
on 17. 04. 2020).

[43] D. Harrington and J. Schoenwaelder, “Transport subsystem for the simple
network management protocol (SNMP)”, Internet Engineering Task Force,
RFC5590, Jun. 2009, RFC5590. doi: 10 . 17487 / rfc5590. [Online].
Available: https : / / www . rfc - editor . org / info / rfc5590 (visited on
10. 04. 2020).

[44] ITU-T, “ITU-t rec. x.690 (08/2015) information technology – ASN.1 encoding
rules: Specification of basic encoding rules (BER), canonical encoding rules
(CER) and distinguished encoding rules (DER)”, Aug. 2015. doi: 11 .
1002/1000/12483. [Online]. Available: https://www.itu.int/ITU-T/
recommendations/rec.aspx?rec=12483&lang=en (visited on 20. 06. 2020).

[45] V. Marinov and J. Schoenwaelder, “Mapping simple network management
protocol (SNMP) notifications to SYSLOG messages”, Internet Engineering
Task Force, RFC5675, Oct. 2009, RFC5675. doi: 10.17487/rfc5675.
[Online]. Available: https://www.rfc-editor.org/info/rfc5675 (visited
on 23. 06. 2020).

[46] D. Harrington, R. Presuhn, and B. Wijnen, “An architecture for describing
simple network management protocol (SNMP) management frameworks”,
Internet Engineering Task Force, RFC3411, Dec. 2002, RFC3411. doi:
10.17487/rfc3411. [Online]. Available: https://www.rfc-editor.org/
info/rfc3411 (visited on 01. 04. 2020).

[47] R. Presuhn, “Version 2 of the protocol operations for the simple network
management protocol (SNMP)”, Internet Engineering Task Force, RFC3416,
Dec. 2002, RFC3416. doi: 10.17487/rfc3416. [Online]. Available: https:
//www.rfc-editor.org/info/rfc3416 (visited on 02. 06. 2020).

[48] ——, “Management information base (MIB) for the simple network manage-
ment protocol (SNMP)”, Internet Engineering Task Force, RFC3418, Dec.
2002, RFC3418. doi: 10.17487/rfc3418. [Online]. Available: https:
//www.rfc-editor.org/info/rfc3418 (visited on 03. 06. 2020).

[49] W. Hardaker and D. Harrington, “Transport security model for the simple
network management protocol (SNMP)”, Internet Engineering Task Force,
RFC5591, Jun. 2009, RFC5591. doi: 10 . 17487 / rfc5591. [Online].
Available: https : / / www . rfc - editor . org / info / rfc5591 (visited on
25. 05. 2020).

https://doi.org/10.17487/rfc3412
https://doi.org/10.17487/rfc3412
https://www.rfc-editor.org/info/rfc3412
https://www.rfc-editor.org/info/rfc3412
https://doi.org/10.17487/rfc3414
https://www.rfc-editor.org/info/rfc3414
https://doi.org/10.17487/rfc5590
https://www.rfc-editor.org/info/rfc5590
https://doi.org/11.1002/1000/12483
https://doi.org/11.1002/1000/12483
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12483&lang=en
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12483&lang=en
https://doi.org/10.17487/rfc5675
https://www.rfc-editor.org/info/rfc5675
https://doi.org/10.17487/rfc3411
https://www.rfc-editor.org/info/rfc3411
https://www.rfc-editor.org/info/rfc3411
https://doi.org/10.17487/rfc3416
https://www.rfc-editor.org/info/rfc3416
https://www.rfc-editor.org/info/rfc3416
https://doi.org/10.17487/rfc3418
https://www.rfc-editor.org/info/rfc3418
https://www.rfc-editor.org/info/rfc3418
https://doi.org/10.17487/rfc5591
https://www.rfc-editor.org/info/rfc5591

78

[50] J. Merkle and M. Lochter, “HMAC-SHA-2 authentication protocols in user-
based security model (USM) for SNMPv3”, Internet Engineering Task Force,
RFC7860, Apr. 2016, RFC7860. doi: 10 . 17487 / RFC7860. [Online].
Available: https : / / www . rfc - editor . org / info / rfc7860 (visited on
25. 05. 2020).

[51] Cisco. (21st Jan. 2018). SNMP configuration guide - AES and 3-DES
encryption support for SNMP version 3 [cisco ASR 1000 series aggregation
services routers], Cisco. Library Catalog: www.cisco.com, [Online]. Available:
https : / / www . cisco . com / c / en / us / td / docs / ios - xml / ios / snmp /
configuration / xe - 16 / snmp - xe - 16 - book / nm - snmp - encrypt - snmp -
support.html (visited on 22. 07. 2020).

[52] G. Singh and S. Supriya, “A study of encryption algorithms (RSA, DES,
3des and AES) for information security”, International Journal of Computer
Applications, vol. 67, no. 19, pp. 33–38, 18th Apr. 2013, issn: 09758887. doi:
10.5120/11507-7224. [Online]. Available: http://research.ijcaonline.
org/volume67/number19/pxc3887224.pdf (visited on 25. 05. 2020).

[53] S. Kelly, “Security implications of using the data encryption standard (DES)”,
Internet Engineering Task Force, RFC4772, Dec. 2006, RFC4772. doi:
10.17487/rfc4772. [Online]. Available: https://www.rfc-editor.org/
info/rfc4772 (visited on 25. 05. 2020).

[54] B. Wijnen, R. Presuhn, and K. McCloghrie, “View-based access control model
(VACM) for the simple network management protocol (SNMP)”, Internet
Engineering Task Force, RFC3415, Dec. 2002, RFC3415. doi: 10.17487/
rfc3415. [Online]. Available: https : / / www . rfc - editor . org / info /
rfc3415 (visited on 03. 06. 2020).

[55] C. Lonvick, “The BSD syslog protocol”, Internet Engineering Task Force,
RFC3164, Aug. 2001, RFC3164. doi: 10 . 17487 / rfc3164. [Online].
Available: https : / / www . rfc - editor . org / info / rfc3164 (visited on
17. 03. 2020).

[56] R. Gerhards, “The syslog protocol”, Internet Engineering Task Force, RFC5424,
Mar. 2009, RFC5424. doi: 10.17487/rfc5424. [Online]. Available: https:
//www.rfc-editor.org/info/rfc5424 (visited on 17. 03. 2020).

[57] D. New and M. Rose, “Reliable delivery for syslog”, Internet Engineering
Task Force, RFC3195, Nov. 2001, RFC3195. doi: 10.17487/rfc3195.
[Online]. Available: https://www.rfc-editor.org/info/rfc3195 (visited
on 17. 03. 2020).

[58] A. Okmianski, “Transmission of syslog messages over UDP”, Internet Engineer-
ing Task Force, RFC5426, Mar. 2009, RFC5426. doi: 10.17487/rfc5426.
[Online]. Available: https://www.rfc-editor.org/info/rfc5426 (visited
on 22. 03. 2020).

https://doi.org/10.17487/RFC7860
https://www.rfc-editor.org/info/rfc7860
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/configuration/xe-16/snmp-xe-16-book/nm-snmp-encrypt-snmp-support.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/configuration/xe-16/snmp-xe-16-book/nm-snmp-encrypt-snmp-support.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/configuration/xe-16/snmp-xe-16-book/nm-snmp-encrypt-snmp-support.html
https://doi.org/10.5120/11507-7224
http://research.ijcaonline.org/volume67/number19/pxc3887224.pdf
http://research.ijcaonline.org/volume67/number19/pxc3887224.pdf
https://doi.org/10.17487/rfc4772
https://www.rfc-editor.org/info/rfc4772
https://www.rfc-editor.org/info/rfc4772
https://doi.org/10.17487/rfc3415
https://doi.org/10.17487/rfc3415
https://www.rfc-editor.org/info/rfc3415
https://www.rfc-editor.org/info/rfc3415
https://doi.org/10.17487/rfc3164
https://www.rfc-editor.org/info/rfc3164
https://doi.org/10.17487/rfc5424
https://www.rfc-editor.org/info/rfc5424
https://www.rfc-editor.org/info/rfc5424
https://doi.org/10.17487/rfc3195
https://www.rfc-editor.org/info/rfc3195
https://doi.org/10.17487/rfc5426
https://www.rfc-editor.org/info/rfc5426

79

[59] F. Miao, Y. Ma, and J. Salowey, “Transport layer security (TLS) transport
mapping for syslog”, Internet Engineering Task Force, RFC5425, Mar. 2009,
RFC5425. doi: 10.17487/rfc5425. [Online]. Available: https://www.rfc-
editor.org/info/rfc5425 (visited on 17. 04. 2020).

[60] J. Salowey, T. Petch, R. Gerhards, and H. Feng, “Datagram transport layer
security (DTLS) transport mapping for syslog”, Internet Engineering Task
Force, RFC6012, Oct. 2010, RFC6012. doi: 10.17487/rfc6012. [Online].
Available: https : / / www . rfc - editor . org / info / rfc6012 (visited on
27. 05. 2020).

[61] G. Klyne and C. Newman, “Date and time on the internet: Timestamps”,
Internet Engineering Task Force, RFC3339, Jul. 2002, RFC3339. doi: 10.
17487/rfc3339. [Online]. Available: https://www.rfc-editor.org/info/
rfc3339 (visited on 22. 03. 2020).

[62] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network config-
uration protocol (NETCONF)”, Internet Engineering Task Force, RFC6241,
Jun. 2011, RFC6241. doi: 10.17487/rfc6241. [Online]. Available: https:
//www.rfc-editor.org/info/rfc6241 (visited on 17. 04. 2020).

[63] M. Wasserman, “Using the NETCONF protocol over secure shell (SSH)”,
Internet Engineering Task Force, RFC6242, Jun. 2011, RFC6242. doi:
10.17487/rfc6242. [Online]. Available: https://www.rfc-editor.org/
info/rfc6242 (visited on 13. 05. 2020).

[64] T. Goddard, “Using NETCONF over the simple object access protocol
(SOAP)”, Internet Engineering Task Force, RFC4743, Dec. 2006, RFC4743.
doi: 10.17487/rfc4743. [Online]. Available: https://www.rfc-editor.
org/info/rfc4743 (visited on 13. 05. 2020).

[65] E. Lear and K. Crozier, “Using the NETCONF protocol over the blocks exten-
sible exchange protocol (BEEP)”, Internet Engineering Task Force, RFC4744,
Dec. 2006, RFC4744. doi: 10.17487/rfc4744. [Online]. Available: https:
//www.rfc-editor.org/info/rfc4744 (visited on 13. 05. 2020).

[66] M. Badra, A. Luchuk, and J. Schoenwaelder, “Using the NETCONF protocol
over transport layer security (TLS) with mutual x.509 authentication”, Internet
Engineering Task Force, RFC7589, Jun. 2015, RFC7589. doi: 10.17487/
RFC7589. [Online]. Available: https : / / www . rfc - editor . org / info /
rfc7589 (visited on 13. 05. 2020).

[67] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote authentication
dial in user service (RADIUS)”, Internet Engineering Task Force, RFC2865,
Jun. 2000, RFC2865. doi: 10.17487/rfc2865. [Online]. Available: https:
//www.rfc-editor.org/info/rfc2865 (visited on 08. 05. 2020).

[68] M. Bjorklund, “The YANG 1.1 data modeling language”, Internet Engineering
Task Force, RFC7950, Aug. 2016, RFC7950. doi: 10.17487/RFC7950.
[Online]. Available: https://www.rfc-editor.org/info/rfc7950 (visited
on 18. 05. 2020).

https://doi.org/10.17487/rfc5425
https://www.rfc-editor.org/info/rfc5425
https://www.rfc-editor.org/info/rfc5425
https://doi.org/10.17487/rfc6012
https://www.rfc-editor.org/info/rfc6012
https://doi.org/10.17487/rfc3339
https://doi.org/10.17487/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://doi.org/10.17487/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://doi.org/10.17487/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://doi.org/10.17487/rfc4743
https://www.rfc-editor.org/info/rfc4743
https://www.rfc-editor.org/info/rfc4743
https://doi.org/10.17487/rfc4744
https://www.rfc-editor.org/info/rfc4744
https://www.rfc-editor.org/info/rfc4744
https://doi.org/10.17487/RFC7589
https://doi.org/10.17487/RFC7589
https://www.rfc-editor.org/info/rfc7589
https://www.rfc-editor.org/info/rfc7589
https://doi.org/10.17487/rfc2865
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc2865
https://doi.org/10.17487/RFC7950
https://www.rfc-editor.org/info/rfc7950

80

[69] B. Lengyel and M. Bjorklund, “Partial lock remote procedure call (RPC)
for NETCONF”, Internet Engineering Task Force, RFC5717, Dec. 2009,
RFC5717. doi: 10.17487/rfc5717. [Online]. Available: https://www.rfc-
editor.org/info/rfc5717 (visited on 14. 05. 2020).

[70] E. Voit, A. Clemm, A. Gonzalez Prieto, E. Nilsen-Nygaard, and A. Tripa-
thy, “Subscription to YANG notifications”, Internet Engineering Task Force,
RFC8639, Sep. 2019, RFC8639. doi: 10.17487/RFC8639. [Online]. Available:
https://www.rfc-editor.org/info/rfc8639 (visited on 14. 05. 2020).

[71] A. Clemm and E. Voit, “Subscription to YANG notifications for datastore
updates”, Internet Engineering Task Force, RFC8641, Sep. 2019, RFC8641.
doi: 10.17487/RFC8641. [Online]. Available: https://www.rfc-editor.
org/info/rfc8641 (visited on 14. 05. 2020).

[72] M. Scott and M. Bjorklund, “YANG module for NETCONF monitoring”,
Internet Engineering Task Force, RFC6022, Oct. 2010, RFC6022. doi:
10.17487/rfc6022. [Online]. Available: https://www.rfc-editor.org/
info/rfc6022 (visited on 14. 05. 2020).

[73] S. Chisholm and H. Trevino, “NETCONF event notifications”, Internet Engi-
neering Task Force, RFC5277, Jul. 2008, RFC5277. doi: 10.17487/rfc5277.
[Online]. Available: https://www.rfc-editor.org/info/rfc5277 (visited
on 14. 05. 2020).

[74] M. Bjorklund, J. Schoenwaelder, P. Shafer, K. Watsen, and R. Wilton, “Net-
work management datastore architecture (NMDA)”, Internet Engineering
Task Force, RFC8342, Mar. 2018, RFC8342. doi: 10.17487/RFC8342. [On-
line]. Available: https://www.rfc-editor.org/info/rfc8342 (visited on
15. 07. 2020).

[75] A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF protocol”, Internet
Engineering Task Force, RFC8040, Jan. 2017. doi: 10.17487/RFC8040.
[Online]. Available: https://www.rfc-editor.org/info/rfc8040 (visited
on 27. 04. 2020).

[76] M. Bjorklund, J. Schoenwaelder, P. Shafer, K. Watsen, and R. Wilton, “REST-
CONF extensions to support the network management datastore architec-
ture”, Internet Engineering Task Force, RFC8527, Mar. 2019, RFC8527. doi:
10.17487/RFC8527. [Online]. Available: https://www.rfc-editor.org/
info/rfc8527 (visited on 16. 07. 2020).

[77] I. Hickson, “Server-sent events”, W3C, W3C Recommendation, Feb. 2015.
[Online]. Available: https://www.w3.org/TR/eventsource/ (visited on
18. 05. 2020).

[78] J. Beasley, A Practical Guide to Advanced Networking, 3rd edition. Pearson
IT Certification, 2015, 528 pp., isbn: 978-0-7897-5749-4. [Online]. Available:
https://www.safaribooksonline.com/library/view/-/9780132882996/.

https://doi.org/10.17487/rfc5717
https://www.rfc-editor.org/info/rfc5717
https://www.rfc-editor.org/info/rfc5717
https://doi.org/10.17487/RFC8639
https://www.rfc-editor.org/info/rfc8639
https://doi.org/10.17487/RFC8641
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8641
https://doi.org/10.17487/rfc6022
https://www.rfc-editor.org/info/rfc6022
https://www.rfc-editor.org/info/rfc6022
https://doi.org/10.17487/rfc5277
https://www.rfc-editor.org/info/rfc5277
https://doi.org/10.17487/RFC8342
https://www.rfc-editor.org/info/rfc8342
https://doi.org/10.17487/RFC8040
https://www.rfc-editor.org/info/rfc8040
https://doi.org/10.17487/RFC8527
https://www.rfc-editor.org/info/rfc8527
https://www.rfc-editor.org/info/rfc8527
https://www.w3.org/TR/eventsource/
https://www.safaribooksonline.com/library/view/-/9780132882996/

81

[79] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A.
Pras, “Flow monitoring explained: From packet capture to data analysis with
NetFlow and IPFIX”, IEEE Communications Surveys & Tutorials, vol. 16,
no. 4, pp. 2037–2064, 2014, issn: 1553-877X. doi: 10.1109/COMST.2014.
2321898. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6814316 (visited on 23. 04. 2020).

[80] B. Claise, “Cisco systems NetFlow services export version 9”, Internet Engi-
neering Task Force, RFC3954, Oct. 2004, RFC3954. doi: 10.17487/rfc3954.
[Online]. Available: https://www.rfc-editor.org/info/rfc3954 (visited
on 17. 04. 2020).

[81] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP flow information
export (IPFIX) protocol for the exchange of flow information”, Internet
Engineering Task Force, RFC7011, Sep. 2013, RFC7011. doi: 10.17487/
rfc7011. [Online]. Available: https : / / www . rfc - editor . org / info /
rfc7011 (visited on 17. 04. 2020).

[82] B. Claise and B. Trammell, “Information model for IP flow information
export (IPFIX)”, Internet Engineering Task Force, RFC7012, Sep. 2013,
RFC7012. doi: 10.17487/rfc7012. [Online]. Available: https://www.rfc-
editor.org/info/rfc7012 (visited on 17. 04. 2020).

[83] Internet Assigned Numbers Authority. (25th Jul. 2019). IP flow information
export (IPFIX) entities, iana.org, [Online]. Available: https://www.iana.
org/assignments/ipfix/ipfix.xhtml (visited on 20. 05. 2020).

[84] M. Marculescu. (26th Feb. 2015). Introducing gRPC, a new open source
HTTP/2 RPC framework, Google Developers Blog. Library Catalog: develop-
ers.googleblog.com, [Online]. Available: https://developers.googleblog.
com/2015/02/introducing-grpc-new-open-source-http2.html (visited
on 16. 07. 2020).

[85] gRPC. (2020). gRPC, gRPC. Library Catalog: grpc.io, [Online]. Available:
https://grpc.io/ (visited on 29. 06. 2020).

[86] Google. (2020). Protocol buffers, Google Developers. Library Catalog:
developers.google.com, [Online]. Available: https://developers.google.
com/protocol-buffers (visited on 21. 07. 2020).

[87] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol version 2
(HTTP/2)”, Internet Engineering Task Force, RFC7540, May 2015, RFC7540.
doi: 10.17487/RFC7540. [Online]. Available: https://www.rfc-editor.
org/info/rfc7540 (visited on 16. 07. 2020).

[88] Google. (17th Jul. 2020). Components/cronet - chromium/src - git at google,
[Online]. Available: https://chromium.googlesource.com/chromium/src/
+/master/components/cronet/ (visited on 19. 07. 2020).

https://doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1109/COMST.2014.2321898
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6814316
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6814316
https://doi.org/10.17487/rfc3954
https://www.rfc-editor.org/info/rfc3954
https://doi.org/10.17487/rfc7011
https://doi.org/10.17487/rfc7011
https://www.rfc-editor.org/info/rfc7011
https://www.rfc-editor.org/info/rfc7011
https://doi.org/10.17487/rfc7012
https://www.rfc-editor.org/info/rfc7012
https://www.rfc-editor.org/info/rfc7012
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://grpc.io/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://doi.org/10.17487/RFC7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://chromium.googlesource.com/chromium/src/+/master/components/cronet/
https://chromium.googlesource.com/chromium/src/+/master/components/cronet/

82

[89] P. Borman, C. Lebsack, C. Morrow, R. Shakir, and A. Shaiks, gNMI spec-
ification, version 0.6.0, original-date: 2015-09-10, 30th Jan. 2018. [Online].
Available: https://github.com/openconfig/reference/blob/master/
rpc/gnmi/gnmi-specification.md (visited on 29. 06. 2020).

[90] P. Phaal and M. Lavine. (Jul. 2004). sFlow version 5, sflow.org, [On-
line]. Available: https://sflow.org/sflow_version_5.txt (visited on
19. 05. 2020).

[91] O. Kauppinen. (8th Apr. 2020). SNMPv3 trap support to snmp_trap
input plugin by kauppine · pull request #7294 · influxdata/telegraf, GitHub.
Library Catalog: github.com, [Online]. Available: https://github.com/
influxdata/telegraf/pull/7294 (visited on 24. 04. 2020).

[92] Metrics 2.0. (5th Sep. 2016). Metrics 2.0: Implementations, [Online]. Avail-
able: http://metrics20.org/implementations/ (visited on 27. 07. 2020).

[93] Graphite. (2020). Graphite, [Online]. Available: https://graphiteapp.
org/ (visited on 27. 07. 2020).

[94] InfluxData. (2020). InfluxData documentation, InfluxData, [Online]. Avail-
able: https://docs.influxdata.com/ (visited on 22. 05. 2020).

[95] L. Lhotka, “JSON encoding of data modeled with YANG”, Internet Engineer-
ing Task Force, RFC7951, Aug. 2016, RFC7951. doi: 10.17487/RFC7951.
[Online]. Available: https://www.rfc-editor.org/info/rfc7951 (visited
on 18. 05. 2020).

[96] ServiceNow. (2020). ServiceNow – the smarter way to workflowTM. Li-
brary Catalog: www.servicenow.com, [Online]. Available: https://www.
servicenow.com (visited on 27. 07. 2020).

[97] Splunk. (9th Apr. 2020). Splunk R⃝ common information model add-on -
splunk documentation, [Online]. Available: https://docs.splunk.com/
Documentation/CIM/4.15.0 (visited on 20. 05. 2020).

[98] collectd. (2020). Start page – collectd – the system statistics collection daemon,
[Online]. Available: https://collectd.org/ (visited on 27. 07. 2020).

[99] OpenTSDB. (16th Dec. 2018). OpenTSDB - a distributed, scalable mon-
itoring system, [Online]. Available: http://opentsdb.net/ (visited on
27. 07. 2020).

[100] Prometheus. (2020). Prometheus - monitoring system & time series database,
[Online]. Available: https://prometheus.io/ (visited on 27. 07. 2020).

[101] D. Merkel, “Docker: Lightweight linux containers for consistent development
and deployment”, Linux journal, vol. 2014, no. 239, p. 5, 2014, issn: 1075-
3583. doi: 10.5555/2600239.2600241. [Online]. Available: https://www.
seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf (visited
on 15. 06. 2020).

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://sflow.org/sflow_version_5.txt
https://github.com/influxdata/telegraf/pull/7294
https://github.com/influxdata/telegraf/pull/7294
http://metrics20.org/implementations/
https://graphiteapp.org/
https://graphiteapp.org/
https://docs.influxdata.com/
https://doi.org/10.17487/RFC7951
https://www.rfc-editor.org/info/rfc7951
https://www.servicenow.com
https://www.servicenow.com
https://docs.splunk.com/Documentation/CIM/4.15.0
https://docs.splunk.com/Documentation/CIM/4.15.0
https://collectd.org/
http://opentsdb.net/
https://prometheus.io/
https://doi.org/10.5555/2600239.2600241
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf

83

[102] Apache. (2020). Apache kafka, Apache Kafka. Library Catalog: kafka.apache.org,
[Online]. Available: https : / / kafka . apache . org / intro (visited on
07. 07. 2020).

[103] Verizon, VerizonDigital/vflow, 24th Jun. 2020. [Online]. Available: https:
//github.com/VerizonDigital/vflow (visited on 26. 06. 2020).

[104] B.-Y. Choi and S. Bhattacharyya, “On the accuracy and overhead of cisco sam-
pled netflow”, in Proceedings of ACM SIGMETRICS Workshop on Large Scale
Network Inference (LSNI), 2005, pp. 1–6. [Online]. Available: https://pdfs.
semanticscholar . org / 2c5d / fbc02659f390dcc6ce7c0579e78a03cfad1a .
pdf (visited on 15. 06. 2020).

[105] B. Hedstrom, A. Watwe, and S. Sakthidharan, “Protocol efficiencies of NET-
CONF versus SNMP for configuration management functions”, Master’s thesis,
University of Colorado, 2nd May 2011, 13 pp. [Online]. Available: https://
pdfs.semanticscholar.org/5664/44aa2023ac8cf9910cc33ead8582ace4c9c4.
pdf (visited on 15. 06. 2020).

[106] J. Yu and I. Al Ajarmeh, “An empirical study of the NETCONF protocol”,
in 2010 Sixth International Conference on Networking and Services, Cancun,
Mexico: IEEE, Mar. 2010, pp. 253–258, isbn: 978-1-4244-5927-8. doi:
10.1109/ICNS.2010.41. [Online]. Available: http://ieeexplore.ieee.
org/document/5460639/ (visited on 11. 05. 2020).

[107] V. Marinov and J. Schönwälder, “Performance analysis of SNMP over SSH”,
in Large Scale Management of Distributed Systems, R. State, S. van der Meer,
D. O’Sullivan, and T. Pfeifer, Eds., vol. 4269, Series Title: Lecture Notes
in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 25–36, isbn: 978-3-540-47659-7. doi: 10.1007/11907466_3. [Online].
Available: http://link.springer.com/10.1007/11907466_3 (visited on
14. 07. 2020).

[108] X. Du, M. Shayman, and M. Rozenblit, “Implementation and performance
analysis of SNMP on a TLS/TCP base”, in 2001 IEEE/IFIP International
Symposium on Integrated Network Management Proceedings. Integrated Net-
work Management VII. Integrated Management Strategies for the New Millen-
nium (Cat. No.01EX470), Seattle, WA, USA: IEEE, 2001, pp. 453–466, isbn:
978-0-7803-6719-7. doi: 10.1109/INM.2001.918059. [Online]. Available:
http://ieeexplore.ieee.org/document/918059/ (visited on 14. 07. 2020).

[109] P. Gonçalves, J. L. Oliveira, and R. Aguiar, “A study of encoding over-
head in network management protocols”, International Journal of Network
Management, vol. 22, no. 6, pp. 435–450, 2012, issn: 1099-1190. doi:
10.1002/nem.1801. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/nem.1801 (visited on 04. 07. 2020).

[110] S. Chisholm and R. Gerhards, “Alarms in syslog”, Internet Engineering Task
Force, RFC5674, Oct. 2009, RFC5674. doi: 10.17487/rfc5674. [Online].
Available: https : / / www . rfc - editor . org / info / rfc5674 (visited on
23. 06. 2020).

https://kafka.apache.org/intro
https://github.com/VerizonDigital/vflow
https://github.com/VerizonDigital/vflow
https://pdfs.semanticscholar.org/2c5d/fbc02659f390dcc6ce7c0579e78a03cfad1a.pdf
https://pdfs.semanticscholar.org/2c5d/fbc02659f390dcc6ce7c0579e78a03cfad1a.pdf
https://pdfs.semanticscholar.org/2c5d/fbc02659f390dcc6ce7c0579e78a03cfad1a.pdf
https://pdfs.semanticscholar.org/5664/44aa2023ac8cf9910cc33ead8582ace4c9c4.pdf
https://pdfs.semanticscholar.org/5664/44aa2023ac8cf9910cc33ead8582ace4c9c4.pdf
https://pdfs.semanticscholar.org/5664/44aa2023ac8cf9910cc33ead8582ace4c9c4.pdf
https://doi.org/10.1109/ICNS.2010.41
http://ieeexplore.ieee.org/document/5460639/
http://ieeexplore.ieee.org/document/5460639/
https://doi.org/10.1007/11907466_3
http://link.springer.com/10.1007/11907466_3
https://doi.org/10.1109/INM.2001.918059
http://ieeexplore.ieee.org/document/918059/
https://doi.org/10.1002/nem.1801
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1801
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1801
https://doi.org/10.17487/rfc5674
https://www.rfc-editor.org/info/rfc5674

84

[111] J. Kelsey, J. Callas, and A. Clemm, “Signed syslog messages”, Internet
Engineering Task Force, RFC5848, May 2010, RFC5848. doi: 10.17487/
rfc5848. [Online]. Available: https : / / www . rfc - editor . org / info /
rfc5848 (visited on 23. 06. 2020).

[112] A. Charny, F. Huang, G. Karagiannis, M. Menth, and T. Taylor, “Pre-
congestion notification (PCN) boundary-node behavior for the controlled
load (CL) mode of operation”, Internet Engineering Task Force, RFC6661,
Jul. 2012, RFC6661. doi: 10.17487/rfc6661. [Online]. Available: https:
//www.rfc-editor.org/info/rfc6661 (visited on 23. 06. 2020).

https://doi.org/10.17487/rfc5848
https://doi.org/10.17487/rfc5848
https://www.rfc-editor.org/info/rfc5848
https://www.rfc-editor.org/info/rfc5848
https://doi.org/10.17487/rfc6661
https://www.rfc-editor.org/info/rfc6661
https://www.rfc-editor.org/info/rfc6661

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Data models
	Introduction
	Apache Spot Open Data Model
	Splunk Common Information Model
	Elastic Common Schema
	CRUSOE
	I2NSF NSF Monitoring YANG Data Model
	Summary

	Network monitoring protocols
	Network monitoring
	Simple Network Monitoring Protocol
	Syslog
	NETCONF
	RESTCONF
	NetFlow and IPFIX
	Emerging protocols
	Summary

	Requirements and design
	Requirements
	Technologies
	Data model
	Architecture and implementation
	Summary

	Evaluation
	Protocol overhead
	Information value
	Comparison
	Summary

	Conclusions
	References

